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Abstract

We present algorithms for the two layer straightline crossing minimization problem that are able to

compute exact optima. Our computational results lead us to the conclusion that there is no need

for heuristics if one layer is �xed, even though the problem is NP-hard, and that for the general

problem with two variable layers, true optima can be computed for sparse instances in which the

smaller layer contains up to 15 nodes. For bigger instances, the iterated barycenter method turns

out to be the method of choice among several popular heuristics whose performance we could assess

by comparing their results to optimum solutions.
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1. Introduction

Directed graphs are widely used to represent structures in many �elds such as economics, social

sciences, mathematics and computer science. A good visualization of structural information allows

the reader to focus on the information content of the diagram. Examples are entity-relationship

diagrams, PERT-diagrams, or any ow diagram.

A common method for drawing directed graphs has been introduced by Sugiyama et al. [STT81]

and Carpano [Car80]. In the �rst step, the vertices are partitioned into a set of k levels, and in the

second step, the vertices within each level are permuted in such a way that the number of crossings

is small. In this paper we focus on the second step.

Let us assume that we are given a k-layered network, i.e., a graph G = (V;E) = (V

1

; V

2

; : : : ; V

k

; E)

with vertex sets V

1

; : : : ; V

k

, V = V

1

[V

2

: : :[V

k

, V

i

\V

j

= ; for i 6= j, and an edge set E connecting

vertices in levels V

i

and V

j

with i 6= j (1 � i; j � k). V

i

is called the i-th layer. A k-layered network

is drawn in such a way that the vertices in each layer V

i

are drawn on a horizontal line L

i

with

y-coordinate k � i, and the edges are drawn as straight lines. Essentially, a k-layered network is a

k-partite graph that is drawn in a special way.

Even for 2-layered graphs the straightline crossing minimization problem is NP-hard [GJ83]. The

problem consists of aligning the two shores V

1

and V

2

of a bipartite graph G = (V

1

; V

2

; E) on

two parallel straight lines (layers) such that the number of crossings between the edges in E is

minimized when the edges are drawn as straight lines connecting the endnodes.

* Partially supported by DFG-Grant Ju204/7-1, Forschungsschwerpunkt \E�ziente Algorithmen f�ur

diskrete Probleme und ihre Anwendungen" and by ESPRIT LTR Project no. 20244 { ALCOM-IT
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Let n

1

= jV

1

j, n

2

= jV

2

j, m = jEj, and let N(v) = fw 2 V j e = fv; wg 2 Eg denote the set of

neighbors of v 2 V = V

1

[V

2

in G. Any solution is obviously completely speci�ed by a permutation

�

1

of V

1

and a permutation �

2

of V

2

. For k = 1; 2 let �

k

ij

= 1 if �

k

(i) < �

k

(j) and 0 otherwise.

Thus �

k

(k = 1; 2) is uniquely characterized by the vector �

k

2 f0; 1g

(

n

k

2

)

. Given �

1

and �

2

, the

number of crossings is

C(�

1

; �

2

) = C(�

1

; �

2

) =

n

2

�1

X

i=1

n

2

X

j=i+1

X

k2N(i)

X

l2N(j)

�

1

kl

� �

2

ji

+ �

1

lk

� �

2

ij

=

n

1

�1

X

k=1

n

1

X

l=k+1

X

i2N(k)

X

j2N(l)

�

1

kl

� �

2

ji

+ �

1

lk

� �

2

ij

:

For k-layered networks, the crossing minimization problem is reduced to a series of 2-layer straight-

line crossing minimization problems in the following way. In a preprocessing step, we add arti�cial

nodes to the layers L

i

for all the edges traversing L

i

(i = 1; : : : ; k), and set i = 0. Successively,

we increase i by one, choose two adjacent layers L

i

and L

i+1

, and solve the 2-layer crossing min-

imization problem, while keeping the permutation of layer L

i

�xed. If i = k, we repeat the same

procedure backwards. We solve the 2-layer crossing minimization problem of layers L

i

and L

i�1

,

while keeping the permutation of layer L

i

�xed, and decrease i by one. We repeat both routines

until no improvement is made.

Unfortunately, also the 2-layer straightline crossing minimization problem with the permutation

of one layer �xed is NP-hard [EW94]. Therefore, a lot of e�ort went into the design of e�cient

heuristics, for the version in which one permutation is �xed as well as for the general case (see,

e.g., [W77,STT81,EK86,EW94,D94,C95] and [VML96]). Eades and Kelly [EK86] observe that the

computation of true optima would be desirable in order to assess the performance of various heuris-

tics, however, [EK86] believe that the NP-hardness of the problem renders such an experimental

evaluation impractical.

