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Abstract

The study of the QAP-Polytope was started by Rijal (1995), Padberg and Rijal (1996),

and J�unger and Kaibel (1996), investigating the structure of the feasible points of a

(Mixed) Integer Linear Programming formulation of the QAP that provides good

lower bounds by its continious relaxation. Rijal (1995) and Padberg and Rijal (1996)

propose an alternative (Mixed) Integer Linear Programming formulation for the case

that the QAP-instance is symmetric in a certain sense and de�ne analogously the

SQAP-Polytope. They give a conjecture about the dimension of that polytope, whose

proof is one part of this paper. Moreover, we investigate the trivial faces of the SQAP-

Polytope and present a �rst class of non-trivial facets of it. The polyhedral results are

used to compute lower bounds for symmetric QAPs.

Keywords: Symmetric Quadratic Assignment Problem, Polyhedral Combinatorics,

SQAP-Polytope

MSC Classi�cation: 90C09, 90C10, 90C27

1 Introduction

For many classical NP-hard combinatorial optimization problems like, e.g., the Traveling

Salesman Problem (TSP), theMax Cut Problem, or the Stable Set Problem, the methods of

polyhedral combinatorics have yielded a lot of structural insight that lead to big improve-

ments in practical problem solving via cutting plane based methods like Branch&Cut.

However, the Quadratic Assignment Problem (QAP) { where the task is to �nd a per-

mutation � that minimizes

P

i

P

k

a

ik

b

�(i)�(k)

+

P

i

c

i�(i)

for some matrices A = (a

ik

),

B = (b

jl

), and C = (c

ij

) { was not considered from a polyhedral point of view until the

work of Rijal (1995), Padberg and Rijal (1996), and J�unger and Kaibel (1996). These

papers de�ned the QAP-Polytope via a long time known, quite natural, Mixed Integer

Programming (MIP) formulation of the QAP and proved some basic properties of that

polytope, in particular its dimension.

There might be two reasons, why the QAP-Polytope had not been considered before.

One is the fact that this polytope looks in some sense \nasty", which can be overcome

�

partially supported by DFG Ju 204/4-2 and EU ESPRIT Long Term Reseach Project Nr 20244
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by mapping it in a certain way into a di�erent space (cf. J�unger and Kaibel, 1996). The

other reason is a computational one. The MIP-formulation on which the QAP-Polytope

is based, has a lot of variables, such that (at least) in former times it might have seemed

to be unpractical to solve the arising LP's, for instance within a Branch&Cut algorithm.

However, the LP-solvers have improved a lot during the last years, especially due to the

success of interior point methods. Nowadays, it seems to become promising to attack

QAP-instances of size about 20 or 25 (and maybe even larger) by cutting plane based

algorithms that use structural insight into the QAP-Polytope. When considering these

orders of magnitudes, one has to note that existing Branch&Bound algorithms (mostly

using the Gilmore/Lawler Bound) need a large amount of (parallel) computer power to

solve instances of size about 20, since they produce Branch&Bound trees with very many

nodes (cf. Clausen and Perregaard, 1994). Due to this fact, it sounds attractive to try to

reduce this \tendency to implicit enumeration" by exploiting more structural information

about the problem that result from the polyhedral investigations.

Actually, the kind of QAP we de�ned above, is a so called Koopmans&Beckmann

Problem (KB-QAP). Koopmans and Beckmann (1957) introduced this problem in order

to model the situation of a set of n facilities that have certain amounts of \ow" between

them and a set of n locations having certain distances, and the requirement is to assign

the facilities to the locations in such a way that the sum of the products of ows and

the respective distances is minimized. The c

ij

model �xed costs that arise when placing

facility i to location j, independently from the assignment of the other facilities. One calls

matrix A the ow matrix, matrix B the distance matrix, and matrix C the matrix of the

linear costs. Clearly, this problem is NP-hard, since it has many NP-hard optimization

problems as special cases, e.g., the TSP.

We call instances with the property that assigning object i to location j and object

k to location l always causes the same costs as assigning i to l and k to j symmetric.

For example, all instances having a symmetric distance or ow matrix are symmetric in

that sense. It turns out (�rst observed by Rijal, 1995; Padberg and Rijal, 1996) that for

such symmetric instances one can drop nearly 50% of the variables in the MIP-formulation

underlying the polyhedral approach. This yields a di�erent polytope, the SQAP-Polytope.

Rijal (1995) and Padberg and Rijal (1996) derived a set of valid equations and conjectured

the dimension of the SQAP-Polytope.

In this paper, we present some basic properties of the SQAP-Polytope including a

proof of that conjecture. The main tool we use is a transformation that is similar to

the one that allowed us to derive basic results about the QAP-Polytope in a (relatively)

simple way (cf. J�unger and Kaibel, 1996). Section 2 presents our formulation of the QAP

as a minimization problem in a certain graph. Using that terminology, we give the MIP

formulations for QAP and SQAP that underly the polyhedral approaches. In Section 3,

we give de�nitions of both the QAP- and the SQAP-Polytope and describe a connection

between them. Then, we map these polytopes isomorphically to other spaces, where they

\look much nicer". (When saying a certain polytope P is isomorphic to a polytope P

0

,

we always mean that there is an a�ne transformation from a�(P ) to a�(P

0

) mapping P

to P

0

. In particular, this implies that the two polytopes are combinatorially isomorphic,

i.e., they have isomorphic face lattices.) Section 4 establishes the dimension of the SQAP-

Polytope as well as the fact that the nonnegativity constraints on the variables de�ne

facets of it. In Section 5, we present a �rst class of non-trivial facets of the SQAP-

Polytope. Section 6 reports on some preliminary computational results concerning a lower
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bound obtained by exploiting these �rst results about the SQAP-Polytope. It will turn

out that { not surprisingly { the basic work which is presented in this paper, does not

yet lead to a breakthrough in attacking (symmetric) QAP's. We discuss in Section 7,

which further investigations are promising, in our opinion, and why we think that this

polyhedral approach should be pursued further (although we do not want to predict that

breakthrough).

2 Problem De�nition

We will de�ne the QAP as the problem of �nding among certain cliques in a special graph

one of minimal node- and edge-weight. The SQAP will be de�ned as a similar problem in a

closely related hypergraph. We use the symbol

�

M

k

�

for the set of all subsets of cardinality

k of a set M .

Let the graph G

n

= (V

n

; E

n

) have nodes

V

n

:=

�

(i; j)

�

�

i; j 2 f1; : : : ; ng

	

and edges

E

n

:=

�

f(i; j); (k; l)g 2

�

V

n

2

�

�

�

i 6= k; j 6= l

	

:

We de�ne [i; j; k; l] := f(i; j); (k; l)g for all edges f(i; j); (k; l)g 2 E

n

. This implies [i; j; k; l] =

[k; l; i; j]. We usually draw G

n

as shown in Figure 1.

Figure 1: The graph G

n

has all possible edges but the \horizontal" and the \vertical" ones.

The graph G

n

has clique-number !(G

n

) = n, and the n-cliques of G

n

correspond to the

n� n-permutation matrices. We denote the set of (node sets of) k-cliques of G

n

by

CLQ

n

k

:= fC � V

n

j C k-clique of G

n

g:

For any S � V

n

, we denote by E

n

(S) := ffv; wg 2 E

n

j v; w 2 Sg the set of edges having

both endpoints in S. As usual, for a subset N �M of a �nite setM and a vector a 2 R

M

,

we de�ne a(N) :=

P

e2N

a

e

.

The Quadratic Assignment Problem is to solve

min g(C) + h(E

n

(C))

s.t. C 2 CLQ

n

n

:

(QAP

g;h

)

for given node weights g 2 R

V

n

and edge weights h 2 R

E

n

. (If we have a KB-QAP de�ned

by the matrices A = (a

ik

), B = (b

jl

) and C = (c

ij

) we choose g

(i;j)

= c

ij

+ a

ii

b

jj

and

h

[i;j;k;l]

= a

ik

b

jl

+ a

ki

b

lj

.)
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The nodes and edges of G

n

will correspond to variables in the polyhedral approach. If

the instance (g; h) is symmetric in the sense that h

[i;j;k;l]

= h

[i;l;k;j]

for all pairs of edges

([i; j; k; l]; [i; l; k; j]) (cf. Figure 2) then we can identify these two edges in our formulation,

and hence reduce the number of variables by nearly 50%.

Figure 2: A pair of edges that can be identi�ed in the symmetric case.

This observation (�rst made by Rijal, 1995; Padberg and Rijal, 1996) gives the moti-

vation to study also a speci�c formulation for the special case of symmetric instances of

the QAP, the Symmetric Quadratic Assignment Problem (SQAP).

In order to derive an appropriate formulation for SQAP, we model the described iden-

ti�cation of edges by passing from the graph G

n

having nodes V

n

and edges E

n

to the

hypergraph H

n

having the same nodes V

n

, but hyperedges

F

n

:=

�

f(i; j); (k; l); (i; l); (k; j)g 2

�

V

n

4

�

�

�

i 6= k; j 6= l

	

:

There will be no hypergraph theory involved, we just use the notions of \hypergraph"

and \hyperedges". For i 6= k and j 6= l, we denote hi; j; k; li := f(i; j); (k; l); (i; l); (k; j)g.

This implies hi; j; k; li = hk; l; i; ji = hi; l; k; ji = hk; j; i; li for all i 6= k and j 6= l. For an

edge [i; j; k; l] 2 E

n

we call the edge �([i; j; k; l]) := [i; l; k; j] the mate of [i; j; k; l]. Then

we can assign to every edge e 2 E

n

a hyperedge HYP(e) := e [ �(e) 2 F

n

. For a subset

R � E

n

, we denote HYP(R) := fHYP(e) j e 2 Rg. For a subset S � V

n

, we de�ne the set

F

n

(S) := HYP(E

n

(S)). We refer to a subset C � V

n

as a clique of H

n

if, and only if, C is

a clique of the graph G

n

.

