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Abstract

A fundamental problem in computational biology is the con-

struction of physical maps of chromosomes from hybridiza-

tion experiments between unique probes and clones of chro-

mosome fragments in the presence of error. Alizadeh, Karp,

Weisser and Zweig [AKWZ94] �rst considered a maximum-

likelihood model of the problem that is equivalent to �nd-

ing an ordering of the probes that minimizes a weighted

sum of errors, and developed several e�ective heuristics.

We show that by exploiting information about the end-

probes of clones, this model can be formulated as a weighted

Betweenness Problem. This a�ords the signi�cant advan-

tage of allowing the well-developed tools of integer linear-

programming and branch-and-cut algorithms to be brought

to bear on physical mapping, enabling us for the �rst time

to solve small mapping instances to optimality even in the

presence of high error. We also show that by combining

the optimal solution of many small overlapping Between-

ness Problems, one can e�ectively screen errors from larger

instances, and solve the edited instance to optimality as a

Hamming-Distance Traveling Salesman Problem. This sug-

gests a new combined approach to physical map construc-

tion.

Key words Computational biology, physical mapping

of chromosomes, betweenness problem, linear ordering prob-

lem, branch-and-cut.

1 Introduction and background

1.1 Motivation

Each human chromosome is a linear sequence of roughly

10

8

bases. To aid manipulation of DNA of this scale in the
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laboratory, and to prepare it for sequencing, physical maps

of chromosomes are constructed that give the location along

the molecule of important features, such as the location of

clones of DNA fragments.

In this paper, we consider the construction of physical

maps by a protocol known as STS-content mapping. In

this strategy, which is widely used in the Human Genome

Project, each clone corresponds to an interval of the chromo-

some, and each probe corresponds to a unique point on the

chromosome. While the position of clones and probes along

the chromosome is unknown, it can be determined whether

a clone contains a probe by a test called a hybridization ex-

periment. (The experiment tests whether the probe DNA

bonds, or hybridizes, with the clone DNA.) As hybridization

experiments are inevitably imperfect, the resulting clone-

probe incident data contains errors. In a false positive error,

the experiment reports that a clone contains a probe when

it does not, while in a false negative error, the experiment

reports that a clone does not contain a probe when it does.

The goal is to recover the probe or clone ordering from such

hybridization data.

We consider the problem of STS-content mapping with

false positive and false negative errors. In practice, an ad-

ditional type of error, called chimerism, occurs. A chimeric

clone is a clone that does not sample a single interval of the

chromosome, but contains two or more unrelated fragments

of DNA. While we concentrate on handling false positive

and negative errors, our approach can also be extended to

data with chimeric clones, as indicated in the �nal section.

In practice, the set of probes is obtained by extracting

DNA from the ends of clones. Usually probes are obtained

from a subset of the clones, and are not consistently ex-

tracted from both ends. For any given clone, however, the

probes that were extracted from its ends are known, and can

be identi�ed.

In this paper, we assume that probes are extracted from

both ends of every clone. (We do not assume any informa-

tion about which end a probe came from.) We show that by

consistently selecting probes from both ends of a clone, the

problem of reconstructing the probe order in the presence

of false positives and negatives can be successfully tackled

by integer linear programming. Our computational results

suggest that this change to the experimental protocol could

signi�cantly improve the quality of the physical maps that

are constructed, while tolerating a much higher experimen-

tal error rate. Furthermore, our integer linear programming

formulation, which is based on the Weighted Betweenness

Problem, can handle partial-order information on probes,

and is actually simpli�ed by such information. Our approach
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can also be extended to general probe-clone hybridization

data where clones do not have probes extracted from both

ends, as indicated in the �nal section.

1.2 Related work

We use the following mathematical description of the prob-

lem, also used by Alizadeh et al. [AKWZ94] and Greenberg

and Istrail [GI95]. The chromosome is mapped by n probes,

P

1

; : : : ; P

n

, and m clones, C

1

; : : : ; C

m

. The outcome of the

probe-clone hybridization experiments is given by an m� n

0-1 matrix A whose rows correspond to clones and whose

columns correspond to probes. An entry a

ij

is 1 if probe P

j

hybridizes to clone C

i

, and 0 otherwise. Entry a

ij

= 1 is a

false positive if the entry should be 0, while entry a

ij

= 0 is

a false negative if it should be 1.

