
ANGEWANDTE MATHEMATIK UND INFORMATIK

UNIVERSIT

�

AT ZU K

�

OLN

Report No. 97.271

Practical Performance of

E�cient Minimum Cut Algorithms

by

Michael J�unger

Giovanni Rinaldi

Stefan Thienel

1997

Revised version of July 1998

Institut f�ur Informatik

UNIVERSIT

�

AT ZU K

�

OLN

Pohligstra�e 1

D-50969 K�oln

Addresses of the authors:

Michael J�unger

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

D-50969 K�oln

Germany

E-mail: mjuenger@informatik.uni-koeln.de

Telephone: +49-221-470-5313

Giovanni Rinaldi

Istituto di Analisi dei Sistemi ed Informatica del CNR

Viale Manzoni, 30

I-00185 Roma

Italy

E-mail: rinaldi@iasi.rm.cnr.it

Telephone: +39-6-77161

Stefan Thienel

Almenrauschstra�e 2

D-82110 Germering

Germany

E-mail: Stefan.Thienel@sdm.de

Telephone: +49-89-8942-92-60

Partially supported by ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT).

Abstract

In the late eighties and early nineties, three major exciting new developments (and some

rami�cations) in the computation of minimum capacity cuts occurred and these develop-

ments motivated us to evaluate the old and new methods experimentally. We provide a

brief overview of the most important algorithms for the minimum capacity cut problem

and compare these methods both on problem instances from the literature and on problem

instances originating from the solution of the traveling salesman problem by branch-and-

cut.

1. Introduction

Computer programs that compute minimum capacity cuts in undirected graphs with non-

negative edge capacities belong to the most intensively used basic tools in optimization.

Besides the obvious direct application of deciding the degree of connectivity of a given

network, the main reason is that various separation routines in cutting plane algorithms

depend on the practically e�cient computation of minimum capacity cuts. The most

prominent example is the separation of subtour elimination constraints for the traveling

salesman polytope. The e�cient solvability of the minimum capacity cut problem in-

stances arising in separation is one of the reasons why instances with up to a few thousand

cities can be solved to optimality or at least provably very close to optimality. However,

the traveling salesman problem (TSP) (see, e.g., [JRR95]) is not the only such example:

e�cient minimum capacity cut computations also play an important role in, e.g., network

reliability [Sto92], automatic graph drawing [Mut95], or sequential ordering [AJR98].

In this paper, we compare experimentally the most important methods for the solution

of the minimum capacity cut problem. We conduct computational experiments on problem

instance families from the literature and on problem instances originating from the solution

of the traveling salesman problem by branch-and-cut. We give statistics based on almost

20 000 individual runs of the minimum capacity cut algorithms we implemented for this

study. The selection of these runs was in
uenced by experience with more than 100 000

runs that we performed while we prepared the �nal versions of the implementations and

the experiments. Recently, a similar study has been published [CGKLS97]. Whereas in

[CGKLS97] fast hybrid algorithms combining various minimum capacity cut algorithms are

presented, we compare in this paper the \pure" versions of the algorithms. In particular,

we do not propose any new algorithms. Rather, we have put a lot of e�ort in good

implementations of published algorithms in order to make comparisons as fair as we can.

For an undirected graph G = (V;E) and W � V we let �(W) := ffu; vg 2 E j u 2

W; v 2 V nWg denote the cut in G induced by W , write �(v) instead of �(fvg) for v 2 V

and call �(v) the star of v. For a pair of distinct nodes u; v 2 V , a (u; v)-cut is a cut �(W)

separating u from v, i.e., with u 2 W and v =2 W . For edge capacities c

e

(e 2 E) and

F � E we denote by c(F) =

P

e2F

c

e

the sum of the capacities of the edges in F . For a

node v 2 V , we call c(�(v)) the star capacity of v. For a graph G with nonnegative edge

capacities c

e

(e 2 E) the minimum capacity cut problem consists of �nding a nonempty

node setW

�

� V such that for the capacity of the cut �(W

�

) we have c(�(W

�

)) � c(�(W))

for all nonemptyW � V . For ease of exposition, we assume that G = (V;E) is a connected

graph (otherwise a cut of capacity zero can be easily found by, say, depth �rst search), but

in all our implementations, we drop this assumption.

An important notion in the following is the concept of shrinkable node pairs. Let

�

�

= �

�

(G) = c(�(W

�

)) denote the minimum capacity of a cut in G, let �

�

uv

= �

�

vu

denote

the minimum capacity of a (u; v)-cut of G for a pair of distinct nodes u; v 2 V , and let

� = c(�(W)) for some nonempty W � V be an upper bound for �

�

. Shrinking a pair

of distinct nodes u; v 2 V results in an edge weighted graph G

fu;vg

= (V

fu;vg

; E

fu;vg

)

that is obtained from G = (V;E) by deleting the edge fu; vg if it exists in E, identifying

the nodes u and v, and then replacing each pair of parallel edges that may result from

1

the identi�cation by a single edge whose capacity is the sum of the capacities of the two

edges (see Figure 1). The node that results from the identi�cation of u and v is called the

supernode composed of u and v. IfG is given in the form of adjacency lists, which we assume

throughout this article, this operation can clearly be performed in time proportional to

the sum of the node degrees of u and v. In our implementations, we maintain the invariant

that the nodes of the current graph are the �rst consecutive entries of an array of \active"

nodes. With each active node, we associate a list of original nodes that it represents. Any

sequence of shrinking operations can be undone in the reverse order. Each unshrinking

operation takes no more time than the corresponding previous shrinking operation.

u v

a b

c d

[u,v]

a+b

c d

O(|V|)
time

G G
{u,v}

Figure 1. Shrinking a pair of nodes

From the de�nition of G

fu;vg

it follows that �

�

(G) = minf�

�

uv

(G); �

�

(G

fu;vg

)g. There-

fore, in the context of solving the minimum capacity cut problem for G we call a pair of

nodes u; v 2 V shrinkable if either �

�

uv

(G) � �

�

(G

fu;vg

) or �

�

uv

(G) � �. The motivation

for this de�nition is the following. Suppose that either W or some cut in G

fu;vg

is at

least as good as the minimum cut separating u from v. Then we can safely shrink u and

v. In particular, suppose we have computed a minimum capacity cut in G that separates

u and v. (This can be done by an (u; v)-max-
ow-min-cut computation.) If � is bigger

than the capacity of the (u; v)-minimum capacity cut we can reset � to �

�

uv

. Then u and

v are shrinkable. Most of the algorithms that will be discussed in the following use more

sophisticated (and computationally less expensive) conditions that guarantee that a given

pair of nodes is shrinkable.

2. The Algorithms

For all minimum capacity cut algorithms that will be surveyed here and experimentally

evaluated in Section 4, we will give only an account of the essential ideas and the essen-

tial features. For details and proofs we refer to the original articles that will be cited

throughout.

A minimum capacity (s; t)-cut in G can be found by various (s; t)-max-
ow-min-

cut techniques. For example, the algorithm of King, Rao, and Tarjan [KRT94] runs in

2

O(jV jjEj log

jEj=jV j log jV j

jV j) time. In practical experiments it turned out that a variant

of the Goldberg-Tarjan pre
ow-push algorithm [GT88] using highest-level selection, global

relabeling, and gap relabeling is very e�cient [DM89, CG95]. When we have to solve an

(s; t)-max-
ow-min-cut problem in our computational experiments, we use this algorithm

that runs in O(jV j

2

p

jEj) time. In the following, by T

st

we denote the time it takes to

compute an (s; t)-max-
ow-min-cut.