Because we need to express relationships between the asymmetric and the symmetric

version of the problem, we introduce the map

�

n

: R

E

n

�! R

F

n

by de�ning �

n

(y) = z via z

hi;j;k;li

:= y

[i;j;k;l]

+ y

[i;l;k;j]

.

If (g; h) 2 R

V

n

� R

E

n

and h is symmetric then (QAP

g;h

) is equivalent to solving the

Symmetric Quadratic Assignment Problem

min g(C) +

b

h(F

n

(C))

s.t. C 2 CLQ

n

n

(SQAP

g;

b

h

)

for

b

h :=

1

2

�

n

(h).
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In the rest of this section, we will develop Mixed Integer Programming (MIP) for-

mulations for the problems QAP and SQAP. These formulations are the starting points

for the polyhedral approach. The MIP formulation for QAP was proposed independently

also by Johnson (1992), Drezner (1994), and Rijal (1995). The one for SQAP is due to

Rijal (1995) and Padberg and Rijal (1996). Nevertheless, we will give short proofs of the

respective theorems in our notational setting.

We need the notion of a characteristic vector �

N

2 f0; 1g

M

for a subset N � M of a

(�nite) setM , de�ned by setting �

N

p

:= 1 for p 2M if, and only if, p 2 N . We will denote

characteristic vectors of subsets of

V

n

by x

(::: )

,

E

n

by y

(::: )

, and

F

n

by z

(::: )

.

De�ne VERT

n

:= f(x

C

; y

E

n

(C)

j C 2 CLQ

n

n

g and SVERT

n

:= f(x

C

; z

F

n

(C)

j C 2

CLQ

n

n

g; i.e., VERT

n

resp. SVERT

n

are the characteristic vectors of feasible solutions to

QAP resp. SQAP.

We denote by row

(n)

i

:= f(i; j) 2 V

n

j j = 1; : : : ; ng the i-th row and by col

(n)

j

:=

f(i; j) 2 V

n

j i = 1; : : : ; ng the j-th column of the nodes V

n

. The next two theorems

provide the desired MIP formulations for QAP resp. SQAP. As usual, for any two disjoint

subsets S; T � V

n

, (S : T ) is the set of all edges in E

n

having one endpoint in S and the

other one in T . For a singleton fvg, in this as well as in some other contexts, we often

omit the brackets and simply write v.

Figures 3 and 4 illustrate the used equations. We draw a hyperedge from F

n

simply

by drawing both mates from E

n

belonging to that hyperedge. In all our �gures, dashed

nodes or (hyper)edges indicate coe�cients �1, solid ones stand for +1.

Theorem 1. A vector (x; y) 2 R

V

n

� R

E

n

is a member of VERT

n

if, and only if, it

satis�es the following conditions:

x(row

(n)

i

) = 1 (i = 1; : : : ; n)(1)

x(col

(n)

j

) = 1 (j = 1; : : : ; n)(2)

�x

(i;j)

+ y((i; j) : row

(n)

k

) = 0 (i; j; k = 1; : : : ; n; i 6= k)(3)

�x

(i;j)

+ y((i; j) : col

(n)

l

) = 0 (i; j; l = 1; : : : ; n; j 6= l)(4)

y

e

� 0 (e 2 E

n

)(5)

x

v

2 f0; 1g (v 2 V

n

)(6)

We make one more notational convention in order to increase the readability of the

following equations. For any pair v; w 2 V

n

of nodes belonging to the same row or column

of V

n

, we denote by �

w

v

:= ff 2 F

n

j v; w 2 fg the set of all hyperedges in F

n

containing

both v and w (cf. Figure 4).

Theorem 2. A vector (x; z) 2 R

V

n

� R

F

n

is a member of SVERT

n

if, and only if, it
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satis�es the following conditions:

x(row

(n)

i

) = 1 (i = 1; : : : ; n)(7)

x(col

(n)

j

) = 1 (j = 1; : : : ; n)(8)

�x

(i;j)

� x

(k;j)

+ z(�

(k;j)

(i;j)

) = 0 (i; j; k = 1; : : : ; n; i 6= k)(9)

�x

(i;j)

� x

(i;l)

+ z(�

(i;l)

(i;j)

) = 0 (i; j; l= 1; : : : ; n; j 6= l)(10)

z

e

� 0 (e 2 F

n

)(11)

x

v

2 f0; 1g (v 2 V

n

)(12)

Figure 3: Equations (3) and (4).

Figure 4: Equations (9) and (10).

Proof of Theorem 1. The \only if" part is clear. To see the other direction, let (x; y) 2

R

V

n

� R

E

n

satisfy conditions (1), : : : ,(6). Obviously, x is the characteristic vector of an

n-clique of G

n

, and one deduces (e.g., using two equations from (3) and the nonnegativity

of y) that y

[i;j;k;l]

> 0 implies x

(i;j)

= x

(k;l)

= 1. These two facts imply that it is impossible

for two components of y belonging to mates to be both non-zero. Observing that (x; �

n

(y))

satis�es the conditions of Theorem 2, one obtains Theorem 1 from Theorem 2.

Proof of Theorem 2. Again, the \only if" part is obvious. Let (x; z) 2 R

V

n

�R

E

n

satisfy

conditions (7), : : : ,(12), hence x is the characteristic vector of an n-clique C 2 CLQ

n

n

.
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Considering four appropriate equations from (9) and (10) (and noting the nonnegativity

of z), one gets that z

hi;j;k;li

> 0 implies x

(i;j)

= x

(k;l)

= 1 or x

(i;l)

= x

(k;j)

= 1. But then, in

each of the equations (9) and (10) there is at most one hyperedge involved corresponding

to a non-zero component of z. This leads to the fact that z

hi;j;k;li

> 0 implies z

hi;j;k;li

= 1,

and that x

(i;j)

= x

(k;l)

= 1 implies z

hi;j;k;li

= 1. Hence, z must be the characteristic vector

of F

n

(C)

3 The SQAP-Polytope and some Relatives

Theorems 1 and 2 give us the starting points for deriving and exploiting further structural

information on the problems QAP and SQAP. As with many other combinatorial opti-

mization problems, the hope is to obtain this by investigating the convex hulls of the sets

of feasible solutions to the respective MIP's.

We shall de�ne the Quadratic Assignment Polytope

QAP

n

:= conv

�

f(x

C

; y

E

n

(C)

) j C 2 CLQ

n

n

g

�

and the Symmetric Quadratic Assignment Polytope

SQAP

n

:= conv

�

f(x

C

; z

F

n

(C)

) j C 2 CLQ

n

n

g

�

:

Before starting to consider the connection between these two polytopes, we want to men-

tion the following facts.

Observation 1. The two polytopes QAP

n

and SQAP

n

are invariant under permutation

of the rows, permutation of the columns, and \transposition" of the node set V

n

. In par-

ticular, for each of the two polytopes, all the cones induced at the vertices are isomorphic.

For the �rst one, the QAP-Polytope, investigations were started by Rijal (1995), Pad-

berg and Rijal (1996), and J�unger and Kaibel (1996). There is not much known about

the second one, the SQAP-Polytope. Basically, there is only a conjecture of Rijal (1995)

and Padberg and Rijal (1996) concerning the dimension of SQAP

n

, which we will prove

to be valid in Theorem 7.

This paper is concerned with the SQAP-Polytope. However, it turns out that SQAP

n

and QAP

n

are closely related { allthough they are not isomorphic (e.g., we will see that

they have di�erent dimensions). The situation is quite similar to the relationship between

the Asymmetric and the Symmetric Traveling Salesman Polytope. While it is di�cult

to carry over results from the symmetric to the asymmetric case, this is { sometimes {

possible for the opposite direction.

Next, we want to explain the relationship between the QAP- and the SQAP-Polytope.

Formally, the two polytopes are connected by

SQAP

n

= �

n

(QAP

n

):

(Just consider the vertices to see this.)

We de�ne an inequality (equation) (u; v)

T

(x; y) � (=)! with (u; v) 2 R

V

n

�R

E

n

and

! 2 R to be symmetric if, and only if, components of v that belong to mates are equal,

i.e., v

[i;j;k;l]

= v

[i;l;k;j]

for all [i; j; k; l] 2 E

n

. A face of QAP

n

is called symmetric if there

7



is a symmetric inequality de�ning that face. Even if a face of QAP

n

is de�ned by a non-

symmetric inequality, it may be symmetric. This is because in general a face is de�ned

by many di�erent inequalities (even in case of a facet, due to the low-dimensionality of

QAP

n

), but in order to be symmetric it is only required that there exists one among these

inequalities which is symmetric.

Let (u; v)

T

(x; y) � (=)! be a symmetric valid inequality (equation) for QAP

n

. It in-

duces a valid inequality (equation) (u; w)

T

(x; z) � (=)! for SQAP

n

, where w =

1

2

�

n

(v).

Conversely, every valid inequality (equation) for SQAP

n

induces a symmetric valid in-

equality (equation) for QAP

n

. From this, we obtain:

Observation 2. There is a one-to-one correspondence between the symmetric faces of

QAP

n

and the faces of SQAP

n

. If we identify the faces of QAP

n

and SQAP

n

with

the node sets of the cliques corresponding to their vertices then that correspondence is

inclusion-preserving.

This observation translates into the relationship between the face lattices of the QAP-

and the SQAP-Polytope.

Theorem 3. The face lattice of SQAP

n

arises by restricting the face lattice of QAP

n

to

the symmetric faces. (Note that ; and QAP

n

itself are symmetric faces of QAP

n

.)

Corollary 1. A symmetric proper face of QAP

n

induces a facet of SQAP

n

if, and only

if, there are only non-symmetric faces strictly between itself and QAP

n

in the face lattice

of QAP

n

.

