
ABACUS

A Branch-And-CUt System

Version 2.0

User's Guide and Reference Manual

Stefan Thienel

September 1997

ii

Stefan Thienel

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

50969 K�oln

Germany E-mail: thienel@informatik.uni-koeln.de

Copyright

c

 1996 { 1997 by Stefan Thienel

Writing this manual has been partially supported by ESPRIT LTR Project no. 20244 (ALCOM-IT) and

H.C.M. Institutional Grant no. ERBCHBGCT940710 (DONET).

Contents

1 Introduction 1

2 Installation 3

2.1 Obtaining ABACUS : 3

2.2 Platforms : 3

2.3 Compiler : 3

2.3.1 UNIX : 4

2.3.2 Windows NT : 4

2.3.3 Compiler Selection : 4

2.4 LP-Solver : 4

2.4.1 Cplex : 4

2.4.2 SoPlex : 5

2.5 Installation of the Files : 5

2.5.1 UNIX-Platforms : 5

2.5.2 Windows NT : 5

2.6 The License : 6

2.6.1 UNIX : 6

2.6.2 Windows NT : 6

2.7 Environment Variables : 6

2.7.1 UNIX-Platforms : 6

2.7.2 Windows NT : 7

2.8 Compiling and Linking : 7

2.8.1 UNIX : 7

2.8.2 Windows NT : 7

2.9 Problems : 7

3 New Features 9

3.1 LP-Solver SoPlex : 9

3.2 Naming Conventions : 9

3.3 Include File Path : 9

3.4 Advanced Control of the Tailing O� E�ect : 10

3.5 Problem Speci�c Fathoming : 10

3.6 Problem Speci�c Branching : 10

3.7 Generalized Strong Branching : 10

3.8 Pool without Constraint Duplication : 11

3.9 Visual C++ Compiler : 11

3.10 Compiler Preprocessor Flag : 11

3.11 LP-Solver Preprocessor Flag : 11

3.12 Parameters of Con�guration File : 11

3.12.1 NBranchingVariableCandidates : 11

3.12.2 DefaultLpSolver : 11

3.12.3 SoPlexRepresentation : 11

iii

iv CONTENTS

3.13 New Functions : 11

3.14 Miscellaneous : 12

4 Design 15

4.1 Basics : 15

4.1.1 Application Base Classes : 16

4.1.2 Pure Kernel Classes : 16

4.1.3 Auxiliaries : 17

4.2 Details : 17

4.2.1 The Root of the Class-Tree : 17

4.2.2 The Master : 17

4.2.3 The Subproblem : 19

4.2.4 Constraints and Variables : 23

4.2.5 Constraint and Variable Pools : 25

4.2.6 Linear Programs : 29

4.2.7 Auxiliary Classes for Branch-and-Bound : 30

4.2.8 Basic Generic Data Structures : 34

4.2.9 Other Basic Data Structures : 35

4.2.10 Tools : 36

5 Using ABACUS 39

5.1 Basics : 39

5.1.1 Constraints and Variables : 40

5.1.2 The Master : 41

5.1.3 The Subproblem : 43

5.1.4 Starting the Optimization : 48

5.2 Advanced Features : 49

5.2.1 Using other Pools : 49

5.2.2 Pool without Multiple Storage of Items : 50

5.2.3 Constraints and Variables : 50

5.2.4 Infeasible Linear Programs : 52

5.2.5 Other Enumeration Strategies : 52

5.2.6 Selection of the Branching Variable : 53

5.2.7 Using other Branching Strategies : 53

5.2.8 Strong Branching : 57

5.2.9 Activating and Deactivating a Subproblem : 59

5.2.10 Calling ABACUS Recursively : 59

5.2.11 Selecting the LP-Method : 59

5.2.12 Generating Output : 59

5.2.13 Memory Management : 60

5.2.14 Eliminating Constraints : 60

5.2.15 Eliminating Variables : 61

5.2.16 Adding Constraints/Variables in General : 61

5.2.17 Fixing and Setting Variables by Logical Implications : : : : : : : : : : : : : : : : : 62

5.2.18 Loading an Initial Basis : 63

5.2.19 Integer Objective Functions : 63

5.2.20 An Entry Point at the End of the Optimization : 64

5.2.21 Output of Statistics : 64

