
Angewandte Mathematik und

Informatik

Universit

�

at zu K

�

oln

Report No. 97-269

Dynamic Load Balancing for Simulations of Biological Aging

by

F. Meisgen

1997

published in: International Journal of Modern Physics C, Vol. 8, Nr.3, June 1997,

pages 575{582

F. Meisgen

Department of Computer Science

Cologne University

50923 K�oln, Germany

E-mail: meisgen@informatik.uni-koeln.de



1991 Mathematics Subject Classi�cation: 68Q22,68U20

Keywords: dynamic load balancing; heterogeneous system; simulation; biolog-

ical aging



Dynamic Load Balancing for Simulations of

Biological Aging

Frank Meisgen

Department of Computer Science

Cologne University

50923 K�oln, Germany

E-mail: meisgen@informatik.uni-koeln.de

April 10, 1997

Abstract

The e�cient usage of parallel computers and workstation clusters for

biologically motivated simulations depends �rst of all on a dynamic re-

distribution of the workload. For the development of a parallel algorithm

for the Penna model of aging we have used a dynamic load balancing li-

brary, called PLB. It turns out that PLB manages a nearly balanced load

situation during runtime taking only a low communication overhead. We

compare di�erent architectures like parallel computers and nondedicated

heterogeneous networks, and give some results for large populations.

1 Introduction

Biologically motivated simulations need parallel computing for large popula-

tions. In Darwinistic evolution, selection of the �ttest may �nally lead to the

e�ect that all survivors are o�springs of a comparatively small set of ancestors.

This yields the e�ect that all individuals are simulated on the same processor,

leaving the other nodes of the processor network idle. Moreover simulations

on workstation clusters may lead to further imbalances if some nodes are more

used or slower than others. Thus an e�cient load balancing is necessary for fast

long time simulations on large populations.

We consider a parallel version of the Penna model [6] of aging, which is

widely used for Monte Carlo studies of age-structured populations [7, 1]. In this

model an individual is composed of a bit-string of length l = 32 representing

its genes and its actual age. If a bit has value one, this gene is damaged by a

mutation. An individual of age j dies if there at least k mutations of the �rst

j bits. It also dies if it reaches its maximal age l or if it is killed by external

2



in
uences like starvation. This is modeled by the Verhulst factor 1� N=N

max

,

where N is the actual population size and N

max

is the maximal capacity of

the ecosystem. After an individual reaches its reproduction age a, every year it

gives b o�springs. Every o�spring inherits the genes from its mother, further a

randomly chosen bit is set to one. In our experiments, we choose a=8, b=1 and

k=4.

The parallel algorithm distributes the population on n machines of a hetero-

geneous or homogeneous network. After each processor has executed an evolu-

tion step, the total size N =

P

n

i=1

N

i

of the population must be calculated to

determine the Verhulst factor. This leads to a synchronization of the processors

after each simulation step, causing idle times due to di�erent runtimes. These

di�erences can be created by

1. di�erent computing power (hardware, utilization)

2. di�erent workload (population size, age structure)

For reducing these e�ects we use a dynamic load balancing procedure, the

Precomputation-based Load balancing algorithm (PLB [2, 3, 5]), which redis-

tributes parts of the population if the workload is too imbalanced. In the exper-

imental part (Sect. 4) we will �rst consider homogeneous dedicated networks,

then heterogeneous local area networks and �nally heterogeneous wide area net-

works.

2 Precomputation-based Load Balancing

We give a short description of the PLB algorithm on heterogeneous networks,

for more details see [5]. Readers not interested in these aspects may proceed to

section 4. The processor network is represented by a vertex-weighted connected

graph G(V;E;w) with w : V ! IR

+

. Each node v 2 V is identi�ed by a

processor, which has a power weight w(v), de�ned as follows. A sequential

process, which executes T time units on processor v will need w(v) � T time

units on the benchmark processor v

1

. Hence, w(v

1

) = 1:0 and w(v) < 1:0 if

v is slower than v

1

. The power weight of a subset V

0

� V of the network is

de�ned as w(V

0

) :=

P

v2V

0

w(v). Two nodes are connected by an edge, i� the

processors are connected in the virtual topology created by MPI.

