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Chapter 1  

______________________________________________ 

 

General Introduction: About gibberellins relevance 

and natural variation 

 

 
The analysis of natural variation 
Natural variation in species with a broad distribution range is expected to reflect 

adaptation to the environment in which the plants are growing. The genetic difference 

between naturally occurring accessions is often the consequence of allelic differences 

at multiple loci with a quantitative effect and modification by environmental factors. 

These aspects require a quantitative genetic analysis of the genetic differences 

(Bergelson & Roux, 2010).  

 To dissect the genetic basis of this type of genetic variation, Quantitative Trait 

Loci (QTL) analysis either using the progeny of crosses among accessions or Genome 

Wide Association Studies (GWAS) allow the mapping of the genes underlying this 

variation. To identify the genes underlying allelic variation at the QTL (Alonso-Blanco 

et al., 2009; Weigel, 2011) additional experiments are required which involve fine-

mapping, sequence and gene expression comparisons (Weigel, 2011). Both mapping 

approaches have been successful and revealed that the identified genes can belong to 

all types of ontology classes with differences in the structural part of the genes or in 

the promoters (Alonso-Blanco et al., 2009; Bergelson & Roux, 2010; Weigel, 2011). 

How this allelic variation relates to adaptation is often not known and requires insight 

in the pleiotropic effects that may account for trait–offs as well as field experiments, 

preferentially at multiple sites, to test fitness differences in nature. Additionally, 

molecular population genetics can provide indications for the selection of specific 

alleles (Nielsen, 2005) e.g. by detecting selective sweeps of specific genes (Alcázar et 

al., 2010) and or correlations between the presence of specific alleles and climate or 

other geography related parameters (Baxter et al., 2010; Gujas et al., 2012). 
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QTL mapping using segregating populations, based on bi-parental crosses, 

have allowed the identification of main effect loci and their cloning of the genes 

controlling this effect. This mapping procedure shows as main feature high mapping 

power but low resolution, which means that regions where QTL are located may 

contain several-hundreds of genes as possible candidates for the gene underlying the 

QTL. Recombinant Inbred Lines (RILs) are genotypes used for mapping derived from 

a cross of two parents and followed by several generations of selfing (>8) trying to 

achieve high homozygosity. To bypass the problem that repeated selfing for many 

generations takes time, another procedure to generate homozygous lines, which is the 

production of Doubled Haploids (DHs) (Seymour et al., 2012) can be applied. Instead 

of using anther culture, which is not working effectively for Arabidopsis (Scholl & 

Amos, 1980) recently a technology using centromere elimination was described (Ravi 

& Chan 2010). For this a wild type genotype, which can be a hybrid is crossed with the 

specific ‘cenh3’ variant (a transgenic line expressing the centromere-specific histone 

CENH3), which then will eliminate the ‘cenh3 variant’ chromosomes in the zygote, 

thus producing a haploid progeny that will there generate the doubled haploid lines by 

spontaneous chromosome doubling (Ravi & Chan, 2010; Seymour et al., 2012). QTL 

analysis requires validation to confirm the involvement of allelic variation of the 

region underlying the QTL as well as further fine-mapping. This can be done by 

employing Near Isogenic Lines (NILs) (Keurentjes et al., 2007) that can be obtained 

by backcrossing specific genotypes with one or both parents. NILs are introgressions 

of the QTLs of interest in a contrasting parental background, or even one QTL can be 

introgressed in different backgrounds (Bentsink et al., 2010). Another way to select 

NILs make use of so-called Heterogeneous Inbred Families HIFs (Tuinstra et al., 

1997). HIFs are selected based on the identification of genotypes with residual 

heterozygosity in the genomic region where a QTL was mapped. When such 

heterozygous genotypes are selfed, thereafter one can select NILs contrasting in the 

alleles of the parental lines. An advantage of using these lines is that they may have a 

genetic background that increases the differences between the alleles of the QTL under 

study and thereby helps the validation of QTLs, especially when the effect of the 

allelic variation depends on other loci (epistasis).  

GWAS try to map loci at high (gene) resolution without the need to generate 

mapping populations and is therefore a promising method to identify genes underlying 

natural variation. Instead of using experimental crosses as done with QTL analysis, 
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GWAS employ a group of accessions to do mapping. Although the power is not as 

high as with bi-parental mapping populations, several genes have been identified using 

this procedure (Korte & Farlow, 2013). GWAS complications are the (confounding) 

population structure, which means some genotypes can be in linkage disequilibrium 

with each other e.g. due to common origin (Korte & Farlow, 2013). Additional GWAS 

complications are the presence of epistatic interactions (current mapping methods do 

not include interaction effects), and the difficulty to assign effects to rare alleles 

(Ingvarsson & Street, 2011).  

The combination of GWAS and bi-parental QTL mapping studies may provide 

an efficient scenario for gene discovery as they have complementary strengths. 

However this is not an easy and straight forward job as shown for flowering time a 

trait for which several major effect QTL have been molecularly studied (Brachi et al., 

2010). Recently multi-parents RILs have been generated (Kover et al., 2009; Huang et 

al., 2011) in an another attempt to combine the positive attributes of bi-parental and 

GWAS mapping. The use of multiple parents provide a higher number of segregation 

alleles thus exploiting more of the variation and combinations of specific alleles at 

different loci that can result in novel phenotypes (Huang et al 2013). When additional 

intercrossing is performed more recombination can take place, improving the 

resolution especially when combined with a large progeny (Kover & Mott, 2012). An 

important additional tool for the analysis of natural variation is obtained by the re-

sequencing of a large number of accessions in the 1001 genomes project 

(http://www.1001genomes.org), which provides genomic data allowing quick 

identification of polymorphisms and candidate allelic variants for natural variation in 

A. thaliana. 

Currently plant biologists / geneticists are not only exposed to genomic but also 

phenotyping data obtained by high-throughput methods. Methodologies to 

automatically phenotype A. thaliana (and crops) have been developed for seed size 

(Moore et al., 2013), germination (Joosen et al., 2010), hypocotyls (Cole et al., 2011; 

Wang et al., 2009), shoots (Granier et al., 2006; Jansen et al., 2009) and roots (Nagel et 

al., 2009; Nagel et al., 2012). Most of these tools provide automated evaluation 

platforms and semi - / automatic image processing pipelines. Still additional methods 

need to be developed to avoid phenotyping being the bottleneck in genetic / genomic 

analysis. 
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Does variation in hormonal biosynthesis and signalling contribute to 

phenotypic variation in nature? 
Variation in plant hormone levels and hormone signalling might be a basis for the 

phenotypic variation in developmental and stress-related traits in nature. Plant 

hormones are small molecules, present at low concentrations, that regulate plant 

growth and responses to biotic and abiotic stresses (Santner et al., 2009). Well known 

plant growth regulators are Abscisic Acid (ABA), Auxin, Brassinosteroids, Ethylene, 

Gibberellins, (GAs), Jasmonates and Salicylic acid to which recently Strigolactones 

(Santner et al., 2009) are added. Despite all the existent knowledge about metabolism 

and signalling of these compounds, few examples of natural variation of plant 

hormone related traits have been described and even fewer about the evolutionary role 

of these variants. An example of natural variation related with plant hormones in 

Arabidopsis is the gene BRX that is a positive regulator of auxin signalling (Scacchi et 

al., 2010) and that has been implicated with brassinosteroids homeostasis (Mouchel et 

al., 2006). BRX modifies root length under acidic conditions (Gujas et al., 2012). 

Natural variation in the GA biosynthesis pathway has also been found and will be 

addressed in detail in the following paragraphs. 

 

 

Gibberellin biosynthesis and signalling 

Bioactive gibberellins (GAs) are plant growth regulators involved in several traits such 

as seed germination, flowering time, anther and petal development, and cell elongation 

(Sun, 2008). Their biosynthesis and signalling is well understood (Hedden & Thomas, 

2012; Sun, 2008; Yamaguchi, 2008). The GA precursor is the geranylgeranyl 

diphosphate (GGPD), which is also precursor of other diterpenoids (Figure 1.1) 

(Yamaguchi, 2008). By the action of two enzymes encoded by the ent-copalyl 

diphosphate synthase (CPS) and ent-Kaurene synthase (KS) genes, GGPD is converted 

into ent-Kaurene (Yamaguchi, 2008). Ent-Kaurene is thereafter converted into GA12 

by the action of two P450 enzymes: ent-Kaurene oxidase (KO) and ent-kaurenoic acid 

oxidase (KAO) (Yamaguchi, 2008). GA12 is converted into the bioactive form GA4 by 

GA 20-oxidases and GA 3-oxidases. These genes have several paralogs which perform 

redundant functions (Mitchum et al., 2006; Rieu et al., 2008), in contrast with the early 
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steps of GA biosynthesis catalyzed by enzymes encoded by single or two copies genes 

(Figure 1.1). Gibberellins can be inactivated by GA 2-oxidases or by gibberellin 

methyltransferases (GAMT1 and GAMT2) (Yamaguchi, 2008). The active GAs (e.g. 

GA4 for Arabidopsis) by interacting with the receptor GA INSENSITIVE DWARF1 

(GID1), target the growth inhibition proteins DELLAs. This allows the recognition of 

this complex by SLY1 (SLEEPY1). Thereafter DELLAs are targeted by the 26S 

proteasome machinery and degraded (Sun, 2010), releasing their inhibition effect. Up 

to date five A. thaliana DELLA proteins have been described: REPRESSOR OF GA1-

3 (RGA), GIBBERELLIC ACID INSENSITIVE (GAI), RGA-LIKE1 (RGL1), RGL2 

and RGL3 (Sun, 2011). These DELLA differ mainly in their expression patterns. 

 

 
Figure 1.1. Summary of the GA biosynthesis and Signalling pathway in Arabidopsis thaliana. 
*Indicate genes with identified natural variation. The figure was summarized from previous reviews 
(Sun, 2010; Yamaguchi, 2008). Between brackets the previous names of the genes based on the original 
mutants (Koornneef and van der Veen, 1980) are mentioned. 
 

 GAs affect the expression of many genes and their levels are regulated by 

environmental factors as well as by other plant hormones in order to promote changes 

in growth or development. Seed germination is a process that can serve as example of 

the mode of action of GAs. In germination the antagonistic role of GA – ABA is well 

established. The former promotes germination while the latter inhibits germination. 

The hormones act both during seed maturation when dormancy is induced for which 

process ABA is essential and during seed imbibition when GAs levels increase and 

will overcome the dormancy induced by ABA among others by affecting the ABA 

levels (Holdsworth et al., 2008). During seed maturation GAs are regulated by the 

LEAFY COTYLEDON2 (LEC2) and FUSCA3 (FUS3) pathways (Curaba et al., 2004). 
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These genes are required to inhibit precocious germination and anthocyanin 

accumulation (Curaba et al., 2004). FUS3 represses the AtGA3ox2 thus reducing GA 

biosynthesis and consequently promoting dormancy (Holdsworth et al., 2008). During 

seed imbibition de-novo GA biosynthesis is induced by cold thus promoting 

germination (Yamaguchi, 2008). Another environmental factor affecting germination 

is light. When phytochromes are activated through light treatments they promote the 

expression of AtGA3ox1 and AtGA3ox2 while AtGA2ox2 expression decreases 

(Yamaguchi, 2008). Besides the antagonistic GA – ABA role, GA requirement for 

germination is mediated by the testa characteristics, with as main evidence for this the 

observation that when embryos of ga1 mutants are excised from the envelopes, 

germination is restored (Debeaujon & Koornneef, 2000). 

GAs play an important role in promoting cell elongation and examples of this 

effect during hypocotyl elongation and inflorescence stem have been described. 

Hypocotyls grown in the dark undergo a process called skotomorphogenesis thus 

forming long hypocotyls with an apical hook and closed-small-chlorophyll lacking 

cotyledons (Gendreau et al., 1997; Lau & Deng, 2010). GA promotes hypocotyls 

elongation in seedlings grown in the dark by reducing the DELLA proteins levels, thus 

allowing the repressive transcription factors PIF3 and PIF4 to bind to their targets and 

promote skotomorphogenesis and repress photomorphogenesis (Lau & Deng, 2010). 

Another example is the interaction between GA and other hormones to promote 

inflorescence stem growth (Strabala & MacMillan, 2013).   

 

GA mutations role in genetics and plant breeding 
Gibberellins have played an important role in the history of genetics and in crops 

breeding. One of the traits studied by Mendel was stem length and the gene controlling 

this trait was termed Le (Mendel, 1865; Lester et al., 1997), which was found to 

encode a gibberellin 3β – hydroxylase (ortholog of GA4 in A. thaliana) (Lester et al., 

1997). Modification of the GA pathways was crucial in the green revolution, since it 

conferred semi-dwarfism and increased crop yields (Hedden, 2003; Salamini, 2003) 

mainly by avoiding lodging and thus allowing farmers to add more fertilizers and 

increasing the harvest index (Sasaki et al., 2002; Spielmeyer et al., 2002). In the case 

of rice the semi-dwarf locus Semi-Dwarf-1 (SD1), which codes for a GA 20-oxidase-2 

was targeted (Sasaki et al., 2002; Spielmeyer et al., 2002). Modern barley varieties in 
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which the mutated gene was called Denso or Sdw1 (Jia et al., 2009) also carry 

mutations in the GA 20ox2 encoding gene. In the case of wheat, the GA signalling 

pathway was targeted in the Reduced height-1 (Rht-B1 and Rht-D1) green revolution 

loci (Peng et al., 1999). This semi-dwarf genotypes have a low responsiveness to GA 

applications and it has been shown that Rht-B1 / Rht-D1 and the maize dwarf-8 (d8) 

(Harberd & Freeling, 1989; Winkler & Freeling, 1994) are orthologs of the A. thaliana 

GAI (Koorneef et al., 1985) signalling pathway (DELLA) gene (Peng et al., 1999). As 

in the A. thaliana gai mutants, D8 and Rht genes carry gain of function mutations, 

which conferred reduced GA responses (Peng et al., 1997). These mutations are 

dominant, contrasting the recessive loss of function mutations in the GA 20-oxidase 

genes. The mutations in the gai mutants cause semi-dwarfism because it affects the 

interaction with GA or GA-signals (Peng et al., 1997). Using transgenic approaches 

semi-dwarfism was also introduced into Poplar, where the AtGAI mutant variant and 

independently the GA 2-oxidase (using Phaseolus coccineum as gene source) were 

overexpressed and induced semi-dwarfism (Elias et al., 2012).  

 

Genetic variation for GA biosynthesis and signalling in Arabidopsis 

thaliana. 

Many GA biosynthesis and signalling mutants have been isolated in A. thaliana 

providing valuable tools to study this plant hormone and clone the genes controlling 

the pathway (Koornneef & Veen, 1980; Koorneef et al., 1985; Mitchum et al., 2006; 

Rieu et al., 2008; Plackett et al., 2012). GA related traits such as plant height and seed 

germination might help identifying natural variants with mutations in this pathway. In 

addition to this forward approach also the emerging genomic resources such as the 

1001 Genome projects allows the identification of mutations in the now known genes 

of the pathway. Additional tools include the use of several GA inhibiting compounds, 

among them paclobutrazol (PAC) (Hedden & Graebe, 1985), ancymidol (Nambara et 

al., 1992), and tetcyclasis (Debeaujon & Koornneef, 2000), which allowed to the 

selection of mutants that do not require GAs in specific pathways such as seed 

germination . 

 How much natural variation in A. thaliana is due to modifications of the well 

described GA pathway is still unknown. Indications that variation for GA responses is 

present among natural A. thaliana accessions have been reported for germination and 
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hypocotyl length (Borevitz et al., 2002; van der Schaar et al., 1997). It has been 

described that the A. thaliana accession Bur-0 carries a loss-of-function allele at 

GA20ox4 (Plackett et al., 2012) (Figure 1.1), which does not result in a semi-dwarf 

phenotype. Genetic variation in GA1 (Figure 1.1) has been related with variation in 

floral morphology (Brock et al., 2012). El-Lithy et al., (2006) described that semi-

dwarfism in the Kas-2 accession is due to a recessive allele at the GA5 locus (Figure 

1.1). The GA5 gene encodes for a GA 20-oxidase causing semi-dwarfism when 

mutated (Xu et al., 1995). The ga5 mutants (Koornneef & Veen, 1980) displays a 

semi-dwarf phenotype that do not confer obvious detrimental pleiotropic effects, and 

this phenotype is stable until harvesting time. It is relevant to mention, of all five GA 

20-oxidases paralogs, only mutations in GA20ox1 induce semi-dwarfism (Rieu et al., 

2008).   

 

Semi-dwarfism and water stress tolerance 

Studies in rice showed that genotypes displaying drought tolerance can be found both 

in wild type and semi-dwarf background (Lafitte et al., 2007). In Arabidopsis, a lack of 

GA leading to semi-dwarfism might confer an advantage under water stress conditions 

as pointed by Vartanian et al. (1994) who showed ga5 makes a drought (water 

withholding) stress adapted root system in a much more effective way than its wild 

type. In this study a higher number of short roots (present in lateral roots as a drought 

induced response) was observed in the ga5 mutant compared to wild type and other 

evaluated genotypes. A link of gibberellin and stress tolerance makes sense in view 

that when plants are exposed to limited water conditions have to restrict their growth. 

This regulation is achieved by many environmental factors and also by other plant 

hormone pathways, e.g. via increasing the level of growth repressing effect of the 

DELLA proteins, which repressors are suppressed by gibberellins (Achard & 

Genschik, 2008). 

 

Thesis objective 

The main aim of this thesis was to investigate how much genetic variation in the 

gibberellin biosynthesis and signalling pathways contribute to natural variation in 

Arabidopsis thaliana. One goal was to study the genetic variation of the GA 

biosynthesis gene (GA5) and to obtain indications for selection in specific populations 

(chapter two). To understand a potential genetic advantage the possible trait-offs that 
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affect fitness were quantified and related to semi-dwarfism (chapter two). In addition it 

was aimed to understand the possible physiological consequences of ga5 natural 

variants and if pleiotropic effects on other traits including the phenotype of the root 

system and the response to water limitation experiments are present (chapter three). 

Finally it was aimed to study the genetic control of a GA inhibitor application for 

germination (chapter four) and hypocotyl length (chapter five), for which a high 

throughput semi / -automated Phenotyping was developed (chapter five). 
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Arabidopsis semi-dwarfs evolved from independent 

mutations in GA20ox1, orthologue to green revolution 

dwarf alleles in rice and barley 
 

 

Abstract 

Understanding the genetic bases of natural variation for developmental and stress-

related traits is a major goal of current plant biology. Variation in plant hormone levels 

and signalling might underlie such phenotypic variation occurring even within the 

same species. Here it is reported the genetic and molecular basis of semi-dwarf 

individuals found in natural Arabidopsis thaliana populations. Allelism tests 

demonstrate that independent loss-of-function mutations at GA5, which encodes a GA 

20-oxidase involved in the last steps of gibberellin (GA) biosynthesis, are found in 

different populations from Southern, Western and Northern Europe, Central Asia and 

Japan. Sequencing of GA5 identified 21 different loss-of-function alleles causing semi-

dwarfism without any obvious general trade-off affecting plant performance traits. 

GA5 shows signatures of purifying selection, while GA5 loss-of–function alleles can 

also exhibit patterns of positive selection in specific populations as shown by Fay and 

Wu’s H statistics. These results suggest that antagonistic pleiotropy might underlie the 

occurrence of GA5 loss-of-function mutations in nature. Furthermore, since GA5 is the 

orthologue of rice SD1 and barley Sdw1/Denso green revolution genes, this study 

illustrates the occurrence of conserved adaptive evolution between wild Arabidopsis 

and domesticated plants. 
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Introduction 

Bioactive gibberellins (GA) are plant growth regulators involved in important traits 

such as seed germination, flowering time, anther and petal development, fertility and 

elongation growth (Hedden & Thomas, 2012). GA biosynthesis and signalling 

pathways are well defined (Yamaguchi, 2008; Hedden and Thomas, 2012) and have 

been targeted in crop breeding. Modification of GA pathways was crucial in the green 

revolution since it conferred semi-dwarfism thus reducing lodging and increasing crop 

yields (Hedden, 2003; Salamini, 2003). In addition, it allows higher fertilizer 

applications without detrimental effects on yield, which increased harvest index 

(Sasaki et al., 2002; Spielmeyer et al., 2002). Green revolution semi-dwarf varieties in 

wheat are due to mutations in DELLA genes while many short straw rice varieties carry 

a mutation in the SD1 (Semi-Dwarf-1) locus. This locus codes for GA 20-oxidase-2, a 

GA biosynthesis gene that is also mutated in most modern barley varieties in which the 

gene was called Denso or Sdw1 (Jia et al., 2009). 

GA 20-oxidases are involved in the later steps of GA biosynthesis and belong 

to the group of 2-oxoglutarate-dependent dioxygenases that, together with GA 3-

oxidases, form biologically active GA (Rieu et al., 2008). Arabidopsis thaliana 

(hereafter referred to as Arabidopsis) has five GA20ox paralogous genes. AtGA20ox-1, 

-2, -3 and -4 can catalyze the in vitro conversion of GA12 to GA9. Therefore, GA20ox 

paralogs might have partial redundant functions (Plackett et al., 2012). However, 

among paralog genes, only AtGA20ox-1 (GA5), which was cloned on the basis of the 

ga5 mutant (Xu et al., 1995), affected plant height (Rieu et al., 2008). 

Natural variation for GA biosynthesis has been previously described in 

Arabidopsis since the Bur-0 accession carries a loss-of-function allele at GA20ox4 

(Plackett et al., 2012), which does not result in a semi-dwarf phenotype. In addition, 

genetic variation in GA1 has been associated with variation in floral morphology 

(Brock et al., 2012). Furthermore, the semi-dwarf phenotype (here defined as a plant 

height shorter than half the size of genetically related individuals) observed in the Kas-

2 accession, is due to a recessive allele at the GA5 locus (El-Lithy et al., 2006). This 

latter finding led to the question whether green revolution alleles artificially selected in 

cereals could also occur in natural populations of the wild species Arabidopsis; and, if 

so, how many different GA5 loss-of-function alleles exist, how are they distributed and 

why do they occur in some populations. 
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Results 

Identification, characterization and geographic distribution of natural ga5 alleles.  

Phenotypic surveys for plant height in world-wide collections of Arabidopsis 

accessions detected 97 individuals collected in 23 different locations showing semi-

dwarf phenotypes. To determine the genetic basis of semi-dwarfism, allelism tests 

were carried out by crossing at least one semi-dwarf from each population to the 

recessive ga5 (Ler) mutant (Koornneef & van der Veen, 1980), and to Ler ‘wild type’ 

as comparative control (Figure 2.1A and 2.1B, Table 2.1). In addition, to discard that 

GA-biosynthesis mutations other than GA5 could account for the semi-dwarf 

phenotypes, the complementation of the ga5 (Ler) mutant by two other semi-dwarf 

mutant alleles also affecting GA biosynthesis was tested: ga4 (Ler), a mutant in the 

GA3ox1 gene and ga3ox1-3 (Col-0) (Mitchum et al., 2006) (Figure 2.1B, Table 2.1). 

Ler and Col mutants were used to test background effects.  Control F1 plants derived 

from crosses between non-dwarf accessions and ga5 mutant, as well as F1 plants 

grown from crosses with other GA mutants were all taller than their corresponding 

parents. The crosses ga5 × ga4 and Ler × ga4 yielded a low height due to the erecta 

mutation which remained recessive in the F1. In addition, three accessions showing a 

weaker semi-dwarf phenotype (Nfro -Scandinavia-, Kar -Central Asia- and Vel -

Iberian Peninsula-) were not allelic to ga5, which indicated that other loci accounted 

for their plant height phenotype. However, for all the remaining semi-dwarf accessions 

tested, the F1 obtained from their cross to ga5 exhibited the small size of the parents, 

whereas the semi-dwarfism was lost in the cross with Ler. This finding confirmed the 

recessiveness of the semi-dwarf alleles. Therefore, most semi-dwarf accessions were 

allelic to ga5. 

To evaluate if there is any general negative pleiotropic effect on plant 

performance associated with natural ga5 alleles, several presumably adaptive traits in 

six wild ga5 semi-dwarf accessions, as well as in the ga5 mutants in Ler and Col 

genetic backgrounds were measured (Figure 2.2). As expected from the large effect of 

ga5 loss-of-function alleles, semi-dwarf accessions showed rather similar plant height. 

Furthermore, consistent with previous studies (Rieu et., 2008), ga5 mutants did not 

differ significantly from their wild-types in the evaluated traits (Figure 2.2). However, 

natural ga5 accessions strongly differed in flowering time, branch and silique number, 

indicating the absence of strong ga5 effects on these traits but the substantial 



18	   CHAPTER 2 

 
contribution from other genes. Therefore, no major trade-off on silique number, 

assumed to be a proxy for fitness, was found for these naturally occurring ga5 alleles. 

 

 
Figure 2.1. Semi-dwarf genotypes allelic to ga5 are present in nature. (A) Allelism test between the 
semi-dwarf mutant ga5 (Koornneef & van der Veen, 1980) and the semi-dwarf central Asian accession 
Dja-1. Neo-3 (central Asia) shows the phenotype of a functional GA5. Pictures were taken two weeks 
after flowering. On the upper left panel is shown the phenotype of ga5 and Ler at harvesting time. Scale 
bars, 7 cm. (B) Mean values of stem height ± standard errors in F1 plants derived from crosses between 
ga5 or Ler and twenty accessions (Acc) allelic to ga5 (red), three non-dwarf accessions (Col-0, Pak-1, 
and Cat-13), two semi-dwarf mutants (ga4 and ga3ox1-3) and one semi-dwarf accession non-allelic to 
ga5 (Vel-2).  

