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2013

vorgelegt

von

Dipl.-Kfm. Claudio Nicolai Wewel

aus

Stuttgart



Referent: Univ.-Prof. Dr. Thomas Hartmann-Wendels, Universität zu Köln
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comments as well as David Fritz and Eugen Töws for their helpfulness and advice – espe-

cially with respect to LATEX matters. I am grateful for the wonderful time spent together

both on and off campus. Some research was completed in early 2013 during a research

stay at Keio University in Tokyo, Japan. I am particularly grateful to Professor Naoyuki

Yoshino for stimulating conversations and the friendly research environment. I gratefully

acknowledge financial support from the University of Cologne and Keio University.

Finally, I wish to thank my family for their steady encouragement as well as their ideal

and material support that made the completion of this work possible.

Cologne, February 2014 Claudio N. Wewel



This thesis consists of the following works:

Trapp, Monika and Claudio Wewel (2013). Transatlantic systemic risk. Journal of

Banking & Finance 37 (11), 4241–4255.
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“No book can ever be finished. While working on it we learn just enough to

find it immature the moment we turn away from it.”

“The game of science is, in principle, without end. He who decides one day

that scientific statements do not call for any further test, and that they can

be regarded as finally verified, retires from the game.”

– Sir Karl R. Popper



1 Introduction

The recent Subprime and Euro Crises have stressed the vulnerability of the international

banking system and the adverse impact that bank defaults have on the macro-economy.

Over the last decades, financial markets (and in particular banks) have become increas-

ingly interconnected as a result of financial liberalization, growing international trade,

and increasingly global supply chains. In this effect, the understanding of systemic risk

and financial contagion that pose a threat to both the international financial system and

to the real economy (through its dependence on the financial sector) is of vital interest to

both researchers and economic policy makers.

Over the years, various definitions of systemic risk and contagion have emerged. Ac-

cording to the 2001 Report on Consolidation in the Financial Sector, the Group of Ten

(2001) defines systemic risk as follows:

Systemic financial risk is the risk that an event will trigger a loss of economic

value or confidence in, and attendant increases in uncertainly about, a sub-

stantial portion of the financial system that is serious enough to quite probably

have significant adverse effects on the real economy. Systemic risk events can

be sudden and unexpected, or the likelihood of their occurrence can build up

through time in the absence of appropriate policy responses. The adverse real

economic effects from systemic problems are generally seen as arising from

disruptions to the payment system, to credit flows, and from the destruction

of asset values.

The previous definition provides a general and intuitive insight to the notion of sys-

temic risk. Thus, more concisely, systemic risk can be subsumed as the risk or the proba-

bility of breakdowns in an entire system, as opposed to breakdowns in individual parts or

components, and is evidenced by comovements (correlation) among most or all the parts

(Kaufman and Scott, 2003).

In literature, there is consesus that two alternate main mechanisms cause systemic risk:

common shocks (e.g., Kaufmann, 2000; Helwege, 2010) and contagion (e.g., Lando and

Nielsen, 2010; Longstaff, 2010). Contagion requires strong interconnectedness between

financial institutions such as mutual credit exposures or derivatives transactions entailing

counterparty risk and may occur if an institution I defaults on payments to another

institution J (that is closely connected to I) causing J to default on its own payments

and thereby potentially causing financial distress of further institutions. More generally,



1 Introduction 2

Kaminsky and Reinhart (2000) refer to contagion as channels through which disturbances

are transmitted and mention trade links and (largely ignored) financial sector links such

as bilateral exposures and interbank loans as examples.

Whereas contagion refers to a direct causation mechanism, causation by common

shocks is rather indirect. Moreover, causation by common shocks necessitates sufficiently

homogenous risk factors, i.e., similarities in the financial institutions’ portfolios. Thus, if

insitutions’ risk exposures are alike, a shock resulting in severe losses to an asset could

result in uncertainty about similar traded assets potentially subject to the same shock

(Kaufmann, 2000). Given that these assets constitute a substantial portion in a multitude

of financial institutions’ portfolios, such a shock could potentially trigger simultaneous

losses to a wide range of institutions with similar exposures across the financial industry.

Research on systemic risk can be separated into various branches. One branch focuses

on general systemic risk measurement and can furthermore be systemized as follows:

(i) Asset price based measurement. Over the past years, the Conditional Value at Risk

(Adrian and Brunnermeier, 2011) and the Marginal Expected Shortfall (Acharya

et al., 2010) have emerged as the most prominent asset price based measures. The

latter measures are applied by the U.S. Treasury Department (Financial Stabil-

ity Oversight Council, 2013) and the European Systemic Risk Board (European

Systemic Risk Board, 2013) and have triggered numerous studies proposing exten-

sions.1 Other approaches proposed by academia are based on extreme value theory

(De Jonghe, 2010; Zhou, 2010), principal component analysis (Billio et al., 2012;

Kritzman et al., 2011), and default probabilities (Lehar, 2005; Huang et al., 2009;

Segoviano and Goodhart, 2009; Huang et al., 2012; Gray and Jobst, 2010).

(ii) Network analysis based measurement. This strand of literature analyzes systemic

risk modeling institutions’ mutual exposures (e.g., Elsinger et al., 2006a; Allen et al.,

2010; Tarashev et al., 2010; Halaj and Kok Sorensen, 2013).

An advantage of network based modelling is that such an analysis may even incorporate

institutions whose stock is not traded on stock markets.2 However, this comes at the cost

1 Several studies implement the Marginal Expected Shortfall (Acharya and Steffen, 2012; Idier et al.,
2013), related measures (Engle et al., 2012; Acharya et al., 2012), and the Conditional Value at Risk
(López-Espinosa et al., 2012; Van Oordt and Zhou, 2011; Roengpitya and Rungcharoenkitkul, 2011;
Gauthier et al., 2010). Other studies propose various extensions to the latter approaches (Hong, 2011;
Girardi and Ergün, 2013; Cao, 2013).

2 This concern particularly applies to economies with few publicly traded banks such as Germany or
Austria.
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of employing balance sheet data with much lower sampling frequency than stock prices.

Thus, asset price based measures are capable of reflecting the daily dynamics at the stock

markets. Moreover, asset price based measures are less likely to be prone to national

particularities in accounting practices and hence allow for broad analyses and comparisons

within the international banking system. Bisias et al. (2012) provide an extensive survey

on the literature on systemic risk measurement.

Another branch investigates common shocks and contagion in an event study setup.

Research on contagion is abundant with literature covering financial crises such as the

Mexican Peso Crisis in 1994 (e.g., Calvo and Reinhart, 1996; Edwards, 1998) or the Sub-

prime Crisis including the bankruptcy of Lehman Brothers (e.g., Longstaff, 2010; Hwang

et al., 2010; Bekaert et al., 2011) as well as contagion following Black Swan events such

as the 1987 Black Monday (e.g., King and Wadhwani, 1990; Hamao et al., 1990; Bertero

and Mayer, 1990) and the September 11, 2011 terrorist attacks (e.g., Hon et al., 2004) or

natural disasters (e.g., Lee et al., 2007; Asongu, 2012).

This thesis consists out of three essays on systemic risk in the banking system and

stock market contagion. The first essay (Trapp and Wewel, 2013, ”Transatlantic systemic

risk”) investigates which type of systemic risk – common shocks or contagion – dominated

in the banking system at the onset of the Subprime Crisis and thus contributes to the

literature on the distinction of contagion and common shocks.

Applying a Copula approach, we measure bivariate upper tail dependence between

CDS premia of 550 firms based in the US and Europe. We show that banks’ exposures to

common risk factors are crucial for systemic risk in the banking sector. We come to this

conclusion by showing that dependencies are generally higher within the US and Europe

than between these regions. At the onset of the Subprime Crisis, however, systemic risk

in Europe increases much more strongly than in the US. Given that intra-regional depen-

dencies are stronger than transatlantic dependencies, we argue that the steep increase of

systemic risk in Europe is unlikely to arise from contagion but rather from common risk

factors in the banks’ portfolios.

We furthermore find that dependence between banks and real sector firms is limited,

however, European banks are more closely connected to real sector firms of the same

region than their US counterparts. This finding is likely to result from a relatively higher

importance of bank loans as a means of funding to European real sector firms when

compared to US firms that rely on capital market-based funding to a greater extent (see,

e.g., Demirguc-Kunt and Levine, 1999).
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Our results indicate that in the Subprime Crisis, common factors played a much more

important role than contagion, which is in line with the findings of Kaufmann (2000). Our

results have important implications for regulatory authorities stressing the importance of

monitoring international bank dependencies arising from common risk factors. Moreover,

the limited dependencies between banks and real sector firms imply that while regulators

should pay particular attention to large banks providing a substantial share of loans to

real-sector firms, they should improve real sector firms’ access to the capital markets.

The second essay (Döring, Hartmann-Wendels, and Wewel, 2013, ”What can sys-

temic risk measures predict?”) contributes to the literature on the assessment of systemic

risk measures and to the literature on CoVaR (Adrian and Brunnermeier, 2011), MES

(Acharya et al., 2010), and the related SRISK measure (Brownlees and Engle, 2012).3

In a first step, we implement these three prominent systemic risk measures in a DCC

GARCH framework.

Systemic risk measures should be able of capturing distress in the banking system that

subsequently leads to substantial downturns in the real economy. Hence, in a second step,

we compare the measures evaluating their adequacy as a tool for regulatory authorities on

the basis of their predictive power for various market, balance sheet related, and macro-

economic variables investigating directionalities at the bank as well as at the banking

system level. We apply the measures to a sample of stock prices of European banks

with total assets above e30bn in the period from July 2005 to June 2013.4 As European

banks are likely to be affected by both the recent international financial crisis and the

European sovereign debt crisis, the European banking system constitutes a unique setting

for the assessment of systemic risk measures. Moreover, we ensure that the systemic risk

measures are not exclusively evaluated by their performance during the Subprime Crisis.

Overall, we find that systemic risk measures are capable of capturing early symp-

toms of distress in the financial markets. Furthermore, we find that at the banking

system level systemic risk measures possess substantial forecasting power for a variety of

3 Literature on the CoVaR, MES, and SRISK measures can be systemized as follows: (i) studies
employing CoVaR (López-Espinosa et al., 2012; Van Oordt and Zhou, 2011; Roengpitya and
Rungcharoenkitkul, 2011; Gauthier et al., 2010) and MES related measures (Acharya and Steffen,
2012; Idier et al., 2013; Engle et al., 2012; Acharya et al., 2012) to analyze distress in the financial
markets (ii) extentions of the latter measures (Hong, 2011; Girardi and Ergün, 2013; Cao, 2013), and
comparisons between the latter (Jiang, 2012; Benoit et al., 2013; Löffler and Raupach, 2013).

4 According to the European Commission’s proposal for a Single Supervisory Mechanism (SSM) for the
European Banking Union, banks with total assets above e30bn are supervised directly by the ECB
due to their potential systemic relevance (European Commission, 2013).
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financial market variables (EURIBOR-OIS spread and volatility), balance sheet variables

(leverage, market-to-book ratio, and profitability), and macro-economic variables (GDP,

housing prices, and economic sentiment). Whereas balance sheet characteristics determine

an individual bank’s systemic importance, they cannot explain or predict systemic risk at

the banking system level. Comparing the predictive power of the analyzed measures, we

find that the CoVaR’s forcasting power is dominated by MES related measures’ predictive

power and conclude that the latter are thus most suitable for regulatory purposes.

The third essay (Wewel, 2013, ”Are earthquakes less contagious than bank failures?

Comparative impact assessment of the Tohoku earthquake 2011 and the Lehman bank-

ruptcy 2008”) contributes to the literature on international stock market contagion. Em-

ploying a data set of 4,350 international stocks in 13 countries, we investigate pre-and

post-event cross-market correlation on national and international stock markets following

the Japanese Tohoku5 earthquake on March 11, 2011, the subsequent tsunami and the

nuclear disaster at Fukushima Daiichi. To better evaluate the degree of contagion, we

employ the bankruptcy of Lehman Brothers on September 15, 2008 as benchmark event.

Contrary to previous studies (Lee et al., 2007; Asongu, 2012), we analyze contagion by in-

dustry and country at the individual share price level which allows us to explore potential

geographical patterns of how contagion propagates through global stock markets.

Overall, we find that contagion arising from both events is substantial. Whereas the

Lehman bankruptcy affected stocks from all industries globally, the Tohoku earthquake

only significantly affected insurance and utilities stocks. We argue that the degree of

global stock markets’ response is explained by distinct contagion mechanisms. Events

such as the Lehman bankruptcy have the potential to result in panics at the global

stock markets, which emerge as a consequence of anticipated future losses resulting from

financial exposures or future liquidity freezes. As global stock markets are higly integrated,

such panics are easily transmitted. Contrary, natural disasters are less likely to be followed

by panics because stock market participants will anticipate price effects to have fully

materialized after the disaster. Moreover, the destruction of (real) assets will be most

severe in the event country itself. International supply chain disruptions arising from

destroyed production facilities impact global stock only to a lesser degree.

5 The term Tohoku refers to the Northeast of Japan’s main island Honshu and represents the region
that was most severely affected by the earthquake.



2 Transatlantic systemic risk

2.1 Introduction

Where does systemic risk come from, and how should we regulate it? The first, most

commonly cited mechanism causing banks to default jointly is contagion: Banks can be

connected with one another because of direct bilateral exposures, e.g., through interbank

loans or derivatives transactions entailing counterparty risk. In this case, regulation must

specify limits to the exposure one bank can have towards another to prevent one default

from causing a meltdown of the entire banking system. Second, if banks hold similar

portfolios, a common shock may simultaneously affect all banks and also lead to the joint

default of multiple banks. Then, the main role of regulation is to ensure that there is

sufficient variation across the portfolios of different banks, or at least variation in the

sensitivities of the portfolio values towards joint risk factors.

Both of these channels for systemic risk, contagion and conditional independence,

have been discussed in the literature on joint defaults (see, e.g., Lando and Nielsen, 2010;

Longstaff, 2010). However, evidence on which type of systemic risk dominates in the

banking system is extremely scarce for three reasons. First, information at the portfolio

level is, if at all, only available to supervisory authorities. Second, even supervisors of-

ten do not have disaggregate information on mutual exposures at the international level.

Hence, the only study differentiating between common shocks and bilateral exposures that

we are aware of analyzes US data (Helwege, 2010). An international setting, however,

is crucial because distinguishing between a common shock and one originating within an

individual bank is almost impossible at the national level. Third, even if they were avail-

able, portfolio-level information may not sufficiently reflect interbank exposures. Given

most banks’ limited exposures1 towards Lehman, it is unlikely that balance-sheet based

measures of systemic risk could have quantified the resulting declines of bank stocks and

defaults of numerous financial institutions.

In this study, we explore whether systemic risk arises from common shocks or contagion

in an international setting. We focus on the two largest integrated economic regions in the

world, the United States of America and Europe, because each constitutes an integrated

1 While Bank of America filed a 5.3 bn USD claim against Lehman, followed by Goldman with 2.5
bn USD, Bloomberg estimated the aggregate exposure for European banks and insurers to lie below
7.3 bn USD shortly after Lehman filed for bankruptcy on September 15, 2008. “European Banks,
Insurers Have $7.3 Billion Exposure to Lehman”, Fabio Benedetti-Valentini and Elisa Martinuzzi,
September 18, 2008.
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banking market with homogenous regulation and a single predominant currency. We

avoid the issue of obtaining portfolio exposures or balance sheet information by using the

prices of traded assets, and directly infer systemic risk by adapting the copula approach

of Buehler and Prokopczuk (2010) to credit default swap (CDS) premia.

We explore the importance of common shocks vs. contagion for the banking sector

in two steps. First, we document that connections between US and European banks

are low compared to those within each region. Second, we show that the onset of the

Subprime Mortgage Crisis increased systemic risk in Europe much more strongly than

in the US. This effect strongly points at a prevalence of common shocks: An increase

in subprime mortgage loan defaults in the US is a local shock (as, for that matter, the

Lehman bankruptcy). Since the connection between US banks is stronger than between

US and European banks, a transmission of this shock through contagion would imply that

systemic risk should increase less strongly in Europe than it does in the US.

We then turn to the implications of banking risk for the real sector. During the recent

financial crisis, banks received financial support under the troubled asset relief program

(TARP), the European Financial Stability Facility (EFSF), and the European Financial

Stabilisation Mechanism (EFSM) due to concerns about a recession arising from another

bank’s default. This concern was well-grounded in historical experience, even prior to the

Lehman bankrupcty: As Reinhart and Rogoff show in a series of papers (2009c, 2009a,

2009b), banking crises are regularly followed by a drop in equity prices, output, and

employment levels since real-sector firms rely on banks as a source of external funding.

We therefore determine how strongly banks and firms from a wide range of real sectors are

connected, again by applying the copula approach to CDS premia for these firms. This

allows us to base our analysis on a large range of firms besides banking and insurance,

for which regulatory guidelines demand publication of balance sheet information at an

extremely detailed level (see, e.g., Furfine, 2003; Wells, 2004; Gauthier et al., 2010).

Interestingly, we find that banks do not play a central role: Firms from a given real

sector are more strongly connected to both firms from the same real sector and to firms

from any other real sector than they are to banks. Only other banks and non-bank finan-

cial firms are more strongly connected to banks than to real-sector firms. At first sight,

this result appears surprising, because of the established role of banks in supplying loans

to the real sector. However, the importance of banks in this respect can vary substantially.

For example, a large group of small banks on average provides more loans than a small

group of large banks, and banks with a larger focus on investment banking provide fewer

loans than banks with a strong focus on commercial banking (Altunbas et al., 2002; Jia,

2009). Most banks in our sample are large, international banks. Therefore, our results
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imply that the default of a single large real-sector firm is more likely to lead to a recession

than the default of a large, international bank.

In addition to the differentiation between common shocks and contagion, our study

contributes to several strands of literature. First, we extend the broad body of literature

on systemic risk for financial institutions. Studies that compare banks to other financial

institutions (see, e.g., Billio et al., 2012; Bosma et al., 2012) mostly find that systemic

risk is highest for banks. Very few studies (see, e.g., Harmon et al., 2010; Muns and

Bijlsma, 2011; Buehler and Prokopczuk, 2010) compare systemic risk in the banking

sector to systemic risk for non-financial firms, and come to the same conclusion: systemic

risk is highest in the banking sector. We extend this literature by showing that the

interdependence between banks and non-banks is low, compared to systemic risk within

and between real sectors.

Studies analyzing the determinants of systemic risk identify bank size, interbank loan

ratio, and the bank’s country of origin (Elsinger et al., 2006a), linkages at the asset level

and mutual credit relations (Elsinger et al., 2006b), and the bank’s default probability

(Huang et al., 2012) at the individual level as significant factors. We contribute to this

literature by showing that the link between non-banks and banks is higher in Europe than

in the US. This is in line with the greater importance of banks as a source of external

financing in Europe (see, e.g., Demirguc-Kunt and Levine, 1999; Dermine, 2002; Kwok

and Tadesse, 2006).

From a macro perspective, Kaminsky and Reinhart (1999) argue that a typical banking

crisis begins with a period of financial liberalization, leading to an economic boom and an

overvaluation of the local currency, which leads to a recession and a reinforcing banking

and currency crisis. Multiple studies have explored this mechanism empirically, and come

to the conclusion that adverse economic conditions coincide with higher systemic risk (see,

e.g., Buehler and Prokopczuk, 2010; Bartram et al., 2007), and regions differ significantly

regarding their susceptibility to contagion (Bae et al., 2003). In contrast, Bosma et al.

(2012) study global relations between financial firms, and find that systemic risk has

uniformly decreased since the onset of the financial crisis. We contribute on this macro

perspective by showing how the financial crisis has intensified systemic risk in the US and

Europe.

Second, we contribute to the literature on international relations between financial

firms. The global banking system has become more integrated within the last 30 years

(Garratt et al., 2011) for a variety of reasons: In addition to the active interbank markets,

banks have branched out from their domestic to foreign markets, and the liberalization of

financial markets has led to the creation of new financial products. As a result, banks are
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exposed to similar risk factors globally. However, these global factors do not obliterate

the importance of regional factors (Bartram et al., 2007). Consistent with evidence by

Hartmann et al. (2006) for banks in different EMU countries, we find higher financial

integration within the US and within Europe than between the two regions. We also

document the evolution of these differences over time, and show that they drastically

decrease during the financial crisis.

Last, our results have implications for the structure of international financial regula-

tion. For example, Went (2010) discusses the implications of the new focus on systemic

risk in the Basel III framework, and Hanson et al. (2011) develop a framework for macro-

prudential instead of microprudential regulation. Blackmore and Jeapes (2009) study the

consequences of one global financial regulator compared to a multi-regulator approach

under international guidelines. Our results have two implications for this body of litera-

ture. First, monitoring exposures towards common shocks at the international level is a

central issue no less important than monitoring bilateral exposures. Second, bailouts for

large international banks which are termed ”too big to fail” are not necessary to avoid

spillovers to the real sector if the bilateral exposures between these banks and smaller

banks supplying the majority of loans are properly monitored.

The remainder of the paper is structured as follows: In Section 2.2, we give an overview

over the CDS time series used to compute systemic risk. We motivate and develop our

systemic risk measures in Section 2.3, and present the empirical results of our study in

Section 2.4. Section 2.5 summarizes and concludes.

2.2 Data

In our analysis, we use CDS premia to determine systemic risk. Clearly, the use of CDS

premia instead of stock returns or equity option data has advantages and disadvantages.

On the one hand, the CDS premium has a closer link to a firm’s default than stock returns.

For example, stocks frequently trade at a non-zero price even after the underlying firm has

defaulted on debt payments. This effect points at violations of the absolute priority rule,

which has been documented by Unal et al. (2003). On the other hand, CDS might also

reflect factors other than the underlying entity’s default risk. We believe that illiquidity,

the delivery option, and counterparty risk play a particular role:

(i) Lower liquidity in the CDS market will be associated with lower bid quotes. Hence,

our systemic risk estimate which is derived via the upper tail dependence is unlikely

to be upwards-biased due to deteriorating liquidity conditions in the CDS market.
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For CDS ask quotes, the opposite effect prevails. Buehler and Trapp (2010) show

that the effect of CDS liquidity on CDS quotes can be substantial.

(ii) Both CDS bid and ask quotes may be biased upwards or downwards because of

counterparty risk, depending on whether the protection seller’s or the protection

buyer’s default is more likely.2 As Arora et al. (2012) show, counterparty risk

has a very limited effect on CDS premia of around 1 bp.3 Hence, fluctuations of

counterparty risk are likely to have almost no effect on CDS premia overall.

(iii) A protection buyer has the option to deliver the cheapest out of a range of bonds

after a default of the underlying reference entity. This cheapest-to-deliver option

should increase both CDS bid and ask quotes.

Overall, CDS bid quotes are less likely to increase for reasons other than fundamental

default risk, compared to CDS ask quotes. An upper tail dependence estimate derived

from CDS bid quotes will thus be more conservative than an estimate derived from CDS

ask quotes. We attempt to minimize the impact of these alternative sources of CDS

premium variation by focusing on the CDS bid quote.

We obtain our CDS data from Bloomberg. We focus on the five-year maturity and

use Credit Market Analysis (CMA) as our price source, since Mayordomo et al. (2010)

show that new information seems to be reflected most quickly for this maturity-provider

combination. To ensure comparability between the CDS contracts, we focus on CDS

written on senior unsecured debt.

Overall, Bloomberg specifies the following sectors: Basic Materials, Communication,

Consumer (Cyclical), Consumer (Non-cyclical), Diversified, Energy, Financial, Sovereign,

Industrial, Technology, Utilities. We perform four modifications: First, we merge the

cyclical and the non-cyclical consumer sectors.4 Second, we manually verify whether firms

with the “Financial” sector tag are banks or non-banks,5 and split the ”Financial” sector

accordingly. Third, we drop CDS contracts written on firms from the “Diversified” sector

since only twelve firms, mostly holding companies, fall into this category. Last, we drop

2 To be precise, both the univariate default risk of protection buyer and seller as well as their joint
default risk with the underlying reference entity matter for the total effect.

3 This is likely due to the margin payments that are regularly made in most CDS contracts as the
contract value changes over time.

4 This merge ensures comparability between Bloomberg and Industry Classification Benchmark (ICB)
sectors.

5 We define a bank as a financial institution with the authority to accept deposits and grant loans. Such
an institution may of course also operate outside of this area, e.g., offer asset management services.
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all CDS contracts written on reference entities termed “Sovereign”, since the economic

rationale behind joint defaults of sovereign reference entities (such as municipalities or

states) is likely to be different than for non-sovereign firms. This leaves us with 1,323

firms.

We split our sample into the following two (regulatory) regions: the United States of

America (US) and Europe. For 957 of the 1,323 firms, we are able to identify the country

of the firms’ headquarters. 550 out of the 957 firms are headquartered either in the US or

in Europe. The subsample used for the following analysis contains 335 firms for the US

and 215 firms for Europe, including the UK.6 For these 550 firms, we collect daily CDS

bid quotes, denominated in basis points per annum, via Bloomberg from October 2004

to October 2009, omitting all zero quotes.7 Table 2.1 reports descriptive statistics of all

CDS contracts in our final sample.

As Panel A of Table 2.1 shows, the number of firms is not evenly distributed across

sectors with only 19 firms in the technology sector, and 173 firms in the consumer sector.

The joint financial sector (bank and non-bank) is the second-largest sector with 103

firms, of which 35 are banks. With a total of 65,950 observations for these banks, we

are confident that the CDS premia with a mean of 95 bp and a standard deviation of

305 bp are a reliable indicator of default risk in the banking sector. The strongly skewed

distribution of CDS premia (the median on average amounts to one third of the mean)

indicates that a symmetric dependence measure would severely underestimate upper tail

dependence.8

6 The exact composition of the subsample (i.e., the distribution of firms among countries within both
considered regions) is as follows:
US (335 firms) ; Europe (215 firms) – Austria (2), Belgium (3), Denmark (5), Finland (5), France (39),
Germany (29), Greece (2), Ireland (3), Italy (12), Netherlands (11), Norway (2), Portugal (2), Spain
(10), Sweden (14), Switzerland (13), United Kingdom (63). We include Norway and Switzerland in the
region Europe even though they are not members of the European Union since they implemented Basel
II along the Directives 2006/48/EC and 2006/49/EC of the European Parliament and the Council, and
are adopting the new Basel III directives, such that the region Europe has a homogenously regulated
banking sector.

7 To explore whether our results are affected by possibly stale premia, we repeat our analyses on a
subset of CDS premia where all quotes that do not exhibit a change within a week are omitted. The
results are virtually identical.

8 The high maximum values in our sample are due to the fact that a number of firms default during the
observation interval. For example, Clear Channel Communications, Inc., a media and entertainment
company, experienced a distressed exchange default in August 2009. Loss given default estimates
from Moody’s for senior unsecured bonds were as high as 92%. Consequently, CDS premia for Clear
Channel Communications increased to 9,580.20 bp.
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Table 2.1 – continued:
To minimize the impact of factors other than the underlying reference entity’s default risk, we only
consider bid quotes. In total, we have 5-year CDS contracts on 550 firms in our sample, all of which
are on senior unsecured debt. Panel A presents descriptive statistics of the entire sample and Panels B
and C provide statistics by region. Column two gives the sectoral abbreviations used in the remainder of
this paper, column three the number of available firms for each sector, columns four to six the relative
distribution of CDS contracts across currencies; column seven gives the number of observations used to
compute mean and standard deviation in columns eight and nine; columns ten to fourteen present the
quantiles. Appendix-Table 2.16 presents the names of the US and European banks in our sample and
Appendix-Table 2.17 provides supplementary information on the CDS market.

Regarding the US and European sub-samples in Panels B and C of Table 2.1, we

find that CDS contracts for US firms are almost exclusively denominated in US-Dollar

(USD). Our sample contains 12 US banks, which have a significantly higher average CDS

premium of 168 bp compared to their 23 European counterparts with an average of 55 bp.

We take this difference as an indication that aggregate risk (not dependence) is higher for

US banks than for European ones.

In Figures 2.1 and 2.2, we present the time series of CDS premia, taking cross-sectional

averages across all CDS premia for firms in the same sector on each observation date. We

separately display the averages for the US and Europe.

Figures 2.1 and 2.2 allow for two main observations. First, CDS premia in the different

sectors evolve similarly over time both in the US and in Europe until mid-2008. Around

the time of the Lehman default, CDS premia begin to evolve very differently in the US

and in Europe. In the US, we observe a drastic increase for banks and non-bank financial

firms. In Europe, the increase is strongest for non-bank financial and industrial firms.

For the latter, we attribute the increase to automotive firms subsumed in the industrial

sector. Banks, on the other hand, exhibit CDS premia in the intermediate range.

Our second observation concerns the comovement of CDS premia for different sectors.

As Figure 2.1 shows, the comovement of banks and firms from other sectors appears

limited for the US, as the banks’ time series exhibits spikes at dates which differ greatly

from the other sectors. For European banks, Figure 2.2 implies a higher comovement

between banks and non-bank sectors such as the industrial or the technology sector.

The two latter time-series almost appear as scaled versions of the banks’ time series.

This observation is in line with the higher importance of banks in Europe as a source

of external financing compared to the US (see, e.g., Demirguc-Kunt and Levine, 1999;

Dermine, 2002; Kwok and Tadesse, 2006). We further explore the dependencies between

banks and non-banks in Section 2.4.4.
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Figure 2.1 – Time evolution of CDS premia averaged across sectors (United States)
The figure presents sector-averaged time series of daily CDS bid quotes used in our analysis. All CDS
data are obtained from Bloomberg; the time series of observations ranges from October 2004 to October
2009. Daily averages are taken across all firms belonging to the given sector.
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Figure 2.2 – Time evolution of CDS premia averaged across sectors (Europe)
The figure presents sector-averaged time series of daily CDS bid quotes used in our analysis. All CDS
data are obtained from Bloomberg; the time series of observations ranges from October 2004 to October
2009. Daily averages are taken across all firms belonging to the given sector.
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2.3 Measuring systemic risk

We measure systemic risk applying a copula approach to focus on downside risk. Multiple

studies, such as Schneider et al. (2010), document that CDS premia are non-normally

distributed. Although earlier studies such as De Nicolo and Kwast (2002) use correlation

as a dependence measure, symmetric dependence measures cannot capture prevailing non-

normal distribution features as different behavior in the upper (right) and the lower (left)

tail of the distribution. Therefore, recent approaches use copulas (see, e.g., Buehler and

Prokopczuk, 2010; Chan-Lau et al., 2004; Rodriguez, 2007), extreme value theory (see,

e.g., Bae et al., 2003; Gropp and Moerman, 2004) or conditional measures such as CoVaR

and marginal expected shortfall (see, e.g., Acharya et al., 2010; Adrian and Brunnermeier,

2011). We combine the first two approaches of extreme value theory and copulas to model

the full dependence structure.

Since the upper tail of the CDS premium distribution reflects joint default risk, we

apply marginal distributions and a copula which allow for extreme positive values and

upper tail dependence.9 Hence, we use an upside risk measure derived using extreme

value theory.

As the marginal distribution function for a firm’s CDS premia, we consider the extreme

value distribution G characterized by

G (x) = exp

[
−
(

1 +
c (x− a)

b

)− 1
c

]
, (2.1)

with location parameter a, scale parameter b, and shape parameter c. For a shape param-

eter c < 0, the distribution function corresponds to the Weibull distribution, for c = 0,

the Gumbel distribution, and c > 0 the Fréchet distribution. The probability of firm i

9 When stock returns are used to measure a firm’s default, default (asymptotically) corresponds to an
infinite negative stock return if the absolute priority rule is observed. This approach is taken by
Buehler and Prokopczuk (2010), who estimate lower tail dependence parameters from stock returns.
Our approach is similar, but adjusts for the fact that CDS premia behave slightly differently as a
company approaches default. If default occurs, a protection seller pays the difference between the
face value of the underlying and its post-default price, or loss given default, to the protection buyer.
Hence, if default occurs with certainty one year after the CDS contract’s inception, the fair per annum
CDS premium equals the expected loss given default. If default occurs with certainty one day, or one
hour, after the inception, the fair CDS premium payment still equals the expected loss given default,
which is limited to the face value. However, due to the per annum quoting convention, this finite
premium payment corresponds to a quoted premium of 360 times the loss given default, or 360·24 the
loss given default, where time is measured in hours, etc. Asymptotically, the fair per annum quoted
CDS premium for a certain default event after one infinitesimally small time step thus approaches
infinity.
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defaulting is given by limy→∞ P (si > y) = limy→∞ 1 − G (y), where si denotes the CDS

premium of firm i.

In analogy to the marginal distribution, the joint default probability of two firms is

the probability of a joint extreme upwards movement of their quoted per annum CDS

premia. The copula framework allows us to characterize such a joint upwards movement

through the upper tail dependence coefficient as follows. For two firms i and j belonging

to sectors I and J with marginal distribution functions Gi and Gj of their respective

CDS premia si and sj, the upper tail dependence coefficient is given by

UTDC (i, j) = lim
x↑1

P
[
si > G−1

i (x)
∣∣sj > G−1

j (x)
]
, (2.2)

where P [·|·] denotes the conditional joint probability function of si and sj. Hence,

UTDC (i, j) measures the probability of an extremely large CDS premium for firm i,

given that such a high premium (in the upper tail of firm j’s premium distribution) is

observed for firm j. In other words, UTDC (i, j) measures the probability of distress for

firm i, given that firm j is in distress.

We model the joint probability function of firms i and j as the Gumbel copula

Ci,j (xi, xj) = exp

(
−
[
(− lnxi)

d(i,j) + (− lnxj)
d(i,j)

] 1
d(i,j)

)
, (2.3)

where d (i, j) > 1 measures the degree of dependence between firm i and firm j, xi =

Gi (si) is the value of the marginal distribution function Gi evaluated at si, and xj =

Gj (sj) the value of the marginal distribution function Gj evaluated at sj. Taking the

limit of the Gumbel copula for xi = xj = x ↑ 1, the UTDC for firms i and j thus becomes

UTDC (i, j) = 2− 2
1

d(i,j) . (2.4)

We calibrate the above copula model to the data in three steps: First, we determine the

parameter vector (ai, bi, ci) of the marginal generalized extreme value distribution defined

in Equation (2.1) for each firm i via maximum likelihood.10 Second, we determine the

10 Since we estimate constant parameters for the marginal distributions, it is important that the time
series from which we estimate the parameters is stationary. We test all CDS premia time series
intervals which we use in the following for stationarity, and are unable to reject that the time series
are stationary in the majority of the cases. Moreover, we find that the majority of the CDS premia
time series intervals exhibit significant auto-correlation, heteroscedasticity, and non-normality. Auto-
correlation becomes important only when we analyze UTDC in Section 2.4 and is addressed there.
The two latter properties are accommodated by the chosen marginal distribution. For detailed figures
we refer to Appendix-Table 2.18.
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value of the firm-specific distribution function for each CDS premium quote si,t observed

for firm i on date t. As a result, we obtain values (x̂i,1, . . . , x̂i,t) on the unit interval.

Third, we determine the copula parameter d (i, j) for each firm-combination (i, j) using

the Gumbel copula in Equation (2.3) by maximum likelihood, and compute the upper tail

coefficient UTDC (i, j) according to Equation (2.4).

We perform this estimation using a rolling window with a window width of three

months, which is rolled forward one week in each step, and let t denote the end point

of the time interval. We thus obtain a time series of firm-specific parameter vectors

(ai, bi, ci)t as well as copula parameters d (t; i, j) and upper tail dependence coefficients

UTDC (t; i, j).11

Since our hypotheses regarding systemic risk are on the aggregate level, we must

aggregate the firm-specific UTDC into sector- and region-specific UTDC. We perform

this aggregation in two ways, and then compute test statistics from these pooled samples.

In the first aggregation, we simply pool all estimates UTDC(t; i, j) over time t and

across all firms from sector I and region R and firms from sector J and region R̄:⋃
t,i,j

UTDC(t; i, j), (2.5)

where i ∈ IR ≡ {I∩R}, j ∈ J R̄ ≡ {J ∩R̄}, and R, R̄ ∈ {US, Europe}. For these pooled

observations, we compute two types of test statistics. First, we compute the mean, which

we denote by ŨTDC
(
IR,J R̄

)
, standard deviation, and percentiles of this aggregate.12 In

Section 2.4, we present these results in Panel A of each table. Second, we compute ranks

for the mean of the pooled observations within and across the different regions. We do

this to account for the fact that dependence between firms could be generally higher in the

US than in Europe, or vice versa, because of an unobservable country-specific effect. For

example, if the CDS market is dominated by US banks, the upper tail dependence measure

could be uniformly higher for US reference entities because their relation to US banks is

11 We also compute statistics that allow us to evaluate the goodness of fit of the marginal distributions
and the copula (see Appendix-Tables 2.19–2.22). Overall, we find that the parameters ai and bi are
very precisely estimated, with p-values below 10−12 for all firms and all time windows. The shape
parameters ci are mostly negative, but we obtain a small subset of 0.3% to 0.5% of estimates with
p-values larger than 1% for all 9 sectors we consider. A similar result holds for the copula: all p-values
for the parameters describing the dependence between two firms within the same sector, and between
a bank and a non-bank, lie below 1%.

12 Note that we distinguish between firms i ∈ IR and j ∈ J R̄. This distinction is most important for
Section 2.4.4, where we analyze inter-sectoral systemic risk between banks IR and non-banks JR

within one region as well as systemic risk between two regional banking sectors IR and IR̄.
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more important than to European banks. Hence, we evaluate upper tail dependence in a

sector I relative to upper tail dependence in all other sectors J (J ∩ I = ∅), and upper

tail dependence between sectors I and J relative to upper tail dependence between sector

J and all other sectors H (H ∩ I,J = ∅). Since our focus is on banks, we calculate the

mean upper tail dependence coefficient for each bank and non-bank sector (in Section 2.2,

we give a detailed overview of the nine sectors) and define the rank of systemic risk in

the regional banking sectors as

#
{

sectors J : ŨTDC
(
JR,JR

)
> ŨTDC

(
BankR,BankR

)}
. (2.6a)

The rank of systemic risk between a regional banking sector and a non-bank sector IR of

the same region is determined as follows:

#
{

sectors J : ŨTDC
(
IR,JR

)
> ŨTDC

(
IR,BankR

)}
. (2.6b)

We thus assign rank 1 to the most systemic sector and rank 9 to the least systemic sector.

In Section 2.4, we present these results in Panel C of each table.

In our second aggregation, we take the time dimension into account. Since our obser-

vations constitute an unbalanced panel, where the number of observations differs during

different time intervals, the statistics computed from Expression (2.5) are biased towards

intervals for which more UTDC estimates are available. We therefore pool only observa-

tions made during the three months interval that ends at date t, UTDC(t; i, j), for firms

i ∈ IR and j ∈ J R̄: ⋃
i,j

UTDC(t; i, j). (2.7)

Again, we compute means (denoted by UTDC
(
t; IR,J R̄

)
), standard deviations, and

percentiles, which allows us to analyze the evolution over time. For ease of exposition,

we also calculate statistics based on the set of these means across all t. Thus, we weigh

all observation dates equally by pooling the mean values over time:⋃
t

UTDC
(
t; IR,J R̄

)
. (2.8)

We display the corresponding means, standard deviations, and percentiles in Panel B1 in

all tables of Section 2.4. As a second test statistic, we check whether the average relation

between two sectors I and J is higher in one region R than in the alternative region R̄.
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We then count the time intervals during which the proposed relation holds:

countstat
(
UTDCR

I,J

)
=

#
{
t : UTDC

(
t; IR,JR

)
> UTDC

(
t; IR̄,J R̄

)}
T

. (2.9)

For ease of interpretation, we report the count statistics in percentage terms, i.e., the

absolute number of upward (downward) deviations in relation to the total sample. In

Section 2.4, Panel B2 (B3) displays the corresponding results in each table. Finally, we

also compute time-t specific ranks in analogy to the statistics in Expression (2.6). Ap-

plying the following rank count statistic, we count the number of time intervals where

UTDC
(
t; BankR,BankR

)
is ranked lower (i.e., more systemically important) than

UTDC
(
t; BankR̄,BankR̄

)
, i.e., where the rank of systemic risk in the banking sector

in one region is lower than the rank of systemic risk in the alternative region’s banking

sector:

rankcount
(
UTDCR

Bank

)
=

#
{
t : rankt

(
UTDC

(
t; BankR,BankR

))
< rankt

(
UTDC

(
t; BankR̄,BankR̄

))}
T

.

(2.10a)

Again, we report the count statistics in percentage terms. Analogously, we determine

the number of time intervals where UTDC
(
t; IR,BankR

)
is ranked lower (i.e., more sys-

temically important) than UTDC
(
t; IR̄,BankR̄

)
, i.e., where the rank of systemic risk

between the banking sector and a non-bank sector IR in one region is lower than between

the alternative region’s banking and non-bank sector IR̄:

rankcount
(
UTDCR

I,Bank

)
=

#
{
t : rankt

(
UTDC

(
t; IR,BankR

))
< rankt

(
UTDC

(
t; IR̄,BankR̄

))}
T

.

(2.10b)

The corresponding results are displayed in Panel D of each table in Section 2.4.

2.4 Results

We commence our analysis with an investigation of systemic risk for the US and the

European banking system, and proceed in three steps to show that common risk factors
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are central for systemic risk. In Section 2.4.1, we determine systemic risk among US and

among European banks. Then, we explore the relation between US and European banks

in Section 2.4.2. Third, we determine the increase in systemic risk among and between US

and European banks during the financial crisis in Section 2.4.3. We find that (i) systemic

risk is on average higher in the US than in Europe, (ii) the relation between the US and

Europe is weaker than systemic risk within each region, and (iii) systemic risk increases

more in Europe than it does in the US. We then explore the relation between the banking

sector and a wide range of real sectors in Section 2.4.4, where we find that the relation

between banks and non-banks is comparatively low, especially when we consider large

banks.

2.4.1 Systemic risk within the US and Europe

The regulatory frameworks in the US and Europe vary substantially. European banks are

mostly regulated according to the Basel II framework. US banks are regulated according

to rules determined by the Federal Reserve Board. A standard finding in the literature is

that the regulation of European banks is more effective compared to the more fragmented

regulation in the US due to shared responsibilities at the state and the federal level for the

latter. Thus, European regulation is likely to coincide with lower systemic risk. Figure 2.3

depicts the evolution of upper tail dependence in the US and European banking sectors.
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Figure 2.3 – Time evolution of upper tail dependence within the regional banking sectors
Upper tail dependence coefficients are estimated from a rolling time window consisting of data of the
previous 12 weeks, which is rolled across a series of daily CDS bid quotes ranging from October 2004
to October 2009 one week in each step. The above figure displays the evolution of mean upper tail
dependence, calculated as the average of all available upper tail dependence coefficients between banks
within the same region.
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We observe that systemic risk in the US is mostly higher than in Europe. Especially

in the first half of the sample, systemic risk is substantially lower for Europe. How-

ever, at the onset of the Subprime Crisis, systemic risk increases sharply in both regions.

To test whether this relation is statistically significant, we formulate the following null

hypothesis13:

Hypothesis 1a Systemic risk within the European banking sector is higher than within

the US banking sector.

Table 2.2 presents the results of our analysis of the regional banking sectors. Panels A

and B1 are organized as follows: The first column shows the region, the second column

the number of observations used for the calculation of the mean, quantiles, and standard

deviations in columns three to seven. The last two columns report the results of a t-test

with the null hypothesis that systemic risk in Europe is higher than in the US. Statistics

exhibited in Panel A are calculated according to Expression (2.5); statistics in Panel B1

are determined according to Expressions (2.7) and (2.8).

From Panel A, we observe that with a mean UTDC of 0.5872, systemic risk in the US

is higher than in Europe (mean UTDC of 0.5375) by 9%.14 This means that in the US

banking sector, a bank’s probability of distress, given that another bank is in distress, is

on average by 9% higher than in the European banking sector. This relation is confirmed

by the values for the median UTDC (0.6362 for the US and 0.5729 for the European

banking sector) as well as the aggregate figures of Panel B1, which are determined weighing

all UTDC
(
t; IR,J R̄

)
equally. Upper tail dependence in the US (0.5748) substantially

exceeds upper tail dependence in Europe (0.5107). Applying t-difference tests of means

reveals that the figures for the US are significantly higher than for Europe in both panels.15

Panel B2 reports results obtained applying the count statistic from Expression (2.9).

During more than half of the observation period, systemic risk in the US is significantly

higher than in Europe. In 65% of all dates t, we observe a higher mean UTDC in the US.

Approximately 80% of these upward deviations are statistically significant at the 5%-level.

13 Throughout this paper, we formulate the null hypotheses such that rejecting it confirms the economic
intuition.

14 Alternatively, we compute UTDC not in a rolling window approach, but using the entire time series
CDS bid premia. We find that the average UTDC estimates are higher, but that our main results
still hold. The detailed figures are presented in Appendix-Table 2.7.