Up to around 1986

�

, the best known way to compute a minimum capacity cut consisted

of a sequence of arbitrarily choosing two distinct nodes s and t, computing an (s; t)-max-

ow-min-cut, shrinking s and t, and iterating until a graph with only one node results. The

cut of minimum capacity found in the course of this computation gives rise to a minimum

capacity cut in G after the expansion of the supernodes in O(jV j) time. We refer to this as

to the \naive" method. This algorithm performs jV j � 1 times an (s; t)-max-
ow-min-cut

computation followed by a shrinking operation for the nodes s and t, which are a shrinkable

pair with respect to the previously computed capacity of the (s; t)-max-
ow-min-cut. The

running time is O(jV jT

st

). In our setting, a running time of O(jV j

3

p

jEj) and O(jEj) space

results.

In the same asymptotic running time, we can as well compute a minimum capacity

cut tree that gives more information than we want here, namely, a tree data structure that

allows us to compute a minimum capacity (s; t)-cut for any pair s; t 2 V in O(jV j) time.

An algorithm that computes a minimum capacity cut tree was given by Gomory and Hu

[GH61]. It uses complicated shrinking and unshrinking operations, and this is one of the

reasons why most researchers interested in computing a minimum capacity cut e�ciently

in practice preferred the above \naive" method that is much easier to implement. However,

in 1986, Gus�eld [Gus90] showed how the same data structure can be computed in the

same asymptotic time without any shrinking/unshrinking operations.

A leap in performance, but not in asymptotic worst case running time, resulted from

the introduction of the Padberg-Rinaldi algorithm in 1986 [PR90]. Like in the previously

described \naive" algorithm, an upper bound � for a minimum capacity cut and a cut

�(W) realizing this bound via � = c(�(W)) is always readily at hand. It can be initialized,

say, with the minimum star capacity c(�(v)) among the nodes v 2 V , and it can be updated

during the computation. Padberg and Rinaldi gave su�cient conditions for a given pair

of nodes to be shrinkable with respect to �. They also extracted a set of such conditions

that can be tested in O(jV j) time.

For later reference, we list these shrinking conditions here: For two nodes u and v, we

let c(fu; vg) = c(fv; ug) denote the capacity of the edge linking u and v, if there is such

an edge, 0 otherwise. Nodes u and v are shrinkable with respect to � if

(PRCOND1) c(fu; vg) � �

or

(PRCOND2) 2c(fu; vg) � minf(c(�(u)); c(�(v))g

�

For chronological consistency we refer to the technical reports when we specify the

\date of birth" of an algorithm.

3

or

(PRCOND3) There is a node w 2 V n fu; vg, such that

maxf(c(�(u))� c(fu;wg); c(�(v))� c(fv; wg) � 2c(fu; vg)

or

(PRCOND4) There is a set of nodes S � V n fu; vg, such that

c(fu; vg) +

P

w2S

min(c(fu;wg); c(fv; wg))� �.

Whenever such a condition applies to a given pair of nodes, they can be shrunk to a

supernode, and the star capacity of the resulting supernode possibly updates the incumbent

pair �;W . If none of the conditions applies to a certain set of trial node pairs, a \naive"

step consisting of choosing some pair s and t and performing an (s; t)-max-
ow-min-cut

computation is taken.

This general scheme leaves some freedom to the implementor of a Padberg-Rinaldi

type algorithm. In particular, it must be decided

1.) how many and which node pairs are tested in a testing step, before resorting to an

(s; t)-max-
ow-min-cut computation,

2.) how s and t are chosen for an (s; t)-max-
ow-min-cut computation.

These two decisions have a great impact on the practical performance of the resulting

algorithm. After some experimentation, we decided as follows:

1.) We initialize and maintain a priority queue of edges according to their capacities. A

testing step consists of testing all four conditions for the end nodes of at most jV j edges

taken from the priority queue. After each shrinking operation, all edges in the star of

the resulting supernode are inserted, respectively requeued, in the priority queue.

2.) In the pursuit of e�ciently �nding a pair s and t such that the supernode resulting

from shrinking s and t has large star capacity c(�(fs; tg)), we choose a node s with

maximum star capacity. The node t is one among the nodes in V n fsg for which the

quantity c(�(s)) + c(�(t)) � 2c(fs; tg) is maximum. This strategy aims at producing

a new neighbor for some node pairs, thus making condition PRCOND3 more likely

to apply. An (s; t)-max-
ow-min-cut computation is only performed if s and t do not

happen to satisfy any shrinking criteria. In actual computation it has turned out that

(s; t)-max-
ow-min-cut computations are only very rarely needed.

If during the whole computation none of the shrinking criteria applies, then the Padberg-

Rinaldi algorithm behaves essentially like the \naive" algorithm so that no improvement

in worst case running time with respect to the naive algorithm can be achieved. However,

we will see below how this technique has a tremendous impact on experimentally observed

practical performance. In a way, this is not surprising as it can be interpreted as \heur-

istic problem size reduction", a technique that is also successfully applied in many other

4

contexts, e.g., linear and (mixed) integer programming. A Fortran implementation by

Padberg and Rinaldi has been (and still is) in widespread use. Our new implementation

performs much better in practice.

In the late eighties and early nineties, three major exciting new developments (and

some rami�cations) in the computation of minimum capacity cuts occurred and these

developments motivated us to evaluate the old and new methods experimentally.

A breakthrough in e�cient minimum capacity cut computation was achieved by

Nagamochi and Ibaraki in 1989 [NI92]. Slightly later, Nagamochi, Ono and Ibaraki [NOI94]

published the description of an e�cient implementation of this algorithmic idea, and we

refer to this publication, which includes several clever algorithmic enhancements. At about

the same time when the paper by Nagamochi, Ono and Ibaraki circulated as a preprint

(and we started our experimental investigations) several simpli�cations of Nagamochi's

and Ibaraki's original ideas were found by various authors. We will comment on this as

well, and even include computational results for one of these variants.

The new quality of this algorithm is that it computes a minimum capacity cut without

any (s; t)-max-
ow-min-cut computations. In each major iteration, a shrinkable pair of

nodes (here always the endnodes of an edge of G) is computed as follows: The current set

of nodes V is partitioned into the visited nodes W and the unvisited nodes W ; initially

W = ;. For each unvisited node u 2 W we maintain its degree of connection c(u :

W) =

P

v2W

c(fu; vg) to the visited nodes (initialized to 0). Until all nodes are visited,

an unvisited node u 2 W is chosen such that it has the maximum degree of connection

c(u : W) to the visited nodes among all unvisited nodes. This node is removed from W

and added to W . For all remaining unvisited nodes w the quantity c(w :W) is updated to

c(w :W) := c(w :W)+c(fw; ug). Then the quantity q(w; u) = c(w :W) is associated with

the edge fw; ug, if it exists. It can be shown that q(w; u) is a lower bound on the capacity

of a (w; u)-cut, and that the endnodes of the last edge fw; ug encountered in the process is

indeed shrinkable. Shrinking jV j � 1 times like this, the algorithm can be implemented to

run in O(jV jjEj+ jV j

2

log jV j) time and O(jEj) space (using Fibonacci heaps). Nagamochi,

Ono and Ibaraki show how the quantities q(w; u) can be used to determine in each major

iteration not just a single shrinkable edge, but actually a shrinkable forest of edges. This

technique, whose explanation goes beyond this exposition, but is precisely described in

[NOI94], is a key factor in making an e�cient implementation of the algorithm. Our

implementation literally follows the description in [NOI94].