In this paper, we would like to demonstrate that, if one permutation is �xed, it is indeed possible

to compute the exact minima in surprisingly short computation times. In section 2, we outline our

algorithm which transforms the problem to a linear ordering problem that is subsequently solved

via the branch and cut method. In section 3, we give computational results that allow us to assess

the performance of several popular heuristics accurately.

Assume the permutation �

1

of V

1

is �xed. For each pair of nodes i; j 2 V

2

, i 6= j, we de�ne c

ij

to

be the number of crossings between edges incident with i and edges incident with j if �

2

is such

that �

2

(i) < �

2

(j). Then

L =

n

2

�1

X

i=1

n

2

X

j=i+1

minfc

ij

; c

ji

g

is a trivial lower bound on the number of crossings. One observation in our experiments was that

this trivial lower bound is surprisingly good. In section 4, we utilized this fact and the branch and

cut algorithm of section 2 for the design and implementation of a program that solves the general

two layer straightline crossing minimization problem to optimality.

Figure 1 demonstrates that the number of crossings can indeed be considerably less if both layers

can be freely permuted. The left drawing was given in [STT81] with �xed lower layer, [STT81]

obtained the shown drawing with 48 crossings that we could show to be optimum. The right

drawing is the optimum when both layers can be freely permuted. It has only 19 crossings.

As was to be expected, two sided crossing minimization can be done only for small instances. For

large instances, we adopt the common method that consists of �xing the �rst layer, \optimizing"
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Fig. 1.

the second, �xing the found permutation of the second, \optimizing" the �rst, etc., back and forth,

until the crossing number is not reduced anymore. We follow this iterative approach both using

the heuristics of section 3 as well as the exact algorithm. The results are somewhat surprising, e.g.,

using the barycenter heuristic rather than exact one-sided crossing minimization yields slightly

better results.

2. Branch and Cut for One Sided Crossing Minimization

The one sided straightline crossing minimization problem consists of �xing a permutation �

1

of V

1

and �nding a permutation �

2

of V

2

such that the number of straightline crossings

C(�

2

) = C(�

2

) =

n

2

�1

X

i=1

n

2

X

j=i+1

X

k2N(i)

X

l2N(j)

�

1

kl

� �

2

ji

+ �

1

lk

� �

2

ij

is minimized. Let

c

ij

=

X

k2N(i)

X

l2N(j)

�

1

lk

denote the number of crossings among the edges adjacent to i and j if �

2

(i) < �

2

(j). Then

C(�

2

) = C(�

2

) =

n

2

�1

X

i=1

n

2

X

j=i+1

c

ij

�

2

ij

+ c

ji

(1� �

2

ij

)

=

n

2

�1

X

i=1

n

2

X

j=i+1

(c

ij

� c

ji

)�

2

ij

+

n

2

�1

X

i=1

n

2

X

j=i+1

c

ji

:

For n = n

2

, x

ij

= �

2

ij

and a

ij

= c

ij

� c

ji

we solve the linear ordering problem

(LO) minimize

n

2

�1

X

i=1

n

2

X

j=i+1

a

ij

x

ij

0 � x

ij

+ x

jk

� x

ik

� 1 for 1 � i < j < k � n

0 � x

ij

� 1 for 1 � i < j � n

x

ij

2 f0; 1g for 1 � i < j � n:

If z is the optimum value of (LO), z +

P

n

2

�1

i=1

P

n

2

j=i+1

c

ji

is the minimum number of crossings.

The constraints of (LO) guarantee that the solutions correspond indeed precisely to all permutations

�

2

of V

2

. Furthermore, it can be shown that the \3-cycle constraints" are necessary in any minimal
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description of the feasible solutions by linear inequalities, if the integrality conditions are dropped.

The NP-hardness of the problem makes it unlikely that such a complete linear description can

be found and exploited algorithmically. Further classes of inequalities with a number of members

exponential in n that must be present in a complete linear description of the feasible set, are known,

and some of them can be exploited algorithmically. For the details see [GJR85].

When the integrality conditions in (LO) are dropped, only 2

�

n

2

�

hypercube inequalities and 2

�

n

3

�

3-cycle inequalities are left that de�ne a relaxation of (LO) which has been proven very useful

in practical applications. In [GJR84a] a branch and cut algorithm for (LO) is proposed that

solves this relaxation with a cutting plane approach, since writing down all 3-cycle inequalities,

even though taking only polynomial space, and solving the corresponding linear program, is not

practical for space reasons. Rather, the algorithm starts with the hypercube constraints that are

handled implicitly by the LP-solver, and iteratively adds violated 3-cycle constraints and deletes

nonbinding 3-cycle constraints after an LP has been solved, until the relaxation is solved. If

the optimum solution is integral, the algorithm stops, otherwise it is applied recursively to two

subproblems in one of which a fractional x

ij

is set to 1 and in the other set to 0. In [GJR84b]

such a branch and cut approach could be used to �nd optimum linear orderings with n up to 60 in

an application involving input-output matrices that are used in economic analysis. For the many

details and the inclusion of further useful inequalities in the cutting plane part, see [GJR84a].