15 By construction, the series of UTDC exhibit significant auto-correlation (see Appendix-Table 2.23).
Second, they exhibit substantial cross-correlation. Thus, the application of t-tests might not be
justified. To verify if our results still hold when applying an alternative non-parametric median-test,
we conduct the Wilcoxon test for each of our main results in Panel A of Tables 2.2 to 2.5. For each
of our calculations, we obtain highly significant p-values below 0.01%. The results are presented in
Appendix-Table 2.8.
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Panel A #obs mean min median max sdev t-value p-value

United States 11,040 0.5872 0.0029 0.6362 0.9738 0.2109
Europe 29,219 0.5375 0.0028 0.5729 0.9680 0.2329
∆%(US/Europe) 9.25 -19.5929 0.0000

Panel B1 #obs mean min median max sdev t-value p-value

United States 256 0.5748 0.2729 0.5788 0.8721 0.1266
Europe 256 0.5107 0.2393 0.4983 0.8792 0.1449
∆%(US/Europe) 12.56 -5.3326 0.0000

Panel B2 #obs signif > = < signif

United States 256 51.56 64.84 – 35.16 16.80
Europe 256 16.80 35.16 – 64.84 51.56
∆%(US/Europe) 206.98 84.44 -45.78 -67.42

Panel C #obs rank

United States 11,040 1
Europe 29,219 6
∆(US/Europe) -5

Panel D #obs > = < mean sdev

United States 256 65.62 16.80 17.58 3.17 2.76
Europe 256 17.58 16.80 65.62 5.16 2.59
∆%(US/Europe) 273.33 – -73.21 -38.65

Table 2.2 – Upper tail dependence within the United States and European banking sectors
All figures are estimated from the full sample of daily CDS bid quotes ranging from October 2004 to
October 2009 applying the methodology outlined in Section 2.3. We present aggregate statistics of
the upper tail dependence coefficients for banks within the same region. Panels A and B provide figures
associated with Hypothesis 1a stating that systemic risk within the European banking sector is higher than
within the US banking sector. The statistics presented in Panel A (Panel B1) are calculated according to
Expression (2.5) (Expressions (2.7) and (2.8)); the count statistics in Panel B2 are determined according
to Expression (2.9). Panels C and D present figures associated with Hypothesis 1b stating that systemic
risk within the European banking sector is higher than systemic risk within the US banking sector when
evaluated relative to the corresponding regions’ non-bank sectors. The rank (count) statistics of Panel C
(Panel D) are computed according to Expressions (2.6a) and (2.10a). Appendix-Table 2.9 provides
detailed statistics supplementary to the determination of ranks in Panel C. Panels A and B1 are organized
as follows: Column one gives the region to which the statistics in the following columns refer. Column
two reports the number of estimates used to compute the statistics given in columns three to seven. The
last two columns report the result of a t-test with the null hypothesis that the banks’ mean upper tail
dependence coefficients for the US and Europe are identical. Panels B2 and D read as follows: Column
two reports the number of estimates used to compute the count statistics given in columns three to seven.
The figures in the fourth (third) column of Panel B2 present the number of dates where the banks’ mean
upper tail dependence coefficient in the row-name region is (significantly) larger than in the alternative
region, relative to the total number of dates in the sample. Conversely, the figures in the sixth (seventh)
column of Panel B2 present the number of dates where the upper tail dependence coefficient within the
row-name region is (significantly) lower than within the alternative region, relative to the total number of
dates in the sample. Columns three to five of Panel D are organized accordingly but refer to the dynamic
ranks where a low rank indicates high upper tail dependence. Columns six and seven of Panel D report
the mean and standard deviation of the dynamic ranks. Each panel’s last row reports the deviations of
the regional statistics from each other – either expressed in percentage (∆%) or in absolute (∆) terms.
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Conversely, in only 17% of all dates t, systemic risk is significantly higher in Europe.

Therefore, we are able to reject Hypothesis 1a.

As stated in Section 2.3, a direct comparison of systemic risk levels prevailing in the

respective regions may not be appropriate since systemic risk could be generally higher

in either the US or in Europe as a result of unobservable country factors. To account for

this possibility, we evaluate systemic risk in the banking sector relative to systemic risk

in all sectors of the same region.

Figures 2.4 and 2.5 show how systemic risk in the banking sectors compares to systemic

risk in non-bank sectors. In the US, systemic risk in the banking sector is mostly higher

than in non-bank sectors. In Europe, systemic risk in the banking sector is not higher

than in non-bank sectors, even in the period following the default of Lehman Brothers.

To evaluate the significance of this observation, we test Hypothesis 1b:

Hypothesis 1b Systemic risk within the European banking sector is higher than systemic

risk within the the US banking sector when evaluated relative to the corresponding regions’

non-bank sectors.

Panels C and D of Table 2.2 exhibit the results obtained applying Expressions (2.6a) (pool-

ing over firms and time) and (2.10a) (pooling across firms for each date t). The numbers

show that systemic risk in the US banking sector remains high when benchmarked against

US non-bank sectors. When measured across the entire observation period, systemic risk

for US banks ranks first among all sectors. In Europe, systemic risk in the banking sector

ranks only sixth.16 In the (time) dynamic ranking exhibited in Panel D, the banking

sector is ranked 3.17 on average in the US and 5.16 in Europe. In 66% of all dates, the

rank of the US banking sector is lower than the rank of the European banking sector.

Therefore, we reject Hypothesis 1b and conclude that the US banking sector contains

more systemic risk.

The low systemic risk in the European banking sector, compared to European non-

bank sectors, seems striking at first. Due to interbank exposures, we would expect sys-

temic risk in the banking sector to be substantially higher than in other sectors. However,

regulation is likely to lower systemic risk in the regional banking sectors. Our systemic

risk estimates incorporate these regulatory effects as they are reflected in asset prices.

16 We present more detailed results of the sectoral ranking in Appendix-Table 2.9.
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Figure 2.4 – Time evolution of intra-sectoral upper tail dependence (United States)
Upper tail dependence coefficients are estimated from a rolling time window consisting of data of the
previous 12 weeks, which is rolled across a series of daily CDS bid quotes ranging from October 2004 to
October 2009, one week in each step. The above figure displays the evolution of mean intra-sectoral upper
tail dependence, calculated as the average of all available upper tail dependence coefficients between firms
within one sector.
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Figure 2.5 – Time evolution of intra-sectoral upper tail dependence (Europe)
Upper tail dependence coefficients are estimated from a rolling time window consisting of data of the
previous 12 weeks, which is rolled across a series of daily CDS bid quotes ranging from October 2004 to
October 2009, one week in each step. The above figure displays the evolution of mean intra-sectoral upper
tail dependence, calculated as the average of all available upper tail dependence coefficients between firms
within one sector.
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2.4.2 Systemic risk between the US and Europe

So far, our analysis has been constrained to systemic risk in the US and in Europe.

Over the last two decades, the global connectedness among businesses has increased.

This particularly applies to the banking industry: First, banks are connected via mutual

exposures in the interbank market. Second, both the number and volume of international

transactions have greatly increased, as banks extend the geographic range of their activity.

Third, liberalization of financial markets has triggered the origination and trade of new

products, thereby leading to an increased exposure to similar risk factors globally.

Therefore, we now focus on the connectedness of US and European banks. We argue

that systemic risk between them is governed by two competing effects: On the one hand,

the regulator’s influence to tackle systemic risk is mainly restricted to the respective

regulatory region. Hence, systemic risk across regions could be higher than within a region,

potentially harming the transatlantic banking system. On the other hand, (i) banks’ loan

portfolios across regions are likely to be less similar than within regions, (ii) interbank

exposures for banks of different regions are potentially smaller than for banks in the same

region. This leads to natural diversification and lower systemic risk (see Hartmann et al.,

2006 for systemic risk between different European countries).

We now examine whether the first or the second effect dominates by testing Hypothesis 2a:

Hypothesis 2a Systemic risk between the US and European banking sectors is higher

than systemic risk within the regions’ banking sectors.

In analogy to the previous sections, we benchmark systemic risk between banks in the US

and Europe with the figures obtained for systemic risk between non-banks:

Hypothesis 2b Systemic risk between the US and European banking sectors is higher

than systemic risk within the regions’ banking sectors when evaluated relative to systemic

risk between non-banks.

To evaluate systemic risk between the US and European banking sectors, we calculate

UTDC(t; i, j) between all US and all European banks, where i denotes any European

and j any US bank.17 The aggregate results are exhibited in Table 2.3.

The figures in Panel A reveal that systemic risk between US and European banks

(mean UTDC of 0.5031) is lower than within the US (0.5872) and Europe (0.5375).

The result is statistically significant and confirmed by the figures obtained by apply-

ing the alternative aggregation method (Panel B1) and the count statistics (Panel B2).

In 92% (63%) of all dates, systemic risk in the US (Europe) exceeds systemic risk between

17 Asynchronicity is not an issue in our analysis, since all our CDS premia are end-of-day CDS bid quotes
recorded at New York close.
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Panel A #obs mean min median max sdev t-value p-value

Transatlantic 35,635 0.5031 0.0029 0.5397 0.9418 0.2209
∆%(US/Trans) 16.71 -35.3142 0.0000
∆%(Europe/Trans) 6.83 -19.2415 0.0000

Panel B1 #obs mean min median max sdev t-value p-value

Transatlantic 256 0.4759 0.2033 0.4818 0.8574 0.1410
∆%(US/Trans) 20.78 -8.3483 0.0000
∆%(Europe/Trans) 7.30 -2.7519 0.0030

Panel B2 #obs signif > = < signif

∆%(US/Trans) 256 72.66 91.80 – 8.20 –
∆%(Europe/Trans) 256 45.31 63.28 – 36.72 13.28

Panel C #obs rank

Transatlantic 35,635 2
∆(US/Trans) -1
∆(Europe/Trans) 4

Panel D #obs > = < mean sdev

Transatlantic 256 4.18 3.01
United States 48.83 36.33 14.84
Europe 22.27 21.09 56.64

Table 2.3 – Upper tail dependence coefficients between US and European banking sectors
All figures are estimated from the full sample of daily CDS bid quotes ranging from October 2004 to
October 2009 applying the methodology outlined in Section 2.3. We present aggregate statistics of upper
tail dependence coefficients between US and European banks. Panels A and B provide figures associated
with Hypothesis 2a stating that systemic risk between the US and European banking sectors is higher
than systemic risk within the individual regions’ banking sectors. The statistics presented in Panel A
(Panel B1) are calculated according to Expression (2.5) (Expressions (2.7) and (2.8)); the count statistics
in Panel B2 are determined according to Expression (2.9). Panels C and D present figures associated
with Hypothesis 2b stating that systemic risk between the US and European banking sectors is higher than
systemic risk within the individual regions’ banking sectors when evaluated relative to systemic risk between
non-banks. The rank (count) statistics of Panel C (Panel D) are computed according to Expressions (2.6a)
and (2.10a). Appendix-Table 2.10 provides detailed statistics supplementary to the determination of ranks
in Panel C. Panels A and B1 report the upper tail dependence coefficients between US and European
banks as well as the deviations of these figures from the ones within the individual regions. Column two
reports the number of estimates used to compute the statistics given in columns three to seven. The last
two columns report the result of a t-test with the null hypothesis that the transatlantic mean upper tail
dependence coefficient and the mean upper tail dependence coefficient for the row-name region is identical.
Panels B2 and D read as follows: Column two reports the number of estimates used to compute the count
statistics given in columns three to seven. The figures in the fourth (third) column of Panel B2 present
the number of dates where the mean upper tail dependence coefficient for banks within the row-name
region is (significantly) larger than the transatlantic mean upper tail dependence coefficient, relative to
the total number of dates. Conversely, the figures in the sixth (seventh) column of Panel B2 present
the number of dates where the mean upper tail dependence coefficient within the row-name region is
(significantly) lower than the transatlantic mean upper tail dependence coefficient, relative to the total
number of dates in the sample. Columns three to five of Panel D are organized accordingly but refer to
the dynamic ranks where a low rank indicates a high mean upper tail dependence coefficient. Columns
six and seven of Panel D report the mean and standard deviation of the dynamic ranks.
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US and European banks. In both cases, the majority of these upward deviations are

statistically significant at the 5%-level. Hence, we can reject Hypothesis 2a.

Panels C and D evaluate systemic risk between the US and European banks relative

to systemic risk between US and European firms from non-bank sectors. Compared to

the figures for the non-bank sectors, the mean UTDC between European and US banks is

ranked second. The count statistics of Panel D confirm this finding: Systemic risk between

US and European banks is mostly larger than systemic risk in the European banking

sector. However, the level of upper tail dependence between US and European banks is

below the level of upper tail dependence in the individual regions’ banking sectors, and

we reject Hypothesis 2b. Our findings imply that systemic risk is stronger within regions

than between them. The diversification effect appears to outweigh the regulatory effect.

However, when evaluated relative to systemic risk between US and European non-banks,

systemic risk between US and European banks is high. Thus, regulators should be aware

of substantial transatlantic linkages between US and European banks.

2.4.3 Pre-crisis and crisis levels of systemic risk

In the course of the recent financial crisis with its origin in the subprime mortgage mar-

ket18, the adverse effects of systemic risk became visible. In this section, we analyze

pre-crisis and crisis systemic risk within and across the individual regions’ banking sec-

tors. We do so by specifying a pre-crisis and a crisis sample for which we calculate

separate figures. On June 22, 2007 Bear Stearns announced the bankruptcy of two of

its hedge funds.19 We specify this date as the beginning of the Subprime Crisis and con-

struct a pre-crisis sample comprising all UTDC estimated for dates t from October 2004 to

June 2007 and a crisis sample comprising all UTDC estimated for dates t from July 2007

to October 2009.20

We conjecture that systemic risk in both regions’ banking sectors increases substan-

tially as a result of the losses incurred in the subprime mortgage market. In contrast to

European banks, US banks are more integrated with the US mortgage market. This is

likely to be reflected in the pre-crisis systemic risk figure for the US banking sector.

18 On February 27, 2007 Freddie Mac was one of the first financial firms to announce that it would cease
buying subprime adjustable rate mortgage with borrowers of inferior credit standing.

19 High Grade Structured Credit Strategies Enhanced Fund and High Grade Structured Credit Strategies
Fund.

20 The UTDC of the first twelve dates t in the crisis sample is based partly based on data from the
pre-crisis time interval, because UTDC are estimated on basis of daily CDS bid quotes of the prior
three months.
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Panel A #obs mean min median max sdev t-value p-value

pre-crisis

United States 6,246 0.5580 0.0031 0.6053 0.9195 0.2131
Europe 11,823 0.4499 0.0028 0.4687 0.9196 0.2280
∆%(US/Europe) 24.01 -30.9728 0.0000

Transatlantic 17,046 0.4381 0.0029 0.4618 0.8971 0.2090
∆%(US/Trans) 27.36 -38.5725 0.0000
∆%(Europe/Trans) 2.70 -4.5571 0.0000

crisis

United States 4,794 0.6252 0.0029 0.6738 0.9738 0.2019
Europe 17,396 0.5970 0.0028 0.6428 0.9680 0.2168
∆%(US/Europe) 4.74 -8.1100 0.0000

Transatlantic 18,589 0.5627 0.0030 0.6156 0.9418 0.2146
∆%(US/Trans) 11.11 -18.2036 0.0000
∆%(Europe/Trans) 6.09 -15.0621 0.0000

Panel B1 #obs mean min median max sdev t-value p-value

pre-crisis

United States 144 0.5472 0.2729 0.5484 0.7770 0.1235
Europe 144 0.4319 0.2393 0.4215 0.7050 0.1022
∆%(US/Europe) 26.70 -8.6337 0.0000

Transatlantic 144 0.4186 0.2321 0.4096 0.7021 0.1034
∆%(US/Trans) 30.71 -9.5792 0.0000
∆%(Europe/Trans) 3.17 -1.0938 0.1370

crisis

United States 112 0.6103 0.3878 0.6208 0.8721 0.1222
Europe 112 0.6120 0.3607 0.6062 0.8792 0.1278
∆%(US/Europe) -0.28 -0.1014 0.4596

Transatlantic 112 0.5496 0.2033 0.5575 0.8574 0.1490
∆%(US/Trans) 11.05 -3.3372 0.0004
∆%(Europe/Trans) 11.36 -3.3668 0.0004

Panel B2 #obs signif > = < signif

pre-crisis

United States 144 70.14 83.33 – 16.67 6.94
Europe 144 6.94 16.67 – 83.33 70.14
∆%(US/Europe) 910.00 400.00 -80.00 -90.10

crisis

United States 112 27.68 41.07 – 58.93 29.46
Europe 112 29.46 58.93 – 41.07 27.68
∆%(US/Europe) -6.06 -30.30 43.48 6.45

Table 2.4 – continued on the next page
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– continued –

Panel C pre-crisis crisis ∆(crisis− pre-crisis)

#obs rank #obs rank #obs rank

United States 6,246 1 4,794 1 11,040 0
Europe 11,823 7 17,396 5 29,219 -2
∆(US/Europe) -6 -4 2

Panel D #obs > = < mean sdev

pre-crisis

United States 144 72.92 10.42 16.67 3.02 2.52
Europe 144 16.67 10.42 72.92 5.54 2.44
∆%(US/Europe) 337.50 – -77.14 -45.49

crisis

United States 112 56.25 25.00 18.75 3.36 3.04
Europe 112 18.75 25.00 56.25 4.68 2.70
∆%(US/Europe) 200.00 – -66.67 -28.24

Table 2.4 – Pre-crisis and crisis upper tail dependence within and between the US and
European banking sectors
The figures are estimated from our sample of daily CDS bid quotes ranging from October 2004 to October
2009 applying the methodology outlined in Section 2.3. The time series of banks’ mean upper tail
dependence coefficients is divided in two sub-series: The pre-crisis series contains upper tail dependence
coefficients for all dates from October 2004 to June 2007; the crisis series consists of upper tail dependence
coefficients for all dates from July 2007 to October 2009. We present aggregate statistics of upper tail
dependence coefficients for banks within the same region during the pre-crisis and crisis time regimes.
Panels A and B provide figures associated with Hypothesis 3a stating that in the course of the crisis, the
increase in systemic risk is higher for the US banking sector than for the European banking sector. The
statistics presented in Panel A (Panel B1) are calculated according to Expression (2.5) (Expressions (2.7)
and (2.8)); the count statistics in Panel B2 are determined according to Expression (2.9). Panels C
and D present figures associated with Hypothesis 3b stating that when evaluated relative to systemic
risk within the corresponding non-bank sectors, the increase in systemic risk is higher for the US banking
sector than for the European banking sector in the course of the crisis. The rank (count) statistics of
Panel C (Panel D) are computed according to Expressions (2.6a) and (2.10a). Appendix-Table 2.11
provides detailed statistics supplementary to the determination of ranks in Panel C. Panels A and B1 are
organized as follows: Column one gives the region to which the statistics in the following columns refer.
Column two reports the number of estimates used to compute the statistics given in columns three to
seven. The last two columns report the result of a t-test with the null hypothesis that the mean upper
tail dependence coefficient during the given time regime between US banks is identical to the mean upper
tail dependence coefficient between European banks. Panels B2 and D read as follows: Column two
reports the number of estimates used to compute the count statistics given in columns three to seven.
The figures in the fourth (third) column of Panel B2 present the number of dates where the mean upper
tail dependence coefficient during the given time interval between banks within the row-name region is
(significantly) larger than the mean upper tail dependence coefficient between banks in the alternative
region, relative to the total number of dates. Conversely, the figures in the sixth (seventh) column of
Panel B2 present the number of dates where the mean upper tail dependence coefficient between banks in
the row-name region is (significantly) lower than within the alternative region, relative to the total number
dates. Columns three to five of Panel D are organized accordingly but refer to the (time) dynamic ranks
where a low rank indicates a high upper tail dependence coefficient. Columns six and seven of Panel D
report the mean and standard deviation of the (time) dynamic ranks. Each panel’s last row reports the
deviations of the regional statistics from each other – either expressed in percentage (∆%) or in absolute
(∆) terms.
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As explained above, our hypothesis is that the increase of systemic risk in Europe

does not arise via interbank exposures, but through exposures to common risk factors.

Therefore, we conjecture that the increase of systemic risk is larger for the European

banking sector than for the US. If we find this to be the case, we can reject the hypothesis

that the increase in systemic risk arises through interbank exposures. We formulate the

following null hypothesis:

Hypothesis 3a In the course of the crisis, the increase in systemic risk is higher for the

US banking sector than for the European banking sector.

Table 2.4 reports the results. Panel A is calculated in the same fashion as Panel A of

Table 2.2. From Panel A, we observe that prior to the crisis, systemic risk in both regions

differs strongly. Whereas the mean UTDC between banks amounts to 0.5580 in the US,

it is much lower in Europe with an average value of 0.4499. The difference between these

two values is statistically significant and confirmed by the quantiles. In the course of the

Subprime Crisis, systemic risk in Europe rises much more sharply than in the US. The

mean UTDC rises to 0.5970 in Europe and to 0.6252 in the US. Even though it remains

statistically significant, the absolute difference between both values decreases drastically.

Thus, systemic risk in the individual regions’ banking sectors converges during the crisis,

which is in line with our initial expectation. Interestingly, transatlantic systemic risk

between US and European banks also increases at large scale from 0.4381 to 0.5627.

The figures in Panel B1 confirm the findings from Panel A. During the crisis, systemic

risk in the US is no longer significantly different from systemic risk in Europe, while it

differs significantly prior to the crisis. The count statistics in Panel B2 complement this

picture: Prior to the crisis, upper tail dependence in Europe is significantly higher than in

the US in only 7% of all dates but 70% vice versa. During the crisis, upper tail dependence

in Europe is significantly higher than in the US in 29% of all dates and 28% vice versa.

Thus, systemic risk in both individual regions’ banking sectors converged, and we reject

Hypothesis 3a.

Again, we compare systemic risk in the regional banking sectors to that in the respec-

tive regions’ non-bank sectors, applying the rank methodology from the previous sections.

Hence, we reformulate Hypothesis 3a:

Hypothesis 3b When evaluated relative to systemic risk within the corresponding regions’

non-bank sectors, the increase in systemic risk is higher for the US banking sector than

for the European banking sector in the course of the crisis.

Panels C and D of Table 2.4 present the results. The figures confirm the main results of

Panels A and B. Prior to the crisis period, systemic risk in the banking sector is highest

in the US, but ranks at 7 in Europe. US banks remain most systemic during the crisis
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period at rank 1, and European banks rank at 5, which is two ranks lower (i.e. more

systemic) than their pre-crisis rank. Panel D confirms this finding: Prior to the crisis, the

European banking sector is ranked 5.54 on average; during the crisis, however, the rank

is 4.68 and thus more systemic. We therefore reject Hypothesis 3b.

To check whether the Subprime Crisis is responsible for these differences in systemic

risk in Europe, we perform an attribution analysis. We collect the proportion of past-due

conventional subprime fixed-rate mortgages, which is published quarterly by the Mort-

gage Bankers Association of America, from Datastream. We then compute the correlation

between the mean UTDC of the regional banking sectors (calculated according to Expres-

sion (2.7)) and this index in the time interval from October 2004 to June 2007 and from

July 2007 to October 2009. In the pre-crisis interval, the correlation is substantially

higher for US banks with a value of -3.03% than for the European banks with a value

of -0.39%. In the crisis period, the correlation value rises much more sharply to -19.92%

for the European banking sector compared to -26.23% for the US banking sector.

The results provide evidence that systemic risk increases more sharply in Europe than

in the US. Interestingly, this increase is also visible for transatlantic systemic risk in the

banking sectors. We again attribute this to common shocks; see Kaufmann (2000).

This result allows us to make two conjectures. In light of the low pre-crisis correlation

between the European banking sector and the US mortgage market, it seems likely that

investors were mostly unaware of the European banks’ high exposure to US subprime

mortgage backed assets. However, the awareness of the exposure rose with the beginning

of the Subprime Crisis. Second, we identify the mortgage market as a major driver of

systemic risk in the banking sector. Substantial exposures in mortgage-backed securities

resulted in a high risk concentration. Regulators could improve their monitoring of risk

concentration by analyzing banks’ portfolios with respect to the type of obligors.

2.4.4 The relation between banks and non-banks

In this section, we measure systemic risk between the banking and non-bank sectors. This

relation is a vital concern for financial stability, since banks act as major credit suppliers

to the real economy. Therefore, regulators are especially concerned about the possibility

of negative spillovers. These spillovers can originate either from the banking sector or the

non-bank sectors: On the one hand, banks may default because their non-bank obligors

default (e.g., as a result of adverse economic conditions). On the other hand, banks may

decrease their loan supply to lower their risk exposures and cause a credit crunch, which

adversely affects the real sectors.
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To quantify the importance of banks, we compare systemic risk between the banking

sector and a real sector to systemic risk between that real sector and another real sector.

In addition to this pure industry comparison, we again distinguish between the US and

Europe. In most European economies, banks play a more important role in the provision

of capital to non-banks than in the US.21 Thus, we expect systemic risk between the

banking sector and non-bank sectors to be higher in Europe than in the US. As in the

previous section, we formulate the null hypothesis in the opposite direction:

Hypothesis 4a Systemic risk between the banking and any non-bank sector is lower in

Europe than in the US.

Table 2.5 presents the results of the analysis of systemic risk between the banking sector IR

and the non-bank sectors JR for R ∈ {US,Europe}. Panels A and B1 read as follows:

The second column contains the mean UTDC calculated for systemic risk in the US and

European banking sectors (as in Table 2.2) for reference purposes. Columns three to ten

present the regional mean UTDC between the banking sector and the respective non-bank

column-sector (given in the header).

From Panel A, we observe that dependence between non-banks and banks is higher

in Europe than in the US. E.g., the mean UTDC between the European banking and

basic materials sectors is 0.4879, whereas the mean UTDC between the US banking and

basic materials sectors is 0.4670. All deviations between the US and European figures

are significant. The figures obtained for the dynamic calculation in Panel B1, which we

include to demonstrate robustness with respect to the method of aggregation, mainly

confirm these results.

We provide the results for the count statistics in Panels B2 (B3), which read as follows:

The %-figures give the number of dates t in which the mean UTDC between the banking

sector and the column-sector in the row-region is (significantly) higher than in the alter-

native region, relative to the number of dates in the entire sample period T . In 57% (42%)

of all dates, the mean UTDC between the European banking and basic materials sector

is (significantly) higher than its US counterpart and in 43% (29%) of all dates vice versa.

We reject Hypothesis 4a, and our earlier result holds: systemic risk between the banking

sector and a non-bank sector is higher in Europe than in the US.

As in Section 2.4.1, we conduct the above analysis relative to the relation between any

two non-bank sectors:

Hypothesis 4b Systemic risk between the banking and a given non-bank sector is lower in

Europe than in the US when evaluated relative to systemic risk between the given non-bank

sector and any other non-bank sector.

21 See Sections 2.1 and 2.2 for references.
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Bank Basi Comm Cons Ener Fina Indu Tech Util

Panel A

United States 0.5872 0.4670 0.4647 0.4631 0.4673 0.4853 0.4642 0.4637 0.4762
Europe 0.5375 0.4879 0.4840 0.4811 0.4999 0.5183 0.4889 0.4582 0.4913
∆%(US/Europe) 9.25*** -4.28*** -3.97*** -3.74*** -6.53*** -6.36*** -5.06*** 1.21*** -3.08***

Panel B1

United States 0.5748 0.4391 0.4417 0.4452 0.4323 0.4709 0.4435 0.4395 0.4547
Europe 0.5107 0.4511 0.4515 0.4511 0.4473 0.4912 0.4503 0.4249 0.4474
∆%(US/Europe) 12.56*** -2.67 -2.16 -1.31 -3.34 -4.13** -1.51 3.44* 1.64

Panel B2

United States 64.84 42.97 44.53 47.27 41.90 35.55 46.48 49.41 47.27
Europe 35.16 57.03 55.47 52.73 58.10 64.45 53.52 50.59 52.73
∆%(US/Europe) 84.44 -24.66 -19.72 -10.37 -27.89 -44.85 -13.14 -2.33 -10.37

Panel B3

United States 51.56 29.30 27.34 37.50 28.46 25.78 31.25 25.10 35.16
Europe 16.80 41.80 40.23 41.41 42.29 47.66 42.19 21.57 37.50
∆%(US/Europe) 206.98 -29.91 -32.04 -9.43 -32.71 -45.90 -25.93 16.36 -6.25

Panel C

United States 1 9 9 9 9 3 9 9 9
Europe 1 9 9 9 9 7 9 9 9
∆(US/Europe) – – – – – -4 – – –

Panel D1

United States 50.78 55.08 59.77 60.94 42.97 41.02 53.91 45.70 49.22
Europe 12.11 23.83 24.61 19.92 30.47 18.75 26.17 38.67 31.25
∆%(US/Europe) 319.35 131.15 142.86 205.88 41.03 118.75 105.97 18.18 57.50

Panel D2

United States 1.73 5.12 5.19 4.80 5.64 3.50 5.40 5.48 5.39
Europe 2.84 6.69 6.63 6.46 6.08 4.81 6.37 5.81 6.36
∆(US/Europe) -1.11 -1.57 -1.44 -1.66 -0.44 -1.31 -0.97 -0.33 -0.97

Table 2.5 – Upper tail dependence between the banking and non-bank sectors within the
United States and Europe
All figures are estimated from the full sample of daily CDS bid quotes ranging from October 2004 to Oc-
tober 2009 applying the methodology outlined in Section 2.3. We present aggregate statistics of upper tail
dependence coefficients between banks and firms from a non-bank sector I within the same region. Pan-
els A and B provide figures associated with Hypothesis 4a stating that systemic risk between the banking
and any non-bank sector is lower in Europe than in the US. The statistics presented in Panel A (Panel B1)
are calculated according to Expression (2.5) (Expressions (2.7) and (2.8)); the count statistics in Panels B2
and B3 are determined according to Expression (2.9). Panels C, D1, and D2 present figures associated
with Hypothesis 4b stating that systemic risk between the banking and a non-bank sector is lower in Eu-
rope than in the US when evaluated relative to systemic risk between that and any other non-bank sector.
The rank statistics of Panel C are computed according to Expression (2.6b) and the rank count statistics
presented in Panel D1 are calculated applying Expression (2.10b). Appendix-Tables 2.12, 2.13, 2.14,
and 2.15 present detailed statistics supplementary to the figures given in Panels A, B, and C.
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Table 2.5 – continued:
Panels A and B1 are organized as follows: Column one gives the region to which the statistics in the
following columns refer. Columns two to ten report mean upper tail dependence coefficients between the
regional banking and the respective non-bank sector given in the column header. Panels B2 and B3 read
as follows: Columns two to ten of Panel B2 (B3) report the number of dates where the mean upper tail
dependence coefficients between banks and firms from a non-bank sector I within the row-name region is
(significantly) larger than in the alternative region, relative to the total number of dates. Panel C reports
the rank of the mean upper tail dependence coefficients between banks and firms from non-bank sector I
when benchmarked against the upper tail dependence coefficients between firms from non-bank sector I
given in the header and firms from any other non-bank sector J . Columns two to ten of Panels D1 and D2
are organized accordingly but refer to the dynamic ranks where a low rank indicates high systemic risk.
Panel D1 presents the count statistics, whereas Panel D2 reports the mean dynamic ranks across time.
Each panel’s last row reports the deviations of the US figures from the European ones – either expressed
in percentage (∆%) or in absolute (∆) terms. We assign asterisks if these deviations are statistically
significant. (*** = 1%-level; ** = 5%-level; * = 10%-level)

Panel C reports the rank of the mean UTDC between the banking and any non-bank

sector IR in comparison to the mean UTDC between non-bank sector IR and any other

non-bank sector JR in the corresponding regions. Recall that we assign rank 1 when

systemic risk is highest and rank 9 when systemic risk is lowest. We observe that the mean

UTDC between the non-bank and banking sectors is usually assigned rank 9. Therefore,

systemic risk between a non-bank sector and the banking sector is lower than systemic risk

between that sector and any other non-bank sector. In other words, banks and non-banks

are on average less strongly related than any two non-banks.

Panel D1 dynamically evaluates systemic risk between the banking sector and a non-

bank sector relative to systemic risk between that non-bank sector and any other non-bank

sector. We observe that the ranks are mostly lower for the US than for Europe. Panel D2

displays the mean of ranks across time and confirms these results; the ranks for the US are

slightly lower than for Europe. Jointly, Panel C to D2 allow us to reject Hypothesis 4b.

The mean ranks of Panel D2 are lower than the ones reported in Panel C. This is be-

cause the ranks in Panel C are calculated from ŨTDC
(
IR,JR

)
(pooled across all dates;

see Expression (2.5)), but the figures on the ranks in Panels D1 and D2 are determined

from all UTDC
(
t; IR,JR

)
calculated for all dates t (see Expression (2.7)). When measur-

ing systemic risk, we focus on the level of connectedness among firms in adverse economic

conditions. The figures in Panel C are strongly driven by estimates from the second half of

our sample, representing the period of the recent financial crisis. This is because we have

relatively more estimates available for the second half of the sample than for the first half.

In contrast, the figures of Panels D1 and D2 weigh all UTDC
(
t; IR,JR

)
equally across

time. Thus, the figures in Panel D2 underestimate the ranks for dates where systemic risk

is generally low and overestimate systemic risk between the banking and the non-bank
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sectors in both regions.

As discussed in the introduction, the default of a large bank may well affect other

banks and real-sector firms differently from the default of a small bank. On the one hand,

a large bank is likely to have stronger ties to other banks, and thus systemic risk within

the banking sector should be higher for large banks. On the other hand, Altunbas et al.

(2002) show that large banks provide fewer loans (relative to their asset size) to real-

sector firms than small banks, which suggests lower systemic risk between large banks

and the real sector. Therefore, we test whether large banks’ relations to other banks or

non-banks are different from those of small banks. We proceed as follows. We first collect

end-of-quarter total asset values for all banks in our sample from 2004 to 2009. Second,

we rank banks within the two regions US and Europe according to their asset size. Third,

we choose the three largest and the three smallest banks in each region for each quarter,

and pool the UTDC (i) by only considering the three largest banks, and (ii) by only

considering the three smallest banks.22 We then perform a t-test to analyze whether the

dependence between large banks and a given sector differs from the dependence between

small banks and a given sector. The results of the test are displayed in Table 2.6.

Table 2.6 shows two main results. First, systemic risk for large banks is larger than

systemic risk for small banks (0.6195 vs. 0.5582 for the US, 0.5709 vs. 0.4631 for Europe).

The differences are statistically significant at the 1%-level. As in Table 2.2, we find that

systemic risk in the US is higher than in Europe. Second, systemic risk between large

banks and any non-bank sector is always smaller than systemic risk between small banks

and any non-bank sector, and 13 out of the 16 differences are statistically significant at

the usual significance levels. Comparing Table 2.6 to Table 2.5, we find that systemic risk

within a non-bank sector is still higher than systemic risk between small banks and the

non-bank sector in 13 out of 16 cases.

The most important take-aways from our analysis of systemic risk between the banking

and the non-bank sectors in the US and Europe are as follows: Even though systemic

risk between banks and non-banks is higher in Europe than in the US, both are low

when compared to systemic risk between two different non-bank sectors. This is even

more pronounced when we consider large banks and suggests that the main beneficiaries

of bailouts for large banks termed too big to fail are in fact other large banks. Real-

sector firms, which are more dependent on smaller banks playing an important role in the

provision of loans, benefit from such bailouts only to a limited extent.

22 To avoid misclassifications, we only use UTDC which are estimated from CDS premia in a given
quarter, since a bank that is among the three largest banks in a given quarter might not be part of
this group in the next quarter.
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2.5 Summary and conclusion

In this paper, we study systemic risk in the US and European banking sectors. Using a

data set of CDS premia for 550 banks, other financial firms, and non-financial firms from

October 2004 to October 2009, we compute pair-wise lower tail dependence applying a

copula approach.

Our study makes two main contributions. First, we provide evidence that banks’ port-

folio exposures to common risk factors play a central role for systemic risk in the banking

sector. We come to this central conclusion by first showing that relations between US

and European banks are smaller than systemic risk within each geographic region. We

then show that the onset of the Subprime Mortgage Crisis increases systemic risk in Eu-

rope much more strongly than in the US. Given the lower degree of transatlantic linkage,

this finding could not arise if contagion were the primary channel of risk transmission.

Second, we show that dependence between the banking sector and a wide range of real

sectors is rather limited. In fact, dependence between any two real sectors is higher than

dependence between the banking sector and either of these real sectors.

Our findings have the following main implications. First, we take our findings as an

indication that the impact of common shocks to the banking sector is more important

than the effect of direct contagion. Since bank supervisors limit concentration risk, the

probability of a banking crisis originating from a bank’s exposure to another bank or a

particular real sector is rather limited. In contrast, banks on both sides of the Atlantic are

exposed to common shocks as a result of an increasingly integrated international banking

market. Though supervisors should pay attention to these connections, a supra-national

regulator may be unnecessary and national supervision based on harmonized standards

may suffice.

Second, the low dependence of real-sector firms on banks shows that the importance

of the banking sector in providing capital to the real sector is limited. While this finding

may partly depend on our sample, it still suggests that fears of a credit crunch resulting

from the default of a large, international bank may be exaggerated. Instead of providing

unlimited liquidity to the banking system as a whole, regulators should therefore (i)

improve real-sector firms’ access to the capital markets and (ii) continue to limit exposures

between large international banks and those banks providing the largest share of loans to

real-sector firms.
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2.A Robustness issues

Panel A – Robustness of Table 2.2

#obs mean min median max sdev t-value p-value

United States 43 0.6738 0.0304 0.7955 0.9576 0.2446
Europe 155 0.5822 0.0629 0.6408 0.9385 0.2728
∆%(US/Europe) 15.73 -1.9902 0.0233

Panel B – Robustness of Table 2.3

#obs mean min median max sdev t-value p-value

Transatlantic 175 0.6108 0.0624 0.7492 0.9114 0.2628
∆%(US/Trans) 10.31 -1.4262 0.0769
∆%(Europe/Trans) -4.69 -0.9702 0.1660

Panel C – Robustness of Table 2.5

Bank Basi Comm Cons Ener Fina Indu Tech Util

United States 0.6738 0.4939 0.4091 0.5194 0.5191 0.5041 0.5135 0.471 0.5147
Europe 0.5822 0.5279 0.4945 0.5226 0.6371 0.5645 0.5144 0.4706 0.5794
∆%(US/Europe) 15.73** -6.44* -17.28*** -0.59 -18.52*** -10.7*** -0.17 0.08 -11.17***

Table 2.7 – Robustness with respect to length of times series
All figures are estimated from the full sample of daily CDS bid quotes applying the methodology outlined
in Section 2.3. In contrast to the method of rolling windows of three months length across the sample,
the above figures are estimated from the entire time series of CDS quotes available from Credit Market
Analysis (CMA). Panel A presents aggregate statistics of the upper tail dependence coefficients for banks
within the same region. The exhibited figures are associated with Hypothesis 1a stating that systemic
risk within the European banking sector is higher than within the US banking sector. Panel B reports
the upper tail dependence coefficients between US and European banks as well as the deviations of
these figures from the ones within the individual regions. The displayed figures are associated with
Hypothesis 2a stating that systemic risk between the US and European banking sectors is higher than
systemic risk within the individual regions’ banking sectors. Panel C presents aggregate statistics of
upper tail dependence coefficients between banks and firms from a non-bank sector I within the same
region. The exhibited figures are associated with Hypothesis 4a stating that systemic risk between the
banking and any non-bank sector is lower in Europe than in the US Panels A to B are organized as follows:
Column one gives the region to which the statistics in the following columns refer. Column two reports
the number of estimates used to compute the statistics given in columns three to seven. The last two
columns report the result of a t-test with the null hypothesis that the banks’ mean upper tail dependence
coefficients for the US and Europe are identical. Panel C is organized differently: Column one gives the
region to which the statistics in the following columns refer. Columns two to ten report mean upper tail
dependence coefficients between the regional banking and the respective non-bank sector given in the
column header. The panel’s last row reports the deviations of the US figures from the European ones
expressed in percentage (∆%) terms. We assign asterisks if these deviations are statistically significant.
(*** = 1%-level; ** = 5%-level; * = 10%-level)
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Panel A – Robustness of Table 2.2

#obs mean min median max sdev Wilcoxon W p-value

United States 11,040 0.5872 0.0029 0.6362 0.9738 0.2109
Europe 29,219 0.5375 0.0028 0.5729 0.9680 0.2329
∆%(US/Europe) 11.06 724,123,788 0.0000

Panel B – Robustness of Table 2.3

#obs mean min median max sdev Wilcoxon W p-value

Transatlantic 35,635 0.5031 0.0029 0.5397 0.9418 0.2209
∆%(US/Trans) 17.88 484,235,522 0.0000
∆%(Europe/Trans) 6.14 1,139,819,042 0.0000

Panel C – Robustness of Table 2.4

#obs mean min median max sdev Wilcoxon W p-value

pre-crisis

United States 6,246 0.5580 0.0031 0.6053 0.9195 0.2131
Europe 11,823 0.4499 0.0028 0.4687 0.9196 0.2280
∆%(US/Europe) 29.14 189,108,812 0.0000

Transatlantic 17,046 0.4381 0.0029 0.4618 0.8971 0.2090
∆%(US/Trans) 31.07 141,954,634 0.0000
∆%(Europe/Trans) 1.49 207,819,478 0.0000

crisis

United States 4,794 0.6252 0.0029 0.6738 0.9738 0.2019
Europe 17,396 0.5970 0.0028 0.6428 0.9680 0.2168
∆%(US/Europe) 4.82 178,715,204 0.0000

Transatlantic 18,589 0.5627 0.0030 0.6156 0.9418 0.2146
∆%(US/Trans) 9.45 105,094,508 0.0000
∆%(Europe/Trans) 4.42 355,568,316 0.0000

Panel D – Robustness of Table 2.5

Bank Basi Comm Cons Ener Fina Indu Tech Util

United States 0.6362 0.4876 0.4908 0.4854 0.4930 0.5127 0.4885 0.4905 0.5076
Europe 0.5729 0.5068 0.5024 0.4971 0.5248 0.5473 0.5085 0.4726 0.5139
∆%(US/Europe) 11.06*** -3.79*** -2.32*** -2.36*** -6.06*** -6.33*** -3.94*** 3.78** -1.22***

Table 2.8 – Robustness with respect to Wilcoxon test
All figures are estimated from the full sample of daily CDS bid quotes ranging from October 2004 to
October 2009 applying the methodology outlined in Section 2.3. Instead of using a standard t-test for
the difference tests, we use the non-parametric Wilcoxon W -statistic.
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Table 2.8 – continued:
Panel A presents aggregate statistics of the upper tail dependence coefficients for banks within the same
region. The exhibited figures are associated with Hypothesis 1a stating that systemic risk within the
European banking sector is higher than within the US banking sector. Panel B reports the upper tail
dependence coefficients between US and European banks as well as the deviations of these figures from
the ones within the individual regions. The displayed figures are associated with Hypothesis 2a stating
that systemic risk between the US and European banking sectors is higher than systemic risk within
the individual regions’ banking sectors. Panel C presents aggregate statistics of upper tail dependence
coefficients for banks within the same region during the pre-crisis and crisis time regimes. The pre-crisis
series contains upper tail dependence coefficients for all dates from October 2004 to June 2007; the crisis
series consists of upper tail dependence coefficients for all dates from July 2007 to October 2009. The
exhibited figures are associated with Hypothesis 3a stating that in the course of the crisis, the increase in
systemic risk is higher for the US banking sector than for the European banking sector. Panel D presents
aggregate statistics of upper tail dependence coefficients between banks and firms from a non-bank sector I
within the same region. The exhibited figures are associated with Hypothesis 4a stating that systemic
risk between the banking and any non-bank sector is lower in Europe than in the US. Panels A to C
are organized as follows: Column one gives the region to which the statistics in the following columns
refer. Column two reports the number of estimates used to compute the statistics given in columns
three to seven. The last two columns report the result of a Wilcoxon test with the null hypothesis that
the banks’ median upper tail dependence coefficients for the US and Europe are identical. Panel D is
organized differently: Column one gives the region to which the statistics in the following columns refer.
Columns two to ten report median upper tail dependence coefficients between the regional banking and
the respective non-bank sector given in the column header. The panel’s last row reports the deviations
of the US figures from the European ones expressed in percentage (∆%) terms. We assign asterisks
if these deviations are tested statistically significant according to the Wilcoxon test. (*** = 1%-level;
** = 5%-level; * = 10%-level)
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2.B Supplementary tables

Supplement to Table 2.2, Panel C

Panel A – United States

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 11,040 0.5872 0.0029 0.6362 0.9738 0.2109 – –
Ener 2 36,082 0.5638 0.0028 0.6105 0.9893 0.2335 -9.39 0.0000
Util 3 17,934 0.5407 0.0028 0.5785 0.9644 0.2353 -16.98 0.0000
Basi 4 32,827 0.5231 0.0028 0.5548 0.9556 0.2373 -25.21 0.0000
Indu 5 83,010 0.5089 0.0028 0.5385 0.9763 0.2362 -33.12 0.0000
Fina 6 62,272 0.5073 0.0028 0.5404 0.9905 0.2346 -33.45 0.0000
Cons 7 538,077 0.4921 0.0028 0.5186 0.9955 0.2300 -43.08 0.0000
Comm 8 11,388 0.4894 0.0032 0.5055 0.9940 0.2374 -32.56 0.0000
Tech 9 7,689 0.4877 0.0031 0.5160 0.9770 0.2365 -30.19 0.0000

