ANGEWANDTE MATHEMATIK UND INFORMATIK
UNIVERSITAT zU KOLN

Report No. 96.242

The Tree Interface — Version 1.0
User Manual

by
Sebastian Leipert

1996

Partially supported by DFG-Grant Ju204/7-2, Forschungsschwer-
punkt “Effiziente Algorithmen fir diskrete Probleme und ihre An-
wendungen” and ESPRIT Long Term Research Project Nr. 20244
(ALCOM-IT).

Institut fur Informatik
Universitat zu Koln

Pohligstrafie 1
50969 Koln

1991 Mathematics Subject Classification: 90CXX 68NXX
Keywords: Graphical Interface, Software devellopment, Graph Drawing

The Tree Interface

Version 1.0

A Tool For Drawing Trees

by

Sebastian Leipert

User Manual

September 1996

Institut fir Informatik der
UNIVERSITAT zU KOLN

Sebastian Leipert

Institut fiir Informatik

Universitdat zu Koéln

Pohligstrafie 1

50969 Koln

Germany

E-mail: leipert@informatik.uni-koeln.de

Copyright (©1996 Sebastian Leipert

Writing this manual has been partially supported by

e DFG-Grant Ju204/7-2, Forschungsschwerpunkt “Effiziente Algorithmen fiir diskrete
Probleme und ihre Anwendungen”.

e ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT).

All files concerning the Tree Interface that are necessary for deriving our source code
and that are available under

http://www.informatik.uni-koeln.de/ls_juenger/projects/vbctool.html

may be freely copied and distributed, provided that no changes whatsoever are made.
All users are asked to help keep the Tree Interface files consistend and uncorrupted,
identical everywhere in the world. Changes are permissible only where explicitly
allowed or if the modified file is given a new name. The authors have tried their
best to produce correct and useful programs, in order to help promote computer
science research, but no warranty of any kind should be assumed.

The Motif Application Framework is copyright to Young [You92]. The GFF is
copyright to Martin Diehl and Joachim Kupke, Institut fiir Informatik, Universitit
zu Kéln and the Graph Interface is copyright to Joachim Kupke. The Tree Interface
is copyright to Sebastian Leipert, Institut fiir Informatik, Universitit zu Koln.

Contents

1 Introduction

1.1
1.2
1.3

The Tree Interface @ e e e e e
The node-positioning algorithm 0.

The Tree Interface Window o

2 Installing the Tree Interface

2.1
2.2
2.3

2.4

Fast installation oL oo
Firm installation o0 oo
The directory app-defaults
2.3.1 Changing sizes, fonts and colours
2.3.2 Adding the path of the GRAPHResource directory
2.3.3 Changing Labels and Mnemonics
2.3.4 Hot Keys o 0 0 i i e
The directory GRAPHRESOUTCE v v v v v e e e e e e e e e e e
2.4.1 GRAPHFonts.ft
2.4.2 GRAPHHeader.ps i i
2.4.3 GRAPHStandardResource.rsc.
2.4.3.1 DisplayAreaVisible L.
2.4.3.2 DisplayAreaRatio
2.4.3.3 DrawAreaBackgroundColor
2.4.3.4 LineWidthScaleNumberOfValues
2.4.3.5 LoadFileFilter
2.4.3.6 TreelevelSeparationValue
2.4.3.7 TreeSubtreeSeparationValue.
2.4.3.8 TreeSiblingSeparationValue.
2.4.3.9 TreelNodeRadiusValue
2.4.3.10 VisualizeAlgorithmTimeIntervall
2.4.3.11 Nodes <number>

-1 o ot W

11
11
12
12
12
13
13
14
14
14
15
15
15
15
15
15
16
16
16
16
16
17
17

2.4.3.12 Example 0000,
2.4.4 GRAPHrgb.txt
2.4.5 ListOfAdobeFonts / ListOfAllFonts

3 File structure of the Tree Interface

3.1 General construction of a file
3.1.1 Identifierso o
3.1.2 The principle of the file format of a tree

3.2 File format for simple trees with no informations

3.3 File format for trees with informations

3.4 File format for emulation processes

3.5 File format for User Algorithm

3.6 Reading input from standard input

4 Node Information

4.1 The Node Information Window
4.2 String format oo o o
421 Layout.
4.2.2 Main and general information

4.2.3 Arrayboundso

5 Adapting algorithms to the Tree Interface

5.1 Adapting one subroutine to the Tree Interface
5.1.1 The VBCCmd.cc File
5.1.2 The function AddNodeInfo
5.1.3 The function dispatchEvents
5.1.4 The function FinishAlgorithm
5.1.5 The function LowerBound
5.1.6 The function SetNodeInfo
5.1.7 The functions NewNode
5.1.8 The function PaintNode
5.1.9 The function RepaintTree
5.1.10 The function UpperBound
5.1.11 The printf instructions
5.1.12 An Example 000,

5.1.12.1 UserkExample.h
5.1.12.2 UserExample.cc

5.2 Adapting two or more subroutines to the Tree Interface

CONTENTS

18
18
18

19
19
19
20
21
22
24
26
26

30
30
30
31
31
32

33
33
34
34
36
36
36
37
37
37
38
38
38
38
38
39
40

CONTENTS 3
5.2.1 The included programs 40
5.2.1.1 branchlncludes.h 41

5.2.1.2 branchl.cc 41

5.2.1.3 branch2.cc 43

5.2.1.4 UserExample.cc o o 0 o o 44

5.2.2 Derivation of the Tree Interface 46
5.2.2.1 The function graphicInit 46

5.2.2.2 The function checkFile 47

5.2.2.3 The function addToAlgorithmMenue 47

5.2.2.4 The function DeactivationCall 47

5.2.2.5 The function FinishAlgorithm 48

5.2.2.6 Testlnterface.h L 48

5.2.2.7 Testlnterface.cc 49

5.2.3 Initialization of the derived class 52
5.2.3.1 TestApp.cc . . . o .o 53

5.2.3.2 Version.h 53

5.2.4 Adaption of the subroutines o oo, 54
5.2.4.1 VBCCmd.cc e 54

5.2.4.2 Commandl.h 56

5.2.4.3 Commandl.cc e 56

5.2.4.4 Command2.h oo 58

5.2.4.5 Command2.cc e 58

6 Command Reference 61
6.1 File . . . e e 61
6.1.1 Load.... e e e 61
6.1.2 Save... e e e e e e e e e e e e e 61
6.1.3 Print.. e e e 62
6.1.4 Quit e e e e e e e e 62

6.2 Edit e e 62
6.2.1 Undo e e e 62

6.3 View L e e e e 62
6.3.1 Area Zoom e e e e e e e e 62
6.3.2 Fit To Window e 63
6.3.3 Repaint e 63
6.3.4 Color/Context-Chooser... 63
6.3.0 Nodes... e e e e 64

4 CONTENTS

6.3.6 Idges... 65

6.4 Applications Lo 65
6.4.1 Visualize Algorithm L oL 65
6.4.2 Scaler... e e e e e e e 65
6.4.3 Browser Mode e 66
6.4.4 Normal Mode e 66

6.5 Algorithm L 67
6.5.1 User Algorithm 67

6.6 Emulation 67
6.6.1 Start Emulation 67
6.6.2 Setup 67
6.6.3 Interrupt 67
6.6.4 Continue e e e e e e e e e 68
6.6.5 Stop Emulation o o 68

6.7 Online e e 68
6.7.1 Standard In e 68

6.8 Mouse-button commands L L 68
6.8.1 Left Button e 68
6.8.2 Middle Button e 69
6.8.3 Right Button 69

7 Appendix 70
7.1 defglb oo o 70
7.2 Treelnterface.h 71
T3 Teesk . o o e e e e e e 75
7.3.1 treeh .o e 75
T.3.2 Iree.ce . . o . o o e e e 77

Bibliography 92

Chapter 1

Introduction

1.1 The Tree Interface

The Tree Interface is a tool specially designed to draw binary and general rooted trees, as
they occur during an algorithmic process. It therefore covers three main areas of drawing
trees: simply drawing a tree as a result of any kind of process, emulating a tree growing
process after the computation is finished and drawing a tree during a computational process.

The first problem is easy to handle. The user might have some kind of tree stored in a file
along with some information at every node and simply wants to take a look at it. So this
case is kept very simple and loading such a file means painting the tree.

The second case is almost as easy to handle as the first case, although the file structure, which
stores the tree, is larger. The main idea is to emulate the process that grew the tree after the
process is finished. This might be preferred before a runtime simulation for several reasons.
On the one hand, a process might last to long and the user is forced to keep an eye on the
screen while nothing actually happens. On the other hand, a process might be very fast and
produces a large tree, so that it is not possible to follow the action, that takes place. Instead
of following the action online, it might be a good idea to reproduce the visualization of the
process afterwards and then either speed this visualization up or slow it down. The Tree
Interface provides a comfortable tool which enables the user to reproduce such visualizations.

Besides, situations may occur, where it is not possible at all to visualize a process. This eg.
is typical for parallel algorithms which are run on multiple processor machines. Here the user
has no other choice but emulating the process after it has been finished.

Nevertheless, the user might need a runtime simulation. This can be achieved by this tool as
well in two different ways. The first is simply piping the output of some program to the Tree
Interface. This is rather easy to handle, since the user just has to make sure that his output
obeys a few rules (see section 3.6). The second option is to include the users program into
the environment of the Tree Interface such that the program can be started by clicking on a
button in the menu bar. This possibility involves some work for the user and is restricted to
C++ implementations only, but offers a nice handling once the work is done. The necessary
changes, that need to be programmed are described in detail in chapter 5.

The implementation of the Tree Interface is based on the Graph Interface which itself is based
on the Graphical Front Fnd GFFE Version 1.0 both written by Joachim Kupke in C+4. GFF

6 CHAPTER 1. INTRODUCTION

itself is a library based on the MotifApp Application Framework and the library written for
OSF/Motif by Young [You92]. For accurate manipulating and deriving our source code, we
expect the user to have the library libApp.a, written by Young, the GFF and the Graph
Interface library written by Kupke and of course the X/Motif Libraries.

1.2 The node-positioning algorithm

Drawing a tree consists of two stages: determining the position of each node, and actually
rendering the individual nodes and their interconnecting branches. Therefore the heart of the
Tree Interface is an algorithm for computing the coordinates of the nodes of the tree, while
the actual drawing of the nodes is left to the Graph Interface.

The algorithm used by the Tree Interface bases on a publication by Walker [Wal90]. It
is a node-positioning algorithm for general trees, which gives similar results as the famous
algorithm presented by Reingold and Tilford [RT81] for binary trees and even better results
for general trees.

The Tree Interface considers only rooted, directed trees, which are trees with one root and
hierarchical connections from the root to its offsprings. No node may have more than one
father. Since the Tree Interface draws general trees, there does not exist any restriction on
the number of offsprings each node has. Binary trees are special trees, where each node has
either two offsprings or no offsprings at all.

Walkers algorithm does not support a common practice, to distinguish between the left and
the right son of a node in a binary tree, so the tree can be drawn to preserve this left to right
distinction. Such trees are called ordered trees, and the algorithm does not support ordered
tree drawing.

With the help of Walkers algorithm, the Tree Interface satisfies the following aesthetic rules
while the drawing of the tree occupies as little space as possible (see [RS83, WST79]):

e Nodes at the same level of the tree should lie along a straight line. The straight lines
defining the levels should be parallel. The user should be aware of the fact that it is
therefore not possible to line all leaves of a parse tree in a horizontal line.

e A parent should be centered over its offsprings.
e A tree and its mirror image should produce drawings that are reflections of one another.

e A subtree should be drawn the same way regardless of where it occurs in the tree. This
is necessary since in some applications, one wishes to examine large trees in order to
find repeated patterns and the search for patterns is facilitated by having isomorphic
subtrees drawn isomorphically. Therefore small subtrees should not appear arbitrarily
positioned among larger subtrees:

— Small interior subtrees should be placed out evenly among larger subtrees, while
the larger subtrees are adjacent at a larger level.

— Small subtrees at the far left or far right should be adjacent to larger subtrees.

1.3. THE TREE INTERFACE WINDOW 7

Every node is identified by a set of (z,y) coordinates, determining a point in the plane.
Those coordinates of the nodes are computed with respect to the aesthetic rules listed above,
observing the following important values:

Level Separation is the fixed distance of adjacent levels of the tree. This value is used in
order to determine the y-coordinates of the nodes.

Sibling Separation is the minimum distance between adjacent siblings of the tree.

Subtree Separation is the minimum distance between adjacent subtrees of a tree.

All values have a standard value set to 4, except the Level Separation value which has the
default value 2, but all values can be influenced by the user (see 2.4.3 and 6.4.2)

In the presentation of a tree, edges are normally drawn as lines while nodes are drawn as
circles. Apart from the fact that both appearances can be changed (see 2.4.3, 6.3.5 and
6.3.6), the Tree Interface normally draws nodes as circles centered above their coordinates
having a radius of 1. Of course the radius of the nodes can be changed by the user in order to
vary the layout of the trees, but internally the Tree Interface handles the space within a range
of 1 of the node defining point as safety area. This strategy forbids drawings where nodes
intersect each other and is achieved by simply adding 2 to the Separation values presented
above (so if eg. the Level Separation = 2, then it has actually a value of 4).

This manual does not go into detail of the node-positioning algorithm. The reader is there-
fore referred to [Wal90]. Nevertheless, the code of our implementation was enclosed in our
appendix in section 7.3 and we remark that the time needed by this algorithm is in O(n)
where n is the number of nodes in the tree.

1.3 The Tree Interface Window

When calling the Tree Interface, a window will appear on the screen, that handles all features
of the Tree Interface. This window is divided into several parts, that will be referred to
throughout this manual. Therefore a brief description of the window is given in this section.

Besides the menu bar, that handles most of the applications of the Tree Interface (see chapter
6 for a complete reference of all commands), the window is divided into two parts (see figure
1.1):

e the display area

e and the draw area.

The display area is the smaller part of the window, placed just below the menu bar. Its
task is to show all kinds of printed messages to the user. Such messages can be warnings,
main informations of nodes (see 4.2.2), confirmations of commands and a various number of
different informations. Even the user is able to print out strings in the display area within a
few applications (see chapter 5).

Actually, the display area consists of two different displays: a left display and a right display.
When the Tree Interface is started, only the right display is visible. The left display will

8 CHAPTER 1. INTRODUCTION

appear next to the right window, as soon any information is printed into it. Normally the
ratio between the two displays is 50 percent, but it can be manipulated by the user at will
(see 2.4.3.2).

The right display is endowed with scroll bars (only visible if necessary) and keeps all informa-
tion displayed up to a certain extend. This supports the user to keep track of the displayed
information, while the left display shows only one information at a time. As soon as new
information is printed into the left display, all information shown in the left display before is
removed.

The draw areais the large display underneath the display area. This area displays all paintings
of trees and is the most referred feature of the Tree Interface window throughout this manual.
Since it shows the drawings of the trees, its size is normally much larger than the size of the
display area. Nevertheless, it is possible to change the ratio of the draw area and the display
area with the help of a resize button. This very small button is on the far right side of the
Tree Interface window just between the two described areas. In order to use this button, the
mouse cursor has to be positioned right on top of this button. To indicate, that the user has
been successful in doing this, the cursor shape changes from the arrow shape to cross hair
shape. Pressing either the left or the middle mouse button and keeping it pressed, the ratio
of the two areas can be resized.

The draw area shows the nodes of the tree in any kind of colour that was chosen by the user.
Unfortunately, the Graph Interface is not able to present different kinds of shadings yet, so
for good application we strongly suggest to use a colour monitor. Three colours, that are
used by the Tree Interface by default are to be mentioned here:

Standard Colour is by default indian red. It is used for normal presentation of nodes.
Standard Highlight is by default greenl. It is used to highlight nodes.

Standard Shade is by default snow2. It is used to insinuate nodes, that are not present
yet.

The background colour is normally wheat, while the edge colour is normally black.

Of course all colours can be changed by the user at will (see 2.4.3, 6.3.4 — 6.3.6), so it should
be guaranteed that the drawings can be adapted to the users aesthetical beliefs.

To be more precise, Standard Colour, Standard Highlight and Standard Shade are not only
names of colours, they are names for node categories. A node categorie is a conglomeration
of descriptions of the appearance of a node, including:

e colour of the node,
e font used to show the number of the node,

e colour of the font,

a flag whether the number has to be shown,

e a flag whether the node is drawn as a circle or a square,

a flag whether the node is drawn filled or not,

1.3. THE TREE INTERFACE WINDOW 9

e 3 custom name.

So every node is assigned to one of the 20 node categories that are in the Tree Interface
present, the default value is always Standard Colour. Since the conspicuous attribute of a
node categorie is the colour of the node, node categories are often referred as node colours.
This should also explain, why the default node categorie is called Standard Colour.