A new implementation of the algorithm is used in our computational experiments. It is written in

C and uses the [CPLEX] software for solving the linear programming relaxations coming up in the

course of the computation.

3. One Sided Crossing Minimization

The fact that we are able to compute optimum solutions allows us to assess the quality of various

popular heuristics for one-sided two layer straightline crossing minimization experimentally. Our

computational comparison includes the following heuristics: the barycenter heuristic by [STT81],

the median heuristic by [EW94], the stochastic heuristic by [D94], the greedy-insert heuristic by

[EK86], the greedy-switch heuristic by [EK86], the split heuristic by [EK86], and the assign heuristic

by [C95].

The barycenter heuristic [STT81] and the median heuristic [EW94] are the most popular ones. They

are also called \averaging heuristics", since they simply compute the \average position", i.e., the

barycenter or median, for each vertex and sort the vertices according to these numbers. Surprisingly,

these simple heuristics turned out to be among the most promising ones. The stochastic heuristic

[D94], originally designed for permuting both layers, generates a series of \assessment number

matrices" while greedily placing a vertex in layer 1 or layer 2. The assessment numbers are based

on some frequency numbers arising from stochastic considerations on the complete bipartite graph.

The greedy-insert heuristic [EK86] proceeds by successively choosing the next vertex v to be the

one which minimizes the number of crossings that edges adjacent to v make with edges adjacent

to vertices to the left of v. The greedy-switch heuristic [EK86] passes over all consecutive pairs of

vertices and switches them if it would decrease the number of crossings. This is done until no more

switching takes place. The split heuristic chooses a pivot vertex v, and places every other vertex

to the left or right of v according to whether it would make fewer crossings. This step is applied

recursively to order the left hand set and the right hand side of v. The assignment heuristic [C95]

reduces the problem to an assignment problem. The entries in the assignment matrix are computed

based on the adjacency matrix and on a four dimensional matrix representing the complete bipartite

graph.

In order to gain con�dence in the correctness of our implementations, we repeated the computational

tests in [EK86]. We could reproduce their results accurately. Also the results in [C95] on the assign
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heuristic are in line with ours. There are no published computational results for the stochastic

heuristic, but a personal communication with the author [D95] con�rms the correctness of our

implementation.

All subsequent �gures and tables use the following notation:

{ n

i

: Number of nodes on layer i for i = 1; 2

{ m: Number of edges

{ Lowerbound: The trivial lower bound for the number of crossings

{ Minimum: The minimum number of crossings (computed by the branch and cut algorithm)

{ Barycenter: The number of crossings found by the barycenter heuristic

{ Median: The number of crossings found by the median heuristic

{ Stoch: The number of crossings found by the stochastic heuristic

{ Gre-ins: The number of crossings found by the greedy-insert heuristic

{ Gre-swi: The number of crossings found by the greedy-switch heuristic

{ Split: The number of crossings found by the split heuristic

{ Assign: The number of crossings found by the assign heuristic

For each type of graph, we measured the following three numbers: the average number of crossings

taken over all sampled instances of this type, the relative size of this number in percentage of the

minimum number of crossings, and the average running time in seconds on a SUN Sparcstation 10.

All samples are generated by the program random bigraph of the Stanford GraphBase by Knuth

[K93]. The generators are hardware independent and are available from the authors so that exactly

the same experiments can be run by anyone who is interested.

In Figure 2, we give the results for \20+20-graphs", i.e., bipartite graphs with 20 nodes on each

layer and various �xed numbers of edges chosen uniformly and independently from the set of all

possible edges. Each average is taken over 100 samples. The most surprising fact is perhaps that the

exact computation by the branch and cut algorithm is faster than many of the heuristics. Only the

barycenter and the median heuristic are between two to four times faster than the exact algorithm.

The stochastic and assign heuristic take about the same time as the exact algorithm, whereas the

split and the two greedy heuristics take much longer. The best results are obtained by the split

heuristic. But also the results of the barycenter and the stochastic heuristic are quite good. For

sparse graphs, the assign and the greedy-switch heuristic are quite far away from the optimum

solution (10%, resp., 50%), whereas they achieve good solutions for dense graphs. However, in

automatic graph drawing the graphs are usually sparse. The median heuristic is between 1% and

14 % away from the optimum solution. Greedy-insert shows the worst behaviour. Surprisingly, the

lower bound is very close to the optimum solution, even in the sparse case.

In Figure 3, we concentrate on sparse instances in which, on the average, every node has two adja-

cent edges. We believe that such instances are among the most interesting in practical applications.