Panel B – Europe

Sector rank #obs mean min median max sdev t-value p-value

Fina 1 31,675 0.5871 0.0029 0.6376 0.9860 0.2322 -26.34 0.0000
Ener 2 1,225 0.5722 0.0054 0.6233 0.9439 0.2443 -5.11 0.0000
Util 3 39,824 0.5651 0.0030 0.6091 0.9719 0.2292 -15.54 0.0000
Indu 4 71,690 0.5585 0.0028 0.6039 0.9724 0.2310 -13.09 0.0000
Basi 5 23,103 0.5472 0.0031 0.5832 0.9731 0.2298 -4.79 0.0000
Bank 6 29,219 0.5375 0.0028 0.5729 0.9680 0.2329 – –
Comm 7 62,514 0.5357 0.0028 0.5718 0.9672 0.2266 -1.11 0.1342
Cons 8 237,569 0.5346 0.0028 0.5692 0.9777 0.2267 -2.05 0.0202
Tech 9 178 0.4777 0.0031 0.4844 0.9192 0.2181 -3.41 0.0003

Table 2.9 – Intra-sectoral upper tail dependence coefficients by geographical region
The above upper tail dependence coefficients are estimated from the full series of daily CDS bid quotes
ranging from October 2004 to October 2009. The statistics are calculated from all available upper tail
dependence coefficients between firms within one sector and one region according to Expression (2.5) on
page 17. (E.g., all upper tail dependence coefficients used to calculate the statistics for the basic materials
sector (Basi) are between firms within the basic materials sector.) The rank is identified by the mean
upper tail dependence coefficient applying Expression (2.6a); #obs is the number of estimates used to
compute the statistics in columns four to eight. The last two columns report the results of a t-test with
the null hypothesis that the banks’ mean upper tail dependence coefficient is identical to the mean upper
tail dependence coefficient of firms from the row-name sector.
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Supplement to Table 2.3, Panel C

Sector rank #obs mean min median max sdev t-value p-value

Ener 1 13,904 0.5218 0.0034 0.5674 0.9136 0.2256 -8.40 0.0000
Bank 2 35,635 0.5031 0.0029 0.5397 0.9418 0.2209 – –
Fina 3 87,396 0.4980 0.0028 0.5282 0.9930 0.2245 -3.59 0.0002
Indu 4 151,566 0.4967 0.0028 0.5280 0.9327 0.2233 -4.85 0.0000
Basi 5 54,232 0.4960 0.0028 0.5255 0.9454 0.2242 -4.66 0.0000
Cons 6 694,292 0.4868 0.0028 0.5126 0.9967 0.2215 -13.55 0.0000
Comm 7 52,087 0.4794 0.0028 0.5014 0.9455 0.2229 -15.55 0.0000
Util 8 49,697 0.4783 0.0028 0.5033 0.9294 0.2199 -16.21 0.0000
Tech 9 3,346 0.4616 0.0039 0.4805 0.9036 0.2124 -10.43 0.0000

Table 2.10 – Upper tail dependence between Europe and the United States by sector
The above upper tail dependence coefficients are estimated from the full series of daily CDS bid quotes
ranging from October 2004 to October 2009. The statistics are calculated from all available upper tail
dependence coefficients between firms within the same sector I but from different regions according to
Expression (2.5) on page 17. The rank is identified by the mean upper tail dependence coefficient applying
Expression (2.6a); #obs is the number of estimates used to compute the statistics in columns four to
eight. The last two columns report the results of a t-test with the null hypothesis that the mean inter-
regional upper tail dependence coefficient for banks and the mean upper tail dependence coefficient for
firms from a non-bank sector I are identical.
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Supplement to Table 2.4, Panel C

United States: Pre-Crisis

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 6,246 0.5580 0.0031 0.6053 0.9195 0.2131 – –
Util 2 8,007 0.5059 0.0028 0.5343 0.9397 0.2186 -14.26 0.0000
Fina 3 22,132 0.4782 0.0028 0.5040 0.9594 0.2233 -25.18 0.0000
Ener 4 10,139 0.4656 0.0029 0.4922 0.9321 0.2274 -25.85 0.0000
Comm 5 4,071 0.4523 0.0032 0.4601 0.9343 0.2217 -24.23 0.0000
Indu 6 33,483 0.4505 0.0028 0.4658 0.9623 0.2234 -35.14 0.0000
Tech 7 2,353 0.4494 0.0031 0.4657 0.8871 0.2295 -20.62 0.0000
Basi 8 9,626 0.4383 0.0031 0.4497 0.9243 0.2168 -34.19 0.0000
Cons 9 178,246 0.4204 0.0028 0.4292 0.9433 0.2163 -49.43 0.0000

United States: Crisis

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 4,794 0.6252 0.0029 0.6738 0.9738 0.2019 – –
Ener 2 25,943 0.6022 0.0028 0.6544 0.9893 0.2245 -6.61 0.0000
Util 3 9,927 0.5687 0.0033 0.6209 0.9644 0.2444 -13.89 0.0000
Basi 4 23,201 0.5583 0.0028 0.6040 0.9556 0.2366 -18.27 0.0000
Indu 5 49,527 0.5483 0.0028 0.5921 0.9763 0.2365 -21.76 0.0000
Cons 6 359,831 0.5276 0.0028 0.5664 0.9955 0.2283 -29.46 0.0000
Fina 7 40,140 0.5233 0.0030 0.5633 0.9905 0.2392 -28.32 0.0000
Comm 8 7,317 0.5101 0.0032 0.5392 0.9940 0.2433 -27.20 0.0000
Tech 9 5,336 0.5046 0.0031 0.5356 0.9770 0.2376 -27.38 0.0000

Table 2.11 – continued on the next page
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– continued –

Europe: Pre-Crisis

Sector rank #obs mean min median max sdev t-value p-value

Fina 1 11,151 0.5262 0.0029 0.5532 0.9441 0.2251 -25.50 0.0000
Util 2 19,101 0.5036 0.0039 0.5318 0.9492 0.2301 -19.99 0.0000
Basi 3 10,786 0.4911 0.0031 0.5132 0.9731 0.2233 -13.69 0.0000
Comm 4 28,484 0.4895 0.0029 0.5154 0.9631 0.2205 -16.24 0.0000
Cons 5 101,513 0.4636 0.0028 0.4802 0.9479 0.2200 -6.34 0.0000
Indu 6 31,355 0.4575 0.0028 0.4741 0.9227 0.2230 -3.10 0.0010
Bank 7 11,823 0.4499 0.0028 0.4687 0.9196 0.2280 – –
Ener 8 597 0.4084 0.0054 0.4439 0.8118 0.2074 -4.36 0.0000
Tech 9 82 0.3877 0.0031 0.3822 0.7627 0.1983 -2.47 0.0068

Europe: Crisis

Sector rank #obs mean min median max sdev t-value p-value

Ener 1 628 0.7279 0.0123 0.7682 0.9439 0.1605 -14.99 0.0000
Indu 2 40,335 0.6370 0.0028 0.6928 0.9724 0.2051 -21.18 0.0000
Util 3 20,723 0.6218 0.0030 0.6722 0.9719 0.2132 -11.23 0.0000
Fina 4 20,524 0.6202 0.0031 0.6848 0.9860 0.2292 -10.10 0.0000
Bank 5 17,396 0.5970 0.0028 0.6428 0.9680 0.2168 – –
Basi 6 12,317 0.5964 0.0048 0.6466 0.9542 0.2240 -0.22 0.4143
Cons 7 136,056 0.5876 0.0030 0.6332 0.9777 0.2169 -5.37 0.0000
Comm 8 34,030 0.5743 0.0028 0.6202 0.9672 0.2244 -10.95 0.0000
Tech 9 96 0.5546 0.0600 0.5620 0.9192 0.2049 -1.91 0.0281

Table 2.11 – Pre-crisis and crisis levels of intra-sectoral upper tail dependence coefficients
by geographical region
The above upper tail dependence coefficients are estimated from the full series of daily CDS bid quotes
ranging from October 2004 to October 2009. The statistics are calculated from all available upper tail
dependence coefficients between firms within one sector and region according to Expression (2.5) on
page 17. E.g., all upper tail dependence coefficients used to calculate the statistics for the basic materials
sector (Basi) in the first panel are between US firms within the basic materials sector. The rank is
identified by the mean upper tail dependence coefficient applying Expression (2.6a); #obs is the number
of estimates used to compute the statistics in columns four to eight. The last two columns report the
results of a t-test with the null hypothesis that the mean upper tail dependence coefficient for banks
in the given region and during the given time regime is identical to the mean upper tail dependence
coefficient for firms from the non-bank sector I in the same region and during the same time regime.
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Supplement to Table 2.5, Panel A

Panel A – United States

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 11,040 0.5872 0.0029 0.6362 0.9738 0.2109 – –
Fina 2 50,533 0.4853 0.0028 0.5127 0.9419 0.2180 -44.72 0.0000
Util 3 26,385 0.4762 0.0028 0.5076 0.9297 0.2179 -45.35 0.0000
Ener 4 34,441 0.4673 0.0028 0.4930 0.9261 0.2179 -50.68 0.0000
Basi 5 34,312 0.4670 0.0029 0.4876 0.9324 0.2229 -49.90 0.0000
Comm 6 20,575 0.4647 0.0029 0.4908 0.9509 0.2200 -47.84 0.0000
Indu 7 57,001 0.4642 0.0028 0.4885 0.9320 0.2161 -54.95 0.0000
Tech 8 16,866 0.4637 0.0028 0.4905 0.9185 0.2189 -46.75 0.0000
Cons 9 139,948 0.4631 0.0028 0.4854 0.9543 0.2169 -57.99 0.0000

Panel B – Europe

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 29,219 0.5375 0.0028 0.5729 0.9680 0.2329 – –
Fina 2 60,251 0.5183 0.0028 0.5473 0.9702 0.2286 -11.68 0.0000
Ener 3 12,046 0.4999 0.0028 0.5248 0.9436 0.2358 -14.83 0.0000
Util 4 59,340 0.4913 0.0028 0.5139 0.9400 0.2320 -27.79 0.0000
Indu 5 83,233 0.4889 0.0028 0.5085 0.9504 0.2302 -30.91 0.0000
Basi 6 47,924 0.4879 0.0028 0.5068 0.9468 0.2295 -28.92 0.0000
Comm 7 77,473 0.4840 0.0028 0.5024 0.9601 0.2259 -34.20 0.0000
Cons 8 154,464 0.4811 0.0028 0.4971 0.9532 0.2269 -38.80 0.0000
Tech 9 5,760 0.4582 0.0028 0.4726 0.9243 0.2234 -23.78 0.0000

Table 2.12 – Inter-sectoral upper tail dependence coefficients by geographical region
The above upper tail dependence coefficients are estimated from the full series of daily CDS bid quotes
ranging from October 2004 to October 2009. The statistics are calculated from all available upper tail
dependence coefficients between banks and firms from any non-bank sector I within the same region
according to Expression (2.5) on page 17. (E.g., all upper tail dependence coefficients used to calculate
the statistics in row “Basi” are between firms of the basic materials sector (Basi) and firms of the
banking sector (Bank).) The rank is identified by the inter-sectoral mean upper tail dependence coefficient
applying Expression (2.6b); #obs is the number of estimates used to compute the statistics in columns
four to eight. The last two columns report the results of a t-test with the null hypothesis that the banks’
mean upper tail dependence coefficient and the mean upper tail dependence coefficient between banks
and firms from any non-bank sector I are identical.
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Supplement to Table 2.5, Panel B

Panel A – United States

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 256 0.5748 0.2729 0.5788 0.8721 0.1266 – –
Fina 2 256 0.4709 0.2155 0.4621 0.7999 0.1085 -9.97 0.0000
Util 3 256 0.4547 0.1846 0.4364 0.8264 0.1155 -11.21 0.0000
Cons 4 256 0.4452 0.1562 0.4320 0.7296 0.0977 -12.97 0.0000
Indu 5 256 0.4435 0.1598 0.4225 0.7382 0.1099 -12.54 0.0000
Comm 6 256 0.4417 0.1727 0.4374 0.7086 0.1082 -12.79 0.0000
Tech 7 256 0.4395 0.0759 0.4411 0.6834 0.1127 -12.77 0.0000
Basi 8 256 0.4391 0.1449 0.4151 0.7488 0.1225 -12.33 0.0000
Ener 9 256 0.4323 0.1157 0.4231 0.7421 0.1251 -12.80 0.0000

Panel B – Europe

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 256 0.5107 0.2393 0.4983 0.8792 0.1449 – –
Fina 2 256 0.4912 0.2332 0.4788 0.8276 0.1309 -1.60 0.0551
Comm 3 256 0.4515 0.1969 0.4272 0.7893 0.1287 -4.89 0.0000
Basi 4 256 0.4511 0.1894 0.4300 0.8494 0.1384 -4.76 0.0000
Cons 5 256 0.4511 0.2235 0.4233 0.8353 0.1258 -4.97 0.0000
Indu 6 256 0.4503 0.2189 0.4269 0.8118 0.1339 -4.90 0.0000
Util 7 256 0.4474 0.1736 0.4302 0.8155 0.1430 -4.97 0.0000
Ener 8 253 0.4473 0.0439 0.4188 0.8604 0.1683 -4.56 0.0000
Tech 9 255 0.4249 0.0285 0.4104 0.8045 0.1427 -6.74 0.0000

Table 2.13 – Inter-sectoral upper tail dependence coefficients by geographical region
The above upper tail dependence coefficients are estimated from the full series of daily CDS bid quotes
ranging from October 2004 to October 2009. The statistics are calculated from all available upper tail
dependence coefficients between banks and firms from any non-bank sector I within the same region
according to Expression (2.8) on page 18. (E.g., all upper tail dependence coefficients used to calculate
the statistics in row “Basi” are between firms of the basic materials sector (Basi) and firms of the
banking sector (Bank).) The rank is identified by the inter-sectoral mean upper tail dependence coefficient
applying Expression (2.6b); #obs is the number of estimates used to compute the statistics in columns
four to eight. The last two columns report the results of a t-test with the null hypothesis that the banks’
mean upper tail dependence coefficient and the mean upper tail dependence coefficient between banks
and firms from any non-bank sector I are identical.
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Supplement to Table 2.5, Panel C (United States)

Panel A – Banks

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 11,040 0.5872 0.0029 0.6362 0.9738 0.2109 – –
Fina 2 50,533 0.4853 0.0028 0.5127 0.9419 0.2180 -44.72 0.0000
Util 3 26,385 0.4762 0.0028 0.5076 0.9297 0.2179 -45.35 0.0000
Ener 4 34,441 0.4673 0.0028 0.4930 0.9261 0.2179 -50.68 0.0000
Basi 5 34,312 0.4670 0.0029 0.4876 0.9324 0.2229 -49.90 0.0000
Comm 6 20,575 0.4647 0.0029 0.4908 0.9509 0.2200 -47.84 0.0000
Indu 7 57,001 0.4642 0.0028 0.4885 0.9320 0.2161 -54.95 0.0000
Tech 8 16,866 0.4637 0.0028 0.4905 0.9185 0.2189 -46.75 0.0000
Cons 9 139,948 0.4631 0.0028 0.4854 0.9543 0.2169 -57.99 0.0000

Panel B – Basic Materials

Sector rank #obs mean min median max sdev t-value p-value

Basi 1 32,827 0.5231 0.0028 0.5548 0.9556 0.2373 -31.56 0.0000
Ener 2 68,177 0.5116 0.0029 0.5435 0.9854 0.2344 -29.18 0.0000
Indu 3 105,884 0.5042 0.0028 0.5331 0.9631 0.2350 -25.77 0.0000
Cons 4 271,713 0.4972 0.0028 0.5252 0.9968 0.2301 -22.94 0.0000
Comm 5 40,564 0.4932 0.0028 0.5154 0.9949 0.2346 -15.57 0.0000
Tech 6 33,114 0.4910 0.0028 0.5191 0.9479 0.2324 -13.67 0.0000
Util 7 48,183 0.4894 0.0028 0.5128 0.9429 0.2297 -13.95 0.0000
Fina 8 86,188 0.4746 0.0028 0.4943 0.9792 0.2319 -5.15 0.0000
Bank 9 34,312 0.4670 0.0029 0.4876 0.9324 0.2229 – –

Panel C – Communication

Sector rank #obs mean min median max sdev t-value p-value

Ener 1 41,220 0.4937 0.0028 0.5180 0.9412 0.2322 -14.88 0.0000
Basi 2 40,564 0.4932 0.0028 0.5154 0.9949 0.2346 -14.48 0.0000
Tech 3 20,439 0.4901 0.0029 0.5168 0.9475 0.2335 -11.33 0.0000
Comm 4 11,388 0.4894 0.0032 0.5055 0.9940 0.2374 -9.33 0.0000
Indu 5 63,428 0.4848 0.0029 0.5040 0.9860 0.2339 -10.84 0.0000
Cons 6 161,914 0.4824 0.0028 0.5033 0.9969 0.2313 -10.34 0.0000
Util 7 29,058 0.4785 0.0029 0.5007 0.9664 0.2278 -6.72 0.0000
Fina 8 50,925 0.4661 0.0029 0.4829 0.9757 0.2331 -0.73 0.2340
Bank 9 20,575 0.4647 0.0029 0.4908 0.9509 0.2200 – –

Table 2.14 – continued on the next page
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– continued –

Panel D – Consumer

Sector rank #obs mean min median max sdev t-value p-value

Basi 1 271,713 0.4972 0.0028 0.5252 0.9968 0.2301 -45.93 0.0000
Ener 2 274,135 0.4953 0.0028 0.5246 0.9956 0.2278 -43.73 0.0000
Cons 3 538,077 0.4921 0.0028 0.5186 0.9955 0.2300 -42.52 0.0000
Indu 4 422,455 0.4884 0.0028 0.5143 0.9920 0.2306 -36.14 0.0000
Comm 5 161,914 0.4824 0.0028 0.5033 0.9969 0.2313 -23.52 0.0000
Util 6 194,764 0.4792 0.0028 0.5066 0.9968 0.2233 -20.91 0.0000
Tech 7 133,009 0.4789 0.0028 0.5053 0.9775 0.2269 -18.70 0.0000
Fina 8 353,210 0.4739 0.0028 0.4963 0.9917 0.2273 -15.30 0.0000
Bank 9 139,948 0.4631 0.0028 0.4854 0.9543 0.2169 – –

Panel E – Energy

Sector rank #obs mean min median max sdev t-value p-value

Ener 1 36,082 0.5638 0.0028 0.6105 0.9893 0.2335 -56.69 0.0000
Util 2 51,486 0.5259 0.0028 0.5639 0.9831 0.2324 -37.14 0.0000
Basi 3 68,177 0.5116 0.0029 0.5435 0.9854 0.2344 -29.24 0.0000
Indu 4 109,551 0.5075 0.0028 0.5395 0.9924 0.2306 -28.55 0.0000
Tech 5 34,749 0.4977 0.0029 0.5313 0.9476 0.2298 -17.83 0.0000
Cons 6 274,135 0.4953 0.0028 0.5246 0.9956 0.2278 -21.57 0.0000
Comm 7 41,220 0.4937 0.0028 0.5180 0.9412 0.2322 -16.02 0.0000
Fina 8 89,247 0.4910 0.0028 0.5182 0.9952 0.2336 -16.26 0.0000
Bank 9 34,441 0.4673 0.0028 0.4930 0.9261 0.2179 – –

Panel F – Financial (Non-Bank)

Sector rank #obs mean min median max sdev t-value p-value

Fina 1 62,272 0.5073 0.0028 0.5404 0.9905 0.2346 -16.12 0.0000
Ener 2 89,247 0.4910 0.0028 0.5182 0.9952 0.2336 -4.43 0.0000
Bank 3 50,533 0.4853 0.0028 0.5127 0.9419 0.2180 – –
Util 4 63,179 0.4829 0.0028 0.5072 0.9922 0.2319 -1.79 0.0368
Basi 5 86,188 0.4746 0.0028 0.4943 0.9792 0.2319 -8.47 0.0000
Cons 6 353,210 0.4739 0.0028 0.4963 0.9917 0.2273 -10.63 0.0000
Tech 7 41,610 0.4683 0.0028 0.4943 0.9478 0.2312 -11.47 0.0000
Indu 8 136,297 0.4672 0.0028 0.4878 0.9947 0.2305 -15.37 0.0000
Comm 9 50,925 0.4661 0.0029 0.4829 0.9757 0.2331 -13.56 0.0000

Table 2.14 – continued on the next page
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– continued –

Panel G – Industrials

Sector rank #obs mean min median max sdev t-value p-value

Indu 1 83,010 0.5089 0.0028 0.5385 0.9763 0.2362 -36.00 0.0000
Ener 2 109,551 0.5075 0.0028 0.5395 0.9924 0.2306 -37.13 0.0000
Basi 3 105,884 0.5042 0.0028 0.5331 0.9631 0.2350 -33.70 0.0000
Util 4 77,120 0.4959 0.0028 0.5270 0.9767 0.2275 -25.76 0.0000
Tech 5 52,927 0.4914 0.0028 0.5195 0.9601 0.2311 -20.20 0.0000
Cons 6 422,455 0.4884 0.0028 0.5143 0.9920 0.2306 -23.72 0.0000
Comm 7 63,428 0.4848 0.0029 0.5040 0.9860 0.2339 -15.84 0.0000
Fina 8 136,297 0.4672 0.0028 0.4878 0.9947 0.2305 -2.64 0.0041
Bank 9 57,001 0.4642 0.0028 0.4885 0.9320 0.2161 – –

Panel H – Technology

Sector rank #obs mean min median max sdev t-value p-value

Ener 1 34,749 0.4977 0.0029 0.5313 0.9476 0.2298 -16.00 0.0000
Indu 2 52,927 0.4914 0.0028 0.5195 0.9601 0.2311 -13.74 0.0000
Basi 3 33,114 0.4910 0.0028 0.5191 0.9479 0.2324 -12.66 0.0000
Comm 4 20,439 0.4901 0.0029 0.5168 0.9475 0.2335 -11.20 0.0000
Tech 5 7,689 0.4877 0.0031 0.5160 0.9770 0.2365 -7.77 0.0000
Util 6 23,981 0.4861 0.0028 0.5107 0.9663 0.2268 -9.96 0.0000
Cons 7 133,009 0.4789 0.0028 0.5053 0.9775 0.2269 -8.26 0.0000
Fina 8 41,610 0.4683 0.0028 0.4943 0.9478 0.2312 -2.23 0.0130
Bank 9 16,866 0.4637 0.0028 0.4905 0.9185 0.2189 – –

Panel I – Utilities

Sector rank #obs mean min median max sdev t-value p-value

Util 1 17,934 0.5407 0.0028 0.5785 0.9644 0.2353 -29.60 0.0000
Ener 2 51,486 0.5259 0.0028 0.5639 0.9831 0.2324 -28.86 0.0000
Indu 3 77,120 0.4959 0.0028 0.5270 0.9767 0.2275 -12.25 0.0000
Basi 4 48,183 0.4894 0.0028 0.5128 0.9429 0.2297 -7.64 0.0000
Tech 5 23,981 0.4861 0.0028 0.5107 0.9663 0.2268 -4.98 0.0000
Fina 6 63,179 0.4829 0.0028 0.5072 0.9922 0.2319 -4.03 0.0000
Cons 7 194,764 0.4792 0.0028 0.5066 0.9968 0.2233 -2.08 0.0188
Comm 8 29,058 0.4785 0.0029 0.5007 0.9664 0.2278 -1.22 0.1118
Bank 9 26,385 0.4762 0.0028 0.5076 0.9297 0.2179 – –

Table 2.14 – Intra- and inter-sectoral upper tail dependence coefficients (United States)
The above upper tail dependence coefficients are estimated from the full series of daily CDS bid quotes
ranging from October 2004 to October 2009.
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Table 2.14 – continued:
The statistics are calculated from all available upper tail dependence coefficients between firms of one
sector I and firms of any other sector J within the United States. E.g., all statistics reported in “Panel B –
Basic Materials” are between US firms of the basic materials sector (Basi) and US firms of any other sector
(e.g., banking sector or utilities sector). The intra-sectoral mean upper tail dependence coefficients are
included for reference. The rank is identified by the inter-sectoral mean upper tail dependence coefficients
according to Expression (2.6b); #obs is the number of estimates used to compute the statistics in columns
four to eight. The last two columns report the results of a t-test with the null hypothesis that the
mean upper tail dependence coefficient between firms from sector I and banks and the mean upper tail
dependence coefficient between firms from sector I (panel name) and J (row name) are identical. E.g.,
in “Panel B – Basic Materials”, the hypothesis that the mean upper tail dependence coefficient between
banks and basic material firms of 0.4670 is identical to the mean upper tail dependence coefficient between
basic material and energy firms of 0.5116 can be rejected with a t-statistic of -29.18.
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Supplement to Table 2.5, Panel C (Europe)

Panel A – Banks

Sector rank #obs mean min median max sdev t-value p-value

Bank 1 29,219 0.5375 0.0028 0.5729 0.9680 0.2329 – –
Fina 2 60,251 0.5183 0.0028 0.5473 0.9702 0.2286 -11.68 0.0000
Ener 3 12,046 0.4999 0.0028 0.5248 0.9436 0.2358 -14.83 0.0000
Util 4 59,340 0.4913 0.0028 0.5139 0.9400 0.2320 -27.79 0.0000
Indu 5 83,233 0.4889 0.0028 0.5085 0.9504 0.2302 -30.91 0.0000
Basi 6 47,924 0.4879 0.0028 0.5068 0.9468 0.2295 -28.92 0.0000
Comm 7 77,473 0.4840 0.0028 0.5024 0.9601 0.2259 -34.20 0.0000
Cons 8 154,464 0.4811 0.0028 0.4971 0.9532 0.2269 -38.80 0.0000
Tech 9 5,760 0.4582 0.0028 0.4726 0.9243 0.2234 -23.78 0.0000

Panel B – Basic Matertials

Sector rank #obs mean min median max sdev t-value p-value

Basi 1 23,103 0.5472 0.0031 0.5832 0.9731 0.2298 -32.25 0.0000
Indu 2 83,532 0.5430 0.0028 0.5807 0.9539 0.2293 -41.90 0.0000
Ener 3 11,975 0.5330 0.0028 0.5711 0.9323 0.2269 -19.26 0.0000
Cons 4 151,902 0.5326 0.0028 0.5671 0.9574 0.2277 -37.40 0.0000
Comm 5 78,482 0.5289 0.0028 0.5629 0.9542 0.2254 -31.17 0.0000
Fina 6 53,414 0.5261 0.0028 0.5570 0.9520 0.2299 -26.41 0.0000
Util 7 59,540 0.5194 0.0028 0.5508 0.9468 0.2287 -22.38 0.0000
Tech 8 5,732 0.5131 0.0035 0.5420 0.9297 0.2250 -7.87 0.0000
Bank 9 47,924 0.4879 0.0028 0.5068 0.9468 0.2295 – –

Panel C – Communication

Sector rank #obs mean min median max sdev t-value p-value

Comm 1 62,514 0.5357 0.0028 0.5718 0.9672 0.2266 -42.50 0.0000
Indu 2 136,018 0.5300 0.0028 0.5656 0.9519 0.2264 -45.25 0.0000
Basi 3 78,482 0.5289 0.0028 0.5629 0.9542 0.2254 -39.34 0.0000
Ener 4 19,058 0.5248 0.0031 0.5608 0.9427 0.2281 -22.32 0.0000
Cons 5 248,033 0.5245 0.0028 0.5563 0.9583 0.2238 -43.92 0.0000
Util 6 99,845 0.5217 0.0028 0.5550 0.9474 0.2265 -34.86 0.0000
Fina 7 85,982 0.5179 0.0028 0.5471 0.9502 0.2258 -30.31 0.0000
Tech 8 9,735 0.5043 0.0032 0.5245 0.9281 0.2243 -8.36 0.0000
Bank 9 77,473 0.4840 0.0028 0.5024 0.9601 0.2259 – –

Table 2.15 – continued on the next page
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– continued –

Panel D – Consumer

Sector rank #obs mean min median max sdev t-value p-value

Indu 1 263,081 0.5393 0.0028 0.5771 0.9663 0.2271 -79.96 0.0000
Cons 2 237,569 0.5346 0.0028 0.5692 0.9777 0.2267 -72.19 0.0000
Basi 3 151,902 0.5326 0.0028 0.5671 0.9574 0.2277 -62.77 0.0000
Comm 4 248,033 0.5245 0.0028 0.5563 0.9583 0.2238 -59.59 0.0000
Ener 5 37,130 0.5244 0.0028 0.5632 0.9471 0.2268 -33.02 0.0000
Fina 6 171,254 0.5188 0.0028 0.5469 0.9829 0.2247 -47.62 0.0000
Util 7 187,087 0.5155 0.0028 0.5466 0.9599 0.2282 -44.02 0.0000
Tech 8 18,444 0.4940 0.0029 0.5168 0.9345 0.2258 -7.31 0.0000
Bank 9 154,464 0.4811 0.0028 0.4971 0.9532 0.2269 – –

Panel E – Energy

Sector rank #obs mean min median max sdev t-value p-value

Ener 1 1,225 0.5722 0.0054 0.6233 0.9439 0.2443 -10.19 0.0000
Fina 2 13,156 0.5522 0.0028 0.6033 0.9323 0.2281 -17.89 0.0000
Util 3 15,778 0.5498 0.0036 0.5937 0.9517 0.2277 -17.81 0.0000
Indu 4 20,872 0.5488 0.0029 0.5967 0.9412 0.2298 -18.39 0.0000
Basi 5 11,975 0.5330 0.0028 0.5711 0.9323 0.2269 -11.07 0.0000
Comm 6 19,058 0.5248 0.0031 0.5608 0.9427 0.2281 -9.25 0.0000
Cons 7 37,130 0.5244 0.0028 0.5632 0.9471 0.2268 -10.17 0.0000
Tech 8 1,392 0.5206 0.0045 0.5581 0.8994 0.2260 -3.11 0.0009
Bank 9 12,046 0.4999 0.0028 0.5248 0.9436 0.2358 – –

Panel F – Financial (Non-Bank)

Sector rank #obs mean min median max sdev t-value p-value

Fina 1 31,675 0.5871 0.0029 0.6376 0.9860 0.2322 -43.14 0.0000
Ener 2 13,156 0.5522 0.0028 0.6033 0.9323 0.2281 -15.42 0.0000
Indu 3 93,351 0.5390 0.0028 0.5787 0.9482 0.2281 -17.36 0.0000
Basi 4 53,414 0.5261 0.0028 0.5570 0.9520 0.2299 -5.71 0.0000
Util 5 64,832 0.5248 0.0029 0.5583 0.9491 0.2300 -4.96 0.0000
Cons 6 171,254 0.5188 0.0028 0.5469 0.9829 0.2247 -0.44 0.3309
Bank 7 60,251 0.5183 0.0028 0.5473 0.9702 0.2286 – –
Comm 8 85,982 0.5179 0.0028 0.5471 0.9502 0.2258 -0.36 0.3592
Tech 9 6,483 0.5057 0.0031 0.5241 0.9221 0.2279 -4.23 0.0000

Table 2.15 – continued on the next page
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– continued –

Panel G – Industrials

Sector rank #obs mean min median max sdev t-value p-value

Indu 1 71,690 0.5585 0.0028 0.6039 0.9724 0.2310 -59.21 0.0000
Ener 2 20,872 0.5488 0.0029 0.5967 0.9412 0.2298 -33.59 0.0000
Basi 3 83,532 0.5430 0.0028 0.5807 0.9539 0.2293 -48.06 0.0000
Cons 4 263,081 0.5393 0.0028 0.5771 0.9663 0.2271 -55.55 0.0000
Fina 5 93,351 0.5390 0.0028 0.5787 0.9482 0.2281 -45.88 0.0000
Comm 6 136,018 0.5300 0.0028 0.5656 0.9519 0.2264 -41.01 0.0000
Util 7 104,364 0.5262 0.0028 0.5614 0.9496 0.2284 -35.03 0.0000
Tech 8 10,187 0.5148 0.0050 0.5444 0.9345 0.2238 -10.74 0.0000
Bank 9 83,233 0.4889 0.0028 0.5085 0.9504 0.2302 – –

Panel H – Technology

Sector rank #obs mean min median max sdev t-value p-value

Ener 1 1,392 0.5206 0.0045 0.5581 0.8994 0.2260 -9.34 0.0000
Indu 2 10,187 0.5148 0.0050 0.5444 0.9345 0.2238 -15.36 0.0000
Basi 3 5,732 0.5131 0.0035 0.5420 0.9297 0.2250 -13.14 0.0000
Fina 4 6,483 0.5057 0.0031 0.5241 0.9221 0.2279 -11.62 0.0000
Comm 5 9,735 0.5043 0.0032 0.5245 0.9281 0.2243 -12.38 0.0000
Util 6 7,654 0.5002 0.0032 0.5233 0.9284 0.2210 -10.86 0.0000
Cons 7 18,444 0.4940 0.0029 0.5168 0.9345 0.2258 -10.54 0.0000
Tech 8 178 0.4777 0.0031 0.4844 0.9192 0.2181 -1.15 0.1249
Bank 9 5,760 0.4582 0.0028 0.4726 0.9243 0.2234 – –

Panel I – Utilities

Sector rank #obs mean min median max sdev t-value p-value

Util 1 39,824 0.5651 0.0030 0.6091 0.9719 0.2292 -49.30 0.0000
Ener 2 15,778 0.5498 0.0036 0.5937 0.9517 0.2277 -28.23 0.0000
Indu 3 104,364 0.5262 0.0028 0.5614 0.9496 0.2284 -29.55 0.0000
Fina 4 64,832 0.5248 0.0029 0.5583 0.9491 0.2300 -25.47 0.0000
Comm 5 99,845 0.5217 0.0028 0.5550 0.9474 0.2265 -25.67 0.0000
Basi 6 59,540 0.5194 0.0028 0.5508 0.9468 0.2287 -20.99 0.0000
Cons 7 187,087 0.5155 0.0028 0.5466 0.9599 0.2282 -22.40 0.0000
Tech 8 7,654 0.5002 0.0032 0.5233 0.9284 0.2210 -3.17 0.0008
Bank 9 59,340 0.4913 0.0028 0.5139 0.9400 0.2320 – –

Table 2.15 – Intra- and inter-sectoral upper tail dependence coefficients (Europe)
The above upper tail dependence coefficients are estimated from the full series of daily CDS bid quotes
ranging from October 2004 to October 2009.
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Table 2.15 – continued:
The statistics are calculated from all available upper tail dependence coefficients between firms of one
sector I and firms of any other sector J within Europe. E.g., all statistics reported in “Panel B – Basic
Materials” are between European firms of the basic materials sector (Basi) and European firms of any
other sector (e.g., banking sector or utilities sector). The intra-sectoral mean upper tail dependence
coefficients are included for reference. The rank is identified by the inter-sectoral mean upper tail de-
pendence coefficients according to Expression (2.6b); #obs is the number of estimates used to compute
the statistics in columns four to eight. The last two columns report the results of a t-test with the null
hypothesis that the mean upper tail dependence coefficient between firms from sector I and banks and
the mean upper tail dependence coefficient between firms from sector I (panel name) and J (row name)
are identical E.g., in “Panel B – Basic Materials”, the hypothesis that the mean upper tail dependence
coefficient between banks and basic material firms of 0.4879 is identical to the mean upper tail dependence
coefficient between basic material and energy firms of 0.5330 can be rejected with a t-statistic of -19.26.



2 Transatlantic systemic risk 55

United States Banks

American Express Co
Bank of America Corp
Bank One Corp
Capital One Financial Corp
CIT Group Inc
Citigroup Inc
Goldman Sachs Group Inc/The
JPMorgan Chase & Co
Lehman Brothers Holdings Inc
Morgan Stanley
Washington Mutual Inc
Wells Fargo & Co

European Banks Country

Erste Bank der Oesterreichischen Sparkassen AG Austria
Dexia SA Belgium
Fortis Bank SA/NV Belgium
Danske Bank A/S Denmark
Credit Agricole SA France
Societe Generale France
Commerzbank AG Germany
Deutsche Bank AG Germany
IKB Deutsche Industriebank AG Germany
Alpha Bank AE Greece
Allied Irish Banks PLC Ireland
Bank of Ireland Ireland
UniCredit SpA Italy
ING Groep NV Netherlands
Banco Espirito Santo SA Portugal
Banco Pastor SA Spain
Banco Santander SA Spain
Nordea Bank AB Sweden
Skandinaviska Enskilda Banken AB Sweden
Svenska Handelsbanken AB Sweden
Credit Suisse Group Switzerland
UBS AG Switzerland
Standard Chartered PLC United Kingdom

Table 2.16 – Description of banks
All United States’ CDS in USD; all European CDS in EUR.
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2.C Time series diagnostics and goodness of fit

Sector #obs mean min q = 0.25 q = 0.50 q = 0.75 max
#p : p < 0.1 #p : p < 0.05 #p : p < 0.01

(in %) (in %) (in %)

Panel A – Unit roots & stationarity: Augmented Dickey-Fuller test

Bank 7,351 0.4551 0.0100 0.2134 0.4399 0.6803 0.9900 17.32 11.32 0.00
Basi 8,984 0.4327 0.0100 0.2023 0.4175 0.6363 0.9900 18.11 11.79 0.00
Comm 9,923 0.4249 0.0100 0.1744 0.4032 0.6373 0.9900 19.66 12.90 0.00
Cons 33,565 0.4280 0.0100 0.1858 0.4110 0.6373 0.9900 18.89 12.24 0.00
Ener 6,286 0.4265 0.0100 0.1810 0.4105 0.6307 0.9900 19.23 12.46 0.00
Fina 11,770 0.4161 0.0100 0.1604 0.3907 0.6244 0.9900 21.03 14.32 0.00
Indu 15,584 0.4269 0.0100 0.1804 0.4082 0.6353 0.9900 19.37 12.63 0.00
Tech 3,098 0.4363 0.0100 0.1865 0.4226 0.6492 0.9900 19.14 12.59 0.00
Util 9,067 0.4009 0.0100 0.1428 0.3741 0.6019 0.9900 21.61 14.24 0.00

Panel B – Heteroscedasticity: Breusch-Pagan test

Bank 7,362 0.1686 0.0000 0.0002 0.0175 0.2445 1.0000 65.15 58.76 45.94
Basi 9,013 0.1667 0.0000 0.0001 0.0144 0.2333 1.0000 65.94 60.24 47.30
Comm 9,939 0.1572 0.0000 0.0001 0.0121 0.2031 1.0000 67.57 61.09 48.60
Cons 33,600 0.1668 0.0000 0.0001 0.0136 0.2308 1.0000 65.97 59.63 48.03
Ener 6,299 0.1667 0.0000 0.0001 0.0144 0.2315 1.0000 65.57 59.22 47.67
Fina 11,788 0.1577 0.0000 0.0001 0.0102 0.2020 1.0000 67.73 61.86 49.89
Indu 15,596 0.1644 0.0000 0.0001 0.0128 0.2241 1.0000 66.40 60.12 48.28
Tech 3,102 0.1563 0.0000 0.0001 0.0110 0.2069 0.9993 67.96 61.57 49.58
Util 9,077 0.1545 0.0000 0.0001 0.0095 0.1948 1.0000 68.34 62.30 50.41

Panel C – Auto-correlation: Durbin-Watson test

Bank 7,351 0.0012 0.0000 0.0000 0.0000 0.0000 0.9604 99.73 99.71 99.54
Basi 8,984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0066 100.00 100.00 100.00
Comm 9,923 0.0028 0.0000 0.0000 0.0000 0.0000 0.9986 99.65 99.64 99.62
Cons 33,565 0.0004 0.0000 0.0000 0.0000 0.0000 0.9804 99.91 99.88 99.81
Ener 6,286 0.0027 0.0000 0.0000 0.0000 0.0000 0.9868 99.62 99.51 99.44
Fina 11,770 0.0036 0.0000 0.0000 0.0000 0.0000 0.9990 99.35 99.25 99.17
Indu 15,584 0.0023 0.0000 0.0000 0.0000 0.0000 0.9819 99.63 99.60 99.57
Tech 3,098 0.0040 0.0000 0.0000 0.0000 0.0000 0.9762 99.23 99.13 98.93
Util 9,067 0.0001 0.0000 0.0000 0.0000 0.0000 0.2358 99.98 99.96 99.92

Panel D – Non-normality: Jarque-Bera test

Bank 7,351 0.0832 0.0000 0.0004 0.0118 0.0710 0.9998 79.38 70.00 48.10
Basi 8,984 0.0809 0.0000 0.0009 0.0143 0.0722 0.9995 79.06 69.66 45.27
Comm 9,923 0.0831 0.0000 0.0008 0.0137 0.0785 0.9997 78.42 68.79 45.54
Cons 33,565 0.0805 0.0000 0.0007 0.0126 0.0704 0.9992 79.64 70.11 46.90
Ener 6,286 0.0688 0.0000 0.0007 0.0101 0.0550 0.9958 82.55 73.59 49.90
Fina 11,770 0.0714 0.0000 0.0002 0.0077 0.0535 0.9951 82.41 74.13 53.34
Indu 15,584 0.0743 0.0000 0.0004 0.0096 0.0604 0.9978 81.07 72.70 50.51
Tech 3,098 0.0686 0.0000 0.0002 0.0076 0.0507 0.9986 83.02 74.82 53.45
Util 9,067 0.0734 0.0000 0.0010 0.0114 0.0622 0.9980 81.21 71.87 48.15

Table 2.18 – Time series properties of CDS bid quotes: p-values
The above table exhibits p-values of various statistical tests on the time series properties of the three
months time series of daily CDS premia used to estimate the extreme value distribution according to
Equation (2.1). All CDS data are obtained via Bloomberg; the time series of observations ranges from
October 2004 to October 2009. To minimize the impact of factors other than the underlying reference
entity’s default risk, we only consider bid quotes.
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Table 2.18 – continued:
In total, we have 5-year CDS contracts on 550 firms in our sample, all of which are on senior unsecured
debt. The table is organized as follows: Panel A exhibits the results of the Augmented Dickey-Fuller test
with the null hypothesis that the time series are stationary, i.e., there is no unit root. Panel B presents
the results of the Breusch-Pagan test with the null hypothesis that the time series are homoscedastic,
i.e., there is no heteroscedasticity. Panel C gives the results of the Durbin-Watson test with the null
hypothesis that the time series exhibit no auto-correlation. Panel D presents the results of the Jarque-
Bera test with the null hypothesis that the time series follow the Gaussian distribution. Column one
gives the sectoral abbreviations to which the statistics refer. (E.g., all statistics on p-values in row “Basi”
refer to three-month series of daily CDS premia on firms of the basic materials sector.) Column two gives
the number of series tested for each sector and thus the number of test results. Column three gives the
mean p-value of the test results, columns four to eight the quantiles, and columns nine to eleven provide
the percentage of test results significant at the 10%, 5%, and 1% confidence levels.
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Sector #obs mean min q = 0.25 q = 0.50 q = 0.75 max
#p : p < 0.1 #p : p < 0.05 #p : p < 0.01

(in %) (in %) (in %)

Parameter a

Bank 6,850 9.83E-157 0.0000 3.52E-273 7.46E-252 4.65E-230 6.70E-153 100.00 100.00 100.00
Basi 8,541 8.08E-140 0.0000 1.01E-269 9.37E-252 8.12E-234 6.90E-136 100.00 100.00 100.00
Comm 9,367 3.52E-141 0.0000 9.14E-275 9.90E-256 1.14E-237 3.30E-137 100.00 100.00 100.00
Cons 31,460 6.81E-126 0.0000 6.43E-273 5.02E-254 5.14E-236 2.14E-121 100.00 100.00 100.00
Ener 5,690 6.44E-144 0.0000 1.68E-275 1.03E-252 8.79E-234 3.66E-140 100.00 100.00 100.00
Fina 10,720 1.07E-83 0.0000 1.62E-275 2.91E-252 1.83E-229 1.15E-79 100.00 100.00 100.00
Indu 14,415 4.62E-116 0.0000 1.57E-277 4.37E-256 8.37E-236 6.66E-112 100.00 100.00 100.00
Tech 2,845 8.89E-159 0.0000 1.35E-270 1.08E-251 6.30E-235 2.53E-155 100.00 100.00 100.00
Util 8,390 3.15E-163 0.0000 1.10E-274 7.31E-256 1.08E-236 2.30E-159 100.00 100.00 100.00

Parameter b

Bank 6,850 2.46E-104 0.0000 1.05E-181 5.93E-178 4.24E-173 1.53E-100 100.00 100.00 100.00
Basi 8,541 1.36E-89 0.0000 1.54E-180 8.29E-177 2.01E-171 1.16E-85 100.00 100.00 100.00
Comm 9,367 2.26E-77 0.0000 1.09E-180 5.47E-177 2.05E-171 2.12E-73 100.00 100.00 100.00
Cons 31,460 8.58E-69 0.0000 8.84E-181 7.52E-177 1.89E-171 1.95E-64 100.00 100.00 100.00
Ener 5,690 8.62E-98 0.0000 1.17E-180 1.30E-176 9.97E-171 4.62E-94 100.00 100.00 100.00
Fina 10,720 9.45E-68 0.0000 6.80E-181 1.47E-176 3.50E-170 1.01E-63 100.00 100.00 100.00
Indu 14,415 3.21E-56 0.0000 1.16E-180 1.21E-176 8.84E-171 4.63E-52 100.00 100.00 100.00
Tech 2,845 8.93E-59 0.0000 1.82E-180 2.17E-176 2.47E-170 2.54E-55 100.00 100.00 100.00
Util 8,390 4.04E-86 0.0000 3.86E-180 3.17E-176 1.57E-170 3.39E-82 100.00 100.00 100.00