Not only the colour of a node categorie can be changed as mentioned above, but also every
single feature of it can be replaced, in order to satisfy special purposes. In order to change
the different features, the reader is referred to 2.4.3, 6.3.4 — 6.3.6.

CHAPTER 1. INTRODUCTION

|
File Edit View Applications Algorithm Emulation 4— Menu Bar

Display Area

Bl

~~ Resize Button

i

Draw Area

Figure 1.1: The Tree Interface window

Chapter 2

Installing the Tree Interface

In order to install the Tree Interface we expect the user to have a package of the Tree Interface
including an executable corresponding to his operating system. These packages are currently
available under the following adress:

http://www.informatik.uni-koeln.de/ls_juenger/projects/vbctool .html.
Along with the executable, the user will find the following files in his package:

vbcAppDefaults: a file looked up by the Tree Interfuce when the interface is started using
the fast installation (see 2.1).

GFE: the same file as vbcAppDefaults, supposed to be used for a firm installation of the Tree
Interface.

GRAPHResource: a subdirectory containing several files used by Tree Interface.
startVbcTool: a shell-script needed for instant use of the Tree Interface.

vbctool: the executable of the Tree Interface. The name stands vor Visualization of
Branch and Cut algorithms and is historically motivated, since it was first used in
the ABACUS system of Stefan Thienel [ST95].

2.1 Fast installation

In case that the user prefers a simple and fast installation that provides all functionalism,
all files of the package have to be kept in one directory with the GRAPHResource directory as
subdirectory. Type

startVbcTool
and the Tree Interface can be used immediately. Nevertheless, for intense use of the Tree

Interface, we strongly recommend a firm installation of the package as described in the next
section 2.2.

11

12 CHAPTER 2. INSTALLING THE TREE INTERFACE

When using the Tree Interface with the help of the script startVbcTool, the Tree Interface
depends on the existence of the file vbcAppDefaults. The user is free to manipulate this file at
his will for changing size and appearance of the Tree Interface. Since the file vbcAppDefaults
is manipulated as the file GFE we refer to the section 2.3.

2.2 Firm installation

In order to install the Tree Interface the user has to establish two different subdirectories:

1. app-defaults

2. GRAPHResource

The first one has to be placed into the main directory of the user, while the GRAPHResource
directory that comes along with the package of the Tree Interface, can be placed anywhere.
The user just has to make sure that the following two facts are established:

1. The environmental variable XAPPLRESDIR has to be set. If the C shell is used, the
following line has to be written into the .login file:

setenv XAPPLRESDIR $HOME/app-defaults/

If the Bourne shell or Korn shell is used, the following lines have to be established:

setenv XAPPLRESDIR
XAPPLRESDIR=$HOME/app-defaults/; export XAPPLRESDIR

2. The path of the GRAPHResource subdirectory has to be set in the files that are contained
in the directory app-defaults as ResourceDirectoryPath (see 2.3.2).

2.3 The directory app-defaults

The directory app-defaults has to contain a file called GFE. This file GFE comes along with
the package of the Tree Interface and is looked up by the Tree Interface every time the
interface is called. GFE mainly carries information about the appearance of the interface,
eg. the size of the windows or the fonts used, which enables Motif to build up the window
correctly.

This manual gives only a short introduction to the user for changing sizes or fonts and
concentrates on structures which are of more importance for the user.

2.3.1 Changing sizes, fonts and colours

The Tree Interface consist of different elements as the draw area, the display area (see also
1.3), the menu bar and pop up menus. Every element can be addressed by its name. Together
with the commands width, height, fontlist, followed by a proper value, it is possible to
achieve appropriate changes.

2.3. THE DIRECTORY APP-DEFAULTS 13

Syntax: *.<element>[*|.]<command>: <value>

Values for width and height are nonnegative integer values indicating a number of pixels.
The value of a font is a string. The strings describing the fonts are listed in the files
ListOfAdobeFonts and ListOfAllFonts in the directory GRAPHResource (see 2.4.5).

Examples:

e *.drawArea.width: 700 set the width of the draw area to 700 pixels.

e * . Color/Context*fontList:
-daewoo-gothic-medium-r-normal--0-0-100-100-c-0-ksc5601.1987-0
changes the font of the Color/Context Chooser. Try it, you get a nice result.

2.3.2 Adding the path of the GRAPHResource directory

In order to run the Tree Interface, the user has to add the path of his GRAPHResource directory
in the file GFE, stored in the directory app-defaults. This file contains the command

* . ResourceDirectoryPath.labelString:

This command has to be followed by the path of the GRAPHResource directory.

If the command is missing or the path is wrong, the Tree Interface will crash after calling it,
leaving with the message

NO RESOURCE-FILE CALLED GRAPHResource/GRAPHStandardResource.rsc

2.3.3 Changing Labels and Mnemonics

As described in chapter 6, all commands in the menu bar can be activated by pressing the
Meta key and the key of the underlined letter of the commands name at the same time. The
name of a command, written on the button of the menu is called a label, the underlined
letter is called a mnemonic. All labels and mnemonics are listed in the GFE file and can be
changed by the user. This is especially useful if the name of the User Algorithm has to be
changed or more algorithms and therefore more buttons have to be added to the menu.

Warning! It is not possible to add new menu buttons via the GFE file to the Tree Interface.
It is only possible to change their labels and their mnemonics.

We now give an example how to change the menu button of User Algorithm. Considering
that the reader has an original GFE file, he will find the following two lines:

*User Algorithm.labelString: User Algorithm
User Algorithm.mnemonic: U

Those can be change for instance into the following:

*User Algorithm.labelString: New Name
User Algorithm.mnemonic: e

which results in a button with the label New Name and the first ‘e’ underlined.

14 CHAPTER 2. INSTALLING THE TREE INTERFACE

2.3.4 Hot Keys

As described in chapter 6, some commands in the submenus of the main menu can be activated
by pressing the Cirl key and some letter key, without activating the menu bar button first.
Such a key combination is called a hot key or accelerator. All hot keys are listed in the
GFE file and can be changed by the means of the user.

A hot key description in the GFE file bases on two different informations:

the accelerator text: A string written next to a label of a command in the menu button
indicating any user of the Tree Interface that this command can by activated by a hot
key. Typically the hot key itself is written here.

the accelerator: The hot key of the command.

The hot key description is best described by the use of an example. Considering that the
reader has an original GFE file, he will find the following two lines:

*Stop Emulation.acceleratorText: Ctrl+0
Stop Emulation.accelerator: Ctrl<Key>0

describing the hot key of the command Stop Emulation. The first line describes the text
which is written next to the label so the button appears with the following information:

Stop Emulation Ctrl+0.

The second line then describes the hot key of the command.

2.4 The directory GRAPHResource

The directory GRAPHResource can be placed anywhere the user wishes to. It just has to be
made sure that the path of this directory is added to the GFE file (see 2.3.2). This directory
contains four files which are established for the use of Graph Interface, the base class of the
Tree Interface. Those files are indicated by the prefix GRAPH at the begining of their name
and are read every time by the Tree Interface when it is started. Furthermore it contains a
list of all fonts that can be used (for changing fonts see 2.3.1 and 2.4.3).

Below, a short description of all files is given. Special attention should be drawn to
GRAPHStandardResource.rsc file, where important information about the appearance of a
tree can be modified.

2.4.1 GRAPHFonts.ft

The GRAPHFonts.ft file contains a list of fonts, that is used by the Tree Interface. This list
is originally used by the Graph Interface and is a lookup for the Tree Interface, in order to
generate the fonts.

The fonts listed in GRAPHFonts.ft are used by the Tree Interface in the font selection menus,
where the user can choose different fonts for eg. the numbering of nodes.

24. THE DIRECTORY GRAPHRESOURCE 15

2.4.2 GRAPHHeader.ps

The file GRAPHHeader.ps contains a header for postscript files. Every time a postscript file
is generated by the Tree Interface (see 6.1.3 for postscript generation), the header is copied
into this file.

2.4.3 GRAPHStandardResource.rsc

The file GRAPHStandardResource.rsc is the most interesting file for the user. Here, certain
features of the Tree Interface can be switched on or off and most of all, the appearance of
the nodes can be modified.

Comments in this file are indicated by an #. All other lines carry a command, that precedes
every line and is understood by the Tree Interface. The command then has to be followed by
certain values. We now give a description of all commands.

2.4.3.1 DisplayAreaVisible

Syntax: DisplayAreaVisible: <value>

where <value> is either True or False. If the value is True, the display area (see 1.3) will be
visible when calling the Tree Interface.

2.4.3.2 DisplayAreaRatio

Syntax: DisplayAreaRatio: <value>

where <value> should be an integer value between 0 and 100. If the display area (see 1.3)
is visible, <value> describes the ratio of the left and right display windows in percent. More
precisely, <value> describes the share of the left window in percent, if it is visible.

2.4.3.3 DrawAreaBackgroundColor

Syntax: DrawAreaBackgroundColor: <value>

The <value> for this command is a string covering the name of a colour. All possible names
can be looked up in the GRAPHrgb.txt file (see 2.4.4). This value sets the background colour
of the draw area (see 1.3)

2.4.3.4 LineWidthScaleNumberOfValues

Syntax: LineWidthScaleNumberOfValues: <value>

The <value> should be a nonnegative integer value. The Graph Interface uses several scalers,
whose exactness can be modified by this value. This does not affect the Secaler... that has
been specially designed for the Tree Interface(see 6.4.2).

16 CHAPTER 2. INSTALLING THE TREE INTERFACE

2.4.3.5 LoadFileFilter

Syntax: LoadFileFilter: <value>

where <value> is a string describing a path. The file filter then lists only those files, which
match the description in the path.

2.4.3.6 TreelevelSeparationValue

Syntax: TreelevelSeparationValue: <value>

where <value> is a nonnegative integer value restricted by 32. It sets the value of the Level
Separation (see 1.2). The user does not need to worry about expanding the values. If the
value is smaller than 0, the default value is 0, while the default value is 32, if the value is too
large.

2.4.3.7 TreeSubtreeSeparationValue

Syntax: TreeSubtreeSeparationValue: <value>

where <value> is a nonnegative integer value restricted by 32. It sets the Subtree Separation
value (see 1.2). The user does not need to worry about expanding the values. If the value is
smaller than 0, the default value is 0, while the default value is 32, if the value is too large.

2.4.3.8 TreeSiblingSeparationValue

Syntax: TreeSiblingSeparationValue: <value>

where <value> is a nonnegative integer value restricted by 32. It sets the Sibling Separation
(see 1.2). The user does not need to worry about expanding the values. If the value is smaller
than 0, the default value is 0, while the default value is 32, if the value is too large.

2.4.3.9 TreelNodeRadiusValue

Syntax: TreeNodeRadiusValue: <value>

where <value> is a nonnegative integer value. It sets the radius of all node categories (see
1.3). The integer value is interpreted as 10 times the radius. So if <value> = 28 then the
radius of all node categories is set to 2.8. While the minimum value is 5, the maximum value
is restricted by any of the above mentioned separation values, since the following inequality
must hold:

<sepvalue>+ 2
2

<value> < min { | <sepvalue> is separation Value} .

Again, as used for the separation values, the user does not need worry about expanding

bounds. If the value is smaller than 5, the default value is 10, hence the radiusis 1. If the value

to larger, then the default value is min {w | <sepvalue> is separation Value}.

24. THE DIRECTORY GRAPHRESOURCE 17

2.4.3.10 VisualizeAlgorithmTimelIntervall

Syntax: VisualizeAlgorithmTimeIntervall: <value>

where <value> is a nonnegative integer value. It sets the length of a time interval in millisec-
onds. The interval is used when visualizing algorithms. It describes the time that a node is
highlighted, that means is drawn in Standard Highlight. If eg. a interval length of 1000 is
chosen, every node will be highlight one second.

2.4.3.11 Nodes <number>
Syntax:

Nodes <number>: -<colour> -<fontcolour> - -<number flag><filled
flag><circle flag> (-(-)<customname>)

This command describes the appearance of the nodes in the node categorie <number>.
<number> therefore is an integer value between 1 and 20, accessing one of the 20 different
node categories. The different values are listed below:

<colour> is a string covering the name of a colour as they are listed in the GRAPHrgb.txt
(see 2.4.4). Sets the colour of all nodes of the node categorie <number>.

<fontcolour> is a string covering the name of a colour as they are listed in the GRAPHrgb . txt
(see 2.4.4). Sets the colour of the numbers of the node of the node categorie <number>.

 is a string covering the name of a font as they are listed in the GRAPHFonts.ft (see
2.4.1). Sets the font of the numbers of the node out of the node categorie <number>.

<number flag> is either the character ‘y’ or ‘n’. Set ‘y’ if the nodes of the node categorie
<number> have to be drawn with numbers, else set ‘n’.

<filled flag> is either the character ‘y’ or ‘n’. Set ‘y’ if the nodes of the node categorie
<number> have to be drawn filled, else set ‘n’.

<circle flag> is either the character ‘y’ or ‘n’. Set ‘y’ if the nodes of the node categorie
<number> have to be drawn as circles, else set ‘n’ if the nodes have to be drawn as
squares.

<customname> is a string giving the node categorie <number> a name. This information is
not necessary and can be omitted. If it exists, the name will appear in the pop up
menu called by the command Nodes... (see 6.3.5), so it can be selected. If there
is no <customname> listed, it is not possible to change the appearance of the nodes
of this node categorie via the command Nodes... while running the Tree Interface.
Placing two times a minus in front of the string has the same result as if there was no
<customname> listed.

Warning! The Tree Interface expects all 20 descriptions of its 20 node categories. None
of them may be omitted. If the user does not provide all of them, the Tree Interface might
crash.

18 CHAPTER 2. INSTALLING THE TREE INTERFACE

2.4.3.12 Example

The following line:
Nodes 2: -greenl -black -CourierMedium -nyy -Standard Highlight

describes the appearance of the node categorie 2. All nodes of this node categorie are painted
in a bright colour called greenl. They are drawn as filled circles without their number. In
case that a demand for drawing the nodes with numbers exists (eg. by using the command
Nodes. .. orsetting the <number flag> to ‘y‘), the numbers would be written in black Courier
Medium. The custom name of the node categorie is Standard Highlight and therefore can
be accessed via the command Nodes. . ..

2.4.4 GRAPHrgb.txt

The GRAPHrgb . txt file contains a list of colours, that is used by the Tree Interface. This list
is originally used by the Graph Interface and is a lookup for the Tree Interface, in order to
generate the colours that are given by name. Every colour can be generated by a combination
of three nonnegativ integer values. Therefore the Tree Interface reads this list in order to find
the corresponding combination, when a certain colour name was given.

Warning! Several colours appear more than once in this list, only their names are slightly
different (eg dark slate gray and DarkSlateGray both having the colour code 47 79 79).
The GFF accepts only the first detected name of such a colour when it scans the file
GRAPHrgb.txt. So the user should make sure that the name he uses for a certain colour
comes first. Therefore the user is free to modify the GRAPHrgb.txt at his will.

2.4.5 ListOfAdobeFonts / ListOfAllFonts

The files ListOfAdobeFonts and List0fAllFonts list all possible fonts. This is only thought
as a lookup for the user if he wishes to include certain fonts that are not present in the Tree

Interface. This lookup might also come in handy, if fonts have to be changed in the file GFE
(see 2.3.1).

Chapter 3

File structure of the Tree Interface

3.1 General construction of a file

The Tree Interface distinguishes between two types of files:

1. A user defined file format, which is going to be used in the users algorithm.

2. A file format adapted to the needs of the Tree Interface for simple tree drawing or
emulating tree building processes, including reading from standard input.

While the latter one will be checked fully by the Tree Interface, the first one will be directed
to the users algorithm, without being seen by the Tree Interface. In this case, the user has
to make sure, that the file has a correct format.

3.1.1 Identifiers

A Tree Interface formatted file contains 5 lines with some general information about the data
that comes along with this file.

e The first line must contain the following line:
#TYPE: COMPLETE TREE

This indicates the file to be in Tree Interface format.

e The second line contains the following informations:
#TIME: SET
or
#TIME: NOT

The first command indicates an emulation process, while the second one indicates a
simple drawing of the tree.

19

20 CHAPTER 3. FILE STRUCTURE OF THE TREE INTERFACE

e The third line contains the following information:
#BOUNDS: SET

or
#BOUNDS: NONE

The first command indicates that during an emulation process upper bounds and lower
bounds are presented as global informations on the screen. The second command is
used if no such bounds have to be shown during the emulation, or if the file does not
contain an emulation process.

Warning! If the reader just applies simple tree drawing, he should not skip this line!
The second command should then be used.

e The fourth line contains the following information
#INFORMATION: STANDARD
or
#INFORMATION: EXCEPTION

The first command indicates that the file contains regular information of the nodes,
including written information and node categorie information (see 1.3), while the second
one indicates no information at all. In this case, the node numbers are stored as written
information and the node categorie is by default Standard Colour.

e The fifth line contains the following information:
#NODE _NUMBER: AVAILABLE
or
#NODE _NUMBER: NONE

If the node number is available the next two lines will contain the number of nodes
in the tree and the number of edges. If not, the Tree Interface first has to read the
complete file, in order to find out how much memory has to be allocated. The next line
will then contain the first relevant information of the tree.