In general, it will be di�cult to show that strictly between a certain symmetric face

and the whole polytope there are only non-symmetric faces of QAP

n

, because it is hard

to prove that a set of faces is the complete set of faces containing a given face. However,

in the special case that the face under consideration is a ridge of QAP

n

(i.e., a face of two

dimensions less than the whole polytope), the chances are better, since it is a well-known

fact that any ridge is the unique intersection of two facets.

Corollary 2. If a symmetric ridge of QAP

n

is the intersection of two non-symmetric

facets of QAP

n

then it induces a facet of SQAP

n

.

When investigating the structure of a polytope de�ned as the convex hull of some

points more closely, one is very soon confrontated with tasks like computing the rank of

a subset of these points or showing that such a subset spans a certain subspace. In both

cases, one has to deal with linear combinations of the points, which one hopes to be sparse

and to look somehow nice. Working with QAP

n

and SQAP

n

, it turns out that such

nice combinations are hard to obtain. This is mainly due to the facts that the coordinate

vectors of the vertices look all the same up to certain permutations of the coordinates,

and that there are no pairs among them having only slightly di�ering supports.

On the other hand, for both of the polytopes a lot of equations are holding, indicating

some redundancy in the problem de�nition.

This motivated us to try to map the polytopes isomorphically into other spaces (of

lower dimensions) in such a way that the coordinate vectors of the resulting vertices have

nicer structures.
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Let A � R

V

n

�R

E

n

be the a�ne subspace of R

V

n

�R

E

n

de�ned by the equations (1),

: : : ,(4), i.e.,

A :=

8

>

>

>

>

<

>

>

>

>

:

(x; y) 2 R

V

n

�R

E

n

�

�

�

�

�

�

�

�

�

�

x(row

(n)

i

) = 1 (i = 1; : : : ; n)

x(col

(n)

j

) = 1 (j = 1; : : : ; n)

�x

(i;j)

+ y((i; j) : row

(n)

k

) = 0 (i; j; k = 1; : : : ; n; i 6= k)

�x

(i;j)

+ y((i; j) : col

(n)

l

) = 0 (i; j; l = 1; : : : ; n; j 6= j)

9

>

>

>

>

=

>

>

>

>

;

;

and let

b

A � R

V

n

�R

F

n

be the a�ne subspace of R

V

n

�R

F

n

de�ned by the equations (7),

: : : ,(10), i.e.,

b

A :=

8

>

>

>

>

<

>

>

>

>

:

(x; z) 2 R

V

n

�R

F

n

�

�

�

�

�

�

�

�

�

�

x(row

(n)

i

) = 1 (i = 1; : : : ; n)

x(col

(n)

j

) = 1 (j = 1; : : : ; n)

�x

(i;j)

� x

(k;j)

+ z(�

(k;j)

(i;j)

) = 0 (i; j; k = 1; : : : ; n; i 6= k)

�x

(i;j)

� x

(i;l)

+ z(�

(i;l)

(i;j)

) = 0 (i; j; l = 1; : : : ; n; j 6= j)

9

>

>

>

>

=

>

>

>

>

;

:

We will show that in both cases for the a�ne subspaces de�ned above all variables

corresponding to vertices and edges resp. hyperedges involving the n-th row or the n-th

column (the same holds for any row and any column) are redundant in the sense that the

projections onto the linear subspaces of the original spaces obtained by setting all these

variables to zero produce isomorphic images of these two a�ne subspaces. Since the two

polytopes under consideration are contained in the respective a�ne subspaces, this implies

that these projections yield isomorphic images of the polytopes.

Let W := row

(n)

n

[ col

(n)

n

, E := fe 2 E

n

j e \W 6= ;g, and F := ff 2 F

n

j f \W 6= ;g.

De�ne U := f(x; y) 2 R

V

n

� R

E

n

j x

W

= 0; y

E

= 0g and

b

U := f(x; z) 2 R

V

n

� R

F

n

j

x

W

= 0; z

F

= 0g. Let � : R

V

n

� R

E

n

�! U be the orthogonal projection onto U , and

b� : R

V

n

�R

F

n

�!

b

U be the orthogonal projection onto

b

U .

Proposition 1. �(A) is a�nely isomorphic to A and b�(

b

A) is a�nely isomorphic to

b

A.

Proof. We only prove the symmetric part of the proposition. The non-symmetric part can

be shown quite similar (cf. J�unger and Kaibel, 1996).

First, we show that there is a way to express the components of points in

b

A belonging

to elements in W and F linearly by the components belonging to elements in V

n

nW and

F

n

n F .

The �rst observation is that this is possible for the elements in W using equations of

the type x(row

(n)

i

) = 1 and x(col

(n)

j

) = 1.

Now, we consider F . Here, it su�ces to consider three possibilities for a hyperedge

hi; j; k; li 2 F . The �rst two are i; j; k < n; l = n and i; j; l < n; k = n. Using

�x

(i;j)

� x

(k;j)

+ z(�

(k;j)

(i;j)

) = 0 resp. �x

(i;j)

� x

(i;l)

+ z(�

(i;l)

(i;j)

) = 0, the �rst two possibilies

are done. It remains the possibility that i; j < n; k = n; l = n. Here, we consider (e.g.)

�x

(i;j)

�x

(i;n)

+z(�

(i;n)

(i;j)

) = 0, which allows to express z

hi;j;n;ni

since we can already express

z

hi;j;k;ni

for k < n.

Up to now, we have shown that there is a linear function

b

 : R

V

n

nW

� R

F

n

nF

�!

R

W

� R

F

such that for all (x; z) 2

b

A we have (x

W

; z

F

) =

b

 (x

V

n

nW

; z

F

n

nF

). Hence

9



b

� : R

V

n

�R

F

n

�! R

V

n

�R

F

n

de�ned via

b

�(x; z) = (x

0

; z

0

) with

(x

0

W

; z

0

F

) := (x

W

; z

F

)�

b

 (x

V

n

nW

; z

F

n

nF

);

(x

0

V

n

nW

; z

0

F

n

nF

) := (x

V

n

nW

; z

F

n

nF

)

is an a�ne transformation (note that the corresponding matrix is an upper triangular

one having ones everywhere on the main diagonal) of R

V

n

�R

F

n

that induces on

b

A the

orthogonal projection onto

b

U .

We identify the linear spaces U and

b

U with the spaces R

V

n�1

� R

E

n�1

resp. R

V

n�1

�

R

F

n�1

. Hence,

QAP

?

n�1

:= �(QAP

n

) � R

V

n�1

�R

E

n�1

is a polytope in R

V

n�1

�R

E

n�1

that is isomorphic to QAP

n

, and

SQAP

?

n�1

:= b�(SQAP

n

) � R

V

n�1

�R

F

n�1

is a polytope in R

V

n�1

�R

F

n�1

that is isomorphic to SQAP

n

.

Since the vertices of these two polytopes arise as the projections of the vertices of the

two original polytopes, one obtains that they are the respective characteristic vectors of

the (n� 1)- and the (n� 2)-cliques of G

n�1

(cf. Figure 5).

Figure 5: The e�ect of the projection.

We want to make the isomorphisms between QAP

n

and QAP

?

n�1

as well as the one

between SQAP

n

and SQAP

?

n�1

a little more explicit. We denote by � : CLQ

n

n

�!

CLQ

n�1

n�1

[ CLQ

n�1

n�2

the map de�ned by removing from a given n-clique in G

n

the node(s)

in the n-th row and in the n-th column. Notice that � is one-to-one.

Remark 1. If two faces of QAP

n

and QAP

?

n�1

resp. SQAP

n

and SQAP

?

n�1

correspond

to each other with respect to the isomorphism induced by � resp. b� then their vertices

(identi�ed with cliques) correspond to each other by the bijection �.

This remark describes the relationship between the faces from the \inner view", i.e.,

in terms of the vertices. Next, we want to describe the \outer relationship", i.e., the

relationship between inequalities de�ning corresponding faces.

10



Remark 2.

(i) If a face of QAP

n

resp. SQAP

n

is de�ned by an inequality that has zero-coe�cients

for all elements in W [E resp. W [F then an inequality de�ning the corresponding

face of QAP

?

n�1

resp. SQAP

?

n�1

is obtained by projecting the coe�cient vector of

that inequality via � resp. b�. (Note that for every face of QAP

n

resp. SQAP

n

there is a de�ning inequality having zero coe�cients at W and E resp. F . This is

due to the fact that the columns of the equation system de�ning the a�ne subspace

A resp.

b

A corresponding to W [E resp. W [ F are linearly independent, as shown

in the proof of Proposition 1.)

(ii) From every inequality de�ning a face of QAP

?

n�1

resp. SQAP

?

n�1

one obtains an

inequality de�ning the corresponding face of QAP

n

resp. SQAP

n

by zero-lifting.

Up to now, we have just considered the relationship between QAP

n

and QAP

?

n�1

as well as the one between SQAP

n

and SQAP

?

n�1

. However, QAP

n

and QAP

?

n

resp.

SQAP

n

and SQAP

?

n

are lying in the same space R

V

n

�R

E

n

resp. R

V

n

�R

F

n

. It turns out

(cf. J�unger and Kaibel, 1996) that QAP

?

n

decomposes (with respect to taking the convex

hull) into n+ 1 faces that are each isomorphic to QAP

n

. Using the isomorphism between

QAP

?

n

and QAP

n+1

one deduces thatQAP

n+1

decomposes into n+1 \isomorphic copies"

of QAP

n

. The next two theorems establish corresponding results for the symmetric case.

Theorem 4. Let n � 2. There are n + 1 a�ne maps �

�

: R

V

n

� R

F

n

�! R

V

n

�R

F

n

(� = 0; : : : ; n) such that for the n + 1 images Q

�

:= �

�

(SQAP

n

) (� = 0; : : : ; n) of

SQAP

n

the following hold:

(i) Every Q

�

is isomorphic to SQAP

n

.