In the absence of error and knowledge of end-probes, the

problem of reconstructing the probe order is equivalent to

the Consecutive Ones Problem: �nd a permutation � of the

columns of matrix A so that in the reordered matrix A

�

,

the ones in every row are consecutive. Using the PQ-tree of

Booth and Lueker [BL76], a representation of all permuta-

tions � that have the consecutive ones property can be com-

puted in time linear in the number of ones in matrix A. In

the presence of error, however, this approach breaks down.

Biologists and computer scientists have tackled the prob-

lem in several ways. Typically, maximum-likelihood func-

tions are suggested and their solution is attempted by

local search (see [AKWZ94, MHM

+

93]). Another ap-

proach is to approximate the maximum-likelihood func-

tion by a well-studied combinatorial problem, such

as the Hamming-Distance Traveling Salesman Problem

([AKWZ94, AKNW95, GI95]). Methods for �ltering the

data have also been o�ered as an attempt to remove

typical errors such as false positives or chimeric clones

[GDHC95, MGL94]. Further pointers to the literature are

given in [VLM96]. It is worth emphasizing that all these

approaches are particularly sensitive to false-positive errors,

and are successful only for relatively low false-positive rates.

Alizadeh et al. [AKWZ94] �rst introduced the maximum-

likelihood model that we consider. The idea is to �nd a

corrected matrix B that maximizes p(BjA), the probability

that B is the true hybridization matrix, given the observed

matrix A. Using Bayes' Theorem, they show

argmax

B

fp(BjA)g = argmax

B

�

�

p

�

1� p

�

�

n

�

(AjB)

�

p

�

1� p

�

�

n

�

(AjB)

�

p

�

1� p

�

�

n

�

(AjB)

�

;

where n

�

(AjB) is the number of rows of A that are declared

chimeric with respect to B, n

�

(AjB) is the number of false

positives in A with respect to B, n

�

(AjB) is the number of

false negatives in A with respect to B, p

�

is the probability

that a clone is chimeric, p

�

is the probability that an entry

is a false positive, and p

�

is the probability that an entry

is a false negative. Choosing � = � ln

p

�

1�p

�

, � = � ln

p

�

1�p

�

,

and � = � ln

p

�

1�p

�

gives

argmax

B

fp(BjA)g =

argmin

B

f�n

�

(AjB) + �n

�

(AjB) + � n

�

(AjB)g:

The problem then is to �nd a probe ordering � that

minimizes the linear objective function

f(�) = min

B

f�n

�

(A

�

jB) + � n

�

(A

�

jB) + � n

�

(A

�

jB)g:

Evaluating f for a given � requires �nding the best ma-

trix B; Jain and Myers [JM95] show how this can be done

e�ciently using dynamic programming. Given the NP-

hardness of minimizing f(�) [Boo75], Alizadeh et al. attack

the problem using local search.

1.3 Plan of the paper

We model mapping with end-probes, in the absence of chi-

meric clones, as the Weighted Betweenness Problem. Given

a collection of betweenness and nonbetweenness constraints

on a set of elements to be linearly ordered, the Weighted

Betweenness Problem asks for an ordering � of the elements

that minimizes a weighted sum of the constraints violated

by � (see Section 2). We then give an integer linear pro-

gramming formulation of Weighted Betweenness based on

the Linear Ordering Problem.

When relaxing the integer linear program by dropping in-

tegrality constraints, one often needs additional inequalities

to get good solutions with a linear programming method.

Section 3 describes our approach for obtaining useful new

inequalities. These inequalities are then used in a branch-

and-cut algorithm (see Section 4).

