
Angewandte Mathematik und

Informatik

Universit

�

at zu K

�

oln

Report No. 97-262

CATS{Computer Aided Tram Scheduling

by

Peter Heusch

Frank Meisgen

Ewald Speckenmeyer

1997

To appear in: Proceedings of SOR'97

Peter Heusch

Frank Meisgen

Ewald Speckenmeyer

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

D-50969 K�oln



1991 Mathematics Subject Classi�cation: 65C99, 68U20, 90C27

Keywords: tra�c simulation, combinatorial optimization, scheduling



1 Introduction

If public transport systems circulate periodically (e.g. 4 times per hour), their

timetable is completely determined by the timetable for a single period, the

so-called initial timetable. The initial timetable can then be used to calculate

the other schedules, mainly those for vehicles and those for crews. While

construction of the latter schedules is supported by a number of commercially

available products[LS96], the initial timetable is mostly calculated by hand.

One of the reasons for this is the lack of suitable tools that ful�ll the needs of a

simple user interface as well as the support to check whether the constructed

timetables obey some operational constraints. Some e�ort to construct such

a tool for railway networks has recently led to LOP[ZBKW97].

In our project CATS we deal with the computer aided construction and

optimization of initial timetables. We currently develop a tool that allows for

a simple user interface, very similar to the normally used paper-based user

interface, which eases the task of construction while at the same time the

developed plan is checked against the set of constraints. The data is stored

in a database to facilitate the communication between timetable construction

and the following steps.

2 Optimization

Let a networkN (S;C; t) be given with stations S = fs

1

; : : : ; s

n

g, connections

C = fc

1

; : : : ; c

v

g and a weight function t : (S[C)! [0 : : : T�1] determining

the running time between two adjacent stations and the stopping time at

stations. All arithmetic is performed modulo some time period T 2 IN.

Every line L = fl

1

; : : : ; l

m

g corresponds to a simple route in N with l

j

=

(s

j

0

c

j

1

s

j

1

c

j

2

: : : c

j

k

s

j

k

). Departure times at the �rst station are denoted by �

j

, the

vector of the m di�erent departure times is denoted by � while � denotes

the T

m

element set of those vectors.

For the line l

j

the arrival time at station s

j

i

can be computed from �

j

and

the sum of all waiting and driving times upto but not including s

j

i

, its depar-

ture time is given by the sum of arrival time plus waiting time t(s

j

i

). Fixing

the vector of the departure times establishes the complete schedule, which

then can be evaluated. A measure that has often been used to check the qual-

ity of a given schedule is the sum of waiting times for all passengers who want

to change the routes[Vo�92]; to compute this some additional information

1



about the passengers must also be given, e.g. the origination/destination ma-

trix. Di�erent algorithmic paradigms have been employed to optimize sched-

ules according to this criterion, for example Branch&Bound[Dom89] and

heuristics like rigid regret, simulated annealing[DFV92] or tabu search[JV95].

We want to optimize the initial timetable for the KVB (K�olner Verkehrs-

betriebe) such that the constructed timetable was primary robust, i.e. if

some vehicles fall behind their schedule they should only need a compara-

tively small amount of time to get back into it. For this reason we use the

safe distance as a criterion, which we try to maximize. The safe distance

�(s

i

; l

j

; l

k

; �) at station s

i

between the lines l

j

and l

k

is de�ned by the dif-

ference of the arrival time of l

j

and the departure time of l

k

. The minimum

of the pairwise safe distances of all lines crossing station s

i

is called the safe

distance �(s

i

; �) at station s

i

. We want to compute a departure time vector

� 2 � such that

max

�2�

min

1�i�n

�(s

i

; �)

holds. This objective function favors solutions where the smallest and the

largest waiting times that occur when passengers change lines are not to far

from the mean waiting time; small waiting times are increased, but large

waiting times are reduced. This is due to the cyclic nature of periodic sched-

ules: if the time to change from line A to line B is k, then the time to change

from B to A is T�k, hence an increase in the �rst waiting time automatically

reduces the second.