In the computational experiments in [NOI94] the authors observe that combining the

strengths of their new algorithm and the Padberg-Rinaldi algorithm leads to a hybrid

algorithm with very interesting performance. This algorithm applies the tests for the

Padberg-Rinaldi conditions to all edges in the star of the last supernode resulting from

contracting all edges in the shrinkable forest.

Of the variations published in the literature, we mention the one of Stoer and Wagner

[SW94], who observe that the last two visited nodes in each major iteration are shrinkable

(rather than the last edge in the Nagamochi and Ibaraki algorithm). They do not use

the concept of shrinkable forests, but obtain the same asymptotic running time. For

comparison, we also include this variant in our computational study. Similar variants have

been proposed by Frank [Fra94] and Fujishige [Fuj94].

5

In 1992, Hao and Orlin [HO92, HO94] published a variant of the Goldberg-Tarjan

(s; t)-max-
ow-min-cut algorithm that computes a minimum capacity cut in the same

asymptotic running time O(jV jjEj log (jV j

2

=jEj)) and space O(jEj) as the original. This is

a gain of �(jV j) in terms of running time. The basic concept of the Hao-Orlin algorithm is

very similar to the naive algorithm. An important di�erence is that instead of computing

an (s; t)-max-
ow-min-cut between two arbitrary nodes s and t in each iteration, except

the �rst one, the node s is the supernode originating from the shrinking operation of the

previous iteration. The jV j�1 (s; t)-max-
ow-min-cuts are computed by a modi�cation of

the Goldberg-Tarjan algorithm. For every application of the Goldberg-Tarjan algorithm,

the distance labels are initialized with the distance labels of the previous run. Moreover,

Hao and Orlin also specify the way the node t has to be selected in every iteration by

splitting the node set in awake and several classes of dormant nodes. These modi�cations

yield an algorithm with the same asymptotic running time as a single call of the Goldberg-

Tarjan algorithm. It should be noted that the shrinking of the nodes in every iteration

does not have to be done explicitly. To achieve a running time of O(jV jjEj log(jV j

2

=jEj)),

a dynamic tree data structure would have to be implemented. To our knowledge, it has

not been investigated so far if the use of this data structure in the Hao-Orlin algorithm

also pays in practical computations. It has turned out in [BB93] that the Goldberg-Tarjan

maximum
ow algorithm can bene�t from the dynamic tree data structure for certain

specially created instance types, but in general it seems to be better to use highest-level

pushing. Our implementation of the Hao-Orlin algorithm uses highest-level pushing and

requires O(jV j

2

p

jEj) running time.

A randomized algorithm that �nds a minimum capacity cut with high probability was

introduced in 1993 by Karger and Stein [KS96]. This algorithm can be concisely speci�ed

as follows:

algorithm Karger-Stein (G; �;W)

if jV j = 2 (V = fu; vg, E = ffu; vgg) and c(fu; vg) < � then

� = c(fu; vg);

W = set of original nodes in supernode u;

else

repeat twice

threshold =

l

jV j

p

2

m

;

while jV j > threshold do

choose edge fu; vg with probability proportional to c(fu; vg);

shrink u and v into supernode s;

if c(�(s)) < � then update

� = c(�(s));

W = set of the original nodes in supernode s;

Karger-Stein (G; �;W);

The possible update after the shrinking operation is not part of the original algorithm,

but added in our implementation. We initialize � and W like in the Padberg-Rinaldi

6

implementation. Shrinking operations are interpreted as changing G in the way speci�ed

in Figure 1. In 1993, Karger and Stein showed that this algorithm can be implemented

to run in O(jV j

2

log jV j) time and O(jV j

2

) space. A particular minimum capacity cut is

found by this \recursive randomized shrinking algorithm" with probability
(1= log jV j).

Karger and Stein propose to make log

2

jV j independent runs of this algorithm in order to

�nd a (all) minimum capacity cut(s) with high probability, such that the overall procedure

runs in O(jV j

2

log

3

jV j) time and O(jV j

2

) space.

|V| = 100

contract

|V| = 71

|V| = 51 |V| = 51

|V| = 2|V| = 2

|V| = 71

|V| = 51 |V| = 51

uncontract

|V| = 2 |V| = 2

Figure 2. Contraction and uncontraction in the Karger-Stein algorithm

Figure 2 visualizes a run on a graph G with 100 vertices. One way of avoiding the

�(jV j

2

j space requirements in the conference version of [KS96] of 1993 is to traverse the

recursion tree \from left to right", recording and undoing the shrinking operations using

a stack. As we have noted in Section 1, undoing a shrinking operation takes no more time

than performing it, and this is possible with our data structure, since unshrinking opera-

tions occur in reverse order with respect to the corresponding shrinking operations. Thus,

our implementation of the Karger-Stein algorithm takes only O(jEj) space. Independently,

Karger and Stein also give a linear space variant of their algorithm in the journal version

of their article [KS96]. Karger gave another randomized minimum capacity cut algorithm

in [Kar96] that is not included in our study. It was implemented and tested in [CGKLS97].

3. The implementations

Asymptotic worst case running times suggest the superiority of all three main algorithmic

ideas that have been surveyed in Section 2 in comparison to the Padberg-Rinaldi approach.

It was quite a surprise that our experimental results give a rather di�erent picture.

Before we discuss our experimental results in detail, we would like to discuss the

possible shortcomings of our experimental evaluation. It is a matter of active discussion

in the scienti�c community, equally in mathematics, computer science, and operations

research, how fair computational experiments can be conducted. How much freedom does

an implementor of an algorithm have, for better or for worse? Who guarantees that the

implementor is not biased, putting a lot of e�ort into the implementation of his or her

\favorite" algorithms, but little in the less \beloved"?

7

We believe that the only way out is the publication of the computer program imple-

menting the algorithm. In a way, this is, in fact, the only reasonable way to specify an

algorithm precisely, anyway. For a good reason, the scienti�c literature does not go that

way, because of immense space consumption and, often, boring contents. As algorithm

designers, we like to be given algorithmic ideas and not the details. Sometimes, though,

details are interesting enough to be published anyway, because many people actually have

problem instances and want to use the algorithms in practical computation. Even the

traditional way of publishing in the scienti�c literature (books and journal articles) have

made this possible.

One of the leading advocates of this form of publishing algorithms as well documented

computer programs is Donald E. Knuth, who did so, among other algorithms, for the T

E

X

typesetting system [Knu86] and a collection of combinatorial algorithms in the Stanford

GraphBase [Knu93]. We adopted his \literate programming" style for our \minimum

capacity cut" project. All our algorithms were written in CWEB [KL93] and will be

made available to the scienti�c community. The reason for not doing this right now is

solely a matter of approvable documentation, not the algorithms themselves which we

believe to have been implemented well enough to make the computational comparison fair.

This claim can be disputed by anyone by reading our programs that will be published

in a suitable form [JRT98b]. The C-code of our programs (extracted from [JRT98b]) is

available in [JRT98a]. With this article we hope to attract the reader's attention to our

implementations.

The literate programming style realized in CWEB makes it easy to implement crucial

parts in a hierarchy of macros that can be reused whenever appropriate. In our project,

such crucial parts include the graph data structure and code fragments for manipulating

it. Especially important are the shrinking and unshrinking operations, that are speci�ed

once and then used whenever such an operation is performed in any of the implemented

algorithms. Thus the running time of the particular algorithm is not in
uenced by a speci�c

implementation of such a basic step. Moreover, all algorithms use the same priority queue

implementation (if they do), the same update procedure for the incumbent solution, etc.