Parameter c

Bank 6,850 4.64E-04 0.0000 5.84E-162 4.39E-139 2.10E-107 4.62E-01 99.87 99.74 99.69
Basi 8,541 6.15E-04 0.0000 1.56E-159 1.20E-136 3.69E-107 4.57E-01 99.82 99.77 99.65
Comm 9,367 7.74E-04 0.0000 1.80E-160 4.21E-138 3.09E-108 4.83E-01 99.74 99.66 99.55
Cons 31,460 6.78E-04 0.0000 5.82E-162 2.25E-139 1.32E-108 5.00E-01 99.79 99.72 99.59
Ener 5,690 5.85E-04 0.0000 5.70E-165 4.45E-142 5.29E-111 4.16E-01 99.81 99.77 99.58
Fina 10,720 6.64E-04 0.0000 5.45E-163 6.66E-142 4.00E-112 4.61E-01 99.78 99.72 99.66
Indu 14,415 6.17E-04 0.0000 2.68E-161 5.69E-140 2.26E-111 4.99E-01 99.81 99.76 99.62
Tech 2,845 1.08E-03 0.0000 1.29E-163 1.01E-140 3.89E-112 4.15E-01 99.65 99.61 99.47
Util 8,390 6.24E-04 0.0000 4.77E-162 9.49E-141 2.96E-113 4.70E-01 99.81 99.79 99.65

Table 2.19 – Goodness of fit of the extreme value distribution: p-values
The above table exhibits p-values for the goodness of fit of parameters estimated for the extreme value
distribution according to Equation (2.1). The empirical distribution is estimated on the basis of three
months time series of daily CDS premia. All CDS data are obtained via Bloomberg; the time series of
observations ranges from October 2004 to October 2009. To minimize the impact of factors other than
the underlying reference entity’s default risk, we only consider bid quotes. In total, we have 5-year CDS
contracts on 550 firms in our sample, all of which are on senior unsecured debt. The table is organized
as follows: The statistics for the extreme value distribution parameters a, b, and c are displayed in the
respective panels. Column one gives the sectoral abbreviations to which the statistics refer. (E.g., all
statistics on p-values in row “Basi” refer to the respective parameter of the extreme value distribution
function estimated on the basis of three-month series of daily CDS premia on firms of the basic materials
sector.) Column two gives the number of estimates for the respective parameter in each sector. Column
three gives the mean p-value of the test results, columns four to eight the quantiles, and columns nine to
eleven provide the percentage of test results significant at the 10%, 5%, and 1% confidence levels.
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Sector #obs mean min q = 0.25 q = 0.50 q = 0.75 max

Bank 6,850 -244.2785 -781.3849 -387.3297 -214.3838 -112.2635 695.9677
Basi 8,541 -307.5743 -782.6197 -397.1976 -299.0921 -213.4035 546.4824
Comm 9,367 -325.2135 -844.3461 -409.0496 -319.5345 -237.9545 569.8428
Cons 31,460 -313.3514 -833.7323 -408.3801 -314.0032 -221.9438 694.9567
Ener 5,690 -268.8659 -616.2666 -372.5147 -273.0252 -173.9852 630.2298
Fina 10,720 -299.0830 -772.8726 -430.8348 -286.7780 -165.4277 694.9546
Indu 14,415 -271.7299 -794.8183 -367.6081 -270.8365 -174.4742 624.9858
Tech 2,845 -298.6774 -692.4794 -379.9814 -305.8367 -209.6718 530.0584
Util 8,390 -255.9665 -588.4578 -343.0045 -241.7911 -170.8678 584.9753

Table 2.20 – Goodness of fit of the extreme value distribution: Log-likelihood values
The above table exhibits log-likelihood values for the overall goodness of fit of the extreme value distri-
bution according to Equation (2.1). The empirical distribution is estimated on the basis of three months
time series of daily CDS premia. All CDS data are obtained via Bloomberg; the time series of obser-
vations ranges from October 2004 to October 2009. To minimize the impact of factors other than the
underlying reference entity’s default risk, we only consider bid quotes. In total, we have 5-year CDS
contracts on 550 firms in our sample, all of which are on senior unsecured debt. The table is organized
as follows: Column one gives the sectoral abbreviations to which the statistics refer. (E.g., all statistics
on log-likelihood values in row “Basi” refer to the extreme value distribution functions estimated on the
basis of three-month series of daily CDS premia on firms of the basic materials sector.) Column two
gives the number of estimates for each sector and thus the number of test results. Column three gives
the mean t-value and columns four to eight the quantiles.
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Sector #obs mean min q = 0.25 q = 0.50 q = 0.75 max
#p : p < 0.1 #p : p < 0.05 #p : p < 0.01

(in %) (in %) (in %)

Panel A

Bank 72,773 3.71E-09 0 9.57E-36 1.24E-32 5.95E-31 2.65E-04 100.00 100.00 100.00
Basi 106,873 1.77E-11 0 7.05E-37 4.06E-33 4.72E-31 2.67E-07 100.00 100.00 100.00
Comm 122,225 1.51E-12 0 8.94E-37 4.00E-33 4.19E-31 2.26E-08 100.00 100.00 100.00
Cons 1,429,092 2.37E-10 0 4.03E-37 2.53E-33 3.40E-31 2.07E-04 100.00 100.00 100.00
Ener 49,551 7.03E-12 0 5.91E-36 1.81E-32 1.18E-30 1.95E-07 100.00 100.00 100.00
Fina 175,429 1.49E-11 0 1.36E-36 6.79E-33 6.75E-31 3.60E-07 100.00 100.00 100.00
Indu 296,066 3.94E-12 0 1.40E-36 5.41E-33 5.29E-31 9.55E-08 100.00 100.00 100.00
Tech 10,840 2.83E-11 0 1.41E-37 2.56E-33 3.97E-31 4.74E-08 100.00 100.00 100.00
Util 104,625 5.79E-12 0 1.24E-36 4.59E-33 4.16E-31 1.09E-07 100.00 100.00 100.00

Panel B

Basi 169,213 2.57E-11 0 6.75E-38 7.32E-34 1.35E-31 3.13E-06 100.00 100.00 100.00
Comm 178,823 3.25E-11 0 1.43E-37 1.13E-33 1.77E-31 2.80E-06 100.00 100.00 100.00
Cons 616,507 6.57E-09 0 4.60E-38 5.99E-34 1.26E-31 3.75E-03 100.00 100.00 100.00
Ener 111,265 3.65E-11 0 5.58E-38 8.06E-34 1.53E-31 2.48E-06 100.00 100.00 100.00
Fina 226,405 1.21E-10 0 1.63E-37 1.66E-33 2.54E-31 2.43E-05 100.00 100.00 100.00
Indu 281,660 7.64E-09 0 7.16E-38 7.95E-34 1.46E-31 2.15E-03 100.00 100.00 100.00
Tech 52,865 3.60E-10 0 2.55E-38 4.93E-34 1.08E-31 1.48E-05 100.00 100.00 100.00
Util 162,823 4.02E-11 0 1.04E-37 1.22E-33 1.74E-31 5.07E-06 100.00 100.00 100.00

Table 2.21 – Goodness of fit of the Gumbel copula: p-values
The above table exhibits p-values for the overall goodness of fit of the Gumbel copula estimated according
to Equation (2.3). The table is organized as follows: Panel A presents statistics for the estimated
dependence between firms within the row sector. Panel B gives statistics for the estimated dependence
between banks and non-banks of the respective row sector. Column one gives the sectoral abbreviations
to which the statistics refer. Column two gives the number of copula estimates for each sector. Column
three gives the mean p-value and columns four to eight the quantiles; columns nine to eleven provide the
percentage of estimates significant at the 10%, 5%, and 1% confidence levels.
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Sector #obs mean min q = 0.25 q = 0.50 q = 0.75 max

Panel A

Bank 75,848 38.5326 0.0002 11.0749 31.0464 57.9785 391.1673
Basi 109,981 37.2133 0.0003 9.6470 28.1590 56.6028 386.3012
Comm 125,584 35.8789 0.0003 9.1792 27.1670 54.5160 516.0504
Cons 1,466,606 33.8003 0.0001 8.5471 25.4728 51.6029 603.5360
Ener 51,019 44.0924 0.0003 13.3536 36.1820 66.7306 443.3317
Fina 180,770 37.7231 0.0003 9.8088 28.9874 56.7877 537.9778
Indu 305,360 36.9935 0.0002 9.5733 28.6346 56.9069 444.0302
Tech 11,157 31.7599 0.0003 6.9200 22.7949 47.8081 275.0179
Util 107,348 38.2842 0.0003 10.0526 29.4757 57.7031 333.4561

Panel B

Basi 169,259 30.0935 0.0002 6.8261 21.7398 45.9172 305.0356
Comm 178,850 30.3605 0.0003 7.2023 22.4304 45.9904 206.4019
Cons 616,606 28.8278 0.0000 6.6625 20.7014 43.7453 571.8760
Ener 111,282 29.5686 0.0001 7.0215 21.8744 45.1411 564.4110
Fina 226,440 31.9646 0.0002 8.1854 24.1357 48.4145 433.7839
Indu 281,715 29.8335 0.0002 6.9737 21.7277 45.3161 469.6477
Tech 52,873 27.0841 0.0002 5.6226 19.0526 41.6873 232.1569
Util 162,849 31.4244 0.0002 7.3899 23.2796 48.0059 360.9857

Table 2.22 – Goodness of fit of the Gumbel copula: Log-likelihood values
The above table exhibits log-likelihood values for the overall goodness of fit of the Gumbel copula esti-
mated according to Equation (2.3). The table is organized as follows: Panel A presents statistics for the
estimated dependence between firms within the row sector. Panel B gives statistics for the estimated
dependence between banks and non-banks of the respective row sector. Column one gives the sectoral
abbreviations to which the statistics refer. Column two gives the number of copula estimates for each
sector. Column three gives the mean log-likelihood value and columns four to eight the quantiles.
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Sector #obs mean min q = 0.25 q = 0.50 q = 0.75 max
#p : p < 0.1 #p : p < 0.05 #p : p < 0.01

(in %) (in %) (in %)

Panel A

Bank 65 0.0003 3.23E-56 1.66E-44 5.02E-40 6.16E-19 0.0178 100.00 100.00 98.46
Basi 321 0.0013 8.23E-52 1.30E-32 3.48E-23 1.31E-14 0.3941 99.69 99.69 99.38
Comm 108 0.0020 3.21E-41 6.28E-31 3.70E-21 8.22E-15 0.0620 100.00 98.15 94.44
Cons 5591 0.0010 2.58E-49 1.59E-28 1.29E-18 1.40E-11 0.8764 99.82 99.61 98.91
Ener 325 0.0003 9.84E-49 1.04E-32 4.53E-21 6.89E-14 0.0642 100.00 99.69 99.38
Fina 738 0.0029 1.41E-53 1.36E-22 2.47E-13 2.30E-08 0.4204 99.05 98.64 97.56
Indu 678 0.0008 4.36E-50 1.55E-34 1.06E-26 1.12E-13 0.1532 99.71 99.26 98.97
Tech 92 0.0174 2.07E-48 1.80E-24 8.08E-12 4.53E-05 0.7995 95.65 94.57 92.39
Util 153 0.0003 2.30E-49 2.55E-33 2.60E-21 1.59E-13 0.0130 100.00 100.00 98.69

Panel B

Basi 298 0.0004 2.14E-45 3.66E-33 2.15E-26 4.06E-14 0.0419 100.00 100.00 98.99
Comm 179 0.0019 9.44E-47 2.23E-33 9.02E-23 3.10E-12 0.0818 100.00 98.32 96.09
Cons 1192 0.0021 2.21E-49 6.75E-34 1.90E-23 3.02E-11 0.4563 99.33 99.16 98.15
Ener 297 0.0021 1.11E-44 6.04E-33 2.65E-23 1.28E-13 0.2989 99.33 99.33 97.64
Fina 434 0.0024 1.18E-47 9.65E-35 2.51E-18 5.42E-10 0.3867 99.31 99.08 98.39
Indu 429 0.0004 1.03E-44 1.13E-35 2.96E-29 5.27E-14 0.0594 100.00 99.53 99.30
Tech 150 0.0100 2.51E-45 2.79E-33 2.80E-19 9.35E-10 0.6700 98.00 96.67 94.67
Util 211 0.0002 1.36E-42 5.68E-34 3.52E-27 2.67E-11 0.0242 100.00 100.00 99.53

Panel C

Bank 226 2.19E-03 4.53E-54 2.63E-40 1.65E-25 4.74E-18 4.78E-01 99.56 99.56 99.56
Basi 151 6.97E-06 1.39E-49 5.60E-41 5.17E-36 3.75E-20 4.47E-04 100.00 100.00 100.00
Comm 404 2.55E-05 1.70E-56 1.97E-40 6.28E-33 1.65E-17 9.47E-03 100.00 100.00 100.00
Cons 1639 4.91E-04 1.12E-51 3.17E-38 6.06E-31 1.04E-21 5.48E-01 99.88 99.82 99.69
Ener 6 1.73E-32 3.41E-49 6.73E-44 8.73E-42 2.77E-38 1.04E-31 100.00 100.00 100.00
Fina 272 4.94E-04 6.41E-53 1.17E-36 5.82E-21 4.51E-11 8.56E-02 100.00 99.63 99.26
Indu 434 6.34E-11 3.32E-49 4.31E-40 3.14E-33 4.32E-26 2.74E-08 100.00 100.00 100.00
Tech 1 1.96E-35 1.96E-35 1.96E-35 1.96E-35 1.96E-35 1.96E-35 100.00 100.00 100.00
Util 230 2.89E-06 2.05E-52 1.03E-43 1.27E-36 1.34E-27 5.67E-04 100.00 100.00 100.00

Panel D

Basi 374 5.49E-04 2.09E-47 1.21E-35 2.00E-30 5.15E-16 5.42E-02 100.00 99.73 98.40
Comm 624 1.73E-03 2.65E-46 1.42E-35 1.37E-27 6.29E-15 8.72E-01 99.84 99.68 99.04
Cons 1256 1.51E-03 8.19E-49 5.44E-35 1.07E-27 1.81E-15 4.63E-01 99.60 99.52 98.65
Ener 88 1.70E-04 8.58E-42 4.30E-37 1.87E-31 7.80E-20 1.39E-02 100.00 100.00 98.86
Fina 521 8.61E-04 3.99E-50 8.60E-37 4.78E-21 3.17E-12 1.90E-01 99.62 99.62 98.66
Indu 652 1.19E-03 1.04E-46 3.12E-35 2.89E-28 7.86E-18 4.61E-01 99.69 99.69 98.77
Tech 43 7.92E-07 1.03E-40 6.55E-35 1.35E-31 1.06E-17 1.67E-05 100.00 100.00 100.00
Util 478 9.55E-04 3.53E-49 8.36E-36 2.13E-28 3.54E-16 1.91E-01 99.79 99.16 98.54

Panel E

Bank 254 1.45E-03 1.04E-49 2.35E-40 3.46E-32 6.71E-18 3.58E-01 99.61 99.61 99.61
Basi 461 1.22E-03 1.05E-48 2.37E-34 1.43E-26 6.09E-16 5.32E-01 99.78 99.78 99.35
Comm 441 4.41E-03 3.70E-43 2.59E-32 4.40E-24 7.46E-17 7.28E-01 99.09 98.19 97.73
Cons 6139 8.24E-04 1.09E-51 4.61E-32 4.62E-23 2.43E-14 9.60E-01 99.82 99.69 99.28
Ener 104 5.26E-08 3.90E-44 5.42E-33 1.85E-28 1.50E-18 2.48E-06 100.00 100.00 100.00
Fina 928 8.90E-04 1.21E-47 2.20E-28 5.37E-17 1.19E-10 2.13E-01 99.68 99.35 99.35
Indu 1141 2.69E-04 1.92E-46 1.91E-34 5.39E-28 1.85E-17 1.90E-01 99.91 99.82 99.65
Tech 29 7.12E-04 7.20E-39 6.84E-33 5.22E-23 3.93E-09 1.79E-02 100.00 100.00 96.55
Util 410 2.04E-03 6.74E-45 1.46E-32 4.94E-26 8.93E-15 3.64E-01 99.51 99.02 97.56

Table 2.23 – Auto-correlation of upper tail dependence coefficients series: p-values
The above table exhibits p-values for the Durbin-Watson test, which we apply to the series of upper tail
coefficients estimated from the full sample of daily CDS bid quotes ranging from October 2004 to October
2009 according to the methodology outlined in Section 2.3.
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Table 2.23 – continued:
The table is organized as follows: Panel A presents statistics for the upper tail dependence series between
US firms within the row sector; Panel B statistics for the upper tail dependence series between US banks
and non-banks of the respective row sector. Panel C gives statistics for the upper tail dependence series
between European firms within the row sector; Panel D statistics for the upper tail dependence series
between European banks and non-banks of the respective row sector. Panel E exhibits statistics for the
upper tail dependence series between European and US firms within the respective row sector. Column
one gives the sectoral abbreviations to which the statistics refer. Column two gives the number of series
tested. Column three gives the mean p-value for the Durbin-Watson test with the null hypothesis that
the series of upper tail dependence coefficients do not exhibit any auto-correlation. Columns four to eight
exhibit the quantiles; columns nine to eleven provide the percentage of test results significant at the 10%,
5%, and 1% confidence levels.



3 What can systemic risk measures

predict?

3.1 Introduction

How should we measure systemic risk? In the aftermath of the Lehman bankruptcy

that triggered an unprecedented international financial crisis, this question has become

of vital interest to both regulators and researchers. According to the definition of the

International Monetary Fund, systemic risk is the risk of excessive losses within all or

parts of the financial system with potential negative spill-over effects to the real economy

(FSB, IMF, BIS, 2009).

Recent research (e.g. Reinhart and Rogoff, 2009c) has shown that systemic financial

crises often have substantial adverse effects on the real economy, such as drops in asset

prices, output, and employment levels. Thus, the interconnectedness within the financial

system and the important role that financial institutions play for the real economy stress

the necessity of proper identification of systemic risk in the financial system.

Over the last years, a number of approaches to measure systemic risk and to identify

systemically important financial institutions (SIFIs) have been proposed both by regula-

tors and researchers. The Bank for International Settlements (2011b) identifies SIFIs by

various balance and off-balance sheet characteristics, such as size, interconnectedness, and

substitutability.1 The revised Basel III rules stipulate tighter macro-prudential regulation

and tackle SIFIs by imposing special requirements such as capital surcharges.

Academia has proposed a whole bunch of different approaches with a strand of litera-

ture based on asset prices applying the standard risk measures Conditional Value at Risk

of Adrian and Brunnermeier (2011) and Marginal Expected Shortfall (Acharya et al.,

2010), extreme value theory (De Jonghe, 2010; Zhou, 2010), principal component anal-

ysis (Billio et al., 2012; Kritzman et al., 2011), and default probabilities (Lehar, 2005;

Huang et al., 2009; Segoviano and Goodhart, 2009; Huang et al., 2012; Gray and Jobst,

2010). Another strand of literature applies network analysis to investigate systemic risk

arising from interbank relationships (Halaj and Kok Sorensen, 2013; Allen et al., 2010;

Tarashev et al., 2010, e.g.). For a comprehensive survey on the literature on systemic risk

measurement we refer to Bisias et al. (2012).

1 This is in line with various studies finding that balance sheet characteristics such as size (Elsinger
et al., 2006a), leverage (Acharya et al., 2010), and short-term wholesale funding (López-Espinosa
et al., 2012) substantially drive the systemic importance of individual banks.
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Despite the multitude of approaches, research on the measures’ ability to capture the

symptoms of systemic risk in the banking system is scarce. However, the assessment of a

measure’s adequacy as a tool for regulators is crucial. But how can the effectiveness of sys-

temic risk measures be determined? Systemic risk measures should be able to pre-identify

turmoil in the financial markets that potentially triggers downturns of the real economy.

In addition, systemic risk measures should be leading indicators to other financial market-

based stress variables in order to function properly as early warning indicators. While it

is difficult to assess systemic risk measures at the bank level (because an individual in-

stitution’s ranking with respect to its systemic importance is predominantly determined

by the applied measure), an evaluation of systemic risk measures at the banking system

level is more expedient.

This paper contributes to the literature on the assessment of systemic risk measures in

several ways. We compare three prominent systemic risk measures such as to assess their

adequacy as a monitoring tool for regulatory authorities. We investigate the dynamics and

directionalities between the systemic risk measures at the banking system level and the

macro-economy. Furthermore, we examine linkages between the systemic risk measures

and balance sheet characteristics at both the bank and the banking system level.

In particular, we implement and compare the Marginal Expected Shortfall (MES)

(Acharya et al., 2010), the related SRISK measure (Brownlees and Engle, 2012), and

the Conditional Value at Risk (CoVaR) (Adrian and Brunnermeier, 2011) employing a

common setup that is in line with Girardi and Ergün (2013) and Brownlees and Engle

(2012). We model the stock return characteristics using a DCC GARCH specification

and apply the latter to simulate the systemic risk measures.2 Over the last years, these

measures have had a high impact on research and regulation.3 All three measures rely

on stock price information and balance sheet data and thus can be implemented for all

publicly listed banks.

We find that systemic risk measures possess substantial forecasting power for a variety

of financial and macro-economic variables including interbank interest rates, real GDP,

and economic sentiment. However, the systemic risk measures are not equally adequate for

regulatory purposes. In general, the MES and SRISK measures outperform the CoVaR.

2 Note that our assessment framework is independent of the measures and measurement method and
does not rely on any technical specifications. We implement the risk measures in a common setup to
improve comparability and interpretability (see Section (3.3)).

3 The measures are applied by the U.S. Treasury Department (Financial Stability Oversight Council,
2013) to monitor systemic risk in the banking system. Similarly, the European Systemic Risk Board
uses CoVaR, among other indicators, to measure systemic risk in the European banking system
(European Systemic Risk Board, 2013).
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Moreover, we find that an individual bank’s systemic importance is well explained by its

balance sheet characteristics. However, at the banking system level, aggregate balance

sheet characteristics cannot predict systemic risk.

We apply the measures to European banks between July 2005 and June 2013. The

European banking system provides a unique setting for the evaluation of systemic risk

measures, as European institutions are likely to be affected by both the Subprime Crisis

including the subsequent International Financial Crisis of 2007–2009 and the current Euro

Crisis. Thus, our sample of European banks allows for a broad analysis and ensures that

systemic risk measures are not only evaluated by their performance during the Subprime

Crisis.

In a first step, we analyze the measures at the bank level discussing the systemic

importance ranking of institutions obtained for the Subprime Crisis and the Euro Crisis

periods. We examine to what extent the bank level measures are driven by their balance

sheet characteristics. In a second step, we perform a vector autoregression (VAR) analysis

to study the measures’ ability to act as leading indicators of systemic risk. The VAR

analysis furthermore enables us to measure directionalities and causalities between the

measures and a set of aggregate financial market, balance sheet and macro-economic

variables.4

Lastly, our paper contributes to a growing body of literature on the MES, SRISK,

and CoVaR measures which divides into three strands. The first strand implements MES,

SRISK (Acharya and Steffen, 2012; Idier et al., 2013; Engle et al., 2012; Acharya et al.,

2012), and CoVaR (López-Espinosa et al., 2012; Van Oordt and Zhou, 2011; Roengpitya

and Rungcharoenkitkul, 2011; Gauthier et al., 2010) analyzing distress in the financial

markets and identifying determinants of systemic importance. A second strand of litera-

ture extends those measures. Girardi and Ergün (2013) propose the use of multivariate

GARCH estimates to measure CoVaR, Cao (2013) extends the CoVaR measure from one

bank being in financial distress to a set of one or more banks being in distress, and Hong

(2011) derives an analytical version of the CoVaR measure. A third strand of literature

compares the measures. Jiang (2012) analyzes the tail dependence structure of MES and

CoVaR, Benoit et al. (2013) rank US financial institutions according to MES, SRISK, and

CoVaR and find that the risk measures can be proxied by market risk and liabilities, and

Löffler and Raupach (2013) estimate the robustness of MES and CoVaR.

4 In contrast to Rodriguez-Moreno and Peña (2013) who assess the performance of systemic risk measures
at the banking system level applying an index of systemic events, our analysis does not necessitate
the identification of specific systemic events that might be prone to selection biases.
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The remainder of the paper is structured as follows: Section 3.2 describes the data

used for our analysis and Section 3.3 introduces and defines the systemic risk measures.

In Section 3.4 we provide an outline of the methodology and Section 3.5 presents and

discusses our results; Section 3.6 summarizes and concludes.

3.2 Data description

Our empirical analysis focuses on the European banking system. We concentrate on the

European Union excluding countries from Eastern Europe to ensure sufficiently homoge-

neous banking regulation across our sample. However, we include Switzerland given the

country’s individual banking sector’s importance within the European banking system and

its similar banking regulations.5 Our sample covers the period from July 2005 to June

2013 including the International Financial Crisis from 2007 to 2009 and the subsequent

European Sovereign Debt Crisis.

Our selection of banks is based on two major criteria: First, we select all banks

included in the STOXX Europe TMI Banks Index at one point in time within our sample

period.6 According to the European Commission’s proposal for a Single Supervisory

Mechanism (SSM) for the European Banking Union, banks with total assets above e30bn

are supervised directly by the ECB due to their potential systemic relevance (European

Commission, 2013). Thus, we rank the institutions with respect to their size in total

assets and select those where total assets are above e30bn in at least one of the quarters

within the sample period. To our preselection of banks, we furthermore add the ING

Groep N.V., the Bank of Cyprus as well as the Landesbank Berlin Holding AG. STOXX

classifies the ING Groep as an insurance company. However, a substantial part of the

ING Groep’s revenues come from banking related activities. Moreover, we add the Bank

of Cyprus in order to represent the Cyprian banking sector, which is not accounted for by

the STOXX Europe TMI Banks Index. We include the Landesbank Berlin Holding AG

in order to increase the German banking system’s coverage in our sample.

5 Our sample selection is in line with Trapp and Wewel (2013); all member states of the European
Union and Switzerland implemented the Basel II Directives 2006/48/EC and 2006/49/EC and are
introducing the new Basel III criteria.

6 According to STOXX Limited (2013), the individual banks are admitted into the index based on their
free float market capitalization and cover roughly 95% of the free float market capitalization of all
banks headquartered in Western Europe. The index composition is updated on a quarterly basis.
This leaves us with 126 banks. By selecting all banks that are included in the index within the sample
period, we ensure that our sample selection adequately reflects the aggregate of traded stocks of banks
in Western Europe.
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Institution Country ISIN Total Assets (in em) rank Market/Book rank Leverage rank

ABN AMRO Holding N.V. Netherlands NL0000301109 794,905 15 3.39 85 13.24 62
Ageas N.V. Belgium BE0974264930 420,419 23 1.36 52 23.17 29
Agricultural Bank of Greece S.A. Greece GRS414003004 25,216 82 14.39 86 13.63 61
Alliance & Leicester PLC United Kingdom GB0000386143 90,321 49 1.27 45 28.99 25
Allied Irish Banks PLC Ireland IE0000197834 148,411 38 1.51 61 10.61 73
Alpha Bank A.E. Greece GRS015013006 56,845 61 1.18 38 12.13 67
Banca Antonveneta S.p.A. Italy IT0003270102 44,553 68 2.59 83 6.17 84
Banca Carige S.p.A. Italy IT0003211601 33,588 72 1.09 29 10.97 71
Banca Civica S.A. Spain ES0148873005 74,048 56 0.30 5 83.08 3
Banca Lombarda Italy IT0000062197 40,222 69 2.04 81 7.25 82
Banca Monte dei Paschi di Siena S.p.A. Italy IT0001334587 196,445 33 0.82 17 27.30 27
Banca Nazionale del Lavoro S.p.A. (BNL) Italy IT0001254884 88,283 50 1.75 75 10.57 74
Banca Popolare dell’Emilia Romagna Italy IT0000066123 52,307 62 0.89 21 19.05 38
Banca Popolare di Milano Italy IT0000064482 45,742 67 0.72 12 17.95 40
Banca Popolare di Sondrio Italy IT0000784196 21,916 84 1.42 58 9.85 76
Banca Popolare Italiana S.C.A.R.L. Italy IT0000064300 46,138 65 1.79 77 7.13 83
Banche Popolari Unite S.C.A.R.L. Italy IT0003487029 109,530 44 0.73 13 17.18 46
Banco Bilbao Vizcaya Argentaria S.A. Spain ES0113211835 507,807 19 1.64 69 11.92 68
Banco Comercial Portugues S.A. Portugal PTBCP0AM0007 87,428 53 1.30 47 16.79 49
Banco de Sabadell S.A. Spain ES0113860A34 88,060 51 1.26 43 14.47 58
Banco Espanol de Credito S.A. Spain ES0113440038 104,562 46 1.38 53 16.81 48
Banco Espirito Santo S.A. Portugal PTBES0AM0007 70,588 57 0.98 25 16.00 53
Banco Pastor S.A. Spain ES0113790085 26,549 79 1.32 49 14.63 56
Banco Popolare Societa CooperativaAz. Italy IT0004231566 108,159 45 0.68 10 20.98 35
Banco Popular Espanol S.A. Spain ES0113790226 114,220 42 1.44 59 12.35 65
Banco Portugues de Investimento S.A. Portugal PTBPI0AM0004 39,802 71 1.70 72 17.75 43
Banco Santander S.A. Spain ES0113900J37 1,025,916 10 1.17 37 14.99 54
Bank Austria Creditanstalt AG Austria AT0000995006 206,010 32 1.46 60 11.09 70
Bank of Cyprus Cyprus CY0000100111 32,947 73 1.38 54 12.35 66
Bank of Greece Greece GRS004013009 84,172 55 0.50 6 86.95 2
Bank of Ireland Ireland IE0030606259 169,136 37 1.08 28 24.26 28
Bankia S.A. Spain ES0113307021 287,902 27 -0.44 1 76.05 4
Bankinter Spain ES0113679I37 50,617 63 1.56 66 16.25 51
Banque Cantonale Vaudoise Switzerland CH0015251710 25,552 80 1.74 73 9.76 77
Banque Nationale de Belgique S.A. Belgium BE0003008019 100,203 47 0.15 3 75.38 5
Barclays PLC United Kingdom GB0031348658 1,633,656 5 1.11 31 37.53 17
Basler Kantonalbank Switzerland CH0009236461 22,432 83 0.28 4 44.10 13
Bayerische Hypo- und Vereinsbank AG Germany DE0008022005 457,780 21 1.42 57 16.01 52
BNP Paribas S.A. France FR0000131104 1,743,205 1 0.95 24 30.68 20
Bradford & Bingley PLC United Kingdom GB0002228152 64,273 59 0.88 20 40.82 15
Caisse Regionale de Credit Agricole Mutuel de Paris et d’Ile de France SC France FR0000045528 29,870 76 0.58 7 44.59 11
Caixabank S.A. Spain ES0140609019 111,228 43 0.79 16 8.73 79
Capitalia S.p.A. Italy IT0003121495 138,590 39 1.74 74 8.67 80
Commercial Bank of Greece Greece GRS006013007 25,549 81 2.72 84 14.93 55
Commerzbank AG Germany DE000CBK1001 663,395 16 0.65 8 57.16 6
Crédit Agricole S.A. France FR0000045072 1,465,511 6 0.75 14 49.83 8
Credit Suisse Group AG Switzerland CH0012138530 805,461 13 1.54 65 20.68 37
Credito Emiliano S.p.A. CredemAz. Italy IT0003121677 27,395 78 1.22 40 14.53 57
Credito Valtellinese S.C.A.R.L. Az. Italy IT0000064516 21,571 85 0.66 9 22.27 31
Danske Bank Denmark DK0010274414 415,945 24 1.04 27 28.94 26
Depfa Bank Germany IE0072559994 223,521 30 1.86 79 44.48 12
Deutsche Bank AG Germany DE0005140008 1,722,101 2 0.94 23 47.39 9
Deutsche Postbank AG Germany DE0008001009 196,433 34 1.24 41 29.25 24
Dexia S.A. Belgium BE0003796134 523,914 18 0.93 22 44.99 10
Erste Group Bank AG Austria AT0000652011 194,229 35 1.34 50 17.76 42
Eurobank Ergasias S.A. Greece GRS323003004 67,235 58 1.24 42 12.63 63
GAM Holding AG Switzerland CH0102659627 13,786 86 1.68 71 3.21 86
HBOS PLC United Kingdom GB0030587504 805,950 12 1.76 76 30.57 21
HSBC Holdings United Kingdom GB0005405286 1,644,162 4 1.42 56 12.50 64
IKB Deutsche Industriebank AG Germany DE0008063306 40,094 70 0.86 18 38.87 16
ING Groep N.V. Netherlands NL0000303600 1,220,294 7 1.15 33 30.21 23
Intesa Sanpaolo S.p.A. Italy IT0000072626 542,920 17 0.87 19 192.58 1
Investec PLCShs United Kingdom GB00B17BBQ50 45,940 66 1.59 67 17.59 44
Irish Bank Resolution Corporation Ltd Ireland IE00B06H8J93 87,850 52 1.19 39 23.01 30
Julius Bär Switzerland CH0102484968 32597 74 1.65 70 6.04 85
Jyske Bank Denmark DK0010307958 28,094 77 1.40 55 13.68 60
KBC Groep N.V. Belgium BE0003565737 318,055 25 1.11 30 17.83 41
Landesbank Berlin Holding AG Germany DE0008023227 136,782 40 1.82 78 32.53 19
Lloyds Banking Group United Kingdom GB0008706128 798,099 14 1.53 64 21.70 33
Mediobanca - Banca di Credito Finanziario S.p.A. Italy IT0000062957 64,004 60 1.26 44 7.88 81
National Bank of Greece S.A. Greece GRS003003019 93,762 48 1.17 36 10.32 75
Natixis Banques Populaires France FR0000120685 425,956 22 0.69 11 41.18 14
Nordea Bank AB Sweden SE0000427361 485,820 20 1.35 51 18.14 39
Northern Rock PLC United Kingdom GB0001452795 123,666 41 0.11 2 56.88 7
Piraeus Bank S.A. Greece GRS014003008 46,352 64 1.16 34 14.37 59
Pohjola Bank PLC Finland FI0009003222 32,148 75 1.16 35 16.40 50
Raiffeisen Bank International AG Austria AT0000606306 86,980 54 1.52 63 10.96 72
Royal Bank of Scotland Group PLC United Kingdom GB00B7T77214 1,689,769 3 1.15 32 36.26 18
Sanpaolo IMI S.p.A. Az. Italy IT0001269361 279409 28 2.17 82 11.11 69
Skandinaviska Enskilda Banken AB Sweden SE0000148884 236,951 29 1.29 46 20.78 36
Société Générale S.A. France FR0000130809 1,054,032 9 1.04 26 30.53 22
Standard Chartered PLC United Kingdom GB0004082847 299,863 26 1.59 68 9.47 78
Svenska Handelsbanken AB Sweden SE0000193120 220,029 31 1.51 62 17.02 47
Swedbank AB Sweden SE0000242455 175,054 36 1.31 48 17.49 45
UBS AG Switzerland CH0024899483 1,212,246 8 1.99 80 21.82 32
UniCredit S.p.A. Italy IT0004781412 850,254 11 0.79 15 21.05 34

Table 3.1 – Bank characteristics and descriptives
The table exhibits figures averaged across the entire time series of quarterly balance sheet characteristics
for each of the 86 sample banks. The time series of observations cover the period from July 2005 to June
2013. All data are obtained from Datastream.
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Statistics Total Assets (in em) Market/Book Leverage

mean 337,939 1.40 25.87
sdev 462,771 1.52 25.24
min 13,786 -0.44 3.21
q = 0.25 46,191 0.93 12.39
q = 0.50 110,379 1.26 17.67
q = 0.75 424,572 1.54 30.45
max 1,743,205 14.39 192.58

Table 3.2 – Summary of bank balance sheet characteristics
The table gives a summary of Table 3.1. The time series of observations cover the period from July 2005
to June 2013. All data are obtained from Datastream.

We furthermore exclude penny stocks from our sample. We neglect banks if the price

of their stock stays below a threshold of e1 for 20 consecutive trading days. Hence, our

sample only contains banks with sound stock price information. To avoid survivorship

bias, a preselected bank remains in our sample even if it is excluded from the TMI In-

dex coverage. Thus, over time the number of sample banks diminishes as a result of

bankruptcies. The resulting sample contains 86 banks from 16 countries including Aus-

tria, Belgium, Cyprus, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the

Netherlands, Portugal, Spain, Sweden, Switzerland, and the United Kingdom, with a

minimum of 52 banks across the entire sample period.

Table 3.1 displays the names and balance sheet characteristics of the banks in our

sample and Table 3.2 provides a summary of the latter. The institutions’ mean total as-

sets over the sample period range from e13.8bn (GAM Holding AG) to e1,743bn (BNP

Paribas S.A.). The median-sized bank has around e110bn in total assets. The banks’

mean market-to-book ratio of equity ranges from -0.44 (Bankia S.A.)7 to 14.39 (Agricul-

tural Bank of Greece S.A.) across the sample period with a sample median of 1.26 (see

Table 3.2). Our sample banks are leveraged between 3.21 (GAM Holding AG) and 192.58

(Intesa Sanpaolo S.p.A.) with a median leverage of 17.59 (see Table 3.2) across the sample

period.

We obtain daily stock prices and quarterly balance sheet data for our predefined

selection of banks from Datastream. The balance sheet data employed in our calculation

of risk measures and our later analyses includes (book valued) total assets, (book valued)

7 After its IPO in July 2011, Bankia S.A. requested a bailout of e19bn in Mai 2012 and was partially
nationalized by the Spanish government. As a consequence, the bank reported on average a negative
balance for its book value of equity over the sample period.
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shareholders’ equity, the market values of equity, total net income, and the market-to-

book ratio of equity. We calculate the total book values of debt as the difference between

total assets and shareholders’ equity. Moreover, we define leverage as the ratio of market

valued total assets to market valued equity and calculate market valued total assets as

the sum of total (book valued) debt and market valued equity.

For our later analyses we employ European financial market data as well as macro-

economic data from the European Union. To measure the state of the European financial

market, we obtain weekly series of the 12 month EURIBOR, the 12 month Euro OIS

(overnight indexed swap) rate, and the VSTOXX Index from Datastream.8

In line with macro-economic forecasting literature, we measure the state of the Euro-

pean economy employing the following macro-economic variables: the monthly EU Indus-

trial Production Index (excluding Construction) and the monthly EU Economic Sentiment

Indicator; the EU House Price Index and real GDP on a quarterly basis; domestic credit

to private sector (expressed in percentage of real GDP), nonperforming loans to total

gross loans, and government debt to real GDP on an annual basis. The data on govern-

ment debt are obtained from the European Central Bank, data on domestic credit to the

private sector and nonperforming loans are obtained from the Worldbank’s database, and

all remaining data are from Datastream. All macro-economic variables refer to the EU27.

3.3 Systemic risk measures

In this section, we define the systemic risk measures implemented in this paper: (Multi)MES,

SRISK, and (Multi)CoVaR.

3.3.1 Multi-period MES

The marginal expected shortfall (MES) proposed by Acharya et al. (2010) measures the

expected one-period return (loss) of bank i’s stock given that the banking system’s overall

return is in its tail:

MESit = −E [ri,t+1 |rsys,t+1 ≤ VaRt,q (rsys,t+1) ] . (3.1)

ri,t+1 and rsys,t+1 represent the one-period returns of bank i’s stock and the banking

system and VaRt,q denotes the value at risk (VaR) of the banking system return rsys,t+1

8 The VSTOXX Index measures the volatility of the EURO STOXX 50. The calculation is based on
EURO STOXX 50 option prices and thus the index reflects market implied volatility.
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at confidence level q.9 More intuitively, the MES can be interpreted as the average return

of bank i’s stock on the q% days in a year where the banking system’s return is worst.

Acharya et al. (2012) and Brownlees and Engle (2012) introduce a multi-period ex-

tension of the one-period MES, which we henceforth refer to as Multi-period Marginal

Expected Shortfall (MultiMES). It is defined as bank i’s expected cumulative h-period

stock return – i.e., over time interval [t, t+ h] – conditional on the banking system’s cu-

mulative h-period return falling below a pre-defined threshold C, indicating distress in

the banking system:

MultiMESi,ht (C) = −E
[
Ri;[t,t+h]

∣∣Rsys;[t,t+h] ≤ C
]

(3.2)

with Ri;[t,t+h] denoting bank i’s cumulative stock return over h periods:

Ri;[t,t+h] = exp

(
h∑
τ=1

ri,t+τ

)
− 1. (3.3)

The h-period banking system return, Rsys;[t,t+h], is defined analogously. Note that for the

ease of interpretation we switch the sign of the risk measure. Thus, an increase in the

measure indicates an increase in systemic risk.

3.3.2 SRISK

Based on the MES, Acharya et al. (2012) and Brownlees and Engle (2012) directly model

a bank’s expected (time-varying) undercapitalization in a financial crisis. The proposed

systemic risk measure, SRISK, therefore incorporates financial market as well as balance

sheet data. A bank’s capital shortfall or its undercapitalization, respectively, is defined

as the amount of capital that a bank would have to raise during a financial crisis in order

to prevent bankruptcy. Hence, a bank’s capital shortfall is calculated as follows:

SRISKi,h
t (C, k) = E

[
capital shortfalli;[t,t+h]

∣∣ crisis
]
. (3.4a)

Bank i’s SRISK in period t is defined as its expected capital shortfall over the time interval

[t, t+ h] given the event of a financial crisis or severe distress in the banking system. For

9 We are using lagged time indexes (e.g. MESi
t instead of MESi

t+1) for our risk measures throughout the
paper. By doing so, we indicate that the risk measures are forward looking and based on information
available in t, i.e., on the information set It.
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the ease of interpretation, Equation (3.4a) can be expressed alternatively:

SRISKi,h
t (C, k) = E

[
{k × (debt + equity)− equity}i;[t,t+h]

∣∣∣ crisis
]
. (3.4b)

In order to prevent bankruptcy, institution i’s equity cushion needs to be larger than a

fraction k of the (market valued) total assets. Within the Basel III framework, parameter

k can be considered to represent the absolute Tier I capital ratio of 3% (which is consistent

with the Basel III maximum Leverage Ratio of 33.3 that must be satisfied even during a

crisis). Thus, k can be interpreted as a Basel Capital Adequacy Ratio equivalent on total

assets instead of risk-weighted assets.10 The market valued total assets can be determined

using current debt balance sheet data and the market value of equity. The market value

of equity within a future financial crisis can be expressed as a function of MultiMES:

SRISKi,h
t (C, k) = k × debti,t − (1− k)

(
1−MultiMESi,ht (C)

)
× equityi,t. (3.4c)

The higher a bank’s SRISK, the higher its capital shortfall during a crisis period. Contrary,

a negative SRISK indicates that a bank’s equity cushion is sufficiently large in order to

avoid bankruptcy.

3.3.3 Multi-period CoVaR

The Conditional Value at Risk as proposed by Adrian and Brunnermeier (2011) allows

for the calculation of an individual bank’s contribution to systemic risk in the banking

system measuring the value at risk return of the banking system conditional on institution

i being at its own value at risk return, i.e., conditional on institution i being in financial

distress. The one-period CoVaR
sys|C(ri,t+1)
t (q) is defined as:

P
(
rsys,t+1 ≤ CoVaR

sys|C(ri,t+1)
t (q)

∣∣∣ C (ri,t+1)
)

= q, (3.5)

where C (ri,t+1) denotes the conditioning event concerning institution i with

C (ri,t+1) ∈

{
ri,t+1 = VaRt,q (ri,t+1)

ri,t+1 = mediant (ri,t+1)
.

10 See Bank for International Settlements (2004) and Bank for International Settlements (2011a) for a
more detailed discussion of the Capital Adequacy Ratio and Leverage Ratio.
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Hence, institution i’s return is either at its value at risk (indicating financial distress) or

at its median state. As for the MultiMES, parameter q indicates the confidence level.11

∆CoVaR gives bank i’s marginal contribution to overall systemic risk in the banking

system. It is defined as the difference between the system’s CoVaR conditional on bank

i being in financial distress and the system’s CoVaR conditional on bank i being in its

median state. In contrast to the ”top down” measures MultiMES and SRISK, the ”bottom

up” measure CoVaR explicitly captures the consequences of institution i’s distress for the

banking system.

Girardi and Ergün (2013) redefine institution i’s ”distress CoVaR” to institution i’s

return being at or below its value at risk and employ bivariate GARCH estimates for

volatilities and correlations to account for a time-varying dependence structure between

banks and the banking system. These changes enables the measure to better capture the

tail events of distress.