 
Figure 2.2. Phenotypic characterization of ga5 semi-dwarf accessions. Figure includes six semi-
dwarf accessions, the ga5 (Ler background) and ga20ox1-3 (Col background) mutants and their 
corresponding wild-type controls. All traits show significant differences across the different genotypes 
at a P-value < 0.05. The thick horizontal line represents the median, boxes represent the 25th and 75th 
percentile (lower and upper hinges respectively), vertical lines represent whiskers (0.05th, 0.95th 
percentile) and open circles, extreme values. The letters above each subfigure indicate the results of a 
Tukey`s HSD test where means with different letters are significantly different (at P<0.05).  
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Semi-dwarf ga5 accessions were found in 23 different populations distributed 

in Western Europe, the Iberian Peninsula, Scandinavia, Central Asia and Japan (Figure 

2.3, Table 2.1). It can be roughly estimated that, at world-wide scale, the frequency of 

wild populations containing semi-dwarf accessions allelic to ga5 was at least 1%. 

However, since most populations segregate for GA5 loss-of-function alleles, one 

cannot discard that some populations with a limited number of individuals may contain 

semi-dwarfs at low frequency not represented in the individuals studied. Therefore, it 

cannot be excluded that the frequency of wild populations containing semi-dwarfs may 

be higher than 1%. It was also found a semi-dwarf frequency of 1% in the Hapmap 

experimental population consisting of 360 world-wide accessions with empirically 

reduced population structure (Li et al., 2010). However, the frequency of ga5 semi-

dwarf containing populations was not homogeneous throughout the Arabidopsis 

geographic range since semi-dwarfs were not found among the many Central and East 

European accessions studied. By contrast, semi-dwarfism appeared most frequent in 

Central Asia than elsewhere, since 5 out of the 24 central Asian populations monitored 

in this and another study (Alcázar et al., 2010) carried semi-dwarf individuals (Table 

2.1). A ~2% frequency was estimated for the Iberian Peninsula from the qualitative 

analysis of the intensive collection (Méndez-Vigo et al., 2011) used to select the 

Iberian accessions included in this study. In addition, detailed sampling and analysis of 

ga5 semi-dwarfs in The Netherlands indicated a ~5% frequency in this region. 

Interestingly, Dutch semi-dwarfs seemed to have spread mainly in the west of the 

country, although one population was found inland at more than 100 km distance from 

accessions in the west (Figure 2.3).  

 
Figure 2.3. Geographical distribution of semi-dwarf accessions in Europe, Scandinavia and 
Central Asia. Red marks indicate the location of populations containing semi-dwarf accesions allelic to 
ga5. On the right panel it is shown the detailed local distribution of semi-dwarf (red) and wild-type 
(blue) individuals found in one populations from The Netherlands in 2011 (OW population).  
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Descriptions of the habitat of populations containing ga5 semi-dwarf 

individuals show that they occur in multiple diverse environments where the species 

occurs. For instance, Dutch dwarf accessions were found in the anthropoid 

environments where Arabidopsis grows including urban (street populations) and rural 

(road and field sides, Figure 2.4) habitats. However, in the Iberian Peninsula and 

Central Asia, semi-dwarfs occurred in more natural environments where samples were 

collected including Mediterranean forests and mountain wet grasslands (Figure 2.4). 

This wide geographic and ecological distribution indicates that ga5 semi-dwarfism 

does not show a strong geographic structure and is not associated with a single and 

common climatic factor across its distribution range.  

 

 
Figure 2.4. Populations of Arabidopsis containing semi-dwarf individuals. Images of semi-dwarf 
individuals naturally occurring in two locations from The Netherlands (top), and the habitat of Cat and 
Mdc populations in the Iberian Peninsula (bottom).  
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Identification of multiple GA5 loss-of-function alleles. 

To determine the putative mutations causing semi-dwarf phenotypes, the GA5 gene 

was sequenced (~1.5 kb) in 59 semi-dwarf accessions collected world-wide and 135 

non-dwarf individuals, which were collected from the same population or geographic 

region as the semi-dwarfs identified. For the Dutch OW and Sch populations, the ~1 

kb GA5 region spanning semi-dwarf causal mutations was sequenced in 16 semi-

dwarfs and 77 wild-type individuals. Collectively, sequencing data identified 21 

different mutations, which were predicted to cause GA5 loss-of-function alleles in 

semi-dwarf accessions (Figure 2.5). These mutations were classified in six loss-of-

function classes according to their nucleotidic nature. First, non-sense mutations 

causing premature stops codons were found in Kas-2 and Sparta. Second, missense 

mutations were found close to the conserved metal binding sites of GA5 in an Iberian 

(Mar-1, Mar-3 and Mar-11) and a Scandinavian (Var 2-1 and Var 2-6) population, 

which might underlie their ga5 phenotype. Besides, the Mdc-10 and Mdc-53 semi-

dwarf accessions also carried missense mutations in GA5 conserved domains. Third, a 

single substitution in the donor splice site of the first intron was found in all Dutch 

semi-dwarf accessions. This affects normal GA5 splicing as confirmed by cDNA 

sequencing (data not shown), and generates a truncated GA5 protein. Forth, seven 

small insertions (Cat-0, Dja-1 and Pak-3) or deletions (Cat-17, Cat-23, Cat-43 and Sus-

1) were predicted to cause frame-shifts and truncated GA5 proteins. Fifth, a transposon 

insertion, with high similarity to At4g04410, was identified in the MdcA-60 accession. 

Finally, several large deletions (> 20 bp) were found in some accessions. These 

included a 29 bp deletion in the first exon of Kl-2 (Germany) and a 444 bp deletion 

spanning part of the second exon and the complete third exon of accession T1080 

(Sweden) (Figure 2.6 and 2.7, Appendix 1). This deletion was first detected by the 

absence of sequence coverage in the 1001 genomes data (www.1001genomes.org) and 

further confirmed by extensive PCR amplifications (Figure 2.6 and 2.7, Appendix 1). 

In addition, large GA5 deletions of several kb were found in the Veg 1-1, Kyr-2, and 

YGU accessions. These deletions included not only the coding region but also the 

promoter (Figure 2.6 and 2.7, Appendix 1) and were associated with absence of GA5 

expression by quantitative RT-PCR in Kyr-2, Veg 1-2 and YGU (data not shown).  
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Figure 2.5. Natural loss-of-function mutations in the AtGA20ox1 (GA5) gene. The different nature and 
position of mutations causing GA5 loss-of-function alleles are shown in each panel. Exons (black boxes) 
are connected with horizontal lines representing intronic regions of GA5. Iron and 2-oxoglutarate 
binding sites Wilmouth et  al., (2002) are indicated on top.  
 
 
 
 

 
Figure 2.6. PCR amplification analyses spanning the GA5 locus and neighbour genes identified 
large GA5 deletions in the semi-dwarf accessions T1080, YGU and Veg1-2. The primer 
combinations used in each PCR reaction are indicated on top. The expected amplicon sizes for the 
primer combinations P41-P26 (middle panel) and P41-P28 (right panel) are 13.9 kb and 19.5 kb, 
respectively. 
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Figure 2.7. Primer positions used to identify GA5 deletions in T1080, YGU, Kyr-2 and Veg 1-2. 
Thin arrows represent primers. Thicker arrows indicate different genes upstream and downstream GA5 
that have been tested for amplification.  
 
 

Sequencing analyses indicated that most populations containing semi-dwarf 

individuals carry a single loss-of-function mutation in all dwarf plants (e.g. OW-0 in 

Figure 2.5). However, two Iberian populations (Cat and Mdc) segregated for four 

independent GA5 loss-of-function mutations (Figure 2.5). One allele appearing more 

frequently as it was present in eight Cat individuals out of 22 sequenced samples. On 

the other hand, most GA5 loss-of-function alleles appeared distributed in a single wild 

population, with the exception of the splicing site mutation widely distributed across 

The Netherlands. Analysis of the sequence data from the 1001 genomes project 

(www.1001genomes.org) detected four other putative semi-dwarf accessions from 

South Sweden (Sim-1, TV-22, TV-30 and TV-7), as they carry the Var-2-1 missense 

mutation. This result suggests that Var-2 missense loss-of function allele might be 

widely distributed at a local scale since Var, Sim and TV accessions originate from the 

same South-Swedish coastal area (data not shown).  

 

Genome Wide Association Study (GWAS) for plant height. 

Since several of the ga5 semi-dwarf accessions identified in this study (Tha-1, Sparta, 

Var 2-1 and T1080) were included in the Arabidopsis Hapmap experimental 

population (Li et al., 2010), it was tested if the GA5 locus could be detected by GWA 

mapping. Measurements of plant height in 345 accessions of this collection showed a 

large amount of natural variation and high broad sense heritability (hb
2=0.80) (Figure 

2.8A). However, no marker was significantly associated (P>0.05 with Bonferroni 
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correction for 214,000 markers) with plant height, the largest association was detected 

on chromosome 4, ~0.3 Mb away from GA5 (P=3x10-5; Figure 2.8B). Analysis of 

Linkage Disequilibrium (LD) showed a complete LD decay 10 kb upstream and 

downstream of GA5 (Figure 2.3C), thus excluding the linkage of the observed 

association with GA5. By contrast, a significant association was detected when all four 

GA5 loss-of-function alleles were combined as a single non-functional haplotype (P= 

2.7×10-14). Therefore, despite the strong effect of natural GA5 loss-of-function alleles 

on plant height, GWAS was unable to detect this locus, due to the low frequency of 

semi-dwarf accessions and their multiple independent causal mutations.  

 

GA5 phylogeny and population structure. 

The genetic relationships among the semi-dwarf accessions was determined using a 

structure analysis with 117 genome-wide SNP markers already available 

(Lewandowska-Sabat et al., 2010; Platt et al., 2010) or developed in this work. 

Structure analysis of these accessions found five distinct genetic groups that closely 

corresponded to the geographic regions of origin of the semi-dwarf accessions (Figure 

2.8D) in agreement with the strong global geographic structure described in 

Arabidopsis (Platt et al., 2010). In all cases, semi-dwarf accessions were genetically 

more related to the non-dwarf individuals from the same population and region than to 

any other accession, indicating the independent origin and expansion of semi-dwarfs in 

these regions. In most populations containing ga5 semi-dwarfs where five or more 

individuals were collected, wild-type GA5 alleles were found within the population 

except for the Central Asian populations Dja and Sus, in which all individuals were 

semi-dwarf. Interestingly, Dja-1 and Sus-1 accessions carried different GA5 loss-of-

function alleles (Figure 2.8D) regardless of the overall low genetic variation present in 

Central Asia (Cao et al., 2011). It is also remarkable that different GA5 loss-of-

function alleles were found in the Iberian Cat and Mdc populations together with wild-

type alleles (Figure 2.8D). In contrast, semi-dwarf genotypes in Dutch populations 

were very similar and carried the same loss-of-function mutation.  
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Figure 2.8. GWAS analyses, population structure and GA5 diversity. (A) Correlations between 
height and height up to first silique. Red dots indicate the values from semi-dwarf accessions. (B) 
Genome wide association mapping profile for plant height on chromosome 4. The GA5 position is 
indicated by an arrow. (C) Linkage disequilibrium 200 kb up and downstream of the GA5 locus. The 
heat colour scale represents squared correlation (R2) between pairs of SNPs. (D) Population structure of 
100 accessions including non-dwarf and GA5 semi-dwarfs collected in different world regions at K=5. 
Colored asterisks indicate accessions carrying different GA5 loss-of-function alleles. (E) GA5 haplotype 
network. Haplotypes are represented by circles with size proportional to the number of populations 
containing that haplotype. Each node represents a single mutation. 

 

Network analysis of the 33 different GA5 haplotypes detected within the 

genomic GA5 sequence identified a common GA5 functional haplotype which showed 

a world-wide distribution (Figure 2.8E and Appendix 2). Twenty other GA5 

haplotypes were connected to this frequent haplotype by fewer than five mutational 

steps and were distributed in all geographic regions. The central network position of 

the most frequent haplotype suggests that this is the oldest GA5 allele, from which 

most other haplotypes may have derived by a small number of mutations (Figure 

2.8E). Furthermore, 14 additional low frequency haplotypes, which include only 

Iberian and Asian haplotypes (Cat, Mdc, Mar, Kas, Pak and Fuk), were separated from 

the main node of the network by two long related branches. Loss-of-function GA5 

haplotypes appeared evenly distributed within this network, and all but one of these 

alleles was connected by a single mutational step to their presumably ancestral 

haplotype. In addition, all loss-of-function haplotypes occupied branch-end positions 

in this network but the Dutch containing semi-dwarfs haplotypes. Therefore, most of 

independent GA5 loss-of-function alleles seem to be generated in multiple genetic 

backgrounds but they have not produced derived haplotypes (Figure 2.8E).  

 

Signatures of selection at the GA5 locus. 

To estimate the amount and pattern of nucleotide diversity in the GA5 gene it was 

analyzed the SNP data from 512 accessions available from the 1001 genomes project 

(www.1001genomes.org). GA5 shows lower nucleotide diversity within coding 

regions than introns (Figure 2.9A). Total nucleotide diversity (π = 0.0017, Table 2.2) 

was lower than the average nucleotide diversity reported in previous studies (0.0081 

for centromeric and 0.0059 for non centromeric regions, Schmid et al., 2005). GA5 

also presents a low ratio of non-silent to silent polymorphism (π(ns)/π(s)=0.132), 

which is consistent with a signature of purifying selection, as previously suggested for 

rice GA biosynthesis genes (Yang et al., 2009). In addition, significant negative values 

for Tajima’s D at non-synonymous sites (Dn) were detected in both the aforementioned 
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512 accessions (Dn=-2.289 p<0.01), as well as in the more than 100 accessions used in 

the present study (Dn=-1.987 p<0.05) including semi-dwarf haplotypes (Table 2.2). 

Overall, this pattern is compatible with the occurrence of purifying selection, in which 

polymorphisms leading to amino acid substitutions are maintained at low frequencies.  

 

 
 
Figure 2.9. The GA5 locus shows signatures of natural selection. (A) Nucleotide-sliding window 
analysis of nucleotide diversity (π) across the GA5 locus in 505 Arabidopsis wild accessions. (B) Fay 
and Wu’s Hn analysis across the GA5 genomic region in populations containing semi-dwarfs from The 
Netherlands (blue), Iberian Peninsula (red), and populations of normal size (grey). Asterisks denote 
statistical significance *P<0.05, ** P<0.01. 

 

 
Table 2.2. Neutrality tests conducted for the GA5 locus. Tests were conducted in 505 accessions (data 
from 1001 genomes project) and in 100 additional accessions including semi-dwarf haplotypes studied 
in this work. 
Source Tajima's D  D Nonsyn  D Syn  D Silent  Fu and Li's D  Fu and Li's F  π  Hn  

1001 genomes (512 acc)  -1.891*  -2.289**  -1,316 -1.269 -4.608**  -4.026**  0.00171 -1.559 
Eurasian populations (100 
acc)  -0.997 -1.978*  -0.11 -0.127 -0.429 -0.79 0.0037 -0.86 

* P <0.05          

** P <0.01          
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To test if positive selection may have contributed to an increase of GA5 loss-

of-function alleles, molecular fingerprints of recent selective sweeps were searched 

over a region of 80 kb upstream and downstream of GA5 in two populations from two 

different regions. These Cat (Iberian Peninsula) and Ow/Sch (The Netherlands) 

populations were selected because they contain a moderate frequency of GA5 loss-of-

function alleles. One additional population that does not contain semi-dwarf 

individuals from each of the regions was analyzed as control. Significant negative 

values of the normalized Fay and Wu’s H statistics were found around GA5 in Cat and 

Ow/Sch populations containing semi-dwarfs (0.019<P<0.05) (Figure 2.9B), which is 

consistent with an excess of derived high-frequency mutations that commonly 

accompanies selective sweeps. Negative values for the Fay and Wu’s Hn statistics in 

the semi-dwarf Iberian Peninsula population were detected around the CBF cluster 

involved in cold acclimation, for which natural variation has been reported (Figure 

2.9B) (Alonso-Blanco et al., 2005). This pattern was absent in populations without 

semi-dwarfs from the same regions (Figure 2.9B). These results suggest that positive 

selection might contribute to increase the frequency of GA5 loss-of-function mutations 

under particular environments, although drift and relaxed purifying selection could 

also contribute to a high frequency of GA5 loss-of-function alleles in some other 

populations. 

 

Discussion 

In this study it was shown that Arabidopsis semi-dwarf genotypes are relatively 

frequent in natural populations of different regions in the world. Allelism tests 

demonstrate that this extreme plant height phenotype is mainly determined by multiple 

independent loss-of-function mutations of large effect on the GA biosynthesis gene 

GA5/GA20ox1. The semi-dwarf phenotype of ∼20% semi-dwarf accessions studied in 

this work cannot be explained by GA5 loss-of-function mutations, indicating the 

contribution of other genes to this trait. These results evidence a rather simple genetic 

basis for plant height, but its multi-allelic bases hampered GA5 detection by GWAS 

mapping. Interestingly, GA5 behaves as a functional orthologue of the green revolution 

genes of rice SD1 and barley Sdw1/Denso. This result points to a conserved evolution 

for this common trait in crop and wild plant species that have been artificially selected 
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during domestication or naturally evolved. Thus, GA 20-oxidase is identified as a 

hotspot for phenotypic variation in plants (Martin & Orgogozo 2013), and illustrates 

the usefulness of the analysis of Arabidopsis natural variation to find genes of interest 

for plant breeding. The observation of major phenotypic changes caused by a large 

number of independent mutations resembles the situation found for the FRIGIDA gene 

of Arabidopsis involved in flowering time, another adaptive trait, which indicates that 

this pattern is not unique but rather common (Méndez-Vigo et al., 2011). As 

previously reported for FRI and FLC flowering genes, most GA5 haplotypes show a 

sub-regional or local distribution, but the number of independent functional alleles was 

significantly larger in the Iberian Peninsula than in northern and central Europe, in 

agreement with the overall larger Iberian diversity (Mendez-Vigo et al., 2011; Cao et 

al., 2011;  Picó et al 2008).  

Despite that it is not known how Arabidopsis GA5 loss-of-function alleles are 

maintained in nature, this study supports that different evolutionary forces might 

contribute to it. The relatively high frequency of several GA5 loss-function alleles in 

Central Asia and within some local populations of different world regions (The 

Netherlands, Central Asia and Iberian Peninsula) suggests an advantage or neutrality in 

these populations. This is especially the case in some populations where multiple 

mutations have occurred and are still present. The wide geographic distribution of the 

same GA5 allele found in many locations of The Netherlands separated more than 100 

km indicates that this allele is spreading, further indicating the absence of deleterious 

effects. In addition, phenotypic characterization of GA5 semi-dwarf accessions did not 

detect any strong negative effect on adaptive and fitness traits, which suggests that 

these alleles do not display any general obvious negative pleiotropic effect or trade-off. 

This result is in agreement with the phenotypes described for artificially induced GA5 

loss-of-function mutants, which show similar seed yield than wild-type accessions 

(Rieu et al., 2008). This lack of effect on seed production is probably due to expression 

of GA20ox paralogues, mainly GA20ox2 (Rieu et al., 2008). Similarly, GA20ox2 

mutations in rice and barley do not display trade-offs (Sasaki et al., 2002; Spielmeyer 

et al., 2002; Jia et al., 2011). By contrast, mutations in early steps of GA biosynthesis 

have been associated with negative pleiotropic effects, such as the absence of seed 

germination shown by ga1 null mutants or the reduced fertility and altered flower 

development observed even in leaky GA1 alleles (Koornneef & van der Veen, 1980). 
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A similar situation has been reported in rice where the effects derived from mutations 

on genes involved in early steps of GA biosynthesis were found less favorable for crop 

production compared with mutations on rice GA20ox2 (Itoh et al., 2004). 

As suggested in this study both negative and positive selection may act on GA5 

loss-of-function alleles. The conditional negative effect of these alleles is suggested by 

the low frequency of most loss-of-function alleles, and by the fact that they are not 

maintained long enough to derive new haplotypes. Hence, such alleles seem to be only 

transiently maintained in nature. In addition, such potential negative effect of GA5 

loss-of-function alleles is also suggested by purifying selection inferred from the low 

ratio of replacement to silent polymorphisms and negative Tajima’s Dn values, in 

agreement with previous reports in rice (Yang et al., 2009). In contrast, positive 

selection might contribute to transient increases in the frequency of loss-of-function 

alleles in certain populations, as suggested by the negative values of Fay and Wu’s Hn 

tests across the GA5 locus for the two tested populations segregating for semi-dwarf 

individuals. Remarkably, this pattern is absent in populations harboring only normal 

size plants from the same regions. Therefore, it is reasoned that allelic variation at GA5 

locus might be maintained in nature by antagonist pleiotropy, (i.e. reversed fitness 

effects in different environments) (Anderson et al., 2013). However, one cannot 

discard that GA5 variation shows conditional neutrality in other populations (i.e. loss-

of-function alleles might be neutral in some environments but deleterious in others). 

Neutrality tests should be considered carefully due to the complex demographic 

history of Arabidopsis populations in the wild. Furthermore, the population genetic 

analysis is also agnostic to the local extinction or re-colonization dynamics of A. 

thaliana populations. Remarkably, the identification of signatures for selection using 

genome-wide screens may be hampered by the occurrence of different loss-of-function 

GA5 alleles under positive selection, a situation that also affected  GWAS mapping. 

It remains to be determined which are the environmental cues that could 

contribute to an increase in the frequency of GA5 loss-of-function alleles since these 

mutations appear distributed in a wide range of anthropoid and natural environments. 

It has been previously shown that the short plant height phenotype caused by the well-

known erecta loss-of-function mutation provides fitness advantage in static 

landscapes. On the contrary, erecta frequency was reduced under disturbed 

environments (Fakheran et al., 2010). Analogously, it can be speculated that 

environmental stability might favor GA5 semi-dwarf individuals. Conclusive 
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demonstration about positive, negative or neutral fitness effects of GA5 loss-of-

function alleles depending on the environment will require further analyses under 

different natural conditions to elucidate the evolutionary forces driving GA5 variation 

and its ecological significance.  

 

Conclusion 

Natural variation for GA biosynthesis is reported in numerous Arabidopsis wild 

populations across the species distribution range. Multiple GA5 loss-of-function alleles 

are found underlying most semi-dwarf accessions, while these alleles showing strong 

effect on plant height do not display any obvious general trade-off. Frequencies and 

patterns of nucleotide variation suggest that loss-of-function alleles might be under 

positive and purifying selection. In addition, the common genetic basis of this 

extended plant height variation in Arabidopsis, rice and barley indicates conserved 

adaptive evolution of GA mediated plant height phenotypes in wild and domesticated 

species.  

 

 

Materials and methods 

Plant Material and growth conditions  

Stock numbers and detailed information of accessions used in this work are listed in 

Table 2.1. For allelism tests, semi-dwarf accessions were crossed with Ler and ga5 

(Koornneef and van der Veen, 1980). To facilitate the allelism tests, male sterility 

based on the ms1 mutant (van der Veen and Wirtz, 1968) was introgressed into the ga5 

background. Plants were grown under greenhouse conditions at 16 h light, 22°C/18ºC 

day/night cycles. For all experiments, seeds were stratified in water at 4°C for 4-6 days 

prior to germination. Ten repetitions per genotype (cross) were conducted. The Ooij, 

Schar, Hoor, Haarl, and Oosth Dutch semi-dwarf populations and the Mdc Iberian 

semi-dwarf population were found in the course of this study and allelism was 

concluded based on sequence data that correlated with the semi-dwarf phenotypes and 

haplotype that were tested before in allelism tests. 

Phenotyping for plant height and height up to first silique was conducted two 

weeks after flowering because both traits did not change after that date (data not 

shown). In cases of extreme flowering lateness, plants were vernalized for six weeks. 
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Flowering time was recorded as days after germination until the first opened flower. 

Branch number was scored as the number of axillary stems grown from the rosette.  

 

Sequencing of GA5 gene and genotyping 

 Genomic DNA was isolated from leaf material using the BioSprint workstation 

(Qiagen). Primers used for GA5 sequencing are detailed in Appendix 3. PCR reactions 

were performed using LA Taq DNA polymerase (Takara) following manufacturer’s 

instructions. Sanger sequencing of purified PCR products was made by the Max 

Planck Genome Center Cologne. GenBank accession numbers of DNA sequences 

generated in this work are listed in Table 2.2. 

SNP genotyping of new accessions collected in this study was done as 

described in previous works (Lewandowska-Sabat et al., 2010; Platt et al., 2010) using 

the genotyping facility service of the University of Chicago. 

 

Statistical analysis  

Descriptive statistics, t-tests, tukey test, and principal component analysis were 

conducted with R. The method of Emma was used for GWAS (Kang et al., 2010) 

using kinship matrix to correct for population structure. Linkage disequilibrium 

analysis was performed with the R package LD heatmap (Shin et al., 2006). 

 

Structure analysis  

Population structure was inferred using model-based clustering algorithms 

implemented in the software STRUCTURE , using the haploid setting and running 20 

replicates with 50,000 and 20,000 MCMC iterations of burn-in and after-burning 

length, respectively (Pritchard et al., 2000). To determine the K number of 

significantly different genetic clusters, the ΔK method was applied in combination with 

the absolute value of ln P(X ⎜K) (Evanno et al., 2005). 

 

Population genetics. Fay and Wu’s H statistics and haplotype network  

Population genetics analyses were conducted with the software DnaSP (5.10) (Librado 

& Rozas, 2009). The normalized Fay and Wu’s H was performed as described 

(Alcázar et al., 2010) in populations containing semi-dwarfs from The Netherlands and 

Iberian Peninsula (Table 2.3). Representative accessions of different populations from 
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Central Spain, with no semi-dwarfs, were used as control (Table 2.3). For the Dutch 

control population, accessions from a rural area northeast of Wageningen were 

collected with no prior knowledge on evidences for semi-dwarfism occurring in this 

population (Table 2.3). The sequences of GA5 (At4g25420) and flanking genes 

(Appendix 3) were obtained after specific PCR amplification from genomic DNA and 

sequencing in ABI 3730XL automated sequencers (Applied Biosystems). Sequences 

were aligned with ClustalW (Thompson et al., 1994) and manually inspected. 