3.1.2 The principle of the file format of a tree

A tree T'= (V, E) with V a set of nodes and F a set of edges, is given as an edge list. So the
basic component of any file in Tree Interface format is this edge list together with features,
that the user is willing to use. We therefore assume that the edges are numbered and that
edges have the following appearance:

(,7), i< {i,7ycVv

3.2. FILE FORMAT FOR SIMPLE TREES WITH NO INFORMATIONS 21

where the node 7 is the father of node j and j is the son of node 1.
The file structure therefore bases on the following simple line:
ij
indicating such a father-son relationship. The node numbered 1 is always the root of the tree
and therefore does not have a father. According to the specifications, that were made in the

identifiers (see 3.1.1), the line is modified in order to satisfy the needs of the Tree Interface.
Those modifications are discussed below (see sections 3.2-3.4).

3.2 File format for simple trees with no informations

A simple tree, where the nodes do not contain any kind of information can be achieved with
the following identifier:

#TYPE: COMPLETE TREE
#TIME: NOT

#BOUNDS: NONE
#INFORMATION: EXCEPTION
#NODE_NUMBER: AVAILABLE

According to the specification in the last line the next two lines contain

1. the number n of nodes in the tree

2. the number m of edges in the tree

#TYPE: COMPLETE TREE
#TIME: NOT

#BOUNDS: NONE
#INFORMATION: EXCEPTION
#NODE_NUMBER: AVAILABLE

W WNNRPL, P, O
~N O O W N

Figure 3.1: Example of a file, that draws a simple tree.

22 CHAPTER 3. FILE STRUCTURE OF THE TREE INTERFACE

The edges of the tree are listed on the next m lines, obeying the father son relationship, such
that the first number is the father and the second one is the son. For an example see figure
3.1. As described in 3.1.1, it is not necessary to have the node number available. If this is
the case, the listing of the edges has to be continued directly after the identifier.

It is not necessary to have the edges ordered as in the example 3.1. The edges can be listed in
any arbitrary order. Observe that different listings produce the same tree, but not the same
drawing.

3.3 File format for trees with informations

A tree, where the nodes carry node categorie informations and informations such as writ-
ten information, that can be shown via the Node-Information-Window (see 4.1), needs the
following identifier.

#TYPE: COMPLETE TREE
#TIME: NOT

#BOUNDS: NONE
#INFORMATION: STANDARD
#NODE_NUMBER: AVAILABLE

According to the specification in the last line, the next two lines contain

1. the number n of nodes in the tree,

2. the number m of edges in the tree.

The following lines contain the list of edges, a list of string informations and a list of node
categorie informations. Since node categories mainly differ through their colours, those infor-
mations are as well referred as colour informations. The order in which informations, colour
informations and edge descriptions appear is arbitrary. Informations may appear first, at the
end or they may be mixed with the edge descriptions. Especially the latter one satisfies the
needs of algorithmic output. Some nodes may not contain written informations, so it is not
necessary to include an extra line for them. If a node does not even have a node categorie
information, the corresponding line can be left out as well. The node then simply is assigned
to the default node categorie Standard Colour. Furthermore, if a node is assigned to a non
existing node categorie, it will be assigned as well to the default node categorie.

So the user will need exactly m lines, where the edges are listed, and at most 2n lines for the
informations of the nodes.

Observe that the description of the edges again obeys the father son relationship, such that
the first number is the father and the second one is the son. Observe further that as described
in 3.1.1, it is not necessary to have the number of nodes available. If this is the fact, the user
leaves the two lines with node number and edge number out.

In order to indicate what kind of information a line currently holds, the following identifiers
are set at the beginning of each line:

3.3. FILE FORMAT FOR TREES WITH INFORMATIONS

e is set when the line holds an edge description.

n is set when the line holds written node information.

¢ is set when the line holds node categorie information.

#TYPE: COMPLETE TREE
#TIME: NOT

#BOUNDS: NONE
#INFORMATION: STANDARD
#NODE_NUMBER: AVAILABLE

\inode 1\iinformation
\inode 2\iinformation

\inode 3\iinformation
\inode 4\iinformation

\inode 5\iinformation

\inode 6\iinformation
\inode 7\iinformation

o BB OB OO O©®OO0 OB B 000 08B 0N

D N 0T WWNPE WNPREWONRPR,PR,E PR,

Figure 3.2: Example of a file, drawing a tree with node information.

included
included

included
included

included

included
included

by
by

by
by

by

by
by

node
node

node
node

node

node
node

w

23

The example 3.2 shows a tree with node informations. The format of the informations will
be discussed in chapter 4. Therefore the reader is referred to that chapter. Observe that
the node numbered seven does not have a node categorie information. It will therefore be
assigned to the default node categorie Standard Colour.

24 CHAPTER 3. FILE STRUCTURE OF THE TREE INTERFACE

3.4 File format for emulation processes

A file carrying information about an emulation process needs the following identifier.

#TYPE: COMPLETE TREE
#TIME: SET

#BOUNDS: SET
#INFORMATION: STANDARD
#NODE_NUMBER: NONE

Important is the change in the second line, which tells the Tree Interface that this file contains
an emulation process. The third line could be also set to:

#BOUNDS: NONE
indicating that no bounds are to be set. The fifth line is normally set to:
#NODE _NUMBER: NONE

since such files are in general the output of some algorithmic process, where the number of
nodes produced by the algorithm is not known when the process starts writing into the file.

Every following line starts with a time label, indicating at what time the information, stored
in the line, was written by the process into the file. The time label has the following syntax:

hour:minutes:seconds.hundredth of a second

Examples :

00:00:12.11 // 12 seconds and 110 milliseconds
02:12:00.00 // 2 hours and 12 minutes

The time label is followed by an identifier which is closely related to the public commands
in the Tree Interface that are needed to adapt the users algorithm to the Tree Interface (see
also chapter 5). The following list describes all possible identifiers and it names the functions
of the Tree Interface that are called when the identifiers are read:

A adds information to existing information of a node.
Calls theTreeInterface— >AddNodelInfo.

I anode gets new information.
Calls theTreeInterface— >SetNodelInfo.

L prints out the new lower bound on the screen.
Calls theTreeInterface— >LowerBound.

N a new node is added into the tree.
Calls theTreeInterface— >NewNode.

3.4. FILE FORMAT FOR EMULATION PROCESSES

P paints a node in a new colour.
Calls theTreeInterface— >PaintNode.

U prints the new upper bound on the screen.
Calls theTreeInterface— >UpperBound.

#TYPE: COMPLETE TREE
#TIME: SET

#BOUNDS: SET
#INFORMATION: STANDARD
#NODE_NUMBER: NONE

00:00:00.00
00:00:00.00
00:00:00.00
00:00:00.01
00:00:00.50
00:00:00.50

00:00:02.00
00:00:03.00
:03.00
:06.00
:06.00
:08.01
:09.00
:09.00
:09.20
:09.20
:09.20
00:00:10.01
00:00:10.20
00:00:10.21
00:00:10.22
00:00:10.41
00:00:10.61
00:00:10.80
00:00:10.80
00:00:11.00
00:00:11.00
00:00:11.20
00:00:11.20
00:00:11.40
00:00:11.40
00:00:13.00
00:00:14.00
:14.00
:14.00
:14.00
:15.00
:15.00
:19.00
:20.00
:22.00
122.50

Figure 3.3: Example of a file, executing an emulation process.

All those identifiers cause the call of one of these functions.

No15

U 200.1

Lo

I 1 \inode 1\iinformation included by node 1
N125

I 2 \inode 2\iinformation included by node 2
N135

I 3 \inode 3\iinformation included by node 3
N145

I 4 \inode 4\iinformation included by node 4
P 115

U 178.52

I 1 \inODE 1\iinformation included by node 1
N256

I 5 \inode 5\iinformation included by node 5

[N
[
ot

2
6 \inode 6\iinformation included by node 6
2 \inODE 2\iinformation included by node 1

L 34.7

I 3 \inODE 3\iinformation included by node 1
I 4 \inODE 4\iinformation included by node 1
N375

I 7 \inode 7\iinformation included by node 7

N385

I 8 \inode 8\iinformation included by node 8

Ne695

I 9 \inode 9\iinformation included by node 9

Ne6105

I 10 \inode 10\iinformation included by node

Ns8115

P 418

U 123.456

I 11 \inode 11\iinformation included by node

89.667

8125

2 \inode 12\iinformation included by node

135

12

9

\inode 13\iinformation included by node

\IHELLO! This is node 12\i

14 5

\inode 14\iinformation included by node

100.2

99.8

8155

5 \inode 15\iinformation included by node

11

13 \imake it longer\i add more information
14 \imake it longer\i add more information
15 \imake it longer\i add more information
100

100.3

1
8
2
1

=
8]

3
2
8
14

1

Caeerv_ZogtzY "oz 20

11

12

13

14

25

Therefore the identifiers have

to be followed by the input of theses functions. All informations are separated by a blank.

26 CHAPTER 3. FILE STRUCTURE OF THE TREE INTERFACE

The following list gives a brief description of the values that have to follow the identifiers:

A int charx Number of the node, information of the node.

I int charx Number of the node, information of the node.

L double The size of the lower bound.

N int int int Number of the father, number of the new node
and number of the new nodes colour.

int int Number of the node, number of the nodes colour.

double The size of the upper bound.

av

An example of such a file is shown in figure 3.3.

3.5 File format for User Algorithm

This file format has to be specified by the user. If the first line is not equal to the string
#TYPE: COMPLETE TREE

then this file will be automatically referred to the users algorithm and the menu bar button
for executing this algorithm will be activated.

This strategy of not checking such a file at all offers as much freedom as possible to the user
but is also a source for easy crashes of the Tree Interface. We therefore strongly suggest to
check every file carefully, that is passed to the users algorithm.

For further information the reader is referred to the chapter 5.

3.6 Reading input from standard input

Besides reading trees from files and adapting user defined algorithms to the Tree Interface,
it is as well possible to read input from standard in, which comes in hand especially when
piping the output of any user’s program to the Tree Interface. For those, who are not familiar
with piping standard output of any program to the standard input of another program, we
remember that the syntax is as follows:

<usersprogram> <options> | vbctool

The functionality and therefore the format of the standard input is quite similar to the one
described in the section 3.4, where the file format for emulating trees was described, except
that in this case the Tree Interface does not need time labels, since it works online (a word
we hear in these days quite often).

Nevertheless a special identifier, the $ sign, is used to mark all lines concerning all kinds
of informations of the tree. This enables the user to have information, that he wants to be
printed in the display area during the drawing of the tree, to be merged with the general tree
informations. The Tree Interface simply prints all information stored in a line, which is not
preceded by a $, into the display area.

3.6. READING INPUT FROM STANDARD INPUT 27

After starting the Tree Interface as described, the pull down menu Online has to be opened,
and the menu bar button Standard In has to be pressed. This enables the Tree Interface to
read from standard input from that moment on. Since all information written by the user’s
program to standard output is buffered, the Tree Interface reads all information written to
standard out (see also 6.7).

The information concerning the painting of the tree written to the buffer has to start with
the following identifier:

$#TYPE: COMPLETE TREE
$#TIME: SET

$#BOUNDS: NONE
$#INFORMATION: STANDARD
$#NODE_NUMBER: NONE

Observe that, although this is not an emulation process and no time labels are set, the Tree
Interface expects that time is SET. This is due to the fact, that the Tree Interface when
reading from standard input uses the same set of commands as when emulating a process.
The only information in the identifier, which is optional therefore is the third line. The user
can also use:

$#BOUNDS: SET
The fifth line is always set to
$#NODE_NUMBER: NONE

since the Tree Interface never expects in a tree growing process that the total number of
nodes is available.

The above mentioned identifier may be preceded by some information which is marked without
the $ sign as information reserved to be printed in the display area, and it may be followed
by such information. On the other hand the user should observe not to print lines which
do not concern the identifier within the identifier. Once the identifier was piped, the
user is free to merge display information and tree information at will.

Every following line concerning the painting of the tree starts with an $ followed by one of the
identifiers as described in section 3.4 and every identifier has to be followed by an information
as described in the same section 3.4. So the information written to standard output by the
user’s program looks pretty much the same as the file format for emulation processes, with
the only exception that instead of the time labels a $ is printed at the beginning of every line
(an example is shown in figure 3.4). We therefore omit further discussions about this format
and turn our attention to some other important information: Indicating the end of a process.

After the user’s program has written all information to standard out, it has to close the
information with the following line:

$#END_OF _QUTPUT

28 CHAPTER 3. FILE STRUCTURE OF THE TREE INTERFACE

This line indicates the Tree Interface that all information was read and stops it from reading
further information from standard input. After this line was read, all other features of the
Tree Interface are accessible again. Forgetting to write this line could cause serious trouble,
since almost all features of the Tree Interface will be closed until reading from standard input

has been finished.

3.6. READING INPUT FROM STANDARD INPUT

Information printed into the Display Area
Information printed into the Display Area
$#TYPE: COMPLETE TREE

$#TIME: SET

$#BOUNDS: SET

$#INFORMATION: STANDARD
$#NODE_NUMBER: NONE

Information printed into the Display Area
$NO15

$U 200.1

3L 0

$I 1 \inode 1\iinformation included by node 1
$N125

$I 2 \inode 2\iinformation included by node 2
$N 135

$I 3 \inode 3\iinformation included by node 3
$N 145

$I 4 \inode 4\iinformation included by node 4
$P 115

$U 178.52

Information printed into the Display Area
Information printed into the Display Area

$I 1 \inODE 1\iinformation included by node 1
$N 256

$I 5 \inode 5\iinformation included by node 5
$N265

$L 23.7

$I 6 \inode 6\iinformation included by node 6
$I 2 \inODE 2\iinformation included by node 1
$P 3 14

$U 162.789

$L 34.7

$I 4 \inODE 4\iinformation included by node 1
$N375

$I 7 \inode 7\iinformation included by node 7
$N 385

$I 8 \inode 8\iinformation included by node 8
$N 695

$I 9 \inode 9\iinformation included by node 9
$N 6 10 5

$I 10 \inode 10\iinformation included by node 10
$N 8 11 5

$P 4 18

$U 123.456

$I 11 \inode 11\iinformation included by node 11
$L 89.667

$N 8 12 5

Information printed into the Display Area
Information printed into the Display Area

$I 12 \inode 12\iinformation included by node 12
$N 8 13 5

$P 2 12

$P 12 9

$I 13 \inode 13\iinformation included by node 13
$I 12 \iIHELLQ! This is node 12\i

$N 8 14 5

$I 14 \inode 14\iinformation included by node 14
$U 100.2

$L 99.8

Information printed into the Display Area

$N 8 15 5

$I 15 \inode 15\iinformation included by node 15
$P 11

$A 13 \imake it longer\i add more information
$A 14 \imake it longer\i add more information
$A 15 \imake it longer\i add more information
$U 100

$L 100.3

Information printed into the Display Area
Information printed into the Display Area
Information printed into the Display Area

Figure 3.4: Example of a file as used in standard input.

Chapter 4

Node Information

4.1 The Node Information Window

The Node Information Window is a tool to show the informations stored at a node. In order
to activate the Node Information Window the mouse cursor has to be positioned at a node
and the right mouse button has to be pressed. This pops up a window which shows the
information stored at the node.

Pressing the right mouse button while the cursor is in the draw area will always pop up such
a Node Information Window. If the cursor is not positioned at a node, the node next to
the cursor is chosen, in order to show its information. The user can open up to 10 different
Node Information Windows. It is not possible and probably not useful to open more Node
Information Windows.

The Node Information Window is an always active feature. As long as there is a tree drawn
in the draw area, node informations can be shown by the use of the right mouse button.
This feature is also active in the user algorithm. If an information changes throughout an
algorithmic process, the information shown in the window is updated and the size of the
window is adapted to size of the new information.

The Node Information Window is divided into two parts, showing the main information as
well as the general information. The main information is placed at the top position of the
window into a framed area, while the general information is placed underneath it (see also
4.2.2).

4.2 String format

The layout of the Node Information Window is fully dependent on the user. The Tree Interface
does not make any suggestions how to present the information. Showing informations is
understood in terms of a modified printf instruction. This gives the user maximum freedom
how to present the informations of the nodes.

30

4.2. STRING FORMAT 31

4.2.1 Layout

In order to achieve a specific layout in the Node Information Window, the following for C' ++
programmers well known control characters have to be used:

\t the tabulator character,

\n the new line character.