(ii) Each Q

�

is a face of SQAP

?

n

.

(iii) The Q

�

have pairwise empty intersection.

(iv) SQAP

?

n

= conv (

S

n

�=0

Q

�

)

Proof. For any row or column S 2 frow

(n)

1

; : : : ; row

(n)

n

; col

(n)

1

; : : : ; col

(n)

n

g, let �(S) := ff 2

F

n

j f \ S 6= ;g, and let b�

S

: R

V

n

�R

F

n

�! f(x; z) 2 R

V

n

�R

F

n

j x

S

= 0; z

�(S)

= 0g

be the canonical projection. Then, the map b� decomposes into b� = b�

col

(n)

n

� b�

row

(n)

n

:

Since we know that b� performs an isomorphic transformation of SQAP

n

, so does b�

row

(n)

n

,

too. Clearly, there is nothing special about row

(n)

n

, and therefore, the same holds for all

�

�

:= b�

row

(n)

�

(� = 1; : : : ; n): Finally, de�ne �

0

to be the identical map on R

V

n

� R

F

n

.

Hence, all Q

�

:= �

�

(SQAP

n

) (� = 0; : : : ; n) are isomorphic to SQAP

n

, what proves

part (i). Parts (ii), (iii), and (iv) follow from the observation, that for any � 2 f1; : : : ; ng,

the vertices of Q

�

correspond to the (n� 1)-cliques of G

n

having no node in common with

the �-th row of V

n

.

From this theorem and the isomorphism between SQAP

n+1

and SQAP

?

n

, the following

\inductive construction" of SQAP

n+1

follows. It establishes a kind of \self-similarity"

that shows another symmetry of the SQAP-Polytope.
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Theorem 5. For n � 1 there are n+ 1 a�ne maps �

�

: R

V

n

�R

F

n

�! R

V

n+1

�R

F

n+1

(� = 0; : : : ; n) such that for the n + 1 images Q

�

:= �

�

(SQAP

n

) (� = 0; : : : ; n) of

SQAP

n

the following hold:

(i) Every Q

�

is isomorphic to SQAP

n

.

(ii) Each Q

�

is a face of SQAP

n+1

.

(iii) The Q

�

have pairwise empty intersection.

(iv) SQAP

n+1

= conv (

S

n

�=0

Q

�

)

We want to close this section by formally establishing \star-analogons" to some facts

observed for QAP

n

and SQAP

n

. First, as for the \non-star polytopes", also the \star-

polytopes" are invariant under permutations of rows, permutations of columns, or \trans-

position" of the node set V

n

. Second, as in the relationship between QAP

n

and SQAP

n

,

by identifying mates any symmetric inequality (equation) for QAP

?

n

gives rise to an in-

equality (equation) for SQAP

?

n

, and any inequality (equation) for SQAP

?

n

gives rise to a

symmetric inequality (equation) for QAP

?

n

.

Theorem 6. The face lattice of SQAP

?

n

arises by restricting the face lattice of QAP

?

n

to

the symmetric faces.

Corollary 3. A symmetric proper face of QAP

?

n

induces a facet of SQAP

?

n

if, and only

if, there are only non-symmetric faces strictly between itself and QAP

?

n

in the face lattice

of QAP

?

n

.

Corollary 4. If a symmetric ridge of QAP

?

n

is the intersection of two non-symmetric

facets of QAP

?

n

then it induces a facet of SQAP

?

n

.

4 Dimension and Trivial Facets of SQAP

n

In this section, we will present some basic results concerning the facial structure of the

SQAP-Polytope. First, we examine two sets of equations that will turn out to describe

the a�ne hulls of QAP

?

n

resp. SQAP

?

n

. For this, we make another notational convention.

For two disjoint subsets S; T � V

n

, S \ T = ;, we de�ne hS : T i := ffv; wg [ �(fv; wg) j

fv; wg 2 (S : T )g. Remembering that the vertices of both QAP

?

n

as well as SQAP

?

n

correspond to the n- and (n� 1)-cliques of G

n

, one veri�es that

x(row

(n)

i

) + x(row

(n)

k

)� y(row

(n)

i

: row

(n)

k

) = 1 (i < k)(13)

and

x(col

(n)

j

) + x(col

(n)

l

)� y(col

(n)

j

: col

(n)

l

) = 1 (j < l)(14)

are valid for QAP

?

n

, and

x(row

(n)

i

) + x(row

(n)

k

)� z(hrow

(n)

i

: row

(n)

k

i) = 1 (i < k)(15)

12



Figure 6: The equations (13), (15) and (14), (16).

and

x(col

(n)

j

) + x(col

(n)

l

)� z(hcol

(n)

j

: col

(n)

l

i) = 1 (j < l)(16)

hold for SQAP

?

n

(cf. Figure 6).

We denote the system (13),(14) by D(x; y) = d and the system (15),(16) by

b

D(x; z) =

b

d.

By saying that hi; j; k; li (i < k; j < l) is smaller than hi

0

; j

0

; k

0

; l

0

i (i

0

< k

0

; j

0

< l

0

)

if, and only if, (i; k; j; l) is lexicographically smaller than (i

0

; k

0

; j

0

; l

0

), we introduce an

ordering on the hyperedges F

n

. After permutation of the columns with respect to this

order the matrix

b

D has the following shape (n = 4):

0

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

C

C

C

C

C

C

C

C

C

C

A

:

But this is the node-edge-incidence matrix of the complete bipartite graphK

n(n�1)

2

;

n(n�1)

2

,

where the left shore corresponds to the (unordered) pairs of rows, and the right shore cor-

responds to the (unordered) pairs of columns of V

n

. The bases of the node-edge-incidence

matrix of K

m;m

are well known to correspond to the spanning trees of K

m;m

(Balinski

and Russako�, 1974). This leads to the following characterization of all bases of

b

D that

do not intersect the \x-part" of

b

D.

Proposition 2.

(i) Precisely one (arbitrary) equation in

b

D(x; z) =

b

d is redundant, in particular rank(

b

D) =

n(n� 1)� 1.

(ii) A subset B � F

n

of hyperedges corresponds to a basis of

b

D if, and only if,

(a) jBj = n(n � 1)� 1

13



(b) There is no sequence (f

0

; f

0

0

; f

1

; f

0

1

; : : : ; f

k�1

; f

0

k�1

) (k � 2) of hyperedges in

B such that f

�

and f

0

�

connect the same rows of V

n

and f

0

�

and f

(�+1) mod k

connect the same columns of V

n

for all � = 0; : : : ; k � 1.

In J�unger and Kaibel (1996) we showed thatD(x; y) = d is a complete equation system

for QAP

?

n

. But the system D(x; y) = d consists only of symmetric equations. Hence, we

can deduce that

b

D(x; z) =

b

d must be a complete system of equations for SQAP

?

n

, since

the equations for SQAP

?

n

correspond precisely to the symmetric equations for QAP

?

n

. (In

fact, one can deduce the \completeness" of

b

D(x; z) =

b

d also from the proof of Theorem 9.)

Consequently, the dimension of SQAP

?

n

is n

2

+

n

2

(n�1)

2

4

� (n(n � 1) � 1). By the

isomorphism between SQAP

n

and SQAP

?

n�1

, one obtains the following theorem.

Theorem 7.

dim(SQAP

n

) = (n� 1)

2

+

(n� 1)

2

(n� 2)

2

4

� ((n� 1)(n� 2)� 1)

Rijal (1995) and Padberg and Rijal (1996) proved that the rank of the system (7),

: : : ,(10) equals (n� 1)

2

+

n

2

(n�3)

2

4

(which is equal to (n� 1)

2

+

(n�1)

2

(n�2)

2

4

� ((n� 1)(n�

2)� 1)) and conjectured that this might be the dimension of SQAP

n

. Theorem 7 proves

this conjecture. Moreover, knowing that the rank of this system equals dim(SQAP

n

),

one can even conclude that the system (7), : : : ,(10) describes the a�ne hull of SQAP

n

.

In addition, we want to give another simple proof that does not compute the rank of the

system explicitely.

Theorem 8.

a�(SQAP

n

) = f(x; z) 2 R

V

n

�R

F

n

j (x; z) satis�es (7); : : : ; (10)g

Proof. It su�ces to show that one can linearly combine the zero-liftings of the equations

(15) and (16) (for n�1) from the equations (7), : : : ,(10) (for n), since then it is clear that

the solution space of (7), : : : ,(10) for n { which is

b

A (containing SQAP

n

) { is mapped

isomorphically (cf. Proposition 1) by the projection b� into the solution space of (15), (16)

for n� 1, which we know from our considerations to have the same dimension as SQAP

n

.

Hence, by symmetry arguments, it su�ces to exhibit a linear combination of (7),

: : : ,(10) that yields

x(row

(n)

1

n f(1; n)g) + x(row

(n)

2

n f(2; n)g)� z(hrow

(n)

1

n f(1; n)g : row

(n)

2

n f(2; n)gi) = 1:

But this is obtained by adding x(row

(n)

1

) = 1, x(row

(n)

2

) = 1, x

(1;j)

+ x

(2;j)

� z(�

(2;j)

(1;j)

) = 0

for all 1 � j � n�1, and �x

(1;n)

�x

(2;n)

+z(�

(2;n)

(1;n)

) = 0, and �nally dividing the resulting

equation by 2.

We just mention that the system (1), : : : ,(4) describes a�(QAP

n

) (cf. Rijal, 1995;

Padberg and Rijal, 1996; J�unger and Kaibel, 1996).