Denote by �

t

(v) the amount of workload of processor v at time t. We

refer to �

t

(v) as the load distribution function of the network. The load �

t

(v)

of processor v is assumed to be proportional to the time for executing the

next simulation step t + 1 for this population on processor v

0

. Then �

t

:=

1

w(V )

P

v2V

�

t

(v) is called the mean load. If time t is �xed, we omit the index

t. The load of a processor v is called optimal, if �(v) = w(v) � � =: �

opt

(v).

The PLB algorithm calculates in a fast precomputation phase for each pro-

cessor the amount of load, which should be exchanged to achieve an equalized

3



load distribution. In the following we describe the precomputation phase on a

weighted processor tree T = (V;E;w) of height h and root r. T

v

denotes the

subtree of T rooted at v.

1. Every processor v 2 V determines the load and weight of his subtree by

�rst receiving these information from its children and afterwards sending

�(T

v

) and w(T

v

) to its parent:

�(T

v

) = �(v) +

X

u2children(v)

�(T

u

)

w(T

v

) = w(v) +

X

u2children(v)

w(T

u

)

2. The root r of T broadcasts the mean load � :=

�(T

r

)

w(T

r

)

to all processors.

With this information every processor can determine the amount of load it has

to send to (or receive from) its parent and to its children. If �(T

v

) � w(T

v

) � �

is positive, v has to send this amount of load to its parent, otherwise v has to

receive it. The same holds for every child u with w(T

u

) � � � �(T

u

).

During the balancing phase load is exchanged according to this scheme.

The execution time for this step depends primarily on the maximum of load a

processor has to move and the diameter of the network [3].

3 Details of Implementation

We use the number of individuals on a processor as rough load estimation of

the workload in the next time step. This is only an approximation of the real

workload, a newborn child cause more work than simply increasing the age of

an individual, thus an individual which will be reproductive in the next time

step is expected to cause more work than a younger animal.

We have compared the PLB strategy with a no load balancing algorithm

(NLB), distributing the total initial population in equal parts on the processors

and then performing no more load balancing. The coarse-grained structure of

the algorithm is listed below, every processor executes this code, a synchroniza-

tion is done in the second step.

foreach year do

1. Simulate year

2. Calculate total population size

NLB

or

2a. Precomputation phase

2b. Balance if necessary

PLB

done

4



The balancing phase (2b.) is only executed if the highest execution time

di�ers from the lowest one in more than � percent. We have investigated in

our experiments the in
uence of the parameter � and call the corresponding

algorithm PLB-�. It will turn out that for workstation clusters much higher

values are necessary for � than for dedicated parallel computers.

All algorithms are implemented in C

++

and use the mpich 1.0.13 implemen-

tation of the MPI 1.1 standard [4]. The program was compiled with the -O4

option of the GNU C

++

compiler, version 2.7.2 (2.7.0 for PARIX). The simula-

tion algorithm is based on an implementation of P.M.C. de Oliveira.

4 Experimental Results

For all network types a population of initially 300 000 animals per processor and

a �nal total size of 6:6 (3:2) million on 16 (8) processors after 4096 simulation

steps was used as test instance. For heterogeneous networks the initial popu-

lation of 2:4 million individuals (8 processors) was shared out according to the

productivity of the machines. In all experiments the processors were arranged

as a linear array in the virtual MPI topology.

4.1 Homogeneous Networks

Our test platform is a dedicated parallel system at the PC

2

(University of Pader-

born), a GCPP with 32 nodes each containing two Power-PCs type 601 (80 MHz)

with 64MB RAM together.

Table 1: Results for an homogeneous network with 16 nodes, where t

bal

is the

average time needed for balancing, the average number of exchanged individuals

correspond to �

bal

and t

bal

=�

bal

is the average time for exchanging a million

individuals.