Our experiments on generated data verify that under

the maximum-likelihood objective, the correct order is an

optimal solution, or very close to an optimal solution. Con-

versely, our exact solution of the betweenness problem gives,

in most cases, the original probe ordering (see Section 5).

Section 6 describes our plans for further research, and indi-

cates how our approach can be extended to handle chimerism

as well as the absence of end-probe information.

2 Reducing physical mapping with end-probes to integer

linear programming

We formulate the problem of minimizing f(�) in the absence

of chimerism in terms of the Weighted Betweenness Prob-

lem. Consider the r-th row of A corresponding to clone C

r

.

Let columns i and k correspond to the end-probes P

i

and

P

k

of clone C

r

. Consider a probe P

j

, other than P

i

or P

k

,

that hybridized with clone C

r

, i.e. where a

rj

= 1. If entry

a

rj

= 1 is correct, in the correct order � of the probes col-

umn j should be between columns i and k. We denote this

by the triple (i; j; k), which we call a betweenness constraint.

Since we do not know the relative order of end-probes, both

the ordering i � � � j � � � k and k � � � j � � � i are consistent with

betweenness constraint (i; j; k).

Now consider a probe P

j

, again di�erent from P

i

and P

k

,

that did not hybridize with clone C

r

, i.e. where a

rj

= 0. If

entry a

rj

= 0 is correct, in the correct order � of the probes,

column j should not be between columns i and k, which we

denote by the triple (i; j; k), and call a nonbetweenness con-

straint. Both the orderings k � � � i � � � j, i � � � k � � � j, and their

reverse, are all consistent with the constraint (i; j; k). For an

instance of the problem, we denote the set of betweenness

constraints by B, and the set of nonbetweenness constraints

by B. Notice that any triple i; j; k occurs only once in B or

B.

The key advantage of having end-probe information is

that we can express the number of false positives and false

negatives in a probe ordering �, which are global proper-

ties of � usually requiring dynamic programming to com-

pute [JM95, AKWZ94], in terms of local betweenness and

nonbetweenness constraints. The false positives in row r are

exactly those columns j for which a

rj

= 1 but constraint

(i; j; k) is violated by �, where P

i

and P

k

are the end-probes
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of C

r

; each such j costs a penalty � in the objective func-

tion f(�). The false negatives in row r are exactly those

columns j for which a

rj

= 0 but constraint (i; j; k) is vio-

lated; each such j costs a penalty �. Thus the problem is

equivalent to �nding a � that minimizes the weighted sum

of the constraints that it violates. We note that this formu-

lation is slightly more general than the classical Between-

ness Problem [Opa79], in that we have both betweenness

and nonbetweenness constraints, and we are optimizing a

weighted sum of violations.

Opatrny [Opa79] has shown that simply deciding whether

a set of elements can be linearly ordered to satisfy a collec-

tion of betweenness constraints is NP-complete. Chor and

Sudan [CS95] present an approximation algorithm for the

classical Betweenness Problem that either �nds a feasible so-

lution, or �nds a linear order that satis�es at least one-half

of the constraints. They do not consider nonbetweenness

constraints or weighted constraints.

2.1 Variables

Our formulation of the Weighted Betweenness Problem can

be expressed as an integer linear program by introducing

linear ordering variables. For every ordered pair (i; j) of

probes, we introduce a variable x

ij

with the interpretation

x

ij

=

n

1 if i precedes j in the ordering �,

0 otherwise.

Thus the probe order � is represented by the set of vari-

ables x

ij

.

With every betweenness constraint (i; j; k) from set B,

we associate the variable b

ijk

with

b

ijk

=

n

0 if constraint (i; j; k) is met,

1 otherwise.

Thus b

ijk

counts whether or not betweenness constraint

(i; j; k) is violated.

As it will turn out, it is more natural in the linear pro-

gramming formulation to deal with betweenness constraints

rather than nonbetweenness constraints; hence we will ex-

press nonbetweenness constraints in terms of betweenness

constraints. With every nonbetweenness constraint (i; j; k)

from set B, we associate a variable b

ijk

with

b

ijk

=

n

0 if constraint (i; j; k) is met,

1 otherwise.