In analogy to the MultiMES and SRISK measures, we define a Multi-period Condi-

tional Value at Risk (that we henceforth refer to as MultiCoVaR). MultiCoVaR
sys|i≤VaR,h
t

is the banking system’s h-period value at risk return, conditional on bank i’s h-period

(stock) return being lower or equal to bank i’s h-period value at risk:

P
(
Rsys;[t,t+h] ≤ MultiCoVaR

sys|i≤VaR,h
t (q)

∣∣∣Ri;[t,t+h] ≤ VaRi,h
t,q

)
= q (3.6a)

with VaRi,h
t,q denoting bank i’s h-period value at risk return. The median state CoVaR is

given by conditioning on the one standard deviation band around institution i’s median

h-period return:

P
(
Rsys;[t,t+h] ≤ MultiCoVaR

sys|i=median,h
t (q)

∣∣∣ ∣∣Ri;[t,t+h] − νhi,t
∣∣ ≤ σhi,t

)
= q (3.6b)

where σhi,t and νhi,t indicate the standard deviation and the median return of institution

i’s h-period cumulative stock return. Thus, institution i’s systemic risk contribution to

overall systemic risk in the banking system is defined as:

∆MultiCoVaRi,h
t (q) = −

[
MultiCoVaR

sys|i≤VaR,h
t (q)−MultiCoVaR

sys|i=median,h
t (q)

]
.

(3.6c)

Note that again, we switch the sign of ∆MultiCoVaR in order to facilitate the comparison

of the three different risk measures MultiMES, SRISK, and ∆MultiCoVaR. An increase

11 Adrian and Brunnermeier (2011) calculate the CoVaR using quantile regressions. Moreover, they
employ one week market valued total assets growth rates instead of daily stock returns.
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in ∆MultiCoVaR thus indicates an increase in institution i’s contribution to systemic risk

in the banking system.

3.4 Methodology

We model the bivariate return dynamics of institution i {ri}t and the banking system

{rsys}t applying a bivariate conditionally heteroscedastic process as employed by Brown-

lees and Engle (2012):

rsys,t = σsys,tεsys,t (3.7a)

ri,t = σi,t

(
ρi,sys,tεsys,t +

√
1− ρ2

i,sys,tεi,t

)
(3.7b)

where σj,t, j ∈ {sys, i} denotes the time-varying (conditional) volatilities and ρj,t the

time-varying (conditional) correlations; rj,t = ln (Pj,t/Pj,t−1) − µj denotes the detrended

logarithmic returns, where Pj,t represents either bank i’s stock price or the banking system

stock price index at time t and µj simply stands for the mean return over the full length

of our sample period.

The banking system stock price index reflects the stock price movements within our

sample and is calculated as the average total asset weighted stock price of our sample of

banks.12 The residuals εi and εsys are distributed according to the bivariate distribution

Fi capturing the tail dependence of the return series and are assumed to be uncorrelated

but not independent. Over time, however, the residuals are assumed to be independent

and identically distributed with zero mean and unit variance.

The time-varying volatilities of institution i’s (σi,t) and the banking system return (σsys,t)

are estimated individually for every institution i applying a univariate GARCH(1,1) pro-

cess13 as proposed by Bollerslev (1986):

σ2
j,t = α0,j + α1,jr

2
j,t−1 + β1,jσ

2
j,t−1 (3.8a)

with ξj,t =
rj,t
σj,t

; j ∈ {i, sys} , (3.8b)

12 Our total-asset-weighted banking system price index has a correlation of 97.9% with the STOXX
Europe 600 Banks and the TMI Banks Index.

13 We apply various time series diagnostic tests to the individual banks’ series of daily log stock returns.
I.e., we test for stationarity, heteroscedasticity, auto-correlation, and non-normality. According to
Appendix-Table 3.12, we cannot reject the null hypotheses that the time series are stationary for all
series. Most series, however, exhibit heteroscedasticity, strong auto-correlation, and non-normality.
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where the ξj,t denote the (correlated) standardized residuals derived from the univariate

GARCH(1,1) processes which we use to model the time-varying correlation coefficient

ρi,sys,t. For the estimation of correlations, we apply the Dynamic Conditional Correlation

(DCC) GARCH model of Engle (2002).

Rather than directly modeling the correlation between institution i’s return and the

banking system return, the DCC GARCH approach models the time-varying correlation

of the standardized residuals ξj,t, whereas their covariance matrix serves as a proxy for

the correlation matrix of returns ri,t and rsys,t. The validity for this equivalence follows

directly from the bivariate return process of Equation (3.7).14

In contrast to the one-period MES and CoVaR, the multi-period risk measures Mul-

tiMES and MultiCoVaR cannot be expressed in closed-form solution as a function of

volatility, correlation, and tail dependence and thus have to be determined via simula-

tion. Based on the simulated returns, we later calculate the pre-defined systemic risk

measures for each institution i in our sample of banks. Thus, for each institution i we

simulate returns carrying out the following five steps – as suggested by Brownlees and

Engle (2012):

(i) To model the volatility and correlation dynamics of {rsys, ri}t, we first estimate the

parameter vectors of the univariate GARCH(1,1) and the DCC GARCH processes

(α0,j, α1,j, β1,j) and (α, β), respectively.15

(ii) Furthermore, the dynamics of {rsys, ri}t are assumed to be driven by the distribution

Fi that we model using a t-copula and standard Gaussian marginal distributions.16

The bivariate t-copula is fitted to the series of residuals {εsys, εi}t from the entire

sample period.

(iii) In a third step, we simulate S = 500, 000 paths of residuals with h = 60 days (a

quarter of a year) length each. For every single path s, h independent pairs of

14 See Appendix 3.A for a detailed exposition of the DCC GARCH model.
15 All GARCH(1,1) and DCC GARCH parameters (see Appendix 3.A) are estimated maximizing the

corresponding log likelihood functions under the assumption that the residuals be Gaussian. However,
this does not imply that the estimated return series are normally distributed over time. In fact, in
literature it is well documented that the unconditional return distribution of a GARCH process is
heavy-tailed and exhibits excess kurtosis.

16 Recall that we use Gaussian error terms to estimate the GARCH(1,1) and DCC GARCH parame-
ters. To be consistent with our previous assumptions, we model the univariate residuals as standard
Gaussian noise.
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residuals are drawn from the parameterized distribution F̂i:{
εssys,t+τ

εsi,t+τ

}h

τ=1

∼ F̂i for s = 1, . . . , S (3.9)

(iv) In a fourth step, we employ the drawn residuals to calculate the daily bivari-

ate returns for the simulated time interval [t, t+ h] by updating the volatilities

{σsys,t+τ+1, σi,t+τ+1}h−1
τ=1 and correlations {ρi,sys,t+τ+1}h−1

τ=1 on a daily basis.17 This

yields the following return series:{
rssys,t+τ

rsi,t+τ

}h

τ=1

for s = 1, . . . , S (3.10)

(v) In the last step, we determine the h-day cumulative returns of simulations s = 1, . . . , S

at day t for institution i and the banking system (according to Equation (3.3)) from

which we calculate the MultiMES and MultiCoVaR measures.

We perform the simulation procedures outlined in Steps 3–5 including the calculation of

risk measures for each Wednesday within our sample period moving ahead one week in

each step. We thus obtain a weekly series of MultiMES and MultiCoVaR values (for every

week within the sample period). We calculate the h-day systemic risk measures from the

simulated bivariate cumulative h-day returns as follows:

MultiMES

The h-day MultiMES is calculated using the average of institution i’s cumulative h-day

returns resulting from paths s for which the cumulative return of the banking system is

below threshold C:

MultiMESi,ht (C) = −

∑S
s=1R

s
i;[t,t+h]1

{
Rs
sys;[t,t+h] ≤ C

}
∑S

s=1 1
{
Rs
sys;[t,t+h] ≤ C

} . (3.11)

1 denotes an indicator variable that takes the value one if the market return is below

threshold level C and zero otherwise. We set C = −25%.18

17 The detailed procedure of how the daily correlations are updated is presented in Appendix 3.A.
18 To calibrate the threshold level C, we observed the performance of the blue chip index STOXX

EUROPE 50 during the most severe periods of the international financial crises and the Euro crisis.
In both periods, the index dropped on average by around 25% within a three month window.
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MultiCoVaR

∆MultiCoVaR is calculated as the residual between bank i’s ”distress CoVaR” given by

MultiCoVaR
sys|i≤VaR,h
t (q) = VaRt,q

(
Rs
sys;[t,t+h]

)
with

{
Rs
sys;[t,t+h] : Rs

i;[t,t+h] ≤ VaRt,q

(
Rs
i;[t,t+h]

)} (3.12a)

and bank i’s ”median state CoVaR” given by

MultiCoVaR
sys|i=median,h
t (q) = VaRt,q

(
Rs
sys;[t,t+h]

)
with

{
Rs
sys;[t,t+h] : νs,hi,t − σ

s,h
i,t ≤ Rs

i;[t,t+h] ≤ νs,hi,t + σs,hi,t

}
,

(3.12b)

where νs,hi,t is the simulated median h-day return of institution i and σs,hi,t the simulated

standard deviation of institution i’s h-day return. We set the confidence level q = 5% for

both value at risk calculations.

3.5 Results

This section divides into two subsections. We commence with an analysis of the deter-

minants of a single bank’s systemic importance in the banking system in Section 3.5.1.

Section 3.5.2 investigates the predictive power of systemic risk measures at the banking

system level and analyzes dynamics and directionalities between systemic risk and the

macro-economy.

3.5.1 Bank level

The Bank for International Settlements proposes the assessment of a bank’s systemic

importance by an indicator-based measurement approach (Bank for International Settle-

ments, 2011b) that is directly related to a bank’s balance sheet characteristics. Thus,

in this section, we analyze to what extent the individual banks’ MultiMES, SRISK, and

∆MultiCoVaR measures are determined by their respective balance sheet characteristics.

For a first overview on how the three measures evaluate our sample banks’ individual

level of systemic risk, we plot the individual banks’ time series of systemic risk estimates

for each of the three measures.
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Panel A – MultiMES (in %)

Institution rank # obs mean sdev min q = 0.25 median q = 0.75 max

Ageas N.V. 1 53 49.11 17.10 24.25 36.59 47.01 61.52 89.40
Bank of Ireland 2 53 48.41 12.01 29.63 37.87 47.72 56.98 70.39
Royal Bank of Scotland Group PLC 3 53 47.56 7.12 38.29 43.79 45.97 49.94 74.02
Bradford & Bingley PLC 4 39 46.79 11.34 29.15 37.83 43.23 54.00 72.61
Allied Irish Banks PLC 5 53 44.15 9.54 29.79 35.92 41.10 52.91 64.10
HBOS PLC 6 53 44.12 10.60 29.84 35.88 39.98 50.17 74.00
Barclays PLC 7 53 43.79 5.19 33.76 40.01 43.43 47.43 55.52
Lloyds Banking Group 8 53 43.68 6.52 31.81 38.97 42.48 48.12 59.42
ING Groep N.V. 9 53 42.04 10.24 30.13 34.76 37.11 47.17 71.81
IKB Deutsche Industriebank AG 10 53 41.03 8.15 28.75 35.43 38.20 44.86 65.07
Société Générale S.A. 11 53 40.86 5.08 30.47 37.93 40.37 44.49 53.91
Alliance & Leicester PLC 12 53 39.50 11.81 17.79 34.63 40.04 44.98 73.90
Dexia S.A. 13 53 39.38 8.78 27.01 32.15 39.85 43.95 62.97
Landesbank Berlin Holding AG 14 53 38.64 9.40 26.96 31.41 37.54 44.65 63.17
Banca Popolare dell’Emilia Romagna 15 53 38.21 8.52 21.26 32.41 36.99 42.70 58.85
Crédit Agricole S.A. 16 53 37.13 4.61 25.58 34.60 35.92 40.12 46.13
Irish Bank Resolution Corporation Ltd 17 51 36.60 13.82 22.02 25.74 31.04 45.22 71.00
UniCredit S.p.A. 18 53 36.36 7.58 25.76 31.24 33.46 42.09 54.93
KBC Groep N.V. 19 53 36.04 8.62 25.43 29.55 33.17 43.73 56.49
BNP Paribas S.A. 20 53 35.60 4.37 30.31 32.66 34.61 37.49 52.46
Natixis Banques Populaires 21 53 35.10 5.43 26.62 30.73 34.46 38.27 47.29
UBS AG 22 53 34.00 5.29 26.85 30.29 32.75 36.90 48.51
Raiffeisen Bank International AG 23 53 33.35 6.74 24.74 28.82 30.74 36.01 51.66
National Bank of Greece S.A. 24 53 32.61 7.44 18.71 28.47 31.52 36.23 51.45
Erste Group Bank AG 25 53 32.38 6.35 24.49 27.68 29.88 34.57 45.76
Banco Popular Espanol S.A. 26 53 31.35 5.60 18.75 27.17 32.23 35.66 39.61
Deutsche Bank AG 27 53 30.95 7.89 24.26 25.61 27.12 33.24 49.74
Deutsche Postbank AG 28 53 30.90 6.89 20.41 26.07 29.16 34.43 51.08
Skandinaviska Enskilda Banken AB 29 53 30.66 5.59 23.64 26.74 28.79 34.01 47.88
Credit Suisse Group AG 30 53 30.26 6.72 21.32 25.51 28.38 33.26 48.30
Commerzbank AG 31 53 30.22 4.14 23.93 28.41 30.03 31.57 41.82
Standard Chartered PLC 32 53 30.18 4.55 23.39 27.61 29.11 32.16 43.14
Banco Santander S.A. 33 53 29.84 4.37 23.89 26.13 28.75 33.12 38.33
Swedbank AB 34 53 29.54 4.45 23.84 25.93 28.10 32.07 40.59
Investec PLCShs 35 53 29.05 3.41 21.59 26.40 28.66 31.45 36.48
Danske Bank 36 53 28.65 5.86 20.70 24.44 27.13 31.08 46.46
Banco Bilbao Vizcaya Argentaria S.A. 37 53 28.53 4.56 23.15 25.23 26.64 30.05 40.57
Nordea Bank AB 38 53 27.94 5.42 19.50 25.09 26.85 29.97 43.96
Piraeus Bank S.A. 39 53 27.85 4.14 20.66 24.59 27.05 30.58 36.19
Intesa Sanpaolo S.p.A. 40 53 27.63 6.02 20.87 24.35 25.30 28.58 47.07
Svenska Handelsbanken AB 41 53 27.57 5.45 19.25 24.41 26.92 29.35 39.98
Bankinter 42 53 27.19 3.30 21.86 25.26 26.86 29.17 38.17
Banco Popolare Societa CooperativaAz. 43 53 26.69 4.56 20.37 23.24 26.05 29.21 40.40
HSBC Holdings 44 53 26.33 4.93 17.02 23.11 25.08 28.82 38.97
Alpha Bank A.E. 45 53 25.53 5.76 16.70 20.79 25.33 29.34 38.51
Eurobank Ergasias S.A. 46 53 25.36 4.96 18.41 22.12 24.11 27.79 39.06
Banca Carige S.p.A. 47 53 25.33 3.92 18.50 22.44 24.38 27.57 34.15
Banco Portugues de Investimento S.A. 48 53 24.59 4.18 18.14 21.61 24.35 26.79 40.11
Pohjola Bank PLC 49 53 24.46 3.69 17.34 22.18 23.30 27.02 34.74
Banco Comercial Portugues S.A. 50 26 23.85 2.18 19.77 22.79 23.57 24.51 31.13
Agricultural Bank of Greece S.A. 51 53 23.69 4.25 18.57 20.39 23.00 25.04 35.45
Caixabank S.A. 52 53 23.65 3.21 18.69 21.07 23.25 24.98 33.33
Banco Espanol de Credito S.A. 53 53 23.38 2.75 17.83 21.58 23.00 24.43 32.58
GAM Holding AG 54 53 23.30 2.11 19.45 22.10 22.93 24.38 29.04
Banco Espirito Santo S.A. 55 53 23.22 4.60 16.15 19.96 22.35 25.87 38.59
Credito Emiliano S.p.A. CredemAz. 56 53 22.46 2.49 17.92 20.95 22.16 23.26 31.03
Mediobanca - Banca di Credito Finanziario S.p.A. 57 53 22.18 3.00 15.84 19.99 22.51 23.49 29.88
Jyske Bank 58 53 21.94 4.22 16.86 18.46 21.33 23.69 35.27
Banco de Sabadell S.A. 59 53 21.77 3.11 17.38 19.88 21.24 22.51 34.76
Banca Popolare di Milano 60 53 21.63 2.39 16.77 19.92 21.53 23.11 29.77
Commercial Bank of Greece 61 53 21.08 11.18 9.28 11.24 16.14 29.64 47.05
Bank of Cyprus 62 53 21.05 3.06 17.04 18.63 20.39 22.59 29.60
Banca Monte dei Paschi di Siena S.p.A. 63 53 19.97 2.13 17.04 18.79 19.35 20.75 28.66
Banche Popolari Unite S.C.A.R.L. 64 53 19.86 4.06 15.43 17.10 18.55 20.31 30.13
Credito Valtellinese S.C.A.R.L. Az. 65 53 18.20 2.50 13.87 16.82 17.99 19.03 26.02
Bank of Greece 66 53 17.80 3.49 15.01 15.80 16.87 17.80 33.13
Banco Pastor S.A. 67 53 16.93 1.70 14.01 15.65 17.20 17.98 21.04
Banca Popolare di Sondrio 68 53 16.19 5.16 10.84 13.20 15.11 17.53 41.54
Banque Cantonale Vaudoise 69 53 15.44 1.98 13.08 14.17 14.80 16.16 22.62
ABN AMRO Holding N.V. 70 17 13.62 1.57 11.07 13.16 13.66 14.63 16.46
Banque Nationale de Belgique S.A. 71 53 11.11 1.08 9.57 10.49 10.87 11.40 16.53
Bayerische Hypo- und Vereinsbank AG 72 37 10.54 1.21 8.64 9.76 10.30 10.96 14.11
Caisse Regionale de Credit Agricole Mutuel de Paris et d’Ile de France SC 73 53 10.27 0.81 8.86 9.72 10.06 10.68 12.32
Bank Austria Creditanstalt AG 74 19 7.94 0.27 7.45 7.80 7.96 8.04 8.55
Basler Kantonalbank 75 53 4.02 0.19 3.72 3.90 3.96 4.15 4.62

Table 3.3 – Statistics on weekly systemic risk estimates (Subprime Crisis 2008)
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Panel B – SRISK (in ebn)

Institution rank # obs mean sdev min q = 0.25 median q = 0.75 max

Deutsche Bank AG 1 53 34.31 10.46 18.07 26.86 32.56 40.23 52.67
Barclays PLC 2 53 30.48 7.70 16.59 26.84 30.61 35.37 42.62
Royal Bank of Scotland Group PLC 3 53 28.97 22.66 2.70 16.08 18.53 58.67 71.22
Crédit Agricole S.A. 4 53 21.65 5.56 10.39 17.65 21.26 24.43 32.02
UBS AG 5 53 17.42 5.62 0.74 15.28 18.09 20.30 29.49
HBOS PLC 6 53 15.19 6.84 1.02 11.80 14.62 21.68 24.71
Intesa Sanpaolo S.p.A. 7 53 13.74 0.50 13.06 13.34 13.50 14.15 14.69
ING Groep N.V. 8 53 13.74 11.11 -1.10 5.19 10.13 24.28 33.84
BNP Paribas S.A. 9 53 13.04 8.49 -2.61 8.05 10.92 15.41 36.77
Ageas N.V. 10 53 12.40 8.76 -0.75 4.20 12.87 20.31 24.78
Société Générale S.A. 11 53 11.18 5.97 -2.08 7.50 10.60 14.65 22.09
Commerzbank AG 12 53 10.20 2.57 6.33 8.49 9.14 12.95 15.01
Dexia S.A. 13 53 8.86 4.96 1.95 4.09 10.03 14.25 16.22
Natixis Banques Populaires 14 53 8.84 3.20 2.18 6.46 9.00 11.58 12.82
Danske Bank 15 53 3.09 3.65 -2.96 0.36 2.38 5.01 9.86
Bank of Ireland 16 53 2.25 2.33 -0.80 -0.22 2.74 4.58 5.51
Alliance & Leicester PLC 17 53 1.82 0.55 0.34 1.50 1.98 2.23 2.56
Banque Nationale de Belgique S.A. 18 53 1.58 0.49 1.19 1.27 1.29 2.23 2.50
Bradford & Bingley PLC 19 39 1.46 0.49 0.53 1.10 1.62 1.90 2.10
Lloyds Banking Group 20 53 1.36 5.03 -8.52 -3.08 1.80 5.46 10.28
Landesbank Berlin Holding AG 21 53 1.24 1.15 -0.17 0.12 1.04 2.52 3.23
IKB Deutsche Industriebank AG 22 53 1.19 0.18 0.69 1.12 1.24 1.32 1.46
Skandinaviska Enskilda Banken AB 23 53 1.14 2.18 -1.66 -0.51 0.52 2.45 5.30
Deutsche Postbank AG 24 53 0.56 2.26 -2.31 -1.15 -0.11 3.40 4.79
Caisse Regionale de Credit Agricole Mutuel de Paris et d’Ile de France SC 25 53 0.28 0.10 0.13 0.20 0.24 0.37 0.47
Allied Irish Banks PLC 26 53 0.15 2.91 -3.97 -2.63 0.18 3.10 4.36
Credit Suisse Group AG 27 53 0.11 5.62 -10.63 -3.20 -1.66 2.74 12.54
Swedbank AB 28 53 0.10 2.01 -2.41 -1.71 -0.38 2.12 3.52
Bank of Greece 29 53 0.06 0.31 -0.23 -0.18 -0.08 0.36 0.67
Basler Kantonalbank 30 53 0.05 0.01 0.02 0.04 0.05 0.06 0.07
Investec PLCShs 31 53 0.01 0.38 -0.80 -0.24 -0.05 0.34 0.60
Irish Bank Resolution Corporation Ltd 32 51 -0.51 1.94 -3.40 -2.38 -0.80 0.91 2.68
Banco Portugues de Investimento S.A. 33 53 -0.53 0.51 -2.09 -0.91 -0.39 -0.17 0.19
Credito Valtellinese S.C.A.R.L. Az. 34 53 -0.54 0.10 -0.73 -0.60 -0.54 -0.47 -0.31
Banca Popolare dell’Emilia Romagna 35 53 -0.54 0.50 -1.60 -0.80 -0.45 -0.20 0.35
Pohjola Bank PLC 36 53 -0.60 0.19 -0.89 -0.77 -0.59 -0.45 -0.16
Credito Emiliano S.p.A. CredemAz. 37 53 -0.66 0.28 -1.14 -0.96 -0.56 -0.45 -0.21
Commercial Bank of Greece 38 53 -0.83 0.73 -1.63 -1.53 -0.81 -0.09 0.32
Jyske Bank 39 53 -0.85 0.53 -1.71 -1.22 -1.05 -0.63 0.19
Banca Popolare di Milano 40 53 -0.90 0.50 -1.67 -1.29 -0.95 -0.62 -0.04
Banco Pastor S.A. 41 53 -1.03 0.42 -1.96 -1.34 -1.22 -0.64 -0.36
Agricultural Bank of Greece S.A. 42 53 -1.05 0.52 -2.12 -1.32 -1.07 -0.73 -0.20
Banque Cantonale Vaudoise 43 53 -1.05 0.32 -1.74 -1.34 -0.96 -0.79 -0.53
Bankinter 44 53 -1.06 0.47 -2.06 -1.43 -1.10 -0.59 -0.25
Svenska Handelsbanken AB 45 53 -1.25 1.38 -4.50 -1.94 -1.48 -0.61 1.49
Banca Popolare di Sondrio 46 53 -1.58 0.37 -2.23 -1.88 -1.61 -1.28 -0.79
Banco Espirito Santo S.A. 47 53 -1.93 1.05 -4.37 -2.83 -1.57 -1.11 -0.18
Erste Group Bank AG 48 53 -1.93 2.73 -5.27 -3.65 -2.87 -1.33 3.38
Banca Carige S.p.A. 49 53 -1.96 0.51 -2.96 -2.29 -2.13 -1.70 -0.90
Banca Monte dei Paschi di Siena S.p.A. 50 53 -2.17 1.09 -5.11 -2.96 -2.10 -1.22 -0.33
Banco Espanol de Credito S.A. 51 53 -2.25 0.74 -3.75 -2.84 -2.20 -1.66 -1.12
Bank of Cyprus 52 53 -2.47 1.23 -4.79 -3.13 -2.85 -1.31 -0.13
Banco Popolare Societa CooperativaAz. 53 53 -2.64 1.90 -5.08 -3.83 -3.35 -1.51 1.43
Piraeus Bank S.A. 54 53 -2.86 1.54 -5.78 -3.99 -3.30 -1.76 -0.03
Banco de Sabadell S.A. 55 53 -3.19 0.64 -4.81 -3.73 -3.12 -2.67 -2.24
Banco Comercial Portugues S.A. 56 26 -3.46 0.72 -5.24 -3.89 -3.33 -2.90 -2.49
Alpha Bank A.E. 57 53 -3.75 1.88 -6.87 -5.09 -4.53 -2.85 -0.04
Eurobank Ergasias S.A. 58 53 -3.98 2.24 -8.26 -5.68 -4.40 -2.71 0.01
Banco Popular Espanol S.A. 59 53 -4.36 2.18 -8.49 -6.23 -3.74 -2.25 -1.33
Banche Popolari Unite S.C.A.R.L. 60 53 -4.51 1.61 -7.49 -5.64 -4.69 -4.16 -1.51
KBC Groep N.V. 61 53 -5.02 6.52 -14.09 -10.00 -7.45 -1.77 6.46
Mediobanca - Banca di Credito Finanziario S.p.A. 62 53 -5.15 1.16 -6.99 -6.31 -4.86 -4.27 -3.03
Raiffeisen Bank International AG 63 53 -5.34 3.34 -9.63 -7.64 -6.80 -2.49 0.51
Nordea Bank AB 64 53 -5.42 4.24 -11.84 -8.35 -6.91 -3.97 3.49
UniCredit S.p.A. 65 53 -5.93 13.67 -26.26 -15.83 -10.16 8.08 18.10
GAM Holding AG 66 53 -5.97 1.64 -8.54 -7.27 -6.35 -4.52 -2.89
National Bank of Greece S.A. 67 53 -7.31 3.63 -15.33 -9.35 -8.10 -5.96 -0.92
Caixabank S.A. 68 53 -8.69 2.15 -12.82 -10.31 -9.07 -7.47 -4.62
Standard Chartered PLC 69 53 -11.80 4.95 -18.31 -15.93 -12.94 -9.68 -1.71
Bank Austria Creditanstalt AG 70 19 -12.88 0.21 -13.29 -13.07 -12.80 -12.75 -12.49
Bayerische Hypo- und Vereinsbank AG 71 37 -16.23 1.29 -18.59 -17.12 -15.98 -15.11 -14.62
Banco Bilbao Vizcaya Argentaria S.A. 72 53 -18.39 7.77 -32.97 -24.77 -19.54 -15.17 -3.29
Banco Santander S.A. 73 53 -23.73 10.47 -39.49 -30.96 -26.74 -17.86 -0.95
ABN AMRO Holding N.V. 74 17 -31.73 2.22 -35.86 -32.60 -31.77 -30.87 -27.30
HSBC Holdings 75 53 -43.01 13.51 -60.29 -51.57 -47.76 -39.90 -5.37

Table 3.3 (continued) – Statistics on weekly systemic risk estimates (Subprime Crisis 2008)
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Panel C – ∆MultiCoVaR (in %)

Institution rank # obs mean sdev min q = 0.25 median q = 0.75 max

Natixis Banques Populaires 1 53 32.35 3.29 23.04 30.84 33.50 34.78 37.23
Crédit Agricole S.A. 2 53 29.61 4.46 19.89 28.83 30.10 32.35 37.11
Banca Monte dei Paschi di Siena S.p.A. 3 53 28.44 5.99 15.76 25.47 29.89 33.66 36.00
Banche Popolari Unite S.C.A.R.L. 4 53 28.03 5.93 15.34 25.45 28.74 33.18 37.34
Skandinaviska Enskilda Banken AB 5 53 27.88 4.37 17.87 24.72 28.94 31.40 34.71
Irish Bank Resolution Corporation Ltd 6 51 27.31 3.62 18.88 25.20 28.11 30.38 31.98
Commerzbank AG 7 53 27.30 4.12 17.40 25.86 27.77 30.64 33.63
Nordea Bank AB 8 53 27.17 5.15 16.25 24.26 27.44 31.41 35.24
UniCredit S.p.A. 9 53 27.03 4.01 17.92 25.56 27.89 29.85 34.44
Mediobanca - Banca di Credito Finanziario S.p.A. 10 53 26.96 5.44 15.87 23.23 26.05 30.31 36.52
Banco Bilbao Vizcaya Argentaria S.A. 11 53 26.95 4.08 17.09 25.87 27.56 29.94 33.69
Banca Popolare di Milano 12 53 26.89 5.86 15.54 23.13 26.59 31.39 37.56
Banco Santander S.A. 13 53 26.86 3.72 17.60 25.76 27.98 29.08 33.07
Banco Popolare Societa CooperativaAz. 14 53 26.82 4.92 15.33 24.42 27.47 30.39 34.72
Société Générale S.A. 15 53 26.79 3.85 19.00 23.72 27.54 30.19 32.41
Deutsche Bank AG 16 53 26.77 4.26 17.18 25.32 27.15 29.64 33.96
Banco de Sabadell S.A. 17 53 26.71 4.79 15.52 24.33 27.65 30.16 33.26
Investec PLCShs 18 53 26.43 4.35 16.43 23.88 26.62 29.80 35.09
Barclays PLC 19 53 26.37 4.58 16.26 23.50 27.46 30.44 31.64
Allied Irish Banks PLC 20 53 25.92 4.87 15.01 22.09 26.59 29.99 32.38
BNP Paribas S.A. 21 53 25.84 3.63 17.49 24.39 27.05 27.74 31.93
Lloyds Banking Group 22 53 25.83 5.56 15.49 21.67 25.66 31.67 33.65
Credit Suisse Group AG 23 53 25.80 4.46 15.77 23.84 26.81 28.81 33.81
HSBC Holdings 24 53 25.78 4.23 15.74 24.10 26.99 28.99 32.47
Intesa Sanpaolo S.p.A. 25 53 25.54 5.01 14.57 23.95 26.20 28.57 35.78
Swedbank AB 26 53 24.99 4.16 15.79 23.33 26.21 28.32 31.58
ING Groep N.V. 27 53 24.96 4.41 15.86 21.75 24.64 29.09 31.17
Raiffeisen Bank International AG 28 53 24.95 3.88 16.00 22.74 25.96 27.88 31.23
Ageas N.V. 29 53 24.89 4.14 14.94 22.23 25.59 28.31 30.67
Bankinter 30 53 24.49 4.39 14.46 22.21 25.59 28.02 31.00
HBOS PLC 31 53 24.38 3.50 15.54 23.07 25.44 27.02 28.08
Banco Popular Espanol S.A. 32 53 24.27 4.12 15.13 21.95 25.06 27.30 30.20
GAM Holding AG 33 53 24.03 5.59 12.65 20.33 23.86 28.74 34.72
KBC Groep N.V. 34 53 23.95 4.23 14.56 21.69 24.38 27.73 29.72
Dexia S.A. 35 53 23.90 3.69 15.75 22.37 24.46 27.38 29.22
Svenska Handelsbanken AB 36 53 23.48 4.30 14.73 21.24 24.91 26.70 30.42
Erste Group Bank AG 37 53 23.39 4.18 14.54 21.11 24.12 26.20 31.00
UBS AG 38 53 23.03 3.24 15.11 21.89 23.83 25.52 26.62
Credito Valtellinese S.C.A.R.L. Az. 39 53 23.01 5.09 13.60 19.15 23.34 26.04 32.22
Royal Bank of Scotland Group PLC 40 53 22.85 4.43 13.75 20.24 23.57 26.65 29.15
Credito Emiliano S.p.A. CredemAz. 41 53 22.85 4.76 13.41 20.14 23.19 26.87 30.21
Standard Chartered PLC 42 53 22.53 4.40 13.50 19.87 23.47 25.63 29.02
Banca Carige S.p.A. 43 53 22.14 4.23 12.06 19.15 23.53 25.56 28.11
Jyske Bank 44 53 21.75 4.24 12.95 18.59 22.97 24.97 28.29
Danske Bank 45 53 21.50 4.07 13.08 19.11 21.99 24.72 27.17
Banco Espanol de Credito S.A. 46 53 21.39 3.91 12.48 19.71 21.97 24.68 26.18
Pohjola Bank PLC 47 53 21.04 5.33 11.81 17.47 21.17 26.30 30.40
Bank of Ireland 48 53 20.93 4.18 11.68 19.06 21.39 23.94 27.02
Banco Portugues de Investimento S.A. 49 53 20.55 5.27 9.78 16.44 20.93 25.38 28.19
Caixabank S.A. 50 53 20.48 3.94 12.78 18.36 20.54 23.62 28.11
Alliance & Leicester PLC 51 53 20.28 4.38 11.36 17.47 20.57 24.28 26.86
National Bank of Greece S.A. 52 53 19.85 4.25 11.11 17.16 19.94 23.74 25.49
Banco Espirito Santo S.A. 53 53 19.83 4.35 12.01 16.89 19.60 23.21 27.45
Alpha Bank A.E. 54 53 19.31 4.39 10.87 16.26 19.32 22.96 26.71
Piraeus Bank S.A. 55 53 18.88 4.39 9.39 16.39 18.59 23.66 25.04
Banco Pastor S.A. 56 53 18.84 4.14 10.63 16.09 19.02 22.38 24.62
Eurobank Ergasias S.A. 57 53 18.83 4.81 9.48 15.31 18.74 23.97 27.31
Deutsche Postbank AG 58 53 18.06 4.03 8.57 15.82 18.07 21.52 24.59
IKB Deutsche Industriebank AG 59 53 16.99 4.40 9.59 13.55 16.81 21.00 24.54
Bradford & Bingley PLC 60 39 16.99 3.92 11.14 14.21 16.41 19.63 26.88
Agricultural Bank of Greece S.A. 61 53 16.94 4.70 8.91 12.92 16.72 21.75 24.43
Banca Popolare di Sondrio 62 53 16.92 4.19 7.63 14.21 17.24 21.29 23.56
Bank of Cyprus 63 53 15.18 3.32 8.72 12.69 15.59 18.05 20.97
Banca Popolare dell’Emilia Romagna 64 53 14.64 4.33 7.69 11.13 13.67 18.88 22.41
Bank of Greece 65 53 12.90 3.23 7.13 11.00 13.00 15.50 18.71
Banque Cantonale Vaudoise 66 53 12.57 3.46 6.48 10.64 13.11 14.95 17.77
Bayerische Hypo- und Vereinsbank AG 67 37 12.41 3.08 7.42 9.94 12.02 13.72 20.09
Commercial Bank of Greece 68 53 11.75 3.30 6.56 9.07 11.42 13.90 17.72
Banque Nationale de Belgique S.A. 69 53 11.09 2.48 5.74 9.53 11.72 13.13 14.46
ABN AMRO Holding N.V. 70 17 11.04 2.89 5.16 9.97 11.23 12.11 16.84
Landesbank Berlin Holding AG 71 51 9.50 2.46 5.05 7.82 9.45 11.14 13.85
Caisse Regionale de Credit Agricole Mutuel de Paris et d’Ile de France SC 72 53 8.23 2.10 4.33 6.85 8.10 9.69 12.45
Banco Comercial Portugues S.A. 73 26 7.55 1.39 5.80 6.64 7.15 7.95 10.85
Bank Austria Creditanstalt AG 74 19 1.38 0.35 0.83 1.10 1.42 1.62 2.02
Basler Kantonalbank 75 53 -4.77 2.40 -10.10 -6.00 -4.38 -2.90 -0.89

Table 3.3 (continued) – Statistics on weekly systemic risk estimates (Subprime Crisis 2008)
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Panel A – MultiMES (in %)

Institution rank # obs mean sdev min q = 0.25 median q = 0.75 max

Banca Popolare dell’Emilia Romagna 1 52 56.51 9.72 34.30 50.12 56.21 63.93 72.37
Société Générale S.A. 2 52 46.13 8.12 30.75 40.28 44.35 52.59 62.97
Ageas N.V. 3 52 45.76 6.29 32.00 41.60 46.59 50.21 60.20
ING Groep N.V. 4 52 44.23 6.67 31.22 39.17 44.28 49.90 57.12
UniCredit S.p.A. 5 52 44.15 5.21 36.85 40.07 43.56 47.38 55.95
BNP Paribas S.A. 6 52 40.98 5.15 32.56 37.39 38.53 45.88 53.46
Dexia S.A. 7 44 40.89 7.95 27.96 35.24 39.03 44.93 60.40
KBC Groep N.V. 8 52 40.57 6.16 31.31 36.04 39.47 44.68 57.24
Eurobank Ergasias S.A. 9 52 39.15 6.43 28.83 34.49 37.64 42.48 53.11
Royal Bank of Scotland Group PLC 10 52 39.02 4.75 31.92 36.40 38.25 41.94 53.56
Agricultural Bank of Greece S.A. 11 31 38.83 8.76 26.77 32.56 36.65 43.15 58.62
National Bank of Greece S.A. 12 52 38.37 7.78 27.59 32.44 36.99 43.17 55.26
Piraeus Bank S.A. 13 52 37.59 6.38 28.54 32.73 36.19 41.47 53.04
Barclays PLC 14 52 37.31 6.68 27.55 31.69 36.83 43.22 48.78
Crédit Agricole S.A. 15 52 37.03 5.00 30.72 32.85 35.01 42.12 48.40
Landesbank Berlin Holding AG 16 52 36.33 8.56 26.21 31.14 33.39 38.92 71.44
Alpha Bank A.E. 17 35 34.89 4.48 27.01 31.64 34.02 36.98 49.31
Intesa Sanpaolo S.p.A. 18 52 34.68 3.83 28.39 31.80 34.48 36.90 43.93
Banco Bilbao Vizcaya Argentaria S.A. 19 52 34.33 4.16 28.55 31.46 33.75 35.56 48.59
Banco Santander S.A. 20 52 33.13 4.43 23.61 29.18 33.52 36.04 45.52
Commerzbank AG 21 52 31.95 2.24 28.05 30.34 31.93 33.24 38.10
Commercial Bank of Greece 22 21 31.85 7.68 25.80 27.80 29.76 33.22 62.73
Deutsche Bank AG 23 52 31.33 5.15 24.57 27.23 29.28 35.83 42.42
Banco Espirito Santo S.A. 24 52 31.12 6.02 22.31 26.74 29.84 33.33 48.21
Raiffeisen Bank International AG 25 52 31.06 3.85 26.58 28.24 29.66 32.33 40.50
Banco Popolare Societa CooperativaAz. 26 52 30.07 3.04 24.92 27.86 29.75 31.90 37.71
Natixis Banques Populaires 27 52 29.43 4.45 24.93 25.66 26.93 33.46 38.91
Banche Popolari Unite S.C.A.R.L. 28 52 29.41 3.88 22.07 26.35 29.41 31.46 38.49
Banco Popular Espanol S.A. 29 52 29.22 4.27 21.68 25.79 28.40 31.00 39.25
Bankinter 30 52 28.87 4.33 20.62 25.39 29.11 31.05 41.35
Erste Group Bank AG 31 52 28.75 5.62 21.75 24.55 26.32 34.32 41.16
UBS AG 32 52 27.73 2.93 21.29 25.45 28.12 30.04 32.64
Banca Popolare di Sondrio 33 52 27.68 5.55 16.91 24.08 26.57 32.07 42.50
Swedbank AB 34 52 27.34 2.26 23.42 25.88 26.91 28.24 32.97
Danske Bank 35 52 27.32 5.07 19.76 23.08 25.97 32.38 36.53
Mediobanca - Banca di Credito Finanziario S.p.A. 36 52 27.08 3.36 20.08 25.76 27.16 28.18 34.45
Skandinaviska Enskilda Banken AB 37 52 27.06 2.46 22.70 25.35 26.92 28.42 32.97
Credito Emiliano S.p.A. CredemAz. 38 52 26.91 2.85 21.09 25.07 26.38 28.33 34.42
Banco Portugues de Investimento S.A. 39 33 26.50 2.89 21.46 24.95 26.13 28.40 33.59
Banca Carige S.p.A. 40 52 26.48 3.40 20.67 24.11 26.00 28.85 33.56
Nordea Bank AB 41 52 25.92 3.72 20.04 23.16 24.68 28.68 34.32
Credit Suisse Group AG 42 52 25.84 3.55 17.97 23.51 25.85 27.92 32.60
Standard Chartered PLC 43 52 25.25 2.87 20.07 23.13 25.01 27.71 30.02
Pohjola Bank PLC 44 52 25.13 1.80 22.16 23.95 24.91 25.72 29.56
Banco Espanol de Credito S.A. 45 52 24.97 3.99 18.01 22.15 25.43 27.59 34.33
Banca Popolare di Milano 46 12 24.79 0.58 23.71 24.47 24.70 25.36 25.55
Banca Civica S.A. 47 23 24.06 1.43 22.22 23.07 23.79 24.97 27.82
Banco de Sabadell S.A. 48 52 23.90 4.64 16.37 21.57 23.39 25.58 36.28
Bank of Cyprus 49 48 23.16 2.54 18.89 20.99 22.67 24.90 30.95
Svenska Handelsbanken AB 50 52 23.03 3.06 18.00 20.86 22.47 24.96 29.88
Caixabank S.A. 51 52 22.95 3.07 19.80 21.02 22.06 23.41 36.82
Credito Valtellinese S.C.A.R.L. Az. 52 52 22.04 3.14 17.13 19.22 22.38 24.35 29.67
GAM Holding AG 53 52 21.78 1.38 19.37 20.86 21.59 22.53 26.97
Jyske Bank 54 52 21.56 3.44 16.15 18.98 20.79 23.94 30.80
HSBC Holdings 55 52 21.15 4.39 11.51 19.10 21.46 23.59 29.37
Investec PLCShs 56 52 20.77 1.41 17.88 19.83 20.94 21.79 23.90
Bank of Greece 57 52 20.74 4.28 15.20 18.14 19.49 21.47 37.23
Deutsche Postbank AG 58 52 19.77 2.39 15.64 18.31 19.34 21.22 27.04
Julius Bär 59 52 19.07 2.38 15.59 16.66 19.14 20.91 23.31
Banco Pastor S.A. 60 52 17.74 1.92 14.76 16.17 18.12 18.86 25.93
Banque Cantonale Vaudoise 61 52 13.71 1.12 11.69 12.95 13.55 14.18 16.75
Banque Nationale de Belgique S.A. 62 52 10.84 0.39 10.10 10.56 10.82 11.08 11.72
Caisse Regionale de Credit Agricole Mutuel de Paris et d’Ile de France SC 63 52 10.14 0.70 9.14 9.68 10.26 10.42 13.24
Basler Kantonalbank 64 52 4.46 0.93 3.74 4.23 4.34 4.55 10.85

Table 3.4 – Statistics on weekly MultiMES estimates (Euro Crisis 2011)
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Panel B – SRISK (in ebn)