There is another nice gain when changing to the \star-polytopes". We pointed out

in Corollary 1 that it is of interest to know that certain faces of the QAP-Polytope are

non-symmetric. As mentioned above, this might be not directly seen, since a symmetric

face of QAP

n

can be de�ned by a non-symmetric inequality. However, this is much easier

for QAP

?

n

.
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Observation 3. Due to the fact that all equations holding for QAP

?

n

are symmetric, in

order to show that a given face of QAP

?

n

is non-symmetric, it su�ces to exhibit any

non-symmetric inequality de�ning it.

For the non-symmetric QAP-Polytope, the nonnegativity constraints on y de�ne facets,

while 0 � x � 1 and y � 1 are already implied by D(x; y) = d and y � 0 (cf. Rijal, 1995;

Padberg and Rijal, 1996; J�unger and Kaibel, 1996). For the SQAP-Polytope, the situation

is a little bit di�erent:

Theorem 9. Let n � 3.

(i) The nonnegativity constraints x � 0 and z � 0 de�ne facets of SQAP

n

.

(ii) The upper bounds x � 1 and z � 1 are implied by the equations (7), : : : ,(10) and

x � 0, z � 0.

Proof. Part (ii) follows from the observation that the equations (1) and (2) together with

the nonnegativity of x imply that the sum of any two x-variables must be less than or

equal to one.

To show part (i), it su�ces to prove that x � 0 and z � 0 de�ne facets of SQAP

?

n

(for

all n � 2). We will show this only for n � 5, since this simpli�es the proof. However, the

claim is also true for n = 2; 3; 4, as one may check by computer, for instance.

At this point, we introduce some techniques which we will refer to also in later proofs.

Our usual way to prove that some inequality de�nes a facet of SQAP

?

n

is an indirect one.

We denote by L � CLQ

n

n

[ CLQ

n

n�1

the set of cliques corresponding to the vertices of

the considered face and by L := f(x

C

; z

F

n

(C)

) � (x

C

0

; z

F

n

(C

0

)

) j C;C

0

2 Lg the set of all

di�erence vectors of vertices of that face, i.e., lin(L) is the subvectorspace belonging to

the a�ne hull of the face. We choose a subset B � F

n

that corresponds to a basis of the

equation system

b

D(x; z) =

b

d as well as one extra element v

0

2 V

n

or f

0

2 F

n

nB. Setting

B := fx

v

0

g [ fz

f

j f 2 Bg resp. B := fz

f

0

g [ fz

f

j f 2 Bg, and providing that the face is

a proper one, it remains to show that lin(L[ B) = R

V

n

�R

F

n

, since this implies that the

dimension of lin(L), which equals the dimension of the face, is at least dim(SQAP

?

n

)� 1.

We show lin(L [ B) = R

V

n

�R

F

n

by successively combining the canonical unit vectors of

R

V

n

�R

F

n

from elements in L [ B.

For constructing the necessary linear combinations, the following two lemmata are

useful. For a subset S � V

n

we denote by H

n

=S = (V

n

=S;F

n

=S) the hypergraph obtained

from H

n

by deleting all nodes lying in a common row or column with a node in S and all

hyperedges involving such nodes. Note that { if S intersects the same number of rows as

of column { H

n

=S is isomorphic to an H

k

for some k � n.

Lemma 1. Let C 2 CLQ

n

n

be an n-clique and v 2 C a node in C such that C;C nfvg 2 L.

Then we have

x

v

+ z

hv:Cnfvgi

2 lin(L):

Proof of Lemma 1. This is due to x

v

+ z

hv:Cnfvgi

= (x

C

; z

F

n

(C)

) � (x

Cnfvg

; z

F

n

(Cnfvg)

) 2

lin(L):
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Lemma 2. Let 1 � r; r

1

; r

2

� n be pairwise distinct, and let 1 � c; c

1

; c

2

� n be pairwise

distinct. If there is an (n� 3)-clique C in H

n

=f(r

1

; r

2

); (r; c); (r

2

; c

2

)g such that

(17) f(r

1

; c

1

); (r; c); (r

2

; c

2

)g [ C; f(r

1

; c

2

); (r; c); (r

2

; c

1

)g [ C;

f(r

1

; c

1

); (r

2

; c

2

)g [ C; f(r

1

; c

2

); (r

2

; c

1

)g [ C 2 L

or

f(r

1

; c); (r; c

2

)g [ C; f(r; c

2

); (r

2

; c)g [ C; f(r

2

; c); (r; c

1

)g [ C; f(r; c

1

); (r

1

; c)g [ C 2 L

(18)

then

z

hr

1

;c

1

;r;ci

+ z

hr;c;r

2

;c

2

i

� z

hr

1

;c

2

;r;ci

� z

hr;c;r

2

;c

1

i

2 lin(L)

(cf. Figure 7).

r

c

r1

r2

c
1

c
2

Figure 7: Notations of Lemma 2.

Proof of Lemma 2. In the �rst case, observe that

z

hr

1

;c

1

;r;ci

+ z

hr;c;r

2

;c

2

i

� z

hr

1

;c

2

;r;ci

� z

hr;c;r

2

;c

1

i

=

z

f(r

1

;c

1

);(r;c);(r

2

;c

2

)g[C

�z

f(r

1

;c

1

);(r

2

;c

2

)g[C

�z

f(r

1

;c

2

);(r;c);(r

2

;c

1

)g[C

+z

f(r

1

;c

2

);(r

2

;c

1

)g[C

2 lin(L):

For the second case, we have

z

hr

1

;c

1

;r;ci

+ z

hr;c;r

2

;c

2

i

� z

hr

1

;c

2

;r;ci

� z

hr;c;r

2

;c

1

i

=

� z

f(r

1

;c);(r;c

2

)g[C

+ z

f(r;c

2

);(r

2

;c)g[C

� z

f(r

2

;c);(r;c

1

)g[C

+ z

f(r;c

1

);(r

1

;c)g[C

2 lin(L):

Now, we proceed with the proof of Theorem 9. First, note that all trivial inequalities

de�ne proper faces of SQAP

?

n

. To show that the nonnegativity constraints on x de�ne

facets of SQAP

?

n

, it su�ces to show this for x

(n;n)

� 0. Hence, L consists of all n- and

(n�1)-cliques ofH

n

that do not contain (n; n). We choose B := hrow

(n)

1

: row

(n)

2

i[hcol

(n)

1

:

col

(n)

2

i (cf. Proposition 2) and the extra element as v

0

:= (n; n).

Since in H

k

there is always a k-clique not involving a prescribed node as long as

k � 2, we can apply Lemma 2 for every choice of r; r

1

; r

2

; c; c

1

; c

2

(recall that we assume

n � 5). We combine all canonical unit vectors in R

V

n

�R

F

n

successively in �ve steps that

are illustrated in Figure 8. For a number a 2 f1; 2g, we denote by a the number with

fag = f1; 2g n fag.

16



Step 1: z

hi;j;k;li

2 lin(L [ B) for i; j 2 f1; 2g

The case k 2 f1; 2g or l 2 f1; 2g is already clear by the choice of B. Hence, assume

k; l =2 f1; 2g. Choosing r := i, r

1

:= i, r

2

:= k, c := j, c

1

:= j, and c

2

:= l Lemma 2

yields z

hi;j;i;ji

+ z

hi;j;k;li

� z

hi;l;i;ji

� z

hi;j;k;ji

2 lin(L): Since all involved unit vectors

but z

hi;j;k;li

are in B, we are done.

Step 2: z

hi;j;k;li

2 lin(L [ B) for i 2 f1; 2g; j; k; l� 3

With r := i, r

1

:= i, r

2

:= k, c := j, c

1

:= 1, c

2

:= l one obtains from Lemma 2 that

z

hi;1;i;ji

+ z

hi;j;k;li

� z

hi;l;i;ji

� z

hi;j;k;1i

2 lin(L). All involved unit vectors but z

hi;j;k;li

are either in B or already shown to be in lin(L [ B) in Step 1.

Step 3: z

hi;j;k;li

2 lin(L [ B) for j 2 f1; 2g; i; k; l� 3

This is done analogously to Step 2.

Step 4: z

hi;j;k;li

2 lin(L [ B) for i; j; k; l� 3

This time, we choose r := i, r

1

:= 1, r

2

:= k, c := j, c

1

:= 1, and c

2

:= l. Lemma 2

gives z

h1;1;i;ji

+ z

hi;j;k;li

� z

h1;l;i;ji

� z

hi;j;k;1i

2 lin(L), which proves the claim, since all

involved unit vectors but z

hi;j;k;li

are already shown to be in lin(L[ B) in Step 1, 2,

or 3.

Step 5: x

v

2 lin(L [ B) for all v 2 V

n

If v = (n; n), we are done since x

(n;n)

2 B. So assume, v 6= (n; n). Let C 2 CLQ

n

n

be

any n-clique involving v but not (n; n). Using Lemma 1, we can combine x

v

, since

all unit vectors corresponding to hyperedges are already known to be in lin(L [ B).

It remains to show that z � 0 de�ne facets of SQAP

?

n

. It su�ces to show this for

z

hn;n�1;n�1;ni

� 0. Now, L is the set of all n- and (n � 1)-cliques of H

n

that contain at

most one node from f(n; n � 1); (n� 1; n); (n� 1; n � 1); (n; n)g. Note that it is always

possible to �nd a k-clique in H

k

that intersects f(k; k� 1); (k� 1; k); (k� 1; k� 1); (k; k)g

in at most one node as long as k � 3.

We choose B as above, and as the extra element, we take the hyperedge hn; n� 1; n�

1; ni. Then, Steps 1, 2, and 3 work analogously. The only case in which Step 4 does not

work is the case of the hyperedge hn; n� 1; n� 1; ni, but this time this one is covered by

the extra element. In Step 5, now we do not need an extra element anymore, since we can

extend every node (also one from f(n; n�1); (n�1; n); (n�1; n�1); (n;n)g), to an n-clique

not containing more than one node from f(n; n� 1); (n� 1; n); (n� 1; n� 1); (n; n)g.