Arabidopsis lyrata sequences were obtained by BLAST search 

(http://www.phytozome.net/) and used as out-group to assign ancestral and derived 

states to SNP variants. To assess the statistical significance of Fay and Wu’s H, 10.000 

coalescent simulations were computed in DnaSP v.5.10 (Librado & Rozas, 2009). The 

haplotype network of GA5 was constructed using TCS1.21 (Clement et al., 2000) that 

implements a maximum parsimony method and excluding gaps as events in the 

analysis. Insertions and deletions in the semi-dwarf accessions were considered as 

single events and added manually to the haplotype network.  

 
 
Table 2.3. Populations used for the Fay and Wu’s Hn statistics. 

Population Genotypes 

Dutch population containing  
semi-dwarfs 

Duiv, Enk-1, Enk-2, OW-4, OW-7, OW-12, OW-14, OW-16, 
OW-19, OW-45, Sch-123, Sch-166, Sch-177, Sch-187, Sch-217, 
Tha-1 

Dutch control population 
Benk-6, Benk-08, Mir-12, Oost-25, Oost-32, Panh-2-4, Roe-02, 
Wol-01, Wol-06, Wol-20, Wol-26, Wag-58c, Wag-59, Wag-
60a, Wag-74d, Wag-74j 

Iberian population containing 
semi-dwarfs 

Cat-0, Cat-1, Cat-5, Cat-9, Cat-13, Cat-17, Cat-19, Cat-20, Cat-
22, Cat-23, Cat-27, Cat-28, Cat-30,  Cat-33, Cat-35, Cat-39, 
Cat-43, Cat-44, Cat-45, Cat-47 

Iberian control population Agu-0, Cdc-01, Cdc-03, Cdc-04, Cdc-6, Cdc-08, San-0, San-04, 
San-05, San-08, San-12, San-13, Pra-0, Pra-01, Pra-08, Pra-10 
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Does semi-dwarfism have a pleiotropic effect on root 

related traits that may contribute to a selective 

advantage under reduced water availability? 

 

 

 

Abstract 

The occurrence of natural semi-dwarf Arabidopsis thaliana accessions displaying 

reduced plant height, opened the question whether semi-dwarfism has a pleiotropic 

effect on other traits such as rooting depth that may contribute to a selective advantage 

under specific growth conditions. To answer this question, different shoot and root 

growth related traits were studied in vitro and with plants grown in soil-filled 

rhizotrons or pots. It was used a panel of GA biosynthesis mutants, selected semi-

dwarf accessions, and derived F1 populations. Mutations in early steps of the GA 

biosynthesis pathway led to a reduction in shoot as well as root size. Mutations at the 

ga5 locus resulted in plants with decreased root length in comparison to related wild 

types depending on the genetic background. Interestingly, the semi-dwarf accession 

Pak-3 showed the longest root system depth both in vitro and in soil cultivation 

experiments during initial growth stages (12 – 26 days after sowing). However, this 

long root system is independent from the ga5 loss of function allele as shown by co-

segregation analysis. When the same natural semi-dwarf accessions were grown under 

water limiting conditions, phenotypic differences were relatively small and not 

associated with functional or inactive ga5 alleles. Remarkably the semi-dwarfs Pak-3 

and Kas-2 accessions showed lower growth reduction when exposed to water limiting 

conditions relative to control conditions than other lines. 
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Introduction 

Bioactive gibberellins (GA) are plant growth regulators responsible for the expression 

of several plant traits (Sun, 2008). Their biosynthesis and signalling pathways are well 

understood (Hedden & Thomas, 2012; Yamaguchi, 2008). GA-related mutations have 

played an important role in crop breeding where mutations in its signalling and 

biosynthesis pathways induced semi-dwarfism. Thereby, mutants contributed to yield 

increases in wheat and rice leading to the green revolution (Hedden, 2003; Salamini, 

2003) especially by conferring lodging resistance. Semi-dwarf mutants that were 

selected by plant breeders had no negative pleiotropic effects (Jia et al., 2011; Rieu et 

al., 2008; Sasaki et al., 2002; Spielmeyer et al., 2002) on yield-related traits and may 

have positively acting pleiotropic effects that might be more difficult to detect such as 

effects on root systems.  

Root growth is regulated by plant hormones and among these the role of auxins 

have been studied in detail (Overvoorde, Fukaki, & Beeckman, 2010). Auxin gradients 

control the length of the primary root, number of lateral root primordial and response 

to gravity (Overvoorde et al., 2010). A recent review showed that GA can also regulate 

root elongation and thickening (Gou et al., 2010; Tanimoto, 2012). The author 

describes examples showing the sensitivity of shoots, hypocotyls and roots to GA and 

GA inhibitors and provides arguments supporting the view that roots have a higher GA 

compared to shoot sensitivity. In A. thaliana the application of GA to the shoot 

increases elongation of primary roots (Bidadi et al., 2010). Interestingly, this study 

describes that application of GA inhibitors to the shoot also increases root elongation, 

pointing to a negative feedback mechanism controlling the GA levels (Yamaguchi, 

2008). Studies in Populus show that GA deficient mutants (by increasing the 

expression of a GA2ox1) and GA insensitive mutants (by overexpressing RGL1) 

increase lateral roots density and elongation and that crosstalk with the auxin hormone 

pathway may occur (Gou et al., 2010).  

 Several naturally occurring A. thaliana accessions carrying non-functional ga5 

alleles have being identified (Barboza et al., 2013). The GA5 gene encodes a GA 20-

oxidase (a GA biosynthesis gene) causing semi-dwarfism when mutated (Koornneef & 

van der Veen, 1980; Xu et al., 1995). The occurrence of semi-dwarfism in nature, 

which shows positive selection in specific populations, may indicate that semi-

dwarfism confers an advantage under specific environmental conditions. GA5 is the 

functional ortholog of the SD1 gene, mutations of which confer semi-dwarfism in 
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modern rice cultivars and of Sdw1/Denso for which mutations are present in modern 

semi-dwarf barley varieties. There are indications that semi-dwarf barley genotypes 

may have a longer root system compared with non-dwarf ones (White et al., 2009). A 

study by Vartanian et al. (1994) using A. thaliana showed that the ga5 mutant makes a 

drought (measured in water withholding pot experiments) stress adapted root system in 

a much more effective way (higher number of short lateral roots present in lateral 

roots) than its wild type, thus suggesting a possible role in drought tolerance. 

Modifications in root growth can have an impact on the performance of plants under 

stress conditions and genetic variation in the hormonal pathways may affect root traits 

(Ghanem et al., 2011). Recent studies showed the important role of the DEEPER 

ROOTING 1 (DRO1) mutation in rice which increased rooting depth (more than twice 

in Dro1-NIL compared with its genetic background IR64) and conferred drought 

tolerance (Uga et al., 2013). A link, especially of gibberellin and stress tolerance, 

makes sense in view that when plants are exposed to limited water conditions they 

have to restrict their growth. This regulation is achieved by many environmental 

factors and also by other plant hormone pathways, e.g. via regulation of the level of 

growth repressing effect of the DELLA proteins, of which repressors are suppressed 

by gibberellins (Achard & Genschik, 2008). 

  The aim of this study was to (i) characterize the shoot and root system of GA 

biosynthesis mutants and selected A. thaliana accessions carrying functional and 

mutated alleles of the GA5 gene, (ii) and to evaluate their response to reduced water 

availability. In case mutations at the GA5 locus have positive pleiotropic effects on 

root growth, this could help explaining their selective advantage in specific 

environments, especially when this relates to tolerance to reduced water availability. 

 

Results 

The root phenotype of GA biosynthesis mutants in vitro 

To evaluate the role of mutations in the GA biosynthesis pathway in the modulation of 

root growth, different GA deficient mutants were phenotyped in vitro using the 

GROWSCREEN-ROOT (Nagel et al., 2009) system. Semi-dwarf mutants in the 

GA20ox1 (GA5) locus were included in the two backgrounds, Ler (ga5) and Col 

(ga20ox1-3, ga20ox1 ga20ox2). Additional mutants with semi-dwarf (ga3ox1-3) and 

dwarf (ga1-13, ga1-3 6xbxcol) phenotypes were included. Principal Component 

Analysis (PCA) was performed to observe the structure of the data set. PCA1 and 2 
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together account for more than 80% of the information present in the different traits 

that were evaluated  (Figure 3.1A). The ga20ox2-1, ga20ox1-3, and ga20ox1 / 

ga20ox2 tend to cluster near their background accession Col, suggesting they do not 

differ much in root traits (Figure 3.1A). However the ga5 mutant in Ler background is 

far from its background accession Ler. The semi-dwarf mutant ga3ox1-3 does not 

cluster with any other genotype, as is the case for Ler and the ga1-13 mutant. When 

the root and shoot traits are compared (Figure 3.1B), it can be observed what are the 

most relevant traits for PCA1. Only the ratio rooting depth / FW (shoot fresh weight) is 

mainly related with PCA2  (Figure 3.1B). Root system traits are highly correlated. In 

addition to root traits, projected leaf area was quantified, which is highly correlated 

with shoot FW, DW (shoot dry weight) and root system width (Figure 3.1B). Root 

related traits are negatively correlated with FW / leaf area and DW / leaf area (traits 

used as a proxy for leaf thickness).  

 

 
Figure 3.1. Principal Component Analysis (PCA) for shoot and root related traits. (A) PCA of GA 
biosynthesis Arabidopsis thaliana mutants and their corresponding wild type controls, based on the 
combined data of different shoot and root phenotypes of plants grown in vitro (1 % agar with 1 / 3 
Hoagland solution). (B) Variables factor map. FW, shoot fresh weight; DW, shoot dry weight. All 
mutants are in Col background except for ga5, which has the Ler background. 
 
 

The parental accessions Ler and Col exhibited the highest values for shoot and 

root system size compared to their semi-dwarf mutants, while ga1-13 and ga1-3 

6xbxcol mutant produced the shortest root systems (Figure 3.2A), as well as the 

smallest leaf area (Figure 3.2B). The ga1 mutants also have thicker leaves compared 

with Col (Figure 3.2C). From the PCA analysis one can reduce the data to three main 

traits: total root length, projected shoot area, and the ratio FW / leaf area. These traits 

indicate that mutations in early steps of the GA biosynthesis pathway represented by 

the ga1 mutants decrease root length and shoot area and increase leaf thickness 

A B 
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compared to their wild types (Figure 3.2A-C). The less extreme semi-dwarf mutants 

(ga20ox1-3 and ga5) do not significantly decrease total root length, with the exception 

of ga3ox1-3 (Figure 3.2A). The ga5 mutant only showed a mild decrease compared to 

wild type. Semi-dwarf mutations mainly decrease the projected leaf area, for example 

the ga5 mutant reached approximately half the size compared to its wild type. It seems, 

therefore, that the GA 20-oxidase 1 (ga5) mutation has a stronger effect in the Ler 

background than in the Col background because differences among ga5 and Ler are 

stronger than those observed between ga20ox1-3 and Col. 

 

 
Figure 3.2. Phenotypes of GA related mutants. (A, B, C) Means (± standard errors) of different shoot 
and root traits in different GA biosynthesis Arabidopsis thaliana mutants and their corresponding wild 
type controls, grown in vitro (1 % agar with 1/3 Hoagland solution, evaluated 18 days after 
germination). FW, shoot fresh weight. All mutants are in Col background except ga5, which has the Ler 
background. Different colors indicate near isogenic comparisons. 
 

 

The root phenotype of semi-dwarfs accessions in vitro 

The root system architecture of several semi-dwarf accessions allelic to ga5 (Barboza 

et al., 2013) was characterized. Semi-dwarfs were compared with related, non-dwarf 

genotypes (Barboza et al., 2013). Both dimensions of the PCA analysis explained more 

than 75% of the variance observed in the data set (Figure 3.3A). PCA analysis shows 

no clustering of semi-dwarf accessions, thus suggesting that semi-dwarfism does not 

contribute to the variation of the evaluated traits. Semi-dwarf genotypes tend to cluster 

together with their wild, related accessions counterparts. The variable factor map 

shows a similar pattern to that of the mutants PCA (Figure 3.3B). The PCA indicate 

that Pak-3 is an outlier mainly because of its deeper root system and the length of its 

primary roots. The ga5 mutant seems to have a high rooting depth / shoot FW ratio. 
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Mainly occurring because of the reduced leaf area compared to its background 

accession. It was possible to test the semi-dwarf effect among the traits because a 

balanced number of accessions was included carrying active and inactive ga5 alleles. 

Remarkably, no semi-dwarf effect was significant. Only root system width was 

significantly different between dwarf and wild type genotypes, but when Neo-3 is 

excluded from the analysis this effect is not significant (P-value > 0.05). Neo-3 shows 

a much higher root system width than the other accessions (mean value ± standard 

error under control conditions 23.8 ± 1.6 mm vs. 7.3 ± 1.0 for Dja-1, a genetically 

related accession).  

 

 
Figure 3.3. Principal Component Analysis (PCA) for shoot and root related traits. (A) PCA of 13 
Arabidopsis thaliana accessions and the ga5 mutant (Ler background), based on the combined data of 
different shoot and root phenotypes of plants grown in vitro (1 % agar with 1/3 Hoagland solution, 
evaluated 18 days after germination). (B) Variables factor map. FW, shoot fresh weight; DW, shoot dry 
weight. Accessions colored in red means they have ga5 mutant alleles. Accessions surrounded by dotted 
lines indicate genetically related pairs, e.g. ga5 vs Ler (GA5). 
 

Because the observed effects were not attributed to the ga5 mutations, possibly 

due to differences in the accessions background, F1 crosses of accessions with the ga5 

mutant and with its wild type Ler provided an identical hybrid background genotype. 

These were evaluated in order to have a near isogenic background differing only in the 

ga5 genotype. When semi-dwarf related traits such as leaf thickness (using FW / area 

as a proxy) were studied, differences among inactive vs. active ga5 alleles were 

detected (Figure 3.4A). The presence of inactive ga5 alleles increases the expression of 

this trait compared with wild type. However when total root length and leaf area were 

evaluated, inactive ga5 alleles tend to decrease these traits but differences were 

observed among the different crosses (Figure 3.4B, C). The most remarkable 

difference was between the crosses ga5 × OW-0 and Ler × OW-0, in which the 

phenotype followed a trend opposite from that of the other compared pairs. This lead 

B A 
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to the conclusion that shoot and root modifications depend on the genetic background, 

which might interact to some extent with the ga5 genotype. Apparently variation at 

additional loci contributes to genotype differences for the evaluated traits.  

 

 
Figure 3.4. Shoot and root phenotypes in F1 populations. (A) Boxplots of the derived trait shoot 
fresh weight (FW) / seedling leaf area, (B) total root system length and (C) leaf area in different F1 
populations derived from the crosses ga5 × accessions and Ler × accessions grown in vitro (medium 1 
% Agar with 1/3 Hoagland, evaluated 18 days after germination). The thick horizontal line represents 
the median, boxes represent the 25th and 75th percentile (lower and upper hinges respectively), vertical 
lines represent whiskers (0.05th, 0.95th percentile), and open circles extreme values. Different colors 
indicate near isogenic comparisons. 
 

 

Phenotypes of the semi-dwarfs Kas-2 and Pak-3 occur independently from the 

ga5 inactive allele 

The semi-dwarf accession Kas-2 showed the highest shoot biomass in vitro (Figure 

3.5A). The ga5 mutant was decreased in shoot biomass compared with its wild type 

background Ler. However Pak-3 is a semi-dwarf accession that showed the longest 

primary root among all the other tested ones (Figure 3.5B). All observed phenotypes 

lead to the conclusion that semi-dwarfism affects neither these traits nor the relation 

shoot to root ratio (data not shown). Nevertheless indications that barley semi-dwarf 

accessions may show a higher root length (White et al., 2009) raised the question 

whether or not the long Pak-3 root system depth is ga5 dependent. To test this 

hypothesis, the crosses ga5 × Pak-3 and Ler × Pak-3 were generated and their root 

system depth and shoot height was phenotyped in the F2 generations to quantify if root 

length and shoot height variation due to ga5 genotype were correlated. Clear 

differences both for the plant height phenotype as well as for root system depth were 
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observed, but these traits segregate independently from each other (Figure 3.6A, B, C). 

Hence, it was concluded that ga5 does not play a role modifying the root system depth 

in the Pak-3 accession.  

 
Figure 3.5. Contrasting phenotypes in the semi-dwarfs Pak-3 and Kas-2. (A) Shoot fresh weight and 
(B) root system depth (means ± standard error) in 13 Arabidopsis thaliana accessions and the ga5 
mutant (Ler background) grown in vitro (medium 1 % Agar with 1/3 Hoagland, evaluated 18 days after 
germination). “Sdw” indicates semi-dwarf accessions. 
 

QTL analysis was used as an independent approach to test the possible role of 

ga5 in shoot biomass and root system depth in vitro using the Ler × Kas-2 population 

(El-Lithy, 2006). The advantage of using this population is that semi-dwarfism due to 

the Kas-2 loss of function allele at the GA5 locus is segregating, thus allowing to test 

the effect of ga5 on root depth. Transgressive segregation was observed for seedling 

weight and root system depth (Figure 3.7A, B). When tested separately for each trait, 

ga5 reduces both root system depth and seedling fresh weight but this effect is 

relatively small and the LOD score is not significant. A locus at or near ERECTA (chr 

2) and a locus located on chr 5 (SNP304) controls the FW (LOD scores 5.0 and 4.1, 

explained variances are 14.3 and 10.6%, respectively, Figure 3.7C). ERECTA plays a 

minor role in root system depth together with a QTL on chromosome 4 (M4-3) but no 

QTL position was detected in the vicinity of the ga5 locus (El-Lithy, 2006) (Figure 

3.7D). 

 

 

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!

10!

Pa
k-

3!

O
W

-1
!

Le
r!

O
W

-0
!

Pa
k-

1!

ga
5 

 !

Je
-0
!

Sp
ar

ta
!

Kl
-2
!

Ka
s-

2!

Ne
o-

3!

Dj
a-

1!

T6
20

 !

Ka
s-

0!

Sh
oo

t f
re

sh
 w

ei
gh

t (
m

g)
!

0!

20!

40!

60!

80!

100!

120!

Kas-0!
T620 !

Dja-1!

Neo-3!

Kas-2!
Kl-2!

Sparta!
Je-0!

ga5!

Pak-1!
OW-0!

Ler!
OW-1!

Pak-3!

R
oot system

 depth (m
m

)!

Genotype (sorted by rank as in control)!

Sdw!

0!

20!

40!

60!

80!

100!

120!

Kas
-0!

T62
0 !

Dja-
1!

Neo
-3!

Kas
-2! Kl-2

!

Spa
rta
!
Je

-0! ga
5!

Pak
-1!

OW-0! Le
r!
OW-1!

Pak
-3!

R
oo

t s
ys

te
m

 d
ep

th
 (m

m
)!

Genotype (sorted by rank as in control)!

Sdw!

Sdw!

Sdw!

Sdw!

Sdw!

Sdw!

A!

B!
0!

20!

40!

60!

80!

100!

120!

Pa
k-
3!

O
W
-1
!

Le
r!

O
W
-0
!

Pa
k-
1!

ga
5!

Je
-0
!

Sp
ar
ta
!

Kl
-2
!

Ka
s-
2!

Ne
o-
3!

Dj
a-
1!

T6
20
!

Ka
s-
0!

0!



SEMI-DWARFS PLEIOTROPIC EFFECTS 43 
 

 

 

 
Figure 3.6. Long Pak-3 root system depth occurs independently from the ga5 inactive allele. 
Correlations between shoot height (scored two weeks after flowering in greenhouse conditions) and root 
system depth (scored 28 days after sowing in vitro, medium 0.8 % Agar, 1/2 MS, pH 5.8) in (A, B) 
different F2 populations and (C) selected genotypes. Linear regression trend line is shown with the 
dotted line.  
 

 
Figure 3.7. QTL mapping for shoot and root phenotypes. Frequency distributions of the traits (A) 
seedling weight and (B) root system depth in the Ler × Kas-2 mapping population (125 recombinant 
inbred lines were analyzed; six seedlings were sown per genotype) grown in vitro (medium 0.8 % Agar, 
1/2 MS, pH 5.8, evaluated 21 days after germination). The horizontal black bars denote the phenotype of 
the parental lines and two additional genotypes (mean values ± standard error). (C, D) QTL maps for the 
traits mentioned above. The horizontal dotted line shows the significance threshold by running 1000 
permutations. Position of the GA5 marker is indicated with an arrow. 
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Root depth of semi-dwarf accessions grown in soil 

In order to further characterize the evaluated semi-dwarf accessions, a selected group 

of genotypes was phenotyped in rhizotrons using soil as substrate. As observed in the 

in vitro experiment, the Pak-3 accession had the longest root system depth after the 

first four weeks after sowing (Figure 3.8A, B). In contrast, another Central Asian semi-

dwarf accession Dja-1 presented the shortest root length that did not significantly 

differ from the related wild type Neo-3 during the first three weeks of growth. The 

semi-dwarf mutant ga5 showed a shorter root system compared with its wild type Ler. 

A final evaluation was performed two weeks after flowering in order to phenotype the 

plant height. As previously reported (Barboza et al., 2013), semi-dwarfism was the 

only trait significantly affecting plant height (P-value 4.67×10-11, R2adj = 0.68) (Figure 

3.9A). Concerning the other traits, such as shoot fresh weight, flowering time, and root 

system depth (Figure 3.9B-D) only the genotype effect was significant (P-value < 

0.0001). The late flowering west-European accession OW showed the highest shoot 

biomass and root system depth, whereas the opposite was observed for the early 

flowering accession Pak-1 (Figure 3.9B-E). The ga5 mutant flowered slightly later 

than Ler. The ga5 root system depth was shorter than Ler but not significantly 

different when applying post-hoc statistical tests (Figure 3.9D). Flowering time was 

positively correlated with fresh weight and rooting depth (Figure 3.10A, B).  

 
Figure 3.8. Root system depth of soil grown accessions. (A) Development of root system depth across 
time in seven Arabidopsis thaliana accessions and the ga5 mutant (Ler background) grown in soil-filled 
rhizotrons. Means ± standard errors are shown. Asterisks show P-value significance from an anova to 
test significant differences among the genotypes: ***0.001, **0.01, *0.05, n.s. not significant at the P-
value > 0.05. (B) Boxplot shows the root system depth at day 12 after sowing. The thick horizontal line 
represents the median, boxes represent the 25th and 75th percentile (lower and upper hinges respectively), 
vertical lines represent whiskers (0.05th, 0.95th percentile) and open circles extreme values. The letters 
above the box plots indicate the results of a Tukey`s HSD test where means with different letters are 
significantly different (at P-value < 0.05). “Sdw” on the top of some boxes indicates the semi-dwarfs. 
Different colors indicate semi-near isogenic comparisons. 
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To further validate the root system phenotype of the Pak-3 accessions, several 

F3 lines derived from the cross Ler × Pak-3 with differential root system depth were 

phenotyped in vitro and in rhizotrons for root system depth. It was possible to isolate 

F3 lines differing in their root system depth and carrying different backgrounds, e.g. 

segregation of erecta and ga5 loss of function alleles (Figure 3.11A, B).  

 

 

 
Figure 3.9. Contrasting phenotypes in selected Arabidopsis accessions. (A-D) Boxplots showing 
shoot height (A), rosette fresh weight (B), flowering time after sowing (C) and root system depth (D) in 
seven Arabidopsis thaliana accessions and the ga5 mutant (Ler background) grown in soil-filled 
rhizotrons. Evaluations and pictures were conducted two weeks after flowering time. The thick 
horizontal line represents the median, boxes represent the 25th and 75th percentile (lower and upper 
hinges respectively), vertical lines represent whiskers (0.05th, 0.95th percentile), and open circles 
extreme values. The letters above each panel indicate the results of a Tukey`s HSD test where means 
with different letters are significantly different (at P<0.05). (E) Representative images of root and shoot 
phenotypes of the seven accessions two weeks after flowering time. Different colors indicate semi-near 
isogenic comparisons. 
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Final evaluations show a major control of GA5 regulating plant height (as 

previously known) and strong effects of the different accessions (backgrounds) 

regulating both root and shoot traits independent of having active or inactive ga5 

alleles. Thus it seems that GA5 mainly controls plant height and further significant 

modifications in the root system are controlled by additional loci.  

 

    
Figure 3.10. Effect of flowering time on shoot and root related traits. Correlations between 
flowering time and rosette fresh weight (A), and root system depth (B) in seven Arabidopsis thaliana 
accessions and the ga5 mutant (Ler background) grown in soil-filled rhizotrons. Triangles represent 
semi-dwarf accessions, open circles wild type accessions. Linear regression trend line is shown with the 
dotted lines. Blue dotted lines show the correlation among all variables, red dotted lanes show the 
correlation for semi-dwarf accessions and the red line for wild type accessions. Coefficient of 
determination (R2) is shown on the lower right corner. 