Thus 1� b

ijk

counts whether or not (i; j; k) is violated.

2.2 Integer programming formulation

To ensure that the variables x

ij

encode a linear ordering �

of the probes, the following conditions must be met:

0 � x

ij

� 1 for 1 � i 6= j � n (1)

x

ij

+ x

ji

= 1 for 1 � i 6= j � n (2)

x

ij

+ x

jk

+ x

ki

� 2 for 1 � i 6= j 6= k � n (3)

x

ij

integral for 1 � i 6= j � n: (4)

Conditions (2) and (3) enforce the antisymmetry and tran-

sitivity properties of a linear ordering.

With these conditions, every feasible assignment of the

x-variables corresponds to a linear ordering � of the probes.

To ensure that the b

ijk

count violations of the betweenness

and nonbetweenness constraints, we add the following in-

equalities. To force a b

ijk

2 B to be 1 if (i; j; k) is violated,

we add

b

ijk

� x

ij

� x

jk

(5)

b

ijk

� x

jk

� x

ij

: (6)

Thus b

ijk

2 B is 1 if jx

ij

� x

jk

j = 1.

To force a b

ijk

2 B to be 0 if (i; j; k) is violated, we add

b

ijk

� x

ij

+ x

jk

(7)

b

ijk

� 2� (x

ij

+ x

jk

): (8)

Thus b

ijk

2 B is 0 if jx

ij

� x

jk

j = 0.

Due to the form of the objective function, we do not have

to explicitly require integrality of the b

ijk

. The coe�cient

on a b

ijk

2 B in the objective function is positive, while the

coe�cient on a b

ijk

2 B is negative, so it su�ces to require

0 � b

ijk

� 1: (9)

Finally, we seek an assignment of the variables that min-

imizes

�

X

b

ijk

2B

b

ijk

+ �

X

b

ijk

2B

(1� b

ijk

) =

�

X

b

ijk

2B

b

ijk

� �

X

b

ijk

2B

b

ijk

+ �jBj:

Since �jBj is a constant for any particular problem instance,

this is equivalent to minimizing the objective function

�

X

b

ijk

2B

b

ijk

� �

X

b

ijk

2B

b

ijk

:

Note that while the number of variables is �(n

2

+mn) and

the number of inequalities is �(n

3

+mn), during the exe-

cution of a branch-and-cut algorithm only a subset of the

inequalities are included in the linear programs.

Constraints (1) to (9) guarantee that the solutions are

precisely all possible linear orderings. Since the Betweenness

Problem is NP-hard, we cannot hope for a general solution

of the above integer linear program (ILP). Instead, we ap-

proach the ILP by solving the relaxed linear program (LP) in

which the integrality constraints are removed. Successively

tighter relaxations are achieved by adding valid, but violated

linear inequalities to the LP. In fact, the set of solutions to

the ILP is given by some set of linear inequalities, though

the NP-hardness of the problem makes it unlikely that such

a complete linear description can be found in general and

exploited algorithmically. In the next section, we describe

further valid inequalities that have enabled us to solve map-

ping instances exactly. To simplify the exposition, we refer

to only one set B of betweenness variables, where

b

ijk

=

n

0 if j is between i and k in the ordering,

1 otherwise.

3 Valid inequalities

Suppose we are given an instance of the Weighted Between-

ness Problem by a number n of probes and a set B of t

triples. With every permutation � = (�

1

�

2

� � � �

n

) of the

3



probes we associate incidence vectors x

�

2 f0; 1g

n(n�1)

and

b

�

2 f0; 1g

t

with

x

�

ij

=

�

1 if �

i

< �

j

;

0 otherwise,

and

b

�

ijk

=

�

0 if �

i

< �

j

< �

k

or �

k

< �

j

< �

i

1 otherwise:

The polytope P(n;B) associated with an instance of the

betweenness problem is de�ned as

conv

���

x

�

b

�

�

�

�

� is a permutation of the probes

��

:

The vertices of P(n;B) are 0-1 vectors and correspond

to feasible solutions of the Weighted Betweenness Problem.