Those characters can be placed anywhere in the information array of the node. As an example,
observe the following line:

Number:\t\t 12345\nUpper Bound:\t 6789
gives the following output on the Node Information Window:

Number: 12345
Upper Bound: 6789

4.2.2 Main and general information

The Tree Interface offers the user the opportunity to distinguish between main information
and general information. This is done for a better presentation of the informations of a node
and for a better orientation in the tree.

If trees have to be drawn with a large amount of informations for every node, some of the
informations should probably be highlighted in order to see them directly without reading
through the complete text. Furthermore, if the user searches for a special node, it is useful to
filter informations, so that the nodes can be apprehended faster, especially when informations
and trees tend to be large.

The main information will be highlighted in the Node Information Window. All information
that is considered to belong to the main information will be written in a framed box at the top
of the window. The general information is written below the main information. Furthermore,
the main information is the only information of a node that is shown in the left display of
the display area (see 1.3) when the Browser Mode is activate (see 6.4.3.

Both main and general information are stored in the same string of characters. To indicate
the main information within the string the following control character is used:

\i

The beginning as well as the end of every main information is indicated by this control
character. The order in which general and main information appear in the input files is
arbitrary. Besides it is not necessary that main or general information form a consecutive
sequence. So the main information may be divided into several parts, each part indicated by
a pair of \i control characters.

As an example, observe the following possible information of a node:

32 CHAPTER 4. NODE INFORMATION

\iNode 1\iinformation included by node 1\i\nInfo 1:\t\t 12345\i\nInfo
2:\t\t 1234\nInfo 3:\t\t stringinformation\n Information 4:\t TRUE\nI
nformation 5:\t containing an Information\n\t\t with an additional 1i
ne

The information of the example is considered to be a string of characters as it appears typically
in one line in an input file (see also 3.3 and 3.4). Special attention should be drawn to the
fact, that the main information does not appear in a consecutive sequence. Although this
information is hard to read while it is stored in a string, it will result the following presentation
of the information in the Node Information Window:

Node 1
Info 1: 12345

information included by node 1

Info 2: 1234

Info 3: stringinformation
Information 4: TRUE

Information b: containing an Information

with an additional line

4.2.3 Array bounds

The total length of an information that a node is allowed to carry is restricted by the Tree
Interface. The total length of the information, including main and general information, may
not exceed a number of 1024 characters. The length of the main information may not exceed
a number of 128 characters.

In general, this bounds should leave enough space for presenting the information of nodes,
since the control characters \t and \ncan be used. In case that more space is needed by the
user in order to express himself, two global defined constants, defining the array bounds have
to be changed and the source code of the Tree Interface has to be recompiled.

In the file def . glb, which is supplied together with all files of the Tree Interface, the following
two lines will be found:

#define INFOSIZE 1024
#define SHORTSIZE 128

INFOSIZE describes the length of the arrays, holding complete informations of the nodes,
while SHORTSIZE describes the length of the arrays holding only the main information. After
making appropriate changes, the program has to be compiled again.

Chapter 5

Adapting algorithms to the Tree
Interface

For adapting algorithms to the Tree Interface we provide a package containg the libraries and
headers of the GFE the Graphlnterface and the Tree Interface. This package contains also a
few source files, that have to be manipulated by the user. This package does not contain any
commercial software! Hence this package does not provide the Motif Application Library of
the Xm Library. However, the user will need this software to implement the here described
manipulation of our software. If the reader does not have these libraries, he should check if
it is sufficient to pipe the output of a programm into the Tree Interface. This feature of the
Tree Interface probably covers most requierements.

The Tree Interface is designed to behave like a window program. The philosophy of such a
program is to let the user not worry about a main function, it has already a main function.
To be concrete, this main function exists in the library of Young [You92]. The user therefore
only writes subroutines, which will be adapted to the Tree Interface. Theses subroutines are
strictly limited to tree drawing algorithms.

In the following, the reader will be shown how to do this. It will be easy, if just one program
has to be adapted, but we will also discuss what to do if two or more different subroutines
have to be included. In case that the users program has a main function, its function name
has to be replaced by an appropriate name like clientmain.

5.1 Adapting one subroutine to the Tree Interface

This section fully describes the adaption of a subroutine to the Tree Interface. This subroutine
can be called any time by loading a file, which does not fit the file formats described in
chapter 3, causing the button Users Algorithm in the menu Algorithm to be activated and
pressing the button starts the subroutine. We strongly remind the reader of the fact, that
every file he loads, which does not fit to the Tree Interface formatted files, will be assigned
to the users algorithm (see 3.1). So it has to be made sure, that all files are checked by the
users algorithm.

33

34 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

5.1.1 The VBCCmd.cc File

When adding a subroutine to the Tree Interface, the file VBCCmd.cc shown in figure 5.1 has
to be manipulated. Of special interest should be the function doit. Here, the user has to
place his own function call instead of the function clientmain.

This adaption should be of no problem and has the following effect on the Tree Interface:
every time, a user opens the menu Algorithm and clicks on the menu entry, the function doit
will be called and hence the users application will be started.

The VBCCmd. cc file furthermore offers the option to use either a filename or a pointer to the
file in order to communicate with the file as the user wishes.

After adapting the VBCCmd. cc, the function calls of the Tree Interface, that can be used by any
subroutine in order to draw trees, will be introduced and discussed in the following sections.
Special attention should be paid to the use of the function dispatchEvents described in
subsection 5.1.3. The use of this function guarantees, that the Tree Interface will be accessible
while the process of the users algorithm is still continuing.

In order to use the function calls of the Tree Interface, it is necessary to include the file
TreeInterface.h to the users subroutines. This offers the programmer to use the external
pointer

theTreelnterface

in order to reference the public functions of the Tree Interface.

Example:
theTreeInterface->dispatchEvents()

calls the function dispatchEvents of the Tree Interface.

5.1.2 The function AddNodeInfo

The complete function call is:
AddNodeInfo(int node, char*x information)

This function adds more information to already existing information of a node. The node
is accosted via its positive integer number, while the information has to be Tree Interface
formatted (see 4.2). It is possible to add main information as well as general information
with this call. The information carried by this command will be added at the end of the
existing information. The user can apply this call as often as he wishes and only has to make
sure that the internal array bounds are not expanded.

ADAPTING ONE SUBROUTINE TO THE TREE INTERFACE

#tinclude "TreeInterface.h”
#include "VBCCmd .h”
#tinclude "branchIncludes.h”
#include <string.h>

/***
VBCCmd

**/

VBCCmd::VBCCmd(char* name,int active)

: NoUndoCmd(name,active)

// Constructor

——

/AR ks ks st ok s ok ol s ok Rl ok R o R ok SRR Rk R Rk R s ok K o
setFileName
skt s R sk ol st R o SRR ok sl s R ok sk sk R s sk s sk ksl sk Rk sk okl /

void VBCCmd::setFileName(FILE« ptr,charx filename)
// The name of the file that has been read as input is set.

strcpy (FileName,filename);
_FilePtr = ptr;

JRHAA KA A A A A KKK A A A KA A A A FAFA KKK KK KK HH H HH AR A HF A KA KA KKK K
doit
SR KA A A FA KKK KK KA K R AR A KA KA KA KKK K AR KA H K H KA KA K

void VBCCmd::doit()

// The Procedure is called when the button in the menue bar,
// that belongs to this command, is pressed. It will then call
// a user defined function.

// Print a message if necessary.
printf("Execute Clients Program.\n");

// Make sure that old trees are

// removed.
theTreelnterface—Tree()—clean tree();

// Make appropriate deactivation

// calls.

theTreelnterface—DeactivationCall();

// Call the clients function.
charx arg[2];
arg[1] = _FileName;
clientmain(1,arg);

Figure 5.1: The file VBCCmd.cc.

35

36 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

5.1.3 The function dispatchEvents
The complete function call is:

dispatchEvents()
This function is derived from the GFF. It has to be applied by the user. This function
enables the Tree Interface to check for any kind of event as mouse button inputs or key clicks.
If the user does not implement this function in his source code, it is not possible to apply any

of the features of the Tree Interface after the users algorithm was started, until the algorithm
has come to a stop.

The function dispatchEvents checks what kind of events have taken place between two calls
of dispatchEvents and then executes them. Therefore the user should jump at this function
very often in order to get a fluent and nice handling of the Tree Interface during the execution
of the users algorithm. We therefore suggest to implement this function call always in the
inner loops of the algorithm.

5.1.4 The function FinishAlgorithm
The complete function call is:
FinishAlgorithm(int boolean, int returnvalue)
This function can be used to indicate that the user algorithm has been finished. If the
boolean value is set to 0 = FALSE, nothing will happen, even the returnvalue is ignored. If
the boolean value is set 1 = TRUE, this subroutine will print out the messages:
Algorithm has come to a stop.
and
Program exited normally
if the returnvalue = 0, or

Program exited with ”returnvalue”.

if the returnvalue # 0. Furthermore the function will reactivate the command button of the
user algorithm so the algorithm can be run again.

5.1.5 The function LowerBound

The complete function call is:
LowerBound(double bound)

This function prints the value of a lower bound in the right display of the display area.

5.1. ADAPTING ONE SUBROUTINE TO THE TREE INTERFACE 37

5.1.6 The function SetNodeInfo
The complete function call is:
SetNodeInfo(int node, charx information)

This function sets the information of a node. The node is accosted via its node number,
while the information has to be Tree Interface formatted (see 4.2). It is possible to add main
information as well as general information with this call. The user has to make sure, that the
internal array bounds are not expanded.

If information has been stored in a node before, this call first deletes all existing information,
before storing the new information.

5.1.7 The functions NewNode
The complete function call is:
NewNode(int father, int newNode, int nodeCategorie)
or
NewNode(int father, int newNode, int nodeCategorie, int draw)

Both functions add a new node to an existing tree. The first call always causes a repaint of
the tree, while the latter does not cause a repaint, if the value of draw is set to 0 = FALSE.
This might come in handy when the tree, that is build by an instance of the algorithm starts
to get large, whereas computing the new coordinates and repainting the tree grows linear
with the size of the tree. Since this slows down the execution of the algorithm, it might be
useful to repaint the tree only eg. every 10 nodes.

To include a new node into the tree, first mention the number of its father, second the
number of the node and third the number of the node categorie, which this node should
belong to. This node categorie number is an integer value between 1 and 20. The features
of the different node categories can be looked up and manipulated by the user in the file
GRAPHStandardResource.rsc (see 2.4.3). In case that the new node is the root of the tree,
which means that newNode = 1, the value for father = 0.

5.1.8 The function PaintNode
The complete function call is:
PaintNode(int node, int nodeCategorie)

With the help of this function, a current node categorie of a node can be changed in order
to apply different colours or shapes to a node. The node is accosted via its node num-
ber, while the node categorie number is an integer value between 1 and 20. The features
of the different node categories can be looked up and manipulated by the user in the file
GRAPHStandardResource.rsc (see 2.4.3).

38 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

5.1.9 The function RepaintTree

The complete function call is:
RepaintTree()

This function repaints a tree, which is especially necessary, when using the function NewNode
(see 5.1.7) while suppressing a repaint after every newly introduced node.

5.1.10 The function UpperBound
The complete function call is:
UpperBound (double bound)

This function prints out the value of an upper bound in the right display of the display area.

5.1.11 The printf instructions

There are there different printf instructions at hand for a user of the Tree Interface: printf,
lprintf and rprintf. With the help of the printf instruction, the user can show informa-
tions on the right message window of the display area. The printf is used as the normal
ANSI C printf. The rprintf instruction supplies the same result as the printf instruction,
whereas lprintf prints out strings on the left display of the display area.

5.1.12 An Example

This subsection shows a small example that can be called by the doit function shown in figure
5.1. INFOSIZE and SHORTSIZE are the defines for the array bounds as described in 4.2.3.

5.1.12.1 UserExample.h

/***

Filename : UserEzample.h

Version ;o 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : Contains the header of the client defined

function clientmain. This file has to be
included into the file VBCCmd.ce, in order
to call the user algorithm when pressing
the corresponding menue bar button.

**/

void clientmain(int argc, char *xargv(]);

5.1. ADAPTING ONE SUBROUTINE TO THE TREE INTERFACE

5.1.12.2 UserExample.cc

/**

Filename : UserEzample.cc

Version s 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : FEzample for a userdefined program.

Draws a simple tree.

***/

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#tinclude "TreeInterface.h”
#tinclude "branchIncludes.h”

void clientmain(int argc, char xargv(])

{

int nodenb = 0;
int edgenb = 0;
int tail = 0;

int head = 0;

char «filename = argv([1];
char inputline[INFOSIZE];
char xinputptr;

char infochar;

char bufshort2[SHORTSIZE];

ifstream inClientFile(filename,ios::in);
inClientFile.getline(inputline, INFOSIZE);
inClientFile.getline(inputline, INFOSIZE);
inClientFile 3> nodenb > edgenb;

int xfather = new int [nodenb+1];
father[1] = 0;

int k = 1;
while (k < edgenb)

inClientFile 3> tail 3> head;
if (tail < head)

father[head] = tail;
kt++;

for (int j = 1; j < nodenb; j++)

{

for (int i = 1;1 < 1000; i++)

{

39

40 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

for (int 1 = 1;1 < 1000; 14++);
dispatchEvents();

theTreelnterface—NewNode(father[j],j,5);
sprintf(bufshort2,"\\idual bound node: %d\\iTestInformation"j);
theTreelnterface—SetNodelnfo(j,bufshort2);

if (j > 20)

{

int node = j - 20;
sprintf(bufshort2,"\\idual bound node: %d\\illew TestInformation\\nContains one more line.'" node);
theTreelnterface—SetNodelnfo(node,bufshort2);

}

dispatchEvents();

if (j >5)
theTreelnterface—PaintNode(j-5,4);

if j >1)
theTreelnterface—PaintNode(j-1,6);

delete[] father;

theTreelnterface—FinishAlgorithm(TRUE,0);
}

5.2 Adapting two or more subroutines to the Tree Interface

In this section the case is considered to adapt not only one subroutine but two or more
subroutines to the Tree Interface. To do so, five different tasks have to be solved by the user:

1. The introduction of extra menu buttons in the menu bar of the Tree Interface.

2. Including the extra subroutines into the Tree Interface, that cannot be covered by the
use of the VBCCmd. cc file (see 5.1.1).

3. Reassure that the menu buttons call the corresponding subroutines when pressed.
4. Make appropriate changes to the loading command.

5. Manage the activation and deactivation of the menu buttons.

To achieve all goals, the user has to derive the Tree Interface. This includes some work, but
is not so difficult to implement. We assume that the reader is familiar with C4++, and has all
libraries at hand. For a better understanding, we show the solution of the problem by giving
a full description of an example.

5.2.1 The included programs

Assume, that we have three programs which have to be visualized with the help of the Tree
Interface. 1In a first step, the functions described in the previous section 5.1 have to be

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE 41

adapted to the programs. Furthermore, it has to be made sure that none of the programs has
a main function. This can be done by an appropriate renaming of the main functions.

After having done the described changes, we have three subroutines, that have to be adapted
to the Tree Interface. In our example, they are called clientmain, clientmainl and
clientmain2. The three subroutines are listed below in the files branchl.cc, branch2.cc
and UserExample.cc. The file UserExample.cc is the same as in section 5.1. It is shown for
completeness. The file branchIncludes.h serves as an interface between the subroutines and
the derivation of the Tree Interface. Other solutions than this may of course be realized.

One of the subroutines can be added to the Tree Interface with the help of the VBCCmd.cc
file as described in the previous section 5.1. This again will be the function clientmain of
the file UserExample.cc.

5.2.1.1 branchIncludes.h

/***

Filename : branchlncludes.h

Version ;o 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : Contains the headers of all client defined

functions. Other solutions than this may
of course be possible.

S RS RS K K SR RS A S AR SRS ko
#ifndef BRANCHINCLUDES_H

#define BRANCHINCLUDES_H

void clientmain(int argc, char *xargv(]);

void clientmainl(int argc, char *xargv(]);

void clientmain2(int argc, char *xargv(]);

#endif

5.2.1.2 branchl.cc

/**

Filename : branchl.cc

Version s 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : FEzample for a userdefined program.

Draws a simple tree.