Institution rank # obs mean sdev min q = 0.25 median q = 0.75 max

Royal Bank of Scotland Group PLC 1 52 38.58 2.45 34.72 36.96 37.73 39.43 44.97
Crédit Agricole S.A. 2 52 36.33 4.07 29.73 32.90 35.59 40.06 43.92
Deutsche Bank AG 3 52 32.06 8.24 17.57 27.40 31.02 39.65 44.17
BNP Paribas S.A. 4 52 31.35 8.83 16.71 25.05 28.68 38.88 51.89
Barclays PLC 5 52 30.52 8.61 15.12 26.58 32.05 36.50 42.58
ING Groep N.V. 6 52 20.85 4.59 12.36 17.52 19.56 25.39 27.67
Société Générale S.A. 7 52 18.65 6.56 9.25 12.69 15.10 25.93 27.87
Commerzbank AG 8 52 18.29 2.14 14.92 16.56 18.22 19.63 22.83
Intesa Sanpaolo S.p.A. 9 52 17.22 0.63 16.35 16.62 17.22 17.57 18.24
Dexia S.A. 10 44 15.11 0.85 13.60 14.29 15.11 15.97 16.23
UniCredit S.p.A. 11 52 12.57 5.41 4.15 7.51 12.11 17.77 20.40
Natixis Banques Populaires 12 52 7.72 2.09 3.83 6.37 8.38 9.16 11.11
KBC Groep N.V. 13 52 4.76 1.42 2.91 3.54 4.29 5.87 7.73
Danske Bank 14 52 4.55 1.93 1.68 2.70 4.67 6.01 7.85
Deutsche Postbank AG 15 52 3.09 0.40 2.10 2.79 3.27 3.39 3.57
Bank of Greece 16 52 2.89 0.55 2.45 2.52 2.61 3.03 3.86
Banco Popolare Societa CooperativaAz. 17 52 1.77 0.66 0.45 1.25 1.97 2.31 2.65
Landesbank Berlin Holding AG 18 52 1.69 0.37 1.21 1.40 1.58 1.90 2.85
Eurobank Ergasias S.A. 19 52 1.61 0.53 0.84 1.15 1.48 2.19 2.38
Banque Nationale de Belgique S.A. 20 52 1.51 0.26 1.07 1.44 1.55 1.68 1.98
Credit Suisse Group AG 21 52 1.45 6.00 -7.60 -2.81 -0.39 8.13 10.20
Banche Popolari Unite S.C.A.R.L. 22 52 1.19 0.76 -0.25 0.80 1.16 1.88 2.17
Banca Civica S.A. 23 13 1.17 0.02 1.11 1.16 1.17 1.18 1.20
Piraeus Bank S.A. 24 52 0.96 0.40 0.28 0.61 0.87 1.33 1.51
Banco Espanol de Credito S.A. 25 52 0.92 0.39 0.27 0.58 0.99 1.21 1.60
Banca Popolare dell’Emilia Romagna 26 52 0.81 0.24 0.29 0.62 0.82 1.01 1.18
National Bank of Greece S.A. 27 52 0.78 1.34 -1.64 -0.63 0.74 2.14 2.63
Alpha Bank A.E. 28 35 0.64 0.31 0.15 0.31 0.70 0.90 1.30
Banco Portugues de Investimento S.A. 29 33 0.61 0.11 0.44 0.51 0.61 0.69 0.77
Agricultural Bank of Greece S.A. 30 31 0.51 0.19 -0.01 0.50 0.54 0.62 0.75
Banco Espirito Santo S.A. 31 52 0.46 0.55 -0.28 -0.04 0.39 0.81 1.50
Caisse Regionale de Credit Agricole Mutuel de Paris et d’Ile de France SC 32 52 0.43 0.06 0.32 0.38 0.41 0.50 0.53
Ageas N.V. 33 52 0.40 0.68 -0.78 -0.24 0.30 1.02 1.35
Banca Popolare di Milano 34 12 0.34 0.04 0.28 0.31 0.33 0.36 0.42
Commercial Bank of Greece 35 21 0.30 0.07 0.22 0.23 0.26 0.35 0.49
Banco Pastor S.A. 36 52 0.21 0.06 0.05 0.16 0.23 0.26 0.29
Credito Valtellinese S.C.A.R.L. Az. 37 52 0.20 0.09 0.07 0.12 0.20 0.26 0.37
Bankinter 38 52 0.12 0.12 -0.11 0.02 0.14 0.21 0.33
Basler Kantonalbank 39 52 0.11 0.06 -0.01 0.04 0.11 0.17 0.22
Banco Popular Espanol S.A. 40 52 0.03 0.43 -0.67 -0.32 -0.01 0.43 0.81
Credito Emiliano S.p.A. CredemAz. 41 52 -0.09 0.22 -0.45 -0.29 -0.16 0.11 0.19
Bank of Cyprus 42 48 -0.11 0.56 -1.18 -0.54 -0.19 0.39 0.87
UBS AG 43 52 -0.21 5.99 -11.70 -4.40 -1.74 5.14 10.37
Banco de Sabadell S.A. 44 52 -0.40 0.28 -0.90 -0.58 -0.43 -0.23 0.23
Jyske Bank 45 52 -0.42 0.34 -0.89 -0.75 -0.40 -0.09 0.12
Pohjola Bank PLC 46 52 -0.53 0.19 -0.80 -0.71 -0.51 -0.39 -0.16
Investec PLCShs 47 52 -0.56 0.32 -1.23 -0.80 -0.62 -0.24 0.09
Banca Popolare di Sondrio 48 52 -0.56 0.15 -0.80 -0.67 -0.57 -0.47 -0.22
Banca Carige S.p.A. 49 52 -0.73 0.24 -1.22 -0.91 -0.74 -0.54 -0.30
Skandinaviska Enskilda Banken AB 50 52 -1.32 1.92 -4.03 -3.24 -1.50 0.44 1.71
Raiffeisen Bank International AG 51 52 -1.67 1.93 -3.87 -3.20 -2.54 -0.12 1.92
GAM Holding AG 52 52 -1.68 0.36 -2.19 -2.05 -1.75 -1.31 -1.14
Erste Group Bank AG 53 52 -1.70 2.83 -5.05 -3.86 -3.48 1.26 3.49
Swedbank AB 54 52 -1.76 1.06 -3.19 -2.67 -1.90 -1.16 0.61
Mediobanca - Banca di Credito Finanziario S.p.A. 55 52 -1.94 0.66 -2.77 -2.47 -2.02 -1.62 -0.32
Banque Cantonale Vaudoise 56 52 -2.08 0.18 -2.50 -2.17 -2.11 -1.95 -1.65
Svenska Handelsbanken AB 57 52 -3.03 1.40 -5.75 -3.88 -3.12 -1.95 -0.54
Julius Bär 58 52 -3.79 0.43 -4.85 -4.00 -3.75 -3.49 -3.03
Nordea Bank AB 59 52 -4.45 4.39 -12.40 -7.68 -5.26 -0.04 1.83
Banco Santander S.A. 60 52 -5.76 5.57 -15.98 -10.86 -6.41 -0.27 4.03
Banco Bilbao Vizcaya Argentaria S.A. 61 52 -6.12 2.21 -9.63 -8.07 -6.16 -4.52 -1.16
Caixabank S.A. 62 52 -10.20 1.35 -12.32 -11.63 -10.10 -9.11 -7.69
Standard Chartered PLC 63 52 -19.91 3.09 -27.05 -22.12 -19.19 -17.68 -13.22
HSBC Holdings 64 52 -41.43 13.44 -71.20 -48.58 -42.44 -28.69 -22.40

Table 3.4 (continued) – Statistics on weekly systemic risk estimates (Euro Crisis 2011)
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Panel C – ∆MultiCoVaR (in %)

Institution rank # obs mean sdev min q = 0.25 median q = 0.75 max

Natixis Banques Populaires 1 52 30.84 3.45 24.14 28.01 30.90 33.77 37.25
Crédit Agricole S.A. 2 52 25.97 5.21 17.96 20.48 25.68 30.84 34.07
Skandinaviska Enskilda Banken AB 3 52 24.72 5.93 16.77 19.24 23.14 30.57 34.64
Investec PLCShs 4 52 23.87 6.49 16.27 17.91 21.61 29.95 37.26
Société Générale S.A. 5 52 23.32 3.95 17.29 19.90 22.74 26.34 32.04
Commerzbank AG 6 52 23.10 5.74 14.32 17.62 22.21 29.04 31.61
Banche Popolari Unite S.C.A.R.L. 7 52 23.05 6.72 11.94 17.77 21.91 29.19 34.68
Deutsche Bank AG 8 52 22.94 5.31 15.09 17.85 21.57 28.42 30.84
Banco Popolare Societa CooperativaAz. 9 52 22.89 5.24 14.89 17.97 22.11 27.46 32.37
Banco Santander S.A. 10 52 22.85 5.32 15.03 17.91 21.00 27.90 31.84
Nordea Bank AB 11 52 22.68 6.48 14.12 16.59 20.64 29.20 34.26
Barclays PLC 12 52 22.55 5.32 13.54 17.75 20.79 27.72 32.13
Banco Bilbao Vizcaya Argentaria S.A. 13 52 22.51 5.76 15.03 17.05 19.91 28.76 31.12
Mediobanca - Banca di Credito Finanziario S.p.A. 14 52 22.11 4.24 16.20 18.57 20.93 25.07 32.46
UniCredit S.p.A. 15 52 21.96 4.02 15.99 18.22 20.82 25.73 29.57
Banco de Sabadell S.A. 16 52 21.91 6.33 13.40 16.06 20.21 27.71 33.44
Credit Suisse Group AG 17 52 21.55 6.49 13.33 15.74 19.36 28.27 32.87
Raiffeisen Bank International AG 18 52 21.44 4.58 15.05 17.08 20.45 25.59 29.16
BNP Paribas S.A. 19 52 21.35 3.91 15.54 17.59 21.04 24.40 28.30
Swedbank AB 20 52 21.32 5.59 13.82 15.88 19.74 27.03 29.78
Banco Popular Espanol S.A. 21 52 21.17 6.06 13.02 15.47 19.34 27.40 32.33
Intesa Sanpaolo S.p.A. 22 52 21.16 5.51 13.59 16.01 19.90 26.51 30.75
Ageas N.V. 23 52 21.15 5.22 13.87 16.22 19.50 26.41 30.79
HSBC Holdings 24 52 20.98 6.49 12.93 15.10 17.83 27.87 33.00
ING Groep N.V. 25 52 20.95 4.96 13.77 16.55 19.40 25.52 30.60
Bankinter 26 52 20.93 5.97 13.40 15.11 18.96 26.68 32.52
Pohjola Bank PLC 27 52 20.42 6.73 11.73 14.47 17.62 26.91 33.18
UBS AG 28 52 20.32 5.30 12.97 15.24 19.00 25.67 29.37
KBC Groep N.V. 29 52 20.00 4.79 13.99 15.96 18.15 24.38 29.32
Erste Group Bank AG 30 52 19.94 5.57 12.37 14.57 18.09 24.80 30.19
Svenska Handelsbanken AB 31 52 19.94 5.60 12.06 14.68 18.27 25.49 29.35
Banca Popolare di Sondrio 32 52 19.68 4.09 13.14 15.77 18.88 23.32 26.98
Credito Valtellinese S.C.A.R.L. Az. 33 52 19.52 5.58 11.23 14.38 18.26 25.10 30.19
Dexia S.A. 34 44 19.35 4.57 13.11 15.57 17.08 23.25 28.67
Royal Bank of Scotland Group PLC 35 52 19.06 4.79 12.67 14.74 17.32 23.83 28.26
Credito Emiliano S.p.A. CredemAz. 36 52 18.66 4.84 12.20 14.18 17.40 23.26 28.53
Standard Chartered PLC 37 52 18.64 4.99 12.55 14.14 16.94 23.93 28.17
Banca Popolare di Milano 38 12 18.37 1.65 16.42 17.06 18.58 19.27 22.17
Banca Carige S.p.A. 39 52 18.18 4.31 9.23 15.03 17.33 21.60 26.30
Caixabank S.A. 40 52 17.69 5.11 9.72 13.60 15.79 22.48 27.69
GAM Holding AG 41 52 17.43 7.61 7.47 10.71 13.18 25.01 32.24
Jyske Bank 42 52 17.22 5.45 9.83 12.16 16.24 22.16 26.55
Banco Espanol de Credito S.A. 43 52 17.05 4.75 10.17 12.44 16.00 21.90 25.31
Banco Portugues de Investimento S.A. 44 33 16.98 3.22 12.08 14.83 16.26 18.03 24.72
Danske Bank 45 52 16.42 5.12 9.64 11.75 14.59 20.61 27.11
Julius Bär 46 52 15.93 5.54 9.97 10.97 12.58 21.64 26.13
Banco Espirito Santo S.A. 47 52 15.86 4.74 9.31 11.51 14.56 19.37 25.53
Banco Pastor S.A. 48 52 15.28 4.11 9.87 11.42 13.98 18.95 23.75
Banca Popolare dell’Emilia Romagna 49 52 14.77 4.51 7.60 10.78 14.57 18.80 23.38
Banca Civica S.A. 50 23 13.58 1.24 11.66 12.86 13.56 14.29 16.52
Deutsche Postbank AG 51 52 13.34 4.35 8.37 9.42 11.95 17.20 21.51
National Bank of Greece S.A. 52 52 13.25 3.46 8.17 9.58 12.80 15.86 19.13
Alpha Bank A.E. 53 35 12.60 2.50 9.65 10.79 11.41 14.20 18.86
Bank of Cyprus 54 48 12.08 3.30 8.24 9.14 10.95 15.01 20.40
Eurobank Ergasias S.A. 55 52 11.93 3.11 7.63 9.08 11.25 14.25 17.98
Piraeus Bank S.A. 56 52 11.63 4.04 5.62 7.57 11.85 15.49 18.85
Bank of Greece 57 52 10.03 2.87 6.21 7.32 9.46 12.95 16.12
Banque Cantonale Vaudoise 58 52 9.90 4.38 5.12 6.26 7.16 14.46 18.62
Banque Nationale de Belgique S.A. 59 52 8.56 3.24 4.73 5.61 7.35 11.64 15.39
Agricultural Bank of Greece S.A. 60 31 7.84 1.27 5.26 6.94 7.69 8.41 10.54
Landesbank Berlin Holding AG 61 51 7.11 2.68 3.84 4.68 5.94 9.73 13.57
Commercial Bank of Greece 62 21 6.63 0.72 5.08 6.16 6.75 7.04 8.07
Caisse Regionale de Credit Agricole Mutuel de Paris et d’Ile de France SC 63 52 6.54 2.05 3.99 4.73 5.74 8.49 11.17
Basler Kantonalbank 64 52 -2.17 1.63 -6.22 -2.60 -2.06 -1.12 1.26

Table 3.4 (continued) – Statistics on weekly systemic risk estimates (Euro Crisis 2011)
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Figure 3.1 – Time evolution of MultiMES
The figure presents time series of weekly MultiMES values for all 86 sample banks expressed in percentage
terms. The time series of observations cover the period from July 2005 to June 2013. All stock price and
balance sheet data are obtained from Datastream.
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Figure 3.2 – Time evolution of SRISK
The figure presents time series of weekly SRISK values for all 86 sample banks expressed in ebn terms.
The time series of observations cover the period from July 2005 to June 2013. All stock price and balance
sheet data are obtained from Datastream.
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Figure 3.3 – Time evolution of ∆MultiCoVaR
The figure presents time series of weekly ∆MultiCoVaR values for all 86 sample banks expressed in
percentage terms. The time series of observations cover the period from July 2005 to June 2013. All
stock price and balance sheet data are obtained from Datastream.

Figure 3.1 exhibits the weekly time series of MultiMES, Figure 3.2 the weekly time

series of SRISK, and Figure 3.3 the weekly time series of ∆MultiCoVaR, which are calcu-

lated as described in Section 3.4. The ∆MultiCoVaR series exhibit higher cross-sectional

correlations than the MultiMES and SRISK series. However, all three systemic risk fig-

ures reveal two substantial peaks occurring in the time around the years 2008 and 2011.

Thus, we draw two subsamples from the weekly time series of MultiMES, SRISK, and

∆MultiCoVaR. The first subsample contains all weekly values for the three sets of sys-

temic risk measures within the year 2008. As the year 2008 marks the peak of turmoil in

the financial markets caused by the bankruptcies of the two large investment banks Bear

Stearns and Lehman Brothers, we henceforth refer to this subsample as the ”Subprime

Crisis”. The second subsample contains all corresponding values within the year 2011 and

we accordingly refer to this subsample as the ”Euro Crisis”.

Tables 3.3 and 3.4 exhibit descriptive statistics of the systemic risk estimates for our

sample banks within the Subprime Crisis and the Euro Crisis time intervals. Both tables

are designed in the same fashion. Panel A exhibits our estimates for MultiMES, Panel B

the estimates for SRISK, and Panel C the estimates for ∆MultiCoVaR. We rank the

banks according to their mean estimates. It is easily observed that the systemic risk

measures rank institutions differently. However, when taking a closer look, it is evident
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that the systemic risk estimates for the banks are driven by their respective balance sheet

characteristics.

In the following analysis, we consider the following balance sheet characteristics: lever-

age (calculated as the ratio of market valued total assets – i.e., the sum of the book value

of total debt and market valued equity – and market valued equity) to proxy for balance

sheet stability, market-to-book ratio (calculated as the ratio of market valued equity and

book value of equity) to measure financial distress, profitability (calculated as ratio of net

income and the book value of total assets) to evaluate a banks’ business outlook, and total

assets to assess potential default consequences. Taking the ten largest banks (by total

assets), we observe that all six systemic importance rankings predominantly reflect the

amount of an institution’s total assets. Throughout all rankings of Tables 3.3 and 3.4, the

vast majority of the ten largest banks is found in the upper tier. As expected, this effect

is strongest for the SRISK measure as the latter incorporates balance sheet characteristics

by construction.

Leverage also seems to have a substantial impact on an institution’s systemic impor-

tance. As for total assets, the ten most leveraged banks are predominantly found on the

systemically important ranks. This relationship is most clear-cut for the SRISK measure.

For MultiMES and ∆MultiCoVaR, the same relationship seems to prevail, though less

strongly. We also analyzed the rankings with respect to the ten most profitable banks

and the banks with the lowest market-to-book ratio. However, no specific patterns can

be observed, so – if at all existent – we would expect this relationship to be weak.

To explore if there exists any systematic relationship between the systemic risk esti-

mates and the previously mentioned balance sheet characteristics, we perform the follow-

ing simple least squares regression:

SysRiskbankt = α + β SysRiskbankt−1 + γ BalanceSheetCharacteristicsbankt−1 + εt (3.13)

where SysRiskbankt represents any of the three risk measures ∆MultiCoVaR, MultiMES

or SRISK at the institutional level and BalanceSheetCharacteristicsbankt−1 is a vector con-

sisting of the four lagged balance sheet characteristics leverage (lev), market-to-book ratio

(mb), profitability (pf), and the logarithm of total assets (ta) as its elements. Parameters

α, β, and γ ≡ (γlev, γmb, γpf , γta) denote the regression coefficients and εt is Gaussian

White Noise. We control for the lagged systemic risk measure to correct for endoge-

nous risk persistence. The regression is performed on the basis of monthly time series.

Thus, for the weekly series of systemic risk, we calculate monthly averages and we linearly

interpolate the quarterly balance sheet data.
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Table 3.5 presents the regression results for Equation (3.13) and is organized as follows:

Panel A exhibits the results for the MultiMES measure, Panel B the results for the SRISK

measure, and Panel C the results for the ∆MultiCoVaR measure. In all three regressions,

the risk measures are highly autocorrelated. Thus, systemic risk at the bank level is stable

over time, implying that a bank that was systemically important in the previous month

will also be systemically important in this month. The result is most persistent for the

SRISK measure.

The influence of log assets is consistently positive and significant at the 1% confidence

level. The larger a bank, the higher its systemic risk estimate. This result is in line with

our qualitative analysis of the rankings of Tables 3.3 and 3.4. For the ∆MultiCoVaR and

MultiMES measures, leverage is significant as well, though this is not the case for the

SRISK measure. However, the sign of the regression coefficients is ambiguous. Whereas

a higher leverage increases MultiMES, it decreases ∆MultiCoVaR. This finding lasts in

different regression setups.19

As predicted by our prior descriptive analysis, the market-to-book ratio as well as

profitability do not have additional predictive power for all three systemic risk measures

and thus seem to be already captured by the (simultaneously calculated) lagged systemic

risk measures. The same relation holds for the SRISK measure and leverage. As a result,

the exogenous variation in systemic risk in the cross-section is mainly driven by size and

leverage.

In summary, our analysis shows that besides the lagged systemic risk measures, total

assets and leverage are the most important drivers of systemic risk. The systemic impor-

tance of banks with high leverage and large total assets disproportionally increases during

periods of financial turmoil. The results imply that regulators can effectively reduce sys-

temic risk at the institutional level by imposing restrictions on bank size and leverage and

thus justify new regulatory measures such as the introduction of a leverage ratio on total

assets and capital surcharges to SIFI’s Tier 1 capital in the range between 1% to 3.5%

(European Parliament and the Council of the European Union, 2013).

19 We also perform the same regression without controlling for endogenous risk persistence. As a result,
all balance sheet characteristics are significant at the 5% level and thus have explanatory power
for future systemic risk levels. Surprisingly, leverage has a negative influence on ∆MultiCoVaR,
which is counterintuitive. Furthermore, MultiMES is positively related to the market-to-book ratio.
On average, the risk measures are positively related to size and leverage and negatively related to
profitability and the market-to-book ratio.
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Panel A – MultiMES (in %)

Lagged variables coefficient sdev t-value p-value

Intercept -0.1661 0.3815 -0.4353 0.6633
MultiMES 0.9453 0.0043 219.1939 0.0000
Leverage 0.0011 0.0007 1.6046 0.1086
Market-to-Book 0.0231 0.0159 1.4555 0.1456
Profitability -0.0039 0.0090 -0.4363 0.6626
Log Assets 0.1409 0.0337 4.1754 0.0000

mean sum sq R2 F -value p-value

Summary Stats 3.5193 0.9012 11,584.6800 0.0000

Panel B – SRISK (in bn EUR)

Lagged variables coefficient sdev t-value p-value

Intercept -1.0539 0.2145 -4.9143 0.0000
SRISK 0.9877 0.0019 516.9528 0.0000
Leverage 0.0001 0.0004 0.2586 0.7959
Market-to-Book 0.0076 0.0087 0.8663 0.3864
Profitability 0.0067 0.0049 1.3630 0.1729
Log Assets 0.0938 0.0178 5.2566 0.0000

mean sum sq R2 F -value p-value

Summary Stats 1.9344 0.9801 60,362.4500 0.0000

Panel C – ∆MultiCoVaR (in %)

Lagged variables coefficient sdev t-value p-value

Intercept -0.6398 0.2714 -2.3574 0.0184
MultiCoVaR 0.9222 0.0049 186.9164 0.0000
Leverage -0.0014 0.0005 -2.8449 0.0045
Market-to-Book 0.0019 0.0112 0.1651 0.8689
Profitability 0.0054 0.0063 0.8494 0.3957
Log Assets 0.1689 0.0246 6.8625 0.0000

mean sum sq R2 F -value p-value

Summary Stats 2.4850 0.8742 8,773.7340 0.0000

Table 3.5 – Determinants of systemic risk at the bank level
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Table 3.5 – continued:
All figures are estimated from monthly averaged time series of systemic risk measures at the bank level
and monthly (linearly interpolated) time series of bank level balance sheet characteristics covering the
period from July 2005 to June 2013. We estimate the equation SysRiskbankt = α + β SysRiskbankt−1 +
γ BalanceSheetCharacteristicsbankt−1 + εt, where SysRiskbankt represents any of the three risk mea-
sures MultiCoVaR, MultiMES or SRISK at the bank level and BalanceSheetCharacteristicsbankt−1 is
a vector consisting of the four lagged balance sheet characteristics leverage (lev), market-to-book ratio
(mb), profitability (pf), and the logarithm of total assets (ta) as its elements. Parameters α, β, and
γ ≡ (γlev, γmb, γpf , γta) denote the regression coefficients and εt is Gaussian White Noise. The table is
organized as follows. Panel A presents the results for the regression with SysRisk = MultiMES, Panel B
the results for SysRisk = SRISK, and Panel C the results for SysRisk = ∆MultiCoVaR. The names
of the lagged explanatory variables to which the regression coefficients refer are given in the respective
rows. We provide the coefficients’ estimates, standard errors, t- and p-values as well as various summary
statistics in the columns. For a detailed description of the regression variables, we refer to Table 3.6.

3.5.2 Banking system level

Having analyzed the determinants of systemic risk at the institutional level, we now turn

to the implications of systemic risk at the banking system level. Systemic banking crisis

often have substantial adverse effects on the real economy, such as drops in asset prices,

output, and employment (Reinhart and Rogoff, 2009c). Thus, if useful, systemic risk

measures should not only reflect current distress in the financial system but also have

predictive power for financial market and macro-economic variables. In this section, we

investigate the two-sided relationship between systemic risk measures and financial market

variables, macro-economic variables, and balance sheet characteristics at the aggregate

banking system level.

Table 3.6 provides a summary of the variables used in our subsequent analyses. To

capture movements at the financial markets, we employ the 12 month EURIBOR-OIS

spread (which we henceforth simply refer to as EURIBOR-OIS spread) and the VSTOXX

Index. The EURIBOR-OIS spread is the residual between the 12 month EURIBOR and

the 12 month Euro OIS (overnight indexed swap) rate and captures liquidity and default

risk within the European banking system. The data are on a weekly frequency.

In addition to our analyses at the bank level, we explore the two-sided relationship

between systemic risk measures and balance sheet characteristics employing the same

variables as in Section 3.5.1 but at the banking system level. I.e., for each of the balance

sheet characteristics, we compute weekly time series for the aggregate of all banks included

in our sample. Instead of log assets, however, we include the annual ratio of nonperforming

loans to total gross loans in our analyses.
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We measure linkages between systemic risk levels and the macro-economy employing

the following variables: the Economic Sentiment Indicator of the European Commission

and the EU Industrial Production Index (excluding construction), both published on a

monthly basis, the EU House Price Index and real GDP, both published on a quarterly

basis, domestic credit to the private sector and government debt, both expressed in per-

centage terms of real GDP and on an annual basis. All macro-economic variables refer to

the EU27.

To measure directionalities between the systemic risk measures and these variables,

we apply a vector autoregressive (VAR) model. According to the Schwarz criterion, the

data suggests a one lag structure. We thus employ a VAR system of the following type:

∆yt = a+B∆yt−1 + εt (3.14)

with yt ≡ (SysRisksyst , xt
′)′, where SysRisksyst represents any of the three systemic risk

measures ∆MultiCoVaR, MultiMES or SRISK at the banking system level and xt either

is the vector of financial market, balance sheet or macro-economic variables. Parameter

vector a denotes the intercepts, B is the coefficient matrix of lagged regression variables

yt−1, and εt is a vector of standard Gaussian error terms. The ∆s indicate that we are

running the regression in first differences to ensure that we do not violate the stationarity

requirements.20 Running the regression of Equation (3.14) requires that we harmonize

data with respect to their sampling frequency. We harmonize data on a monthly frequency

and achieve this by linearly interpolating all variables sampled on a frequency of lower

than a month. For variables with a higher frequency, we calculate monthly averages.

Figures 3.4–3.7 exhibit the time series of the variables used for the regression of Equa-

tion (3.14). Figure 3.4 exhibits the time series of cross-sectional averages of the monthly

averaged bank level systemic risk estimates. As observed in Section 3.5.1, the cross-section

of ∆MultiCoVaR measures is more strongly correlated than the other measures’ cross-

sections and thus, the aggregate ∆MultiCoVaR series exhibits higher volatility. Neverthe-

less, all three figures exhibit peaks during the Subprime and the Euro Crises. Figure 3.5

presents the monthly, linearly interpolated time series of aggregate balance sheet charac-

teristics, Figure 3.6 the monthly averaged time series of financial market variables, and

Figure 3.7 the monthly, linearly interpolated time series of macro-economic variables.

20 We perform several time series diagnostics. We test the differenced series ∆yt = yt − yt−1 for station-
arity, heteroscedasticity, auto-correlation, and non-normality. According to Appendix-Table 3.11 we
cannot reject the null hypotheses that the time series are stationary (Panel A) for all series and for
most series we cannot reject the homoscedasticity null hypothesis (Panel B). The vast majority of the
series exhibits strong auto-correlation (Panel C) and non-normality (Panel D).
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Figure 3.4 – Time evolution of risk measures
The figure presents averages across the time series of weekly systemic risk measures for all 86 sample
banks. The time series of observations cover the period from July 2005 to June 2013. All stock price and
balance sheet data are obtained from Datastream.
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Leverage:  Market Value Assets / Market Value Equity
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Figure 3.5 – Time evolution of bank balance sheet variables
The figure presents monthly, linearly interpolated time series of characteristic bank balance sheet variables
averaged across all 86 sample banks. The time series of observations cover the period from July 2005
to June 2013. Market values, book values, and total assets are obtained from Datastream; data on
nonperforming loans is obtained from the Worldbank’s database.
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Figure 3.6 – Time evolution of financial market variables
The figure presents monthly time series of the VSTOXX index and the 12 month EURIBOR-OIS spread
calculated as the difference between the 12 month EURIBOR and the Euro 12 month overnight index
swap (OIS) rate. The time series of observations cover the period from July 2005 to June 2013. All data
are obtained from Datastream.
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Figure 3.7 – Time evolution of macro-economic variables
The figure presents monthly (linearly interpolated) time series of macro-economic data from the EU27.
The time series of observations cover the period from July 2005 to June 2013. Data on government debt
is obtained from the European Central Bank, data on credit to the private sector is obtained from the
Worldbank’s database, and all remaining data is from Datastream.



3 What can systemic risk measures predict? 97
F

IN
A

N
C

IA
L

M
A

R
K

E
T

B
A

L
A

N
C

E
S
H

E
E

T
M

A
C

R
O

-E
C

O
N

O
M

Y

SystemicRisk

EURIBOR-OISSpread

Volatility

SystemicRisk

Leverage

Market-to-Book

Profitability

NonperformingLoans

SystemicRisk

Sentiment

Production

HousePrices

CreditPrivate

GovernmentDebt

RealGDP

P
a
n
e
l

A
–

M
u
lt

iM
E

S
(i

n
%

)

M
u
lt

iM
E

S
0.

04
0

0.
08

4
**

*
3.

52
1

**
*

-0
.0

12
-0

.0
55

-0
.0

04
-0

.0
06

**
0.

00
0

0.
00

8
-0

.4
48

**
*

0.
06

3
-0

.0
52

**
*

0.
02

6
-0

.0
04

-0
.8

35
**

*
E

U
R

IB
O

R
-O

IS
S
p
re

ad
1.

53
7

0.
17

5
-0

.9
58

V
ol

at
il
it

y
-0

.0
83

**
*

0.
00

4
-0

.0
35

L
ev

er
ag

e
0.

01
4

0.
38

4
**

-0
.0

04
0.

00
0

-0
.0

02
M

ar
ke

t-
to

-B
o
ok

0.
46

0
3.

13
5

-0
.0

41
0.

01
1

-0
.0

25
P

ro
fi
ta

b
il
it

y
5.

11
0

-4
.5

71
0.

06
0

0.
68

5
**

*
-0

.4
38

**
*

N
on

p
er

fo
rm

in
g

L
oa

n
s

-1
.0

10
-2

.9
12

0.
10

8
0.

01
8

0.
98

2
**

*
S
en

ti
m

en
t

0.
06

8
0.

40
0

**
*

0.
26

1
**

*
0.

02
9

**
0.

02
1

-0
.0

05
0.

49
3

**
P

ro
d
u
ct

io
n

-0
.0

54
0.

21
3

-0
.2

60
**

0.
02

7
-0

.0
47

0.
00

1
1.

32
9

**
*

H
ou

se
P

ri
ce

s
-0

.2
88

1.
25

6
*

0.
12

1
0.

80
4

**
*

-0
.3

41
-0

.0
40

1.
88

5
C

re
d
it

P
ri

va
te

-0
.0

28
-0

.0
60

-0
.1

36
*

0.
00

9
0.

88
5

**
*

-0
.0

07
-0

.2
05

G
ov

er
n
m

en
t

D
eb

t
-0

.4
63

2.
19

2
**

*
0.

41
6

-0
.1

73
**

-0
.1

30
0.

91
1

**
*

-1
.1

40
R

ea
l

G
D

P
-0

.0
01

0.
00

8
0.

07
6

**
*

-0
.0

04
0.

00
7

-0
.0

02
0.

60
0

**
*

R
2

0.
09

1
0.

52
1

0.
48

6
0.

02
4

0.
13

9
0.

03
1

0.
47

3
0.

93
5

0.
01

1
0.

53
1

0.
57

0
0.

89
1

0.
79

6
0.

92
4

0.
87

0
p-

va
lu

e
(F

-s
ta

ti
st

ic
)

0.
03

5
0.

00
0

0.
00

0
0.

84
2

0.
02

7
0.

74
8

0.
00

0
0.

00
0

0.
99

6
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

P
a
n
e
l

B
–

S
R

IS
K

(i
n
b
n

E
U

R
)

S
R

IS
K

0.
29

8
**

*
0.

09
4

**
*

5.
33

6
**

*
0.

26
5

0.
88

1
*

-0
.0

40
**

-0
.0

18
**

*
-0

.0
04

0.
22

2
*

-1
.1

12
**

*
-0

.0
55

-0
.0

34
0.

13
4

*
0.

00
7

-1
.0

24
**

E
U

R
IB

O
R

-O
IS

S
p
re

ad
1.

05
1

0.
13

5
-2

.7
75

V
ol

at
il
it

y
-0

.0
44

**
0.

00
2

-0
.1

46
L

ev
er

ag
e

0.
09

1
0.

26
9

0.
00

0
0.

00
2

-0
.0

01
M

ar
ke

t-
to

-B
o
ok

2.
29

5
8.

61
0

*
-0

.2
71

-0
.0

74
-0

.0
47

P
ro

fi
ta

b
il
it

y
0.

20
5

-5
.2

27
0.

02
4

0.
63

5
**

*
-0

.4
36

**
*

N
on

p
er

fo
rm

in
g

L
oa

n
s

-0
.8

80
-3

.2
16

0.
12

7
0.

02
1

0.
98

3
**

*
S
en

ti
m

en
t

-0
.0

40
0.

27
9

**
*

0.
26

6
**

*
0.

02
8

**
0.

03
4

-0
.0

04
0.

38
3

P
ro

d
u
ct

io
n

-0
.1

48
0.

26
9

-0
.2

24
**

0.
03

5
*

-0
.0

53
0.

00
0

1.
34

9
**

*
H

ou
se

P
ri

ce
s

0.
01

0
0.

91
2

0.
12

3
0.

81
3

**
*

-0
.3

59
-0

.0
42

1.
53

6
C

re
d
it

P
ri

va
te

-0
.0

81
-0

.1
29

-0
.1

36
*

0.
01

2
0.

88
5

**
*

-0
.0

07
-0

.2
55

G
ov

er
n
m

en
t

D
eb

t
-0

.0
32

1.
92

5
**

0.
31

9
-0

.1
96

**
-0

.0
85

0.
91

5
**

*
-1

.3
33

R
ea

l
G

D
P

0.
02

0
0.

01
1

0.
07

0
**

*
-0

.0
05

0.
00

9
-0

.0
02

0.
60

6
**

*

R
2

0.
10

8
0.

33
9

0.
48

9
0.

10
4

0.
18

0
0.

08
9

0.
49

2
0.

93
3

0.
12

7
0.

64
2

0.
58

2
0.

88
1

0.
80

0
0.

92
4

0.
86

2
p-

va
lu

e
(F

-s
ta

ti
st

ic
)

0.
01

8
0.

00
0

0.
00

0
0.

11
3

0.
00

7
0.

18
1

0.
00

0
0.

00
0

0.
14

2
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

P
a
n
e
l

C
–

∆
M

u
lt

iC
o
V

a
R

(i
n

%
)

∆
M

u
lt

iC
oV

aR
0.

05
4

0.
02

2
**

*
1.

52
4

**
*

-0
.0

12
-0

.0
34

0.
00

1
0.

00
2

0.
00

0
0.

00
1

-0
.2

09
**

*
0.

04
0

-0
.0

05
-0

.0
04

0.
00

0
0.

07
2

E
U

R
IB

O
R

-O
IS

S
p
re

ad
0.

81
7

0.
21

3
2.

32
0

V
ol

at
il
it

y
-0

.0
77

0.
00

3
-0

.1
08

L
ev

er
ag

e
0.

05
7

0.
37

8
**

-0
.0

04
0.

00
0

-0
.0

02
M

ar
ke

t-
to

-B
o
ok

-0
.1

18
2.

75
2

-0
.0

12
0.

05
8

-0
.0

28
P

ro
fi
ta

b
il
it

y
-0

.6
28

-4
.8

32
0.

02
0

0.
62

0
**

*
-0

.4
36

**
*

N
on

p
er

fo
rm

in
g

L
oa

n
s

-2
.8

39
-2

.9
61

0.
10

7
0.

01
7

0.
98

2
**

*
S
en

ti
m

en
t

-0
.1

12
0.

35
9

**
*

0.
26

9
**

*
0.

02
8

**
0.

02
0

-0
.0

05
0.

51
4

**
P

ro
d
u
ct

io
n

0.
21

8
0.

20
2

-0
.2

59
**

0.
02

4
-0

.0
44

0.
00

1
1.

25
9

**
*

H
ou

se
P

ri
ce

s
1.

52
0

1.
35

1
*

0.
10

3
0.

80
7

**
*

-0
.3

40
-0

.0
40

1.
86

2
C

re
d
it

P
ri

va
te

-0
.1

82
-0

.0
64

-0
.1

34
*

0.
01

1
0.

88
3

**
*

-0
.0

07
-0

.1
60

G
ov

er
n
m

en
t

D
eb

t
-0

.1
70

2.
32

5
**

*
0.

39
3

-0
.1

66
*

-0
.1

31
0.

91
2

**
*

-1
.0

80
R

ea
l

G
D

P
-0

.0
81

0.
01

5
0.

07
5

**
*

-0
.0

03
0.

00
7

-0
.0

02
0.

60
3

**
*

R
2

0.
02

8
0.

22
1

0.
32

9
0.

01
8

0.
13

9
0.

02
9

0.
44

5
0.

93
5

0.
05

2
0.

51
7

0.
57

1
0.

87
0

0.
79

5
0.

92
4

0.
85

3
p-

va
lu

e
(F

-s
ta

ti
st

ic
)

0.
46

8
0.

00
0

0.
00

0
0.

91
4

0.
02

7
0.

77
6

0.
00

0
0.

00
0

0.
72

3
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

T
a
b

le
3
.7

–
V

A
R

re
su

lt
s

(f
u

ll
sa

m
p
le

)
–

P
a
rt

I



3 What can systemic risk measures predict? 98

Table 3.7 – continued:
All figures are estimated from monthly averaged time series of systemic risk measures at the banking
system level and monthly (linearly interpolated) time series of financial market, aggregate balance sheet,
and macro-economic variables covering the period from July 2005 to June 2013. We estimate the VAR
system ∆yt = a + B∆yt−1 + εt with yt ≡ (SysRisksyst , xt)

′, where SysRisksyst represents any of the
three systemic risk measures MultiCoVaR, MultiMES or SRISK at the banking system level and xt is the
vector of financial market, balance sheet or macro-economic variables. Parameter vector a denotes the
intercepts, B is the coefficient matrix of the lagged regression variables yt−1, and εt is a vector of standard
Gaussian error terms. The ∆s indicate that we are running the regression in first differences. The table
is organized as follows. Panel A presents the results for the VAR systems with SysRisk = MultiMES,
Panel B the results for SysRisk = SRISK, and Panel C the results for SysRisk = ∆MultiCoVaR.
The names of the lagged explanatory variables to which the regression coefficients refer are given in the
respective rows and the dependent variables’ names are given in the respective column headers. For a
detailed description of the regression variables, we refer to Table 3.6. For ease of exposition, we suppress
the intercepts’ values. The regression coefficients are assigned asterisks if they are statistically significant.
(*** = 1%-confidence level; ** = 5%-confidence level; * = 10%-confidence level)

Table 3.7 exhibits the results obtained for our estimated VAR systems on financial

market, balance sheet, and macro-economic variables and is organized as follows: Panel A

contains the results for the MultiMES, Panel B the results for the SRISK, and Panel C the

results for the ∆MultiCoVaR regressions. Each column represents an estimated regression

equation with the lagged explanatory variables given in the rows.

The regression of lagged financial market data on the systemic risk measures reveals

that volatility possesses significant explanatory power for the MultiMES and SRISK mea-

sures. On the one hand, the negative coefficients indicate that an increase in volatility

should result in lower levels of systemic risk. On the other hand, the systemic risk mea-

sures load significantly positive on volatility. This mechanism can be explained as follows:

Systemic risk measures are capable of capturing distress before it is transmitted to the

stock market. After distress (as measured by the systemic risk measures) is transmit-

ted and realized as volatility at the financial market, the level of systemic risk declines.

Interestingly, all three risk measures possess explanatory power for the EURIBOR-OIS

spread, which itself may be considered as a proxy for systemic risk in the banking system.

However, the opposite effect does not prevail, again suggesting that our systemic risk

measures indicate financial distress earlier than the interest rate spreads.21

In Section 3.5.1 we analyzed the influence of balance sheet characteristics on systemic

21 This result is in line with Rodriguez-Moreno and Peña (2013) who find that systemic risk measures
based on principal components analysis and CDS spreads outperform LIBOR spread measures at the
banking system level. We also performed one regression in which we applied the 3 month EURIBOR-
OIS spread instead of its 12 month counterpart and another regression in which we include both
spreads. However, the obtained results do not vary substantially.
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risk measures at the bank level and found that total assets and leverage possess substantial

additional predictive power. Turning towards aggregate balance sheet characteristics at

the banking system level, we find that these do not possess significant additional predictive

power for either of the three systemic risk measures. Thus, at the banking system level,

balance sheet characteristics are not useful as leading indicators for the level of systemic

risk carried in the financial system.

Nevertheless, the MultiMES and SRISK measures possess substantial predictive power

for profitability at the banking system level. The negative coefficient indicates that a spike

in systemic risk results in a decrease in profitability. Moreover, SRISK adds predictive

power to banking system level balance sheet characteristics such as the market-to-book

ratio of equity and leverage. The negative coefficient for leverage indicates that systemic

events are linked to periods of significant losses resulting in a reduction of the banks’

equity cushion. Thus, average leverage in the banking system increases.

In the right hand part of Table 3.7, we analyze interdependencies between macro-

economic variables and systemic risk measures. Distress in the banking system may

adversely affect the real economy, e.g., through a credit crunch as banks act as important

suppliers of credit. Thus, systemic risk measures should – to some extent – anticipate

output drops in the real economy and add further explanatory power to macro-economic

forecasts.

Indeed, our results in Table 3.7 show that systemic risk measures possess significant

predictive power for a range of macro-economic variables. Most importantly, the Mul-

tiMES and SRISK measures are able to forecast significant drops in real GDP. E.g., a

monthly one percentage point increase in MultiMES explains a drop in monthly GDP of

around e0.8bn, which converts to a drop of around e10bn a year. ∆MultiCoVaR is less

adequate for the prediction of future GDP. In fact, the estimated relationship is positive,

though the coefficient is insignificant. All three systemic risk measures possess signifi-

cant predictive power for economic sentiment. An increase in the systemic risk measures

forecasts a drop in the European Commission’s economic sentiment indicator.

Moreover, MultiMES loads significantly negative on house prices. Thus, an increase

in MultiMES predicts future drops in house prices. This finding might be attributed to

the specific house price dynamics during the Subprime Crisis where housing prices acted

as a main driver of systemic risk (Longstaff, 2010).
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Table 3.8 – continued:
All figures are estimated from monthly averaged time series of systemic risk measures at the banking
system level and monthly (linearly interpolated) time series of financial market, aggregate balance sheet,
and macro-economic variables covering the period from July 2005 to June 2013. We estimate the VAR
system ∆yt = a + B∆yt−1 + εt with yt ≡ (SysRisksyst , xt)

′, where SysRisksyst represents any of the
three systemic risk measures MultiCoVaR, MultiMES or SRISK at the banking system level and xt
is the vector comprising all financial market, balance sheet, and macro-economic variables. Parameter
vector a denotes the intercepts, B is the coefficient matrix of the lagged regression variables yt−1, and
εt is a vector of standard Gaussian error terms. The ∆s indicate that we are running the regression in
first differences. The table is organized as follows. Panel A presents the results for the VAR systems
with SysRisk = MultiMES, Panel B the results for SysRisk = SRISK, and Panel C the results for
SysRisk = ∆MultiCoVaR. The names of the lagged explanatory variables to which the regression
coefficients refer are given in the respective rows and the dependent variables’ names are given in the
respective column headers. For a detailed description of the regression variables, we refer to Table 3.6. For
ease of exposition, we suppress the intercepts’ values. The regression coefficients are assigned asterisks
if they are statistically significant. (*** = 1%-confidence level; ** = 5%-confidence level; * = 10%-
confidence level)

The previous analysis was dedicated to the real effects of systemic risk. In the fol-

lowing, we analyze whether macro-economic variables potentially drive systemic risk. We

would expect output-related macro-economic variables, such as real GDP and production,

to be less capable of forecasting systemic risk because drops in GDP usually occur after

systemic risk materializes as a consequence of distress in the banking system. However,

an increase in sovereign debt (expressed as a percentage of GDP) is likely to result in a

higher risk of sovereign default, which could then be reflected in the banks’ systemic risk

estimates. Our results show that SRISK and ∆MultiCoVaR – despite being insignificant

– indeed do capture this effect. Though in general the signs of the macro-economic vari-

ables’ regression coefficients are as expected, none of them possesses significant explana-

tory power for systemic risk, which is in line with our initial expectation that systemic

risk is a latent leading variable.22

As a robustness check, we perform a regression in which we include all financial market,

balance sheet, and macro-economic variables. Our results do not change substantially.

An increase in profitability now possesses significant forecasting power for systemic risk.

This result is intuitive because higher profitability usually points towards higher leverage

and higher risk. The degree to which the systemic risk measures are able to forecast

systemic risk also changes slightly. The coefficient for real GDP becomes insignificant in

the SRISK regression (Panel B) and even significantly positive in the ∆MultiCoVaR re-

22 As an exercise, we perform regressions including unemployment and inflation in our set of macro-
economic variables. However, both variables’ regression coefficients are insignificant in both directions.
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gression (Panel C). Moreover, the ∆MultiCoVaR measure loads positively on production.

Overall, our results suggest that the ∆MultiCoVaR measure is less valuable for macro-

economic forecasts and thus, regulatory authorities should be aware of the sometimes

dubious regression coefficients’ signs.