3.1 Trivial lifting

Let a

T

x � b be a valid inequality for P(n

0

;B

0

). The inequal-

ity a

T

x � b is also valid for any P(n;B) with n � n

0

and

B � B

0

. Thus linear descriptions of small problem instances

give valid inequalities for larger problem instances.

3.2 Small problem instances

We can easily compute the complete linear description of

small problem instances by enumerating all feasible inci-

dence vectors and applying the double-description method

for computing the linear description of the convex hull of the

set of the vectors. Christof and Reinelt [CR96] discuss algo-

rithmical details and software for that transformation. They

successfully use inequalities from small polytopes in branch-

and-cut algorithms for the linear ordering problem and the

traveling salesman problem. We present here the linear in-

equalities of those polytopes that proved to be useful in the

separation procedure of our branch-and-cut algorithm. The

polytopes are associated with problem instances on 3 and 4

nodes, and certain combinations of betweenness conditions.

We do not list trivial inequalities x

ij

� 1 and x

ij

� 0, or

dicycle inequalities x

ij

+x

jk

+x

ki

� 2 on the linear ordering

variables. These inequalities de�ne facets of the polytopes

only in certain cases.

P(3; ff1� 2� 3gg)

x

12

+ x

32

�b

123

� 1 (10)

x

21

+ x

23

�b

123

� 1 (11)

x

12

+ x

23

+b

123

� 2 (12)

x

21

+ x

32

+b

123

� 2 (13)

x

12

+ x

23

+ 2x

31

�b

123

� 2 (14)

2x

13

+ x

21

+ x

32

�b

123

� 2 (15)

In the following, we do not list facets that are already

given by P(3; ff1� 2� 3gg).

P(4; ff1� 2� 3g; f1� 4� 3gg)

x

12

+ 2x

24

+ x

32

+ x

41

+ x

43

�b

123

+ b

143

� 4 (16)

x

12

+ 2x

24

+ x

32

+ x

41

+ x

43

+b

123

� b

143

� 4 (17)

x

14

+ x

21

+ x

23

+ x

34

+ 2x

42

�b

123

+ b

143

� 4 (18)

x

14

+ x

21

+ x

23

+ x

34

+ 2x

42

+b

123

� b

143

� 4 (19)

P(4; ff1� 2� 3g; f2� 1� 4gg)

x

14

+ x

32

+ 2x

43

�b

123

� b

214

� 2 (20)

x

23

+ 2x

34

+ x

41

�b

123

� b

214

� 2 (21)

x

14

+ x

23

+ 2x

34

+ 2x

42

�b

123

� b

214

� 3 (22)

x

14

+ x

23

+ 2x

31

+ 2x

43

�b

123

� b

214

� 3 (23)

2x

13

+ x

32

+ 2x

34

+ x

41

�b

123

� b

214

� 3 (24)

2x

24

+ x

32

+ x

41

+ 2x

43

�b

123

� b

214

� 3 (25)

P(4; ff1� 2� 3g; f2� 1� 4g; f1� 4� 3gg)

x

32

+ x

43

� b

123

� b

214

� b

143

� 0 (26)

x

23

+ x

34

� b

123

� b

214

� b

143

� 0 (27)

x

23

+ 2x

31

+ x

43

� b

123

� b

214

� b

143

� 1 (28)

2x

13

+ x

32

+ x

34

� b

123

� b

214

� b

143

� 1 (29)

x

12

+ 2x

24

+ 2x

32

+ x

43

� b

214

� b

143

� 3 (30)

x

14

+ x

23

+ 2x

34

+ 2x

42

� b

123

� b

214

� 3 (31)

x

21

+ 2x

23

+ x

34

+ 2x

42

� b

214

� b

143

� 3 (32)

2x

24

+ x

32

+ x

41

+ 2x

43

� b

123

� b

214

� 3 (33)

x

12

+ 2x

24

+ x

32

+ x

41

+ x

43

� b

123

+ b

143

� 4 (34)

x

12

+ 2x

24

+ x

32

+ x

41

+ x

43

+ b

123

� b

143

� 4 (35)

x

14

+ x

21

+ x

23

+ x

34

+ 2x

42

� b

123

+ b

143

� 4 (36)

x

14

+ x

21

+ x

23

+ x

34

+ 2x

42

+ b

123

� b

143

� 4 (37)

Note that inequalities (30) { (33) can be transformed to

inequalities (22) and (25) and inequalities (34) { (37) are

inequalities (16) { (19).