In order to give a
avor of our implementations, we display verbatim some examples

of sections in our CWEB-implementation. Figure 3 shows the main loop of the naive

algorithm, Figure 4 shows the main loop of the Padberg-Rinaldi algorithm, and Figure 5

shows the main loop of the Nagamochi-Ono-Ibaraki algorithm.

The �gures suggest that it is not hard to engineer new algorithms using the pieces of

our software package. For example, implementing the hybrid version of the Nagamochi-

Ono-Ibaraki algorithm was an easy task, once the Nagamochi-Ono-Ibaraki algorithm and

the Padberg-Rinaldi algorithm had been implemented.

The following implementations, whose high level descriptions we gave in Section 2,

have been tested in our computational experiments:

NA: the naive algorithm

GH: the Gomory-Hu algorithm in Gus�eld's implementation

PR: the Padberg-Rinaldi algorithm

8

x239 MINCUT (Version 1.0) THE MAIN LOOP OF THE NAIVE ALGORITHM 65

239. The main loop of the naive algorithm. In jV j�1 major iterations, the naive algorithm computes

an (n left ,n right)-max-
ow-min-cut, where n left and n right are chosen to be the �rst two active nodes.

Then the incumbent cut is updated by the max-
ow-min-cut-solution, and n left and n right are shrunk

into n left .

hPerform the main loop (naive) 239 i �

f

hDeclare e shrink , the edge to be shrunk 240 i

hQuickly �nd a decent cut and store it 267 i

n left = active node [0];

while (�c nodes > 1) f

n right = active node [1];

hPerform a maximum
ow computation 241 i

hUpdate the incumbent cut by the max
ow solution, if necessary 242 i

hPerform a shrinking operation for n left and n right 77 i

hPut n right into n left 's cluster 65 i

g

g

This code is used in section 228.

Figure 3. The main loop of the naive algorithm

NOIBH: the Nagamochi-Ono-Ibaraki algorithm with a priority queue based on a binary

heap

NOIFH: the Nagamochi-Ono-Ibaraki algorithm with a priority queue based on a Fibonacci

heap

NOIHY: the Nagamochi-Ono-Ibaraki-Hybrid algorithm

SWBH: the Stoer-Wagner algorithm with a priority queue based on a binary heap

SWFH: the Stoer-Wagner algorithm with a priority queue based on a Fibonacci heap

HO: the Hao-Orlin algorithm

KS: the Karger-Stein algorithm

The purpose of including two versions of NOI and SW is to test the \folklore" assump-

tion that Fibonacci heaps are better in theory (and their use is required in the asymptotic

analysis of both algorithms), but binary heaps are better in practice.

All implementations except GH and PR also come with the su�x \-PREP". This

means that, in a initial preprocessing step, the Padberg-Rinaldi algorithm is run to the

point where it would perform the �rst max-
ow-min-cut computation. In some cases,

drastic problem size reductions result.

4. The experiments

We performed the experiments on a Siemens Nixdorf SCENIC Pro M6 personal computer

under the LINUX 2.0.27 operating system. The machine is equipped with a Pentium

Pro Processor (200 MHz) with 256 kilobytes of cache memory. The C-code obtained from

9

72 THE MAIN LOOP OF THE PADBERG-RINALDI ALGORITHM MINCUT (Version 1.0) x266

266. The main loop of the Padberg-Rinaldi algorithm. We check the candidate edge for shrinking.

If any of the various tests is sucessful, a shrinking operation is performed. If there are no candidate edges left,

a node pair n left and n right is determined, which we consider promising for a maximum
ow computation.

If this pair does not satisfy the shrinking conditions, the maximum
ow procedure is called to �nd a minimum

(n left ;n right)-cut. Then we perform a shrinking operation for the nodes n left and n right . This is done

as long as the graph contains at least one edge.

hPerform the main loop (PR) 266 i �

f

hDeclare e shrink , the edge to be shrunk 240 i

hQuickly �nd a decent cut and store it 267 i

while (�c nodes > 3) f int i;

for (i = 0; i < �c nodes ; i

++

) f

e shrink = heap (0; edge cap ; del);

if (At end (e shrink)) break;

Find end vertices (e shrink ;n left ;n right);

hTest shrinking conditions, goto shrink if successful 268 i

g

hFind a promising pair of nodes for max
ow 270 i

hTest shrinking conditions, goto shrink if successful 268 i

hPerform a maximum
ow computation 241 i

hUpdate the incumbent cut by the max
ow solution, if necessary 242 i

shrink :

hPerform a shrinking operation for n left and n right 77 i

hRemove candidates in the dead list 271 i

hUpdate star capacities 272 i

hPut n right into n left 's cluster 65 i

h Store the cut induced by n left , if it is better 273 i

g

g

This code is used in section 253.

Figure 4. The main loop of the Padberg-Rinaldi algorithm

running ctangle on our CWEB �les was compiled using the GNU C-compiler version 2.7.2

with optimization option -03.

We are aware of the fact that the computation times that we are going to report

depend heavily on the hardware and the software environment. For example, we repeated

the experiments that we report on in the following on a SUN SPARCstation Ultra-I with

512 kilobytes of cache memory under the SOLARIS 2.6 operating system, also with GNU

C-compiler version 2.7.2 with optimization option -03, on a smaller set of instances. We

found that the quotient of the running times varies between 1 and 2 in favor of the per-

sonal computer. As we are using a nowadays rather typical environment, even the raw

computation times may give useful information. Since we publish the implementations

of the algorithms and the problem instances [JRT98a,b], it is easy to perform the same

experiments in a di�erent environment, plus own experiments, possibly with own (hybrid)

algorithms assembled from the pieces available in the package.

A matter of dispute in making experimental computational comparisons is the choice

of data sets. The operations research community is well o� having public libraries of

instances for, e.g., linear programming [Gay85], (mixed) integer programming [BBI92],

10

94 THE MAIN LOOP OF THE NAGAMOCHI-ONO-IBARAKI ALGORITHM MINCUT (Version 1.0) x337

337. The main loop of the Nagamochi-Ono-Ibaraki algorithm. As long as at least three nodes

remain in the current graph, the method identi�es a forest of shrinkable edges with at least one edge. For

each edge in the forest, a shrinking operation is performed.

hPerform the main loop (NOI) 337 i �

f

int t; nforest ;

hDeclare e shrink , the edge to be shrunk 240 i

hQuickly �nd a decent cut and store it 267 i

heap (s nodes ; r; allocate heap);

while ((�c nodes) > 2) f

hDetermine the forest of shrinkable edges 338 i

hUpdate minimum cut 341 i

for (t = 0; t < nforest ; t

++

) f =� shrink all forest edges �=

if ((�c nodes) > 2) f

e shrink = forest [t];

Find end vertices (e shrink ;n left ;n right);

hPerform a shrinking operation for n left and n right 77 i

hUpdate the star capacity of the supernode 344 i

hPut n right into n left 's cluster 65 i

hUpdate forest using the dead list 342 i

h Store the cut induced by n left , if it is better 273 i

g

g

g

g

This code is used in section 325.

Figure 5. The main loop of the Nagamochi-Ono-Ibaraki algorithm

traveling salesman [Rei91], or quadratic assignment [BKR94]. Unfortunately, there is not

yet such a test set for the minimum capacity cut problem.