***/

42 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#tinclude "TestInterface.h”
#tinclude "branchIncludes.h”

void clientmainl(int argc, char xargv(])

{

int nodenb = 0;
int edgenb = 0;
int tail = 0;

int head = 0;

char «filename = argv([1];
char inputline[INFOSIZE];
char xinputptr;

char infochar;

char bufshort2[SHORTSIZE];

ifstream inClientFile(filename,ios::in);
inClientFile.getline(inputline, INFOSIZE);
inClientFile.getline(inputline, INFOSIZE);
inClientFile.getline(inputline, INFOSIZE);
inClientFile 3> nodenb > edgenb;

int xfather = new int [nodenb+1];
father[1] = 0;

int k = 1;
while (k < edgenb)

inClientFile 3> tail 3> head;
if (tail < head)
father[head] = tail;
I+
}

for (int j = 1; j < nodenb; j++)

{

for (int i = 1;1 < 500; i++)
{
for (int 1 = 1;1 < 500; 14++);
dispatchEvents();

theTreelnterface—NewNode(father[j],j,5);
sprintf(bufshort2,"\\idual bound node: %d\\iTestInformation"j);
theTreelnterface—SetNodelnfo(j,bufshort2);

if (j > 20)

int node = j - 20;
sprintf(bufshort2,"\\idual bound node: %d\\illew TestInformation\\nContains one more line.'" node);
theTreelnterface—SetNodelnfo(node,bufshort2);

}

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE

dispatchEvents();

if (j >5)
theTreelnterface—PaintNode(j-5,4);

if j >1)
theTreelnterface—PaintNode(j-1,6);

delete[] father;

theTreelnterface—FinishAlgorithm(TRUE,0);

5.2.1.3 branch2.cc

/**

Filename s branch2.cc

Version s 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : FEzample for a userdefined program.

Draws a simple tree.

***/

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#tinclude "TestInterface.h”
#tinclude "branchIncludes.h”

void clientmain2(int argc, char xargv(])

{

int nodenb = 0;
int edgenb = 0;
int tail = 0;

int head = 0;

char «filename = argv([1];
char inputline[INFOSIZE];
char xinputptr;

char infochar;

char bufshort2[SHORTSIZE];

ifstream inClientFile(filename,ios::in);
inClientFile.getline(inputline, INFOSIZE);
inClientFile.getline(inputline, INFOSIZE);
inClientFile.getline(inputline, INFOSIZE);
inClientFile 3> nodenb > edgenb;

int xfather = new int [nodenb+1];

43

44 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

father[1] = 0;

int k = 1;
while (k < edgenb)

inClientFile 3> tail 3> head;
if (tail < head)
father[head] = tail;
I+
}

for (int j = 1; j < nodenb; j++)

{

for (int 1= 1;1 < 100; i++)

for (int 1 = 1;1 < 100; 14++);
dispatchEvents();

theTreelnterface—NewNode(father[j],j,5);
sprintf(bufshort2,"\\idual bound node: %d\\iTestInformation"j);
theTreelnterface—SetNodelnfo(j,bufshort2);

if (j > 20)

int node = j - 20;
sprintf(bufshort2,"\\idual bound node: %d\\illew TestInformation\\nContains one more line.'" node);
theTreelnterface—SetNodelnfo(node,bufshort2);

}

dispatchEvents();

if (j >5)
theTreelnterface—PaintNode(j-5,4);

if j >1)
theTreelnterface—PaintNode(j-1,6);

delete[] father;

theTreelnterface—FinishAlgorithm(TRUE,0);

}

5.2.1.4 UserExample.cc

/**

Filename : UserEzample.cc
Version s 01.1995

Author : Sebastian Leipert
Language ;o C4+

Purpose : FEzample for a userdefined program.

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE 45

Draws a simple tree.

***/

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#tinclude "TreeInterface.h”
#tinclude "branchIncludes.h”

void clientmain(int argc, char xargv(])

{

int nodenb = 0;
int edgenb = 0;
int tail = 0;

int head = 0;

char «filename = argv([1];
char inputline[INFOSIZE];
char xinputptr;

char infochar;

char bufshort2[SHORTSIZE];

ifstream inClientFile(filename,ios::in);
inClientFile.getline(inputline, INFOSIZE);
inClientFile.getline(inputline, INFOSIZE);
inClientFile 3> nodenb > edgenb;

int xfather = new int [nodenb+1];
father[1] = 0;

int k = 1;
while (k < edgenb)

inClientFile 3> tail 3> head;
if (tail < head)
father[head] = tail;
I+
}

for (int j = 1; j < nodenb; j++)

{

for (int i = 1;1 < 1000; i++)

for (int 1 = 1;1 < 1000; 14++);
dispatchEvents();

theTreelnterface—NewNode(father[j],j,5);
sprintf(bufshort2,"\\idual bound node: %d\\iTestInformation"j);
theTreelnterface—SetNodelnfo(j,bufshort2);

if (j > 20)

int node = j - 20;
sprintf(bufshort2,"\\idual bound node: %d\\illew TestInformation\\nContains one more line.'" node);
theTreelnterface—SetNodelnfo(node,bufshort2);

46 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

}

dispatchEvents();

if (j >5)
theTreelnterface—PaintNode(j-5,4);

if j >1)
theTreelnterface—PaintNode(j-1,6);

delete[] father;

theTreelnterface—FinishAlgorithm(TRUE,0);

5.2.2 Derivation of the Tree Interface

This subsection describes how the Tree Interface can be derived. Remarks on all important
functions, that have to be overloaded by the user, are provided. Nevertheless, the reader
should study the example carefully before starting an implementation on its own.

In the example shown in this section, the derived class from the class TreeInterface is called
TestInterface. Asin C++ implementations usual, we distinguish between a header file and
a .cc file.

In a derivation of the Tree Interface, several functions have to be overloaded. Furthermore
for each subroutine, that has to be included, a class derivated from the class NoUndoCmd has
to be constructed. These derivated classes from NoUndoCmd handle the menu buttons in the
menu bar and each of them starts a subroutine defined by the user. Since this subsection is
restricted to the description of the functions of TestInterface, we expect for our example
to have two derivated classes from NoUndoCmd, and leave the description of the construction
to the following subsection. Those two classes are called Command1 and Command2, where the
first one handles the menu button of the subroutine clientmaini of the file branchi.cc while
the latter handles the menu button of the subroutine clientmain?2 of the file branch2.cc.

We now give a brief description of the overloaded functions of the Tree Interface:

5.2.2.1 The function graphicInit

Syntax:

graphicInit()

This function initializes all features of the graphical surface. It is a virtual function of the
GFFE and has to be overloaded by the user. The graphicInit function of the Tree Interface
has to be called in this function. Furthermore the user has to initialize all his derived classes
from NoUndoCmd, that handle the menu buttons for calling the subroutines.

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE 47

5.2.2.2 The function checkFile

Syntax:
checkFile(FILE* file ptr, char* filename)

This function is called by the Tree Interface every time a file is loaded via the Load...
command, if and only if the file does not fit the file format of the Tree Interface (see also
chapter 3).

Here the file has to be checked, if it has to be handed to one of the subroutines. If this is
the case, the user has to make sure that the filename and a file pointer is handed to the
corresponding class by calling the function setFileName.

Furthermore the user has to control the menu bar buttons and activate or deactivate them in
correspondance of the loaded problem. Observe, that it is not only possible to activate one
menu bar button, but even two or more, if the file can be read by different subroutines.

The function checkFile returns an integer value indicating that checkFile has been success-
ful or not. In case that FALSE = 0 is returned, the file will be handed by the Tree Interface
to the user algorithm and the corresponding menu button is activated (see also 3.5). If this
should be prohibited, make sure that TRUE = 1 is returned.

5.2.2.3 The function addToAlgorithmMenue

Syntax:
addToAlgorithmMenue(CmdList *List)

This function is called, when the menu bar is initialized after invoking the Tree Interface.
Here the commands from the class NoUndoCmd, that handle the new menu bar buttons, are
introduced into the menu bar. Every single one of these commands has to be added by the
user within this function call.

5.2.2.4 The function DeactivationCall

Syntax
DeactivationCall()

Every time a subroutine was started in order to visualize an algorithm, some buttons in the
menu bar have to be deactivated. This has to be done to prevent undefined conditions, when
pressing different buttons while some process is still not finished.

The user has to implement in any case the DeactivationCall from the Tree Interface in his
overloaded functions. Furthermore he can switch of his own menu bar buttons. This function
is used in the implementation of the NoUndoCmd classes of the user.

48 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

5.2.2.5 The function FinishAlgorithm

Syntax
FinishAlgorithm(int boolean, int returnvalue)

This function is the previously described function of subsubsection 5.1.4. It is not necessary to
overload the function. It mainly can be used to activate the last used NoUndoCmd button again
(This is what the integer values _commandiActive and _command2Active in our example are
used for.) If the function is overloaded, it has to be made sure, that the FinishAlgorithm of
the Tree Interface is called within the overloaded version.

5.2.2.6 TestInterface.h

/**

Filename : TestInterface.h

Version s 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : This is the header of the clients interface.

It has to be derwwated from the Treelnterface.
It handles every user defined function and is
the connection to the Treelnterface. This file
is the master of the clients derivation of

the Treelnterface.

***/

#ifndef TESTINTERFACE_H
#define TESTINTERFACE_H

#tinclude "TreeInterface.h”
#include "Commandl.h”
#include "Command?2.h”

class TestInterface : public Treelnterface {
public:

TestInterface();
~TestInterface();

// Virtual Function from GFE.
virtual int graphicInit();

// Virtual Functions from Treelnterface.
virtual int checkFile(FILEx file_ptr,charx filename);
virtual void addToAlgorithmMenue(CmdListx* List);
virtual void DeactivationCall();
virtual void FinishAlgorithm(int boolean, int returnvalue);

private:

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE

int _commandlActive;
int _command2Active;

Commandlx* _.command1;
Command2x* _.command2;

i§
extern TestInterfacex theTestInterface;

#endif

5.2.2.7 TestInterface.cc

/**

Filename : TestInterface.cc
Version s 01.1995

Author : Sebastian Leipert
Language ;o C4+

***/

#tinclude "TestInterface.h”
#include <iostream.h>
#include <fstream.h>

#define LINE_1 "#FIRST PROBLEM"
#define LINE_2 "#SECOND PROBLEM"

TestInterfacex theTestInterface = NULL;

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
TestInterface
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

TestInterface:: TestInterface()
:Treelnterface()

// Constructor

_commandl = NULL;
_command2 = NULL;
_commandlActive = FALSE;
_command2Active = FALSE;

theTestInterface = this;

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
~ TestInterface
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

49

50 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

TestInterface::~TestInterface()
// Destructor

delete _.commandl;
delete _.command2;

}

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
graphicInit
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

int TestInterface::graphiclnit()

// Initializes all features of the graphical surface. This function
// is a wvirtual function of the GFE and has to be overloaded by
// the client.

// Initialize the graphical
// features of the Tree Interface.
Treelnterface::graphicInit();

// Initialize the new commands.
// FALSE means, that their buttons
// won’t be active when the
// TestInterface is started.
—commandl = new Command1("Command1",FALSE);
—command2 = new Command2("Command2",FALSE);

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
checkFile

**/

int TestInterface::checkFile(FILEx file_ptr,charx filename)

// This function is a virtual function of the Treelnterface.

// It has to be overloaded by the user. This function will be
// automatically called by the Treelnterface as soon as a file
// does not fit Treelnterface’s file format. The client can check
// in this procedure, if the file format fits the requirements of
// the client.

// If the file fits, the user can activate the menue buttons here

// and set the filename in his command classes.

//

// If the file does not fit and the user returns false, the

// FILE WILL BE SEND BY DEFAULT TO THE USERS ALGORITHM.

char inputline 1[INFOSIZE];
char xinputptr_1;

char infochar;

int j = 0;

_commandlActive = FALSE;

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE 51

_command2Active = FALSE;
—commandl—rdeactivate();
—command2—rdeactivate();

ifstream inClientFile(filename,ios::in);

// Get the first line of the loaded
// problem in order to check what
// kind of problem it is.
while ((infochar = inClientFile.get()) # "\n’)
inputline_1[j++] = infochar;
inputline_1[j] = "\0’;
inputptr_l = inputline_1;

while (--j > 0)
inClientFile.putback(inputline_1[j]);

if (!strcmp(inputptr1,LINE_1))
// File has to be handled by the
// first algorithm.

// Activate first command button.
_commandl—activate();
_commandlActive = TRUE;
// Store the file name, so the file
// can be accessed every time the
// first command is called.
_commandl—setFileName(file ptr,filename);
// Print out a message, if necessary.
printf("File ");
printf(filename);
printf(" has been loaded.\n");
// DON'T FORGET TO RETURN TRUE,
// or the file will be as well
// adressed to the users algorithm.
return TRUE;
}
else if (!strcmp(inputptr_1,LINE_2))
// File has to be handled by the
// second algorithm.

// Activate second command button.
_command2—activate();
_command2Active = TRUE;
// Store the file name, so the file
// can be accessed every time the
// second command is called.
_command2—setFileName(file ptr,filename);
// Print out a message, if necessary.
printf("File ");
printf(filename);
printf(" has been loaded.\n");
// DON'T FORGET TO RETURN TRUE,
// or the file will be as well
// adressed to the users algorithm.
return TRUE;
}
else
// The file will be adressed by
// default to the users algorithm.
return FALSE;

/***

52 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

addToAlgorithmMenue

**/

void TestInterface::addToAlgorithmMenue(CmdList* List)

// The newly introduced commands have to be added as submenues to
// the menue ”Algorithms”. This is done here.

List—+add(-command1);
List—+add(-command2);

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
DeactivationCall
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

void TestInterface::DeactivationCall()

// When an algorithm is started, some buttons have to be deactivated.
// This prevents the client from starting some new action which might
// cause an undefined state and leads to a segmentation fault.

Treelnterface::DeactivationCall();

—commandl—rdeactivate();
—command2—rdeactivate();

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
FinishAlgorithm
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

void TestInterface::FinishAlgorithm(int boolean, int returnvalue)

// When an algorithm is finished, this function has to be called.
// It provides the user the opportunity to start the algorithm
// again by activating the corresponding button again.

Treelnterface::FinishAlgorithm(boolean,returnvalue);

if (.commandlActive)
_commandl—activate();

if (.command2Active)
_command2—activate();

5.2.3 Initialization of the derived class

Every class that is used by any program has to be initialized at some point. In this case,
since the program that use the class TestInterface is not accessible, this cannot be done
by manipulating the source code. There is another way to ensure that the TestInterface

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE 53

really is initialized. With the help of a so called application file, MotifApp guarantees that
the TestInterface is properly initialized.

This application file is a .cc file which has to be compiled together with the other files.
Besides its include files, it consists of one line where the TestInterface is initialized. Without
this file the GFFE cannot create an object of the type TestInterface.

5.2.3.1 TestApp.cc

/***

Filename : TreeApp.cc

Version s 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : Creates a new TestInterface Object.

Without implementing this file, the GFE cannot
initialize an object of the type TestInterface.

**/

#include "Version.h”
#include "GFEApp.h”
#tinclude "TestInterface.h”

TestInterface xtestInterface = new TestInterface();

The reader probably has noticed, that the TestApp.cc file includes a file called Version.h.
This file has to be created by the user himself and should look like the file presented in 5.2.3.2.
Version.his linked to the GFE (actually it is a GFE feature) and contains the following three
main information for the GFE:

e The version of the program. The string defining VERSION is written on to the frame of
the window of the program.

e The program file. The string defining PROGRAM tells the GFE, what file it should look
up in the directory app-defaults (see also 2.3).

e The file-prefix. The string defining PREFIX tells the GFE, what the prefix * of the files
in the directory *Resource is. For instance, the prefix of the Tree Interface is GRAPH
(compare also 2.4). The name of the directory is GRAPHResource and all files read by
the Tree Interface start with GRAPH.

5.2.3.2 Version.h

%///

//
// Filename : Version.h

//

54 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

// Version : 07.04.94

//

// Author : Diehl & Kupke
//

// Language : CH++

//

// Purpose

//

//

N A A A A e aada

#ifndef VERSION_H
#define VERSION_H

#tdefine VERSION "TestInterface Version 1.0"
#define PROGRAM "GFE"
#tdefine PREFIX "GRAPH"

#endif

In case that the user gets everything compiled, but cannot start the program, since it leaves
shortly after calling it with a message like:

NO RESOURCE-FILE CALLED GRAPHResource/GRAPHStandardResource.rsc

then probably the Version.h file was forgotten or not correct.

5.2.4 Adaption of the subroutines

This subsection describes how subroutines, that have been prepared as pictured in subsection
5.2.1, are adapted to a derived class of Tree Interface. 1t also shows how a class is implemented,
that manages a command button in the menu bar. Actually, both tasks are handled by the
class NoUndoCmd. cc, that has to be included in each subroutine.

For one of the subroutines, the file VBCCmd.cc can be used after appropriate changes (see
5.1.1). For every additional subroutine, a file similar to the VBCCmd.cc file has to be con-
structed and linked to the derivation of the Tree Interface.

In our example, the subroutine clientmain of the UserExample is added to the VBCCmd.cc.
For the two subroutines clientmaini and clientmain2 out of the files branchl.cc and
branch2.cc two new NoUndoCmd classes named Command1 and Command2 are derived. Since
the operating method is exactly the same as in the file VBCCmd.cc the reader is referred to
the subsectionb.1.1.

After the construction of the classes Commandl and Command2 the user should not forget to
include the header files in the file TestInterface.h

5.2.4.1 VBCCmd.cc

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Filename : VBCCOmd.cc
Version s 01.1995

Author : Sebastian Leipert

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE

Language ;o C4+

Purpose : This is the .cc file of the user algorithm
command button.