P(4; ff1� 2� 3g; f2� 1� 4g; f1� 4� 3g; f2� 3� 4g)

+b

123

+ b

214

+ b

143

+ b

234

� 2 (38)

+b

123

+ b

214

� b

143

+ b

234

� 2 (39)

+b

123

� b

214

+ b

143

+ b

234

� 2 (40)

�b

123

+ b

214

+ b

143

+ b

234

� 2 (41)

+b

123

+ b

214

+ b

143

� b

234

� 2 (42)

In addition inequalities (28) { (29) and the inequalities (16)

{ (19) de�ne facets of the polytope.

3.3 Projection

By making use of the equation x

ij

+ x

ji

= 1 we can de�ne

a standard form of inequalities with all coe�cients of the

linear ordering variables having nonnegative value. Within

a branch-and-cut algorithm, it is more e�cient to use the

equation x

ij

+ x

ji

= 1 to eliminate variables x

ij

with j > i,

since it reduces the number of variables substantially . This

elimination converts the linear ordering dicycle inequalities

x

ij

+ x

jk

+ x

ki

� 2 to inequalities x

ij

+ x

jk

� x

ik

� 1 and

x

ij

+ x

jk

� x

ik

� 0 with i < j < k.

4 The branch-and-cut algorithm

Our physical-mapping algorithm is based on the branch-and-

cut algorithm of [GJR84, GJR85] for the classical Linear

Ordering Problem. Reimplementation was done using the

software system ABACUS [Thi95, JRT95], a general, object-

oriented framework for implementing branch-and-cut algo-

rithms. ABACUS' object-oriented design in C++ proved

to be extremely useful. Since classical linear ordering and

4



betweenness are strongly related, functions and data struc-

tures common to both problems could be implemented in

common base classes.

The algorithm starts with a linear program containing

only constraints (1), and iteratively adds violated constraints

after an LP has been solved. We test violation of the con-

straints in the ILP and the ones described in Section 3. The

above step is repeated until we get an integral solution vec-

tor satisfying all the constraints of type (3), (5){(9) or until

we cannot �nd any violated inequalities. In the �rst case,

we have found a provably optimal solution, while in the sec-

ond case the same procedure is applied recursively to two

subproblems, one in which a fractional variable x

ij

is set to

1, and the other in which the variable is set to 0.

Obviously for every solution for the betweenness prob-

lem corresponding to a permutation � = (�

1

�

2

� � ��

n

) the

reverse permutation (�

n

� � ��

2

�

1

) is a feasible solution with

the same objective function. This allows us to �x one arbi-

trary variable x

ij

as x

ij

= 1 before solving the �rst relax-

ation.

5 Computational results

5.1 Generator

For our computational experiments we used a generator sim-

ilar to the one suggested by Greenberg and Istrail [GI95].

The distinct advantage of using simulated data is that we

know the correct order of the probes, and hence we can re-

liably measure the success of our method. For testing our

algorithm, we generated data where each clone gave rise

to two end-probes, all clones were of the same length, and

were randomly distributed across the chromosome. We used

a coverage varying from 3 to 5, a false negative rate of 10%,

and a false positive rate varying from 0% to 5%. To generate

a false positive or false negative, a coin was 
ipped at each

entry with the given probability. Across experiments with

varying coverage, the clone length is held constant.