To analyze if our previous results hold for both crisis periods individually, we perform

the regression of Equation (3.14) for the first half (July 2005 – June 2009) and the second

half of our sample (July 2009 – June 2013) separately. We henceforth refer to the first

half of the sample as the ”Subprime Crisis sample” and to the second half of the sample

as the ”Euro Crisis sample”.

Table 3.9 exhibits the results for the Subprime Crisis sample. In general, our results of

Table 3.7 are confirmed and even stronger. The significance of an increase of MultiMES on

house prices increases beyond the 1%-level and the SRISK measure now loads significantly

on house prices at the 5%-level. Our results furthermore shed light on the evolution of

the construction boom and the subsequent burst of the housing price bubble in southern

European countries that coincided with the US Subprime crisis. The VAR framework

captures the dynamics between house prices and systemic risk in the banking system

well. As indicated by the regressions in column 13 (house prices), increases in the risk

measures predict subsequent drops in house prices (that are significant for the MultiMES

and SRISK measures). This drop is then followed by a further increase in systemic risk.

The results also indicate that for the Subprime Crisis sample, the EURIBOR-OIS spread

acts as a significant leading indicator for the SRISK measure. This is intuitive since

turmoil in the financial markets was highest when the interbank lending market dried

up. Thus, a liquidity risk proxy such as the EURIBOR-OIS spread is well suited to

predict systemic risk during a liquidity crunch. For other crisis scenarios, however, the

implemented risk measures are likely to indicate financial distress earlier than interest

rate spreads (see, e.g., Tables 3.7 and 3.10).

Table 3.10 exhibits the results for the Euro Crisis sample. Most importantly, the

systemic risk measures lose their predictive power for house prices. This is intuitive

because at the start of the Euro Crisis, the burst of the housing price bubble had already

materialized at the financial market. Compared to Tables 3.7–3.9, the overall significance

of the coefficients is much weaker. Increases in systemic risk measures no longer predict

drops in real GDP. However, the MultiMES and ∆MultiCoVaR measures reflect that

increases in GDP result in a decrease in systemic risk. All systemic risk measures continue

to possess predictive power for economic sentiment. I.e., an increase in systemic risk leads

to a decrease in economic sentiment.
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Table 3.9 – continued:
All figures are estimated from monthly averaged time series of systemic risk measures at the banking
system level and monthly (linearly interpolated) time series of financial market, aggregate balance sheet,
and macro-economic variables covering the period from July 2005 to June 2009. We estimate the VAR
system ∆yt = a + B∆yt−1 + εt with yt ≡ (SysRisksyst , xt)

′, where SysRisksyst represents any of the
three systemic risk measures MultiCoVaR, MultiMES or SRISK at the banking system level and xt is the
vector of financial market, balance sheet or macro-economic variables. Parameter vector a denotes the
intercepts, B is the coefficient matrix of the lagged regression variables yt−1, and εt is a vector of standard
Gaussian error terms. The ∆s indicate that we are running the regression in first differences. The table
is organized as follows. Panel A presents the results for the VAR systems with SysRisk = MultiMES,
Panel B the results for SysRisk = SRISK, and Panel C the results for SysRisk = ∆MultiCoVaR.
The names of the lagged explanatory variables to which the regression coefficients refer are given in the
respective rows and the dependent variables’ names are given in the respective column headers. For a
detailed description of the regression variables, we refer to Table 3.6. For ease of exposition, we suppress
the intercepts’ values. The regression coefficients are assigned asterisks if they are statistically significant.
(*** = 1%-confidence level; ** = 5%-confidence level; * = 10%-confidence level)
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Table 3.10 – continued:
All figures are estimated from monthly averaged time series of systemic risk measures at the banking
system level and monthly (linearly interpolated) time series of financial market, aggregate balance sheet,
and macro-economic variables covering the period from July 2009 to June 2013. We estimate the VAR
system ∆yt = a + B∆yt−1 + εt with yt ≡ (SysRisksyst , xt)

′, where SysRisksyst represents any of the
three systemic risk measures MultiCoVaR, MultiMES or SRISK at the banking system level and xt is the
vector of financial market, balance sheet or macro-economic variables. Parameter vector a denotes the
intercepts, B is the coefficient matrix of the lagged regression variables yt−1, and εt is a vector of standard
Gaussian error terms. The ∆s indicate that we are running the regression in first differences. The table
is organized as follows. Panel A presents the results for the VAR systems with SysRisk = MultiMES,
Panel B the results for SysRisk = SRISK, and Panel C the results for SysRisk = ∆MultiCoVaR.
The names of the lagged explanatory variables to which the regression coefficients refer are given in the
respective rows and the dependent variables’ names are given in the respective column headers. For a
detailed description of the regression variables, we refer to Table 3.6. For ease of exposition, we suppress
the intercepts’ values. The regression coefficients are assigned asterisks if they are statistically significant.
(*** = 1%-confidence level; ** = 5%-confidence level; * = 10%-confidence level)

The inferior predictive power of the measures during the Euro Crisis may be explained

by the following two reasons: First, a result of the European Central Bank’s government

bond purchase program, the informativeness of the market-based measures might be bi-

ased. Second, the Euro Crisis can be – for the most part – regarded as a government debt

crisis. In addition, the downturn in the real economy (that might be even reinforced by

austere government spending policies) is – in contrast to the Subprime Crisis – much more

concentrated in the peripheral Euro countries and thus less substantial for the European

economy as a whole.

3.6 Summary and conclusion

In this paper we propose a framework to assess the potential of systemic risk measures as a

monitoring tool for regulators. We compare three commonly cited systemic risk measures –

the Marginal Expected Shortfall (MES), the related SRISK, and the Conditional Value at

Risk (CoVaR) – in a DCC GARCH framework. We do so by investigating directionalities

between the measures and several balance sheet, financial market, and macro-economic

variables in a VAR system and assess the systemic risk measures’ aptitude as a regulatory

tool on the basis of their predictive power. Employing a representative sample of impor-

tant European institutions, we ensure that the systemic risk measures are evaluated both

by their perfomance in the Subprime Crisis and the Euro Crisis.

At the banking system level, we find that systemic risk measures possess substantial

forecasting power for a variety of balance sheet (leverage, market-to-book ratio, and prof-

itability), financial market (EURIBOR-OIS spread and volatility), and macro-economic
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variables (GDP, housing prices, and economic sentiment). At the individual bank level,

systemic importance is well explained by an institutions’ balance sheet characteristics.

However, aggregate balance sheet characteristics cannot explain systemic risk at the bank-

ing system level. When evaluated in comparison to the MES related measures, the Co-

VaR’s predictive power for financial market and macro-economic variables is rather poor

and the direction of influence often misleading.

Our results have paramount implications. Regulators should rely on MES-based sys-

temic risk measures as these possess superior predictive power compared to the commonly

applied CoVaR. In the long run, more complex measures such as the SRISK tend to pro-

duce better results than simple market indicators such as interest rate spreads that are

prone to capturing market conditions specific to certain types of crises.
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3.A DCC GARCH

Recalling the bivariate return process from Equation (3.7) and the setup of the univariate

GARCH(1,1) models from Equations (3.8a) and (3.8b), the following relationship holds:

ξsys,t = εsys,t (3.15a)

ξi,t = ρi,sys,tεsys,t +
√

1− ρ2
i,sys,tεi,t. (3.15b)

It is obvious that within the bivariate process the correlation variable ρsys,i,t entirely

captures the correlation between institution i and the banking system. Therefore, the

residuals εi,t and εsys,t are uncorrelated by definition. However, this is not the case for the

(correlated) residuals ξi,t and ξsys,t from the univariate GARCH(1,1) processes. This fact

is used by Engle (2002) to estimate time-varying return correlations.

Using matrix notation the return vector of the market and institution i is given by

Rt = Σ
1
2
t εt (3.16)

where

Σt =

[
σ2
sys,t ρi,sys,tσi,tσsys,t

ρi,sys,tσi,tσsys,t σ2
i,t

]
(3.17)

is the covariance matrix of the return vector Rt = (rsys,t, ri,t) and Σ
1/2
t the corresponding

Cholesky transformation of Σt. The covariance matrix can be further decomposed to the

following form:

Σt = DtPtDt (3.18a)

=

[
σsys,t 0

0 σi,t

][
1 ρi,sys,t

ρi,sys,t 1

][
σsys,t 0

0 σi,t

]
(3.18b)

with Pt representing the correlation matrix of the return vector Rt. Since the residuals ξi,t

and ξsys,t have zero mean and unit variance, the covariance matrix of the return vector

and the covariance matrix of the residuals are equivalents and can be used to calculate

the time-varying correlation variable ρi,sys,t. Following Engle (2009), the bivariate DDC
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GARCH model at time t is fully specified by:

ρi,sys,t =
qi,sys,t√

qi,i,tqsys,sys,t
(3.19a)

qi,sys,t = (1− α− β) qi,sys + αξi,t−1ξsys,t−1 + βqi,sys,t−1 (3.19b)

qsys,sys,t = (1− α− β) qsys,sys + αξsys,t−1ξsys,t−1 + βqsys,sys,t−1 (3.19c)

qi,i,t = (1− α− β) qi,i + αξi,t−1ξi,t−1 + βqi,i,t−1 (3.19d)

qi,sys =
1

n

n∑
t=1

ξi,tξsys,t (3.19e)

where q is the average correlation within the sample period and the q values are the

quasi-correlations extracted from residuals ξi,t and ξsys,t. The decomposition of ρt into

quasi-correlations ensures that the correlation matrix is positive definite. In analogy

to the volatility GARCH models, the time-varying correlation of the DCC GARCH is

heteroscedastic and depends on the lagged quasi-correlation values as well as on the

lagged values of the GARCH(1,1) residuals (ξsys,t, ξi,t). Again, parameters α and β are

estimated using the maximum likelihood method. For a detailed discussion of the DCC

GARCH framework, we refer to Engle (2009).

3.B Time series diagnostics

We conduct several diagnostic checks for the time series employed in our regressions.

Table 3.11 contains test results for the (monthly) series of aggregate systemic risk measures

as well as the (monthly) series of financial market, balance sheet, and macro-economic

variables. Table 3.12 displays the test results for the individual banks’ series of daily log

returns.
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4 Are earthquakes less contagious

than bank failures?

4.1 Introduction

Can stock market reactions following a natural disaster be just as contagious as stock

market reactions arising from a shock with its origin in the financial markets? The

last decades have shown that increasingly integrated international stock markets catalyze

the propagation of financial shocks of various origins. Events such as Black Monday

on October 19, 1987 or the terrorist attacks launched by Al-Qaeda on September 11,

2001 demonstrate that, regardless of the nature of the event, substantial shocks have the

potential to cause contagion to international stock markets.

This paper compares contagion arising from natural disasters and financial shocks. We

define contagion as a substantial, measurable increase in stock price comovement following

an event which is in line with a number of previous works (e.g., Claessens et al., 2001;

Forbes and Rigobon, 2002). We focus on two events that are commonly recognized to

have caused substantial economic cost both at the national and international level – the

bankruptcy of the investment bank Lehman Brothers on September 15, 2008 and the

Japanese Tohoku earthquake including the subsequent tsunami disaster and the nuclear

accident at Fukushima Daiiachi.1,2,3 In total, the superdisaster caused massive destruction

of both financial and production capital and thus serves as an ideal object of investigation

for the question of whether a natural disaster has the potential to cause contagion to the

1 The term Tohoku refers to the Northeast of Japan’s main island Honshu and represents the region
that was most severely affected by the earthquake.

2 The earthquake that was measured to be of magnitude 8.9 and therefore considered to be one of the
strongest on record since the beginning of seismic measurement (Chang, 2011) triggered two further
devastating disasters: a tsunami locally reaching a height of up to 133ft (at Miyako, Iwate, Tohoku)
and a severe accident at the nuclear power plant Fukushima Daiichi which caused the radioactive
contamination of vast areas of land. Aoki and Rothwell (2013) analyze various aspects of the accident
at Fukushima Daiichi and classify the latter as one of the most serious nuclear disasters in history
drawing comparisons to the Three Mile Island (March 1979) and Chernobyl (April 1986) nuclear
accidents.

3 The nearly simultaneous occurence of the Tohoku earthquake, the subsequent tsunami, and the nuclear
accident at Fukushima Daiichi complicates disentagling the latter. Since the earthquake can be
assumed to have triggered the subsequent disasters, we mostly refer to the three simultaneous disasters
as the Tohoku earthquake for the ease of exposition. Bertero (2011) and Kushida (2012) provide
comprehensive narratives and overviews on both disasters.
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national and international stock markets to a degree that is comparable to an event such

as the Lehman bankruptcy.

We study cross-country contagion for thirteen countries investigating industry-specific

effects analyzing contagion at the individual stock price level. To evaluate the relative

degree of contagion, we employ the Lehman bankruptcy as benchmark event. To the best

of our knowledge, this study is the first to compare contagion arising from the Tohoku

earthquake and the Lehman bankruptcy and thus one of the first to compare the impact of

a disaster of natural cause to a disaster with its cause in the financial markets. Contrary

to previous studies, we investigate contagion at the individual stock price level.

We find that contagion arising from both events is substantial. Whereas the Lehman

bankruptcy was more contagious at the international level, the Tohoku earthquake’s im-

pact was particularly strong at the national level suggesting that contagion arising from

natural disasters is most severe to the event country and thus more regional than con-

tagion following a pure financial market shock. While the Lehman bankruptcy caused

contagion to a wide range of industries and countries, the Tohoku earthquake primar-

ily affected utilities and insurance stocks. Moreover, the Tohoku earthquake resulted in

particularly strong contagion to the German and South African stock markets.

Our results’ implications are paramount. Both the Tohoku earthquake and the Lehman

bankruptcy caused substantial contagion to national and international stock markets.

However, our results suggest that contagion arising from natural disasters is more regional

than contagion arising from pure financial market shocks. We argue that this difference

in global stocks’ response is best explained by the distinct nature of contagion. Whereas

natural disasters primarily affect (real) assets in the event region, financial market driven

shocks may cause panics at the international stock markets triggering substantial drops in

global stock prices. The results suggest that international supply chain disruptions aris-

ing from destroyed production facilities impact global stock only to a lesser degree than

information-based shocks or panics. The results furthermore suggest that geographic

diversification is less effective in post- than in pre-disaster periods.

The remainder of the paper is structured as follows: Section 4.2 surveys related lit-

erature, Section 4.3 describes the data applied to our analysis, and Section 4.4 explains

the methodology employed for the assessment of contagion. In Section 4.5 we present our

results and Section 4.6 deals with some robustness issues. Section 4.7 summarizes and

concludes.
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4.2 Literature survey

Our study contributes to various strands of literature. Literature on stock price co-

movement can be systemized into financial market integration literature and contagion

literature. The liberalization of capital markets in the 1990s has precipitated a number

of studies on the integration of international stock markets. Chou et al. (1994) find that

US and Canadian stock price indexes are cointegrated with those of the largest European

countries and that the degree of cointegration has even increased over time. Contrary,

Kanas (1998) finds that the US stock market is not pairwisely cointegrated with any of

the six analyzed European markets suggesting that the potential for diversification across

the Atlantic is substantial.

Karolyi and Stulz (1996) study fundamental variables driving the comovement of US

and Japanese Stocks. They find that macro-economic news and exchange rate shocks have

no measurable impact on cross-market correlation. However, the latter increases in case

the NIKKEI or the S&P 500 indexes incur substantial losses. Cashin et al. (1995) examine

international integration of industrial and emerging country equity markets and find that

cross-country linkages have strengthened with global shocks being most persistent.

In the aftermath of Black Monday on October 19, 1987, a series of papers documents

contagious effects from the US on other national stock markets (e.g., King and Wadhwani,

1990; Hamao et al., 1990; Bertero and Mayer, 1990). It has been found that only a small

proportion of contagion can be attributed to fundamental variables (King et al., 1994)

inducing researchers to study contagion on the basis of correlation increases, following the

definitions of Claessens et al. (2001) and Forbes and Rigobon (2002).

Calvo and Reinhart (1996) and Edwards (1998) explore contagious effects arising from

the Mexican Peso Crisis in December 1994. Calvo and Reinhart (1996) find that the

onset of the crisis increases stock price comovement in Latin America and Asia. However,

the effects are found to be stronger regionally than globally suggesting that geographic

proximity is one determinant of contagion. Edwards (1998) analyzes interest volatility

contagion to Chile and Argentina in a GARCH framework. He finds that contagion is

limited and can only be detected for Argentina but not for Chile. Kaminsky and Reinhart

(2000) explore the role of trade and financial linkages for the emergence of conatgion and

conclude that the latter are likely to be a major determinant. Moreover, they find evidence

that contagion is more regional than global. Forbes (2004) investigates how the Asian flu

and Russian virus affected firms around the world and finds that firms with sales exposures

to crisis countries were significantly adversely affected. Thus, their results suggest that

trade channels are crucial for the transmission of shocks.
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Several studies investigate contagion on the basis of correlation increases. Collins

and Biekpe (2003) analyze contagion to African equity markets in the aftermath of the

Hong Kong stock market crash in October 2007. Lee et al. (2007) investigate contagion

arising from the 2004 Indian Ocean earthquake and tsunami. They find no contagion on

international stock prices but on some countries’ foreign exchange markets. Adopting the

methodology of Lee et al. (2007), Asongu (2012) explores contagion to 33 national stock

and foreign exchange markets arising from the Japanese Tohoku earthquake but only

finds limited contagion. However, emerging markets are found to be particularly prone

to contagious effects confirming the widely held view that these markets are less resilient

to financial shocks. Our study is methodologically closely linked to Lee et al. (2007) and

Asongu (2012).

A series of empirical studies has documented increasing stock price correlation in time

periods of high volatility (Longin and Solnik, 2001; Ang and Bekaert, 2002). In line

with this notion, Loretan and English (2000) and Forbes and Rigobon (2002) argue that

contagion tests based on correlation increases are prone to substantial heteroscedasticity

biases and propose a method to correct correlation coefficients for volatility that we apply

in the robustness section.

Lastly, this study contributes to the strands of literature on the economic impact of

the Lehman bankruptcy and the Tohoku earthquake including the subsequent tsunami

and nuclear disaster at Fukushima Daiichi. Whereas the number of studies on interna-

tional stock market contagion resulting from the Lehman bankruptcy and the subsequent

financial crisis is abundant (e.g., Hwang et al., 2010; Bekaert et al., 2011), corresponding

research on contagious effects arising from natural disasters including the Tohoku earth-

quake remains scarce. To our knowledge, the only study to explore stock market and

exchange rate contagion in the aftermath of the Tohoku earthquake so far is Asongu

(2012). However, the latter study investigates contagion only at the index level.

Other existing literature on the Tohoku Earthquake and the nuclear disaster at Fuku-

shima Daiichi primarily focuses on the economy. Noy (2011) analyzes the over-all impact

of the Tohoku earthquake on economic activity in the context of other natural disasters

comparable in magnitude. He argues that the economies of developed countries are much

more resilient to natural disasters than the ones of developing countries. Nanto et al.

(2011) provide a report on the consequences of the disasters on manufacturing as well as

financial and currency markets. They predict that the superdisaster had a significant im-

pact on the US economy through trade and supply chain disruptions increasing volatility

in the financial markets.

Kawashima and Takeda (2012) investigate the effect of the nuclear accident at Fuku-
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shima Daiichi on electric power utilities in Japan and find that stock prices of utilities in

charge of nuclear power plants dropped more sharply than those of utilities not in charge

of such plants. Ferstl et al. (2012) extend the geographical scope examining the disasters’

impact on French, German, Japanese, and US nuclear utility and alternative energy firms

and generally find significant abnormal returns within the one-week post-event window

except for US entities. Moreover, Lopatta and Kaspereit (2012) find that the share of

nuclear power in an energy firm’s portfolio is negatively related with the abnormal return

following the accident.

Kojima (2011) examines the impact of the natural disaster on the Japanese housing

market and Takao et al. (2013) study the effects on the value of Japanese insurance

companies. In the post-eartquake period, they find abnormal returns for insurance stock

with particularly strong effects for life insurers. However, high capital buffers and the

Earthquake Insurance System on Dwelling Risks in Japan are found to have substantial

stabilizing effects on the stock market (Takao et al., 2013).

4.3 Data

Our study is based on a broad cross-section of international stock prices and stock price

indexes covering 4,350 stocks from 13 countries. We obtain all stock price data from

Datastream. The time series of daily closing stock prices and stock price indexes cover

the period from January 2006 to December 2012 and hence include both the Lehman

bankruptcy on September 15, 2008 as well as the Tohoku Earthquake on March 11,

2011. Our study focuses on the Group of Eight (G8) countries as these are comparable

with respect to the degree of development of their financial markets. To cover a wider

global range of countries and to analyze regional effects arising from both events, we add

Australia, Brazil, China, South Africa, and South Korea.4

Stocks are classified with respect to country of origin and industry. Datastream cat-

egorizes stocks according to the Industry Classification Benchmark (ICB) which sorts

firms into the following ten industries: Oil & Gas, Basic Materials, Industrials, Consumer

Goods, Health Care, Consumer Services, Telecommunications, Utilities, Financials, and

Technology. With a total of 992 stocks, we have more observations for the Financial indus-

try than for any other industry. For our later analyses, the distinction between banking

and insurance stocks is worthwile such as to analyze contagious effects separately.

4 Whereas Brazil, China, and South Africa are BRICS countries, we add South Korea because of its
geographic proximity to Japan. Australia is added because it represents one of Japan’s most important
trade partners.
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Panel A – In Absolute Terms

Canada 49 53 32 9 2 27 6 13 8 9 20 15 7 250
United States 100 46 172 98 80 134 12 49 33 47 71 47 103 992
Brazil 3 12 11 12 1 12 5 18 7 3 7 7 1 99
France 8 9 49 38 20 35 1 8 9 5 26 16 24 248
Germany 4 20 62 35 19 26 4 9 7 7 14 15 25 247
Italy 6 2 41 22 5 14 4 13 17 10 3 16 4 157
Russian Federation 13 12 1 1 1 1 4 6 9 – – 2 – 50
United Kingdom 23 32 101 31 13 79 7 7 6 19 33 163 21 535
South Africa 1 14 9 7 4 11 2 – 6 5 5 6 - 70
Australia 11 25 27 5 8 29 2 6 6 4 21 15 1 160
China & Hong Kong 13 80 100 59 42 35 2 21 24 9 22 22 19 448
Japan 10 87 225 176 67 160 6 19 71 6 66 36 66 995
South Korea 5 11 28 21 1 7 3 2 7 5 – 5 4 99

ALL 246 403 858 514 263 570 58 171 210 129 288 365 275 4,350

Panel B – In Percentage Terms

Canada 19.6 21.2 12.8 3.6 0.8 10.8 2.4 5.2 3.2 3.6 8.0 6.0 2.8 100.0
United States 10.1 4.6 17.3 9.9 8.1 13.5 1.2 4.9 3.3 4.7 7.2 4.7 10.4 100.0
Brazil 3.0 12.1 11.1 12.1 1.0 12.1 5.1 18.2 7.1 3.0 7.1 7.1 1.0 100.0
France 3.2 3.6 19.8 15.3 8.1 14.1 0.4 3.2 3.6 2.0 10.5 6.5 9.7 100.0
Germany 1.6 8.1 25.1 14.2 7.7 10.5 1.6 3.6 2.8 2.8 5.7 6.1 10.1 100.0
Italy 3.8 1.3 26.1 14.0 3.2 8.9 2.5 8.3 10.8 6.4 1.9 10.2 2.5 100.0
Russian Federation 26.0 24.0 2.0 2.0 2.0 2.0 8.0 12.0 18.0 – – 4.0 – 100.0
United Kingdom 4.3 6.0 18.9 5.8 2.4 14.8 1.3 1.3 1.1 3.6 6.2 30.5 3.9 100.0
South Africa 1.4 20.0 12.9 10.0 5.7 15.7 2.9 – 8.6 7.1 7.1 8.6 – 100.0
Australia 6.9 15.6 16.9 3.1 5.0 18.1 1.2 3.8 3.8 2.5 13.1 9.4 0.6 100.0
China & Hong Kong 2.9 17.9 22.3 13.2 9.4 7.8 0.4 4.7 5.4 2.0 4.9 4.9 4.2 100.0
Japan 1.0 8.7 22.6 17.7 6.7 16.1 0.6 1.9 7.1 0.6 6.6 3.6 6.6 100.0
South Korea 5.1 11.1 28.3 21.2 1.0 7.1 3.0 2.0 7.1 5.1 – 5.1 4.0 100.0

ALL 5.7 9.3 19.7 11.8 6.0 13.1 1.3 3.9 4.8 3.0 6.6 8.4 6.3 100.0

Table 4.1 – Sample composition by country and industry
The above table exhibits the composition of the sample of stocks by country and industry (Panel B). All
data are obtained from Datastream. Panel A gives the distribution of the number of stocks per country
and industry in absolute numbers and Panel B expresses these figures in percentage terms.

Thus, we split the Financial industry into the four ICB supersectors: Banks, Insurance,

Real Estate, and Financial Services. For our subsequent analyses we employ the S&P 500

and the NIKKEI 225 indexes as base criteria. Both indexes cover a wide range of large caps

ensuring a sector composition that is representative for their country’s equity markets.5

5 According to the Standard&Poor’s website http://www.spindices.com/indices/equity/sp-500
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Figure 4.1 – Time evolution of daily S&P 500 and NIKKEI 225 stock market index levels
The figure presents the series of daily S&P 500 and NIKKEI 225 stock market index levels used in our
analysis. All data are obtained from Datastream; the time series of observations cover the period from
January 2006 to December 2012 and hence include both the Lehman Bankruptcy on September 15, 2008
as well as the Tohoku Earthquake on March 11, 2011.

Hence, the indexes ideally proxy the state of the United States’ and Japanese stock

markets.

Table 4.1 exhibits the composition of our sample providing the number of stocks per

country and industry. According to Panel A, most stocks in our sample are from the

United States or Japan. Most countries are represented by around 200 stocks. For the

Russian Federation, we only have 50 stocks in our sample. However, with 55,033 observa-

tions for Russian stock returns, we are confident that our estimates reliably capture the

dynamics in the Russian stock market. Table 4.1 furthermore reveals that the number of

stocks is not evenly distributed across industries with 58 telecommunications stocks and

858 industrials stocks.

Figure 4.1 exhibits the time series of daily index levels of the S&P 500 and the

NIKKEI 225 indexes in the period from January 2006 to December 2012. The Lehman

and the S&P 500 factsheet, the index covers approximately 75% of US equities with respect
to market capitalization; no corresponding information can be found on the NIKKEI website
http://indexes.nikkei.co.jp/en/nkave/index, however, around the globe the index is employed
as a leading indicator for Japanese equity markets.
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bankruptcy, which occured on September 15, 2008, marks a steep decline in stock prices

for both indexes triggering a 25% drop of the NIKKEI 225 and the S&P 500 within the

first post-event month. Moreover, the post-event period is characterized by high volatility

levels. The Tohoku earthquake on March 11, 2011 and the subsequent nuclear disaster at

Fukushima Daiichi triggered a 18% plunge of the NIKKEI 225 within the first few days

following the disaster. Though no abnormal dynamics are visible for the S&P 500 for the

same period, other stock price indexes suffered substantial drops.6 We will discuss the

stock market responses to both the Lehman bankruptcy and the Tohoku earthquake in

Section 4.5.

4.4 Methodology

We measure contagion comparing cross-market stock price comovement from the pre- and

post-event periods. Applying correlations as a measure for contagion, we examine if indi-

vidual stocks’ participation at index losses increases in the aftermath of an event. Put in

other words, we investigate if the index’ explanatory power for individual stock returns

grows as a result of the events. This approach is in line with Claessens et al. (2001) and

Forbes and Rigobon (2002) – see Section 4.1.

We define the pre-event period as the year prior to the event. Thus, the pre-Lehman-

bankruptcy period is from September 14, 2007 to September 12, 2008 and the pre-Tohoku-

earthquake period from March 11, 2010 to March 10, 2011, respectively.7 We define the

post-event period as the month subsequent to the event including the event day. Thus,

the post-Lehman-bankruptcy period is from September 15 to October 15, 2008 and the

post-Tohoku-earthquake period is from March 11 to April 11, 2011.

We measure stock price comovement in the pre- and post-event periods applying the

Pearson correlation coefficient ρ given by

ρij =
σij
σiσj

=
1
T

∑T
t=1(rit − ri)(rjt − rj)√

1
T

∑T
t=1(rit − ri)

2
√

1
T

∑T
t=1(rjt − rj)

2
, (4.1)

6 E.g., the German blue chip DAX 30 performance index suffered a drop of more than 8% within the
first few days following the Tohoku earthquake.

7 September 15, 2007 is a Saturday and September 14, 2008 is a Sunday. To account for this, we adapt
the pre-Lehman-bankruptcy period as stated above.
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with

ri =
1

T

T∑
t=1

rit and rj =
1

T

T∑
t=1

rjt,

where rit and rjt denote the daily log returns of base criterion i and stock j; σi and σj

denote the standard deviations and σij is the covariance between base criterion i and

stock j’s daily log returns.

For both events we calculate the pre-
(
ρ

pre

ij

)
and the post-event correlation

(
ρ

post

ij

)
be-

tween base criterion i and all stocks j. Thus, for each event we obtain around 4,000 pre-

and 4,000 post-event correlations subject to the availability of stock prices for the respec-

tive time interval. We then pool these estimates once with respect to stock j’s industry

S, i.e.
⋃
j ρij with j ∈ S, and once with respect to stock j’s country R, i.e.,

⋃
j ρij with

j ∈ R. For the pooled estimates we compute means and medians and subsequently use

these to test for contagion applying the following hypotheses:

H0 : ρ̃
post

ij,S − ρ̃
pre

ij,S < 0 ; H1 : ρ̃
post

ij,S − ρ̃
pre

ij,S > 0 , (4.2a)
and

H0 : ρ̃
post

ij,R − ρ̃
pre

ij,R < 0 ; H1 : ρ̃
post

ij,R − ρ̃
pre

ij,R > 0 (4.2b)

where ρ̃
reg

ij,S

(
ρ̃

reg

ij,R

)
denotes the mean or median correlation coefficient with respect to

industry S (country R) for either the pre-event or the post-event regime, i.e., reg =

{pre, post}. A rejection of the null hypotheses indicates an increase in cross-market cor-

relation that we interpret as contagion.

4.5 Results

We conduct two main analyses. We first investigate contagion at the industry level. This

allows us to determine which industries are particularly prone to bank failures and earth-

quakes. Subsequently, we investigate contagion at the country level such as to identify

geographical propagation channels of contagion.

4.5.1 Contagious effects by industry

In contrast to many previous event studies on the Lehman bankruptcy and the Tohoku

earthquake including the subsequent nuclear disaster at Fukushima Daiichi, our analysis

compares both events in a common framework analyzing contagious effects in all indus-

tries and thereby covering a multitude of countries. Whereas it is well documented in

literature that real sector firms were strongly affected by banks’ liquidity freezes following
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the Lehman bankruptcy, industries other than utilities and insurance were as well likely

to have been affected by the Tohoku earthquake and the nuclear accident at Fukushima

Daiichi, e.g., through disrupted supply chains resulting from the destruction of production

facilities.

Table 4.2 displays the results of our industry analysis and reads as follows. Panel A

displays our correlation estimates for the Lehman bankruptcy and Panel B the estimates

for the Tohoku earthquake. Both panels are organized in the same fashion: Column 1 gives

the name of the ICB industry to which the figures in columns 2–10 refer. Columns 2–4

display figures for the pre-event window and columns 5–7 exhibit figures for the post-

event window. Column 8 reports the difference of means from columns 3 and 6, column 9

the p-value of the corresponding t-statistic, and column 10 the p-value of the Wilcoxon

median difference test.

The numbers reveal that – as a result of the Lehman bankruptcy – correlations increase

for all industries. The increase in correlation is especially steep for oil & gas (0.3848),

utilities (0.2783), and basic materials (0.1965). Interestingly, the increase in correlation

is substantially lower for stocks from financial firms (banks, insurance, real estate, and

financial services). This result indicates that prior to the Lehman bankruptcy, the aware-

ness of the risks prevalent in financial markets must have been substantially higher among

financial firms than among real sector firms reflecting potential informational advantages

of financial companies. For all industries, however, the increase in correlation is significant

at the 1%-level. Overall, the Lehman bankruptcy leads to an increase in correlation of

0.1618.

The Tohoku earthquake also leads to significant correlation increases in a number of

industries. The increases are most substantial for consumer services (0.1245), health care

(0.1149), utilities (0.1110), telecommunications (0.1079), and consumer goods (0.0847)

stocks, which is in line with reports on the destruction of manufacturing and power plants

– either as a result of the earthquake or the subsequent tsunami (see, e.g., Noy, 2011). Oil

& gas stocks are least affected by the Tohoku earthquake. However, this may be simply

explained by the fact that stocks on Japanese oil firms only represent less than 5% of oil

stocks in our sample. Moreover, insurance stock reacts less strongly to the earthquake.8

The overall correlation (as indicated by the last row in Panel B) increases from 0.2698 to

0.3391 on average, which is significant at the 1%-level.

8 We refer to footnote 10 on page 124.
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PRE PERIOD POST PERIOD STATISTICS

Industry # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman Bankruptcy

Oil & Gas 211 0.1913 0.1733 205 0.5761 0.6165 0.3848 0.0000 0.0000
Basic Materials 377 0.1252 0.0932 354 0.3217 0.2974 0.1965 0.0000 0.0000
Industrials 796 0.2183 0.1444 773 0.3625 0.3324 0.1442 0.0000 0.0000
Consumer Goods 469 0.1890 0.1270 456 0.3054 0.2550 0.1165 0.0000 0.0000
Health Care 235 0.1722 0.1348 225 0.3779 0.3951 0.2058 0.0000 0.0000
Consumer Services 523 0.2290 0.1650 511 0.3382 0.3211 0.1092 0.0000 0.0000
Telecommunications 54 0.2582 0.2475 53 0.4295 0.4718 0.1713 0.0030 0.0014
Utilities 163 0.2176 0.1895 153 0.4960 0.5730 0.2783 0.0000 0.0000
Banks 193 0.2428 0.1501 188 0.3458 0.3212 0.1030 0.0001 0.0001
Insurance 115 0.3796 0.3833 112 0.5108 0.5541 0.1312 0.0003 0.0001
Real Estate 268 0.2483 0.1662 253 0.3480 0.3648 0.0997 0.0002 0.0002
Financial Services 318 0.2347 0.1963 313 0.3886 0.3926 0.1539 0.0000 0.0000
Technology 256 0.2588 0.1912 254 0.4444 0.4608 0.1857 0.0000 0.0000

ALL 3,978 0.2156 0.1539 3,850 0.3773 0.3729 0.1618 0.0000 0.0000

Panel B – Tohoku Earthquake

Oil & Gas 230 0.2129 0.1947 228 0.1575 0.1375 -0.0554 0.0102 0.0063
Basic Materials 391 0.2877 0.2390 381 0.3605 0.3230 0.0728 0.0011 0.0054
Industrials 838 0.3115 0.2536 815 0.3467 0.3085 0.0352 0.0160 0.2828
Consumer Goods 492 0.3033 0.2306 484 0.3880 0.3305 0.0847 0.0000 0.0006
Health Care 251 0.2123 0.1832 248 0.3272 0.2565 0.1149 0.0000 0.0013
Consumer Services 550 0.2511 0.2203 534 0.3756 0.3132 0.1245 0.0000 0.0000
Telecommunications 56 0.1896 0.1658 55 0.2975 0.2731 0.1079 0.0114 0.0866
Utilities 168 0.1929 0.2017 159 0.3039 0.2969 0.1110 0.0000 0.0000
Banks 201 0.3445 0.2917 196 0.4194 0.3896 0.0749 0.0144 0.1195
Insurance 123 0.2306 0.2036 121 0.2711 0.2802 0.0405 0.1190 0.0575
Real Estate 278 0.2096 0.1813 261 0.2926 0.2049 0.0831 0.0006 0.1871
Financial Services 344 0.2768 0.2776 329 0.3457 0.3258 0.0690 0.0001 0.0033
Technology 267 0.2736 0.2115 264 0.3289 0.2497 0.0554 0.0336 0.5768

ALL 4,189 0.2698 0.2248 4,075 0.3391 0.2917 0.0693 0.0000 0.0000

Table 4.2 – Cross-market correlations by industry (international stock incl. event country)
The above table exhibits statistics of pre- and post-event correlations between individual stocks and the
base criterion, calculated according to Expression (4.1). The correlations are estimated from series of
daily log returns and pooled according to ICB industries across all countries including the event country.
The pre-event period covers the year prior to the event and the post-event period the month subsequent
to the event including the event day. Panel A displays estimates for the Lehman bankruptcy and Panel B
estimates for the Tohoku earthquake applying the S&P 500 (Panel A) and the NIKKEI 225 stock market
(Panel B) indexes as base criteria. Both panels are organized as follows: Column 1 gives the name of
the ICB industry to which the figures in columns 2–10 refer. Columns 2–4 display pre-event figures and
columns 5–7 post-event figures. Column 8 reports the residual between the industry-specific mean post-
event (in column 6) and mean pre-event (in column 3) figures and column 9 the p-value of a t-test with
the null hypothesis stating that pre-event correlation equals post-event correlation. Column 10 reports the
p-value of the corresponding Wilcoxon median difference test. Each panel’s last row exhibits international
cross-industry averages.
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PRE PERIOD POST PERIOD STATISTICS

Industry # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman Bankruptcy

Oil & Gas 85 0.3328 0.3287 85 0.8270 0.8451 0.4942 0.0000 0.0000
Basic Materials 45 0.5224 0.5602 45 0.7973 0.8514 0.2749 0.0000 0.0000
Industrials 160 0.5938 0.6205 160 0.7965 0.8205 0.2026 0.0000 0.0000
Consumer Goods 89 0.5156 0.5232 89 0.7412 0.7435 0.2256 0.0000 0.0000
Health Care 77 0.4006 0.3971 77 0.7739 0.8063 0.3732 0.0000 0.0000
Consumer Services 120 0.5528 0.5672 121 0.7407 0.7858 0.1879 0.0000 0.0000
Telecommunications 12 0.5239 0.5459 12 0.8649 0.8878 0.3411 0.0000 0.0000
Utilities 49 0.5039 0.5229 49 0.8067 0.8157 0.3028 0.0000 0.0000
Banks 31 0.6349 0.6685 31 0.6629 0.6864 0.0281 0.2460 0.2224
Insurance 46 0.6030 0.6089 46 0.7292 0.7609 0.1262 0.0000 0.0000
Real Estate 64 0.6799 0.7062 63 0.7014 0.7023 0.0215 0.2685 0.4950
Financial Services 41 0.6737 0.7271 41 0.7878 0.8033 0.1142 0.0000 0.0000
Technology 92 0.5062 0.5311 92 0.7784 0.8113 0.2722 0.0000 0.0000

ALL 911 0.5335 0.5480 911 0.7694 0.7966 0.2359 0.0000 0.0000

Panel B – Tohoku Earthquake

Oil & Gas 10 0.5324 0.5464 10 0.7379 0.7204 0.2055 0.0000 0.0000
Basic Materials 85 0.6280 0.6406 85 0.8853 0.9059 0.2573 0.0000 0.0000
Industrials 224 0.5917 0.6170 223 0.7702 0.8459 0.1786 0.0000 0.0000
Consumer Goods 170 0.5467 0.5663 170 0.8022 0.8589 0.2555 0.0000 0.0000
Health Care 63 0.3788 0.3568 61 0.8137 0.8489 0.4349 0.0000 0.0000
Consumer Services 159 0.4255 0.4262 157 0.8309 0.8722 0.4054 0.0000 0.0000
Telecommunications 6 0.4539 0.5056 6 0.8349 0.8546 0.3810 0.0024 0.0022
Utilities 18 0.2946 0.2576 18 0.7418 0.7496 0.4472 0.0000 0.0000
Banks 69 0.5391 0.5528 69 0.8606 0.8858 0.3215 0.0000 0.0000
Insurance 6 0.5953 0.6281 6 0.6715 0.6395 0.0762 0.3642 0.4848
Real Estate 63 0.3552 0.2890 62 0.7937 0.8543 0.4385 0.0000 0.0000
Financial Services 35 0.5271 0.5835 35 0.8437 0.8716 0.3166 0.0000 0.0000
Technology 66 0.5555 0.5440 66 0.8534 0.8954 0.2979 0.0000 0.0000

ALL 974 0.5154 0.5396 968 0.8137 0.8645 0.2983 0.0000 0.0000

Table 4.3 – Cross-market correlations by industry (event country stock)
The above table exhibits statistics of pre- and post-event correlations between individual stocks and the
base criterion, calculated according to Expression (4.1). The correlations are estimated from series of
daily log returns and pooled according to ICB industries within the event country. The pre-event period
covers the year prior to the event and the post-event period the month subsequent to the event including
the event day. Panel A displays estimates for the Lehman bankruptcy and Panel B estimates for the
Tohoku earthquake applying the S&P 500 (Panel A) and the NIKKEI 225 stock market (Panel B) indexes
as base criteria. Both panels are organized as follows: Column 1 gives the name of the ICB industry to
which the figures in columns 2–10 refer. Columns 2–4 display pre-event figures and columns 5–7 post-
event figures. Column 8 reports the residual between the industry-specific mean post-event (in column 6)
and mean pre-event (in column 3) figures and column 9 the p-value of a t-test with the null hypothesis
stating that pre-event correlation equals post-event correlation. Column 10 reports the p-value of the
corresponding Wilcoxon median difference test. Each panel’s last row exhibits national cross-industry
averages.



4 Are earthquakes less contagious than bank failures? 124

For both events, however, it remains unclear whether the overall increase in corre-

lation is driven by the event country’s stock or by stock from countries other than the

event country. We investigate this question by conducting partial analysis. Thus, we

compute industry means of US stock correlations for the Lehman bankruptcy (applying

the S&P 500 index as base criterion) and industry means of Japanese stock correlations

for the Tohoku earthquake (applying the NIKKEI 225 index as base criterion).

Table 4.3 presents the figures for our analyses of event country stock correlations.

Panel A exhibits industry mean and median values of US stock correlations for the Lehman

bankruptcy with the S&P 500 index as base criterion and Panel B exhibits industry mean

and median values of Japanese stock correlations for the Tohoku earthquake with the

NIKKEI 225 index as base criterion. The remainder is organized in the same fashion as

Table 4.2.

For most US industries, we detect substantial contagious effects. The increases in

correlation are significant at very high significance levels for both the t- and the Wilcoxon

median difference test. This finding is intuitive since the Lehman bankruptcy affected

the US economy as a whole and even resulted in credit crunches in many other countries

across the globe. Interestingly, correlations do not increase for US bank and real estate

stocks. Apparently, the distress had already materialized in the interbank and real estate

markets.9

The results from Panel B indicate significant contagious effects in Japan as a result of

the Tohoku earthquake. The increases are significant for all Japanese industries except

for the insurance industry.10 The results indicate severe distress in the stock markets

in the post-event period. The contagious effects are particularly strong for utilities, real

estate, and health care stocks. Concerning the overall increases in correlation (exhibited

in each Panel’s last row), it is remarkable that the increase in Japanese stock correlations

following the Tohoku earthquake is higher than the increase in US stock correlations

9 By September 15, 2008 the US government had already taken various steps to ensure the sound-
ness of institutions providing mortgage credit. E.g., on July 13, 2008 the Board of Governors of
the Federal Reserve System announced that it had granted the Federal Reserve Bank of New York
the authority to lend to Funnie Mae and Freddie Mac should such lending prove necessary. See
http://www.federalreserve.gov/newsevents/press/other/20080713a.htm

10 In insurance literature, two opposing effects are well documented. On the one hand, a natural disaster
may have a negative effect on firm value resulting from an increased number of policy holders’ claims.
On the other hand, a positive effect on firm value has been documented as a result of higher expected
future policy purchases and premium payments (see, e.g., Angbazo and Narayanan, 1996). Generally,
high capital buffers and the Earthquake Insurance System on Dwelling Risks in Japan are documented
to have had stabilizing effects on the stock market (Takao et al., 2013). (Though the increase in
correlation is substantial for Japanese insurance stocks, the reason for its insignificance may lie in the
small number of Japanese insurers within our sample.)
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following the Lehman bankruptcy. This implies that regionally, contagion arising from

a natural disaster may be more severe than contagion arising from a foreign financial

shock such as the Lehman bankruptcy which is in line with the findings of Kaminsky and

Reinhart (2000).

Following our analysis of contagious effects within the event country, we now turn

towards the analysis of contagion to countries beyond the event country. Table 4.4 exhibits

our results from the analysis of international stock market contagion by industry. Panel A

exhibits industry mean and median values of international stock (excluding US stock)

correlations for the Lehman bankruptcy applying the S&P 500 index as base criterion

and Panel B exhibits industry mean and median values of international stock (excluding

Japanese stock) correlations for the Tohoku earthquake applying the NIKKEI 225 index

as base criterion. The remainder is organized in the same manner as the previous tables.

From Panel A of Table 4.4 we observe that international stock from all industries

experienced significant contagion following the Lehman bankruptcy and the subsequent

turmoil in the financial markets. This is in line with research documenting the Lehman

bankruptcy’s severe impact on real sectors. In contrast, the impact of the Tohoku earth-

quake on international stock is somewhat ambiguous. The corresponding figures reported

in Panel B of Table 4.4 show that only some industries experienced contagion at the inter-

national level. Significant contagious effects occured for international utilities, financial

services, and insurance stocks.