 

 

 
Figure 3.11. Segregation for root system depth in selected F3 lines. (A) Root system depth 
correlation between F3 genotypes grown in vitro and in rhizotrons. The F3 lines were derived from the 
cross Ler × Pak-3. Plants in vitro were analyzed at day 15, in rhizotrons at day 14. Dashes represent 
standard errors of the mean. Filled squares represent functional ERECTA alleles (as phenotyped in 
parental F2 lines). Red filled square represent the parental genotype Pak-3; empty red square represents 
Landsberg erecta. Both parental lines were replicated using two biological repetitions. (B) Root system 
depth in rhizotron grown F3 plants across time, genotypes carrying erecta non functional alleles are 
indicated with dotted lines, parental lines are indicated with red lines (Ler = dotted line).   
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Response to water limiting conditions 

The presence of semi-dwarfs in nature indicates that this trait might confer a selective 

advantage under specific conditions. Previous studies suggest that ga5 might be more 

drought tolerant due to modifications in the root system (Vartanian et al., 1994). Thus 

it was aimed quantifying the performance of GA biosynthesis mutants and natural 

semi-dwarf accessions under water limiting conditions. To mimic low water 

availability, a screen using osmotic stress by applying sorbitol (100 mM) was 

conducted in vitro. No strong differences were observed when comparing the ratio 

control / sorbitol for the traits FW and root system length for the different evaluated 

GA mutants. The ratios oscillated between ~ 0.58 - 0.75 for both traits. Only for the 

trait root system length the mutant ga1-13 showed a ratio of ~ 0.83, and for FW the 

mutants ga20ox2-1 and ga3ox1-3 showed values of ~ 0.85 and ~ 1.0 respectively. A 

higher ratio, or a ratio near to one would indicate that there were no differences 

between the osmotic and control treatments. Semi-dwarfism does not seem to affect 

the response to osmotic stress. By testing the different F1 crosses no link was observed 

for water limiting conditions between the crosses ga5 × accessions (mean ± standard 

error for root length 0.57 ± 0.02 and for FW 0.68 ± 0.02) and Ler × accessions (root 

length ratio 0.60 ± 0.02; FW ratio 0.58 ± 0.05). Major differences were observed 

among the different genotypes were ratios ranged from 0.2 to ~ 1 (Figure 3.12). Again 

semi-dwarfs did not show a uniform response, e.g. the semi-dwarf Sparta showed the 

lowest ratios (~ 0.3 for FW and ~ 0.4 for root system length) while its semi-dwarf 

counterpart Dja-1 and Kas-2 were the most tolerant (ratios = > 1).  

 

 
Figure 3.12. Osmotic stress response. (A) The ratio sorbitol / control was evaluated in different A. 
thaliana accessions and the ga5 and aba 1-3 mutants. The ratio was generated using the mean values of 
the Total Root Length and shoot fresh weight (FW) evaluated or harvested the final day of the 
experiment (day 18). “Sdw” indicates semi-dwarf accessions. Plants were grown in vitro (medium 1 % 
Agar with 1 / 3 Hoagland). 
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To test a different water limitation scenario, water-withholding experiments 

using pots filled with soil were conducted. Projected leaf area and shoot fresh / dry 

weight were traits used as indicators of plant performance and were evaluated using 

GROWSCREEN FLUORO (Jansen et al., 2009). The water-withholding experiment 

was divided into three stages: initial growth, then water withholding (from week four 

to week six after sowing watering was stopped) and recovery phase (at week six plants 

were re-watered and allowed to recover until the end of experiment at week seven). 

One group was watered to serve as control for the entire duration of the experiment 

(details in materials and methods). The Pak-3 accession showed no significant 

differences in the ratio of shoot biomass between control and water limiting conditions 

(Figure 3.13). Kas-2 showed an intermediate effect. Both accessions showing this high 

effect were semi-dwarfs. Conversely the semi-dwarf OW-0 showed the lowest ratio 

together with the ABA deficient mutant aba1-3, which was used as negative control. 

The use of this ratio using the final dry weight might mask possible effects because 

final dry weight is a result of growth during drought and recovery phases. A plant 

performing well in drought but poor in recovery might be very similar to one that 

performs poor in drought but well in recovery.  

 
Figure 3.13. Water withholding response of different genotypes. The ratio drought/control was 
generated using the mean value of the dry weight of rosettes harvested the final day of the experiment. 
Dashes represent the standard deviation from estimating the same ratio using the fresh weight. “Sdw” 
indicates semi-dwarf accessions. 

 

The use of GROWSCREEN-FLUORO allows the estimation of performance 

ratios in time during and after drought using projected leaf area. Thus a ratio that 

describes growth at water limitation was estimated dividing the relative growth rates 

under water limiting conditions over control. When different GA mutants were 

evaluated, the magnitude of the differences was modest (Figure 3.14). Relevant to 

0!

0.2!

0.4!

0.6!

0.8!

1!

1.2!

ab
a1
-3!

T6
20
!

OW
-O
!

OW
-1! Le

r!

Ka
s-0
!

Kl-
2!

Sp
art
a!

Co
l-0
!

Pa
k-1
!

Je
-0! ga

5!

Ka
s-2
!

Pa
k-3
!

R
at

io
 w

at
er

 w
ith

ho
ld

in
g 

/ c
on

tr
ol
!

Sdw! Sdw! Sdw! Sdw!

Sdw!

Sdw!

ga
5!Le

r!

ab
a1
-3!



SEMI-DWARFS PLEIOTROPIC EFFECTS 49 
 

 

notice is that the ga1 mutants showed a reduced performance during drought thus 

pointing at the fact that early mutations in the GA biosynthesis pathway may affect 

growth under water-limiting conditions. F1 populations using the crosses ga5 × Pak-3 

and ga5 × OW-0 showed no differences under water limiting conditions compared 

with the crosses with the wild type Ler (data not shown). When this effect was 

evaluated in different accessions, the Pak-3 accession presented a high performance 

during water-limiting conditions and the highest during the recovery phase (Figure 

3.15). Analyzing the different growth curves of the evaluated accessions (Figure 

3.16A) provide additional information. Pak-3 is more tolerant to water-withholding 

conditions, which means the reduction in growth is low compared to control conditions 

or to Pak-1 (Figure 3.16B). Interestingly, under control conditions plants stop growing 

after day 45, explaining why there were high performance ratios during the recovery 

phase. The low ratio using the shoot weight at the final date of the experiment (week 

7) confirms the results. Kas-2 (Figure 3.16C) and OW accessions (Figure 3.16D) show 

additional examples where it seems Kas-2 is more tolerant than OW-0. Taken together, 

these data show that the various ga5 alleles do not differ in their behavior from their 

related wild types and therefore this mutation has no detrimental effect during water 

limitation.  

 

 
Figure 3.14. Mutations in ga1 show a low drought performance. Relative growth performances of 
different Arabidopsis thaliana genotypes obtained during drought and after re-irrigation of the plants 
(recovery).   
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Figure 3.15. Pak-3 shows the highest drought performances. Relative growth performances of 
different Arabidopsis thaliana genotypes obtained during drought and after re-irrigation of the plants 
(recovery). “Sdw” indicates semi-dwarf accessions. 
 

 

 
Figure 3.16. Pak accessions show a reduced leaf area. (A) Growth curves of different A. thaliana 
genotypes grown on soil under control and water-withholding conditions. Mean projected leaf area per 
genotype was plotted. Growth curves for the (B) Pak, (C) Kas, and (D) OW accessions. Dotted lines 
represent accession grown under water-withholding conditions. Vertical scale on top of the plots 
indicates the duration of the treatment (black rectangular bar).  
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Discussion 

GA5 is a GA biosynthesis gene with a major effect only on plant height but without 

further major pleiotropic effects as are observed in mutants in early steps of the GA 

pathway (Koornneef & van der Veen, 1980). From all five AtGA20ox`s paralogs, GA5 

is the only one having a major effect on plant height when mutated, due to its 

expression pattern in comparison with that of the paralogs (Plackett et al., 2012; Rieu 

et al., 2008). Because the ga5 mutants show no trade-offs, it is explained why natural 

variants carrying loss of function alleles can be maintained in nature in contrast to 

mutations in early GA biosynthesis genes such as ga1 (Barboza et al., 2013). 

Redundancy in the GA20ox genes might maintain the GA homeostasis in all organs 

except the growing inflorescence stem and leaves thus allowing ga5 mutants to 

maintain a similar root system as their corresponding wild types. For instance, 

GA20ox2 and GA20ox3 are overexpressed when GA inhibitors are applied (Bidadi et 

al., 2010) indicating the regulation of GA levels by a negative feedback system on 

biosynthesis genes. Despite this, the ga5 mutant shows a moderate reduction of root 

length compared to the wild type, an effect observed in previous studies in the 

Landsberg erecta background (Vartanian et al., 1994), but not in Col (Rieu et al., 

2008). The genetic background plays a role in this effect suggesting occurrence of 

epistasis. A good example has been shown for the SVP gene, for which the same 

mutation have a different effect on flowering time depending on the genetic 

background (Méndez-Vigo et al., 2013). Although no significant effect on root growth 

were observed in Arabidopsis, a promotion of root growth (dry weight) was observed 

in semi dwarfs in poplar (Elias et al., 2012) in which down regulation of a DELLA 

protein caused  semi-dwarfism.  

Natural variation for root systems architecture has been reported in 

Arabidopsis. Several studies have used QTL analysis to map loci involved in root 

related traits (Fitz et al., 2005; Loudet et al., 2005; Mouchel et al., 2004; Sergeeva et 

al., 2006). Other studies yielded mapping under different mineral concentrations 

showing the plasticity of the root system and the loci controlling these effects 

(Kellermeier et al., 2013; Prinzenberg et al., 2010). By using Genome Wide 

Association Studies (GWAS) the genes PHOSPHATE 1 (PHO1) and Root System 

Architecture 1 (RSA1) were associated with root system allometry (Rosas et al., 2013). 

However, GWAS performed for total root length, did not result in significant 

associations suggesting the role of many loci controlling this trait (Rosas et al., 2013). 
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Another example of natural variation for root length identified loss of function alleles 

in the positive regulator of auxin signalling BRX, which modifies root length under 

acidic conditions (Gujas et al., 2012). These examples illustrate the role of specific 

root system architecture traits that may be selected for depending on the environment 

as illustrated in a recent review (Lynch, 2013). This modulation can affect different 

genes from independent pathways. The possible locus (loci) controlling the root 

system depth in the Pak-3 accession has not been mapped and therefore it cannot be 

concluded if the variation is due to known pathways or genes. The different root 

systems found in other central Asian accessions such as Kas-2 (relatively short root 

system) or Neo-3 (relatively large root system width) suggests that the variation 

present in this region and a possible variable selective pressure may allow the 

evolution of specialized root systems.   

The use of semi-dwarfs in crops has been a topic for discussion regarding 

possible trade-offs under drought conditions. The variety IR64, carrying mutations in 

GA20ox2 (Sasaki et al., 2002; Spielmeyer et al., 2002), the functional ortholog of ga5 

(GA20ox1), has been reported as drought sensitive because it was bred for irrigated 

agricultural environments (Lafitte et al., 2007; Swamy et al., 2013). However some 

authors point to the observation of occurrence of rice semi-dwarfs carrying drought 

tolerance (Lafitte et al., 2007). The physiological hypothesis behind it might deal with 

GA to ABA antagonism, where semi-dwarfs carrying low GA levels will thus show 

ABA accumulation being beneficial under drought (Lafitte et al., 2007). As found in 

this study for A. thaliana, tolerant accessions can occur in semi-dwarf background. 

Even the isogenic comparison between GA20ox mutants both in the Landsberg erecta 

and Col backgrounds, show no trade-offs during drought.  

Recent studies point at the relevance of the root system depth to increase 

drought avoidance. Natural variants in rice with deep rooting system have been 

isolated and the QTL behind this trait identified as being DEEPER ROOTING 1 

(DRO1) (Uga et al., 2013). Introgression of this gene into cultivated varieties conferred 

drought resistance. It is still disputable whether or not a long root system is directly 

translated into drought tolerance, at least as argued for rice (Lafitte et al., 2007). In this 

study it was addressed the possible link between water limiting conditions and root 

system length. For instance, previous studies have associated stomatal density with 

transpiration efficiency (Masle et al., 2005). Another study have related flowering 

time, specifically the gene FRIGIDA (FRI) as relevant to deal with drought tolerance 
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(Lovell et al., 2013). Yet, it remains an open question to further understand and 

characterize the possible link between a long root system and its plausible selective 

advantage in nature and if it displays possible trade-offs. 

 

Conclusions 

The ga5 locus shows no major pleiotropic effects; here evidence is provided that this is 

also the case for root related traits and for drought tolerance. This indicates that semi-

dwarfism is neutral under the tested drought conditions. Reduced water availability 

tolerance can occur in semi-dwarf backgrounds as illustrated here for the Pak-3 and 

Kas-2 accessions. The semi-dwarf Pak-3 accession shows a long root system depth 

independent from the ga5 loss of function allele and this was confirmed using both 

agar- and soil-based assays.  

 

 

Materials and methods 

Plant material  

Genotypes used in previous studies were included in the experiments (Barboza et al., 

2013). For the QTL mapping experiment the Ler × Kas-2 Recombinant Inbred line 

population was used (El-Lithy, 2006). 

 

In vitro root experiments 

To characterize the phenotype of the semi-dwarf accessions, an experiment was 

conducted with a number of natural accessions together with the ga5 mutant and Ler. 

All experiments were conducted in a complete randomized design. For the in vitro 

experiments the plates were randomized 5 times per week. To understand the role of 

different mutations in the GA biosynthesis and signalling pathway, different mutants 

were phenotyped together with selected F1 populations. In all experiments Ler and the 

ga5 mutant were included. Root system was phenotyped in vitro using the 

GROWSCREEN-ROOT system with shoots growing outside the agar plate while roots 

growing through the agar media (Nagel et al., 2009). The culture medium contained 

1/3 Hoagland solution (as described in Nagel et al., 2009), 1% agar (Sigma). For the 

osmotic stress experiments 100 mM Sorbitol (Merck) was used. Plants were grown on 

120 × 120 × 17 mm plates (Greiner) filled with ~166 ml medium (completely filled). 

Seeds were sterilized by using 70 % ethanol (3 min), thereafter, 0.5 % NaOCl (10 min) 
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and then seeds were rinsed three times with sterile Milli-Q H2O. After sowing seeds 

were incubated at 4°C in the dark for 5 days. Subsequently, the sown plates were 

vertically incubated in a chamber set to 8 / 16 hours light / dark period, 22 °C day / 18 

°C night temperature and 60 % air humidity. Each plate contained four plants of the 

same genotype; this was replicated three times. Plants were phenotyped at day 18 after 

germination. 

Additional experiments were conducted to phenotype the root system depth in 

the Ler × Kas-2 Recombinant Inbred Line mapping population (El-Lithy, 2006) and in 

F3 lines derived from the cross Ler × Pak-3. Plants were grown in half MS medium 

(Duchefa), pH 5.8, 0.8 % agar (Plant agar Duchefa), 100 µl / liter Plant Preservative 

Mixture (PPM). In all experiments seeds were stratified five days at 4 °C in a dark cold 

room. The same plates were used, as described above. In this case plants were grown 

inside the plate, having six plants per plate. Plants were phenotyped at day 21 after 

germination.  

The mutants ga1-13, ga1-3 6xbxcol, and ga3ox1-3 / ga3ox2-1 were stratified in 

100 µM GA4+7 solution (Duchefa) under the same temperature conditions, as described 

above. The GA stock solution was at a concentration of 25 mM (GA diluted in a few 

drops of KOH 1M). 

 

Rhizotron experiments 

To phenotype the plants in rhizotrons, an experiment was conducted with six A. 

thaliana accessions, the ga5 mutant and Ler. To characterize F3 lines derived from the 

cross Ler × Pak-3 segregating for root length, an experiment was conducted with ten 

F3 lines and the parental lines, the latter with two independent biological repetitions. 

Plants were grown in rhizotrons (60 × 30 × 2 cm) filled with peat soil as described in 

previous studies (Nagel et al., 2012). Seeds were sown directly in the rhizotrons and 

stratified for 4 days in a cold chamber at 4 °C. After that plants were grown in 

greenhouse conditions located in the institute Plant Sciences (IBG-2; 

Forschungszentrum Jülich GmbH, Jülich, Germany). One plant per rhizotron was 

grown for the former rhizotron experiment; two plants per rhizotron were grown for 

the latter experiment. Each genotype contained six repetitions. A randomized design 

was used in the experiments. Root system depth was quantified in the first rhizotron 

experiment by image processing using ImageJ (Schneider et al., 2012) and in the latter 
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experiment by measuring directly with a ruler in the rhizotrons. In both experiments 

images were acquired once a week. 

 

Above ground phenotyping experiments 

Water-withholding experiments were conducted using GROWSCREEN-FLUORO 

(Jansen et al., 2009).  Both control and water-withholding groups were nearly water-

saturated upon transplanting and then got drier after that. They were maintained 

between 50 and 40 % of maximum soil water content (Table 3.1) until start of 

withholding (week 4). The control group then stayed between 50 and 40 % whereas 

the drought group looses more water until they reach 10% or even less (Table 3.1). 

This is the soil moisture level at which plants stopped growing. Then re-watering was 

done (week 6) up to the 40-50% level and plants were allowed to recover for one 

week. The first experiment was conducted including natural accessions together with 

ga5 and Ler. In the second experiment, a group of GA biosynthesis and signalling 

mutants were studied. The third experiment included the F3 lines derived from the 

cross Ler × Pak-3 indicated in the root experiments. Each genotype had 10-20 

repetitions (depending on experimental set up). Parental lines (Ler and Pak-3) 

contained two independent biological replicates. A complete randomized design was 

used. Single Seeds were sown on 576 wholes trays filled with soil (Pikiererde, Balster 

Einheitserdewerk GmbH, Fröndenberg, Germany). Stratification was conducted for 

four days at 4°C. After that trays were moved to the growth chamber (8 / 16 hours light 

/ dark period, 22 °C day / 18 °C night temperature, air humidity 50%). After cotyledon 

unfolding, seedlings were transplanted to pots (7 × 7 × 8 cm) filled with peat-sand-

pumice substrate (SoMi 513 Dachstauden, Hawita GmbH, Vechta, Germany). Pots 

were randomized and arranged in trays (40 pots per tray). Tray weighing, irrigation 

and data acquisition with GROWSCREEN FLUORO were conducted as described in 

previous studies (Jansen et al., 2009). Trays were imaged and automatically 

randomized five times per week. The mutants ga1-13, ga1-3 6xbxcol, and ga3ox1-3 / 

ga3ox2-1 were germinated as described in the in vitro root experiments. 
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Table 3.1. Gravimetric soil water content. 

Experiment 
Transplanting 

-  fully 
saturated: 

Initial 
growth - 

decreased 
to: 

Well 
watered - 

maintained 
at: 

Drought - 
decreased 

to: 

Recovery 
- refilled 

to: 

Semi-dwarf accessions 100% 40% 40% 7% 40% 
Mutants 100% 40% 40% 9% 40% 

 

 

Data analysis 

Descriptive statistics, Anova tests, and Tukey tests were performed with R. Principal 

component analysis was done with the package FactoMineR (Lê et al., 2008). QTL 

mapping was used using the R/qtl package (Arends et al., 2010; Broman et al., 2003). 

The function “mqmscan” was used setting all markers as cofactors and later eliminated 

through backward elimination. To quantify the explained variance, the main QTLs 

were manually selected and fitted into a multiple QTL model using the function 

“fitqtl” (Haley-Knott regression was the selected method).  



 
Chapter 4 

______________________________________________ 

 

Genetics controlling germination sensitivity to the 

gibberellin biosynthesis inhibitor paclobutrazol in 

Arabidopsis thaliana 
 

 
 
Abstract 
 
Arabidopsis thaliana natural variation for seed germination was studied to dissect the 

genetic control of differences in sensitivity for the gibberellin inhibitor paclobutrazol 

(PAC). The accession Shakdara (Sha) was found to be PAC tolerant. By using 

Quantitative Trait Loci (QTL) analysis and Genome Wide Association Studies 

(GWAS), a complex regulation of the effects of GA depletion / restoration was found. 

Screening different mapping populations with Sha as one of the parental lines 

identified different loci controlling the PAC sensitivity in the various populations. The 

application of higher PAC doses or the application of PAC + GA4+7 allowed the 

detection of treatment specific QTLs. A main locus for PAC sensitivity on 

chromosome 1 was validated and characterized for its seed dormancy and germination 

behavior. This QTL plays a minor role on seed dormancy. Accessions screened for 

GWAS showed a broad spectrum of PAC sensitivity, but despite this no major loci 

were identified. PAC sensitivity is partially related with dormancy. The occurrence of 

dormant accessions displaying PAC tolerance points to partly different mechanisms 

controlling these traits. 
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Introduction 

 Natural variation in species with a broad distribution range is expected to 

reflect adaptation to the environment in which the plants are growing. To dissect the 

genetic basis of this variation Quantitative Trait Loci (QTL) analysis, either using the 

progeny of crosses among accessions or Genome Wide Association Studies (GWAS) 

are the procedures to get to the genes underlying allelic variation (Alonso-Blanco et 

al., 2009; Weigel, 2011). Thereafter experiments need to be done to validate the QTL 

and to confirm the involvement of allelic variation of specific genes underlying the 

QTL. Validation is often done by the analysis of Near Isogenic Lines (NILs) that can 

be obtained by backcrossing specific genotypes with one or both parents (Bentsink et 

al., 2010) or by selecting NILs from so-called Heterogenous Inbred Families (Tuinstra 

et al., 1997). This approach has been successful in many cases and revealed that the 

identified genes can belong to all types of ontology classes where alleles can differ in 

the structural part of the genes or in the promoters (for a review see Alonso-Blanco et 

al., 2009), where the latter can result in variation in gene expression. 

Bioactive gibberellins (GAs) are plant growth regulators affecting several traits 

such as seed germination, flowering time, anther and petal development, and cell 

elongation. The biosynthesis of GA and its signalling is well understood (Hedden & 

Thomas, 2012; Yamaguchi, 2008). Indications that variation for GA responses is 

present among natural Arabidopsis accessions have been reported for seed 

germination, hypocotyl length, floral morphology and plant length (van der Schaar et 

al., 1997; Borevitz et al., 2002; Brock et al., 2012; Barboza et al., 2013). It was found 

that most of the semi-dwarfs that can be found in nature have mutations in the GA5 

locus encoding the GA20oxidase1 gene (Barboza et al. 2013, El-Lithy et al., 2006).  

Apart from elongation growth and stress tolerance, gibberellins also play an 

important role in seed germination (Holdsworth et al., 2008). This can be shown by the 

inhibition of germination by gibberellin biosynthesis inhibitors such as paclobutrazol 

(PAC) (Hedden & Graebe, 1985), ancymidol (Coolbaugh & Hamilton, 1976), and 

tetcyclasis (Debeaujon & Koornneef, 2000) and the lack of germination in GA 

deficient mutants (Koornneef & Veen, 1980). The effect of GA on germination is 

linked with the inhibition of germination by the plant hormone abscisic acid (ABA), 

which is overcome by GA that is synthesized upon exposure of seeds to light 

(Yamaguchi, 2008). When ABA is absent or not functioning, germination will take 
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place without GA and therefore also in the presence of PAC (Koornneef et al., 1982). 

For this reason PAC resistance has been used to select for ABA biosynthesis mutants 

(Léon-Kloosterziel et al., 1996; North et al., 2007) as well as for ABA signalling 

mutants (Nambara et al., 1992). However accessions that differ only a little in 

germination behavior can also differ significantly in PAC resistance and QTLs specific 

for germination on paclobutrazol have been identified (van der Schaar et al., 1997). 

We hypothesize that these genetic differences in paclobutrazol resistance can be 

explained by differences in plant hormone synthesis and / or signalling (both ABA and 

GA). By using QTL analysis and GWAS we aim to (i) study the genetic control of 

PAC sensitivity in Arabidopsis thaliana using natural variation (ii), validate loci 

controlling this effect, and (iii) characterize the germination behavior of genotypes 

differing in PAC sensitivity.  

 

Results 

QTL analysis for paclobutrazol sensitivity in RIL populations 

To analyze the natural variation for paclobutrazol sensitivity in Arabidopsis 

thaliana, different accessions were analyzed for PAC sensitivity (4 µM). Initial screens 

identified the Central Asian accession Sha as an accession with reduced PAC 

sensitivity when compared with sensitive accessions such as Bay-0 (here there after 

refer as Bay) (Figure 4.1A). To dissect the genetics controlling this effect, QTL 

mapping using a Bay × Sha Recombinant Inbred Line (RIL) (Loudet et al., 2002) 

population was performed.  Experiments were conducted using the high throughput 

methodology “GERMINATOR” (Joosen et al., 2010). This method allows the 

quantification of several seed germination related traits. In the present study we used: 

germination across time described with the area under the curve (AUC); maximum 

germination (gMAX); time to reach 50 % of germination (t50); and uniformity of 

germination (u8416) which indicates the time interval between 84 % and 16 % of 

seeds to germinate. The PAC application reduces AUC and gMAX, and increases the 

t50 and u8416 mean values (Table 4.1). Broad sense heritabilities (H2) were higher for 

the AUC and gMAX under PAC conditions compared to control (Table 4.1). On the 

other hand the heritabilities for t50 and u8416 were considerably lower than in the 

control conditions. The coefficient of genetic variation (CVG) shows ample genetic 

variation in the different traits (Table 4.1). The germination phenotype of the RIL 

populations can be visualized by plotting the gMAX values of control and PAC 
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treatments against each other (Figure 4.1B). Few RILs germinating lower than 80 % 

under control conditions indicate the presence of some residual dormancy in these 

RILs.  

 

      
 

Figure 4.1. Paclobutrazol sensitivity in the Bay × Sha RIL population. (A) Germination of the Bay 
and Sha A. thaliana accessions in control and in paclobutrazol. (B) Correlation between the maximum 
germination of the control and paclobutrazol (PAC) treated seeds  (after 120 hours) in the Bay × Sha 
RIL mapping population.  