5.2 Exact solutions

For comparison, we also considered the common approach

to physical mapping of solving a Hamming-Distance Travel-

ing Salesman Problem (HDTSP) (see, e.g., [AKWZ94] and

[GI95]). The nodes of a HDTSP are the columns of our

hybridization matrix A, and the distances d

ij

= d

ji

are

given by the Hamming distance between the corresponding

columns, i.e., the number of rows of A with a

ri

6= 0; a

rj

= 0.

To obtain a Hamilton cycle problem, an arti�cial column

is introduced in A with all entries equal to 0. The result-

ing symmetric Traveling Salesman Problems were solved to

optimality using the ABACUS version [Thi95] of the branch-

and-cut code of J�unger, Reinelt, and Thienel [JRT94].

Figures 1 to 12 show results from 150 problem instances.

Within each plot, the horizontal axis indicates the false pos-

itive rate. The three plots in each �gure are for coverage 3,

4, and 5.

We �rst compared the solution values of the Weighted

Betweenness Problem and the HDTSP with the value of the

known correct solution, to determine whether exact solution

of the maximum likelihood model is worthwhile for recover-

ing the true map. As shown in Figures 1{3, the values of the

optimal solution of the betweenness problem and the correct

solution di�er in only a fraction of the instances, and then

by quite small amounts. This suggests that the maximum-

likelihood function may be useful in identifying the correct

probe order, even on instances with high false positive rates.
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In contrast, the optimal solution of the HDTSP is rarely an

optimal solution for the original problem. Moreover, the

discrepancy increases with higher false positive rates, while

the betweenness solution remains stable.

As in Greenberg and Istrail [GI95], we de�ne the

adjacency-quality of a solution � as the ratio of the number

of adjacencies of probes that are common to both � and the

correct ordering �

�

, divided by the number of adjacencies in

�

�

. Figures 4{6 show that the quality of the solution of the

betweenness problem is 1 in many cases, indicating that the

optimal solution of the betweenness problem is exactly the

correct ordering. An alternative measurement of quality of

a solution is the average number of probes that lie between

two probes which are adjacent in the correct ordering. Fig-

ures 7{9 show the corresponding values. With respect to

the HDTSP, both qualities of the solutions of the between-

ness problems are appreciably better in most every instance

than the corresponding qualities of the optimal solution of

the HDTSP.
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Figure 12: Solution Times (coverage=5)

Figures 10{12 display the running times of the algorithm

on a SUN SPARC IPX using CPLEX2.2 as the linear pro-

gramming solver. It can be observed that the problems tend

to become harder as the false positive ratio increases.

5.3 Combined strategy

Unfortunately, we are currently able to solve only rel-

atively small instances of the betweenness problem to op-

timality (up to 100 probes depending on the ratio of false

positives to false negatives). For larger instances, the follow-

ing approach appears promising. We use the exact solution

of local betweenness problems to screen out errors (largely

false positives) in the full problem, and then solve a HDTSP

(which has been demonstrated to work well in the absence

of false positives and negatives) on the edited full problem.

The intuition is that on a subset of the probes that are

adjacent in the correct solution, it is likely that a false pos-

itive in an optimal solution of a local betweenness problem

on the corresponding subset of columns of A is also a false

positive in the original problem. We implement this proce-

dure as follows. Let s be a �xed parameter, here taken to be

s = 30, which bounds the maximum number of probes in a

local betweenness problem that we will solve. For each probe

in the data, we generate a local betweenness subproblem

over the s=2 nearest neighbours of the probe with respect to

the Hamming distance, and further include all end-probes

that are opposite end-probes of the clones for which the �rst

s=2 probes are end-probes. We call a betweenness condition

of the original problem a false positive if there is no sub-

problem in which the condition is met. Since after removing

these presumed false positives, the Hamming distances and

the resulting subproblems change, the complete procedure

may be executed several times.

Figure 13 compares the optimal HDTSP-solutions with

the corresponding optimal HDTSP-solution after running

the screening procedure for an instance with coverage 4, 400

probes, false positive rate 5%, and false negative rate 10%.