There is an alternative way of proving that the nonnegativity constraints z � 0 de�ne

facets of SQAP

?

n

. In J�unger and Kaibel (1996) we showed that y � 0 de�ne facets of

QAP

?

n

. By a slight modi�cation of that proof, one can show that y

e

+ y

�(e)

� 0 de�nes a

ridge of QAP

?

n

for any edge e 2 E

n

. Since that symmetric ridge is the intersection of the

two non-symmetric (cf. Observation 3) facets de�ned by y

e

� 0 and y

�(e)

� 0, the claim

follows from Corollary 4.

5 The Curtain Facets

For any subset S � f1; : : : ; ng, we de�ne for i 2 f1; : : : ; ng the restriction of row

(n)

i

to

S as row

(n)

i

j

S

:= f(i; j) 2 row

(n)

i

j j 2 Sg, and for j 2 f1; : : : ; ng, we de�ne col

(n)

j

j

S

:=
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i

j l

k

r

c

r1

r2

c 1 c2

(a) Step 1

i

j l

k

r

c

r1

r2

c 1 c2

(b) Step 2

i

j l

k

r

c

r1

r2

c 1
c2

(c) Step 3

i

j l

k

r

c

r1

r2

c 1 c2

(d) Step 4

Figure 8: Examples for the hyperedges considered in Steps 1{4 of the proof of Theorem 9.

The hyperedges inside the \angled box" are those forming the set B.

f(i; j) 2 col

(n)

j

j i 2 Sg to be the restriction of col

(n)

j

to S.

One immediately veri�es that the row curtain inequalities

�x(row

(n)

i

j

S

) + z(hrow

(n)

i

j

S

: row

(n)

k

j

S

i) � 0 (i 6= k; S � f1; : : : ; ng)(19)

and the column curtain inequalities

�x(col

(n)

j

j

S

) + z(hcol

(n)

j

j

S

: col

(n)

l

j

S

i) � 0 (j 6= l; S � f1; : : : ; ng)(20)

are valid for SQAP

n

(cf. Figure 9).

These inequalities dominate the inequalities

�x(row

(n)

i

j

S

) + z(h(i; j) : row

(n)

k

j

S

i) � 0 (i 6= k; S � f1; : : : ; ng; j 2 S)(21)

and

�x(col

(n)

j

j

S

) + z(h(i; j) : col

(n)

l

j

S

i) � 0 (j 6= l; S � f1; : : : ; ng; i 2 S)(22)

proposed by Rijal (1995) and Padberg and Rijal (1996).

We �rst address the question whether all curtain inequalities de�ne distinct faces of

SQAP

n

.

18



Figure 9: The curtain inequalities.

For any subset S � f1; : : : ; ng, we denote by S := f1; : : : ; ng n S the complement of

S. Then, the equations

x(row

(n)

i

j

S

)� z(hrow

(n)

i

j

S

: row

(n)

k

j

S

i)� x(row

(n)

k

j

S

) + z(hrow

(n)

k

j

S

: row

(n)

i

j

S

i) = 0 (i 6= k)

(23)

and

x(col

(n)

j

j

S

)� z(hcol

(n)

j

j

S

: col

(n)

l

j

S

i)� x(col

(n)

l

j

S

) + z(hcol

(n)

l

j

S

: col

(n)

j

j

S

i) = 0 (j 6= l)

(24)

are valid for SQAP

n

(cf. Figure 10).

Figure 10: The equations (23) and (24).

Hence, the inequalities �x(row

(n)

i

j

S

)+z(hrow

(n)

i

j

S

: row

(n)

k

j

S

i) � 0 and �x(row

(n)

k

j

S

)+

z(hrow

(n)

k

j

S

: row

(n)

i

j

S

i) � 0 de�ne the same face of SQAP

n

, and this does also hold for

�x(col

(n)

j

j

S

) + z(hcol

(n)

j

j

S

: col

(n)

l

j

S

i) � 0 and �x(col

(n)

l

j

S

) + z(hcol

(n)

l

j

S

: col

(n)

j

j

S

i) � 0.

This means that it su�ces to consider curtain inequalities with jSj � b

n

2

c.

Furthermore, if jSj = 1, any curtain inequality reduces to a simple nonnegativity

constraint on a node variable. If jSj = 2, a row resp. column curtain inequality becomes

a conical combination of an equation of type (9) resp. (10) and some nonnegativity

constraints on the hyperedge variables. This yields the following observation:

Observation 4. It su�ces to consider curtain inequalities with 3 � jSj � b

n

2

c.

19



Theorem 10. All curtain inequalities with 3 � jSj � b

n

2

c de�ne facets of SQAP

n

. (No-

tice that 3 � b

n

2

c implies n � 6.)

Proof. It su�ces to show that all row curtain inequalities with i = n, k = n � 1, and

S = fa; : : : ; ng with some 3 � a � n� 2 de�ne facets of SQAP

?

n

for n � 5.

We will proceed as in the proof of Theorem 9. Clearly, the considered curtain inequal-

ities de�ne proper faces of SQAP

?

n

. This time, the set L of n- and (n � 1)-cliques that

correspond to vertices of the considered face contains precisely all n- and (n� 1)-cliques

C satisfying

C \ row

(n)

n

j

S

6= ; =) C \ row

(n)

n�1

j

S

6= ;:

We choose B := hrow

(n)

1

: row

(n)

2

i [ hcol

(n)

1

: col

(n)

2

i, as in the proof of Theorem 9. The

extra element will be the hyperedge hn; a+ 1; n� 1; ai.

Observation 5. As long as row

(n)

n�1

j

S

\ (V

n

=fr

1

; c

1

); (r; c); (r

2

; c

2

)g) 6= ;, Lemma 2 can be

applied.

Again, we denote by a the number with fag = f1; 2g n fag. This time, it will take us

twelve steps to combine sucessively all unit vectors of R

V

n

�R

F

n

from elements in L[ B.

Figure 11 illustrates some of these steps.

Step 1: z

hi;j;k;li

2 lin(L [ B) for i; j 2 f1; 2g, k 6= n � 1

Using Observation 5, this can be done analogously to Step 1 in the proof of Theo-

rem 9.

Step 1

0

: z

hi;j;n�1;li

2 lin(L [ B) for i; j 2 f1; 2g, l � 3

Choosing r := i, r

1

:= n, r

2

:= n � 1, c := j, c

1

:= j, and c

2

:= l, condition (18)

of Lemma 2 will be satis�ed for any C. Hence, z

hn;j;i;ji

+ z

hi;j;n�1;li

� z

hn;l;i;ji

�

z

hi;j;n�1;ji

2 lin(L). Since all involved unit vectors but z

hi;j;n�1;li

are either in B or

already linearly combined in Step 1, we are done.

(Note that up to now, we have linearly combined all unit vectors that we had com-

bined after Step 1 in the proof of Theorem 9.)

Step 2: z

hi;j;k;li

2 lin(L [ B) for i 2 f1; 2g, j; k; l � 3, k 6= n� 1

As with Step 1, this can be done analogously to Step 1 in the proof of Theorem 9,

using Observation 5.

Step 2

0

: z

hi;j;n�1;li

2 lin(L [ B) for i 2 f1; 2g, j; l � 3

Choosing r := i, r

1

:= i, r

2

:= n � 1, c := j, c

1

:= 1, and c

2

:= l, condition (17) of

Lemma 2 will be satis�ed for any C that contains (n; 2). Hence, z

hi;1;i;ji

+z

hi;j;n�1;li

�

z

hi;l;i;ji

� z

hi;j;n�1;1i

2 lin(L). Since all involved unit vectors but z

hi;j;n�1;li

are either

in B or are already combined in Steps 1', we are done.

(Now we have linearly combined all unit vectors that we had combined after Step 2

in the proof of Theorem 9.)

Step 3: z

hi;j;k;li

2 lin(L [ B) for j 2 f1; 2g; i; k; l� 3, i; k 6= n� 1

Again, this can be done analogously to Step 3 of the proof of Theorem 9, using

Observation 5.
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Step 3

0

: z

hi;j;n�1;li

2 lin(L [ B) for j 2 f1; 2g; i; l� 3, i 6= n

This time, we choose r := i, r

1

:= n, r

2

:= n� 1, c := j, c

1

:= j, and c

2

:= l. Then,

condition (18) of Lemma 2 is satis�ed for any C. Hence, z

hn;j;i;ji

+ z

hi;j;n�1;li

�

z

hn;l;i;ji

� z

hi;j;n�1;ji

2 lin(L); and since all involved unit vectors but z

hi;j;n�1;li

are in

B or are already combined in Step 3, we are done, again.

Step 3

00

: z

hn�1;j;n;li

2 lin(L [ B) forj 2 f1; 2g; l � 3

Choose r := n�1, r

1

:= 1, r

2

:= n, c := j, c

1

:= j, and c

2

:= l. Then, condition (18)

of Lemma 2 will be satis�ed for any C, and we obtain z

h1;j;n�1;ji

+ z

hn�1;j;n;li

�

z

h1;l;n�1;ji

� z

hn�1;j;n;ji

2 lin(L), where all involved unit vectors but z

hn�1;j;n;li

are

either in B or already combined in Step 1'.

(Now, we have combined all unit vectors that we had combined after Step 3 in the

proof of Theorem 9.)

Step 4: z

hi;j;k;li

2 lin(L [ B) for i; j; k; l� 3; i; k 6= n� 1

By Observation 5, this can be done analogously to Step 4 in the proof of Theorem 9.

Step 4

0

: z

hi;j;n�1;li

2 lin(L [ B) for i; j; l � 3; (i; j) 62 row

(n)

n

j

S

Choose r := i, r

1

:= n � 1, r

2

:= 1, c := j, c

1

:= 1, and c

2

:= l. Since 2 62 fc; c

1

; c

2

g,

we can choose a C as needed for applying Lemma 2 that avoids row

(n)

n

j

S

. Hence, we

can apply that lemma, and derive the claim as in Step 4.