5.2.22 Accessing Internal Data of the LP-Solver : 64

5.2.23 Problem Speci�c Fathoming Criteria : 65

5.2.24 Enforcing a Branching Step : 65

5.2.25 Advanced Tailing O� Control : 66

5.2.26 Parameters : 66

CONTENTS v

5.2.27 Reading a Parameter File : 75

5.3 Using the ABACUS Templates : 77

6 Reference Manual 79

6.1 Application Base Classes : 79

6.1.1 ABA ABACUSROOT : 79

6.1.2 ABA GLOBAL : 81

6.1.3 ABA MASTER : 86

6.1.4 ABA SUB : 120

6.1.5 ABA CONVAR : 162

6.1.6 ABA CONSTRAINT : 168

6.1.7 ABA VARIABLE : 174

6.2 System Classes : 180

6.2.1 ABA OPTSENSE : 181

6.2.2 ABA CSENSE : 183

6.2.3 ABA VARTYPE : 185

6.2.4 ABA FSVARSTAT : 187

6.2.5 ABA LPVARSTAT : 192

6.2.6 ABA SLACKSTAT : 195

6.2.7 ABA LP : 197

6.2.8 ABA CPLEXIF : 211

6.2.9 ABA SOPLEXIF : 216

6.2.10 ABA LPSUB : 218

6.2.11 ABA LPSUBCPLEX : 222

6.2.12 ABA LPSUBSOPLEX : 222

6.2.13 ABA BRANCHRULE : 223

6.2.14 ABA SETBRANCHRULE : 225

6.2.15 ABA BOUNDBRANCHRULE : 227

6.2.16 ABA VALBRANCHRULE : 229

6.2.17 ABA CONBRANCHRULE : 231

6.2.18 ABA POOL : 232

6.2.19 ABA STANDARDPOOL : 236

6.2.20 ABA NONDUPLPOOL : 239

6.2.21 ABA POOLSLOT : 241

6.2.22 ABA POOLSLOTREF : 242

6.2.23 ABA ROW : 244

6.2.24 ABA COLUMN : 248

6.2.25 ABA NUMCON : 252

6.2.26 ABA ROWCON : 254

6.2.27 ABA NUMVAR : 257

6.2.28 ABA SROWCON : 258

6.2.29 ABA COLVAR : 261

6.2.30 ABA ACTIVE : 264

6.2.31 ABA CUTBUFFER : 268

6.2.32 ABA INFEASCON : 270

6.2.33 ABA OPENSUB : 271

6.2.34 ABA FIXCAND : 272

6.2.35 ABA TAILOFF : 273

6.2.36 ABA HISTORY : 275

6.3 Basic Data Structures : 275

6.3.1 ABA SPARVEC : 276

6.3.2 ABA SET : 282

6.3.3 ABA FASTSET : 284

vi CONTENTS

6.3.4 ABA STRING : 284

6.4 Templates : 289

6.4.1 ABA ARRAY : 289

6.4.2 ABA BUFFER : 294

6.4.3 ABA LISTITEM : 297

6.4.4 ABA LIST : 298

6.4.5 ABA DLISTITEM : 301

6.4.6 ABA DLIST : 302

6.4.7 ABA RING : 305

6.4.8 ABA BSTACK : 309

6.4.9 ABA BHEAP : 311

6.4.10 ABA BPRIOQUEUE : 314

6.4.11 ABA HASH : 316

6.4.12 ABA DICTIONARY : 321

6.5 Tools : 322

6.5.1 ABA SORTER : 322

6.5.2 ABA TIMER : 324

6.5.3 ABA CPUTIMER : 326

6.5.4 ABA COWTIMER : 327

6.6 Preprocessor Flags : 333

7 Warranty and Copyright 335

7.1 Warranty : 335

7.2 Copyright : 335

Chapter 1

Introduction

Preface to Release 2.0

During its �rst year of public availability ABACUS reached a rather active community of users, which

is growing slowly but constantly. Many of them contributed to making ABACUS more reliable. I want

to thank all of them for their helpful feedback. In particular, I want to mention Max B�ohm, who pointed

me to several improvement possibilities.

But not only the users worked with ABACUS, also its development continued such that it is now

ready for a second release. ABACUS 2.0 o�ers besides many minor extensions four major new features:

� the interface to the new LP-solver SoPlex

� the support of the Visual C++ compiler

� a generalized strong branching method

� increased safety against name collisions

In particular, I am very happy that the abstract LP-interface proved its usefulness during the integration

of the LP-solver SoPlex. Since the adaption of the framework to the Visual C++ compiler could be

performed, I am optimistic that also other compilers can be supported in the future.