It turns out that the stochastic, the split, and the barycenter heuristic perform very well in terms

of quality (1%-4% o� the optimum solution), however, the split heuristic takes roughly the same

time as the branch and cut computation up to size 80+80, whereas the barycenter heuristic obtains

results of similar quality as split, but much faster. The assign and the median heuristic are about

10% away from the optimum solution. Greedy-insert and greedy-switch behave worst for sparse

graphs. For n = 60, the ranking of the heuristics with respect to increasing time is barycenter,

median, greedy-insert, assign, greedy-switch, stochastic, exact, and split.

In Table 1, we repeat an experiment by Dresbach [D94] for instances de�ned by War�eld [W77]

as follows: For k = 3; 4; 5; 6; 7; 8 we let n

1

= k, n

2

= 2

k

� 1, and the adjacency matrix of the
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bipartite graph is a n

1

� n

2

matrix whose rows are labelled 1; 2; : : : ; k, whose columns are labelled

1; 2; : : : ; 2

k

� 1, and column j contains j in k-digit binary notation. Layer 1 is �xed and layer 2

is \optimized". Again, it turns out that barycenter is the fastest method with excellent quality

solutions. The results of the stochastic heuristic, the barycenter and the split heuristic are very close

to the optimum solution. Up to size 7+127, the branch and cut algorithm needs only moderate

computation time, for the instance 8+255 it is not competitive in terms of time, but we found

it surprising that such a big linear ordering instance with n = 255 could be solved at all. The

branch and cut algorithm was the only method that found the true optima for k � 6, whereas for

3 � k � 5, the fact that the optimum value equals the value of the trivial lower bound seems to

indicate that these instances are not hard.

Table 1. Results for Dresbach instances

n

1

n

2

m Low Min Bary Median Stoch Gre-ins Gre-swi Split Assign

3 7 12 8 8 8 13 8 11 8 8 8

100.00 100.00 162.50 100.00 137.50 100.00 100.00 100.00

0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00

4 15 32 95 95 95 127 95 122 98 95 101

100.00 100.00 133.68 100.00 128.42 103.16 100.00 106.32

0.00 0.00 0.00 0.03 0.02 0.05 0.07 0.02

5 31 80 756 756 758 922 756 934 804 760 780

100.00 100.27 121.96 100.00 123.55 106.35 100.53 103.17

0.03 0.00 0.03 0.18 0.08 0.40 0.43 0.08

6 63 192 4998 5002 5015 5818 5004 6023 5523 5043 5120

100.00 100.26 116.31 100.04 120.41 110.42 100.90 102.36

0.73 0.05 0.07 1.38 0.38 2.87 2.65 0.38

7 127 448 29745 29778 29883 33641 29841 35152 34366 30086 30386

100.00 100.35 112.97 100.21 118.05 115.41 101.03 102.04

20.50 0.17 0.20 9.02 1.98 20.20 24.30 2.18

8 255 1024 165375 165602 166098 183342 165824 192633 202957 167546 168056

100.00 100.30 110.71 100.13 116.32 122.56 101.17 101.48

7200.00 0.95 1.08 67.90 7.33 147.00 189.00 21.50

4. Two Sided Crossing Minimization

The trivial lower bound on the number of crossings that turned out to be excellent in our previous

experiments, can obviously be adapted to partial orderings rather than complete orderings (permu-

tations) on one of the layers. This encouraged us to devise a simple branch and bound algorithm for

the general two layer straightline crossing minimization problem in which both �

1

and �

2

must be

determined. Namely, we enumerate all permutations �

1

(let without loss of generality jV

1

j � jV

2

j,

V

1

= f1; 2; : : : ; ng) as follows: Initially all v 2 V

1

are un�xed. At depth l in a depth-�rst-search,

l � 1 nodes of V

1

are �xed in positions 1; 2; : : : ; l� 1. Then the �rst un�xed node in the canonical

ordering of V

1

is �xed at position l, and the trivial lower bound L is computed for the resulting

partial ordering. If L is greater than the value of the best known solution, the next un�xed node

in the canonical ordering of V

1

is �xed at position l, else we move to position l + 1, if l < n, and

otherwise (l = n) we call the branch and cut algorithm to determine an optimum ordering of V

2

and

update the best known solution, if necessary. Backtracking, i.e., moving from position l to position

l � 1 occurs whenever the list of un�xed nodes at depth l in the enumeration tree is exhausted.

Before the enumeration is entered, a heuristic solution is determined in order to initialize the best

known solution. A good initial solution makes the enumeration tree smaller.