 

 

QTL mapping identified several loci across the genome (Figure 4.2, Appendix 

4). The highest number of QTLs and the most significant were detected for the traits 

AUC and gMAX under PAC conditions as well as for the subtraction Control – PAC 

(Δ). The most significant QTL was mapped on chr 1 (Appendix 4), which together 

with a QTL on chr 5 confers differences in germination on PAC. At these positions no 

or weakly significant QTLs were detected for differences in germination under control 

conditions (Appendix 4). The highest QTL under control conditions was located on chr 

4, and was not detected in the PAC treatment (Figure 4.2, Appendix 4). A QTL model 

was fitted with the most significant QTLs for gMAX under PAC conditions and 

showed that the QTL on chr 1 explained 16.7 % of the variance (Table 4.2). For all 

QTLs the Sha alleles increased the trait value. No significant interactions were present 

when testing pairwise interactions among QTLs. 
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Table 4.1. Descriptive statistics for different germination related traits in different mapping 
populations.  
Population Treatment Traita 

 

(SD) [VG]b [VE]c [H2]d [CVG]e 
Bay × Sha Control AUC 81.59 8.75 15.64 7.88 0.80 3.43 
Bay × Sha Control gMAX 0.96 0.07 0.13 0.08 0.74 26.55 
Bay × Sha Control t50 33.59 4.24 7.43 4.13 0.76 5.74 
Bay × Sha Control u8416 11.36 5.03 7.91 6.23 0.62 17.50 
Bay × Sha PAC04 AUC 55.21 23.09 44.32 13.23 0.92 8.53 
Bay × Sha PAC04 gMAX 0.68 0.26 0.50 0.17 0.90 73.22 
Bay × Sha PAC04 t50 37.71 8.01 9.00 13.26 0.32 5.62 
Bay × Sha PAC04 u8416 12.70 6.13 6.57 10.36 0.29 14.27 

         
Ler × Sha Control AUC 87.21 2.48 3.24 3.76 0.43 1.46 
Ler × Sha PAC04 AUC 63.70 17.36 31.33 12.00 0.87 6.21 
Ler × Sha PAC08 AUC 37.33 20.40 36.93 16.51 0.83 11.51 
Ler × Sha PACGA AUC 79.13 13.71 22.84 9.02 0.87 4.27 

         
Sha × Col Control AUC 83.86 6.94 9.00 10.18 0.44 2.53 
Sha × Col PAC04 AUC 66.48 24.46 44.14 16.12 0.88 7.07 
Sha × Col PAC08 AUC 58.61 26.20 48.37 18.64 0.87 8.39 
Sha × Col PACGA AUC 86.95 7.00 10.43 5.27 0.80 2.63 

         
Col × Ler Control AUC 90.30 1.84 2.01 3.10 0.30 1.11 
Col × Ler PAC04 AUC 54.79 17.35 32.27 13.66 0.85 7.33 
Col × Ler PAC08 AUC 38.24 21.14 34.51 24.33 0.67 10.86 
Col × Ler PACGA AUC 84.86 10.29 17.95 10.21 0.76 3.53 

         
Hapmap Control AUC 58.08 13.49 140.35 41.03 0.77 5.93 
Hapmap Control gMAX 0.88 0.16 0.02 0.01 0.77 43.07 
Hapmap PAC04 AUC 19.51 19.84 331.79 64.97 0.84 21.87 
Hapmap PAC04 gMAX 0.34 0.31 0.08 0.02 0.83 154.76 

aAbbreviations: AUC, area under the curve (AUC); gMAX maximum germination (germination 
fraction); t50, time to reach 50 %; u8416, uniformity of germination indicating the time interval between 
84 % and 16 % of seeds to germinate. 
bAmong genotype variance. 
cEnviromental variance (estimated as total genotype variance – VG). 
dBroad sense heritability (VG/VG+VE).  
eCoefficient of genetic variation   . 

 

The occurrence of several loci with large effects in the Bay × Sha population 

raised the question whether this occurs in other populations where Sha is present. To 

answer this the Ler × Sha (Clerkx et al., 2004) and Sha × Col (Simon et al., 2008) RIL 

populations together with the Doubled Haploid (DH) Col × Ler population (Wijnker et 

al., 2012) were phenotyped for PAC sensitivity (PAC04, 4 µM). To further understand 

the genetic control of PAC sensitivity also a higher dose was applied (PAC08, 8 µM) 

as well as the treatment PAC08 + GA  (PACGA, GA4+7, 8 µM). The three populations 

X

100× VG( ) X
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were grown in the same conditions and stored in the same way to avoid differences in 

possible maternal effects. The application of higher doses of PAC (PAC08) reduced 

germination percentage (gMAX) (Table 4.1), whereas the treatment PACGA restored 

germination. Broad sense heritabilities were comparable to the Bay × Sha experiment 

in all populations (Table 4.1). The absence of variation in the control treatment was 

evident as most accessions germinated nearly 100% (Figure 4.3A-C). The RILs show a 

transgressive segregation for the treatments PAC04 and PAC08 (Figure 4.3A, B). The 

Sha × Col showed the higher sensitivity range for the treatment PAC04 (Figure 4.3A, 

E), while the Ler × Sha population had the higher range for the treatment PACGA 

(Figure 4.3C, E, F). From all parental accessions, Sha is the most tolerant to PAC 

followed by Col and Ler. 

 
Figure 4.2. Genetics controlling pac sensitivity in the Bay × Sha RIL population. (A) QTL map of 
germination related traits (AUC, gMAX, t50, u8416) phenotyped under control and PAC (4 µM) 
conditions. The horizontal dotted line shows the significance threshold by running 1000 permutations. 
(B) QTL map represented as heat map organized by LOD score with the dendrogram.  
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Table 4.2. Summary of QTL mapping results for gMAX in the PAC treatment in the Bay × Sha 
RIL mapping population. 

Chr Nearest marker Position 
(cM)a LOD scoreb Explained variance (%)b Effectc 

1 F5I14 69.6 7.8 16.7 + 
3 MSAT305754 7.9 3.1 6.3 + 
4 MSAT4.35 24.2 2.4 4.8 + 
5 MSAT512110 41.8 2.2 4.4 + 

a Position of the nearest marker in the genetic map. 
b LOD score and explained variance estimated using the “fitqtl” model from the R/qtl package. 
c Effect of QTL estimated µA-µB; where A refers to the Sha alleles and B to Bay alleles. Positive (+) 
effect means that Sha alleles at the nearest marker linked to the QTL increases the trait mean; negative (-
) effect indicates that Bay alleles increase the trait mean. 
 
 
 

 
Figure 4.3. Paclobutrazol and gibberellin sensitivity in three A. thaliana mapping populations. (A-
F) Germination of the Double Haploid (DH) Col × Ler mapping population, and the two Recombinant 
Inbred Lines (RILs) populations Ler × Sha and Sha × Col in different paclobutrazol (PAC) 
concentrations (4 µM and 8 µM) and when appling PAC (8 µM) + GA (8 µM GA4+7). Mock control was 
performed using DMSO (same volume as PAC04). Values of the parental lines are indicated in 
replicates. Phenotypes were scored at maximum germination (after 120 hours). 

 

Different QTLs affecting PAC and PACGA sensitivity were mapped in the 

three populations. To dissect the genetics controlling the effect of the PAC and 

PACGA treatments, only the trait AUC was analysed. This trait was highly correlated 

with gMAX (R2 = 0.94), had a high heritability (Table 4.1) and integrates germination 

speed and final germination.  In order to map QTL related with the response of 
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different PAC treatments the difference between germination in PAC04 and PAC08 

was also analyzed. From the three populations the Ler × Sha showed the highest 

number of QTLs (Figure 4.4A,B). The major effect QTLs are located at the lower end 

of chr 3, the middle of chr 4 and two regions on chr 5. The treatment PAC04 and 

Control – PAC04 showed the most significant QTLs located on chr 3 and chr 5 (Figure 

4.4B, Appendix 5). The QTL located in the lower half chr 5 co-locates with the 

dormancy QTL DOG1 (Bentsink et al., 2010). Interestingly the PAC08 treatment 

yields a different QTL located on chr 4 compared with PAC04. This QTL is also 

present for the traits PACGA − PAC08 and PACGA − PAC04. Interestingly, 

compared to Control not all PACGA treatments germinate 100 % and their subtraction 

yielded QTLs thus being more meaningful than using control. The absence of 100 % 

restoration by GA application indicates that GA sensitivity in these genotypes differs. 

This QTL co-locates with a heat germination QTL (Clerkx et al., 2004). A minor effect 

QTL is located in the lower half of chr 1 for the treatments PAC08 and PACGA 

(Figure 4.4B, Appendix 5). Dormancy and sucrose sensitivity QTLs have been mapped 

in this region (Clerkx et al., 2004).  When the Sha × Col population was analyzed, few 

QTLs were mapped, mainly at top chr 3 and top chr 5, all related with PAC sensitivity 

(Figure 4.4C, D, Appendix 6). Sha and Col are the most PAC tolerant accessions. 

When the QTL profile from the Sha × Col population is compared with the other 

populations, many QTLs disappear, thus pointing to QTL alleles that Sha and Col 

share leading to higher PAC tolerance. The Col × Ler population yielded two main 

QTLs located on top chr 1 for PAC08, and at the lower half chr 5 for PAC04 (Figure 

4.4E, F, Appendix 7).  

 

QTL validation in the Bay × Sha mapping population and the germination 

behavior of near isogenic lines 

To validate the QTL mapping results we employed the procedure of selecting Near 

Isogenic Lines (NILs) from Heterogeneous Inbred Families (HIFs) (Tuinstra et al., 

1997). We focused on the QTLs mapped on chr 1, 4 and 5 (Figure 4.5). Under control 

conditions (with stratification) all genotypes germinated (Figure 4.6A). Clear 

differences were observed between the HIF 044 derived NILs, which differ in the Bay 

or Sha alleles for the QTLs located on chr 1 for germination in PAC. The HIF 409 

derived NILs did not show significant differences, therefore narrowing down the QTL 

region to 3.7 Mb (20.63 – 24.37 Mb, chr 1). The QTL located on top of chr 4 was 
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validated using HIF 011 derived NILs. No significant differences were observed for 

the NILs from HIFs 415 and 196. Both NIL pairs from HIFs 361 and 214 from chr 5 

showed significant differences between the Bay and Sha alleles.   

 
Figure 4.4. Clustered heat map of QTL controlling Pac sensitivity in three A.thaliana mapping 
populations. (A, C, E) QTL map of the germination related trait AUC (Area Under the Curve) 
phenotyped in the two Recombinant Inbred Lines (RILs) populations Ler × Sha and Sha × Col and the 
Double Haploid (DH) Col × Ler mapping population, respectively, in different paclobutrazol (PAC) 
concentrations (4 µM and 8 µM) and when appling PAC (8 µM) + GA (8 µM GA4+7). The horizontal 
dotted line shows the significance threshold by running 1000 permutations. (B, D, F) QTL maps 
represented as clustered heat maps. Clustering on the right shows correlation between QTL profiles.  
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Figure 4.5. Graphical genotypes of Bay × Sha Heterogeneous Inbred Families (HIFs) used for 
QTL confirmation using NILs derived from these families. On top are indicated selected markers 
flanking the QTL regions; “*” indicate those markers with significant QTLs.  
 
 

 
 

Figure 4.6. Paclobutrazol sensitivity in the Bay × Sha Heterogeneous Inbred Families (HIFs). 
Germination of Bay × Sha HIFs in (A) control and (B) paclobutrazol (PAC04, 4 µM) conditions. 
Phenotypes were scored at maximun germination (after 120 hours), after 18 weeks after ripening. All 
seeds were stratified for 4 days at 4 °C. Mean values ± standard error derived from three biological 
replicates are shown. P-values from a kruskall wallis test are indicated with asterisks at *P < 0.05 and 
**P < 0.01. Red colors indicate the Bay-0 alleles while red Sha alleles. 
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To know if differences in PAC behavior are translated into differences in seed 

dormancy, we characterized the germination of one HIF pair per chromosome. 

Germination in freshly harvested seeds under control conditions showed no strong 

differences for the HIF derived NILs. The stratification (cold) treatment did overcome 

the dormancy in most lines but significant differences were observed for this treatment 

between the different NILs from chr 1 and chr 4 (Figure 4.7B).  

 
 

  
Figure 4.7. Effect of cold application on dormancy breaking in the Bay × Sha Heterogeneous 
Inbred Families (HIFs). Germination of Bay × Sha HIFs  under (A) control, and (B) Cold conditions. 
Phenotypes were scored at maximum germination (after 120 hours). Experiment was conducted 1-2 
days after seed harvesting, no stratification was done in A, 4 days at 4 °C stratification was done in B. 
Mean values ± standard error derived from three biological replicates are shown. P-values from a 
kruskall wallis test are indicated with asterisks at *P < 0.05 and **P < 0.01. Red colors indicate the Bay-
0 alleles and blue Sha alleles. 

 

To further study the effect of dry storage / after-ripening on dormancy release 

of the genotypes, germination was followed for 8 weeks (Figure 4.8). Sha is slightly 

dormant during the first two weeks of seed after-ripening compared with Bay, but it 

looses dormancy faster between weeks 4 and 8 compared to the latter. The NILs 

derived from HIFs 044 and 361 showed the same pattern as their parental genotypes. 

This observation points to a dormancy QTL, closely linked or pleiotropic with the 

PAC tolerance QTL. The NILs derived from HIF 011 are the most dormant genotypes. 

The dog 1-2 and aba 3-1 mutants fully germinated as expected (Figure 4.8). Col was 

the least dormant accession and germinated ~100 % after four weeks.  
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Figure 4.8. Germination profile of selected Bay × Sha Heterogeneous Inbred Families (HIFs) and 
selected mutants. Germination across time of selected Bay × Sha HIFs, Col and the mutants dog 1-2 
and aba 1-3 (both Col background). Phenotypes were scored at maximun germination (after 120 hours). 

 

The germination of partially or fully after ripened seeds from the HIF derived 

NILs for chr 1 and the parental genotypes (stored for 19 months) was further 

characterized under dark and cold conditions. In the treatment light without cold all the 

genotypes germinated > ~70 % (Figure 4.9A). All genotypes fully germinated under 

light + cold treatment (Figure 4.9B). Under the treatment dark without cold most of the 

genotypes did not germinate except Sha that germinated more than 80 % (Figure 

4.9C). When dark + cold was tested, only the Sha accession germinated ~100 % 

(Figure 4.9D). No differences where observed among HIF 044 derived NILs, 

suggesting no specific involvement of light signalling for this QTL.  
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Figure 4.9. Effect of light and chilling application on germination in the Bay × Sha Heterogeneous 
Inbred Families (HIFs). Germination of Bay × Sha HIFs and selected ABA and GA mutants (together 
with their wild type accessions Col and Ler) under (A) light, no cold (B) light + cold (4 days at 4 °C), 
(C) dark, no cold (D) dark + cold. Phenotypes were scored at maximun germination (after 120 hours). 
Experiment was conducted 19 months after seed harvest and storage at room temperature. Mean values 
± standard error derived from three biological replicates are shown. 

 

 

GWAS for paclobutrazol sensitivity 

Association mapping (GWAS) was conducted to find potential genes affecting 

differential sensitivity to paclobutrazol including those causal for the detected QTLs in 

the study using RILs. The A. thaliana Hapmap population (Li et al., 2010) showed a 

wide response of not only PAC sensitivity but also germination under control 

conditions (Figure 4.10). The broad sense heritability for the evaluated traits in control 

and PAC conditions ranged from 0.77 to 0.84 and the coefficient of genetic variation 

was the highest compared to the experiments using RILs mentioned in the paragraphs 

above. This indicates a large genetic variation among the evaluated accessions (Table 

4.1). The population contains four semi-dwarfs allelic to ga5 (Barboza et al., 2013). 

Three of them were phenotyped in this experiment and showed 100 % germination 

under control conditions (Figure 4.10). Under PAC conditions one of them (Var 2-6), 

had a low germination thus indicating the effect of the background in the PAC 
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sensitivity. The traits gMAX and AUC were analyzed in this GWAS. When comparing 

the different GWAS profiles, no single PAC specific association was found (data not 

shown). To normalize for the differences present under control conditions, the 

subtraction Control – PAC04 was used for mapping PAC sensitivity (Figure 4.11A, 

B). Using this parameter for the trait AUC a significant association crossing the 

stringent Bonferroni threshold at the bottom of chr 5 was detected (Figure 4.11A). This 

marker is located in the gene PSBO1 (At5g66570), which encodes for a protein 

involved in photosystem II (Allahverdiyeva et al., 2013). No obvious GA / ABA 

related genes were found in the 20 kb region flanking this gene (marker). When the 

GWAS profile for gMAX is analyzed, a group of markers just below the Bonferoni 

threshold is located in the middle part of chr 2 (Figure 4.11B). This marker is located 

in a gene that codes for a NAD(P)-linked oxidoreductase superfamily protein 

(At2g27680). It is relevant to notice that the flanking gene next to this marker 

(CYP94C1) is a cytochrome P450 (At2g27690, Appendix 8).  

        
 

No co-localization between our main QTLs including those confirmed with 

NILs and the GWAS profiles was found. For the QTL located on chr 1, there is a 

significant marker located in a gene with unknown function (At1g51410), but similar 

to an Eucalyptus gunnii alcohol dehydrogenase and a potential candidate as an alcohol 

dehydrogenase in barley was reported to be involved in ABA / GA signalling 

(MacNicol & Jacobsen, 2001). In the vicinity of this QTL region, the ABA4 gene is 

located of which a mutant was isolated on the basis of PAC tolerance (North et al., 

2007). When the gMAX is analyzed for a SNP marker inside this gene (m43235, chr 

1) it showed a P-value of 0.004, thus suggesting ABA4 as possible candidate. This 

candidacy is also based on the PAC phenotype of the aba4 mutants. Therefore an 
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Figure 4.10. Paclobutrazol sensitivity in 
the Hapmap population. Correlation 
between germination in control and 
paclobutrazol (PAC 4 µM) condtions of the 
Hapmap population. Values of three semi-
dwarfs accessions allelic to ga5 are 
indicated with red triangles.  
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allelism test (Weigel, 2011) was conducted using the mutant, the parental lines and the 

HIF 044 NILs. However no indications were obtained that the two natural alleles in 

this region complemented the aba4 phenotype in a different way (data not shown). 

 

 

  

 
Figure 4.11. Genome wide association mapping for Paclobutrazol sensitivity in the Hapmap 
population. Genome wide association mapping profile for the germination related traits (A) AUC (Area 
Under the Curve) and (B) gMAX (maximum germination after 120 hours). The vertical line shows the 
position of the HIF044. The horizontal line show the 5% significance threshold with Bonferroni 
correction for 214,000 markers. The different colours represent different Arabidopsis chromosomes. 
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Germination behavior of selected Hapmap accessions 

Accessions contrasting in their PAC tolerance were studied together with the 

NILs and mutants describe above with the aim to see if differences in PAC resistance 

relate to their seed germination behavior (e.g. affect dormancy and the germination 

response to cold and light). The PAC tolerant accessions Sha and Hovdala-2 behaved 

dormant in the germination test just after seed harvest contrasted by the sensitive 

accession Gr-1, which germinated more than 60 %. The same applies for the remaining 

treatments (light, dark, cold). To combine all phenotypes and genotypes in a single 

analysis, a principal component analysis was conducted (Figure 4.12A). The first 2 

principal components explained 77 % of the variance. PCA1 mainly explains variance 

for all treatments except germination in Dark + Cold and Dark No cold which are 

explained by PCA2. Five main groups were identified. The first group, which is PAC 

resistant (defined as accessions that germinated > 80 % on PAC, sensitive accessions 

included in the PCA analysis germinated < 55 %), contains Sha, Ler, DraIV, Zdrl, ga5 

and ABA mutants. Based on the variable map (Figure 4.12B), these accessions have a 

high germination under the treatments PAC04, No cold + light and No cold + dark. 

The second group includes the genotypes behaving as the dog 1-2 mutant, Hovdala and 

Col. The third group is not highly related with the PCA1 but it is with PCA2. The 

genotypes Gr-1, HIF 044 NILs, Bay, and Mh-0 displayed low germination under the 

dark germination treatments. Group number four includes the ga1 mutants together 

with the accession Alc-0, HV50 and LDV-25. This group showed a reduced 

germination in all treatments. Cluster number five contains those accessions that are 

dormant, for instance the accession Cvi. Most accessions of this cluster are sensitive to 

PAC, although a PAC tolerant accession  (TOU-H-13) is located in this group.  
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Figure 4.12. Principal component analysis (PCA) of the germination of 19 month old seeds. (A) 
PCA of selected A.thaliana accessions, ABA and GA mutants, based on the combined maximum 
germination data of different treatments. (B) Variable factor map. Genotypes colored in red showed a 
germination > 80 % under PAC conditions. 
 
 

Discussion 

Natural variation for PAC sensitivity is present among A. thaliana natural accessions 

but it remains less clear to what ecological relevant traits, such as seed dormancy, it 

relates to. Several QTLs for PAC tolerance mapped in regions for known dormancy 

QTLs. For instance the QTL on chr 5 in the Ler × Sha population co-located with the 

Hovdala 4-1!
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known dormancy locus DELAY OF GERMINATION1 (DOG1) (Bentsink et al., 2006; 

Bentsink et al., 2010). DOG1 was identified as a major QTL controlling seed 

dormancy in the Ler × Cvi mapping population (Alonso-Blanco et al., 2003). Dormant 

accessions such as Cvi are sensitive to PAC. Thus PAC sensitivity may be seen as a 

pleiotropic effect of dormancy that implicates that a small reduction in GA levels in 

such genotypes already passes the threshold for GA needed to promote germination. 

Even though, dog1 mutants can not germinate without GA as shown in the double 

mutant dog1 ga1-3 (Bentsink et al., 2006) and are sensitive to the application of PAC  

(Nakabayashi et al., 2012). The latter indicates that such non-dormant mutants still 

require GA for germination probably because GA needs to overcome the inhibiting 

effect of ABA in these mutants. HIF 044 NILs show small differences in their 

germination profile across time suggesting that this locus acts as a dormancy QTL. 

Also as shown in previous studies (van der Schaar et al., 1997) it was demonstrated 

that accessions that differ little in their dormancy and in their PAC tolerance (e.g. Sha 

vs. Col) yield high effect QTLs in the mapping population indicating that different loci 

control these traits in these accessions. Using a Ler × Col RIL mapping population, 

van der Schaar et al., (1997) mapped three main QTLs involved in Paclobutrazol 

sensitivity located on the lower half of chr 1, chr 3 and chr 5. The latter QTL seems to 

co-locate with the QTL mapped in this study using the DH Col × Ler population and 

possibly with the DOG1 QTL (Bentsink et al., 2010). The same study indicated that in 

the position of the PAC sensitivity QTLs an effect of the light germination treatment 

was observed but that the effect of the PAC QTLs was larger. A similar pattern was 

also observed in this study because the effect of the QTLs on PAC treatments was 

higher than control. 

A detailed study of the germination responses to a series of treatments in the 

Bay × Sha RIL population has been conducted (Joosen et al., 2011) and the identified 

QTLs can be compared with those identified in the present study. It appears that all 

QTLs identified in the Bay × Sha population in this study were also detected by Joosen 

et al. (2011) for other seed germination related traits, although their significance 

differed from those detected for PAC. The NIL with Sha alleles from HIF 044 showed 

a higher germination than the one with the Bay alleles under PAC conditions. This is 

in agreement with the validation of a QTL for ABA sensitivity (Joosen et al., 2011) 

and germination in NaCl (Galpaz & Reymond, 2010; Joosen et al., 2011) located near 

marker T27K12. The different populations yielded a plethora of QTLs not only 
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controlled by the application of different compounds such as PAC or GA, but the 

detection of some QTLs depended on the dose of PAC in specific populations. 

Regarding PAC dose effects, it has been described that overexpression of the ABA 

insensitive 5 (ABI5) transcription factor leads to hypersensitivity to low PAC doses 

(0.125 µM) (Piskurewicz et al., 2008). Additional examples of genes showing 

hypersensitivity to PAC are the calcium sensor calcineurin B-like (cbl) mutants (Li et 

al., 2013). PAC resistance has been used to select for ABA biosynthesis mutants 

(Léon-Kloosterziel et al., 1996; North et al., 2007) as well as ABA signalling mutants 

(Nambara et al., 1992). It has been observed that PAC tolerance in genotypes that are 

less GA dependent such as GA signalling related mutants, e.g SPINDLY (SPY) are able 

to germinate at 100 µM PAC. The gai-t6 (loss of function allele of the DELLA protein 

GAI) was able to germinate at 1 µM PAC and showed longer stems than GAI plants 

grown on PAC (Jacobsen & Olszewski 1993; Peng et al., 1997). The occurrence of 

different genes / QTLs involved in PAC sensitivity indicate the presence of different 

mechanisms (loci / pathways) rather than a single gene affecting GA homeostasis in 

general and thereby directly affecting seed dormancy. This is not surprising taking as 

example the different DOG loci mapped in previous studies differing also across 

populations (Bentsink et al., 2010) or even the control of germination due to different 

treatments in the same population (Joosen et al., 2011). Fine mapping the QTL of the 

HIF 044 region and cloning the gene can provide further knowledge about the 

mechanisms by which this gene controls PAC tolerance.  

 GWAS did not identify loci co-localizing with mapped QTLs as observed in 

previous studies (Baxter et al., 2010). Our initial aim of combining QTL and GWAS to 

increase power and resolution to map the loci affecting the PAC sensitivity seemed 

partially fulfilled by the co-location of ABA4 which had a GWAS QTL with a 

relatively low significance. However it could not be confirmed that ABA4 underlies 

this QTL. Complications may rise when mapping complex traits involving different 

mechanisms for which a diverse set of genes may be involved. For instance it would be 

useful to test the effect of removing the testa in PAC sensitive accessions and see if 

germination is restored as shown for the ga1-1 mutant (Debeaujon & Koornneef, 

2000). The variation of mechanisms affecting PAC tolerance might also explain why it 

is not possible to map a single locus in the different QTL mapping populations 

segregating for PAC resistance. Another complication might deal with the GA 

biosynthesis step targeted by PAC, which is the conversion from the ent-kaurene to 
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ent-kaurenoic acid (Hedden & Graebe, 1985) performed by the P450 ent-kaurene 

oxidase (KO) (Yamaguchi, 2008). P450s are involved in different processes including 

the biosynthesis of other hormones such as brassinosteroids (Werck-Reichhart et al., 

2002), thus additional natural variation at this step will increase the possibility to find 

multiple loci for PAC tolerance. A good example was the possible association found 

with the cytochrome P450 gene CYP94C1 using GWAS. Yet this association remains 

to be confirmed, especially because it was just below the stringent bonferroni 

significance threshold. However, recent GWAS identified novel genes based on 

marker associations, which significance was near the bonferroni threshold (Meijón et 

al., 2013), thus highlighting the potential information behind small significance 

GWAS peaks.     