The utilities industry is likely to have been most affected by the nuclear disaster at

Fukushima Daiichi (that was caused by the Tohoku earthquake and the tsunami in the

first place). Being classified as one of the most serious nuclear disasters in history, the

incidents at Fukushima Daiichi triggered political discussions on the adequacy of nuclear

power generation around the globe. As a result, some studies document abnormal returns

for French and German nuclear utility and alternative energy stocks (Betzer et al., 2013;

Ferstl et al., 2012).

Insurance stock was heavily affected through claims resulting from the destruction of

production plants either by the earthquake itself or the subsequent tsunami floodings.

This can be observed from the stock prices of the world’s leading reinsurance companies

such as Munich Re, Swiss Re, and Berkshire Hathaway whose stock prices plunged by

roughly 10% in the first few days following the event. Contrarily, oil & gas as well as

banking stocks experienced a significant decrease in correlation. Thus, when averaging

across all industries globally, the contagion effect diminishes.
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PRE PERIOD POST PERIOD STATISTICS

Industry # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman Bankruptcy

Oil & Gas 126 0.0959 0.1002 120 0.3984 0.4423 0.3026 0.0000 0.0000
Basic Materials 332 0.0713 0.0744 309 0.2524 0.2441 0.1810 0.0000 0.0000
Industrials 636 0.1238 0.1097 613 0.2492 0.2367 0.1254 0.0000 0.0000
Consumer Goods 380 0.1125 0.1024 367 0.1997 0.1723 0.0873 0.0000 0.0002
Health Care 158 0.0608 0.0629 148 0.1719 0.1546 0.1111 0.0000 0.0003
Consumer Services 403 0.1326 0.1133 390 0.2133 0.2072 0.0807 0.0000 0.0001
Telecommunications 42 0.1823 0.1758 41 0.3020 0.3649 0.1197 0.0249 0.0058
Utilities 114 0.0946 0.0759 104 0.3496 0.3410 0.2550 0.0000 0.0000
Banks 162 0.1678 0.1213 157 0.2832 0.2447 0.1154 0.0000 0.0000
Insurance 69 0.2306 0.2387 66 0.3586 0.4173 0.1279 0.0011 0.0005
Real Estate 204 0.1128 0.0839 190 0.2308 0.2551 0.1179 0.0000 0.0000
Financial Services 277 0.1698 0.1588 272 0.3285 0.3640 0.1587 0.0000 0.0000
Technology 164 0.1200 0.1196 162 0.2548 0.2536 0.1348 0.0000 0.0000

ALL 3,067 0.1211 0.1075 2,939 0.2558 0.2556 0.1347 0.0000 0.0000

Panel B – Tohoku Earthquake

Oil & Gas 220 0.1984 0.1893 218 0.1309 0.1285 -0.0675 0.0009 0.0019
Basic Materials 306 0.1932 0.1941 296 0.2098 0.2084 0.0166 0.3535 0.1885
Industrials 614 0.2093 0.2114 592 0.1871 0.1691 -0.0222 0.0556 0.0137
Consumer Goods 322 0.1748 0.1718 314 0.1638 0.1681 -0.0110 0.4381 0.6743
Health Care 188 0.1565 0.1604 187 0.1685 0.1611 0.0120 0.5097 0.3851
Consumer Services 391 0.1802 0.1757 377 0.1860 0.1807 0.0058 0.6735 0.8082
Telecommunications 50 0.1579 0.1592 49 0.2317 0.2327 0.0738 0.0288 0.1351
Utilities 150 0.1808 0.1943 141 0.2480 0.2777 0.0673 0.0049 0.0014
Banks 132 0.2427 0.2163 127 0.1797 0.1819 -0.0630 0.0110 0.0116
Insurance 117 0.2119 0.1958 115 0.2502 0.2550 0.0384 0.1158 0.0580
Real Estate 215 0.1669 0.1489 199 0.1365 0.1277 -0.0304 0.0987 0.0494
Financial Services 309 0.2484 0.2575 294 0.2865 0.2638 0.0381 0.0125 0.0338
Technology 201 0.1810 0.1795 198 0.1541 0.1467 -0.0269 0.1507 0.0654

ALL 3,215 0.1954 0.1908 3,107 0.1913 0.1894 -0.0042 0.4026 0.3085

Table 4.4 – Cross-market correlations by industry (international stock excl. event country)
The above table exhibits statistics of pre- and post-event correlations between individual stocks and the
base criterion, calculated according to Expression (4.1). The correlations are estimated from series of
daily log returns and pooled according to ICB industries across all countries excluding the event country.
The pre-event period covers the year prior to the event and the post-event period the month subsequent
to the event including the event day. Panel A displays estimates for the Lehman bankruptcy and Panel B
estimates for the Tohoku earthquake applying the S&P 500 (Panel A) and the NIKKEI 225 stock market
(Panel B) indexes as base criteria. Both panels are organized as follows: Column 1 gives the name of
the ICB industry to which the figures in columns 2–10 refer. Columns 2–4 display pre-event figures and
columns 5–7 post-event figures. Column 8 reports the residual between the industry-specific mean post-
event (in column 6) and mean pre-event (in column 3) figures and column 9 the p-value of a t-test with
the null hypothesis stating that pre-event correlation equals post-event correlation. Column 10 reports the
p-value of the corresponding Wilcoxon median difference test. Each panel’s last row exhibits international
cross-industry averages.
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PRE PERIOD POST PERIOD STATISTICS

Country # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman Bankruptcy

Canada 233 0.2323 0.2044 223 0.4326 0.4679 0.2003 0.0000 0.0000
United States 911 0.5335 0.5480 911 0.7694 0.7966 0.2359 0.0000 0.0000
Brazil 87 0.3168 0.3507 80 0.7056 0.7036 0.3887 0.0000 0.0000
France 238 0.1791 0.1772 222 0.4344 0.4798 0.2553 0.0000 0.0000
Germany 232 0.1838 0.1883 217 0.4782 0.5194 0.2943 0.0000 0.0000
Italy 146 0.2204 0.2308 145 0.4187 0.4428 0.1983 0.0000 0.0000
Russian Federation 39 0.0855 0.0977 31 0.1290 0.1053 0.0435 0.1779 0.2159
United Kingdom 497 0.2033 0.2173 492 0.3769 0.4071 0.1736 0.0000 0.0000
South Africa 67 0.1031 0.1055 64 0.3010 0.3110 0.1979 0.0000 0.0000
Australia 150 0.0162 0.0160 146 0.1070 0.1164 0.0909 0.0000 0.0000
China & Hong Kong 338 -0.0888 -0.0921 293 0.2837 0.2877 0.3725 0.0000 0.0000
Japan 952 0.0881 0.0934 939 0.0206 0.0265 -0.0675 0.0000 0.0000
South Korea 88 0.0545 0.0522 87 0.1285 0.1325 0.0740 0.0003 0.0000

ALL 3,978 0.2156 0.1539 3,850 0.3773 0.3729 0.1618 0.0000 0.0000

Panel B – Tohoku Earthquake

Canada 243 0.1103 0.1160 239 0.1352 0.1380 0.0248 0.1055 0.0700
United States 952 0.1661 0.1722 953 0.0733 0.0708 -0.0928 0.0000 0.0000
Brazil 94 0.0697 0.0695 87 -0.0277 -0.0213 -0.0974 0.0002 0.0002
France 243 0.2339 0.2523 219 0.2756 0.2719 0.0417 0.0115 0.0275
Germany 241 0.1742 0.1858 219 0.3862 0.4312 0.2120 0.0000 0.0000
Italy 151 0.1948 0.2074 149 0.1767 0.1614 -0.0182 0.3841 0.4871
Russian Federation 40 0.2005 0.2141 35 0.2472 0.2731 0.0468 0.2774 0.0844
United Kingdom 518 0.2417 0.2507 509 0.2114 0.2121 -0.0303 0.0078 0.0033
South Africa 69 0.1929 0.1944 69 0.3685 0.3979 0.1756 0.0000 0.0000
Australia 156 0.3514 0.3632 145 0.4179 0.4407 0.0664 0.0026 0.0011
China & Hong Kong 415 0.2025 0.2066 389 0.2332 0.2818 0.0307 0.0273 0.0000
Japan 974 0.5154 0.5396 968 0.8137 0.8645 0.2983 0.0000 0.0000
South Korea 93 0.2495 0.2263 94 0.3228 0.3413 0.0732 0.0139 0.0017

ALL 4,189 0.2698 0.2248 4,075 0.3391 0.2917 0.0693 0.0000 0.0000

Table 4.5 – Cross-market correlations by country (international stock)
The above table exhibits statistics of pre- and post-event correlations between individual stocks and the
base criterion, calculated according to Expression (4.1). The correlations are estimated from series of
daily log returns and pooled according to countries across all ICB industries. The pre-event period covers
the year prior to the event and the post-event period the month subsequent to the event including the
event day. Panel A displays estimates for the Lehman bankruptcy and Panel B estimates for the Tohoku
earthquake applying the S&P 500 (Panel A) and the NIKKEI 225 stock market (Panel B) indexes as
base criteria. Both panels are organized as follows: Column 1 gives the name of the country to which the
figures in columns 2–10 refer. Columns 2–4 display pre-event figures and columns 5–7 post-event figures.
Column 8 reports the residual between the country-specific mean post-event (in column 6) and mean
pre-event (in column 3) figures and column 9 the p-value of a t-test with the null hypothesis stating that
pre-event correlation equals post-event correlation. Column 10 reports the p-value of the corresponding
Wilcoxon median difference test. Each panel’s last row exhibits cross-country averages.
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4.5.2 Contagious effects by country

In the first part of Section 4.5.1, we analyzed contagion by industry. However, we are

interested if any geographical patterns of the ”shock waves’” propagation through global

stock markets become visible if we analyze contagion by country. Thus, we dedicate this

subsection to the analysis of country-specific contagious effects.

Table 4.5 displays the results of our contagion analysis with respect to countries and

is organized in the same fashion as the previous tables. Panel A displays our correla-

tion estimates for the Lehman bankruptcy and Panel B the estimates for the Tohoku

earthquake.

Overall, Panel A reveals that the Lehman bankruptcy leads to a significant increase

in correlation that is significant for almost all countries. This result is in line with our

previous findings and intuitive given the tremendous impact of the Lehman bankruptcy

to other countries’ economies. It is astonishing that Russia is the only country in our

sample not suffering from contagion, however, stock price dynamics in Russia exhibit a

very low correlation with the US stock market in general, which might be attributed to

relatively weak economic ties between Russia and the United States.11

The Tohoku earthquake’s impact on cross-market correlation, however, is not that

clear cut. Whereas for most countries correlation with the Japanese market decreases

(e.g., United States, Brazil, Italy, and United Kingdom), it significantly increases only for

some countries. Most notable is the increase of cross-market correlation for German stocks

amounting to 0.2120. Indeed, the German stock index DAX 30 declined substantially in

the first days following the Tohoku disaster. This result reflects fears that amongst others

the automobile industry (including suppliers) that constitutes an important share of the

German economy was indirectly hit by Japanese production breakdowns.12 Moreover,

South African stocks experienced a dramatic increase in cross-market correlation from

0.1929 to 0.3685.13 On a smaller scale, we find significant contagion for South Korean,

Chinese, Australian, Canadian, and French stocks.

We find that geographic proximity to the event country is only one determinant for

the occurence of contagion in a country. However, trade links and the relative importance

of insurance and utilities firms within a country’s economy governed the degree to which

a country experienced contagion in the aftermath of the Tohoku earthquake. Moreover,

11 E.g., Russia did not become a member of the World Trade Organization until August 22, 2012.
12 ”Erdbeben/Roundup: Europäische Autozulieferer indirekt betroffen”, Handelsblatt, March 30, 2011

(only available in German)
13 This finding is in line with Asongu (2012), who furthermore finds contagion for the Taiwanese, the

Bahrain, and the Saudi-Arab stock markets.
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some country’s energy politics responded stongly to the nuclear disaster at Fukushima

Daiichi leaving a significant print on cross-market correlation (see, e.g., Lopatta and

Kaspereit, 2012; Betzer et al., 2013).

4.6 Robustness issues

4.6.1 Forbes-Rigobon correction for volatility

In the literature it has been noted that the standard Pearson correlation coefficient suffers

from a heteroscedasticity bias. Forbes and Rigobon (2002) show that the correlation

coefficient increases in periods of high volatility and vice versa. To test if our results are

affected by this type of bias, we apply the following adjustment proposed by Forbes and

Rigobon (2002) to our correlation estimates:

ρ̃ =
ρ√

1 + δ(1− ρ2)
with δ =

σ
post

ii

σ
pre

ii

− 1. (4.3)

σ
pre

ii

(
σ

post

ii

)
stands for the pre(post)-event variance of base criterion i’s daily log return rit.

Parameter δ adjusts for the heteroscedasticity bias and is thus applied to standardize the

Pearson correlation coefficient ρ.

Tables 4.6 and 4.7 exhibit the results obtained for Forbes and Rigobon (2002) correc-

tion of correlations and are organized in the same fashion as the previous tables. Overall,

the standardization of correlation coefficients leads to lower levels of correlation. However,

Tables 4.6 and 4.7 both confirm our previous results from Tables 4.2 and 4.5.

4.6.2 Base criterion

For our analyses, the choice of an adequate base criterion is crucial. We investigate conta-

gion from the event country to other countries’ stock markets. Thus, it is straightforward

to apply the event region’s leading stock market index as base criterion.

However, alternate spill-over mechanisms are conceivable. In contrast to the direct

contagion presumed in our study, contagion could occur through an indirect contagion

mechasnism, where contagion propagates from event country A to country B via coun-

try C. To confirm that the previously applied base criteria adequately capture distress in

the event countries’ markets, we switch the base criteria for our event studies, i.e., for the

Lehman bankruptcy we apply the NIKKEI 225 index and for the Tohoku earthquake we

apply the S&P 500 index as base criteria.
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PRE PERIOD POST PERIOD STATISTICS

Industry # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman Bankruptcy

Oil & Gas 210 0.0572 0.0517 205 0.2485 0.2340 0.1912 0.0000 0.0000
Basic Materials 373 0.0411 0.0285 354 0.1243 0.0888 0.0832 0.0000 0.0000
Industrials 793 0.0712 0.0436 773 0.1408 0.0985 0.0697 0.0000 0.0000
Consumer Goods 469 0.0589 0.0392 456 0.1133 0.0742 0.0544 0.0000 0.0000
Health Care 235 0.0520 0.0385 225 0.1512 0.1167 0.0992 0.0000 0.0000
Consumer Services 523 0.0728 0.0498 510 0.1290 0.0984 0.0562 0.0000 0.0000
Telecommunications 54 0.0805 0.0703 53 0.1796 0.1574 0.0991 0.0003 0.0011
Utilities 162 0.0681 0.0546 153 0.2019 0.1949 0.1337 0.0000 0.0000
Banks 193 0.0818 0.0474 188 0.1226 0.0939 0.0409 0.0001 0.0002
Insurance 115 0.1281 0.1129 112 0.1956 0.1788 0.0676 0.0000 0.0001
Real Estate 268 0.0866 0.0515 253 0.1256 0.1078 0.0390 0.0002 0.0002
Financial Services 318 0.0761 0.0548 313 0.1381 0.1174 0.0620 0.0000 0.0000
Technology 256 0.0812 0.0562 254 0.1806 0.1456 0.0994 0.0000 0.0000

ALL 3,969 0.0695 0.0456 3,849 0.1459 0.1114 0.0764 0.0000 0.0000

Panel B – Tohoku Earthquake

Oil & Gas 230 0.0813 0.0712 228 0.0677 0.0504 -0.0136 0.1530 0.0057
Basic Materials 390 0.1218 0.0880 381 0.2013 0.1244 0.0795 0.0000 0.0087
Industrials 835 0.1326 0.0957 815 0.1871 0.1152 0.0545 0.0000 0.3770
Consumer Goods 491 0.1284 0.0860 483 0.2175 0.1269 0.0891 0.0000 0.0010
Health Care 251 0.0824 0.0675 247 0.1719 0.0971 0.0895 0.0000 0.0011
Consumer Services 548 0.1002 0.0825 533 0.2072 0.1199 0.1069 0.0000 0.0000
Telecommunications 56 0.0725 0.0614 55 0.1374 0.1044 0.0648 0.0050 0.0803
Utilities 166 0.0752 0.0744 159 0.1370 0.1121 0.0618 0.0000 0.0000
Banks 199 0.1424 0.1093 196 0.2440 0.1451 0.1016 0.0000 0.1397
Insurance 123 0.0893 0.0761 121 0.1144 0.1055 0.0251 0.0392 0.0599
Real Estate 278 0.0814 0.0659 261 0.1556 0.0747 0.0743 0.0000 0.2010
Financial Services 342 0.1094 0.1045 329 0.1625 0.1241 0.0531 0.0000 0.0059
Technology 267 0.1131 0.0798 264 0.1884 0.0933 0.0753 0.0000 0.5998

ALL 4,176 0.1106 0.0838 4,072 0.1811 0.1094 0.0705 0.0000 0.0000

Table 4.6 – Robustness: Cross-market Forbes-Rigobon (2002) correlations by industry
The above table exhibits statistics of pre- and post-event correlations between individual stocks and the
base criterion, calculated according to Expressions (4.1) and (4.3). The correlations are estimated from
series of daily log returns and pooled according to ICB industries across all countries including the event
country. The pre-event period covers the year prior to the event and the post-event period the month
subsequent to the event including the event day. Panel A displays estimates for the Lehman bankruptcy
and Panel B estimates for the Tohoku earthquake applying the S&P 500 (Panel A) and the NIKKEI 225
stock market (Panel B) indexes as base criteria. Both panels are organized as follows: Column 1 gives
the name of the ICB industry to which the figures in columns 2–10 refer. Columns 2–4 display pre-event
figures and columns 5–7 post-event figures. Column 8 reports the residual between the industry-specific
mean post-event (in column 6) and mean pre-event (in column 3) figures and column 9 the p-value of a
t-test with the null hypothesis stating that pre-event correlation equals post-event correlation. Column 10
reports the p-value of the corresponding Wilcoxon median difference test. Each panel’s last row exhibits
international cross-industry averages.
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PRE PERIOD POST PERIOD STATISTICS

Country # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman Bankruptcy

Canada 232 0.0800 0.0681 223 0.1661 0.1693 0.0861 0.0000 0.0000
United States 911 0.1799 0.1762 910 0.3427 0.3386 0.1628 0.0000 0.0000
Brazil 87 0.0930 0.0998 80 0.2921 0.2605 0.1991 0.0000 0.0000
France 237 0.0511 0.0512 222 0.1428 0.1471 0.0917 0.0000 0.0000
Germany 231 0.0531 0.0522 217 0.1629 0.1608 0.1098 0.0000 0.0000
Italy 145 0.0631 0.0656 145 0.1344 0.1333 0.0713 0.0000 0.0000
Russian Federation 38 0.0255 0.0296 31 0.0364 0.0285 0.0108 0.2734 0.2769
United Kingdom 497 0.0579 0.0608 492 0.1176 0.1206 0.0597 0.0000 0.0000
South Africa 67 0.0287 0.0314 64 0.0902 0.0913 0.0616 0.0000 0.0000
Australia 150 0.0045 0.0044 146 0.0314 0.0311 0.0269 0.0000 0.0000
China & Hong Kong 334 -0.0249 -0.0255 293 0.0826 0.0815 0.1075 0.0000 0.0000
Japan 952 0.0278 0.0293 939 0.0066 0.0082 -0.0212 0.0000 0.0000
South Korea 88 0.0145 0.0139 87 0.0356 0.0362 0.0211 0.0003 0.0000

ALL 3,969 0.0695 0.0456 3,849 0.1459 0.1114 0.0764 0.0000 0.0000

Panel B – Tohoku Earthquake

Canada 243 0.0413 0.0435 239 0.0533 0.0513 0.0120 0.0538 0.0793
United States 952 0.0622 0.0642 952 0.0286 0.0259 -0.0336 0.0000 0.0000
Brazil 93 0.0296 0.0245 87 -0.0112 -0.0082 -0.0408 0.0002 0.0002
France 241 0.0892 0.0944 219 0.1125 0.1037 0.0232 0.0014 0.0416
Germany 241 0.0675 0.0695 219 0.1678 0.1739 0.1003 0.0000 0.0000
Italy 151 0.0782 0.0780 149 0.0705 0.0601 -0.0077 0.4175 0.3521
Russian Federation 38 0.0797 0.0802 35 0.1023 0.0990 0.0226 0.2431 0.1442
United Kingdom 517 0.0926 0.0950 509 0.0849 0.0779 -0.0077 0.1147 0.0019
South Africa 69 0.0723 0.0736 69 0.1547 0.1563 0.0824 0.0000 0.0000
Australia 156 0.1405 0.1395 145 0.1815 0.1805 0.0411 0.0002 0.0014
China & Hong Kong 408 0.0742 0.0739 388 0.0899 0.1027 0.0157 0.0046 0.0000
Japan 974 0.2290 0.2258 967 0.5118 0.5333 0.2828 0.0000 0.0000
South Korea 93 0.0955 0.0837 94 0.1365 0.1334 0.0410 0.0025 0.0016

ALL 4,176 0.1106 0.0838 4,072 0.1811 0.1094 0.0705 0.0000 0.0000

Table 4.7 – Robustness: Cross-market Forbes-Rigobon (2002) correlations by country
The above table exhibits statistics of pre- and post-event correlations between individual stocks and the
base criterion, calculated according to Expressions (4.1) and (4.3). The correlations are estimated from
series of daily log returns and pooled according to countries across all ICB industries. The pre-event
period covers the year prior to the event and the post-event period the month subsequent to the event
including the event day. Panel A displays estimates for the Lehman bankruptcy and Panel B estimates
for the Tohoku earthquake applying the S&P 500 (Panel A) and the NIKKEI 225 stock market (Panel B)
indexes as base criteria. Both panels are organized as follows: Column 1 gives the name of the country
to which the figures in columns 2–10 refer. Columns 2–4 display pre-event figures and columns 5–7 post-
event figures. Column 8 reports the residual between the country-specific mean post-event (in column 6)
and mean pre-event (in column 3) figures and column 9 the p-value of a t-test with the null hypothesis
stating that pre-event correlation equals post-event correlation. Column 10 reports the p-value of the
corresponding Wilcoxon median difference test. Each panel’s last row exhibits cross-country averages.
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PRE PERIOD POST PERIOD STATISTICS

Industry # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman Bankruptcy

Oil & Gas 211 0.1697 0.1289 199 0.3841 0.4301 0.2144 0.0000 0.0000
Basic Materials 376 0.2721 0.2014 292 0.4135 0.4761 0.1414 0.0000 0.0000
Industrials 796 0.2955 0.2185 717 0.3726 0.4333 0.0771 0.0000 0.0000
Consumer Goods 469 0.2907 0.2179 419 0.3882 0.4671 0.0975 0.0000 0.0000
Health Care 235 0.1962 0.1562 200 0.3253 0.3478 0.1292 0.0000 0.0000
Consumer Services 523 0.2344 0.1816 491 0.3451 0.4182 0.1107 0.0000 0.0000
Telecommunications 54 0.1798 0.1371 52 0.4236 0.4561 0.2438 0.0000 0.0000
Utilities 163 0.1623 0.1237 134 0.3524 0.3696 0.1901 0.0000 0.0000
Banks 193 0.3752 0.3052 172 0.5146 0.5846 0.1394 0.0000 0.0000
Insurance 115 0.1740 0.1552 109 0.3016 0.3482 0.1275 0.0002 0.0001
Real Estate 268 0.2184 0.1691 231 0.2423 0.3395 0.0240 0.4634 0.0311
Financial Services 318 0.3054 0.2869 301 0.4603 0.5324 0.1549 0.0000 0.0000
Technology 256 0.2454 0.1791 239 0.2825 0.3254 0.0371 0.2014 0.2425

ALL 3,977 0.2578 0.1960 3,556 0.3696 0.4283 0.1117 0.0000 0.0000

Panel B – Tohoku Earthquake

Oil & Gas 230 0.4190 0.4358 228 0.3110 0.3156 -0.1081 0.0000 0.0000
Basic Materials 391 0.2854 0.2040 382 0.1634 0.1559 -0.1220 0.0000 0.0000
Industrials 838 0.3053 0.2071 822 0.2537 0.2249 -0.0515 0.0003 0.0003
Consumer Goods 492 0.2671 0.1928 484 0.2117 0.1683 -0.0554 0.0014 0.0004
Health Care 251 0.2526 0.1587 248 0.2453 0.2398 -0.0073 0.7568 0.9147
Consumer Services 550 0.2896 0.2255 535 0.2464 0.2173 -0.0431 0.0055 0.0061
Telecommunications 56 0.3121 0.2711 55 0.2502 0.2493 -0.0619 0.2113 0.3006
Utilities 168 0.3554 0.3124 160 0.3152 0.3170 -0.0402 0.2230 0.2462
Banks 201 0.3263 0.2290 196 0.1822 0.1254 -0.1441 0.0000 0.0000
Insurance 123 0.4776 0.5026 121 0.3747 0.3986 -0.1029 0.0024 0.0074
Real Estate 278 0.3225 0.2214 265 0.2925 0.2868 -0.0300 0.1952 0.4477
Financial Services 345 0.3449 0.3205 330 0.3426 0.3742 -0.0023 0.9098 0.7451
Technology 267 0.3457 0.2907 265 0.2918 0.3017 -0.0538 0.0287 0.0701

ALL 4,190 0.3151 0.2347 4,091 0.2567 0.2427 -0.0584 0.0000 0.0000

Table 4.8 – Robustness with respect to base criteria, cross-market correlations by industry
The above table exhibits statistics of pre- and post-event correlations between individual stocks and the
base criterion, calculated according to Expression (4.1). The correlations are estimated from series of
daily log returns and pooled according to ICB industries across all countries including the event country.
The pre-event period covers the year prior to the event and the post-event period the month subsequent
to the event including the event day. Panel A displays estimates for the Lehman bankruptcy and Panel B
estimates for the Tohoku earthquake applying the NIKKEI 225 (Panel A) and the S&P 500 stock market
(Panel B) indexes as base criteria. Both panels are organized as follows: Column 1 gives the name of
the ICB industry to which the figures in columns 2–10 refer. Columns 2–4 display pre-event figures and
columns 5–7 post-event figures. Column 8 reports the residual between the industry-specific mean post-
event (in column 6) and mean pre-event (in column 3) figures and column 9 the p-value of a t-test with
the null hypothesis stating that pre-event correlation equals post-event correlation. Column 10 reports the
p-value of the corresponding Wilcoxon median difference test. Each panel’s last row exhibits international
cross-industry averages.
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PRE PERIOD POST PERIOD STATISTICS

Country # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman Bankruptcy

Canada 232 0.0930 0.0953 222 0.3430 0.3642 0.2501 0.0000 0.0000
United States 911 0.0704 0.0700 911 -0.0624 -0.0739 -0.1327 0.0000 0.0000
Brazil 87 0.0932 0.0964 79 0.2361 0.2326 0.1429 0.0000 0.0000
France 238 0.2100 0.2264 212 0.4528 0.4563 0.2428 0.0000 0.0000
Germany 232 0.1654 0.1714 209 0.3289 0.3768 0.1635 0.0000 0.0000
Italy 146 0.2035 0.2126 143 0.4743 0.4856 0.2708 0.0000 0.0000
Russian Federation 39 0.2171 0.2510 28 0.5719 0.6034 0.3548 0.0000 0.0000
United Kingdom 497 0.2284 0.2072 488 0.3774 0.4043 0.1490 0.0000 0.0000
South Africa 67 0.2007 0.2054 62 0.3501 0.3888 0.1494 0.0000 0.0000
Australia 150 0.3194 0.3296 141 0.5657 0.5838 0.2463 0.0000 0.0000
China & Hong Kong 338 0.2112 0.1894 35 0.5789 0.5908 0.3677 0.0000 0.0000
Japan 952 0.5503 0.5811 939 0.7117 0.7540 0.1614 0.0000 0.0000
South Korea 88 0.3974 0.4146 87 0.6140 0.6706 0.2165 0.0000 0.0000

ALL 3,977 0.2578 0.1960 3,556 0.3696 0.4283 0.1117 0.0000 0.0000

Panel B – Tohoku Earthquake

Canada 243 0.3295 0.3154 239 0.2338 0.2325 -0.0957 0.0000 0.0000
United States 952 0.6494 0.6725 953 0.5248 0.5619 -0.1246 0.0000 0.0000
Brazil 94 0.3446 0.3251 87 0.1681 0.1971 -0.1765 0.0000 0.0000
France 243 0.2959 0.2985 222 0.4361 0.4781 0.1402 0.0000 0.0000
Germany 241 0.2501 0.2503 219 0.3836 0.3955 0.1335 0.0000 0.0000
Italy 152 0.3459 0.3824 149 0.3384 0.3537 -0.0076 0.7631 0.5436
Russian Federation 40 0.2835 0.3133 35 0.2732 0.3184 -0.0103 0.8143 0.8784
United Kingdom 518 0.3256 0.3370 512 0.3889 0.4134 0.0633 0.0000 0.0000
South Africa 69 0.2543 0.2661 69 0.1437 0.1656 -0.1107 0.0007 0.0022
Australia 156 0.1314 0.1395 147 0.1387 0.1408 0.0073 0.6915 0.6066
China & Hong Kong 415 0.1279 0.1408 397 -0.1228 -0.1129 -0.2507 0.0000 0.0000
Japan 974 0.1255 0.1309 968 0.0514 0.0536 -0.0740 0.0000 0.0000
South Korea 93 0.1238 0.1330 94 0.0877 0.0664 -0.0361 0.0625 0.0219

ALL 4,190 0.3151 0.2347 4,091 0.2567 0.2427 -0.0584 0.0000 0.0000

Table 4.9 – Robustness with respect to base criteria, cross-market correlations by country
The above table exhibits statistics of pre- and post-event correlations between individual stocks and the
base criterion, calculated according to Expression (4.1). The correlations are estimated from series of
daily log returns and pooled according to countries across all ICB industries. The pre-event period covers
the year prior to the event and the post-event period the month subsequent to the event including the
event day. Panel A displays estimates for the Lehman bankruptcy and Panel B estimates for the Tohoku
earthquake applying the NIKKEI 225 (Panel A) and the S&P 500 stock market (Panel B) indexes as
base criteria. Both panels are organized as follows: Column 1 gives the name of the country to which the
figures in columns 2–10 refer. Columns 2–4 display pre-event figures and columns 5–7 post-event figures.
Column 8 reports the residual between the country-specific mean post-event (in column 6) and mean
pre-event (in column 3) figures and column 9 the p-value of a t-test with the null hypothesis stating that
pre-event correlation equals post-event correlation. Column 10 reports the p-value of the corresponding
Wilcoxon median difference test. Each panel’s last row exhibits cross-country averages.
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Tables 4.8 and 4.9 present the results of our robustness check with respect to the base

criterion. The estimates reveal that we adequately presume a direct contagion effect. As a

result of the Lehman bankruptcy (Panel A of Tables 4.8 and 4.9), cross-market correlation

still increases significantly but does so much more weakly than in our benchmark analysis

where we apply the S&P 500 stock market index as base criterion.

In contrast, overall correlation decreases as a result of the Tohoku earthquake (Panel B

of Tables 4.8 and 4.9). This result also holds for both – the industry-specific analysis

(Panel B of Table 4.8) and the country-specific analysis (Panel B of Table 4.9). Overall,

we may interpret these results as a strong indication that we are applying adequate base

criteria.

4.6.3 Comovement intensity

Literature has proposed numerous alternatives to measure comovement and connected-

ness. These proposals include several measures based on Principal Components Analysis

(see, e.g., Billio et al., 2012). Hence, we evaluate if our results hold in case we apply a

principal components measure to the data.

More specifically, we compute the comovement intensity (CMI) of the bivariate return

dynamics between base criterion i and stock j. CMI captures the fraction of the return

dynamics’ total variance that can be attributed to the first principal component. By

definition, the relationship between the returns’ covariance matrix Σ and the principal

components’ covariance matrix Λ is given by Λ = A′ΣA, where A = [a1, a2] is the matrix

of eigenvectors a1 and a2 and Λ the diagonal matrix of eigenvalues λ1 and λ2.14 Thus, in

mathematical terms, CMI is the ratio between Σ’s first eigenvalue λ1 and the sum of Σ’s

eigenvalues, λ1 + λ2:

CMI =
λ1

λ1 + λ2

. (4.4)

In the following, we express CMI in percentage terms. We test if industrial and country

CMI averages significantly increase following the Tohoku earthquake and the Lehman

bankruptcy employing a test procedure in analogy to Expressions (4.2a) and (4.2b). Ta-

bles 4.10 and 4.11 present the results for our robustness check with respect to the applied

measure.

14For details on the calculation of principal components and the extraction of Σ’s eigenvalues we refer
to 4.A.
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PRE PERIOD POST PERIOD STATISTICS

Industry # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman

Oil & Gas 211 80.07 82.37 205 84.19 86.45 4.11 0.0001 0.0000
Basic Materials 377 85.53 87.21 354 75.92 74.99 -9.61 0.0000 0.0000
Industrials 796 82.64 83.89 773 75.52 75.04 -7.11 0.0000 0.0000
Consumer Goods 469 79.98 81.14 456 74.23 72.99 -5.76 0.0000 0.0000
Health Care 235 79.18 79.30 225 76.78 78.41 -2.40 0.0225 0.1487
Consumer Services 523 80.75 82.02 511 74.60 74.36 -6.16 0.0000 0.0000
Telecommunications 54 79.54 81.75 53 79.76 79.79 0.22 0.9049 0.9826
Utilities 163 75.71 77.09 153 78.59 80.17 2.88 0.0272 0.0092
Banks 193 81.33 81.21 188 74.82 73.40 -6.51 0.0000 0.0000
Insurance 115 81.42 81.38 112 81.03 82.22 -0.39 0.7615 0.8707
Real Estate 268 83.33 85.71 253 77.80 78.09 -5.53 0.0000 0.0000
Financial Services 318 77.20 79.08 313 77.46 76.59 0.26 0.7675 0.7178
Technology 256 84.30 85.11 254 77.91 78.80 -6.40 0.0000 0.0000

ALL 3,978 81.31 82.79 3,850 76.59 76.39 -4.72 0.0000 0.0000

Panel B – Tohoku

Oil & Gas 230 73.70 75.17 228 82.78 84.13 9.08 0.0000 0.0000
Basic Materials 391 80.72 82.61 381 82.74 84.68 2.02 0.0044 0.0001
Industrials 838 77.11 77.83 815 85.40 87.44 8.29 0.0000 0.0000
Consumer Goods 492 76.27 78.08 484 85.51 87.89 9.24 0.0000 0.0000
Health Care 251 73.23 72.31 248 85.90 88.23 12.67 0.0000 0.0000
Consumer Services 550 73.81 74.26 534 86.41 88.87 12.60 0.0000 0.0000
Telecommunications 56 69.59 68.32 55 86.27 89.97 16.67 0.0000 0.0000
Utilities 168 67.20 64.81 159 89.22 91.26 22.02 0.0000 0.0000
Banks 201 75.54 77.64 196 88.73 90.72 13.19 0.0000 0.0000
Insurance 123 69.32 68.52 121 86.52 88.64 17.20 0.0000 0.0000
Real Estate 278 71.97 70.90 261 87.08 89.84 15.12 0.0000 0.0000
Financial Services 344 73.30 71.56 329 88.78 90.38 15.48 0.0000 0.0000
Technology 267 78.14 79.55 264 84.44 86.45 6.30 0.0000 0.0000

ALL 4,189 75.10 75.89 4,075 85.85 88.20 10.75 0.0000 0.0000

Table 4.10 – Robustness: Comovement intensity by industry

The above table exhibits statistics of pre- and post-event comovement intensities (CMI) between individ-

ual stocks and the base criterion, calculated according to Expression (4.4) and expressed in percentage

terms. The CMI are estimated from series of daily log returns and pooled according to ICB industries

across all countries including the event country. The pre-event period covers the year prior to the event

and the post-event period the month subsequent to the event including the event day. Panel A displays

estimates for the Lehman bankruptcy and Panel B estimates for the Tohoku earthquake applying the

S&P 500 (Panel A) and the NIKKEI 225 stock market (Panel B) indexes as base criteria. Both panels are

organized as follows: Column 1 gives the name of the ICB industry to which the figures in columns 2–10

refer. Columns 2–4 display pre-event figures and columns 5–7 post-event figures. Column 8 reports the

residual between the industry-specific mean post-event (in column 6) and mean pre-event (in column 3)

figures and column 9 the p-value of a t-test with the null hypothesis stating that pre-event CMI equals

post-event CMI. Column 10 reports the p-value of the corresponding Wilcoxon median difference test.

Each panel’s last row exhibits international cross-industry averages.
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PRE PERIOD POST PERIOD STATISTICS

Country # stocks mean median # stocks mean median ∆mean t-test Wilcoxon

Panel A – Lehman

Canada 233 78.74 79.01 223 79.00 80.35 0.26 0.7667 0.6532
United States 911 85.56 87.23 911 90.50 91.51 4.94 0.0000 0.0000
Brazil 87 84.94 85.71 80 87.55 89.31 2.61 0.0098 0.0033
France 238 76.07 77.35 222 78.87 79.12 2.80 0.0003 0.0009
Germany 232 79.20 80.90 217 79.77 81.51 0.58 0.4954 0.6297
Italy 146 76.11 75.87 145 75.24 75.72 -0.87 0.3752 0.4075
Russian Federation 39 81.36 81.49 31 80.88 83.53 -0.48 0.8451 0.4376
United Kingdom 497 77.81 79.99 492 74.74 75.29 -3.07 0.0000 0.0000
South Africa 67 76.64 77.55 64 73.73 74.01 -2.91 0.0216 0.0155
Australia 150 81.72 81.98 146 67.96 67.42 -13.76 0.0000 0.0000
China & Hong Kong 338 89.79 90.26 293 67.47 66.90 -22.32 0.0000 0.0000
Japan 952 79.11 80.53 939 66.44 66.10 -12.66 0.0000 0.0000
South Korea 88 82.54 83.73 87 68.83 68.09 -13.71 0.0000 0.0000

ALL 3,978 81.31 82.79 3,850 76.59 76.39 -4.72 0.0000 0.0000

Panel B – Tohoku

Canada 243 68.18 64.17 239 83.87 88.45 15.68 0.0000 0.0000
United States 952 70.75 70.04 953 86.41 88.84 15.66 0.0000 0.0000
Brazil 94 72.03 71.53 87 81.95 83.78 9.92 0.0000 0.0000
France 243 71.78 71.00 219 84.02 85.88 12.24 0.0000 0.0000
Germany 241 73.92 73.90 219 81.02 83.01 7.10 0.0000 0.0000
Italy 151 71.83 72.81 149 82.52 84.15 10.70 0.0000 0.0000
Russian Federation 40 78.00 76.89 35 83.60 85.72 5.60 0.0084 0.0017
United Kingdom 518 73.35 72.33 509 83.87 85.90 10.51 0.0000 0.0000
South Africa 69 66.13 65.99 69 86.13 87.54 20.00 0.0000 0.0000
Australia 156 75.27 75.45 145 87.17 89.32 11.89 0.0000 0.0000
China & Hong Kong 415 82.05 83.13 389 79.80 81.25 -2.24 0.0001 0.0151
Japan 974 81.23 82.52 968 92.33 94.40 11.10 0.0000 0.0000
South Korea 93 77.78 79.23 94 77.45 77.96 -0.33 0.7786 0.9171

ALL 4,189 75.10 75.89 4,075 85.85 88.20 10.75 0.0000 0.0000

Table 4.11 – Robustness: Comovement intensity by country

The above table exhibits statistics of pre- and post-event comovement intensities (CMI) between individ-

ual stocks and the base criterion, calculated according to Expression (4.4) and expressed in percentage

terms. The CMI are estimated from series of daily log returns and pooled according to countries across

all ICB industries. The pre-event period covers the year prior to the event and the post-event period

the month subsequent to the event including the event day. Panel A displays estimates for the Lehman

bankruptcy and Panel B estimates for the Tohoku earthquake applying the S&P 500 (Panel A) and

the NIKKEI 225 stock market (Panel B) indexes as base criteria. Both panels are organized as follows:

Column 1 gives the name of the country to which the figures in columns 2–10 refer. Columns 2–4 dis-

play pre-event figures and columns 5–7 post-event figures. Column 8 reports the residual between the

country-specific mean post-event (in column 6) and mean pre-event (in column 3) figures and column 9

the p-value of a t-test with the null hypothesis stating that pre-event CMI equals post-event CMI. Col-

umn 10 reports the p-value of the corresponding Wilcoxon median difference test. Each panel’s last row

exhibits cross-country averages.
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The results are more conservative than our previous results but confirm several find-

ings. In the days following the Tohoku earthquake, CMI rises most sharply for utilities

and insurance stocks. South African stocks remain to be most heavily affected by the

Tohoku earthquake. Moreover, the strong increase of CMI across all industries and most

countries in our sample underlines that contagion following the Tohoku earthquake is

substantial. Interestingly, the Tohoku earthquake increases overall CMI more strongly

than the Lehman bankruptcy.

4.7 Summary and conclusion

We study contagion on international stock markets comparing contagion arising from the

Japanese Tohoku earthquake on March 11, 2011 and the bankruptcy of Lehman Brothers

on September 15, 2008 by country and industry.

We find that contagion arising from both – disasters of natural cause and shocks

originating from the financial markets – is substantial. The Lehman bankruptcy’s impact

is more global than the Tohoku earthquake’s, which is particularly strong at the national

level suggesting that contagion arising from natural disasters is most severe in the event

country. While the Lehman bankruptcy caused contagion to a wide range of industries

and countries, the Tohoku earthquake primarily affected utilities and insurance stocks.

Despite their geographically distant location, German and South African stock markets

were most heavily affected by the Tohoku earthquake.

We conclude that the difference in degree to which global stock responded to the

Tohoku earthquake and the Lehman bankruptcy is best explained by the distinct na-

ture of contagion mechanisms. Information-based financial shocks such as the Lehman

bankruptcy have the potential to result in panics arising from fears of losses related to

balance sheet exposures or liquidity freezes. Given tight global financial integration, such

panics are easily transmitted through global stock markets. Natural disasters are less

likely to be followed by panics simply because market participants anticipate price re-

actions to be fully materialized after the event. Moreover, natural disasters primarily

impact (real) assets in the event country. International supply chain disruptions arising

from destroyed production facilities impact global stock only to a lesser degree.
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4.A Principal components analysis and comovement

intensity

Principal components analysis (PCA) employs orthogonal transformation in order to con-

vert a dataset of possibly correlated variables to a dataset of uncorrelated variables. The

vector of original variables shall be replaced by a smaller number of synthetical vari-

ables that are linear combinations of the original variables and capable of explaining a

large fraction of the data’s total variance. The new synthetic variables are referred to as

principal components and sorted with decreasing explanatory power.

More specifically, let R = (R1, . . . , Rn) be an n-dimensional vector of randomized daily

returns with the expectation E(R) = µ and covariance matrix Σ. We now construct a

vector of principal components Z = (Z1, . . . , Zn) such that

Zj = a1jR1 + a2jR2 + . . .+ anjRn = aj
′R, (4.5)

where aj is a vector of constants. The property aj
′aj = 1 ensures that the data is

scaled and the transformation orthogonal. By construction, the first principal component

is designed such that its variance Var(Z1) = Var(a1
′R) = a1

′Σa1 explains a maximum

portion of the data’s total variance. Thus, the maximization problem can be expressed as

max a1
′Σa1 s.t. a1

′a1 = 1 (4.6)

with the Lagrange function given by

L(a1) = a1
′Σa1 − λ(a1

′a1 − 1), (4.7)

where λ denotes the Lagrange multiplier. Equating the partial derivatives to zero yields

(Σ− λI)a1 = 0, (4.8)

where I is the n×n identity matrix. It immediately follows that λ has to be an eigenvalue

of the covariance matrix Σ for a solution to exist. Since Σ is positive semi-definite, it will

have n eigenvalues λ1, . . . , λn in general. To ensure that the variance of the first principal

component explains the maximum portion of the total variance, we set

Var(a1
′) = a1

′Σa1 = λ1, (4.9)
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where a1 is the eigenvector belonging to eigenvalue λ1. Principal components Z2, . . . , Zn

are determined iteratively. Eigenvalues λ1, . . . , λn thus may be interpreted as the principal

components’ variances. The relationship between the covariance matrix of R, Σ, and the

principle components’ covariance matrix Λ is determined by the equality

Λ = A′ΣA, (4.10)

where A = [a1, . . . , an] is the matrix of eigenvectors and Λ the diagonal matrix of eigen-

values, diag(λ1, . . . , λn). Since by construction the first principal component is capable of

explaining a maximum portion of the total variance, we define the comovement intensity

(CMI) as

CMI =
λ1∑n
i=1 λi

. (4.11)

The CMI captures the amount of total variance that can be explained by the first principal

component. Hence, when stock price comovement increases, we would expect CMI to

increase significantly.
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