Step 4

00

: z

hn;a+1;n�1;li

2 lin(L [ B) for l � a

The case l = a is covered by the extra element. If l 6= a, choose r := n, r

1

:= 1,

r

2

:= n � 1, c := a + 1, c

1

:= a, and c

2

:= l. With that choice, any C will

satisfy condition (17) of Lemma 2. Hence, z

h1;a;n;a+1i

+ z

hn;a+1;n�1;li

� z

h1;l;n;a+1i

�

z

hn;a+1;n�1;ai

2 lin(L). All involved unit vectors but z

hn;a+1;n�1;li

are either in B

(the extra element) or already combined by Step 2.

Step 4

000

: z

hn;j;n�1;li

2 lin(L [ B) for j � a+ 2; l � a

This can be done analogously to Step 4

00

. Now, the hyperedge hn; a+1; n�1; ji plays

the role the extra element played in Step 4

00

, which is feasible, since z

hn;a+1;n�1;ji

was combined in Step 4

00

.

(Now, we have combined all unit vectors corresponding to hyperedges.)

Step 5: x

v

2 lin(L [ B) for all v 2 V

n

If v 62 row

(n)

n

j

S

extend v to an n-clique C 2 CLQ

n

n

of H

n

such that C \ row

(n)

n

j

S

= ;

(remember that jSj � n � 2). If v 2 row

(n)

n

j

S

extend v to an n-clique C such

that C \ row

(n)

n�1

j

S

6= ; (remember that jSj � 3). In both cases, application of

Lemma 1 yields the claim, since all unit vectors corresponding to hyperedges are

already combined.

We conclude this section with a consideration of the separation problem associated

with the class of curtain inequalities. For this, let a (fractional) point (~x; ~z) 2 R

V

n

�R

F

n

be given. We want to �nd, e.g., a row curtain inequality using rows 1 and 2 (ordered)

that \cuts o�" the point (~x; ~z). Hence, we want to �nd a subset S � f1; : : : ; ng such
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that �~x(row

(n)

1

j

S

) + ~z(hrow

(n)

1

j

S

: row

(n)

2

j

S

i) > 0. But this is exactly the task to �nd a

characteristic vector � of f1; : : : ; ng that solves the (Unconstrained) Boolean Quadratic

0/1 Problem (BQP)

max

n

X

j=1

n

X

l=j+1

�

jl

�

j

�

l

+

n

X

j=1

�

j

�

j

s.t. � 2 f0; 1g

n

with �

jl

:= ~z

h1;j;2;li

and �

j

:= �~x

(1;j)

.

Hence, for each (ordered) pair of rows resp. columns, a BQP has to be solved, and

this is known to be NP-hard, in general. However, for small instances (n � 20) even very

simple heuristics produce (empirically) very good solutions. This means that { although

separation over this class is hard { the curtain inequalities seem to be computationally

attractive. We will treat this aspect in the next section more closely.

6 Lower Bounds

For any instance of the QAP, the minimum the objective function achieves over the inter-

section of a�(QAP

n

) and the nonnegative orthant is a lower bound for the optimal value

of the respective QAP, called the Equation Bound (EQB). This bound can be computed

by solving the linear program arising from equations (1), : : : ,(4) and the nonnegativity

constraints on the y-variables. Similarly, if the instance is symmetric, the minimum over

the intersection of a�(SQAP

n

) and the nonnegative orthant gives a lower bound, called

the Symmetric Equation Bound (SEQB). This may be computed by solving the linear

program de�ned by the equations (7), : : : ,(10) and the nonnegativity constraints on x

and z.

Let (x; y) 2 a�(QAP
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) have value � with respect to a symmetric objective

function. De�ning z := �
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(y), we obtain a vector (x; z) 2 a�(SQAP

n

)\ (R
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) that

has also value � (with respect to the corresponding objective function for the symmetric

formulation). Hence, SEQB can never be tighter than EQB.

It is possible to strengthen SEQB by the curtain inequalities. However, again one

cannot obtain a lower bound that is tighter than EQB, since the curtain inequalities

induce symmetric inequalities for the non-symmetric problem that are already implied by

the equations de�ning a�(QAP

n

) and by the nonnegativity of the y-variables.

Hence, do the curtain inequalities have any computational value at all? Potentially,

they do. Namely, by changing (in case of a symmetric instance) from the non-symmetric

problem formulation to the symmetric one, the number of variables is approximately

devided by two. This leads to easier linear programs on the one hand, but to a potentially

weaker bound SEQB on the other hand. So the question is, if the curtain inequalities can

improve (empirically) the bound SEQB signi�cantly towards EQB without loosing too

much of the e�ciency gain made by the transition.

We want to mention at this point that EQB has turned out to be a very good

lower bound for the QAP. The theoretical basis for this is a result due to Johnson

(1992) and Drezner (1994) showing that EQB is always at least as good as the classical

Gilmore/Lawler Bound, proposed independently by Gilmore (1962) and Lawler (1963).
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The practical indication for the quality of EQB was given most extensively in a compu-

tational study by Resende, Ramakrishnan, and Drezner (1994). They solved the linear

programs that give the EQB for all instances in the QAPLIB (Burkard, Karisch, and

Rendl, 1996) of size not exceeding n = 30 and found that EQB turned out to be the best

known lower bound in most cases.

In order to investigate empirically the relative behaviour of EQB, SEQB, and the

curtain inequalities, we implemented a rudimentary cutting plane procedure for symmetric

QAPs. This procedure initially solves the linear program that yields SEQB and afterwards

performs up to �ve cutting plane iterations with curtain inequalities. At each cutting plane

iteration, we try to separate the current (fractional) solution by solving heuristically (i.e.,

repeating 100 times to guess a solution and improving it by a 2-opt procedure) a BQP for

each ordered pair of rows/columns, as indicated at the end of Section 5. If such a BQB

ends with value greater than zero then we add the corresponding curtain inequality to the

current linear program. This way, up to 2n(n� 1) curtain inequalities may be added per

iteration.

The experiments were carried out on an SGI Power Challenge computer (Silicon Graph-

ics) having 16 CPU's and 8 gigabytes of main memory. The code was written in C, and for

solving the linear programs the package CPLEX 4.0 was used. The only parallel parts are

inside the CPLEX code. The number of possible threads was restricted to 4 by setting the

environment variable MPC NUM THREADS. The amount of main memory that was accessible

for our runs was restricted to one gigabyte.

It turned out to be by far faster to use the Barrier than any Simplex code of CPLEX in

order to solve the linear programs for both EQB as well as SEQB. Moreover, even for the

linear programs arising after the addition of cutting planes to the SEQB formulation were

solved much faster from the scratch by calling the Barrier solver again than by calling the

Dual Simplex code with the optimal basis of the foregoing iteration. This is a bit surprising

and not satisfactory at all. But for these preliminary computational experiments, we took

this as a fact and simply solved any linear program from scratch by using the Barrier code

of CPLEX.

We report our computational results in Tables 1 and 2. Our code was run on all

QAPLIB instances of size up to 20. Table 1 reports on the lower bounds we obtained.

The column labelled ratio in % shows the ratio of SEQB and EQB. The next �ve columns

tell what part of the gap between SEQB and EQB has been closed after the respective

cutting plane iteration. The �nal column, labelled qual. in %, gives the ratio of EQB

and the best known (mostly optimal) solution as reported in Burkard, Karisch, and Rendl

(1996). Table 2 tells how long it took to compute SEQB and EQB, as well as what the

ratio of these times is. Furthermore, for each iteration the ratio of the totally elapsed

time after that iteration and the time it needed to compute EQB is shown. The �nal

column reports the ratio of the time spent for the linear programs and the total running

time of the cutting plane procedure. All times are measured in seconds and are the sums

of the CPU times of all involved (parallel) threads. Entries \|" mean that the cutting

plane procedure stopped before the corresponding iteration because it could not �nd any

violated curtain inequality anymore.

The results show that in most cases, SEQB is not signi�cantly worse than EQB. Con-

sequently, the curtain inequalities do not improve SEQB very much. The CPU-times that

are needed to compute SEQB are about three to four times smaller than the corresponding
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instance size SEQB EQB ratio SEQB/EQB-gap reduced by % qual.