 

Conclusions 

Differences in Paclobutrazol sensitivity can be attributed partially to dormancy 

differences. However, several accessions that showed no differences in seed dormancy 

showed differences in PAC sensitivity. Complex genetic regulation of PAC tolerance 

was identified using QTL analysis. Different PAC sensitivity QTLs were validated and 

their seed germination behavior was characterized. These results pointed to several 

additive effects as observed in the high tolerance to PAC of some accessions. A wide 

spectrum of PAC responses was found in the Hapmap population although GWAS did 

not identify clear and highly significant causal loci. 

 

 

Materials and methods 

Plant material and experiments set up 

The following populations were used to conduct our studies: Bay × Sha RIL 

population (n = 165) (Loudet et al., 2002); Ler × Sha RIL population (n = 114) (Clerkx 

et al., 2004); Sha × Col RIL population (n = 164) (Simon et al., 2008); Col × Ler 

Doubled Haploid population (n = 75) (Wijnker et al., 2012); Hapmap population (n = 

360) (Li et al., 2010) and from HIF derived NILs from the Bay × Sha mapping 

population (Joosen et al., 2011). All lines were grown together at greenhouse 

conditions and for the germination experiments each recombinant inbred line had two 

biological replicates (seed batches from two individual plants). Seeds were harvested 

and stored at room temperature (~ 23 °C, ~ 45 % humidity) prior to use. Seeds for the 
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QTL mapping experiments were stored at least two months prior to germination tests 

and the control treatment was conducted first to check if no residual dormancy was 

present. The GERMINATOR procedure (Joosen et al., 2010) was used to phenotype 

all experiments (except those in the dark, which were phenotyped manually). In all 

experiments with mapping populations seeds were stratified at 4 °C in a dark cold 

room. Thereafter the imbibed seeds were transferred to a germination chamber at 25 

°C / 20 °C (day / night). The gibberellin inhibitor paclobutrazol (PAC, Sigma-Aldrich 

46046) was applied at a dose of 4 µM (PAC04) and 8 µM (PAC08). The 4µM PAC 

was chosen based on preliminary experiments were this dose reduced 50% of 

germination in a subset of accessions (data not shown). The PAC stock solution was 

25 mM and PAC was diluted using DMSO. The control solution contained equal 

amount of DMSO as the applied PAC04. The treatment PAC+GA was done applying 8 

µM PAC + 8 µM GA4+7 (Duchefa, prod. No. G0938.1000). The GA stock solution was 

at a concentration of 25 mM (GA diluted in few drops KOH 1 M). All experiments 

included as control the accession Sha (PAC tolerant), Cvi (PAC sensitive) and parental 

accessions. 

 

Image acquisition and data analysis 

Image settings were the same as specified for the GERMINATOR package (Joosen et 

al., 2010). The values used for segmentation were the following ones: For S+R: Y 150 

– 255, U 0 – 155, V 80 – 255  and for S-R: Y 140 – 255, 0 – 125, 80 – 255. For image 

processing the calculation mode “Area” and “Absolute” where use with the following 

settings for Variance (pixels) 25 and xy variance (mm) 1. 

Heritabilities and coefficients of genetic variation were estimated as in previous 

studies (Keurentjes et al., 2007). For QTL mapping all traits were fitted in a linear 

model and coefficients were used for mapping (Trait = Genotype + Replicate + error). 

The trait gMAX was transformed with the arcsine function (asin command R). QTL 

mapping in the RIL populations was performed with the R/qtl package (Arends et al., 

2010; Broman et al., 2003). The function “mqmscan” was used setting all markers as 

cofactors and which were later eliminated through backward elimination. To quantify 

the explained variance, the main QTLs were manually selected and fitted into a 

multiple QTL model using the function “fitqtl” (with Haley-Knott regression as 

selected method). In the DH population, the population type was set to “dh”. The 

genetic map was estimated using the est.map function (using Kosambi as map 
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function). Interval mapping was conducted in this population using the scanone 

function. The method of EMMAX was used for GWAS (Kang et al., 2010) using a 

kinship matrix to correct for population structure. Descriptive statistics, Anova tests 

and Kruskall Wallis test were done with R. Principal component analysis were 

performed with the package FactoMineR (Lê et al., 2008). 
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HyPer: Hypocotyl perimeter as trait to semi-

/automatically phenotype skotomorphogenic 

hypocotyls in Arabidopsis thaliana 
 

Abstract  

Hypocotyl elongation is a relevant trait in physiological and molecular studies. When 

hypocotyls are grown in darkness they become long, with closed small cotyledons 

lacking chlorophyll; a process called skotomorphogenesis. To study the factors / loci / 

genes controlling this process, efficient and fast phenotyping methodologies for 

hypocotyl length growth must be developed. A new method to phenotype 

skotomorphogenic hypocotyls named “HyPer” was developed and validated. The 

method comprises segmentation of images derived from dark grown hypocotyls and 

quantification of perimeter as main trait to study hypocotyl elongation. This was 

conducted by using ImageJ. To allow automatization of the image analysis pipeline, an 

application was developed on the basis of Montpellier Rio Imaging (MRI) visual 

scripting. To validate HyPer, a Quantitative Trait Loci (QTL) analysis was performed 

in the Ler × Sha Arabidopsis thaliana Recombinant Inbred Line (RIL) mapping 

population. Different QTLs along the A. thaliana genome were mapped showing no 

differences between automatic and manual hypocotyl length measurements.  Further 

QTLs were mapped for different treatments and it was shown an alternative for 

hypocotyl length measurements when dealing with treatments that inhibit germination. 

HyPer quantifies skotomorphogenic hypocotyls in a semi-/automatic manner. The 

procedure also provides an automatic report and descriptive statistics from the 

analyzed images. HyPer was validated using QTL analysis and it was shown its 

potential to phenotype hypocotyls in a wide range of sizes and different treatments. 
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INTRODUCTION 

Recent advances in molecular technologies has led to an increase in size of mapping 

populations, e.g. large and multiple Recombinant Inbred Line (RIL) populations and 

populations that allow Genome Wide Association Studies (GWAS). In order to prevent 

phenotyping to become the bottleneck of genetic analysis, phenotyping methodologies 

need to advance in a similar fashion.  

Hypocotyl length of young A. thaliana seedlings has been established as a 

suitable trait in physiological and molecular studies that is amenable to survey large 

quantities of samples (Borevitz et al., 2002; Gendreau et al., 1997; Lau & Deng, 2010; 

Sangster et al., 2008). When postgerminative seedlings grow in darkness, 

skotomorphogenesis takes place forming a long hypocotyl with an apical hook and 

closed cotyledons, which are small and lack chlorophyll (Lau & Deng, 2010). 

Therefore, hypocotyl growth is a well-suited trait for investigating processes 

controlling cell elongation and response to light. Numerous studies revealed that light 

and plant hormones play an essential role in the cellular and molecular basis of 

hypocotyl elongation (Gendreau et al., 1997; Lau & Deng, 2010). The plant hormone 

gibberellin (GA) is a plant growth regulator and has a major role in regulating cell 

elongation. Its biosynthesis and signalling is well understood (Hedden & Thomas, 

2012; Yamaguchi, 2008). GA promotes hypocotyls elongation in seedlings grown in 

the dark by reducing the DELLA proteins levels, thus allowing the repressive 

transcription factors PIF3 and PIF4 to bind to their targets and promote 

skomorphogenesis and repress photomorphogenesis (Lau & Deng, 2010),  allowing a 

promotive effect of GA on cell elongation. Therefore, hypocotyl growth in the dark is 

a potential tool to study natural variation for GA biosynthesis and signalling. 

Indications that natural variation in A. thaliana for GA responses using hypocotyls 

have been reported (Borevitz et al., 2002).  

Automated methods to quantify hypocotyl lengths of single seedlings grown in 

the light (Cole et al., 2011) and in darkness (Miller et al., 2007; Wang et al., 2009) 

have been described. These published procedures employ high-resolution image 

analysis and aim to follow individual hypocotyl elongation rates in detail and require 

relatively high computational power. The latter restrict their application when a high 

number of hypocotyls need to be analyzed. Another example is the “HypocoTool” 
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(http://openwetware.org/wiki/HypocoTool), which requires manual marking of 

hypocotyl start and end, thus limiting the throughput.  

This study describes (i) a semi-/automated method to quantify hypocotyl length 

of skotomorphogenic seedlings in large numbers and (ii) apply and validate the method 

in Quantitative Trait Loci (QTL) analysis, which aims to identify loci that are 

responsive to GA inhibition. In order to develop such a method, the high throughput 

methodology ’GERMINATOR’ that has been developed to study seed germination 

based on the color contrast of the protruding radicle and seed coat was taken as 

example (Joosen et al., 2010). A comparable principle and imagine processing pipeline 

to measure skotomorphogenic hypocotyls by adjusting the growth surface and image 

analysis parameters was conducted. Measuring the perimeter (length of the outside 

boundary of a shape) of the hypocotyls avoids complications of hypocotyls that do not 

grow straight and fully parallel to each other. The procedures described also shows an 

alternative to germinate the seedlings and quickly transfer them to treatments that 

would have inhibited germination. For instance, substantial natural variation for 

Paclobutrazol germination sensitivity is present among A. thaliana accessions (van der 

Schaar et al., 1997). This means that even at low inhibitor doses (~ 5 µM) accessions 

will not germinate, thus making impossible to phenotype hypocotyl length in response 

to such an inhibitor. 

 

Results  

Image analysis  

Hypocotyl perimeters can be employed as a proxy for hypocotyl length and allows 

automatic quantification using ImageJ’s property to provide the perimeter of binary 

objects (Schneider et al., 2012). To measure hypocotyl size using perimeters one must 

distinguish it from its background. This can be achieved by thresholding the different 

colors. Images containing dark-grown seedlings can be segmented into hypocotyl and 

root, when a contrasting background is used (Figure 5.1A, B). Both, black and blue 

backgrounds can be easily segmented. The use of blue filter paper (same germination 

paper as in the GERMINATOR (Joosen et al., 2010) allows seeds to be easily stratified 

(2-4 days at 4 °C). After that, seeds can be germinated under continuous light and 

germination can be scored. Seedlings can be transferred to new growth media when 

seedlings reach uniform germination, which can be quantified using t50 as a parameter 
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(50 % of the germination). This is important when treatments that affect seed 

germination are applied. When images are acquired using standard conditions (e.g. 

same as in GERMINATOR (Joosen et al., 2010) it is possible to crop the images 

automatically with software such as Adobe Photoshop. Perimeters are then measured 

in the cropped images using ImageJ (Schneider et al., 2012). In order to automatize 

seedling measurement, all operations are grouped in a single application using visual 

scripting for ImageJ (Baecker & Travo, 2006). The application was named ‘HyPer’ 

(Hypocotyl Perimeter). In summary, it enhances the contrast of the image and runs a 

macro that applies a color threshold, performs binary particle analysis, and reports 

results. One advantage of using imageJ is that it can save overlay masks and labels for 

each analyzed hypocotyl, thus having control of the quantified objects (Figure 5.1A). 

In a second step, an automatic R script automatically reads the results from ImageJ and 

generates a report showing relevant summary plots from the analyzed images. Finally, 

tables containing mean values and descriptive statistics per image are saved together 

with the report. The results obtained with Hyper were contrasted with manual 

measurements and found a high correlation between both methods (Figure 5.1C). 

 

A 

! 

Image segmentation 

(B) 

(A) 

!

!

(C) 

! 

Particle analysis 

3 4 5 6 7 8

15
25

35

Lenght (mm)

Pe
rim

et
er

 (m
m

)

R   = 0.99 2

Length (mm)!

Figure 5.1. Skotomorphogenic 
hypocotyl image segmentation. (A, B) 
Image segmentation of cropped images 
using different backgrounds (conducted 
with ImageJ). (C) Correlation between 
mean values from images analyzed 
automatically (perimeter) and real 
length. Linear regression trend line is 
shown with the dotted line. Coefficient 
of determination (R2) is shown on the 
right down corner. 
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HyPer validation in genetic studies. 

To validate the procedure an experimental set up was designed (Figure 5.2A) and 

different A. thaliana accessions were grown in different treatments. In addition it was 

tested hypocotyl elongation on different growth surfaces (Figure 5.2B-D) and the 

effect of sucrose in three accessions. A wide range of sizes in hypocotyls from 

seedlings measured at 3, 5 and 7 days after germination was quantified (Figure 5.3A) 

in the presence and absence of sucrose and with or without blue filter paper (Figure 

5.3A, B).  Again, the comparison of mean values between perimeter and manually 

measured length revealed that values resulting from both measurement procedures are 

highly correlated (Figure 5.3C, D). The accession Cvi showed the highest means in all 

treatments, Ler showed the lowest. Using the blue filter paper slightly decreased the 

length of the hypocotyls. It was compared gelrite and agar as gelling agents in the 

media to test which one facilitates segmentation of the images. As gelrite is clearer 

than agar, the correlation between perimeter and length was higher on gelrite than agar 

(R2 0.93 for gelrite, 0.79 for agar).  

To increase the scale of the experiments and for further validation, a QTL 

mapping experiment using the Ler × Sha mapping population (Clerkx et al., 2004) was 

conducted. As above, the population was phenotyped using both the perimeter and 

length from the same images. The RIL population was grown in treatments that 

differed in the application of GA and the GA inhibitor paclobutrazol.  For the RIL 

population broad sense heritability ranged from 0.59 (length in control) to 0.78 

(perimeter in PAC+GA) (Table 5.1) indicating genetic variation between the lines.  

Furthermore, mean perimeter and length from each line were highly correlated in both 

biological replicates (Figure 5.4A). The coefficients of variations were similar in 

automatic and manual measurements (Table 5.1, Figure 5.4B). Pictures containing 

false positives were observed when the overlay masks were manually analyzed.  In this 

way, artifacts (e.g. bubbles in the medium) and incorrect/partial segmentation due to 

excess of humidity were observed. When QTL mapping was performed, no differences 

were detected in explained variance and QTL number between length and perimeter 

(Figure 5.4C, D and Table 5.2). This indicates that the method and experimental 

design are suitable and accurate for QTL mapping. The major peak was located near 

the ERECTA locus that showed the highest explained variance of all mapped QTLs.  
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Figure 5.2. Experimental set up to quantify skotomorphogenic hypocotyl perimeters using image 
analysis. (A) Usual experimental set up to phenotype skotomorphogenic hypocotyls. Different plate 
choices for hypocotyl growth (B, standard plate; C, germination plate on blue filter paper; D, growth on 
blue filter paper; E-F, growth on blue filter paper all background blue).   
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Figure 5.3. Validation of HyPer using the Col, Cvi and Ler Arabidopsis thaliana accessions. (A, B) 
Hypocotyls were grown on different treatments and quantified automatically (perimeter) and manually 
(length, dotted lines). (B) Hypocotyls were grown for 5 days; filled dots represent perimeter, and empty 
dots length. Dashes show the standard error of the mean. (C) Correlation between mean values from 
images analyzed automatically and manually for Figure 5.4A and (D) 4B. Linear regression trend line is 
shown with the dotted line. Coefficient of determination (R2) is shown on the lower right corner. 
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Figure 5.4. Validation of HyPer using the Ler × Sha Arabidopsis thaliana mapping population. (A) 
Correlation are shown between mean values from images analyzed automatically (perimeter) and 
manually (length). Linear regression trend line is shown with the dotted line. Coefficient of 
determination (R2) is shown on the lower right corner. (B) Frequency distributions for perimeter and 
length. Values of the parental lines are indicated. (C) QTL map of hypocotyls grown under control 
conditions and phenotyped automatically (perimeter) or manually (length). The horizontal dotted line 
shows the significance threshold by running 1000 permutations. (D) Mean values (± standard errors) of 
perimeter and length in the Ler (AA) and Sha (BB) alleles at the ERECTA locus. 
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Table 5.1. Descriptive statistics for automatic (perimeter) and real length hypocotyl 
quantification. The different traits were evaluated in the Ler × Sha mapping population.	  	  

Trait Treatment ± (SD) [VG]a [VE]b [H2]c [CVG]d 

Perimeter Control 18.80 (3.45) 9.34 5.03 0.65 11.93 
Length Control 8.32 (1.76) 2.28 1.61 0.59 15.23 

Perimeter PAC 9.78 (1.91) 3.29 1.19 0.73 11.16 
Perimeter PAC + GA 16.91 (3.51) 10.99 3.04 0.78 10.32 

aAmong genotype variance. 
bEnviromental variance (estimated as total genotype variance – VG). 
cBroad sense heritability (VG/VG+VE).  
dCoefficient of genetic variation   . 

 
 
Table 5.2. Summary of QTL mapping results for control in the Ler × Sha mapping population. 

Chr Nearest marker Position 
(cM)a 

LOD scoreb Explained variance (%)b 
Effectc 

Perimeter / Length Perimeter / Length 
1 CIW12 35 3.2 / 3.5  4.6 / 4.5 + 
2 ERECTA 42.9 22.8 / 26.4 51.1 / 56.2 - 
3 F8J2 60 3.3 / 3.3 4.9 / 4.2 + 
5 K9D7 50 5.7 / 6.4 8.8 / 8.6 - 

a Position of the nearest marker in the genetic map. 
b LOD score and explained variance estimated using the “fitqtl” model from the R/qtl package. 
c Effect of QTL estimated µA-µB; where A refers to the Ler alleles and B to Sha alleles. Positive (+) 
effect means that Ler alleles at the nearest marker linked to the QTL increases the trait mean; negative (-
) effect indicates that Sha alleles increase the trait mean. 
 
 

To further test the HyPer application, the effect of adding the gibberellin 

inhibitor paclobutrazol (PAC) and the application of this compound together with 

gibberellins (PAC+GA) was tested. The PAC+GA treatment restores the height of the 

hypocotyls in comparison with the PAC treatment and was thus highly correlated with 

the control (Figure 5.5A). QTL mapping by using the mean values from these 

treatments yields similar QTL profiles as the one obtained in control (data not shown). 

The same happens when all treatments are fitted in a linear model (Perimeter = 

replicate + treatment + genotype + error) and coefficients are used for mapping. 

Interestingly RILs show differential responses to these treatments. Thus to map the 

responses, the subtraction between treatments (e.g. Control – PAC) was tested. Again a 

strong QTL was located near the ERECTA locus. The subtraction Control – PAC, 

increases the significance of the QTL located on Chr 3 (Figure 5.5B, Table 5.3) thus 

pointing to a treatment respond QTL. A minor effect QTL response is mapped on Chr 

1 using the subtraction (PAC+GA) – PAC. This suggests a possible role of these loci 

in GA sensitivity. 

X

100× VG( ) X
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Table 5.3. Summary of QTL mapping results for perimeter in the Ler × Sha mapping population. 

Trait Chr Nearest 
marker 

Position 
(cM)a 

LOD 
score b 

Explained 
variance 

(%)b 
Effectc 

Linear model 1 CIW12 35 3.7 4.4 + 
Linear model 2 ERECTA 42.9 29 61 - 
Linear model 3 F8J2 60 2.1 2.4 + 
Linear model 5 K9D7 50 6.3 7.8 - 

       
Control−PAC 2 ERECTA 42.9 5.1 16.4 - 
Control−PAC 3 F8J2 60 4.1 13 + 

       
(PAC+GA)−PAC 1 GENEA 65 2.4 6.7 + 
(PAC+GA)−PAC 2 ERECTA 42.9 6.9 21.7 - 

a Position of the nearest marker in the genetic map. 
b LOD score and explained variance estimated using the fitqtl model from the R/qtl package. 
c Effect of QTL estimated µA-µB; where A refers to the Ler alleles and B to Sha alleles. Positive (+) 
effect means that Ler alleles at the nearest marker linked to the QTL increases the trait mean; negative (-
) effect indicates that Sha alleles increase the trait mean. 
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Discussion  

In this chapter a method to quantify A. thaliana skotomorphogenic hypocotyls length 

based on their perimeter using ImageJ is presented. This method allows semi-

/automatization of the image analysis and therefore increasing the scale of the 

experiments. This freely available methodology enables to conduct large experiments 

such as QTL mapping in a quite short time (~14 days including sowing, stratification, 

growing, image acquisition and analysis), with reduced costs, no complex set up, using 

open source software (ImageJ and R), easy installation and no special computer 

hardware is needed. In a single experiment 8766 hypocotyls were measured derived 

from 718 images. To manually phenotype the control conditions for the QTL mapping 

experiment only, a single user needs more than ~16 hours of work (240 images). When 

using HyPer in a standard personal computer (1.8 GHz), batches of 45 images can be 

analyzed in ~ 9 minutes (240 images will be analyzed in less than one hour). The 

method runs automatically but allows manual inspection of quantified hypocotyls and 

removal of artifacts. Furthermore a report is generated providing preliminary analysis 

to the users together with summary statistics per image. The simple link between 

ImageJ and R allows users with knowledge in R or ImageJ programming to modify 

and improve any of the scripts for their own requirements. The method includes a step 

in which seedlings are grown in blue filter paper, allowing easy application of various 

treatments, and thus it may help to identify novel responses. One limitation of the 

method is that light grown hypocotyls cannot be monitored. These contain large 

cotyledons that will represent a higher proportion of the measurements than the actual 

hypocotyls. Options to phenotype light grown hypocotyls are already available (Cole 

et al., 2011). Another HyPer limitation is the inability to phenotype other traits than 

perimeter. For instance, HYPOTrace can phenotype apical hook opening, 

phototropism and nutation (Wang et al., 2009). Furthermore, HyPer is sensitive to the 

quality of the images, which means hypocotyls need to be separate and displaying 

sufficient contrast with the background. The method is agnostic to the physiological 

effect (trade-off) of using the blue filter paper to grow the hypocotyls. 

QTL analysis showed the potential to use HyPer to phenotype 

skotomorphogenic hypocotyls in an efficient manner. High heritabilities, QTLs with 

major and minor effects validate the method for usage in genetic analysis. The 

ERECTA locus was the main QTL in all treatments, even in the response to the PAC 

and GA treatments. A locus at or near ERECTA have been mapped for this trait in 
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previous studies (Borevitz et al., 2002; Botto et al., 2003; Wolyn et al., 2004). Van 

Zanten et al., (van Zanten et al., 2009) suggest  to the possibility that ERECTA 

modulates elongation growth through GA but independently from the classical GA-

signalling pathway. Two specific respond QTLs located in Chr 1 and Chr 3 were 

mapped. It remains to validate this loci and further fine mapped the region in order to 

identify the genes controlling PAC or PAC+GA sensitivity. HyPer is now available to 

be used in different populations especially with the current availability of A. thaliana 

accessions that will challenge the procedure and hopefully identify new loci/genes 

controlling phenotypes/responses of interest.  

 

Conclusions  

A method named “HyPer” to quantify A. thaliana skotomorphogenic hypocotlys was 

validated. The method not only allows semi-/automatization to phenotype 

skotomorphogenic hypocotyls, but also generates an automatic report and descriptive 

statistics of the analyzed images. HyPer was validated performing a series of 

experiments including quantitative trait loci (QTL) analysis using different treatments. 

It was shown that the method can also be used to phenotype hypocotyls grown on 

difficult treatments such as using germination inhibiting compounds.      

 

Methods 

Plant material and growth conditions 

Initial experiments were conducted using the Col, Cvi and Ler A. thaliana accessions. 

QTL mapping was done using the Ler × Sha mapping population (Clerkx et al., 2004). 

Each recombinant inbred line had two biological replicates (seed batches from two 

individual plants), each containing ~15 hypocotyls. Parental lines had four repetitions. 

Plants were grown in half MS medium (Duchefa prod. No. M0222.0050), pH 5.8, 0.64 

% agar (for germination, Plant agar Duchefa prod. No. P1001.1000), and 0.9 % agar 

(for seedling growth). In the experiment using gelrite (Duchefa prod no. G1101.1000), 

a concentration of 0.44 % was applied. The gibberellin inhibitor paclobutrazol (PAC, 

Sigma-Aldrich 46046) was applied at a dose of 4 µM. The PAC stock solution was 25 

mM and PAC was diluted using DMSO. Mock control contained equal DMSO dose as 

the applied PAC. The treatment PAC+GA was done applying 4 µM PAC + 4 µM 
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GA4+7 (Duchefa, prod. No. G0938.1000). The GA stock solution was at a 

concentration of 25 mM (GA diluted in few drops KOH 1 M). The size of the blue 

filter paper (Anchor Paper Company, Seed Germination & Industrial Purchasing) was 

5 mm height ×10 cm width.  

In all experiments seeds were stratified at 4 °C in a dark cold room. To induce 

germination in the experiments conducted with Col, Cvi and Ler, seeds were exposed 

to continuous light for three hours and after that plants were covered with two layers 

aluminum foil and placed inside a dark box.  For the QTL mapping experiment blue 

filter paper was used to germinate the seeds under control conditions (same as in 

Figure 5.2C) and thus avoid the PAC germination inhibition effects. Germinated seeds 

were transferred to different treatments at germination t50 (~26-30 hours after 

incubation) thus normalizing the time of germination. Thereafter, plates were covered 

with two layers of aluminum foil and placed inside a box. A more complex 

background was used to test possible enhancements in the methodology (Figure 5.2E-

F). Hypocotyls were imaged after 5 days of growth.  

Image acquisition, image processing and data analysis 

The same camera and settings as the ones described for GERMINATOR were used 

(Joosen et al., 2010). Before imaging, hypocotyls in near contact with other hypocotyls 

were manually arranged with forceps. Obtained images were automatically cropped 

using Adobe Photoshop (same action as GERMINATOR).  