Users who want to upgrade from version 1.2.x �nd the new features and the di�erences to previous

versions in Section 3.

K�oln, August 1997 Stefan Thienel

Preface to Release 1.2

ABACUS is a software system for the implementation of linear-programming based branch-and-bound

algorithms, i.e., branch-and-cut algorithms, branch-and-price algorithms, and their combination. It ap-

plies the concepts of object oriented programming (programming language C++). An implementation of

a problem speci�c algorithm is obtained by deriving some classes from abstract base classes of ABACUS

in order to embed problem speci�c functions.

While the Chapters 1 to 4 of this manual are a user's guide describing the installation, design,

and application of ABACUS the last chapter contains the reference manual. Chapter 2 explains how

ABACUS is installed on your computer system and what hardware and software environment is required.

In order to simplify the user understanding ABACUS I describe in Chapter 4 the design of the software

framework. While I recommend to study in any case the basic concepts outlined in Section 4.1 before

beginning with the implementation of an application, it should be su�cient to return to Section 4.2 only

1

2 CHAPTER 1. INTRODUCTION

for rather advanced usage. Also Chapter 5 is split into two sections. The �rst one, Section 5.1, explains

the �rst steps that have to be performed to implement an application. This section should be studied

together with the example included in the ABACUS distribution. The second one, Chapter 5.2, shows

how default strategies of ABACUS can be modi�ed and outlines some additional features of the system.

The reference manual of Chapter 6 is complemented by the index that simpli�es �nding a certain class

or one of its members.

This manual is both available in Postscript and HTML format. The HTML form turns out to be

quite useful for �nding members of the reference manual.

This user's guide is not intended to teach the concepts of linear-programming based branch-and-

bound, but I assume that the reader of this manual and the user of ABACUS is familiar with these

algorithms. For an introduction to branch-and-cut I refer to [JRT95], for an introduction to branch-and-

price algorithms I recommend to [BJN

+

97]. Both approaches are described in [Thi95].

Moreover, I also assume that the user of ABACUS is familiar with the concepts of object oriented

programming. For the reader who is unexperienced in object oriented programming I refer to [KM90]

for a good brief introduction and to [Boo94] for a detailed description. There are many books about the

programming language C++. The classical introduction is [Str93]. Very useful reference manuals are

[ES92] and the current working paper of the C++ standardization committee [ASC95].

ABACUS originates from the dissertation of its author [Thi95] and has since then been tested, slightly

modi�ed and improved. Here, I would like to thank all initial testers, in particular Thomas Christof,

Meinrad Funke, and Fran�cois Margot for their bug reports and helpful comments. I am very grateful

to Joachim Kupke for carefully proofreading an earlier version. I also want to thank Denis Naddef,

LMC-IMAG, Grenoble, France, for his hospitality while writing the major part of this manual.

Despite these successful tests I considerABACUS still as an experimental system. Therefore, feedback

of the users is appreciated. Some parts of the user's guide were adapted from [Thi95], while the reference

manual has been compiled for the �rst time. Therefore, I also encourage the reader to send me error

reports and improvement suggestions for the user's guide and the reference manual.

I am aware that neither the software nor its documentation is perfect, but I think it is time to dare

a �rst public release.

Grenoble, August 1996 Stefan Thienel

Chapter 2

Installation

2.1 Obtaining ABACUS

You can download ABACUS from:

http://www.informatik.uni-koeln.de/ls juenger/projects/abacus.html

ABACUS is being further developed. New releases are announced to all users that obtained a license

(see Section 2.6). If you wish to receive these news without being already an o�cial user, or if you want

to be removed from this list, send a message to:

abacus@informatik.uni-koeln.de

2.2 Platforms

ABACUS is currently available for SUN SPARC, IBM RS6000, DEC ALPHA, SILICON GRAPHICS,

and HP 9000 workstations. On PCs we support Linux and Windows NT. If you are interested in a

version for another platform please contact us directly. The preprocessor ag given in Table 2.1 has to

Architecture Operating System Preprocessor-Flag

SUN SPARC SUN-OS 4.1.3 ABACUS SYS SUNOS4

SUN SPARC SUN-OS 5.4 ABACUS SYS SUNOS5

IBM RS6000 AIX 3.2 ABACUS SYS AIX

DEC ALPHA OSF 3.2 ABACUS SYS OSF

SILICON GRAPHICS Irix 5.3 ABACUS SYS IRIX

HP 9000 HP-UX 9.05 ABACUS SYS HP

HP 9000 HP-UX 10.01 ABACUS SYS HP

PC Linux 2.0.27 ABACUS SYS LINUX

PC Windows NT ABACUS SYS WINNT

Table 2.1: Platforms.

be de�ned when you compile your own ABACUS program. E.g, for a system running SUN-OS 5.4 use

-DABACUS SYS SUNOS5 in the command line of your compiler.