Moreover, a potential user of a minimum capacity cut algorithm might be interested in

problem instances which have not been investigated so far. What algorithm should she/he

choose for her/his application? This decision turns out to be very di�cult if her/his

instances di�er completely in structure and size from the ones examined so far.

Therefore, we decided not to de�ne arti�cial problem instances that are likely to be of

no interest to the community. Rather, we conduct experiments on the family of problem

types used in [NOI94]. We believe that these instance classes give a good overview of the

performance of the algorithms on graphs with interesting characteristics. However, we are

mostly interested in the performance of the algorithms on problem instances that arise in

the separation algorithms mentioned in the introduction. Unfortunately, all instances in

the computational studies performed in [Sto92], [Mut95], and [AJR98] are too small (up

to around 100 nodes) to be interesting. We did some testing on the instances arising in

[Mut95], but even the slowest algorithms solved them in around 0.01 seconds. However,

instances arising in the separation of subtour elimination inequalities in the TSP are big

enough to be interesting. Therefore, we chose a series of instances of this type as our

second test set. We believe that this instance type is the most interesting challenge for

minimum capacity cut algorithms from a practical point of view.

11

We start by repeating the experiments published in [NOI94]. These random instances

are speci�ed by the following parameters:

n = jV j the number of nodes,

d density of edges in %: m = jEj =

n(n�1)

2

�

d

100

,

k decomposition number (1 � k � n),

p scaling factor (0 < p � 1) for k � 2.

The edge weights c(fu; vg) are generated as pseudo random numbers by the program

gb unif rand() of the Stanford GraphBase independently and uniformly in the interval

[0,100). Using the same pseudo random generator, a node is assigned to cluster C (1 �

C � k) with probability

1

k

. Then, for all edges fu; vg such that u and v are in di�erent

clusters, we change c(fu; vg) to p � c(fu; vg). All capacities are given with an accuracy

of six decimal digits after the point, all calculations involving capacities are carried out in

the C double format.

[NOI94] contains six experiments that we refer to as NOIEXP1, : : : ,NOIEXP6. Our

�rst experiment (Figure 6) repeats NOIEXP1 for all tested algorithms without prepro-

cessing. We found that in all [NOI94] experiments except NOIEXP5 preprocessing does

not change the graphs at all. The plotted running times are averages over 10 samples for

NA, GH, SWBH, SWFH, and KS and over 100 samples for PR, NOIBH, NOIFH, NOIHY,

and HO. So Figure 6 is based on a total of 3480 individual runs. Here, and in all other

experiments, KS is run only once rather than log

2

jV j times. Nevertheless, it did not fail

once to compute a correct solution in all [NOI94] experiments but NOIEXP2 and NOI-

EXP4. The ranking in Figure 6 with respect to decreasing running time is NA, GH, SW,

KS, HO, PR, NOI, NOIHY.

It is clear at the outset that NA and GH cannot seriously compete with the other

algorithms, and that SW is always outperformed by NOI, but we have veri�ed this anyway

for all [NOI94] experiments. Therefore, we plot in Figures 7, 8, 9, 10, 11, 11a, and 12 only

the running times of KS, HO, PR, NOI, and NOIHY. These �gures are based on 10 samples

for each of the algorithms. Since NOI comes in two versions, we had to perform a total

of 3480 individual runs. In the plots, we do not distinguish between the binary heap and

Fibonacci heap versions, because there is no visible di�erence in all [NOI94] experiments.

It is, however, true that for the big and dense instances we tested, NOIFH and SWFH are

indeed (very slightly) faster than NOIBH and SWBH, respectively. In contrast to [NOI94],

the number of nodes is n = 1000, unless otherwise speci�ed in NOIEXP1 and NOIEXP2.

The captions explain the experiments. In Figure 7, the experiment of Figure 6 is repeated

with bigger instances. Table 1 gives evidence why the three best algorithms perform so

well. The column headers mean:

n: number of nodes

time: cpu-time in seconds

#mf: number of (s; t)-max-
ow-min-cut computations

#pr1: number of successes in testing PRCOND1

#pr2: number of successes in testing PRCOND2

#pr3: number of successes in testing PRCOND3

#pr4: number of successes in testing PRCOND4

12

#fail: number of failures on all PRCONDs

#mi: number of major iterations

#prs: number of shrinkings due to successful testing of PRCONDs

The typical behavior of PR appears to be the following. In the beginning, all tests fail

on the jV j edges with highest capacity. Then one (s; t)-max-
ow-min-cut computation is

performed on the original graph, and afterwards the PRCONDs 1{3 are su�cient to shrink

the graph down to two nodes. (Of course, for each individual run, we have #mf+#pr1+

#pr2 + #pr3 + #pr4 = jV j � 3. Since averages are taken and the results are truncated

to integers, the numbers given in the tables may add up to slightly less than jV j � 3.) In

NOI, the concept of shrinkable forests is crucial for its practical e�ciency. It reduces the

number of major iterations, that would be n � 1 without the forest concept, e.g. in the

case of SW, to 3:4{6:7. In NOIHY, the additional PR element makes this reduction even

more drastic. In our experiments roughly 10%{30% of the n� 1 shrinkings are due to the

forest conditions, the remaining 90%{70% to successful PRCOND tests. As the authors

of [NOI94] remark, a minimum capacity cut can be expected to be attained at the star of

a single node in the NOIEXP1 experiments.

In the NOIEXP2 experiment, whose results are displayed in Figure 8 and Table 2,

a minimum capacity cut separating the node set in roughly two halves can be expected

(and this is also empirically true). KS (one run!) fails for about 5% of all instances. As

expected, KS is not a�ected much by the di�erent decomposition number in comparison

to NOIEXP1. (The running time of KS only depends on jV j and jEj, not on the edge

capacities.) Also the behavior of HO is very much the same as in NOIEXP1. PR performs

slightly better than in NOIEXP1. This is obviously due to the fact that there is still only

one (s; t)-max-
ow-min-cut computation in the beginning, but afterwards the cheap test

for PRCOND1 is more often successful, so that the work on the more expensive later tests

is reduced. NOI is faster due to less major iterations and NOIHY behaves essentially like

in NOIEXP1.

In the NOIEXP3 experiment, the edge density varies from 5% to 100%. The results

are displayed in Figure 9 and Table 3. HO outperforms PR at small densities and NOI

at high densities. Beyond 50% density, PR becomes better than NOI. A look a Table 3

explains this. Beyond 50% density, the number of (s; t)-max-
ow-min-cut computations

reduces to 1 on the average, and the number of failing PRCOND tests reduces drastically.

The average number of major iterations of NOI grows monotonically from 2:0 for 5%

density to 19:2 for 100% density. NOIHY stays at one major iteration in each run.

At this point, we should mention similarities and di�erences in comparison to the

computational study in [NOI94]. For NOIEXP1 and NOIEXP2, our results are in agree-

ment, except that in [NOI94] no di�erence between NOI and NOIHY was observed. We

believe that our revised view is due to our better implementation of the PR algorithm. In

[NOI94], an old FORTRAN implementation of Padberg and Rinaldi was used. The old

version gave somewhat strange results in the NOIEXP3 experiments that we could not

observe with our implementation. Otherwise, our results on the performance of NOI and

NOIHY are in agreement with [NOI94].