It has to be deriwated from NoUndoCmd.
It handles the function of the menue button
belonging to the user algorithm command.

**/

#tinclude "TreeInterface.h”
#include "VBCCmd.h”
#tinclude "branchIncludes.h”
#include <string.h>

/***
VBCCmd

**/

VBCCmd::VBCCmd(charx name,int active)

: NoUndoCmd(name,active)

// Constructor

——

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
setFileName
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

void VBCCmd::setFileName(FILEx* ptr,charx filename)
// The name of the file that has been read as input is set.

strcpy (FileName,filename);
_FilePtr = ptr;

R AR A A KA A KA A A HAA A A A KA K KA K KK K AR A A KA KA KA KA KA K HK H KA K
doit
SRR AR AR R AR AR A A KKK KK KK K R AR AR A FAF A H KA K

void VBCCmd::doit()

// The Procedure is called when the button in the menue bar,
// that belongs to this command, is pressed. It will then call
// a user defined function.

// Print a message if necessary.
printf("Execute Clients Program.\n");

// Make sure that old trees are

// removed.
theTreelnterface—Tree()—clean tree();

// Make appropriate deactivation

// calls.

theTreelnterface—DeactivationCall();

55

56 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

// Call the clients function.
charx arg[2];
arg[1] = _FileName;
clientmain(1,arg);

}

5.2.4.2 Commandl.h

/**

Filename > Commandl.h

Version s 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : This is the header of the first command button.

It has to be deriwated from NoUndoCmd.
It handles the function of the menue button
belonging to the first command.

***/

#ifndef COMMANDI_H
#define COMMANDI_H

#include "NoUndoCmd .h”
class Command1 : public NoUndoCmd{
public:

Commandl(charx, int);

void setFileName(FILEx* ptr,charx filename);
protected:

void doit();
private:

char FileName[INFOSIZE];
FILE* _FilePtr;

1

#endif

5.2.4.3 Commandl.cc

Ak ks ks st ok sl ok R s ok sl s R ok sl s R ok Sk sk o sl sk sk sk ok sk sk Rk sk Kok ok o
Filename : Commandl.cc

Version : 01.1995

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE

Author : Sebastian Leipert
Language ;o C4+
Purpose : See .h File.

**/

#tinclude "TestInterface.h”
#include "Commandl.h”
#tinclude "branchIncludes.h”
#include <string.h>

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Commandl
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

Commandl::Commandl(charx name,int active)
: NoUndoCmd(name,active)

// Constructor

——

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
setFileName
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

void Commandl::setFileName(FILE* ptr,charx filename)
// The name of the file that has been read as input is set.

strcpy (FileName,filename);
_FilePtr = ptr;

R AR A A KA A KA A A HAA A A A KA K KA K KK K AR A A KA KA KA KA KA K HK H KA K
doit
SRR AR AR R AR AR A A KKK KK KK K R AR AR A FAF A H KA K

void Command1::doit()

// The Procedure is called when the button in the menue bar,
// that belongs to this command, is pressed. It will then call
// a user defined function.

// Print a message if necessary.
printf("Execute Clients Program.\n");

// Make sure that old trees are

// removed.
theTreelnterface—Tree()—clean tree();

// Make appropriate deactivation

57

58 CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

// calls.

theTestInterface—DeactivationCall();

// Call the clients function.
charx arg[2];

arg[1] = _FileName;
clientmainl(1,arg);

5.2.4.4 Command2.h

/***

Filename > Command2.h

Version s 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : This is the header of the first command button.

It has to be deriwated from NoUndoCmd.
It handles the function of the menue button
belonging to the first command.

**/

#ifndef COMMAND2_H
#define COMMAND2_H

#include "NoUndoCmd .h”
class Command2 : public NoUndoCmd{
public:

Command2(charx, int);

void setFileName(FILEx* ptr,charx filename);
protected:

void doit();
private:

char FileName[INFOSIZE];
FILE* _FilePtr;

#endif

5.2.4.5 Command2.cc

/***

Filename : Command2.cc

5.2. ADAPTING TWO OR MORE SUBROUTINES TO THE TREE INTERFACE

Version s 01.1995

Author : Sebastian Leipert
Language ;o C4+

Purpose : See .h File.

**/

#tinclude "TestInterface.h”
#include "Command?2.h”
#tinclude "branchIncludes.h”
#include <string.h>

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Command2
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

Command2::Command2(charx name,int active)
: NoUndoCmd(name,active)

// Constructor

——

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
setFileName
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

void Command2::setFileName(FILE* ptr,charx filename)
// The name of the file that has been read as input is set.

strcpy (FileName,filename);
_FilePtr = ptr;

R AR A A KA A KA A A HAA A A A KA K KA K KK K AR A A KA KA KA KA KA K HK H KA K
doit
SRR AR AR R AR AR A A KKK KK KK K R AR AR A FAF A H KA K

void Command2::doit()

// The Procedure is called when the button in the menue bar,

// that belongs to this command, is pressed. It will then call
// a user defined function.

// Print a message if necessary.
printf("Execute Clients Program.\n");

// Make sure that old trees are

// removed.
theTreelnterface—Tree()—clean tree();

// Make appropriate deactivation

// calls.

59

60

CHAPTER 5. ADAPTING ALGORITHMS TO THE TREE INTERFACE

theTestInterface—DeactivationCall();

// Call the clients function.
charx arg[2];
arg[1] = _FileName;
clientmain2(1,arg);

Chapter 6

Command Reference

Commands in the menu bar can be activated by either clicking them with the mouse, or
pressing the Meta_l key and the key of the underlined letter of the commands name at the
same time. This opens a submenu and all of the commands in the submenus can be either
activated by the use of the mouse or the Meta_l key. Some of the commands, as eg. the
Load... command can be activated by a possible key combination of the Ctrl key and some
other letter key, such as Ctri+L for the Load... command, without activating the menu bar
button first. If this possibility exists, the combination is shown behind the command. If the
user wishes so, he is able to change this combination. For further information the reader
therefore is referred to 2.3.4.

We now give a brief description of the commands available in the Tree Interface. All commands
that have 7...” in their name generate a pop up menu when activated. A pop up menu is
divided into a control area and an action area. The control area holds informations, scalers,
buttons etc. for using the different features of the Graph Interface or the Tree Interface. The
action area handles buttons as Cancel, Apply, OK and Help. If necessary, we give remarks
on the pop up menu as well.

6.1 File

All commands shown here are derived from the G'FF. They handle input and output and the
QQuit command.

6.1.1 Load...

The Load command of course handles the input. What kind of files will be accepted by the
Tree Interface is discussed in chapter 3.

6.1.2 Save...

The Save command is a feature of the GFF which is of no use for the Tree Interface. Therefore
the button is in a deactivated state and cannot be used.

61

62 CHAPTER 6. COMMAND REFERENCE

6.1.3 Print..

The Print command generates a postscript file of the tree drawn in the draw area. The pop
up menu gives the user the opportunity to choose the size of the output and a few various
options.

6.1.4 Quit

The Quit command activates a small pop up menu, that checks for the possible wrong use
of the button. Quitting means that all action that takes place, will be interrupted at that
moment.

6.2 Edit

The command shown here is derived from the GFF.

6.2.1 Undo

One feature of the OSF/Motif library of Young [You92] is the distinction between commands
that can be undone and commands that do not have this feature. The Undo command exactly
does what it says. The Tree Interface only has one such command: the zoom command. All
other commands do not have this feature.

Observe that the Undo command keeps only the last applied command ”in mind”. So it can
only be used for undoing this last command. If this command was one not having the undo
feature, the Undo command will be deactivated.

6.3 View

All commands shown here are derived from the G'FF. They handle the general output on the
screen as colour and size of the nodes.

6.3.1 Area Zoom

The Area Zoom command enables the user to choose an area of the size of a rectangle, that
will be entirely drawn in over the complete draw area (see 1.3). To do so, the user activates
the command via mouse button click or pressing the key combination Ctri+7Z.

The user then moves the mouse cursor into the draw area. Here the area, that has to be
zoomed, is marked by pressing the left mouse button and keeping it pressed until the area is
entirely surrounded by a rectangle. This rectangle is only drawn, while the mouse button is
pressed. After releasing the mouse button, the area within the rectangle will be drawn in the
size of the draw area.

To indicate that the Area Zoom command is active, the shape of the mouse cursor differs from
the normal arrow shape as soon as the cursor is moved into the draw area. After pressing
and releasing the left mouse button, the cursor will get its normal shape again.

6.3. VIEW 63

The Area Zoom command is a command with an undo function. After finishing the zooming,
the Undo command within the Fdit menu is active. This enables the user to undo the last
zooming. Observe, that if two zooming commands have been applied, it is not possible to
undo both commands. In that case the following command is needed.

After zooming a part of the drawing, it is possible to drag the visible notch of the drawing
over the entire area with the help of the middle mouse button (see also 6.8.2).

6.3.2 Fit To Window

The Fit To Window command can be applied after applying the Area Zoom command twice
or more. It enables the user to get the drawing of the tree in the original size.

6.3.3 Repaint

The Repaint command paints the entire draw area again. This is of special purpose, when
a lot of elements are deleted or drawn again while other elements are kept on the screen
without being redrawn. Rounding problems then sometimes produce an offending screen
output. Since the internal storage of the coordinates within the GFFE is much more exact, it
helps to use the Repaint command for completely redrawing the entire picture.

Nevertheless, this will be not much of a problem for the Tree Interface, since changing the
tree will always cause a new computation of the coordinates of the nodes of the tree and
therefore always results in drawing the complete tree again.

Observe that a repaint only repaints what is actually shown within the draw area. So if a
repaint is demanded after the application of the Area Zoom command, only the zoomed area
will be repainted.

6.3.4 Color/Context-Chooser...

The Color/Context-Chooser command changes the colour of the background. In the original
design of the GFF, this command is supposed to handle all different kinds of contexts, such as
background, foreground, different types of rectangles, circles and all kinds of various geometric
objects, that are needed to realize the special purpose of a visual program. But since the Tree
Interface just draws trees consisting of nodes and edges and a simple background, the user
only gets the opportunity to change the colour of the background with this command.

Furthermore changing the colour of the nodes and edges is not provided by this command,
since the Graph Interface supports this already by the commands Nodes... and Fdges. ...

When the Color/Context-Chooser is called a pop up menu will appear, where a context first
has to be selected, before it can be changed. This results in the appearance of a second pop
up menu, where the user actually can choose the colour.

Of course there is the possibility to change the colour of the background in general, without
calling every time the Color/Context-Chooser. For further information the reader is referred
to 2.3.1.

64 CHAPTER 6. COMMAND REFERENCE

6.3.5 Nodes...

The Nodes command offers the user the opportunity to apply the following changes to a
selected node categorie:

e colour,

e radius,

e nodes drawn as circles,

e nodes drawn as squares,

e nodes drawn as filled nodes,
e nodes drawn as lined nodes:

— with solid line,

— with dashed line,

— with double dashed line,
— with different line width,

— with different join,
e nodes drawn with their numbers displayed,

— with different fonts,

— with different colours.

To achieve this, the user first chooses a node categorie and then presses the button Change.
This causes a pop up menu to appear, which covers most of the above mentioned features. For
changing the colour and the line, the user needs to press the button Color and for changing
the font of numbers, the button Font has to be pressed. In both cases an appropriate pop up
menu will appear to satisfy the needs of the user.

The user should be aware of the fact, that this feature of the Graph Interface just changes
one node categorie at the time. This may cause some difficulties when a lot of different
categories are used, eg. for representing a lot of different colours. So the reader is referred to
two different features of this tool:

1. The appearance of the different nodes can be modified with the help of the
GRAPHStandardResource.rsc. So the user just adapts the look of the node categories
once to his needs instead of changing them every time, when he calls the program (see
2.4.3.11).

2. The most needed feature is changing the radius of the nodes, especially when the trees
start to get larger. Therefore the Scaler (see 6.4.2) should be called, which changes the
radius for all node categories.

6.4. APPLICATIONS 65

6.3.6 Edges...

The FEdges command offers the user the opportunity to apply the following changes to a
selected edge categorie:

e colour

solid line,

dashed line,

double dashed line,
e line width,

e join,

e cap.

To achieve this, the user first chooses an edge categorie and presses the button Change. A
pop up menu then will appear, where the necessary changes can be activated.

6.4 Applications

All commands shown here are a feature of the Tree Interface. They handle the general
applications for the tools of the Tree Interface.

6.4.1 Visualize Algorithm

The command Visualize Algorithm starts a simple run through the tree, assuming that the
nodes were added to the tree according to the numbers they have. It first paints the complete
tree in Standard Shade (see 1.3), then starts painting all nodes one by one in Standard Colour.
By doing this, the next node which will be painted in Standard Colour, is drawn in Standard
Highlight.

6.4.2 Scaler...

The command Scaler satisfies four different needs when drawing a tree nicely. There are
three main separation values between nodes respected, when computing the coordinates of
the nodes (see also 1.2): the sibling separation value, the level separation value and the
subtree separation value. All three have a default value of 4 except the level separation value
with a default value of 2, in order to achieve a nice and geometrically balanced drawing. By
changing the corresponding entries of the GRAPHStandardResource.rsc file, the user may as
well have chosen other separation values. Nevertheless, since large trees tend to be very wide,
up to hundreds of nodes in one level by just a few levels in total, the drawings of such trees
sometimes do not satisfy the users impression of an aesthetical drawing. So the Scaler gives
the user a tool to correct the first choice of separation values.

66 CHAPTER 6. COMMAND REFERENCE

In order to extend the tree in vertical direction, the user can choose a larger level separation
value via the Scaler. If the spacing between siblings or subtrees has to be changed, the user
can change sibling and subtree separation values. Furthermore it is possible to enlarge the
radius of all nodes. Observe that this command changes the radius of all node categories at
once, while the command described in 6.3.5 only changes one node categorie at the time.

The largest level separation value is bounded by the width of the tree divided by the number
of levels. So if large separation values for siblings and subtrees are used, the maximum value,
that can be chosen for the level separation, is larger as well. It is not possible to extend the
tree further into vertical direction, because this would not make sense in terms of nice tree
drawings. Furthermore, the maximal value for sibling and subtree separation is restricted by
32. The reason for setting this arbitrary bound is motivated by the fact that a lot of different
values do not provide a lot of different drawings. To be more precisely: the layout of a tree
where all separation values are 4 and the radius is set to 1 does not differ from the layout of
the same tree, where all separation values are set to 8 and the radius of the nodes is 1.5.

The maximal value of the scaler for radius is always bounded by

. { <sepvalue>+ 2
min

5 | <sepvalue> is separation Value}

This is done for inhibiting drawings where the nodes intersect each other (although this can
be achieved by changing the radius of a node categorie via the menu Nodes...). Any time
the user changes separation values, the maximal values for the radius scaler is adapted if
necessary, even when the pop up menu was not closed. If the current value of the radius then
exceeds the new maximal value it will be reset to the maximal value.

6.4.3 Browser Mode

If the user activates the Browser Mode, he can browse through the tree by using the mouse
and keeping its left button pressed. Anytime, the user then presses the left mouse button and
moves the mouse, the node which is next to the cursor, is highlighted and its main information
is shown in left display of the display area.

To indicate that the Browser Mode is active, the shape of the mouse cursor differs from the
normal arrow shape, as soon as the cursor is moved into the draw area. The mouse cursor
then has changed to crosshair shape.

The Browser Mode might be of special need if the trees are rather large and the user searches
for a node with some special information. Using the Node Information Window then is rather
time consuming and very unhandy.

6.4.4 Normal Mode

The Normal Mode command switches the Browser Mode of and changes the cursor in the draw
area back to normal arrow shape. Using the left mouse button then has no effect anymore.

6.5. ALGORITHM 67

6.5 Algorithm

The command shown here is a feature of the Tree Interface. It handles a user defined appli-
cation. Observe that in a derived application of the Tree Interface, this menu contains more
buttons handling several different user defined applications.

6.5.1 User Algorithm
The command User Algorithm starts any users algorithm, which was adapted to the Tree

Interface. For adapting an algorithm to this tool, the reader is referred to chapter 5.

6.6 Emulation

All commands shown here are a feature of the Tree Interface. They handle the afterward
emulation of an algorithmic growth of a tree.

6.6.1 Start Emulation

This command starts the emulation. It will only be active, if a corresponding file has been
loaded first (see 3.4).

6.6.2 Setup

The command Setup calls a pop up menu, which offers the user the following informations to
the emulation process:

o It shows the complete time that the emulation needs.

e It shows the time which still has to be processed.
Furthermore it offers the following applications to the emulation process:

e to decide how much time the emulation process should need,
e single step processing,

e to show the complete tree during the process, where the nodes, that have not been
processed yet, are drawn in Standard Shade.

All applications can be used either before or during the emulation process. If the user decides

to use one of the features during the process, we strongly suggest to interrupt the process
first.