2.3 Compiler

Unfortunately, neither the C++ standardization committee has �nished its work nor the various compilers

implement the same subset of the programming language. Therefore, we currently only support two

3

4 CHAPTER 2. INSTALLATION

di�erent compilers, but hope to extend ABACUS to other compilers in the near future. If you are

interested in ABACUS for another compiler please contact us.

2.3.1 UNIX

On UNIX platforms the GNU-C++ compiler G++version 2.7.1 or 2.7.2 is required.

2.3.2 Windows NT

For Windows NT we support the Visual C++ compiler version 5.0.

2.3.3 Compiler Selection

In the compilation you have to specify the compiler by the preprocessor ag according to Table 2.2.

Compiler Preprocessor-Flag

gcc 2.7.x ABACUS COMPILER GCC

Visual C++ 4.0 ABACUS COMPILER VISUAL CPP

Table 2.2: Compilers.

2.4 LP-Solver

ABACUS provides a general interface to linear programming solvers. However, the current release

supports only the LP-solvers Cplex versions 2.2, 3.0, and 4.0 [Cpl94, Cpl95] and SoPlex 1.0 [Wun97].

There are di�erent ABACUS libraries that can be combined with Cplex, SoPlex, or both LP-solvers.

2.4.1 Cplex

Note, for each version of Cplex you need a special version of ABACUS since Cplex changed function

names and arguments. If you are compiling your own ABACUS application you have to specify your

Cplex version by a preprocessor ag (Table 2.3). Sometimes we observed with Cplex 3.0 that the wall

Cplex Version Preprocessor Flag

Cplex 2.2 ABACUS LP CPLEX22

Cplex 3.0 ABACUS LP CPLEX30

Cplex 4.0 ABACUS LP CPLEX40

Table 2.3: Cplex Versions.

clock time of a run is very high compared to the cpu time although the load of the workstation the job

was running on was very small. This overhead was resulting from opening, reading, and closing �les

within the Cplex license checks, which were performed very often. You can verify this by tracing the

system calls of your application (e.g., with the UNIX commands strace or truss). In this case you

should ask Cplex for a nicer license. So far, we do not have any experience if this problem has been �xed

in Cplex 4.0.

Cplex is a commercial product. Our experience is that it is fast and reliable. You �nd further

information about Cplex at http://www.cplex.com.

2.5. INSTALLATION OF THE FILES 5

2.4.2 SoPlex

If you want to use SoPlex you have to set the preprocessor ag ABACUS SOPLEX during the compilation of

your application. It is also required to switch to the new include �le structure (see Section 3.3) in order

to avoid name conicts.

Note, there are some restrictions of SoPlex in comparison with Cplex:

� SoPlex lacks a function for determining the reason for infeasible LP-relaxations that is required in

some cases in a branch-and-cut-and-price algorithm. This feature is provided by the Cplex function

CPXgetijdiv. Our experience shows that these cases happen rather seldomly. However, if such

a case occurs, ABACUS has to stop the optimization. As long as not both cutting planes and

columns are generated in the same algorithm this function is not required.

� SoPlex does not provide a barrier method.

SoPlex can be used free charge for academic users and �rst experiments show that its performance

is competitive with commercial solvers. Unfortunately there is currently no support. We observed

problems in very rare cases, i.e., SoPlex stopped reporting an internal error. SoPlex can be obtained

from http://www.zib.de/Optimization/Software/Soplex/.

2.5 Installation of the Files

An ABACUS distribution consists of two �les: the platform dependent library and the platform inde-

pendent �les (e.g., include �les, documentation, etc.).

The directory abacus consists of the subdirectories include/abacus, lib, doc, example, and tools.