We use this algorithm to determine optimum solutions for 10+10 graphs with increasing edge

densities, 100 samples for each type of graph. All heuristics are iterated between the two layers

until a local optimum is obtained, as outlined in the introduction, starting from the canonical

ordering on V

1

. An additional column labelled \LR-Opt" gives according results for the iterated
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minimum crossing computation by branch and cut, which is, remarkably, sometimes outperformed

by the best iterated heuristics. For sparse instances, the minimum is much better than any of the

heuristically found solutions (see Figure 5(a)). The best heuristics barycenter, median, and LR-opt

are very far away from the optimum solution. For density 0.1 the number of crossings is between

5 times and 33 times higher than the minimum straightline crossing number. For density 0.2 the

best solution is still 60% away from the optimum. The ranking of the heuristics here is barycenter,

LR-opt, split, median, stochastic, greedy-switch, assign, greedy-insert. The rank of greedy-switch

improves for dense graphs. It turns out that with increasing density, the computation times increase

rapidly for the minimum computation, whereas the heuristics are not very sensitive to density. The

running times for the heuristics stay under 0.4 seconds, whereas the computation by the exact

algorithm increased from 1.1 seconds for density 0.1 to 1550 seconds for density 0.9.

In Figure 4, we show an example of a 10+10 graph with 20 edges. The �rst drawing was found by

the LR-opt heuristic and has 30 crossings, the second by the barycenter heuristic and contains 10

crossings and the third one is the optimum solution with only 4 crossings.

h j ed g b i c

4 5 79 8 3 6 2

a f

10 1

h j ed g c b a

4 5 9 7 8 2 10 6

i f

3 1

h j df b g a e

4 5 101 9 3 8 2

i c

7 6

Fig. 4.

Within one hour of computation time, we can �nd optimum solutions for 11+11 instances with

up to 80% density, 12+12 with up to 50% density, 13+13 with up to 30% density, 14+14, 15+15,

16+16 with up to 10% density.

In Figure 5(b), we repeat the same experiment with 10 starts from random orderings of the nodes

in V

1

and take the best solutions found. The results show that this way a considerable performance

gain for all heuristics can be achieved. LR-Opt, barycenter and split obtain results of similar good

quality. But still, for sparse graphs, they are at least 7% away from the optimum, split even 44%.
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Figure 6 deals with the more interesting sparse instances of bigger size for which we can not compute

the optimum anymore. Thus, we divided the number of crossings found by the heuristics (given

in Figure 6(a)) by that computed by barycenter (see Figure 6(b)). This allows us to compare the

behaviour of the heuristics for one layer �xed against the free case. Barycenter constantly gives the

best solutions for sparse graphs. Also, median is, in contrary to the one-layer �xed case, among

the best heuristics. Barycenter, LR-opt, median and split give the best solutions. However, we do

not know how far their solution is away from the optimum. Stochastic behaves worse for two free

layers, although it was originally designed for this problem. Assign and greedy-insert are among

the worst heuristics, but their quality seems to stay constant with increasing number of nodes, in

contrary to greedy-switch. With 10 di�erent starts from random orderings of the nodes in V

1

, the

quality of the results improves only slightly. The data of all of our experiments is given in the

Appendix. Summarizing, the barycenter method turns out to be the clear winner, both in terms

of quality as well as in terms of computation time.

5. Conclusions

The outcome of our computational experiments lead to the following conclusions.

(1) When one layer is �xed, the exact minimum crossing number can be e�ciently computed in

practice, so there is no real need for heuristics.

(2) In the general case, small sparse instances as they occur in applications can be solved to

optimality if the smaller sized shore has up to about 15 vertices. For larger instances, the

iterated barycenter method, started with a few random orderings of one layer, is clearly the

method of choice among all tested methods.
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Appendix: Tables

The tables show the average number of crossings taken over all sampled instances of this type,

the relative size of this number in percentage of the minimum number of crossings, and the aver-

age running time in seconds on a SUN Sparcstation 10 for the investigated heuristics and exact

algorithms.