The NOIEXP4 results are displayed in Figure 10 and Table 4. This is a repetition

of NOIEXP3 with decomposition number 2. As expected, KS behaves essentially as in

13

the NOIEXP3 experiment. KS fails in about 10% of the runs with density 25%, about

20% of the runs with density 37:5%, and about 5% of the runs with density 50%. The

performance of HO in comparison to NOIEXP3 is much better, HO outperforms PR over

the whole range. The number of (s; t)-max-
ow-min-cut computations in PR drops to one

from 50% density on, NOI maintains roughly 3 major iterations over the whole spectrum,

and NOIHY stays at 1 major iteration over the whole spectrum. The di�erence to the

results of [NOI94] is that they could not observe di�erent running times for NOI and

NOIHY, and PR behaved strangely. Our explanation is the same as for the NOIEXP3

experiments.

In Figure 11 and Table 5, we display the results of the NOIEXP5 experiment, in

which the decomposition number varies from 1 to 200. As expected, KS is not a�ected

by this. HO outperforms PR for decomposition numbers 2,3, and 5, but is signi�cantly

outperformed by the three best algorithms for higher decomposition numbers. PR has a

peak of running time at k = 5, due to a peak in (s; t)-max-
ow-min-cut computations of 5,

and 2417 failing tests on the average. We have not been able to come up with a satisfying

explanation of this phenomenon that was also observed, although in a much more drastic

way, by [NOI94] for k = 3 (with the old implementation of PR). We are in agreement with

[NOI94] that the behavior of NOI and NOIHY is hardly distinguishable. The NOIEXP5

experiment is the only one in which PR-preprocessing helps. Figure 11a gives the results.

The PR preprocessing does not produce any reductions until k = 5, for k = 10 it reduces

from 1000 to 415 nodes on the average, for k = 20 to 71 nodes, for k = 50 to 64 nodes, for

k = 100 to 35 nodes, and for k = 200 to 146 nodes. The PR curve is copied from Figure 11

for reference. There is no signi�cant di�erence in performance for any of the fast methods

from k = 20 on.

Figure 12 and Table 6 display the results for the NOIEXP6 experiment. Here, the

scaling factor p changes. Again, KS is not a�ected as expected. For the smallest two scaling

factors, HO outperforms PR. PR, NOI and NOIHY are also hardly a�ected. Except for

the strange behavior of the old implementation of PR, this is in total agreement with the

[NOI94] experiments.

In all six NOIEXP experiments, NOIHY consistently performed best. This is certainly

due to the fact that it almost always needs only one major iteration. More sophisticated

internal PR testing can easily be conceived of, however, in this test set this would only

cost additional time instead of shortening the overall running time.

Now let us turn to the experiments with \practical" problem instances arising in a

branch-and-cut algorithm for the traveling salesman problem (TSP). For the traveling

salesman problem instances lin318, gr666, pr1002, u1432 and pr2392 of the TSPLIB

[Rei91], we generated all minimum capacity cut problem instances that had to be solved

during the optimization process by the algorithm of Naddef and Thienel [NT98]. The

number in the name of the instance gives the number of nodes of each minimum capacity

cut problem instance associated with the TSP problem instance.

In total, the code of [NT98] had to solve 58 minimum cut problem instances for

lin318, 149 for gr666, 88 for pr1002, 232 for u1432, and 164 for pr2392. These instances

are very sparse: the number of edges is roughly 1.5 times the number of nodes. Their

structural properties are not covered by the types in the NOIEXP experiments.

14

Figure 13 and Table 7 show the results for all algorithms (without PR preprocessing)

we implemented. A total of 6910 runs had to be performed for this experiment. Even

though PR performs from 3 to 32 (s; t)-max-
ow-min-cut computations on the average,

it clearly outperforms all other algorithms. We notice that PRCOND4 is often successful

here, whereas it never was in all NOIEXP experiments. NOIHY dominates NOI by far,

as the additional internal PR tests reduce the number of major iterations considerably.

HO behaves roughly like NOIHY. Here we see a clear di�erence in running time for the

binary/Fibonacci heap versions of NOI and SW, with the binary heap coming out as the

clear winner (as folklore predicted). The extremely poor behavior of KS is signi�cant.

Moreover, with a single run, it fails in roughly 16% of all runs, but running it more often

is out of the question. Finally, we ran all algorithms with PR preprocessing. The results

that are based on 5528 runs, are displayed in Figure 14. The problem sizes are reduced

from 318 to 20 nodes, from 666 to 46 nodes, from 1002 to 34 nodes, from 1432 to 145

nodes, and from 2392 to 84 nodes, respectively, on the average. This explains the peaks

at size 1432. With PR preprocessing, all algorithms except NA and KS are slightly better

than PR.

5

10

15

100 200 300 400

C
P

U
 t
im

e
 (

s
e
c
.)

NA
GH

SWBH
SWFH

KS
PR

NOIBH
NOIFH
NOIHY

HO

Figure 6. Instances of [NOI94] type (100 � n � 400, d = 50, k = 1, p =

1

n

)

15

10

20

30

40

100 200 300 400 500 600 700 800 900 1000

C
P

U
 t
im

e
 (

s
e
c
.)

PR
NOI

NOIHY
HO
KS

Figure 7. Instances of [NOI94] type (100 � n � 1000, d = 50, k = 1, p =

1

n

)

PR NOI NOIHY

n time #mf #pr1 #pr2 #pr3 #pr4 #fail time #mi time #mi #prs

100 0.01 0 24 25 45 0 101 0.01 3.4 0.01 1.0 71

200 0.08 1 38 62 94 0 205 0.08 4.3 0.05 1.0 157

300 0.24 1 51 103 141 0 314 0.23 4.5 0.15 1.0 243

400 0.49 1 64 139 191 0 448 0.47 4.8 0.31 1.0 330

500 0.96 1 65 189 240 0 710 0.84 5.6 0.51 1.0 430

600 1.63 1 67 237 289 0 1087 1.35 5.9 0.77 1.0 529

700 2.44 1 69 290 335 0 1332 2.00 6.6 1.09 1.0 627

800 3.30 1 85 324 385 0 1601 2.61 6.4 1.46 1.0 711

900 4.29 2 85 375 433 0 1804 3.54 6.9 1.90 1.0 810

1000 5.48 1 102 410 481 0 1913 4.32 6.7 2.38 1.0 891

Table 1. Instances of [NOI94] type (100 � n � 1000, d = 50, k = 1, p =

1

n

)

16

10

20

30

40

100 200 300 400 500 600 700 800 900 1000

C
P

U
 t
im

e
 (

s
e
c
.)

PR
NOI

NOIHY
HO
KS

Figure 8. Instances of [NOI94] type (100 � n � 1000, d = 50, k = 2, p =

1

n

)

PR NOI NOIHY

n time #mf #pr1 #pr2 #pr3 #pr4 #fail time #mi time #mi #prs

100 0.01 0 55 5 35 0 4 0.01 2.8 0.01 1.2 40

200 0.07 0 96 13 86 0 141 0.06 3.0 0.05 1.0 116

300 0.25 0 145 14 136 0 301 0.18 3.1 0.15 1.0 197

400 0.51 1 169 38 187 0 401 0.36 3.0 0.30 1.0 278

500 0.90 1 224 39 231 0 503 0.63 3.0 0.51 1.0 381

600 1.36 1 255 58 282 0 625 0.97 3.1 0.78 1.0 469

700 2.09 1 297 69 329 0 918 1.40 3.0 1.10 1.0 575

800 2.72 1 344 73 377 0 954 1.84 3.0 1.48 1.0 638

900 3.26 1 327 139 427 0 1012 2.41 3.0 1.89 1.0 749

1000 4.71 1 417 103 474 0 1405 3.01 3.1 2.39 1.0 830

Table 2. Instances of [NOI94] type (100 � n � 1000, d = 50, k = 2, p =

1

n

)

17

10

20

30

40

5 25 37.5 50 62.5 75 100

C
P

U
 t
im

e
 (

s
e
c
.)