in % 1. it 2. it 3. it 4. it 5. it in %

chr12a 12 9552.00 9552.00 100.00 | | | | | 100.00

chr12b 12 9742.00 9742.00 100.00 | | | | | 100.00

chr12c 12 11156.00 11156.00 100.00 | | | | | 100.00

had12 12 1618.19 1621.54 99.79 32.24 37.01 40.00 40.30 40.30 98.16

nug12 12 520.61 522.89 99.56 12.28 12.72 12.72 12.72 12.72 90.47

rou12 12 222212.04 224302.02 99.07 20.25 29.76 33.07 33.76 33.80 95.23

scr12 12 29557.22 29827.33 99.09 37.96 43.46 43.62 43.65 43.65 94.96

tai12a 12 220018.71 222186.42 99.02 24.50 31.09 33.10 33.81 34.55 99.01

tai12b 12 30581824.50 31697152.48 96.48 64.76 77.49 80.93 82.77 83.52 80.32

had14 14 2659.86 2666.12 99.77 32.43 40.89 44.25 46.33 46.81 97.88

chr15a 15 9370.32 9513.12 98.50 66.34 73.61 77.27 77.61 77.70 96.13

chr15b 15 7894.12 7990.00 98.80 100.00 | | | | 100.00

chr15c 15 9504.00 9504.00 100.00 | | | | | 100.00

nug15 15 1030.60 1040.99 99.00 22.04 26.28 31.67 34.26 35.61 90.52

rou15 15 322944.47 324901.61 99.40 18.74 24.89 26.96 27.35 27.52 91.73

scr15 15 48816.54 49264.73 99.09 37.17 43.52 46.39 47.54 47.64 96.33

tai15a 15 351289.64 352890.92 99.55 16.83 20.72 21.94 22.23 22.33 90.90

tai15b 15 51528935.02 51559404.81 99.94 37.80 49.49 54.49 55.95 56.70 99.60

esc16a 16 48.00 48.00 100.00 | | | | | 70.59

esc16b 16 278.00 278.00 100.00 | | | | | 95.21

esc16c 16 118.00 118.00 100.00 | | | | | 73.75

esc16d 16 4.00 4.00 100.00 | | | | | 25.00

esc16e 16 14.00 14.00 100.00 | | | | | 50.00

esc16f 16 0.00 0.00 100.00 | | | | | 100.00

esc16g 16 14.00 14.00 100.00 | | | | | 53.85

esc16h 16 704.00 704.00 100.00 | | | | | 70.68

esc16i 16 0.00 0.00 100.00 | | | | | 0.00

esc16j 16 2.00 2.00 100.00 | | | | | 25.00

had16 16 3548.12 3560.19 99.66 19.55 31.23 34.30 35.79 36.62 95.70

nug16a 16 1413.50 1425.64 99.15 17.30 24.96 28.67 30.89 31.71 88.55

nug16b 16 1080.05 1088.17 99.25 19.21 21.06 21.80 22.41 22.66 87.76

nug17 17 1490.79 1505.83 99.00 21.61 30.19 33.98 36.10 | 86.94

tai17a 17 440094.36 442702.77 99.41 14.61 18.73 20.78 21.48 21.75 90.01

chr18a 18 10738.55 10758.25 99.82 60.66 71.42 75.03 | | 96.94

chr18b 18 1534.00 1534.00 100.00 0.00 | | | | 100.00

had18 18 5071.09 5087.86 99.67 22.66 31.84 36.26 38.70 40.13 94.96

nug18 18 1649.70 1662.96 99.20 13.95 21.12 24.43 26.32 27.07 86.16

els19 19 16502856.83 16883302.96 97.75 29.69 47.04 53.95 57.46 | 98.09

chr20a 20 2169.67 2175.40 99.74 28.27 51.48 | | | 99.24

chr20b 20 2287.00 2287.00 100.00 | | | | | 99.52

chr20c 20 14006.73 14142.00 99.04 39.27 52.79 62.50 | | 100.00

had20 20 6559.39 6578.77 99.71 25.70 35.35 40.71 | | 95.04

lipa20a 20 3683.00 3683.00 100.00 | | | | | 100.00

lipa20b 20 27076.00 27076.00 100.00 | | | | | 100.00

nug20 20 2165.01 2181.60 99.24 28.27 32.37 35.20 36.83 37.67 84.89

rou20 20 639678.30 643363.25 99.43 13.16 18.19 20.75 21.93 22.69 88.68

scr20 20 94557.12 95117.84 99.41 17.75 28.17 31.21 33.09 34.34 86.45

tai20a 20 614849.18 618525.14 99.41 12.62 17.09 19.09 20.03 20.64 87.92

tai20b 20 84501939.93 97394937.98 86.76 14.42 39.66 63.67 | | 79.54

Table 1: Bounds
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instance size SEQB EQB ratio ratio in % after perc.

in sec in sec in % 1. it 2. it 3. it 4. it 5. it LP

chr12a 12 22 86 25.58 | | | | | 72.73

chr12b 12 22 82 26.83 | | | | | 68.18

chr12c 12 28 74 37.84 | | | | | 75.00

had12 12 40 149 26.85 63.09 100.00 143.62 191.95 242.28 91.97

nug12 12 29 106 27.36 55.66 84.91 116.98 150.94 183.02 86.08

rou12 12 30 125 24.00 57.60 99.20 146.40 195.20 245.60 90.88

scr12 12 33 93 35.48 79.57 132.26 187.10 247.31 298.92 89.57

tai12a 12 32 120 26.67 67.50 118.33 172.50 224.17 283.33 91.18

tai12b 12 37 153 24.18 56.86 98.69 146.41 195.42 245.10 92.27

had14 14 122 463 26.35 64.36 115.77 179.70 256.16 358.32 96.14

chr15a 15 339 845 40.12 90.06 149.70 231.60 304.14 383.08 97.56

chr15b 15 227 612 37.09 70.75 | | | | 92.61

chr15c 15 130 386 33.68 | | | | | 83.85

nug15 15 179 789 22.69 50.70 85.68 131.69 189.23 246.89 96.10

rou15 15 191 667 28.64 65.37 113.49 162.97 214.84 286.51 96.02

scr15 15 199 594 33.50 76.09 133.33 195.12 263.80 331.82 96.14

tai15a 15 189 696 27.16 57.47 100.72 142.39 189.37 233.91 95.27

tai15b 15 250 898 27.84 65.37 112.36 170.71 240.87 321.71 97.13

esc16a 16 136 447 30.43 | | | | | 78.68

esc16b 16 134 358 37.43 | | | | | 78.36

esc16c 16 134 394 34.01 | | | | | 78.36

esc16d 16 131 398 32.91 | | | | | 78.63

esc16e 16 147 394 37.31 | | | | | 80.95

esc16f 16 103 295 34.92 | | | | | 72.82

esc16g 16 142 332 42.77 | | | | | 80.28

esc16h 16 144 402 35.82 | | | | | 79.86

esc16i 16 116 321 36.14 | | | | | 75.00

esc16j 16 131 340 38.53 | | | | | 78.63

had16 16 367 2347 15.64 38.65 73.11 109.76 151.09 203.20 97.65

nug16a 16 481 3569 13.48 31.16 50.38 74.95 105.72 137.07 97.59

nug16b 16 256 960 26.67 67.92 104.38 142.81 185.52 234.79 96.10

nug17 17 622 2760 22.54 52.79 94.96 142.32 197.64 | 97.43

tai17a 17 470 1955 24.04 61.59 109.16 166.96 225.68 285.83 97.37

chr18a 18 1606 5079 31.62 76.83 186.10 284.41 | | 99.00

chr18b 18 557 1240 44.92 90.73 | | | | 94.40

had18 18 1222 4831 25.29 68.99 109.46 164.25 237.78 310.37 98.51

nug18 18 1019 4906 20.77 52.10 91.52 139.07 195.17 261.07 98.37

els19 19 2303 10449 22.04 55.14 102.71 203.46 265.54 | 99.08

chr20a 20 5124 12693 40.37 78.60 131.84 | | | 98.90

chr20b 20 1820 5407 33.66 | | | | | 95.33

chr20c 20 3941 9702 40.62 91.76 170.24 265.71 | | 99.11

had20 20 3130 13675 22.89 66.98 114.01 184.32 | | 98.88

lipa20a 20 1295 4806 26.95 | | | | | 93.51

lipa20b 20 1077 3748 28.74 | | | | | 92.20

nug20 20 2562 10081 25.41 65.13 106.34 154.00 208.57 271.73 98.74

rou20 20 2355 9402 25.05 62.69 109.44 155.88 215.65 282.22 98.63

scr20 20 2778 8354 33.25 78.74 138.21 197.09 260.59 338.21 99.02

tai20a 20 2310 8658 26.68 62.76 112.25 170.87 227.96 287.65 98.61

tai20b 20 3810 20251 18.81 43.53 84.47 127.07 | | 98.79

Table 2: Times

25



ones for EQB. These two facts show that it is worth to investigate the special formulation

for symmetric instances.

In those cases, where there is a gap between SEQB and EQB of more than 1% (e.g.,

tai12b, chr15a, chr15b), the curtain inequalities close a large part of that gap. However,

at least with our implementation that solves each linear program from the scratch, the

running time advantage SEQB has in comparison to EQB disappears in most cases already

after the second cutting plane iteration.

7 Conclusion

We shortly want to discuss the context in which the work presented in this paper is

located, in our opinion. Clearly, what we are �nally concerned with is the exact (or at

least provably good) solution of QAPs. The hope is that deeper polytopal knowledge of

the problem will yield the necessary very good lower bounding procedures. Important

steps that had already been performed were

� the evidence that EQB is empirically and theoretically a good lower bound,

� the basic polyhedral results on the QAP-Polytope, and

� the de�nition of the SQAP-Polytope.

The steps for the (quite natural) symmetric QAP that are done by the present paper are,

from our point of view, the following.

� Our computational results indicate that changing the LP giving EQB in case of a

symmetric instance in the natural way to a \symmetric LP" yielding SEQB does

not decrease the quality of the lower bound signi�cantly while accelerating the com-

putations by a factor between three and four.

� It is useless to search for additional equations in order to improve the quality of

SEQB, since the used equation system is already complete.

� The curtain inequalities seem to be computationally not very attractive, but they

cannot be strengthened, since they already de�ne facets.

� The methods presented in this paper, in particular the transition to the star-polytopes,

provide possibilities for further investigations of the facial structure of the SQAP-

Polytope.

To conclude, we present the steps that are to be done next, in our opinion. These steps

might also show if the polyhedral approach can really yield progress in the attempt to

solve QAPs to optimality or to a provably good solution.

� There is need for other cutting planes that (in contrast to the curtain inequalities)

improve SEQB even beyond EQB at least for some instances. This improvement

is necessary if one wants to reduce the tendency to implicit enumeration for larger

instances, as one might see from the { with increasing size { decreasing quality of

EQB.
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� In order to get far beyond size 20 (i.e., towards size 30), the linear programs must

be kept smaller by methods similar to the Dynamic Simplex Method (i.e., adding

and removing rows as well as columns in a dynamical way, see e.g. Padberg (1995)

for details).

� The fact that after each iteration the linear program has to be solved from scratch

(which might be due to the structure of the curtain inequalities) should be overcome.
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