Table A1. Results for 100 instances on 20 + 20 nodes with increasing density

n

i

m Low Min Bary Median Stoch Gre-ins Gre-swi Split Assign

20 40 180.35 180.75 185.34 206.27 185.44 248.37 275.99 183.39 199.09

99.78 100.00 102.54 114.12 102.60 137.41 152.69 101.46 110.15

0.02 0.01 0.01 0.05 0.02 0.04 0.08 0.02

20 80 957.62 959.23 968.80 1051.14 970.01 1175.11 1044.14 964.35 988.76

99.83 100.00 101.00 109.58 101.12 122.51 108.85 100.53 103.08

0.03 0.01 0.01 0.06 0.05 0.10 0.11 0.03

20 120 2420.14 2422.32 2433.53 2564.82 2437.39 2763.72 2460.94 2428.23 2453.89

99.91 100.00 100.46 105.88 100.62 114.09 101.59 100.24 101.30

0.03 0.01 0.01 0.07 0.10 0.16 0.16 0.04

20 160 4625.79 4627.72 4638.24 4825.06 4644.35 5098.27 4644.10 4632.17 4657.85

99.96 100.00 100.23 104.26 100.36 110.17 100.35 100.10 100.65

0.04 0.01 0.02 0.08 0.17 0.23 0.23 0.04

20 200 7560.42 7561.88 7571.08 7817.99 7582.47 8157.86 7572.24 7566.79 7589.64

99.98 100.00 100.12 103.39 100.27 107.88 100.14 100.07 100.37

0.05 0.02 0.02 0.09 0.24 0.31 0.31 0.05

20 240 11314.37 11315.55 11323.26 11625.54 11338.06 12033.34 11321.10 11318.68 11336.09

99.99 100.00 100.07 102.74 100.20 106.34 100.05 100.03 100.18

0.07 0.02 0.03 0.09 0.34 0.42 0.41 0.06

20 280 15859.70 15860.35 15865.69 16225.57 15883.69 16667.12 15863.66 15861.76 15874.86

99.99 100.00 100.03 102.30 100.15 105.09 100.02 100.01 100.09

0.09 0.03 0.03 0.10 0.45 0.52 0.53 0.07

20 320 21290.56 21290.76 21294.12 21727.43 21313.78 22116.56 21292.93 21291.56 21300.43

99.99 100.00 100.02 102.05 100.12 103.88 100.01 100.00 100.05

0.11 0.03 0.04 0.11 0.59 0.65 0.66 0.08

20 360 27751.63 27751.69 27752.99 28257.47 27768.41 28459.57 27752.01 27751.84 27754.31

100.00 100.00 100.01 101.82 100.06 102.55 100.00 100.00 100.01

0.14 0.04 0.04 0.12 0.74 0.81 0.80 0.09
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Table A2. Results for 10 instances of sparse graphs with increasing size