Parameter runtime idle balance t

bal

�

bal

t

bal

=�

bal

(avg) (avg) count (�10

6

)

NLB 5923.71s 4297.32s - - - -

PLB-50 1885.53s 252.16s 15 13.41s 1.524 8.80s

PLB-10 1711.32s 86.95s 71 13.66s 1.643 8.31s

PLB-05 1697.92s 71.07s 155 16.38s 1.792 9.14s

optimal 1677.15s 56.55s - - - -

For determining the in
uence of inaccurate time measurement and commu-

nication overhead we have executed the same program with the same random

seed on all processors, so that during runtime all population sizes are equal.

The values for this experiment are listed in the last row (called optimal), this is

a lower bound for a parallel algorithm. It is notable that the PLB-05 algorithm

5



reaches nearly this optimal value. Furthermore the runtime could be reduced by

a factor of three compared with the NLB algorithm. In this case the distribution

of population was extremely imbalanced at the end of simulation (year 4096),

it scatters from 21055 to over 2 million. The quality of the load balancing done

by PLB can be adjusted by the balance parameter. Smaller values for � lead

to higher numbers of balancing runs (column 4), a small increase of balancing

time (t

bal

) and insigni�cant more exchanged animals (�

bal

). In the PLB-05 case

only 425 individuals per processor are exchanged after each simulation step on

the average, this is less than 0.01% of the average population on a processor.

4.2 Heterogeneous Networks

The local area network of the test environment is shown in the upper part of

Fig. 1, it consists of di�erent types of Suns SPARCstations varying from a Sparc

ELC to a Hypersparc with 90MHz connected by a 10MBit Ethernet. The wide

area network is shown beneath, it is composed of four SPARCstations and four

Sun ultras. Processors, which are part of the same LAN, are enclosed by a

rectangle marked by the domain name.

informatik.uni-koeln.de

rrz.uni-koeln.demi.uni-koeln.deuni-paderborn.deinformatik.uni-koeln.de

Figure 1: Test environment, the diameter of a processor is proportional to its

power weight, the position corresponds to the order in the virtual MPI topology.

The LAN is shown in the upper part, the WAN below.

To measure the power weight of di�erent machines, we performed three test

runs doing a simulation of 1024 years with an initial population of 300000

animals. For every machine the run with minimum time was recorded and com-

pared with the run on the benchmark processor, a SPARCstation-10 with a

90MHz hyperSPARC CPU. These experiments were made while the worksta-

tions were performing their usual tasks, thus we were working in a nondedicated

environment. Furthermore all tests were run with low priority.

4.2.1 Local Area Heterogeneous Networks

Table 2 contains results for the algorithm without load balancing (NLB), PLB

with parameter � = 50 and �nally PLB with a dynamic adaption of power

6



weights (PLB-50-d). For details of the dynamic adaption strategy please re-

fer to [5]. In comparison with dedicated parallel computers the idle times of

Table 2: Results for an heterogeneous LAN with 8 processors

Parameter runtime idle balance t

bal

�

bal

t

bal

=�

bal

(avg) (avg) count (�10

6

)

NLB 5604.18s 3478.91s - - - -

PLB-50 2735.03s 551.18s 4091 92.17s 2.73 33.76s

PLB-50-d 2563.33s 369.23s 266 82.95s 3.78 21.94s

nondedicated heterogeneous networks are signi�cantly higher. This is caused

by the higher variation of runtimes which depends on the scheduling of compet-

ing tasks done by the operating system. Thus it was necessary to choose higher

values for � to avoid unnecessary balancing steps. Another interesting observa-

tion is that the time needed for balancing is more in
uenced by the number of

balancing steps than by the amount of exchanged load.