PR
NOI

NOIHY
HO
KS

Figure 9. Instances of [NOI94] type (n = 1000, 5 � d � 100, k = 1, p =

1

n

)

PR NOI NOIHY

d time #mf #pr1 #pr2 #pr3 #pr4 #fail time #mi time #mi #prs

5.0 1.35 6 504 45 439 0 7389 0.31 2.0 0.30 1.0 491

25.0 3.52 2 169 346 477 0 2939 1.77 4.8 1.23 1.0 825

37.5 4.08 2 132 382 480 0 2033 2.93 5.5 1.79 1.0 865

50.0 5.20 2 91 422 481 0 2003 4.56 7.1 2.38 1.0 903

62.5 5.64 1 64 445 485 0 1484 6.53 8.8 3.01 1.0 931

75.0 6.37 1 58 446 491 0 1217 8.46 10.2 3.58 1.0 936

100.0 8.28 1 20 479 496 0 1002 18.55 19.2 4.88 1.0 975

Table 3. Instances of [NOI94] type (n = 1000, 5 � d � 100, k = 1, p =

1

n

)

18

10

20

30

40

5 25 37.5 50 62.5 75 100

C
P

U
 t
im

e
 (

s
e
c
.)

PR
NOI

NOIHY
HO
KS

Figure 10. Instances of [NOI94] type (n = 1000, 5 � d � 100, k = 2, p =

1

n

)

PR NOI NOIHY

d time #mf #pr1 #pr2 #pr3 #pr4 #fail time #mi time #mi #prs

5.0 1.04 5 755 2 233 0 3923 0.30 2.6 0.29 1.0 241

25.0 3.29 3 479 54 459 0 2109 1.42 3.0 1.23 1.0 700

37.5 5.19 2 427 99 467 0 2002 2.24 3.0 1.82 1.0 802

50.0 4.58 1 415 106 473 0 1412 3.06 3.0 2.39 1.0 848

62.5 4.95 1 354 161 480 0 1007 3.82 3.4 2.96 1.0 849

75.0 6.38 1 384 126 484 0 1001 4.66 3.3 3.59 1.0 868

100.0 9.05 1 352 152 490 0 1001 6.62 3.4 4.81 1.0 939

Table 4. Instances of [NOI94] type (n = 1000, 5 � d � 100, k = 2, p =

1

n

)

19

10

20

30

40

1 2 3 5 10 20 50 100 200

C
P

U
 t
im

e
 (

s
e
c
.)

PR
NOI

NOIHY
HO
KS

Figure 11. Instances of [NOI94] type (n = 1000, d = 50, 1 � k � 200, p =

1

n

)

PR NOI NOIHY

k time #mf #pr1 #pr2 #pr3 #pr4 #fail time #mi time #mi #prs

1 5.41 2 105 408 480 0 2007 4.21 6.5 2.37 1.0 889

2 4.21 1 385 135 474 0 1220 3.01 3.0 2.38 1.0 819

3 6.57 3 304 210 478 0 1592 3.09 4.9 2.88 2.0 548

5 10.44 5 318 201 472 0 2417 2.86 6.7 2.92 2.9 235

10 3.75 3 491 58 443 0 514 2.56 4.8 2.39 1.1 456

20 2.40 0 740 5 250 0 24 2.40 3.3 2.35 1.0 256

50 2.48 0 960 2 33 0 0 2.35 2.9 2.34 1.0 69

100 2.64 0 981 3 11 0 0 2.36 2.2 2.35 1.0 91

200 2.83 0 923 17 56 0 0 2.44 2.0 2.36 1.0 212

Table 5. Instances of [NOI94] type (n = 1000, d = 50, 1 � k � 200, p =

1

n

)

20

10

20

30

40

1 2 3 5 10 20 50 100 200

C
P

U
 t
im

e
 (

s
e
c
.)

PR
NOI-PREP

NOIHY-PREP
HO-PREP
KS-PREP

Figure 11a. Instances of [NOI94] type (n = 1000, d = 50, 1 � k � 200, p =

1

n

)

21

10

20

30

40

0.0005 0.001 0.0025 0.005 0.01 0.05 0.1 0.5 1

C
P

U
 t
im

e
 (

s
e
c
.)

PR
NOI

NOIHY
HO
KS

Figure 12. Instances of [NOI94] type (n = 1000, d = 50, k = 2, 0:0005 � p � 1)

PR NOI NOIHY

p time #mf #pr1 #pr2 #pr3 #pr4 #fail time #mi time #mi #prs

0.0005 4.14 1 543 128 323 0 1110 2.93 3.0 2.34 1.0 829

0.0010 4.26 1 394 125 474 0 1307 2.99 3.0 2.40 1.0 813

0.0025 5.05 2 158 357 479 0 1526 3.63 5.9 2.37 1.0 839

0.0050 4.34 1 177 336 482 0 1312 3.47 5.4 2.36 1.0 820

0.0100 5.09 1 145 369 480 0 1620 3.72 5.8 2.36 1.0 849

0.0500 4.27 1 125 388 482 0 1411 3.95 5.8 2.36 1.0 876

0.1000 4.42 1 70 445 479 0 1449 4.58 7.0 2.37 1.0 917

0.5000 5.35 2 84 431 478 0 2004 4.79 7.8 2.37 1.0 904

1.0000 5.60 2 86 427 481 0 2005 4.58 7.1 2.39 1.0 910

Table 6. Instances of [NOI94] type (n = 1000, d = 50, k = 2, 0:0005 � p � 1)

22

5

10

15

318 666 1002 1432 2392

C
P

U
 t
im

e
 (

s
e
c
.)

NA
GH

SWBH
SWFH

PR
HO

NOIBH
NOIFH
NOIHY

KS

Figure 13. TSP instances without Padberg-Rinaldi preprocessing

PR NOI NOIHY

n time #mf #pr1 #pr2 #pr3 #pr4 #fail time #mi time #mi #prs

318 0.00 3 4 276 0 29 43 0.18 288 0.03 43 254

666 0.01 9 41 556 3 51 108 0.69 521 0.10 64 526

1002 0.01 6 186 737 11 56 86 0.90 500 0.13 57 603

1432 0.05 32 83 1192 14 106 362 2.45 941 0.36 100 1042

2392 0.06 17 531 1704 19 114 209 6.26 1295 0.71 113 1769

Table 7. TSP instances without Padberg-Rinaldi preprocessing

23

0.1

0.2

0.3

0.4

0.5

318 666 1002 1432 2392

C
P

U
 t
im

e
 (

s
e
c
.)

NA-PREP
SWBH-PREP
SWFH-PREP

HO-PREP
NOIBH-PREP
NOIFH-PREP
NOIHY-PREP

KS-PREP

Figure 14. TSP instances with Padberg-Rinaldi preprocessing

24

5. Conclusions

Our experiments show that the theoretical worst case performance for algorithms solving

the minimum cut problem should not be the only guideline for the selection of an algorithm.

There are numerous ways to combine the experimentally evaluated algorithms into

hybrid versions, one of which is reported in [NOI94] and many others in [CGKLS97].