n

i

m Low Min Bary Median Stoch Gre-ins Gre-swi Split Assign

10 20 37.90 38.00 38.90 45.40 38.70 46.40 50.90 38.50 40.60

99.74 100.00 102.37 119.47 101.84 122.11 133.94 101.32 106.84

0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.00

20 40 171.70 171.90 175.70 193.70 174.90 240.80 293.60 174.70 195.10

99.88 100.00 102.21 112.68 101.74 140.08 170.80 101.63 113.50

0.01 0.01 0.01 0.05 0.02 0.05 0.09 0.02

30 60 436.60 438.30 451.90 491.10 451.30 602.30 692.40 445.60 475.90

99.61 100.00 103.10 112.05 102.97 137.42 157.97 101.67 108.58

0.11 0.01 0.01 0.13 0.05 0.11 0.25 0.05

40 80 761.50 765.70 785.60 856.60 782.70 1105.00 1367.50 783.20 842.30

99.45 100.00 102.60 111.87 102.22 144.31 178.60 102.29 110.00

0.30 0.01 0.02 0.28 0.08 0.22 0.57 0.09

50 100 1247.30 1252.20 1279.90 1389.50 1273.20 1770.60 2200.50 1277.80 1375.90

99.61 100.00 102.21 110.97 101.68 141.40 175.73 102.04 109.88

0.68 0.02 0.03 0.50 0.13 0.32 1.00 0.14

60 120 1683.10 1687.60 1738.30 1890.90 1720.20 2453.10 2994.50 1736.10 1855.30

99.73 100.00 103.00 112.05 101.93 145.36 177.44 102.87 109.94

1.09 0.03 0.04 0.83 0.18 0.61 1.67 0.24

70 140 2465.00 2479.00 2541.30 2730.00 2522.50 3592.20 4498.80 2549.20 2688.60

99.44 100.00 102.51 110.13 101.76 144.91 181.48 102.83 108.46

4.46 0.04 0.04 1.28 0.26 0.73 2.82 0.36

80 160 3153.90 3172.10 3254.60 3521.60 3232.90 4583.10 5885.70 3240.60 3488.90

99.43 100.00 102.60 111.02 101.92 144.48 185.55 102.16 109.99

6.42 0.05 0.06 1.85 0.33 0.99 4.11 0.51

90 180 4104.00 4132.80 4233.70 4566.80 4206.80 5843.70 7331.30 4293.90 4561.60

99.30 100.00 102.44 110.50 101.79 141.40 177.39 103.90 110.38

25.13 0.05 0.06 2.66 0.41 1.32 5.84 0.75

100 200 5127.40 5162.70 5287.50 5728.80 5247.60 7469.90 9407.50 5333.50 5627.50

99.32 100.00 102.42 110.97 101.64 144.69 182.22 103.31 109.00

435.51 0.06 0.08 3.35 0.49 1.45 7.56 0.90

Table A3. Results for 100 instances on 10 + 10 nodes with increasing density

n

i

m Min LR-Opt Bary Median Stoch Gre-ins Gre-swi Split Assign

10 10 0.29 1.64 1.52 1.53 2.71 4.32 9.61 2.63 5.42

100.00 565.52 524.14 527.59 934.48 1489.66 3313.79 906.90 1868.97

1.10 0.01 0.01 0.01 0.03 0.02 0.02 0.04 0.01

10 20 11.62 19.99 18.78 24.08 26.96 38.85 34.81 23.25 34.96

100.00 172.03 161.62 207.23 232.01 334.34 299.57 200.09 300.86

3.89 0.02 0.01 0.01 0.06 0.04 0.03 0.07 0.02

10 30 56.60 66.98 65.30 81.78 82.98 109.96 80.29 70.11 97.80

100.00 118.34 115.37 144.49 146.61 194.28 141.86 123.87 172.79

14.06 0.02 0.02 0.02 0.07 0.06 0.07 0.11 0.02

10 40 146.89 157.91 157.70 189.55 182.77 225.26 165.65 160.20 202.10

100.00 107.50 107.36 129.04 124.43 153.35 112.77 109.06 137.59

43.02 0.03 0.02 0.02 0.08 0.10 0.11 0.15 0.03

10 50 276.78 287.32 288.15 333.25 320.21 387.87 296.38 290.79 343.65

100.00 103.81 104.11 120.40 115.69 140.14 107.08 105.06 124.16

91.58 0.04 0.03 0.02 0.09 0.13 0.15 0.21 0.03

10 60 463.17 475.04 475.52 539.59 509.38 598.98 482.76 478.46 542.88

100.00 102.56 102.67 116.50 109.98 129.32 104.23 103.30 117.21

206.61 0.06 0.03 0.03 0.10 0.17 0.22 0.28 0.03

10 70 698.35 709.91 710.88 782.33 747.20 854.61 715.73 712.73 779.79

100.00 101.66 101.79 112.03 107.00 122.38 102.49 102.06 111.67

379.12 0.07 0.04 0.03 0.11 0.22 0.29 0.35 0.04

10 80 1008.38 1021.46 1021.44 1110.39 1051.66 1165.97 1025.84 1024.78 1083.39

100.00 101.30 101.30 110.12 104.29 115.63 101.73 101.63 107.44

763.53 0.08 0.04 0.03 0.12 0.27 0.34 0.40 0.04

10 90 1405.57 1420.68 1421.86 1524.18 1430.86 1516.62 1423.90 1421.72 1456.97

100.00 101.08 101.16 108.44 101.80 107.90 101.30 101.15 103.66

1549.12 0.07 0.03 0.03 0.12 0.29 0.32 0.37 0.04
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Table A4. Results for 100 instances on 10 + 10 nodes with increasing density, 10 trials each