Maximizing the safe distance mainly optimizes the timetable at down-

town stations where many lines circulate, safe distances at less often serviced

stations are considered to be optimal, if they are greater than those at the

downtown stations. This can lead to schedules that are very bad for rarely

serviced stations, e.g. a safe distance of 2 minutes for two lines departing

every 30 minutes would be considered to be optimal just because a safe dis-

tance for some downtown station with 5 lines departing every 10 minutes

is two minutes, too. Therefore it seems to make sense to use a two-stage

optimization problem. At �rst we optimize with the objective function given

above and compute its optimum value. In the second stage we restrict the

set of feasible solutions by converting the objective function to an additional

constraint. This additional constraint expresses the requirement that for any

feasible solution the former objective function must yield its optimum value.

We then introduce another criterion (e.g. max

P

n

i=1

�(s

i

; �)) as a new objec-

tive function in order to select the �nal solution from the set of all schedules.

2



Determining an optimal departure vector is NP-hard already for a sin-

gle station if the lines touching this station have di�erent cycle times[Gul80,

Bur86, BBH90]. In the case that all lines have the same frequency the prob-

lem (for more than one station) can be shown to be NP-hard by reduction to

graph coloring[GJ79]. The following �gure sketches how this can be done:

0

0

0

0

0

0

l

1

l

2

l

3

N(S;C; t)

� = (1; 0; 0)

e

3

G(V; E)

e

1

v

1

e

2

v

3

v

2

s

1

s

2

s

3

Figure 1: Reduction to graph coloring

The graph G = (V;E) is transformed to a (reduced) network N (S;C; t) by

replacing any node from V with a line and every edge with a station. Station

s

j

and line l

i

are connected via an edge in N , if v

i

is incident to e

j

in G.

We choose the arrival time at all stations to be equal to the period of the

timetable. Then G can be coloured with k colors i� a departure time vector

� exists for N such that all lines can circulate with a period of k and the

safe distance between any two lines at every station is at least one. In our

example G is 2-colorable, because for � = (1; 0; 0) the safe distance is one.

If otherwise the edge e

3

is added then G is no longer 2-colorable and no

permissible departure vector does exists: Now line l

2

and l

3

arrive at the

same time at station s

3

.

In this way the problem of constructing initial timetables can be seen as

a generalization of graph coloring. A backtracking algorithm based on this

technique was able to calculate a timetable for the 14 lines and 19 critical

crossing stations of the Cologne public transportation network in less than 1

minute. The algorithm examines the lines in a predetermined order, starting

with a �xed departure time for the �rst line. When the next line is inserted,

the safe distances for all T possible departure times are calculated. The

backtracking strategy chooses now the departure time with the highest safe

distance. The backtracking step is executed, if all lines are inserted or the

safe distance of the departure time is to small.

3



3 Consistency check

As for every discrete optimization problem both establishing the set of con-

straints as well as testing whether some solution meets all of them is a major

part of the problem. The constraints express requirements that must be

ful�lled by the schedules in order to make them usable, for example:

� If two lines meet at some crossing they shall arrive at the same time to

allow passengers to change from one line to the other and vice versa.

� If a network contains single track parts two trains must not use these

parts at the same time in opposite directions

� If two lines serve the same stations and both lines depart every d min-

utes, then their departure times should be interleaved in such a way

that for the \combined" line trains depart nearly every d=2 minutes.

� To achieve robustness of the schedule, waiting times at line endpoints

should not be too short in order to compensate for possible delays.

These constraints are easily constructed from templates, such that a small

number of templates su�ces to formulate a great number of constraints.

Our tool constructs the constraints given only the templates as inputs by

�lling the variable parts with suitable values from the timetable, and testing

whether the constraint is ful�lled.

Since the input into our program is not the constraint itself but the tem-

plate, we use a non-standard syntax to formalize these templates.

Any template is a Boolean expression consisting of variables, literals and

functions in the style of PASCAL. Variables (lowercase identi�er) or literals

(uppercase identi�ers or numbers) are used for lines, stations, platforms or

time values, their types are computed from their occurrence in the expression.

Functions have a double purpose, somewhat comparable to predicates in

PROLOG. If a variable is used for the �rst time, its type is bound to the

expected type of the argument in the template. Moreover for every possible

value a constraint is constructed from the template. The variable is bound

to the inserted value, if the same variable is used again in the template, this

value is simply inserted. By using Arr(x; y; z) and Dep(x; y; z) as the arrival

and departure times of a line x at station y, platform z and Dist(v;w) to

compute the time for traveling from v to w, we can express a template for a

4



constraint that checks whether a single track between two stations A and B

is not used in both directions at the same time. We assume that platform 1

is used by northbound trains in both stations, while southbound trains use

platform 2 in both stations.