6.6.3 Interrupt

This command interrupts an emulation. It will only be active, if the process was started first.

68 CHAPTER 6. COMMAND REFERENCE

6.6.4 Continue

This command continues an emulation after it was interrupted.

6.6.5 Stop Emulation

This command stops an emulation process.

6.7 Online

The command shown here is a feature of the Tree Interface. 1t handles reading input from
standard input.

6.7.1 Standard In

This command actually enables the Tree Interface to read from standard input. Before the
button Standard In was not pressed, the Tree Interface is not able to read from standard
input. So the convenient strategy when piping program output into the Tree Interface is as
follows:

1. Call a program <userprogram> and pipe its output to the Tree Interface.

2. As soon as the window of the Tree Interface appears, press the button Standard In.
Since all output of <userprogram> was buffered, the Tree Interface now starts reading
the input from standard input.

The user has to make sure that the output of <userprogram> fits the formal file format of

the Tree Interface (see in any case section 3.6).

6.8 Mouse-button commands

This section gives an overview of the commands that are bound to mouse buttons. We expect
a mouse with three buttons.

6.8.1 Left Button
The left button has been overloaded by two features,
e the area zoom command (see 6.3.1) and

e the browser mode (see 6.4.3).

Since both features use the same mouse button, none of them is available in the first hand.
They have to be activated before they can be used. For the explicit description of the use we
refer to the corresponding subsections.

6.8. MOUSE-BUTTON COMMANDS 69

6.8.2 Middle Button

The middle button has been overloaded with a dragging feature. After using the area zoom
command (see 6.3.1) the user is able to drag the small visible notch over the entire drawing.
To do so, place the cursor into the draw area, press the middle mouse button and keep the
button pressed while moving the mouse. The result is the same as if the picture was dragged
into the direction where the cursor was moved.

6.8.3 Right Button

The right mouse button can be used to open up a Node Information Window. If the cursor is
placed into the draw area and the right mouse button is pressed, such an information window
will apear, displaying the information of the node next to the cursor (see also 4.1).

Chapter 7

Appendix

The appendix includes a selection of files of the implementation of the Tree Interface.

7.1 def.glb

This file contains all defines, that are used anywhere in the implementation of the
Interface.

/***

Filename : def.glb

Version ;o 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose : Global file containing all definitions,

that are used in the Treelnterface and
all included classes.

**/

#ifndef DEF_GLB
#tdefine DEF_GLB

// Boolean definitons.
#define TRUE 1
#define FALSE 0

// Array sizes used for
// node informations.
#define SHORTDIM 16
#define INFOSIZE 1024
#define SHORTSIZE 128

// Temporary array size used for
// storing trees of unknown size.

#define ARRAYSIZE 100

// Number of Dialogwindows.
#define DIALOGNUM 10

// Number of node categories.

70

Tree

7.2. TREEINTERFACE.H 71

#define COLOURCOUNT 20

// Default node categories.
#define STANDARDCOLOUR 1
#define STANDARDHIGHLIGHT 2
#define STANDARDSHADE 3

// Default edge categorie.
#tdefine STANDARDEDGECOLOUR 1

// Mazimal separation value.

#define MAXSEPARATION 32

// Lines of the headers of the
// files in Treelnterface format.

#tdefine FIRSTLINE "#TYPE: COMPLETE TREE"

#tdefine SECONDLINE_1 "#TIME: SET"

#tdefine THIRDLINE_1 "#BOUNDS: SET"

#tdefine FOURTHLINE_1 "#INFORMATION: STANDARD"

#tdefine FOURTHLINE_2 "#INFORMATION: EXCEPTION"

#tdefine FIFTHLINE_1 "#NODE NUMBER: NONE"

#tdefine FIFTHLINE_2 "#NODE NUMBER: AVAILABLE"

#endif

7.2 Treelnterface.h

This section contains the header of the main interface of the Tree Interface. Here all threads
are linked together and controlled. This interface is also important for users, who want to
derive the Tree Interface. In order to do so, they have to construct a derived class from the
class TreeInterface. Furthermore the class TreeInterface handels all customer function
calls that can be used in subroutines included to the Tree Interface by the user. Since the
implementatory file is way to large, we decided to suppress its depictment in this manual.

/***

Filename : Treelnterface.h

Version s 01.1995

Author : Sebastian Leipert
Language ;o C4+

Purpose : Interface for drawing trees.

A drived class from Graphlnterface.

**/

#ifndef TREEINTERFACE_H
#define TREEINTERFACE_H

#include "GFE.inc”

#include "GraphInterface.h”
#include "queue.h”

#include "tree.h”

#include "GFEWindow.h”
#include "TreeDiagArray.h”
#include "VisualizeAlgoCmd.h"
#include "TreeScalerCmd.h”
#include "TreeSearcherCmd.h"”

72

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"SwitchToSearcherCmd.h”
"HormalModeCmd.h”
"EmulationCmd.h”
"EmlSetupCmd.h”
"EmlInterruptCmd.h”
"EmlStopCmd.h"”
”"EmlContinueCmd.h”
”StandardInputCmd.h”
"VBCCmd .h”
<X11/cursorfont.h>

class Treelnterface : public GraphlInterface {

public:

Treelnterface();
~Treelnterface();

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Virtual Functions from the GFE-Clientinterface.
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

// Virtual functions of the GFE that have been overloaded by
// the Treelnterface.

virtual int graphicInit();

// Initializes all graphical fonts.

virtual int menulnit(MenuBarsx);

// Initializes the menubar.

virtual int load(FILEx*,charx);

// Manages the load command.

/***

Virtual Functions from Treelnterface.

**/

// Functions introduced for an easy handling of a derivation

// of
// at

the Treelnterface. They can be overloaded by the customer
will. No special purpose in the Treelnterface itself.

virtual int checkFile(FILEx file_ptr,charx filename){ return FALSE; };

// Checks a file for customer purposes.

virtual void addToAlgorithmMenue(CmdListx* List){};

// Adds menue buttons into the
// menue "Algorithms”.

/***

Special Purpose Virtual Functions from Treelnterface.

**/

// Functions can be overloaded by the customer in a derivation

// of

the Treelnterface. Functions are needed in the Treelnterface.

virtual void DeactivationCall(){ _visualize Algo—deactivate();

_branchAndCutCmd—deactivate(); };

// Deactivate command buttons

CHAPTER 7. APPENDIX

7.2. TREEINTERFACE.H

// in the menue bar.
virtual void ActivationCall(){ _treeScaler—activate();
_switchToSearcherCmd—activate(); };
// Activate command buttons
// in the menue bar.

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Customer function calls from Treelnterface.
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

// Functions introduced for adapting customer subroutines to

// the Treelnterface.

int SetNodelnfo(int node,charx* information);

// Sets the information of a node.
int AddNodelInfo(int node,charx information);

// Adds information to already

// existing information of a node.
void PaintNode(int node,int colour);

// Sets a colour of a node
void NewNode(int father, int newNode,int colour);

// Introduces a new node. Includes

// repainting the tree.
void NewNode(int father, int newNode,int colour,int draw);

// Introduces a new node. Repainting

// the tree is dependent on the

// boolean wvalue of draw.
void UpperBound(double bound);

// Prints out the upper bound.
void LowerBound(double bound);

// Prints out the lower bound.
void RepaintTree();

// Repaints a tree.

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Virtual Customer function calls from Treelnterface.
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

// Function introduced for adapting customer subroutines to
// the Treelnterface. Can be overloaded by the client in a
// derivation of the Treelnterface.

virtual void FinishAlgorithm(int boolean, int returnvalue);
// After finishing a customers
// subroutine, this function
// activates command buttons
// and starts valid clean ups.

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Return Values.
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

// Public functions returning values.

double ActualRadius(){ return _actualRadius; };
// Returns the actual radius of
// the nodes.

treex Tree(){ return &_T; };
// Returns a pointer to the tree.

73

74 CHAPTER 7. APPENDIX

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Public commands for the Emulation Process.
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

// Public commands used only for the emulation process.
// They only supply pointers to the different Cmd classes,
// which supports the Cmd classes to interact each other.

EmulationCmdx emulationCmd(){ return _emulationCmd; };

// Returns the pointer to the start

// command of the emulation process.
EmlInterruptCmdx* emlInterruptCmd(){ return _emlInterruptCmd; };

// Returns the pointer to the

// interrupt command.
EmlStopCmdx* emlStopCmd(){ return _emlStopCmd; };

// Returns the pointer to the

// stop command.
EmlContinueCmdx emlContinueCmd(){ return _emlContinueCmd; };

// Returns the pointer to the

// continue command.
EmlSetupCmdx* emlSetupCmd(){ return _emlSetupCmd; };

// Returns the pointer to the

// setup command.

Aok Rk s ks sk R ok R o ok R R ok R R ok SR s ok S s ok s s Rk sk K sk
Further public commands of Treelnterface
stk sk s sk s ok sk st R sk Rl sk el ok Rl sk sk R sk R ok Rl ok kel [/

// Public commands used in different classes that are included

// by the Treelnterface.

void NewActualRadius(double rad){ _actualRadius = rad; };
// Sets a new radius for the nodes

void MaxCoordValues(double *x,double xy){ (¥x) = _T.get_max_X_coord();

(xy) = _T.get_-max_Y _coord(); };

// Gets the mawimal coordinates
// of the tree. Used for estimating
// the size of coordinate systems

void decreaseOpenWin(int number){ _treedialog—decreaseOpenWin(number); };
// Decreases the number of open
// Node Information Window.

private:
TreeDiagArray* _treedialog;
tree _T;

int nodenb;
int _branchAndCutActive;

Cursor _cursor;

VisualizeAlgoCmdx* _visualizeAlgo;
TreeScalerCmdx* _treeScaler;
SwitchToSearcherCmdx _switchToSearcherCmd;
TreeSearcherCmdx _treeSearcherCmd;

NormalModeCmds* _normalModeCmd;

7.3. TREE.x 75

VBCCmdx* _branchAndCutCmd;

EmulationCmdx* _emulationCmd;
EmlSetupCmdx* _emlSetupCmd;
EmlInterruptCmdx _emlInterruptCmd;
EmlStopCmdx _emlStopCmd;
EmlContinueCmdx* _emlContinueCmd;

StandardInputCmdx* _standardInputCmd;

double _actualRadius;
double _upperBound;
double _lowerBound;

void Mybutton1lMotion(XEvent xevent);
void MybuttonlRelease(XEvent xevent);
void button3Press(Point<Coord Type>);
void SpaceBarPressEvent(XEvent xevent);

void readCompleteTree(charx);
void NewTreePaint(int);

static void buttonlMotionEventHandler(Widget widget,
XtPointer clientData,
XEvent xevent,
Boolean xcontinueToDiapatch);

static void buttonReleaseEventHandler(Widget widget,
XtPointer clientData,
XEvent xevent,
Boolean xcontinueToDiapatch);

static void keyPressSpaceBarEventHandler(Widget widget,
XtPointer clientData,

XEvent xevent,
Boolean xcontinueToDiapatch);

1

extern Treelnterfacex theTreelnterface;

#endif

7.3 tree.x

This section contains a class called tree, beeing a derived class from a class called basic_tree.
While the class basic_tree mainly supports basic interrogations, the class tree includes
the positioning algorithm of Walker [Wal90]. It therefore can be understod in terms of a
datatstructure including a large algorithm. Since this algorithm is the heart of the Tree
Interface, we decided to include booth, the header and the implementatory file into the
appendix.

7.3.1 tree.h

/**

76 CHAPTER 7. APPENDIX

Filename s tree.h

Version s 01.1995

Author : Sebastian Leipert

Language ;o C4+

Purpose ;A derived class from basic_tree. Computes

and manages the coordinates of all nodes

of a tree for a nice layout. Uses an

algorithm by John Q. Walker published in:
Software-Practice and Ezperience, vol. 20(7),
685-705 (July 1990) under the titel:

A Node-positioning Algorithm for General Trees.

**/

#ifndef TREE_H
#tdefine TREE_H

#include <iostream.h>
#include <fstream.h>
#tinclude "basic_tree.h”
#include "queue.h”

class tree : public basic_tree {
friend char xoperator>>(charx, tree&);
friend nodex allocate_tree(charx ,tree &,int &);
friend int enter_edge(ifstream &,tree &,int);
friend int set_node_info(int,charx,tree &);
friend int add node_info(int,charx,tree &);
public:

tree();
~tree();

void positiontree(doublex, doublex);
void newPositionLevel(int, doublex, doublex);

void enternew_node(int, int, int);
void clean_tree();

int get_level_count() const;

int get_actual level separation() const;
double get_ max_X_coord() const;
double get_ max_Y _coord() const;

static int get_sib_separation();
static int get_level separation();
static int get_subtree separation();

void set_separation_values(int sibling,int level,int subtree);
private:

double root_X_coord;
double root_Y _coord;

int level_count;
int actuallevel sep;
double max_X _coord;

7.3. TREE.x

double max_Y _coord;

static int sibling_separation;
static int level separation;
static int subtree_separation;

void compute_coord(node x,doublex,doublex,doublex);
void firstwalk(node &,int,nodex[]);

void secondwalk(node *, int, double,doublex,doublex,doublex);

void apportion(node &,int);
nodex* get_left_most(node *,int,int);

void get_.max_XYvalue(nodex, doublex, doublex, doublex);
void deapth first_search(node =,int);
void del_deapth first(node x);

int mean nodesize(node *,node *);
void introduce_child(node *,node *);

1

#endif

7.3.2 tree.cc

/***

Filename s tree.cc

Version s 01.1995

Author : Sebastian Leipert
Language ;o C4+

Purpose : See .h File.

**/

#tinclude "tree.h”
#include <iostream.h>
#include <string.h>

/**

STATIC

This part contains all static files
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

int tree::sibling separation = 4;
int tree::level separation = 2;
int tree::subtree separation = 4;

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
get_sib_separation

77

78 CHAPTER 7. APPENDIX

***/

int tree::get_sib_separation()

{
¥

return sibling separation;

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
get_level_separation
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

int tree::getlevel separation()

{
¥

return level separation;

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
get_subtree_separation
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

int tree::get_subtree_separation()

{
¥

return subtree_separation;

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
set_separation_values
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::set_separation_values(int sibling,int level,int subtree)
{
sibling_separation = sibling;
level _separation = level+42; // +2 for keeping distance
actual level sep = level+2;
subtree_separation = subtree;

/**

PUBLIC

This part contains all public files
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
constructor
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

tree::tree()

7.3. TREE.x

: basic_tree()

root_X_coord = 0.0;
root_Y _coord = 0.0;

level_count = 0;

actual level sep = level separation;
max_X_coord = 0.0;

max_Y _coord = 0.0;

/**

destructor

***/

tree::~tree()

{

if (root # NULL)
del_deapth first(root);

/**

positiontree

***/

void tree::positiontree(double xx_max, double xy_max)

// Calls the procedure compute_coord for computing the coordinates
// of the tree nodes. Returns the values of the mazimum X and Y
// coordinates in order to adjust a coordinate system of proper size
// to a drawing of the tree.

(*xmax) = 0.0; // mazimum x coordinate
(*ymax) = 0.0; // mazimum y coordinate
double x_min = 0.0; // minimum =z coordinate

double help = 0.0;
compute_coord(root,x max,y max,&x-min);

// The smallest © coordinate might be negative.
// If this is the case, the tree is moved into
// positive direction of the w-azis until no

// node has a negative z-coordinate. This

// is necessary, since the coordinate system,
// in which the tree is drawn, is only positive.
// Observe that the value of the mazimum

// w-coordinate has to be adjusted as well.

if (xomin < 0)

for (int i = 1; 1 < nodemb; i++)

{
help = node_array[i]—+get Xcoord();
node_array[i]—+set_Xcoord(help - x_min);

}

(*xmax) -= x_min;

79

80 CHAPTER 7. APPENDIX

}

max_X_coord = (*x_max);
max_Y coord = (*y_max);

}

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
newPositionLevel
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::newPositionLevel(int new_scaler,doublex x_max, double *y_max)

// This function is specially introduced to fit the needs of the

// Treelnterace. In case that a user of the Treelnterface cooses

// a new level separation value via a popup menue called ”Scaler”,
// it is not necessary to compute the coordinates completely new,
// since only the y-coordinates have to be adapted. This is done

// here in the function newPositionLevel.

// Furthermore, since changing the level speration value changes the
// size of the drawing, this function returns the mawximal coordinate
// values so the coordinate system can be addapted to the new

// drawing of the tree.

double help = 0.0;

(*ymax) = 0.0;
(*x_max) = max_X_coord;

// For all nodes, compute the
// y-coordinate again.
for (int i = 1; 1 < nodemb; i++)
{
help = node_array[i]—+get_Ycoord();
help = (help / actuallevel sep) * new_scaler;
node_array[i]—set_Ycoord(help);
if (help > (*ymax))
(*ymax) = help;

// Memorize the new values.
actual level sep = new _scaler;
level _separation = new _scaler;
max_Y coord = (*y_max);

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
enter_new_node
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::enter new_node(int father,int new node,int colour)
// This function is specially introduced to fit the needs of the
// Treelnterace. The Treelnterface offers the option to add nodes

// to already ewisting trees. So this public function provides
// the Treelnterface a tool, for adding nodes.

int newroot = FALSE;

7.3.