The directory abacus/include/abacus contains �les with the extension .h, the headers of all classes,

and �les with the extension .inc, the de�nition of the member functions of template classes. The

con�guration �le .abacus is installed in the directory abacus. The documentation in Postscript and

HTML format is contained in the subdirectory abacus/doc. The complete source code of an example of

a simple branch-and-cut algorithm for the traveling salesman problem can be found in the subdirectory

abacus/example. Helpful Perl scripts for an upgrade from previous ABACUS versions can be found in

the subdirectory abacus/tools.

2.5.1 UNIX-Platforms

The platform independent �les are distributed as a GNU-zipped tar �le. Hence, the �rst step is to unpack

the �le abacus.tar.gz. Copy abacus.tar.gz to the directory where you want ABACUS to be installed

(e.g. /usr/local) and call:

gzip -d abacus.tar.gz

tar xf abacus.tar

After this installation you should obtain a platform and LP-solver dependent library, e.g., for Linux in

combination with Cplex 4.0 the library libabacus.linux.cplex40.a.gz. After uncompressing it with

gzip -d libabacus.linux.cplex40.a.gz

you might like to move it to the subdirectory abacus/lib or an other directory.

2.5.2 Windows NT

Both the platform independent �les and the ABACUS library are zipped archives. First, obtain the

archive abacus.zip and move to the directory in which ABACUS should be installed. You can unpack

it with the command pkunzip. Then, you should obtain the library libabacus.zip, move it to the

directory abacus/lib and unpack also with pkunzip.

6 CHAPTER 2. INSTALLATION

2.6 The License

In order to use ABACUS you need a license code for every machine on which you want to use ABACUS.

This license code depends on the name of the machine and, in addition for UNIX machines, on the ID of

the machine. Send this information for every machine on which you like to use ABACUS to:

abacus@informatik.uni-koeln.de

Please note also your name and a�lation that we can inform you on future updates of ABACUS.

The license code is then returned to you by e-mail. For a single machine with hostname yourhost the

license code might look like

yourhost 112571219315081131

This line must be added to a �le with the name .abacusLicense. You have to add for each ma-

chine on which you want to use ABACUS a line with the host name and the license code to the �le

.abacusLicense. The �le .abacusLicense can be stored in any subdirectory of your �le system. It is

found with the help of the environment variable ABACUS LICENSE DIR (see Section 2.7).

2.6.1 UNIX

For UNIX platforms we need for the license generation

� the host name that can usually be obtained by the UNIX commands hostname, uname -n, or

sysinfo,

� the host id that is output by the UNIX commands hostid or sysinfo (the host id is usually

a hexadecimal number (e.g., 23ac27fe) or sometimes a decimal number; the IP address (e.g.,

123.45.6.78) is not required for the license),

� the operating system.

2.6.2 Windows NT

For machines running Windows NT we only need the name of the machine in order to return your license

code.

2.7 Environment Variables

Two environment variables have to be initialized before ABACUS can be used. The environment variable

ABACUS LICENSE DIR receives the name of the directory in which the �le .abacusLicense is stored. The

environment variable ABACUS DIR is initialized with the directory containing the general con�guration

�le .abacus. A master version of this con�guration �le is available in the abacus package. However,

every user might want to make his modi�cations. Therefore, it is recommendable that every user makes

a private copy of the �le .abacus.

2.7.1 UNIX-Platforms

If the �le .abacus is stored in the directory /home/yourhome and the �le .abacusLicense is stored in

the directory /usr/local/abacus, then the environment variables should be initialized in the following

way if you are using the C-shell or its relatives:

setenv ABACUS DIR /home/yourhome

setenv ABACUS LICENSE DIR /usr/local/abacus

If you are using the Bourne-shell you might want to use the commands:

export ABACUS DIR=/home/yourhome

export ABACUS LICENSE DIR=/usr/local/abacus

Usually it is convenient to add these instructions to your .login �le.

2.8. COMPILING AND LINKING 7

2.7.2 Windows NT

On Windows NT you have to click on the icon for the setting system parameters. In the window that

opens, you have to set the environment variables ABACUS DIR and ABACUS LICENSE DIR. If the �le .abacus

is stored in the the directory C:nabacusapplication and if the license �le is stored in C:nabacus, the

two environment variables should be set in the following way.