n

i

m Min LR-Opt Bary Median Stoch Gre-ins Gre-swi Split Assign

10 10 0.29 0.30 0.31 0.71 0.73 2.10 3.95 0.42 2.15

100.00 103.45 106.90 244.83 251.72 724.14 1362.07 144.83 741.38

1.10 0.11 0.08 0.08 0.27 0.21 0.16 0.38 0.10

10 20 11.62 12.50 12.44 16.57 17.44 30.55 21.00 13.83 25.44

100.00 107.57 107.06 142.60 150.09 262.91 180.72 119.02 218.93

3.89 0.18 0.12 0.13 0.52 0.38 0.34 0.64 0.17

10 30 56.60 57.27 57.46 68.66 66.33 97.22 62.59 58.30 79.97

100.00 101.18 101.52 121.31 117.19 171.77 110.58 103.00 141.29

14.06 0.26 0.17 0.15 0.68 0.60 0.62 1.01 0.23

10 40 146.89 147.35 147.73 166.41 159.31 205.97 150.34 148.24 174.12

100.00 100.31 100.57 113.29 108.46 140.22 102.35 100.92 118.54

43.02 0.36 0.21 0.18 0.79 0.90 1.02 1.45 0.26

10 50 276.78 277.11 277.78 304.62 292.34 363.43 277.85 277.61 308.26

100.00 100.12 100.36 110.06 105.62 131.31 100.39 100.30 111.37

91.58 0.47 0.26 0.22 0.87 1.23 1.50 2.03 0.30

10 60 463.17 463.76 464.07 499.41 478.48 565.63 464.54 464.17 497.17

100.00 100.13 100.19 107.82 103.31 122.12 100.30 100.22 107.34

206.61 0.59 0.32 0.25 0.96 1.65 2.15 2.67 0.34

10 70 698.35 698.75 699.23 745.00 712.78 816.80 699.37 699.04 728.95

100.00 100.06 100.13 106.68 102.07 116.96 100.15 100.10 104.38

379.12 0.68 0.34 0.29 1.03 2.23 2.78 3.30 0.37

10 80 1008.38 1008.62 1008.88 1070.82 1018.66 1120.31 1008.96 1008.94 1031.45

100.00 100.02 100.05 106.19 101.02 111.10 100.06 100.06 102.29

763.53 0.81 0.37 0.31 1.11 2.70 3.39 3.89 0.41

10 90 1405.57 1406.14 1406.22 1490.03 1410.31 1461.52 1406.43 1406.44 1416.64

100.00 100.04 100.05 106.01 100.34 103.98 100.06 100.06 100.79

1549.12 0.70 0.33 0.34 1.17 2.86 3.13 3.53 0.44

Table A5. Results for 10 instances of sparse graphs

n

i

m LR-Opt Bary Median Stoch Gre-ins Gre-swi Split Assign

10 20 19.70 15.70 25.70 27.20 35.80 34.20 20.90 32.40

0.02 0.02 0.01 0.05 0.04 0.04 0.06 0.02

20 40 73.70 72.50 79.60 132.50 170.70 237.70 91.20 161.90

0.10 0.03 0.04 0.36 0.17 0.17 0.41 0.06

30 60 176.00 147.90 188.50 288.20 442.30 549.80 208.30 370.00

0.48 0.10 0.09 1.18 0.49 0.48 1.33 0.15

40 80 309.80 273.30 374.20 555.70 760.60 1207.00 368.80 684.40

1.81 0.17 0.14 2.72 0.93 0.67 3.45 0.28

50 100 457.70 392.30 561.90 824.40 1284.40 1971.20 548.10 1125.60

5.87 0.25 0.17 5.92 1.37 1.10 7.14 0.47

60 120 645.60 567.00 811.20 1219.90 1954.80 2667.90 811.10 1531.20

13.34 0.38 0.24 8.58 2.24 1.87 10.52 0.73

70 140 861.30 764.60 1146.20 1689.30 2549.30 4122.80 1032.40 2182.40

24.95 0.55 0.34 14.09 2.89 2.19 19.48 1.02

80 160 1246.10 1080.70 1481.30 2183.30 3279.40 5495.90 1467.70 2984.90

62.65 0.68 0.52 21.09 4.58 3.22 25.01 1.46

90 180 1697.70 1272.40 1848.00 2859.50 4280.00 6853.70 1762.40 3708.20

86.37 1.10 0.57 31.84 6.41 4.30 38.36 2.28

100 200 2027.30 1555.10 2084.10 3453.10 5405.00 8796.30 2209.40 4591.00

178.93 1.46 0.82 40.23 7.41 5.25 47.78 2.67
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Table A6. Results for 10 instances of sparse graphs, 10 trials each

n

i

m LR-Opt Bary Median Stoch Gre-ins Gre-swi Split Assign

10 20 13.60 12.70 18.70 17.50 30.00 22.30 14.70 25.70

0.12 0.15 0.12 0.55 0.40 0.34 0.68 0.16

20 40 51.00 48.30 59.10 89.00 150.80 163.40 63.70 128.60

0.98 0.42 0.39 3.61 1.82 1.58 3.93 0.68

30 60 133.40 117.00 145.80 228.60 421.30 422.10 160.10 321.80

5.55 0.96 0.76 11.48 4.59 4.18 13.13 1.42

40 80 234.10 212.40 271.40 432.80 724.50 949.80 279.90 589.70

18.45 1.75 1.29 26.57 8.25 7.42 31.26 6.91

50 100 384.20 325.60 407.30 715.60 1245.60 1715.90 462.70 966.20

52.01 2.79 2.06 51.33 13.59 11.60 60.80 4.83

60 120 541.10 479.90 599.90 1106.80 1909.70 2472.10 654.00 1425.80

128.12 4.38 2.93 92.08 21.97 18.27 114.07 7.14

70 140 733.20 641.30 858.00 1489.30 2514.30 3640.00 896.90 1973.20

304.08 5.79 3.82 139.95 30.18 23.22 175.83 11.04

80 160 1022.90 903.70 1145.10 1993.30 3248.70 4843.50 1169.60 2634.00

619.36 7.57 5.28 204.64 38.96 31.18 264.82 14.59

90 180 1282.50 1044.70 1323.70 2516.50 4209.10 6228.20 1466.40 3289.20

1134.67 10.81 6.55 307.44 57.13 43.19 377.72 20.20

100 200 1599.20 1313.20 1793.20 3119.40 5323.90 8145.30 1807.60 4165.10

2313.48 13.76 8.02 402.74 67.13 50.24 504.25 27.12
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