(This false positive rate is more than an order of magnitude

larger, and the coverage much lower, than what has been

attempted previously [AKWZ94].) The original probe order

is given as the identity permutation, and the computed order

is plotted against the identity. A perfect solution would
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appear as a line of slope 1 or �1. Compared to the raw

HDTSP-solution, the second solution contains longer line

segments of �45 degrees, which suggest that the combined

strategy may o�er a superior approach. With screening we

could reduce the number of false positives from 3902 to 109,

while increasing the number of false negatives from 179 to

418.

6 Conclusion and future directions

We have shown that physical mapping from clone-probe hy-

bridization data in the presence of false positive and false

negative errors using unique probes with end-probe infor-

mation can be formulated as a weighted betweenness prob-

lem. With this formulation we can solve small instances

to optimality using methods from polyhedral combinatorics.

Computational experiments with the exact branch-and-cut

algorithm support the validity of the maximum-likelihood

model. Comparison with the results obtained by solving

Hamming-Distance Traveling Salesman Problems to opti-

mality suggests that exact optimization of the maximum-

likelihood function may be a better approach for solving the

physical mapping problem than the widely-used transforma-

tion to a Hamming-Distance Traveling Salesman Problem.

6.1 Data without end-probes

If end-probes are not given for a clone, we can add arti�cial

probes for the clone that simulate its missing end-probes. If

one end-probe of the clone is known, this adds one arti�cial

end-probe, and if no end-probes are known, this adds two

arti�cial end-probes. We can then generate betweenness and

nonbetweenness constraints for the clone as before, taking

care that the arti�cial end-probes only induce constraints

for the given clone. Finding a linear order of all the probes

(including the arti�cial ones) that minimizes the objective

function will again minimize the weighted sum of false posi-

tive and false negative errors. Remarkably, this simple mod-

i�cation allows us to handle arbitrary probe-clone hybridiza-

tion data, and shows that the betweenness formulation is far

more general than may appear.

6.2 Chimerism

Our model can also be extended to handle chimerism. For

each clone with end-probes i and k, we add two arti�cial

probes i

0

and k

0

that simulate the internal boundaries of

the ends of its two chimeric fragments. (This addresses 2-

chimerism, but can also be extended to 3-chimerism, etc.)

We ensure that these two arti�cial probes lie between the

clone's end-probes by introducing betweenness conditions

(i; i

0

; k) and (i; k

0

; k) and �xing the corresponding variables

by setting

b

ii

0

k

= 0 (43)

b

ik

0

k

= 0: (44)

If a probe that does not hybridize to the clone falls between

the two arti�cial probes, it should not be counted as a false

negative, while if a probe that does hybridize to the clone

falls between the arti�cial probes, it should be counted as

a false positive. The �rst requirement can be modelled by

introducing nonbetweenness conditions (i

0

; j; k

0

) with weight

�� for all nonbetweenness conditions b

ijk

2 B, the second

requirement can be achieved with nonbetweenness condi-

tions (i

0

; j; k

0

) with weight � for all betweenness conditions

b

ijk

2 B. We also introduce an additional variable c

ik

for

the clone with end-probes i and k that is 1 if and only if a

probe falls between these two arti�cial internal probes. To

force c

ik

to be equal 1 if a probe lies between the arti�cial

probes we add the inequalities

c

ik

� 1� b

i

0

jk

0
for all b

ijk

2 B [ B: (45)

The objective function to be minimized changes to

�

X

b

ijk

2B

b

ijk

+ �

X

b

ijk

2B

(1� b

ijk

) +

�

X

c

ik

2C

c

ik

+ �

X

b

i

0

jk

0

2B

0

(1� b

i

0

jk

0
) � �

X

b

i

0

jk

0

2B

0

(1� b

i

0

jk

0
);

where C denotes the set of all clones and B

0

= fb

i

0

jk

0
j

9 b

ijk

2 Bg and B

0

= fb

i

0

jk

0
j 9 b

ijk

2 Bg.

6.3 Final remarks

We wish to emphasize that this approach to physical map-

ping has still to stand the test of real-world problem in-

stances.
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