MRI visual scripting (Baecker & Travo, 2006) was used to create the HyPer 

application in ImageJ. It performs contrast enhancement (0.005) and runs a macro that 

makes color threshold, make binary, particle analysis (Perimeter), and report results 

(.txt table). The following values were used for color threshold YUV (Y is the luma-

brightness component; UV the chrominance-color component) in all experiments 

containing blue filter paper: 150, 255; 90, 200; 85, 255. Particle analysis size was set 

between 300 and 8000 pixels and circularity between 0.005-0.15. Circularity is a 

relevant threshold since hypocotyls are not circular, however this should be carefully 

adjusted when very small hypocotyls are evaluated. For instance, the PAC and 

PAC+GA treatments considerably reduced the hypocotyl perimeter of several 

recombinant inbred lines, thus for these treatments the following particle 

size/circularity were used 150-8000 / 0.005-0.3. The application saves the overlay 

masks of the measured particles. Partially or incorrectly segmented hypocotyls were 

not included in the analysis. The application automatically runs an R (R Core Team, 
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2013) script from ImageJ. This script generates an automatic report showing boxplots 

for relevant measurement. Included measurements were the Y coordinate since 

hypocotyls perimeters are correlated with this measurement. Also circularity and its 

related traits are shown. Because hypocotyls are not circular, artifacts can be spotted 

with these measurements. HyPer generates descriptive statistics tables for each image 

(mean, standard error, standard deviation, coefficient of variation, and number of 

observations). Moreover a linear model fitting the effect of Perimeter ~ Image is 

generated. Boxplots were generated using the packages ggplot2 (Wickham, 2009) and 

gridExtra, and need to be installed for proper functioning of the R script. Heritabilities 

and coefficients of genetic variation were estimated as in previous studies (Keurentjes 

et al., 2007). QTL mapping was performed with the R/qtl package (Arends et al., 2010; 

Broman et al., 2003). The function “mqmscan” was used setting all markers as 

cofactors and later eliminated through backward elimination. To quantify the 

explained variance, the main QTLs were manually selected and fitted into a multiple 

QTL model using the function “fitqtl” (Haley-Knott regression was the selected 

method).  
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General discussion 

 
Plant growth regulators are small molecules that at low concentrations have an effect 

on the growth and development of plants. Among them, Gibberellins (GAs) are well 

known especially for their role on seed germination, flowering and cell elongation. The 

main goal of this thesis was to identify natural variation for GA biosynthesis and GA 

signalling in the model plant Arabidopsis thaliana.  

  

The first half of the thesis (chapter 2) deals with the study of natural semi-dwarf 

accessions carrying mutations in a GA biosynthesis locus called GA20ox1 or GA5. In 

addition, the possible modifications in the root system of these semi-dwarfs were 

studied as well as their growth performance under water limiting conditions (chapter 

3). In the second half of this thesis, the natural variation of the effect of a GA 

inhibiting compound called paclobutrazol and the effect of adding this compound 

together with GAs were studied using seed germination (chapter 3) and hypocotyl 

elongation (chapter 4) as biological tests systems. For high – throughput analysis of 

hypocotyl lengths of many genotypes a semi - / automatic procedure was developed 

(chapter 4). In this general discussion, a summary and discussion of major findings is 

provided. In addition, perspectives and possible directions to continue the study of 

natural variation for GA biosynthesis and signalling are given.  

  

GA20ox1 (GA5) a case of convergent evolution 

GA 20-oxidases are enzymes that together with GA 3-oxidases catalyse the final steps 

of bioactive GA biosynthesis (Yamaguchi, 2008). A. thaliana contains five paralogs 

encoding for GA 20-oxidases (Rieu et al., 2008; Yamaguchi, 2008). The gene 

GA20ox1, or GA5 as the original mutant was named (Koornneef & van der Veen, 

1980), is together with GA20ox2, -3, the main paralogs, which means the absence of 

these three genes will result in severe dwarfism and sterility (Plackett et al., 2012). 

Remarkably GA20ox1 (GA5) is the only paralog that will induce semi-dwarfism when 
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non-functional (Plackett et al., 2012; Rieu et al., 2008). Surprisingly semi-dwarfism 

occurs in natural A. thaliana accessions. A semi-dwarf (mutant) is defined in this study 

as a plant with half the height of a genetically related accession (wild type). The 

presence of natural variation of a loss of function GA20ox1 (GA5) allele was first 

described by El-Lithy et al., (2006) in the Kas-2 semi-dwarf accession. In the present 

study semi-dwarf natural accessions from different parts of the distribution range of A. 

thaliana were characterized by allelism tests and sequencing (Barboza et al., 2013). In 

addition population molecular genetic studies were performed, which describe the 

pattern of variation as well as possible signatures of selection.  

Natural variation for GA biosynthesis controlling plant height is mainly found 

for GA20ox1 (GA5), based on the current knowledge. Most of the studied semi-dwarfs 

were alleles of GA20ox1 (GA5). Only a few accessions complemented to the wild type 

phenotype in the cross ga5 × accession, thus indicating that allelic variation at other 

loci affect the trait (Barboza et al., 2013) in these accessions. Another example of 

mutations in a GA 20-oxidase encoding gene has been reported for the accession Bur-

0, which carries a ga20ox4 loss of function allele. However, this does not result in 

semi-dwarfism (Plackett et al., 2012) or another phenotype. Mutations at different 

genes can lead to a reduction of plant height and thus inducing semi-dwarfism. In A. 

thaliana the ga4 mutant, encoding the GA3ox1 gene, shows a similar plant height 

phenotype as the ga5 mutant and the total number of isolated induced mutants for this 

locus was significantly higher than for ga5 (Koornneef & van der Veen, 1980). It is 

relevant to mention, that GA3ox1 (GA4) is an ortholog of the pea Le gene studied by 

Mendel affecting stem elongation (Mendel, 1865; Lester et al., 1997). Another A. 

thaliana mutant causing semi-dwarfism is GA INSENSITIVE  (gai) (Koornneef et al., 

1985). The gene mutated in this semi-dominant mutant is an ortholog of the green 

revolution wheat genes Reduced Height-1 (Rht-B1 and Rht-D1) (Peng et al., 1999). 

The examples described above are semi-dwarf mutations in genes encoding for GA 

biosynthesis and signalling. However, also natural allelic variation at loci outside the 

GA pathway can lead to semi-dwarfism. For instance the ERECTA mutant (Torii et al., 

1996), which decreases the plant height in different backgrounds, include some natural 

accessions (van Zanten et al., 2010). Induced mutants with a dwarf phenotype have 

been described many times and include mutants of the brassinosteroid (Li & Chory, 

1999; Sakamoto et al., 2006; Clouse, 2011) and auxin pathways (Estelle & Somerville, 

1987). Despite that allelic variants at many loci can affect plant height, semi-dwarfism 
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in natural populations of A. thaliana was shown to be caused mainly by ga20ox1 (ga5) 

loss of function alleles, thus pointing to specific factors directing this gene as a hotspot 

for this trait. An indication of the frequency of these alleles in nature is the finding that 

four semi-dwarf accessions were present in the Hapmap, a population of 360 

accessions, in which it was attempted to maximize the world wide A. thaliana diversity 

(Li et al., 2010). 

Mutations in the GA20ox1 (GA5) gene show no pleiotropic effects. Its mutants 

resemble their corresponding wild type accessions for many traits except that rosette 

size and plant height are reduced. Seed production is not affected in the ga20ox1-3 

mutant (Rieu et al., 2008). In the present study silique number was used as an indicator 

of fitness and it was found that semi-dwarfism did not affect this trait. Even during 

water limiting conditions, as shown in this study, the ga20ox1-3 and ga5 mutants show 

no trade-offs affecting performance when compared with their background accessions. 

In contrast ga1 null mutants, encoding for  a gene early in GA biosynthesis with severe 

dwarfism, show many pleiotropic effects that act as trade-offs, such as reduced 

germination and even leaky alleles will show reduced fertility and altered flower 

development (Koornneef & van der Veen, 1980). Recently natural variation was 

described for the GA1 gene showing the presence of two distinct haplotypes 

(containing four non synonymous substitutions), which correlated with quantitative 

differences in floral morphology (Brock et al., 2012). However the effect of these 

mutations is small thus pointing that mutations with stronger effects at this locus will 

be eliminated by selection due to their trade-offs described above. Similar conclusions 

have been made in rice and barley (Spielmeyer et al., 2002; Jia et al., 2009; Jia et al., 

2011).  

GA5 is the functional ortholog of the rice green revolution semi-dwarf locus 

Semi-Dwarf-1 (SD1), which codes for GA 20-oxidase-2 (Sasaki et al., 2002; 

Spielmeyer et al., 2002). Modern barley varieties carry mutations in this locus too, in 

which the mutated gene was called Denso or Sdw1 (Jia et al., 2009). Studies have 

tested mutant GAI alleles in rice resulting in dwarf phenotypes and thus pointing to the 

possibility of using orthologs of this gene in crops to increase production (Peng et al., 

1999; Fu et al., 2001). This suggests that GAI could have been selected in nature based 

on potential advantageous of its semi-dwarf phenotype. One possibility why this 

mutant has not been found yet in nature in diploid species, might be that a specific gain 
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of function dominant allele (Peng et al., 1997) is needed to confer this phenotype, 

which may be more rare than a loss of function mutation. 

 In this study semi-dwarfs were found together with wild type alleles indicating 

that semi-dwarf alleles are not fixed in nature. This observation suggests that, semi-

dwarf alleles might be deleterious in some populations, especially when semi-dwarf 

plants are not good competitors in a mixed population. Mendel mentioned this trait-off 

for his short stem pea plants (Mendel, 1865). The same observation has been made for 

semi-dwarf Populus plants for which, a growth reduction was observed, when they 

were grown together with wild types in a competition study (Elias et al., 2012). Such 

observations raise the question what could be the selective advantage of semi-dwarfs 

in nature. It has been shown that in fragmented landscapes tall alleles will be more 

beneficial in terms of seed dispersal compared with short plants, represented by 

genotypes carrying the erecta allele in A. thaliana (Fakheran et al., 2010). Shorter 

plants might be beneficial under static environments (Fakheran et al., 2010), which 

resemble the urban environments (pedestrian side walks), where many semi-dwarfs 

were collected and which is common habitat of A. thaliana in anthropoid 

environments. 

No obvious effect of GA20ox1 mutations on drought tolerance as suggested by 

(Vartanian et al., 1994) was detected. Previous studies mentioned the hypothesis that 

GA20ox2 induced semi-dwarfism in rice might confer drought tolerance because of a 

GA to Abscisic Acid (ABA) antagonism, where semi-dwarfs carrying low GA levels 

will thus show ABA accumulation (Lafitte et al., 2007). However it seems semi-

dwarfism is not an advantage neither a trade-off for drought tolerance as semi-dwarfs 

with similar to wild types drought tolerance have been identified (Lafitte et al., 2007).  

GA20ox1 (GA5) loss of function-induced semi-dwarfism may follow different 

evolutionary models based on the occurrence of different independent alleles, 

distributed worldwide, and present in natural and anthropoid environments. In a few 

populations different alleles were detected inside the same population, which might 

point to the presence and maintenance of these semi-dwarfs over a long time in these 

natural habitats in Spain. It can be expected that such populations, exposed to a variety 

of climatic conditions, have variable selective pressures in which some are beneficial 

for semi-dwarfs resulting in balancing selection. For two populations signatures of 

positive selection was observed, which could indicate the semi-dwarfism may become 

fixed due to a selective advantage. This was observed in two Asian populations. 
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However due to limited sampling it cannot be excluded that wild types are also present 

in such populations. 

Cases of positive selection in specific environments have been identified in 

other genes, for instance, positive selection is present for the locus SRF3 in A. thaliana 

Central Asian accessions and this might reflect an advantage under local pathogen 

pressure conditions (Alcázar et al., 2010). Signatures of purifying selection were also 

observed in this locus, which means deleterious mutations are purged and a functional 

GA20ox1 (GA5) allele is maintained at least in the majority of the populations. This is 

in agreement with previous studies on the rice GA20ox2 locus (Yang et al., 2009). 

Although it appears that natural GA20ox1 (GA5) mutations are transiently maintained 

in nature, the occurrence of the same loss of function allele now in 11 locations in The 

Netherlands indicates that it spread across the country. Furthermore the finding of 

derived haplotypes of this allele provides further evidence that semi-dwarf alleles are 

maintained. 

The occurrence of GA20ox1 (GA5) loss of function alleles illustrates a case of 

convergent evolution. Recent literature studies have revealed “gene re-use” which 

means similar traits in different lineages have involved mutations in the same gene 

(Martin & Orgogozo, 2013). Regarding plant height the previous authors point to the 

known examples of rice and wheat GA biosynthesis and signalling mutants (Hedden, 

2003; Salamini, 2003) as a hotspot in domesticated plants. A review by Lenser & 

Theißen (2013) collected many other examples of convergent evolution among crops. 

Convergent evolution can be seen as a synonym of gene re-use. Lenser & Theißen 

(2013) point that this phenomenon is frequently observed due to the human cultivation 

and breeding practices, which will usually have similar and specific phenotypic 

demands. In this thesis a case of convergent evolution is shown between selected semi-

dwarfism in domesticated plants and the occurrence of semi-dwarfs in A. thaliana 

natural accessions. In agreement with Lenser & Theißen (2013), who mention that 

domestication helps the understanding of evolution, evolution might provide 

knowledge and understanding of domestication selected traits, which indicates the 

potential behind natural variation found in A. thaliana to find useful allelic variation 

for plant breeding. Genes exploited in domestication convergent evolution were 

favored due to (i) their nodal (central) position in the giving regulatory pathway, (ii) 

being in simple metabolic pathways, (iii) showing few pleiotropic effects, and (iv) 

presence at low frequency in wild populations which will facilitate its selection 
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(Lenser & Theißen, 2013). One of the main features of the ga20ox1 (ga5) mutants is 

minimal pleiotropic effects, which most likely is the main factor allowing the 

occurrence of these variants in nature. In this thesis trade-offs were not observed 

during germination, root system length, flowering time, fitness and the performance 

under water limiting conditions. For some traits, the genetic background showed a 

strong effect. Mutants of the GA20ox1 (GA5) gene are mainly affected in their stem 

elongation and rosette size, most likely due to redundancy with the remaining GA20ox 

paralogs, other traits are not affected (Rieu et al., 2008; Plackett et al., 2012). A similar 

conclusion was drawn for in rice, where mutations in early GA biosynthesis genes 

(such as OsKO) will be less favorable due to negative pleiotropic effects (Itoh et al., 

2004). The review of Lenser & Theißen (2013) shows as an additional examples, the 

use of FRIGIDA (FRI) and mainly the FLOWERING LOCUS C (FLC) as 

domestication related flowering time locus in Brassicaceae (Okazaki et al., 2007; Yuan 

et al., 2009; Wang et al., 2011; Wu et al., 2012). Both FRI and FLC show a high 

number of independent mutations in natural A. thaliana accessions (Méndez-Vigo et 

al., 2011) thus resembling the case of GA20ox1 (GA5) and pointing to the occurrence 

of further convergent evolution cases.  

Summarizing, ga20ox1 (ga5) loss of function alleles can be selected and 

maintained in nature due to different factors (Figure 6.1). These alleles might be under 

positive selection, providing a selective advantage in nature to an environmental factor 

still unknown and which may be transient, given the co-existence of wild type alleles 

in the best characterized populations. The occurrence of crops displaying mutations in 

the same locus illustrates a case of convergent evolution between domesticated crops 

and natural A. thaliana accessions. The minimal pleiotropic effects, due to redundancy 

with other GA 20-oxidases, shown in ga20ox1 (ga5) loss of function alleles is a main 

factor contributing to the selection and maintenance in nature of these alleles. To what 

extend the gene expression levels of the other paralogs and the GA20ox1 (GA5) gene 

itself change in semi-dwarfs compared to wild types requires further research together 

with a study of the functionality of the remaining GA20ox genes. Functional GA5 

alleles seem to be under purifying selection, which might indicatethat this gene must 

be functional due to relevance of having a tall phenotype under certain environments.  
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Figure 6.1. Factors affecting or related with the occurrence of loss of function ga5 alleles vs. 
functional GA5 alleles. Red colours indicate factors that need further experimental evidence. 
 

 

Paclobutrazol sensitivity  

The use of GA biosynthesis inhibitors such as paclobutrazol (PAC) have allowed the 

identification of different seed germination and seed dormancy related mutants. A 

dormant seed is defined as a viable seed that is unable to germinate even in a suitable 

environment (Holdsworth et al., 2008). For instance ABA biosynthesis (Léon-

Kloosterziel et al., 1996; North et al., 2007), and signalling (Nambara et al., 1992) 

mutants have been isolated based on their PAC sensitivity. This selection is effective 

because GA is not needed when ABA and the inhibition of germination by ABA is not 

present.  PAC hypersensitivity (germination inhibition at low ~0.1 µM doses) has been 

demonstrated in lines overexpressing the ABA insensitive 5 (ABI5) transcription factor 

(Piskurewicz et al., 2008) and in calcium sensor calcineurin B-like (cbl) mutants (Li et 

al., 2013). In this thesis the PAC sensitivity was tested in A. thaliana natural 

accessions and substantial variation was found for the PAC effect on seed germination. 
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As described by (van der Schaar et al., 1997), genotypes that differ little in 

germination can display a significant difference in germination in PAC, controlled by 

different QTLs. Seeds must regulate their germination based on optimal environmental 

conditions, thus dormancy is present in nature. For this reason it is expected that also 

the regulation of ABA / GA levels in seed germination must be fine-tuned in nature 

and in crops. In agriculture seeds that germinate too fast might lead to a rapid loss of 

viability or undesired germination before harvesting (pre-harvest sprouting). A too 

strong dormancy is a problem as highly dormant seeds cannot be sown or are less 

suited for malting (e.g. in barley). Substantial dormancy variation has been found in A. 

thaliana accessions (Bentsink et al., 2010), and through natural variation relevant 

genes for this process have been identified and cloned such as DELAY OF 

GERMINATION 1  (DOG1) (Bentsink et al., 2006). It is well known that ABA inhibits 

germination, thus by applying PAC the levels of this hormone are reduced and 

consequently germination is inhibited. Interestingly, although in dog1 mutants ABA 

levels are slightly reduced and GA levels are increased, dog1 mutants can not 

germinate without GA as shown in the double mutant dog1 ga1-3 (Bentsink et al., 

2006) and dog1 shows PAC sensitivity (Nakabayashi et al., 2012) thus pointing to 

other mechanisms regulating dormancy than only the need to overcome the inhibition 

of germination by ABA. Due to the relatively small effect of the various loci and the 

fact that thus far no genes underlying the QTL could be identified, it was not 

elucidated what the physiological relevance is of the variation in PAC sensitivity is 

and if this is translated into other pleiotropic effects. PAC sensitivity is partially but 

not fully related with dormancy as was shown by the PAC effects on dog1 mutants too 

(Nakabayashi et al., 2012). The finding that loci differ in their PAC and PAC + GA 

sensitivity and some loci controlling specific treatment effects, might imply novel 

mechanism involved with GA / ABA biosynthesis and signalling and its role in seed 

germination.  

Hypocotyl length is a useful trait to study natural variation for GA biosynthesis 

and signalling because it provides an accessible experimental system and the trait is 

strongly affected by GAs. In this thesis a procedure to semi- / automatically quantify 

hypocotyls was developed. Hypocotyls grown in the dark were studied based on their 

known GA accumulation affecting cell elongation under this condition. (Gendreau et 

al., 1997; Lau & Deng, 2010). The method was proven to be successful especially 

when dealing with PAC as the procedure is very fast and could be adjusted to avoid the 



GENERAL DISCUSSION 101 
 

 

PAC seed germination inhibition effects and thereby exclusively quantify the 

hypocotyl elongation inhibition. A locus at or near erecta was mapped as a main locus 

controlling hypocotyls elongation. ERECTA is a highly pleiotropic locus (van Zanten 

et al., 2009) and among the traits it regulates, is plant height (van Zanten et al., 2010). 

How ERECTA, which encodes for a receptor like kinase (Torii et al., 1996) affects 

plant length is unknown, but van Zanten et al., (2009) suggested the possibility of a 

GA mediated regulation that is independently from the classical GA-signalling way.  

 

Perspectives about gibberellin biosynthesis and signalling natural variation 

studies 

A. thaliana has five GA20ox paralogs showing the gene redundancy present in this GA 

biosynthesis step (Plackett et al., 2012). When the phylogeny of GA oxidases in 

Arabidopsis, rice and soybean was studied, the GA20ox genes group together with 

their respective homologs and most GA oxidase genes were present in paired paralogs 

(Han & Zhu, 2011). Transcriptional analysis showed that differences in gene 

expression occur when the GA20ox1 gene is not functional (Rieu et al., 2008). The 

occurrence of several semi-dwarf accessions carrying loss of function ga20ox1 alleles 

(Barboza et al., 2013) raises the question if gene expression of the remaining paralogs 

is changed and if signatures of selection are present in these genes. A hypothesis can 

be that accessions carrying inactive GA20ox1 alleles have a functional GA20ox2 and 

this is under selection pressure, together with a higher GA20ox2 expression. This will 

provide further knowledge about the transcription regulation in this pathway. Up to 

date semi-dwarfs allelic to ga20ox1 (ga5) have been identified in 23 populations 

(Barboza et al., 2013). Currently additional new semi-dwarf accessions from other 

populations are being analysed. The observation that not all accessions are allelic to 

ga5, immediately points to other loci / genes controlling this phenotype and will 

provide insight in what other allelic variation can control plant height in nature without 

negative pleiotropic effects.    

Further germination / genetic analyses are necessary to understand the meaning 

of PAC sensitivity in seed germination and hypocotyl elongation. Fine mapping of the 

locus on chr 1, together with the cloning of the putative gene controlling this effect are 

remaining tasks. The availability of several A. thaliana bi-parental and worldwide 

collections of accessions will provide relevant genetic material to study the genetic 

control of hypocotyl elongation. All this might contribute to the understanding of the 
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mode of action and regulation of GAs and might help answering open questions such 

as GA mobility / transport in plants, novel genes and signals controlling GA 

biosynthesis and signalling (Yamaguchi, 2008). Besides, the occurrence of interesting 

traits, which might be co-selected with semi-dwarfism such as the long root system 

depth of the Pak-3 accession, are experiments, that will require genetics to map and 

clone the loci controlling it.  
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Summary 
Variations in plant hormone levels and hormone signalling might be a basis for the 

phenotypic variation in developmental and stress-related traits within the same species 

found in nature. Understanding the genetic basis for such a variation was the major 

objective of this thesis. As an example gene, GA5 was investigated. GA5 encodes a 

GA 20-oxidase, an enzyme involved in the last steps of bioactive gibberellin (GA) 

biosynthesis. GAs are plant growth regulators involved in different traits such as seed 

germination, flowering and plant height. To identify mutations in the GA20ox1 (GA5) 

gene, Arabidopsis thaliana natural semi-dwarf accessions and the ga5 mutant were 

investigated by allelism tests as well as by DNA sequencing. This approach led to the 

identification of a large number of independent mutations that were found to be 

responsible for inactive alleles in 17 different populations from various parts of the 

world. Population genetics was performed for the GA20ox1 gene in the world-wide 

collection of natural accessions and in specific populations with many semi-dwarfs 

that indicate local selection. No obvious trade-offs affecting plant performance were 

observed among the semi-dwarf accessions. To test if the semi-dwarf GA20ox1 

mutants can withstand water stress better, physiological experiments were performed 

under water withholding conditions. Although no significant effects could be assigned 

to this mutation, one semi-dwarf genotype was identified with a much longer root 

system that seems to correlate with tolerance to water withholding. To further screen 

the natural variation of GA biosynthesis and GA signalling, Quantitative Trait Loci 

(QTL) analysis and Genome Wide Association Studies (GWAS) were performed. 

Using both strategies, the influence of the gibberellin biosynthesis inhibitor 

paclobutrazol (PAC) and of GA4+7 on seed germination was tested. The QTL and 

GWAS studies showed a complex regulation of the effects of GA depletion / 

restoration. A main locus for PAC sensitivity on chromosome 1 was validated and 

characterized for its effect on seed germination. To extend the study, a semi-automatic 

method named ‘HyPer’ was developed for the quantification of skotomorphogenic 

hypocotyls. This method was used to perform QTL mapping for hypocotyl length and 

the effects of application of PAC and GA on this trait. These experiments revealed 

ERECTA as a locus involved in PAC sensitivity. Based on these findings, GAs play a 

role in A. thaliana natural variation. The finding of GA5 as main GA hotspot in this 

study illustrates a case of convergent evolution between natural semi-dwarfs and wild 

domesticated plant species. 
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Zusammenfassung 
  
 
Änderungen im Pflanzenhormongehalt und in der Hormonsignalisierung könnten die 

Grundlage für die phänotypische Variationen in entwicklungs- und stress-bedingten 

Merkmalen innerhalb der gleichen, in der Natur vorkommenden, Species darstellen.  

Das Hauptziel dieser Arbeit war es, das Verständnis der  genetischen Grundlagen  

solcher Variationen zu erweiteren. Mithilfe von Komplementationstests und DNA-

Squenzierungen wurden  in der Natur vorkommenden Arabidopsis thaliana 

Halbzwerg-Ökotypen mit der ga5 Mutante verglichen. Wir konnten damit eine 

Vielzahl von unabhängig auftretenden Mutationen in dem GA20ox1 (GA5)-Gen 

nachweisen. Diese Mutationen führen zu inaktiven Allelen in 17 verschiedenen 

Populationen aus verschiedenen Teilen der Welt. GA5 kodiert für eine GA 20-oxidase, 

ein Enzym, das an den letzten Schritten der Gibberellin (GA)-Biosynthese beteiligt ist. 

Gibberelline sind Pflanzenwachstumsregulatoren, die verschiedene Merkmale wie 

Samenkeimung, Blühzeitpunkt und Pflanzenhöhe beeinflussen. Eine Analyse der 

Populationsgenetik für das GA20ox1-Gen wurde in der weltweiten Kollektion von 

natürlichen Ökotypen und in speziellen Populationen mit vielen Halbzwergen 

durchgeführt. Diese Untersuchungen weisen auf eine örtliche Selektion hin. Bei den 

GA20ox1 Halbzwerg-Mutanten wurden keine offensichtlichen Nachteile der Pflanzen 

bezüglich ihrer Leistungs- und Überlebensfähigkeit festgestellt. Um zu testen, ob die 

Mutanten Wasserstress besser vertragen, wurden physiologische Experimente unter 

Wasserrückhaltebedingungen durchgeführt. Obwohl den Mutationen keine eindeutigen 

Effekte zugewiesen werden konnten, wurde eine Halbzwerg-Variante mit einem viel 

größeren Wurzelsystem identifiziert, der mit einer Wasserrückhaltetoleranz zu 

korrelieren scheint. Um das Auftreten der natürlichen Variation hinsichtlich der GA-

Biosynthese und  des GA-Signalwegs zu untersuchen, wurde eine QTL (engl. 