ABACUS_DIR=C:\abacusapplication

ABACUS_LICENSE_DIR=C:\abacus

2.8 Compiling and Linking

For the compilation you have to make sure that the ABACUS include �les and the include �les of your

LP-solver(s) are found. Moreover, the compiler ags for your operating system, compiler, and your LP-

solver have to be speci�ed (see Tables 2.1, 2.2, 2.3 and Section 2.4.2).You �nd a list of all preprocessor

ags in Section 6.6.

The object �les of your application have to be linked together with the ABACUS library libabacus.a

and at least one LP-solver (the Cplex callable library or the SoPlex library).

2.8.1 UNIX

For the compilation of your �les using ABACUS you should add the abacus/include directory either

to your include directory path or specify it explicitly with the -I compiler option. In the same way add

the include �le paths of Cplex and/or SoPlex. The compiler ags for your platform and the LP-solver

can be de�ned at compilation time with the -D switch of the compiler (e.g., -DABACUS SYS LINUX).

It might be helpful to consider the Makefile of the example included in the ABACUS distribution.

2.8.2 Windows NT

Add the directory abacusninclude together with its path and the include �le paths of your LP-solver(s) to

the Additional include directories in the project settings. The ags ABACUS SYS WINNT, ABACUS COMPILER-

VISUAL CPP, and the ags for the used LP-solver(s) should be added to the Preprocessor de�nitions in

the project settings.

The project settings of the example, which is part of the UNIX distribution, might be helpful.

2.9 Problems

ABACUS is a rather new software system. Therefore, it is very unlikely that it is completely free of bugs

although several applications have been implemented successfully. In order to make ABACUS a stable

system, the assistance of the users is required. Report all problems by e-mail to:

abacus@informatik.uni-koeln.de

Before reporting a bug, please make sure that it does not come from an incorrect usage of the programming

language C++.

Also feedback from the users is highly appreciated. Please report your experiences and make your

suggestions. Also comments on this user manual are appreciated. Of course, it is impossible to implement

everybody's wish immediately. However, if a missing feature is demanded by several users or might be

useful in general, we will try to add it in a future release.

8 CHAPTER 2. INSTALLATION

Chapter 3

New Features

This section summarizes all new features that have been introduced since the release of ABACUS 1.2.

3.1 LP-Solver SoPlex

Besides Cplex ABACUS provides now an interface to the LP-Solver SoPlex [Wun97] (see Section 2.4.2).

If SoPlex is used as LP-solver, it might be required to switch to the new include �le structure (see

Section 3.3) in order to avoid name conicts. Both SoPlex and ABACUS provide include �les with the

name timer.h.

3.2 Naming Conventions

The previous version did not use any pre�x for all globally visible names in order to avoid name collisions

with other libraries since the C++ concept of namespaces should make this technique redundant. Unfor-

tunately, it turned out that the GNU C++ compiler does still not support namespaces. The G++-FAQ

mentions that even in the next release 2.8 this concept might not be supported.

In order to provide the possibility of avoiding name collisions without namespaces, we added to all

globally visible names the pre�x ABA . There are two possibilities for reusing your old codes together

with the new name concept.

The �rst method is to include the �le oldnames.h into every �le using ABACUS names without the

pre�x ABA . In the compilation the preprocessor ag ABACUS OLD NAMES must be set. With preprocessor

de�nitions the old names are converted to new names. You should be aware that this technique can have

dangerous side e�ects. Therefore, this procedure should not be applied if you combine ABACUS with

any other library in your application.

The second method is the better method and is not much more work than the �rst one. In the tools

subdirectory of the ABACUS distribution you can �nd the Perl script old2newnames.pl. If you apply

this script to all source �les of your ABACUS application by calling

old2newnames.pl <files>

a copy of each �le given in <files> is made in the subdirectory new-files and the old names are replaced

by the new names.

3.3 Include File Path

Another problem are header �les of di�erent libraries with the same name. It can happen that due to the

inclusion structure it is not possible to avoid these conicts by the order of the include �le search paths.

Therefore, every ABACUS include �le (*.h and *.inc) is included now from the subdirectory abacus.

9

10 CHAPTER 3. NEW FEATURES

You can continue using the old include �le structure by setting the preprocessor ag ABACUS OLD INCLUDE.

Here is an example how an ABACUS �le includes other ABACUS �les:

#ifdef ABACUS_OLD_INCLUDE

#include "array.h"

#else

#include "abacus/array.h"

#endif

We strongly recommend the use of the new include �le structure. In combination with the LP-solver

SoPlex the new include �le structure is sometimes required (it depends which ABACUS and which

SoPlex �les you include). There may be name conicts since both systems have a �le timer.h.