Dep(x;A; 1) +Dist(A;B) < Dep(y;B; 2) + 1 AND

Dep(v;B; 2) +Dist(B;A) < Dep(w;A; 1) + 1

To facilitate the construction of consistency templates and to limit the num-

ber of possible combinations to be tested, we only use nondecreasing and ad-

jacent departure and arrival times, whilst evaluating functions. In the exam-

ple given above, if trains leave from station A, platform 1 at times 5; 15; 25; : : :

and trains leave from station B, platform 2 at times 7; 12; 17; : : :, we would

only check the constraints for pairs Dep(x;A; 1) = 5 and Dep(y;B; 2) = 7.

The next combination of departure times would then be Dep(x;A; 1) = 15

and Dep(y;B; 2) = 17, not Dep(x;A; 1) = 5 and Dep(y;B; 2) = 12. How-

ever, since it is possible to assign the departure times to variables, it is

possible to perform nearly any calculation. To achieve this, we write e.g.

u = Dep(x;A; 1) AND v = Dep(y;B; 2)) AND w = Arr(z;C; 3)) AND : : :

and replace : : : by an arithmetic expression. Since by convention an as-

signment is \ful�lled" if any possible values are found, we get the desired

behaviour.

To evaluate the constraints the expressions are parsed and translated into

an internal byte code, this code is then interpreted to check the constructed

timetable against the constraints.

4 Graphical User Interface

To ease the usage of our tools we have implemented a graphical user interface

that provides an intuitive support for most of the basic tasks. An example

from the construction of a timetable for the K�olner Verkehrsbetriebe is shown

below:

The user interface allows treating the plan in variable scales in order to sup-

port the di�erent steps of plan construction. During the construction of the

network itself the details of the connections are visible, they are hidden in

5



later phases when the schedule itself is built. In the future we plan to extend

this program by simulation tools that allow further testing, especially mea-

suring how fast randomly inserted delays can be eliminated. This permits

measuring the robustness of constructed plans under more realistic environ-

ment conditions.

References

[BBH90] P. Brucker, R.E. Burkard, and J. Hurink. Cyclic schedules for r

irregularity occurring events. J. Comput. Appl. Mat., 30(2):173{

189, 1990.

[Bur86] R.E. Burkard. Optimal schedules for periodically recurring

events. Discrete Appl. Math., 15:167{180, 1986.

[DFV92] W. Domschke, P. Forst, and S. Vo�. Tabu search techniques for

the quadratic semi-assignment problem. In G. Fandel, T. Gul-

legde, and A. Jones, editors, New Directions for Operations Re-

search in Manufacturing, pages 389{405. Springer, 1992.

[Dom89] W. Domschke. Schedule synchronization for public transit net-

works. OR Spektrum, 11:17{24, 1989.

6



[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. Freeman, New York,

1979.

[Gul80] F. Guldan. Maximization of distances of regular polygons on a

circle. Apl. Mat., 25:182{195, 1980.

[JV95] J.R. Daduna and S. Vo�. Practical experiences in schedule syn-

chronization. In J.R. Daduna, I. Branco, and J.M. Pinto Paix~ao,

editors, Computer-Aided Transit Scheduling, volume 430 of Lec-

ture Notes in Economics and Mathematical Systems, pages 39{

55. Springer, 1995.

[LS96] A. L�obel and U. Strubbe. Wagenumlaufoptimierung - Method-

ischer Ansatz und praktische Anwendung. In H. Keller, editor,

Heureka `96: Optimierung in Verkehr und Transport, pages 341{

355, K�oln, M�arz 1996. Forschungsgesellschaft f�ur Strassen und

Verkehrswesen.

[Vo�92] S. Vo�. Network design formulations in schedule synchronization.

In M. Desrochers and J.M. Rousseau, editors, Computer-Aided

Transit Scheduling, volume 386 of Lecture Notes in Economics

and Mathematical Systems, pages 137{152. Springer, 1992.

[ZBKW97] U.T. Zimmermann, M.R. Bussieck, M. Krista, and K.-D. Wie-

gand. Linienoptimierung { Modellierung und praktischer Ein-

satz. (Line optimization { modelling and practical service). In

Karl-Heinz Ho�mann, editor, Mathematik: Schl�usseltechnologie

f�ur die Zukunft. Verbundprojekte zwischen Universit�at und In-

dustrie, pages 595{607. Springer, 1997.

7