Quantitative Trait Loci)-Analyse und eine genomweite Assoziationsstudie (GWAS, 

engl. Genome-wide association study) durchgeführt , um die Empfindlichkeit der 

Samenkeimung gegenüber dem Gibberellin-Biosynthese-Inhibitor Paclobutrazol 

(PAC) und gegenüber GA4+7 zu testen. Die QTL- und die GWAS-Analyse zeigten eine 

komplexe Regulierung der Effekte des Abbaus und Wiederaufbaus von GA. Ein 

Hauptlocus für die Empfindlichkeit gegenüber PAC wurde bestätigt und hinsichtlich 

seines Einfluses auf die Samenkeimung charakterisiert. Um unsere Studie 

auszudehnen, wurde eine `HyPer´genannte, halb-automatisierte Methode zur 
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Quantifizierung des sktotomorphogenesen Hypokotyls entwickelt,. Diese Methode 

wurde für eine QTL-Kartierung der Hypokotyllänge und der Effekte von PAC und GA 

genutzt. Diese Experimente zeigten ERECTA als einen Locus, der mit der 

Empfindlichkeit gegenüber PAC zu tun hat. Anhand dieser Ergebnisse spielen 

Giberelline eine Rolle in der natürlichen Variation von Arabidopsis thaliana. Der Fund 

von GA5 als GA-“hotspot“ in dieser Arbeit zeigt, dass eine konvergente Entwicklung 

zwischen natürlich vorkommenden Halbzwergen und wilden, domestizierten 

Pflanzenspecies vorliegt. 
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Appendix 1. List of primers and PCR results used to identify deletions in Arabidopsis thaliana 
accessions T1080, YGU, Kyr-2 and Veg1-2. Col and ga5 were used as controls. Reactions were 
conducted from two independent samples of genomic DNA for each accession. Product sizes were 
predicted using Col as reference sequence. 

Primer 
forward 

Primer 
reverse 

Product 
size (kb) Locus T1080 Kyr-2 YGU Veg1-2 Col ga5 

P01 P02 2.2 At4g25420.1 - - - - + + 
P01 P03 2.3 At4g25420.1 - - - - + + 
P01 P60 1.8 At4g25420.1 - - - - - - 
P04 P02 1.8 At4g25420.1 - - - - + + 
P06 P02 1.2 At4g25420.1 - - - - + + 
P57 P02 1.5 At4g25420.1 - - - - + + 
P57 P60 1.1 At4g25420.1 - - - - + + 
P04 P03 1.9 At4g25420.1 - - - - + + 
P01 P82 3.5 At4g25420.1 + - - - + + 
P01 P81 3.1 At4g25420.1 + - - - + + 
P01 P80 1.4 At4g25420.1 + - - - + + 
P01 P58 0.8 At4g25420.1 + - - - + + 
P22 P23 1.5 promoter At4g25420.1 + - - - + + 
P45 P46 1.0 At4g25390.1 NT + + + + + 

P118 P119 1.1 At4g25380.1 NT + NT NT + + 
P41 P42 1.0 At4g25410.1 NT - + + + - 
P25 P26 1.4 At4g25430.1 NT - - + + + 
P27 P28 1.3 At4g25434.2 NT - + + + + 
P31 P32 1.2 At4g25470.1 NT - NT NT + + 
P35 P36 1.1 At4g25520.1 NT + NT NT + + 

P110 P111 1.1 At4g25540.1 NT + NT NT + + 
P41 P26 13.9 At4g25410.1-At4g25430.1 NT - - + - - 
P41 P28 19.5 At4g25410.1-At4g25434.2 NT NT + NT - - 
P45 P32 37.9 At4g25390.1-At4g25470.1 NT - NT NT - - 
P45 P36 57.3 At4g25390.1- At4g25520.1 NT - NT NT - - 
P45 P111 67.3 At4g25390.1-At4g25540.1 NT - NT NT - - 

P118 P36 58.8 At4g25390.1-At4g25520.1 NT - NT NT - - 
P118 P111 68.8 At4g25390.1-At4g25540.1 NT - NT NT - - 
P157 P158 1.2 At4g25400.1 NT + NT NT + + 
P159 P160 1.0 At4g25480.1 NT - NT NT + + 
P161 P162 1.0 At4g25490.1 NT + NT NT + + 
P163 P164 1.1 At4g25500.1 NT + NT NT + + 
P165 P166 1.8 At4g25515 NT + NT NT + + 
P45 P162 44.6 At4g25390.1-At4g25490.1 NT + NT NT - - 
P45 P164 47.4 At4g25390.1-At4g25500.1 NT + NT NT - - 

“NT” not tested, “-” PCR product did not amplify, “+” PCR amplified.      
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Appendix 2. List of GA5 haplotypes. Asterisks indicate haplotypes containing semi-dwarfs. 

Haplotype 
GeneBank 
accession 
numbers 

Accessions sharing the same haplotype 

1 KF312645 Bla-3, Kl-5, TDr-18, OW-14      

2 KF312646 
Bla-1, Bur-0, Enk-2, Kar-2, Kar-3, Kar-4, Kar-6, Kar-7, Kar-8, Kar-9, Kas-
0, LDV-25, Rennes-1, Mar-2, Mdc-1, Mdc-29, Mdc-32, Mdc-56, Mdc-63, 
Mdc-95 

  3* KF312647 Dja-1, Dja-10, Dja-2, Dja-3, Dja-4, Dja-5, Dja-6, Dja-7, Dja-8      
  4* KF312648 Enk-1, Enk-3, Haarl-1, Ooij-1, OW-12, Sch-187, Schar-1 

5 KF312649 Duiv , Nfro-1, Nfro-2, Nfro-3, Nfro-4, Nfro-5, LDV-58       
6 KF312650 Fuk 
7 KF312651 Je-0 
8 KF312652 Kar-10, Kar-11, Kar-12     

  9* KF312653 Kas-2 
   10* KF312654 Kl-2 

11 KF312655 Lod-2-2, San-0, Ts-5, Tou-H-13, Vel-2, Vel-7, Vgn1-1, Vgn1-2, Vgn1-3, 
Vgn1-4, Vgn1-5, Vou-2 

12 KF312656 Neo-1, Neo-2, Neo-3, Neo-4, Neo-5, Neo-6, Neo-7, Neo-8, Sha  
13 KF312657 Pak-1   

  14* KF312658 Pak-3 
15 KF312659 Cat-28, Cat-39, Mar-6, Pra-0  
16 KF312660 Sk-2-11 

  17* KF312661 Sparta 
  18* KF312662 Sus-1, Sus-2, Sus-3, Sus-5, Sus-6, Sus-7 

19 KF312663 T620, Zdrl-2-24  
  20* KF312664 Var 2-6, Var 2-1 

21 KF312665 Cat-13, Cat-27, Cat-30, Cat-33, Cat-47, MdcA-0, MdcA-6, MdcA-6-2, 
MdcA-11, MdcA-14, MdcA-19, MdcA-22, MdcA-44  

  22* KF312666 Cat-0, Cat-10 
  23* KF312667 Cat-1, Cat-5, Cat-8, Cat-19, Cat-20, Cat-22, Cat-43, Cat-44 
  24* KF312668 Cat-15, Cat-17 

25 KF312669 Cat-09 
  26* KF312670 Cat-23, Cat-45      
  27* KF312671 Mar-1, Mar-3, Mar-11      
  28* KF312672 Mdc-60 
  29* KF312673 Mdc-53, Mdc-122 
  30* KF312674 Mdc-10, Mdc-87, Mdc-100, Mdc-113, Mdc-130 
  31* KF312675 Tha-1 
  32* KF312676 OW-0 
  33* - T1080 
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Appendix 3. List of oligonucleotides.  
 

GA5 gene amplification   

Name Locus Primer Sequence (5`→3`) 

P01 At4g25420.1 GA5_F_200511_LBB TGTCCATGTTGCCACACAACA 
P02 At4g25420.1 GA5_R_200511_LBB TCCCCCATTCCCTAAACTTGCT 

    
GA5 promoter amplification and sequencing  

Name Locus Primer Sequence (5`→3`) 

P22 At4g25420.1 GA5_F_180712_LBB ATTTCCAAGGCCTAGCTTCG 
P23 At4g25420.1 GA5_R_180712_LBB CCCCACCAAAAAGATCCACA 

    
Primers used for GA5 sequencing  

Name Locus Primer Sequence (5`→3`) 

P02 At4g25420.1 GA5_R_200511_LBB TCCCCCATTCCCTAAACTTGCT 
P04 At4g25420.1 GA5_F_200511_LBB TGGTTCCCGTATCTCCTCGCA 
P06 At4g25420.1 GA5_F_200511_LBB CTTCTGCGATGCGTTGGGACA 

    
Fay & Wu’s Hn analyses 

Name Locus Primer Sequence (5`→3`) 

P25 At4g25430.1 unk_F_180712_LBB TTTTCGCCTTCCACTTGTCA 
P26 At4g25430.1 unk_R_180712_LBB CTGACCAGAGCATATCGTCG 
P27 At4g25434.2 NUD_F_180712_LBB CGGGAAAGATTGCGAGAGAA 
P28 At4g25434.2 NUD_R_180712_LBB TTTGTGTTGGTGCGAGATCA 
P31 At4g25470.1 CBF2_F180712_LBB ACACGGAAATGCCAGAATCA 
P32 At4g25470.1 CBF2_R180712_LBB TATCCACGTGGCATTCACAG 
P41 At4g25410.1 BHLH_F190712LBB TTTGGTGAGATTTGGCTGCT 
P42 At4g25410.1 BHLH_R190712LBB GCACCTTGCTCTCATAACGA 
P45 At4g25390.1 PKS_F_190712_LBB TCTGTGAGTGCTTCTCCTGA 
P46 At4g25390.1 PKS_R_190712_LBB TGGTGAGAACTCACTAGGCA 
P49 At4g25360.1 TBL_F_190712_LBB GTATTGCATGCCCCTGAAGA 
P50 At4g25360.1 TBL_R_190712_LBB TTTCCCTGGCAATTCTGCAT 
P35 At4g25520.1 SLK1_F180712_LBB GTCTGGCAAGCACATCAAAC 
P36 At4g25520.1 SLK1_R180712_LBB ATGCGTATCCCAACATCACC 
P53 At4g25315.1 DUF_F_190712_LBB TTCGAGGTACGCTTCTTTGG 
P54 At4g25315.1 DUF_R_190712_LBB GCACTAAGCAGACACGATGA 
P86 At4g25560.1 LAF_F_291112_LBB AGAGAAATGGCGAAGACGAA 
P87 At4g25560.1 LAF_R_291112_LBB GGCTTTGCTACTTCTGGTGT 
P90 At4g25640.2 FFT_F_291112_LBB AGACTACTCGGTCAAGCAGA 
P91 At4g25640.2 FFT_R_291112_LBB TTCCAGACCAAAGTCCCTGA 
P96 At4g25240.1 SKS_F_291112_LBB CCCTTTCGTCTCCTACGACT 
P97 At4g25240.1 SKS_R_291112_LBB GAGACTCAACACAGGCAACT 
P102 At4g25190.1 QWR_F_291112_LBB CTCCGGTACAAGAGGAGGAT 
P103 At4g25190.1 QWR_R_291112_LBB GGCTCTCGTCCATTTCTTCA 
P110 At4g25540.1 MSH3_F_060213LB AGAAATGAAGCTGGAGGCTG 
P111 At4g25540.1 MSH3_R_060213LB GGCACATACATAAGAGGGCA 
P112 At4g25610.1 C2H2_F_060213LB CCTGAGATGTCGGTTTCCTG 
P113 At4g25610.1 C2H2_R_060213LB TCATGGACCTGTGTCCTGAT 
P118 At4g25380.1 SAP_F_060213LB GGCCATCAAAGATCACCATGT 
P119 At4g25380.1 SAP_R_060213LB TGGAAAGATGGCTTGCTTGT 
    

Continue next page 



122	   APPENDICES 

 

From previous page 
 
Primers used to identify deletions (not listed above) 

Name Locus Primer Sequence (5`→3`) 

P03 At4g25420.1 GA5_R_200511_LBB ACCCCAAGATGATGCATGATGAACA 
P57 At4g25420.1 GA5_F_030812_LBB GATCCATCCTCCACTTTAGA 
P58 At4g25420.1 GA5_R_030812_LBB GTGTATTCATGAGCGTCTGA 
P60 At4g25420.1 GA5_R_030812_LBB GGCTTGGAGAGTGTTCATGT 
P80 At4g25420.1 GA5_R_071112_LBB AGGTCCTGTTCCTAGTGTGA 
P81 At4g25420.1 GA5_R_071112_LBB ACCCAACTACAGAAACAAGACC 
P82 At4g25420.1 GA5_R_071112_LBB CACCCGAAAGCTAACTCACA 
P157 At4g25400.1 At4g25400_F_LBB TCCCAGAGCACAAGATCAGA 
P158 At4g25400.1 At4g25400_R_LBB GTCGATCAAAGCCAGATCGT 
P159 At4g25480.1 At4g25480_F_LBB CGCCGTCGACTTCATGATTA 
P160 At4g25480.1 At4g25480_R_LBB AGCCACACATTCATACGCAA 
P161 At4g25490.1 At4g25490_F_LBB GACACGTCACCATCTCCTTC 
P162 At4g25490.1 At4g25490_R_LBB CGATTGTAACAACAGCAGCC 
P163 At4g25500.1 At4g25500_F_LBB ACTACGCCTGCCAAAATCAT 
P164 At4g25500.1 At4g25500_R_LBB CTTCTCCATTGCAGAGGCAT 
P165 At4g25515.1 At4g25515_F_LBB GCATTAACCTGCCTGGATCA 
P166 At4g25515.1 At4g25515_R_LBB ACCACTCTCAGAAATCGTGC 
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Appendix 4  - Summary of QTL mapping results for control, PAC04 and the response 
(Δ=Control- PAC04) in the Bay × Sha mapping population. QTLs above significance threshold are 
highlighted. The numbers in the different traits indicate the LOD scores. 
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T27K12 1 49.1 2 4 5 3 5 4 0 1 6 3 0 0 
MSAT1.42 1 54.7 2 3 5 3 7 7 1 2 8 5 0 0 
NGA128 1 61.3 2 3 4 3 7 7 1 2 8 8 0 0 
IND2188 1 63.8 2 4 4 4 9 9 1 3 10 10 0 0 

dCAPsAPR2 1 66.1 2 4 4 4 10 10 1 3 11 11 0 0 
F5I14 1 69.6 1 3 3 3 11 11 0 2 11 11 0 0 

MSAT1.13 1 76.3 0 1 0 1 7 8 0 2 8 8 0 0 
MSAT127088 1 82.7 0 0 0 0 3 4 1 1 3 4 1 0 

MSAT3.99 3 3.2 0 0 1 0 3 2 0 0 3 2 0 0 
ATHCHIB2 3 6.6 0 0 1 0 5 3 0 0 5 4 1 0 

MSAT305754 3 7.9 0 0 1 0 5 3 0 0 5 4 1 0 
MSAT3.19 3 23.2 0 0 0 0 2 1 3 2 2 1 2 2 

MSAT3.117 3 28.8 0 0 0 0 0 0 3 3 0 1 1 2 
MSAT3.32 3 39.5 0 0 0 1 1 1 4 2 1 3 1 1 
MSAT3.21 3 48.0 0 0 0 3 1 2 1 1 3 3 0 0 

MSAT318406 3 53.3 0 0 0 3 1 1 0 0 2 2 0 0 
MSAT3.18 3 64.1 1 0 0 3 0 0 4 0 0 1 2 1 
MSAT3.70 3 72.2 1 1 0 3 0 0 4 0 0 1 2 2 
MSAT4.35 4 24.2 1 1 0 1 3 3 1 0 2 1 2 1 
MSAT4.15 4 33.5 1 1 0 0 3 2 0 0 2 2 1 0 

CIW7 4 45.0 2 2 1 1 2 1 0 1 1 1 2 2 
MSAT4.18 4 47.0 3 4 2 1 1 1 0 1 1 0 2 2 
MSAT4.9 4 55.6 5 6 4 1 0 1 0 0 0 0 1 0 

MSAT4.68 4 61.8 4 5 4 0 0 0 0 0 0 0 1 0 
MSAT4.37 4 69.1 1 2 3 0 0 0 0 0 0 0 0 0 
MSAT5.14 5 26.6 4 3 1 0 2 4 0 1 1 1 0 0 
NGA139 5 30.4 3 3 2 0 4 5 0 1 2 2 0 0 

MSAT512110 5 41.8 2 1 1 1 4 5 0 1 3 4 0 0 
MSAT5.22 5 45.4 1 1 0 1 2 3 0 1 2 2 0 0 

MSAT518662 5 62.3 0 0 0 1 1 1 3 0 1 3 1 0 
MSAT520037 5 67.4 0 0 1 1 1 2 3 0 2 5 0 0 

MSAT5.12 5 71.6 0 0 0 1 1 2 2 0 2 5 0 0 
JV6162 5 74.2 0 1 0 1 1 2 1 0 2 5 1 0 
JV7576 5 79.1 0 1 0 1 1 1 1 0 2 5 1 1 

 



124	   APPENDICES 

 

Appendix 5  - Summary of QTL mapping results for control, PAC04, PAC08, PACGA and the 
response in the Ler × Sha mapping population. QTLs above significance threshold are highlighted. 
The numbers in the different traits indicate the LOD scores. 
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NGA59 1 0 0 0 1 0 0 0 0 0 3 2 

GENEA 1 61.9 2 2 3 1 2 4 2 3 0 2 

F5I14 1 68.8 2 2 3 2 2 4 3 2 0 2 

M1-13 1 78.3 1 1 3 3 2 4 4 1 0 1 

M2-26 2 10 0 0 0 1 0 0 1 0 3 0 

M2-17 2 41.3 2 0 0 2 0 0 3 0 2 0 

ERECTA 2 42.9 3 0 0 2 0 0 3 0 2 0 

NGA361 2 47.7 2 0 0 2 0 0 3 0 2 1 

T2N18 2 54 1 0 0 3 0 0 3 0 2 1 

T3K9 2 58.4 0 0 0 3 0 0 3 0 2 1 

M2-9 2 61.1 0 0 0 3 0 0 3 0 2 1 

F17A22 2 68.1 0 0 0 3 1 0 3 0 0 0 

F8J2 3 59.2 0 4 0 3 4 1 3 0 0 0 

M3-18 3 64.6 0 7 1 3 7 1 4 0 1 0 

NGA6 3 75 1 13 1 4 12 1 5 0 1 0 

M4-41 4 0 3 1 0 0 0 0 1 0 0 0 

M4-39 4 0 3 1 0 0 0 0 1 0 0 0 

FRI 4 0.8 3 1 0 0 0 0 1 0 0 0 

M4-8 4 1.5 2 1 0 0 1 0 1 0 0 0 

C6L9-78 4 10.2 1 3 0 0 2 0 0 0 1 0 

M4-35 4 26.1 0 2 2 0 1 2 0 0 2 2 

M4-15 4 31.1 0 2 4 0 2 4 0 1 4 4 

CIW7 4 38.4 0 1 8 0 1 7 0 2 6 5 

M4I22 4 49.6 0 1 5 1 1 4 1 1 2 2 

M4-14 4 56.5 0 1 5 0 1 4 1 1 2 2 

M4-9 4 58.1 0 1 4 0 1 3 1 1 2 1 

hua2-5 5 18.4 0 1 2 0 1 2 0 0 1 1 

NGA139 5 21 0 1 3 0 1 4 0 0 1 2 

SO262 5 28.4 0 6 6 2 5 8 2 0 3 3 

M5-1 5 33.3 0 8 9 4 7 8 3 0 3 3 

M5-9 5 45.1 0 7 7 4 6 6 5 0 2 1 

K9D7 5 46.1 0 8 7 5 7 7 5 0 3 2 

NGA129 5 54.8 0 9 8 5 11 7 5 0 7 2 

JV61/62 5 62.2 0 7 7 5 9 6 4 0 5 1 

MBK5 5 73.3 0 3 4 2 3 3 2 0 2 0 
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Appendix 6  - Summary of QTL mapping results for control, PAC04, PAC08, PACGA and the 
response in the Sha × Col mapping population. QTLs above significance threshold are highlighted. 
The numbers in the different traits indicate the LOD scores. 
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c3_00580 3 0.0 0 4 5 0 3 5 0 1 4 6 

c3_00885 3 0.9 0 4 5 0 3 4 0 1 4 6 

c3_01901 3 3.8 0 4 5 0 3 4 1 1 4 6 

c3_02968 3 5.9 0 3 5 0 2 4 1 1 4 5 

c3_04141 3 5.9 0 3 5 0 2 4 1 1 4 5 

c3_05141 3 5.9 0 3 5 0 2 4 1 1 4 5 

c3_06631 3 9.4 0 3 4 0 2 4 1 1 4 5 

c3_08042 3 12.9 0 3 5 0 3 4 0 1 4 5 

c3_09748 3 24.7 0 3 4 0 2 3 0 1 3 4 

c5_00576 5 0.0 1 5 5 2 4 3 0 0 5 5 

c5_01587 5 6.4 1 8 9 2 6 7 0 1 7 8 

c5_02900 5 9.0 1 8 9 3 6 7 0 1 7 9 

c5_04011 5 11.8 1 7 9 3 6 7 0 1 7 8 

c5_05319 5 17.2 0 5 6 2 3 5 0 1 4 6 

c5_06820 5 21.7 0 2 3 2 2 2 0 1 2 3 

 
 

Appendix 7  - Summary of QTL mapping results for control, PAC04, PAC08, PACGA and the 
response in the Col × Ler mapping population. *Indicates augmented markers. QTLs above 
significance threshold are highlighted. The numbers in the different traits indicate the LOD scores. 
Marker Chr cM Control PAC04 PAC08 PACGA Control-

PAC04 
Control-
PAC08 

Control-
PACGA 

PAC08-
PAC04 

PACGA-
PAC04 

PACGA-
PAC04 

3504562 1 16.3 0.0 1.1 2.1 0.0 1.2 2.3 0.0 1.0 1.2 2.4 

FM4_2 5 76.3 1.6 1.6 0.7 0.5 1.4 0.6 0.1 0.1 1.2 0.5 

c5.loc86* 5 86.0 1.8 2.4 1.2 0.7 2.2 1.0 0.2 0.1 2.0 0.9 

c5.loc89* 5 89.0 1.8 2.7 1.4 0.7 2.4 1.2 0.2 0.1 2.2 1.1 

c5.loc92* 5 92.0 1.8 2.9 1.5 0.7 2.6 1.3 0.2 0.1 2.4 1.3 

23115566 5 117.7 1.2 1.6 1.2 0.2 1.5 1.1 0.0 0.0 1.5 1.1 
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Appendix 8  - Flanking 10 kb regions from top associated maker in chromosome 2 for the trait 
gMAX (Δ=Control- PAC04) in the Hapmap population. In bold is highlighted the position for the 
most significant marker. 

Marker Chr Pos (bp) Distance from 
top snp (kb) gMAX (Δ) Locus ID Gene symbol 

69790 2 11795352 -10.9 3.7E-01 AT2G27650 - 

69791 2 11796818 -9.4 5.2E-01 AT2G27650 - 

69792 2 11797139 -9.1 3.4E-01 AT2G27650 - 

69793 2 11797262 -8.9 5.2E-01 AT2G27650 - 

69794 2 11798019 -8.2 5.2E-01 AT2G27650 - 

69795 2 11798076 -8.1 6.1E-03 AT2G27650 - 

69796 2 11799504 -6.7 6.0E-02 AT2G27660 - 

69797 2 11799543 -6.7 6.1E-01 AT2G27660 - 

69798 2 11799786 -6.4 3.8E-02 AT2G27660 - 

69799 2 11801030 -5.2 4.7E-01 AT2G27660 - 

69800 2 11801330 -4.9 3.2E-01 AT2G27660 - 

69801 2 11801562 -4.6 9.0E-02 AT2G27660 - 

69802 2 11802817 -3.4 4.8E-01 AT2G27670 - 

69803 2 11803949 -2.3 2.4E-01 AT2G27680 - 

69804 2 11804774 -1.4 9.4E-04 AT2G27680 - 

69805 2 11805194 -1.0 1.7E-01 AT2G27680 - 

69806 2 11805633 -0.6 3.0E-05 AT2G27680 - 

69807 2 11806062 -0.1 1.0E+00 AT2G27680 - 

69808 2 11806211 0.0 8.7E-07 AT2G27680 - 

69809 2 11806331 0.1 3.7E-01 AT2G27680 - 

69810 2 11806526 0.3 5.7E-01 AT2G27680 - 

69811 2 11806647 0.4 5.9E-01 AT2G27680 - 

69812 2 11806766 0.6 1.6E-01 AT2G27680 - 

69813 2 11806851 0.6 7.2E-01 AT2G27680 - 

69814 2 11807078 0.9 4.7E-03 AT2G27680 - 

69815 2 11807406 1.2 6.4E-01 AT2G27680 - 

69816 2 11810505 4.3 1.1E-01 AT2G27690 CYP94C1 

69817 2 11810639 4.4 6.9E-01 AT2G27690 CYP94C1 

69818 2 11811188 5.0 2.8E-01 AT2G27690 CYP94C1 

69819 2 11811801 5.6 2.8E-01 AT2G27690 CYP94C1 

69820 2 11813421 7.2 8.1E-04 AT2G27690 CYP94C1 

69821 2 11814724 8.5 7.2E-02 AT2G27700 - 

69822 2 11816665 10.5 5.2E-01 AT2G27700 - 
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