TREE .

// The tree is empty. Construct space

// to hold up to a hundred nodes. This
// is done since the computation of the
// coordinates is made fast with the help
// of such an array. Furthermore, we do
// not want every time that a node is

// added to the tree, rebuild that array.

if (root == NULL)

array size = 100;
node_array = new (nodex)[array size+1];
edge_array = new (edge)[array.sizel;

for (int i = 1;1 < array.size; i++)
node_array[i] = new node(i);
root = node_array[1];

newroot = TRUE;

// The tree is not empty, but the array
// is full. Add space for 100 more
// nodes to the array.

else if (root # NULL && nodenb == array_size)

{

}

nodexx newnode_array = new (nodex)[array size+101];
edgex new_edge_array = new (edge)[array size+100];

for (int i = 1;1 < array.size; i++)

{
¥

for (int k = 1; k < (array.size-1); k++)

{

}
// Changed after using gec 2.7.0
for (int j = array_size+1;] < (arraysize+100); j++)
new_node_array[j] = new node(j);
delete[] node_array;
delete[] edge_array;
node_array = new_node_array;
edge_array = new_edge_array;

new_node_array[i] = node_arrayl[i[;

new_edge_array[k] = edge._array[k];

array size = array.size + 100;

if (father # 0)

{

// The node is not the root.

if (father < new_node)
// Include node into the structure

// of the tree.

node_array[new node]—set_parent(node_array[father]);
introduce_child(node_array[father],node_array[newnode]);
edge_array[nodenb].set first(father);
edge_array[nodemnb].set_second(newnode);

nodenb++;

edge_nb++;

}

else if (newroot)

nodenb++;

// Set the nodes colour.

82 CHAPTER 7.

node_array[new node]—set_colour(colour);
node_array[new node]—set_underlying colour(colour);

}

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
clean_tree
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::clean tree()

// Empties all information stored by the class tree, if a new tree

// has to be saved.

nodenb = 0;
edgenb = 0;
root = NULL;

root_X_coord = 0.0;
root_Y _coord = 0.0;

level_count = 0;
actual level sep = level separation;
max_X_coord = 0.0;

max_Y _coord = 0.0;

delete[] edge_array;
delete[] node_array;

edge_array = NULL;
node_array = NULL;

R AR A A KA KA A A KA KA FA K KA KA A KA KA HK H A KA K FAFAHAH KA A KA K HK HKH KA KK
get_level_count

KKK KKK KA A A A KA FA KKK KA KA A H H KA A A FAFA KA KK HAH KA K HH H Ak)

int tree::getlevel count() const

// Returns the number of levels in the tree.

return level_count;

R AR A A KA KA A A KA KA FA K KA KA A KA KA HK H A KA K FAFAHAH KA A KA K HK HKH KA KK
get_actual_level_separation

KKK KKK KA A A A KA FA KKK KA KA A H H KA A A FAFA KA KK HAH KA K HH H Ak)

int tree::get_actual level separation() const

// Returns the actual level_separation.

return actual level sep;

APPENDIX

7.3. TREE.x

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
get_maz_X_coord
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

double tree::get_ max_X_coord() const
// Returns the mawzimal z-coordinate of the tree.

if (root # NULL)
return max_X_coord;

else

{
cout &€ "tree::getmax X coord: empty tree" endl;
return 0.0;

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
get_maz_Y_coord
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

double tree::get_max_Y _coord() const
// Returns the mawzimal z-coordinate of the tree.

if (root # NULL)
return max._Y _coord;

else

{
cout &€ "tree::getmax Y coord: empty tree" endl;
return 0.0;

/**

PRIVAT

This part contains all privat files
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
compute_coord
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::compute_coord(node *check node,doublex x_max,

83

84 CHAPTER 7. APPENDIX

doublexy_max,doublexx_min)
// Computes the X and Y coordinates of all nodes in the tree.
if (checknode # NULL)

level_count = 0;
// Scan the complete tree in deapth-first
// manner in order to determine the number
// of levels of the tree and setting
// previous y-coordinates.
deapth first_search(check node,0);

node *xlevel array; // Array of pointers to nodes.
// An entry at position ¢ in level_array
// contains a pointer to the last visited
// node at this level (the so-called
// previous node). If another node
// is checked at level i, than level_arrayfi]
// points to the left neighbor of the node.
level_array = new (nodex)[level count+1];

for (int i = 0;1 < level_count; levelarray[i++] = NULL);

// Do a post-order walk in order to assign to
// every node a preliminary w-coordinate,
// held in the field prelim_z of every node.
// In adition, internal nodes are given
// modifiers, which will be used to move
// their offsprings to the right.

firstwalk (*check node,0,level array);

root_X_coord = 0; // Set the z-coordinate of the root by default 0.
root_Y _coord = 0; // Set the y-coordinate of the root by default 0.

// Do a pre-order walk in order to give each

// node its final z-coordinate by summing

// its preliminary z-coordinates and the

// modifiers of all nodes ancestors.
secondwalk(check node,0,0,x max,y max,x_min);

delete[] level_array;

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
firstwalk

***/

void tree::firstwalk(node &check node,int level,nodex level array(])

// Does a post-order walk in order to assign to every node a

// preliminary z-coordinate, held in the field prelim_x of every node.
// In adition, internal nodes are given modifiers, which will be

// used to move their offsprings to the right.

{

// Set the pointer to the previous node
// at this level.

7.3. TREE.x

check node.set leftneighbor(level array[level]);
level_array[level] = &check node;

check node.set_modifier(0);
if (checknode.isleaf())

if (checknode.hasleftsib())
// Determine the preliminary z-ccordinate
// based on the following facts:
// the prelim_z of the left sibling,
// the separation between the sibling nodes,
// and the meansize of the left sibling
// and the current node.
{
check node.set_prelim(check node.get leftsibling()—getprelim()
+ tree::getsib_separation()
+ mean node_size(check node.get leftsibling(),
&check node));

else
// There is no sibling on the left, that
// we have to take care about.
check node.set_prelim(0);

else
// This node is not a leaf, so call this
// procedure recursively for each for

// its children.

node xleft_ most = NULL;
node *right_ most = NULL;
double midpoint = 0;

left_most = right most = check node.get firstchild();
firstwalk (xleft_ most,level+1,level array);

while (right most—has right_sib())

{
right_most = right_most—get_rightsibling();
firstwalk (*right most,level+1,level array);

}

midpoint = (left_most—get_prelim() + right_ most—get_prelim())/2;
if (checknode.hasleftsib())

// Determine the preliminary z-ccordinate
// based on the following facts:
// the prelim_z of the left sibling,
// the separation between the sibling nodes,
// and the meansize of the left sibling
// and the current node.
check node.set_prelim(check node.get leftsibling()—getprelim()
+ tree::getsib_separation()
+ mean node_size(check node.get leftsibling(),
&check node));

// Since check_node has to be moved by the
// value prelim_z to the right, all its

// descendants have to do the same.

// So set the modifier of the checked node by
// prelim_z. In order to center check_node
// over its children, subtract midpoint.

86 CHAPTER 7. APPENDIX

check node.set_modifier(check node.get prelim() - midpoint);

// The subtree of check_node may still
// overlay the subtree of its left sibling.
// In order to find this out, the leftmost
// descendants of check_node on each level
// are examined and if necessary the complete
// tree is moved to the right.

apportion(check node,level);

else
// Center check_node over its children.
check node.set_prelim(midpoint);

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
secondwalk
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::secondwalk(node xcheck node, int level, double modsum,
doublex x_max,doublexy max,doublexx.min)

// Rekursive procedure which does a pre-order walk in order to give

// each node its final w-coordinate by summing its preliminary

// m-coordinates and the modifiers of all nodes ancestors.

// If the actual position of an interior node is right of its

// preliminary place (stored in prelim_w), the subtree rooted at the

// node must be moved to the right, so that the children of the node

// are centered around the father. Rather than immediately readjust

// all nodes of the subtree, each node remembers the distance to the

// preliminary place in its modifier field mod. In this second pass

// down the tree, the modifiers are accumulated and applied to every node.

// Compute the z- and y coordinates of
// the check_node.
double temp_X = root_X_coord + check node—getprelim() + modsum;
double temp_Y = root_Y_coord +
(level * tree::get_actual level separation());

// Set the z- and y-coordinates of check_node.
check node—set Xcoord(tempX);
check node—set_Ycoord(temp_Y);

// Test whether the z- and y-coordinates

// are mazimal or minimal. This is needed

// in order to adjust a coordinate system to

// a drawing of the tree.
get_max_XYvalue(check node,x max,y max,x_min);

if (check node—has_child())

node xchild_ptr = check node—+get firstchild();
secondwalk(child ptr,level+1,
modsum + check node—get_modifier(),x max,y max,x_min);

}

if (check node—hasrightsib())

7.3. TREE.x 87

node *child_ptr = check node—getrightsibling();
secondwalk(child_ptr,level, modsum,x max,y max,x_min);

¥
¥

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
apportion
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::apportion(node & check node,int level)

// The subtree of a check_-node may still overlay the subtree of its

// left sibling. In order to find this out, the leftmost descendants

// of check_node on each level are examined and if necessary, the complete
// tree is moved to the right.

// When moving a new subtree further and further to the right gaps may
// open among smaller subtrees that were previously sandwiched between
// larger trees. This so called the ‘left-to-right gluing’ problem,

// which is cleaned up here. When moving a new large subtree to the

// right, the distance it s moved is also apportioned to smaller interior

// subtrees.

node xleftmost = check node.get firstchild();
node xneighbor = leftmost—get leftneighbor();
int compare_depth = 1;

while (leftmost # NULL && neighbor # NULL)
// Go down the levels of the subtree and
// find for every level the leftmost
// node of the subtree and its left neighbor.
// Then compare the preliminary w-coordinates
// of the leftmost and ist left neighbor
// and if necessary we “move” the subtree
// rooted at check_node by memorizing this
// fact in check_nodes modifier field.

// Compute the location of check_node
// and where it should be with respect to
// the neighbor.

double left_modsum = 0;

double right_ modsum = 0;

node *xancestorleftmost = leftmost;

node *xancestorneighbor = neighbor;

for (int i = 0; 1 < compare.depth; i++)

{
ancestor_leftmost = ancestor leftmost—get_parent();
ancestorneighbor = ancestorneighbor—get_parent();
right_modsum += ancestor_leftmost—get_modifier();
left_modsum += ancestormneighbor—get_modifier();

}

// Find the move_distance and apply it to
// check_nodes subtree. Add appropriate
// portions to smaller interior subtrees.
double move_distance = neighbor—)get_prelim() + left _modsum +
tree::get_subtree separation() +
mean_node size(leftmost,neighbor) -
leftmost—get prelim() - right_ modsum;

88 CHAPTER 7. APPENDIX

if (move_distance > 0)

// Count interior sibling subtrees in
// the left siblings of check_node.
node *node _ptr = &check node;
int left_siblings = 0;

while (node_ptr # NULL && node_ptr # ancestorneighbor)

left_siblings++;
node_ptr = node_ptr—getleftsibling();

}

if (nodeptr # NULL)
// Apply appropriate portions to the subtrees
// of the left siblings of check_node.

double portion = move_distance/left siblings;
node_ptr = &check_node;

while (node_ptr # ancestorneighbor)

{
node_ptr—set_prelim(node ptr—get_prelim() + move_distance);
node_ptr—set_modifier(node ptr—get_modifier()+move_distance);
move_distance -= portion;
node_ptr = node_ptr—getleftsibling();

else

// There is nothing to do, since

// ancestor_neighbor and ancestor_leftmost
// are not siblings of each other.

// So moving subtrees has to be done

// by an ancestor of check_node.

// Now get the leftmost descendant of
// check_node in the newt lower level.
compare_depth++;
if (leftmost—isleaf())
leftmost = get_left_most(&check node,0,compare_depth);
else
leftmost = leftmost—rget firstchild();
if (leftmost # NULL)
neighbor = leftmost—get leftneighbor();

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
get_left_most
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

nodex tree::get_left_most(node * check node,int level,int depth)

// Returns the leftmost descendant of check_node node at a given depth.
// This is implemented using a post-order walk of the subtree

7.3. TREE.x

// under check_node, down to the level of depth.

// Level here is not the absolute tree level used in the two main
// tree walks; it revers to the level below the node whose leftmost
// descendant is beeing found.

if (level > depth)
return check node;

else if (checkmnode—isleaf())
return NULL;

else

{

node *rightmost = check node—get firstchild();
node xleftmost = get_left_ most(rightmost,level+1,depth);

while (leftmost == NULL && rightmost—hasright_sib())

rightmost = rightmost—getrightsibling();
leftmost = get_left_most(rightmost,level+1,depth);

}

return leftmost;

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
get_mazr_X Yvalue
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::get max XYvalue(nodex node_ptr, doublex x_max,
doublex y_max, doublex x_min)

eturns the mazimal z- and y-coordinates as well as the minima
Ret th l d dinat 1 th l
// z-coordinate found until now.

if (nodeptr—get Xcoord() > (*x_max
(*x-max) = node_ptr—get Xcoord(
if (nodeptr—get_Ycoord() > (xy-max
(*ymax) = node_ptr—get_Ycoord(
if (nodeptr—get Xcoord() < (*x_min))
(*x-min) = node_ptr—get Xcoord();

)
);
)
);

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
deapth_first_search
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::deapth first_search(node *node_ptr,int level)

// Recursive deapth-first-search procedure for computing a previous
// y-coordinate and determining the number of levels of the tree.

node xchild_ptr = NULL;

if (level > level_count)
level_count = level;

node_ptr—set_Ycoord(level);

if (nodeptr—has_child())

89

90 CHAPTER 7. APPENDIX

child_ptr = node_ptr—get firstchild();
deapth first_search(child ptr,level+1);
while (child_ptr—has_right_sib())

child_ptr = child_ptr—get_rightsibling();
deapth first_search(child ptr,level+1);
}
}
}

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
del_deapth_first

***/

void tree::del deapth first(node *node ptr)
// Recursive deapth-first-search procedure for a walid clean_up.

node xchild_ptr = NULL;
node *right_child = NULL;

if (node_ptr—has_child())

child_ptr = node_ptr—get firstchild();
right_child = child_ptr—get_rightsibling();
del_deapth first(child ptr);

while (right_child # NULL)

child_ptr = right_child;
right_child = child_ptr—get_rightsibling();
del_deapth first(child ptr);

}

delete node_ptr;

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
mean_node_size
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

int tree::mean node_size(node * left node,node * right node)

// Returns the mean size of the two passed nodes.
// In this class a trivial calculation, since all nodes
// are the same size.

int nodesize = 0;
if (left .node # NULL)

node_size += left_node—get_radius();
if (right node # NULL)

node_size += right node—get_radius();

return node_size;

7.3. TREE.x

sk ks ks st Rl s ok R s ok R R ok R R ok SR s ok Sk s o s s R ok sk s ok sk sk R sk
introduce_child
st sk ok sl ok ol st R R R ok R sk R Rl R ok Rl ok Rk ok ko

void tree::introduce_child(node xtail,node xhead)

// Introduces a new node head as child of its parent tail in
// the tree.

node *child = NULL;
node *right_sib = NULL;

if (tail—has_child())

child = tail—get firstchild();
right_sib = child—get rightsibling();
if (right_sib # NULL)

child—set rightsibling(head);
head—sset_rightsibling(right_sib);
right_sib—set leftsibling(head);
head—sset leftsibling(child);

}
else // right_sib == NULL

child—set rightsibling(head);
head—sset leftsibling(child);

}
}
else
tail—set firstchild(head);

91

Bibliography

[You92]

[RS83]

[RTS1]

[ST95]

[Wal90]

[WS79]

D. A. Young, Object Oriented Programming with C++ and OSF/MOTIF,
Prentice-Hall (1992).

E. M. Reingold and K. J. Supowit, the complexity of drawing trees nicely, Acta
Informatica, 18, (4) (1983), 377-392.

E. M. Reingold and J. S. Tilford, Tidier drawing of trees, IEEE Trans. Software
Engineering, SE-7, (2) (1981), 223-228.

S. Thienel, ABACUS - A Branch-And-CUt System, doctoral thesis, Universitit
zu Kéln (1995).

J. Q. Walker 1I, A Node-positioning Algorithm for General Trees, Software-
Practice and Experience, 20(7) (1990) 685-705.

C. S. Wetherell and A. Shannon, Tidy drawings of trees, IEEE Trans. Software
Engineering, SE-5, (5) (1979), 514-520.

92