4.2.2 Wide Area Heterogeneous Networks

We have performed the same three tests for WANs as for local area networks,

the results are collected in Tab. 3. It can be observed that the time needed to

Table 3: Results for an heterogeneous WAN with 8 processors

Parameter runtime idle balance t

bal

�

bal

t

bal

=�

bal

(avg) (avg) count (�10

6

)

NLB 4835.86s 3616.15s - - - -

PLB-50 2727.37s 1191.66s 3809 419.21s 1.368 306.44s

PLB-50-d 3363.57s 1297.58s 2082 1045.80s 17.044 61.36s

PLB-100-d 2245.15s 918.10s 452 244.67s 3.339 73.28s

exchange problems has grown (last column), probably caused by the latency of

the network. Furthermore the variance of runtimes increases, causing signi�-

cantly higher idle times and more balancing steps. To avoid these unnecessary

steps we �x the parameter � = 100 and calculate the power weights on a bigger

sample, leading to the results shown in the last row of Tab. 3.

Thus for the e�cient usage of nondedicated distributed networks a more

coarse-grained structure of the parallel algorithm is necessary then for dedicated

parallel computers, so in our application the time of a simulation step should

be increased.

7



1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 2000 4000 6000 8000 10000

su
rv

iv
or

s

time

total population

14 years

15 years

16 years

17 years

Figure 2: Equilibration of total population size and number of survivors for ages

14,15,16 and 17.

4.3 Results for Large Populations

To demonstrate the usefulness of the PLB algorithm on larger populations and

networks we have simulated about 65 million animals over a period of 10000

years on the GCPP with 32 nodes. In Fig. 2 the total population size and the

number survivors for di�erent ages are plotted as functions of simulation years.

It is remarkable that with increasing age the function comes much later into

equilibrium.

The survival rate S

t

(a) is de�ned as N

t

(a)=N

t�1

(a � 1) where N

t

(a) corre-

sponds to the number of individuals of age a at time-step t. The scaled mortality

rate de�ned as ln(S

1

=S

t

) is plotted in Fig. 3, showing a nearly exponential in-

crease like a Gompertz law.

5 Conclusion

It has been shown that a dynamic load balancing makes it possible to use large

parallel computers and workstation networks for longtime simulations without

heavy losses of e�ciency. For small populations it is much more di�cult to

achieve a reasonable speedup on nondedicated systems with unpredictable load

changes and the result of the load balancing algorithm depends strongly on

the used parameters. In our actual research we develop adaption strategies for

8



0.0001

0.001

0.01

0.1

1

10

0 5 10 15 20

m
or

ta
lit

y 
ra

te

age

10000 years
7500 years
5000 years

Figure 3: Mortality rate at di�erent simulation time steps.

parameters and investigate the in
uence of the choice of the virtual topology.

Furthermore we are going to extend the number of applications to more com-

plicated simulations, where parts of the simulation graph have to be distributed

with respect to local dependencies.

6 Acknowledgments

The author thanks D. Stau�er for all the helpful comments and discussions and

P.M.C. de Oliveira for his sequential algorithm.

References

[1] A. T. Bernardes. Monte Carlo Simulations of Biological Aging. In D. Stauf-

fer, editor, Annual Reviews of Computational Physics, page 359, Singapore,

1996. World Scienti�c.

[2] M. B�ohm and E. Speckenmeyer. A fast parallel SAT{solver | e�cient work-

load balancing. Annals of Mathematics and Arti�cial Intelligence, 17:381{

400, 1996.

9



[3] M. B�ohm and E. Speckenmeyer. Precomputation based load balancing.

Technical Report 96.219, Universit�at zu K�oln, 1996. To appear in Pro-

ceedings of the 4th PASA Workshop,1996.

[4] The Message Passing Interface Forum. The Message Passing Interface Stan-

dard. http://www.mcs.anl.gov/mpi/, June 1995.

[5] F. Meisgen and E. Speckenmeyer. Dynamic Load Balancing on Heterogenous

Workstation Clusters. Technical Report 97.261, Universit�at zu K�oln, 1997.

submitted to: Euro-Par'97.

[6] T. J. P. Penna. A Bit{String Model for Biological Aging. J. Stat. Phys.,

78:1629, 1995.

[7] D. Stau�er. Getting older - Monte Carlo simulations of biological aging.

Computers in Physics, 10:341, 1996.

10