Except for NOIHY, we decided to refrain from trying more such experiments, because

our only purpose here is to provide a (contemporary) basis for evaluating the practical

performance of published minimum capacity cut algorithms. Our experimental experience

makes us believe that the \right" combination is highly dependent on structural properties

of the considered class of instances. For the TSP-type instances, [CGKLS97] is an excellent

source of information, and we cannot identify other interesting classes that make the

considerable experimental e�orts that would have to be invested, appear worthwhile at the

time of writing. Rather, we hope that interested readers with their particular instances

will do the appropriate \algorithm engineering" based on our \generic" implementations

of minimum capacity cut algorithms.

Acknowledgements

In an earlier version of this article, we had used a version of KS that required �(jV j

2

)

space as in the conference version of [KS96]. We are grateful to Max B�ohm, who pointed

out to us that shrinking and unshrinking in reverse order can be done e�ciently in O(jEj)

space. This led to our current version of KS.

Thanks are due to two anonymous referees, who read an earlier version very carefully

and made many valuable suggestions for improvement of this article, almost all of which

we gratefully followed.

References

[AJR98] N. Ascheuer, M. J

�

unger, and G. Reinelt (1998), \A branch and cut algorithm for the

asymmetric Hamiltonian path problem with precedence constraints", Technical Report 98.323,

Universit�at zu K�oln.

[BB93] T. Badics and E. Boros (1993), \Implementing a maximum
ow algorithm: Experiments

with dynamic trees", in: D. S. Johnson and C. C. McGeoch (eds.), Network
ows and match-

ing, First DIMACS implementation challenge, American Mathematical Society, 43{63.

[BBI92] R.E. Bixby, E.A. Boyd, and R.R. Indovina (1992), \MIPLIB: A test set of mixed integer

programming problems", Siam News , March 1992, 16.

[BKR94] R. Burkhard, S. Karisch, and F. Rendl (1994), \QAPLIB|A quadratic assignment

problem library", Technical Report 287, Institut f�ur Mathematik, Technische Universit�at Graz.

[CG95] B.V. Cherkassky and A.V. Goldberg (1995), \On implementing push-relabel method

for the maximum
ow problem", in: E. Balas and J. Clausen (eds.), Proceedings of the 4th

international IPCO conference, Lecture Notes in Computer Science 920, Springer, Berlin,

157{171.

25

[CGKLS97] C.S. Chekuri, A.V. Goldberg, D.R. Karger, M.S. Levine, and C. Stein (1997), \Ex-

perimental study of minimum cut algorithms", in: Proceedings of the 8th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA'97), New Orleans, 324{333.

[DM89] U. Derigs and W. Meier (1988), \Implementing Goldberg's max-
ow algorithm|a com-

putational investigation", ZOR|Methods and Models of Operations Research 33, 383{403.

[Fra94] A. Frank (1994), \On the edge connectivity algorithm of Nagamochi and Ibaraki", Technical

Report, Labaratoire Artemis, IMAG, Universit�e J. Fourier, Grenoble.

[Fuj94] S. Fujishige (1994), \Another simple proof of the validity of Nagamochi and Ibaraki's min-

cut algorithm and Queyrannes extension to symmetric submodular function minimization",

Technical Report, Forschungsinstitut f�ur Diskrete Mathematik, Universit�at Bonn.

[Gay85] D.M. Gay (1985), \Electronic mail distribution of linear programming test problems", COAL

Newsletter 13, 10{12.

[GH61] R.E. Gomory and T.C. Hu (1961), \Multi-terminal network
ows", SIAM Journal 9, 551{

570.

[GT88] A.V. Goldberg and R.E. Tarjan (1988), \A new approach to the maximum
ow problem",

Journal of the ACM 35, 921{940.

[Gus90] D. Gusfield (1990), \Very simple methods for all pairs network
ow analysis", SIAM Journal

on Computing 19, 143{155.

[HO92] J. Hao and J.B. Orlin (1992), \A faster algorithm for �nding the minimum cut in a graph",

in: Proceedings of the third annual ACM-SIAM symposium on discrete algorithms, 165{174.

[HO94] J. Hao and J.B. Orlin (1994), \A faster algorithm for �nding the minimum cut in a directed

graph", Journal of Algorithms 17, 424-464.

[JRR95] M. J

�

unger, G. Reinelt, and G. Rinaldi (1995), \The traveling salesman problem", in:

M. Ball, T. Magnanti, C.L. Monma, and G.L. Nemhauser (eds.), Handbook on Operations

Research and Management Sciences, Vol. 7, North Holland, Amsterdam, 225{330.

[JRT98a] M. J

�

unger, G. Rinaldi, and S. Thienel (1998), \C-code extracted from [JRT98b]", on the

WWW under http://www.informatik.uni-koeln.de/ls juenger/projects/mincut.html.

[JRT98b] M. J

�

unger, G. Rinaldi, and S. Thienel (1998), \MINCUT|a MINimum CUT algorithm

library", software system, to appear.

[Kar96] D.R. Karger (1996), \Minimum cuts in near-linear time", in: G. Miller (ed.), Proceedings

of the 28th ACM Symposium on Theory of Computing, ACM Press, 56{63.

[KL93] D.E. Knuth and S. Levy (1993), \The CWEB system of structured documentation", Tech-

nical Report and Software Package, ftp://labrea.stanford.edu:/pub/cweb.

[Knu86] D.E. Knuth (1986), \T

E

X: The program", Addison-Wesley, Reading, Massachusetts.

[Knu93] D.E. Knuth (1993), \The Stanford GraphBase: A platform for combinatorial computing",

Addison-Wesley, Reading, Massachusetts.

[KRT94] V. King, S. Rao, and R. Tarjan (1994), \A faster deterministic maximum
ow algorithm",

Journal of Algorithms 17, 447{474.

[KS96] D.R. Karger and C. Stein (1996), \A new approach to the minimum cut problem", Journal

of the ACM 43, 601{640, a preliminary version appeared in Proceedings of the 25th ACM

Symposium on the Theory of Computing, San Diego, CA, 757{765.

[Mut95] P. Mutzel (1995), \A polyhedral approach to planar augmentation and related problems",

in: P. Spirakis (ed.), Algorithms|ESA'95, Lecture Notes in Computer Science 979, Springer,

Heidelberg, 494{507.

[NI92] H. Nagamochi and T. Ibaraki (1992), \Computing edge-connectivity in multi-graphs and

capacitated graphs", SIAM Journal on Discrete Mathematics 5, 54{66.

[NOI94] H. Nagamochi, T. Ono, and T. Ibaraki (1994), \Implementing an e�cient minimum

capacity cut algorithm", Mathematical Programming 67, 325{341.

26

[NT98] D. Naddef and S. Thienel (1998), \E�cient separation routines for the symmetric traveling

salesman problem", Technical Report, Universit�at zu K�oln, to appear.

[PR90] M.W. Padberg and G. Rinaldi (1990), \An e�cient algorithm for the minimum capacity

cut problem", Mathematical Programming 47, 19{36.

[Rei91] G. Reinelt (1991), \TSPLIB|A traveling salesman problem library", ORSA Journal on

Computing 3, 376{384.

[Sto92] M. Stoer (1992), \Design of survivable networks", Lecture Notes in Mathematics 1531,

Springer, Heidelberg.

[SW94] M. Stoer and F. Wagner (1994), \A simple min cut algorithm", in: J. van Leeuwen (ed.),

Algorithms|ESA'94, Lecture Notes in Computer Science 855, Springer, Heidelberg, 141{147.

27