Due to this concept also the directory structure of the ABACUS distribution has changed. All include

�les are now in the subdirectory include/abacus.

A conversion can be performed with the help of the Perl script tools/old2newincludes.pl. Calling

old2newincludes <files>

makes a copy of all <files> into the subdirectory new-includes and adapts them to the new include

structure, e.g.,

#include "master.h"

is replaced by

#include "abacus/master.h"

in the new �les.

3.4 Advanced Control of the Tailing O� E�ect

ABACUS automatically controls the tailing o� e�ect according to the parameters TailOffNLps and

TailOffPercent of the con�guration �le .abacus. Solutions of LP-relaxations can be skipped in this

control by calling the function ignoreInTailingOff() (see Section 5.2.25).

3.5 Problem Speci�c Fathoming

Problem speci�c fathoming criteria can be added by the rede�nition of the virtual function ABA SUB::ex-

ceptionFathom() (see Section 5.2.23).

3.6 Problem Speci�c Branching

A problem speci�c branching step can be enforced by the rede�nition of the virtual function ABA SUB::ex-

ceptionBranch() (see Section 5.2.24).

3.7 Generalized Strong Branching

Generalized strong branching is the possibility of evaluating di�erent branching rules and selecting the

best ones. If branching on variables is performed, e.g., the �rst linear programs of the (potential) sons

for various branching variables are solved, in order to �nd the most promising variable. Together with

the built-in branching strategies this feature can be controlled with the new entry NBranchingVariable-

Candidates of the con�guration �le (Section 5.2.26). Moreover, also other branching strategies can be

evaluated as explained in Section 5.2.8.

3.8. POOL WITHOUT CONSTRAINT DUPLICATION 11

3.8 Pool without Constraint Duplication

One problem in using ABACUS can be the large number of generated constraints and variables that use

a lot of memory. In order to reduce the memory usage we provide a new pool class ABA NONDUPLPOOL

that avoids the multiple storage of the same constraint or variable in the same pool. The details are

explained in Section 5.2.2.

3.9 Visual C++ Compiler

In addition to the GNU C++ compiler on UNIX operating systems, ABACUS is now also available on

Windows NT in combination with the Visual C++ compiler. Further details for using ABACUS in this

new environment can be found in Section 2

3.10 Compiler Preprocessor Flag

In the compilation of an ABACUS-application the used compiler must be speci�ed by a preprocessor

ag (see Section 2.3).

3.11 LP-Solver Preprocessor Flag

The LP-solvers that are used have to be speci�ed by a preprocessor ag (see Section 2.4). Also the ags

for the LP-solver Cplex changed.

3.12 Parameters of Con�guration File

Three new parameters have been added to the con�guration �le .abacus.

3.12.1 NBranchingVariableCandidates

The parameter NBranchingVariableCandidates can be used to control the number of tested branching

variables if our extended strong branching concept is used (see Section 5.2.8).

3.12.2 DefaultLpSolver

An other new parameter is DefaultLpSolver allows to choose either Cplex or SoPlex as default LP-solver

for the solution of the LP-relaxations.

3.12.3 SoPlexRepresentation

SoPlex works internally either with column or a row basis. This basis representation can be selected with

the parameter SoPlexRepresentation. Our tests show that only the row basis works stable in SoPlex

1.0. Further details are explained in Section 5.2.26.

3.13 New Functions

We implemented several new functions. Some of them might be also interesting for the users of ABACUS.

For the detailed documentation we refer to the reference manual.

� ABA BPRIOQUEUE::getMinKey()

� ABA BHEAP::getMinKey()

12 CHAPTER 3. NEW FEATURES

� bool ABA GLOBAL::isInteger(double x)

� In addition to the function

void MASTER::initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_BUFFER<ABA_VARIABLE*> &Variables,

int varPoolSize,

int cutPoolSize,

bool dynamicCutPool = false);

the function

void MASTER::initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_BUFFER<ABA_CONSTRAINT*> &cuts,

ABA_BUFFER<ABA_VARIABLE*> &Variables,

int varPoolSize,

int cutPoolSize,

bool dynamicCutPool = false);

also allows the insertion of some initial cuts into the cut pool.

� Manipulators for setting the width and the precision of ABA OSTREAM have been added that work

like the corresponding manipulators of the class ostream.

ABA_OSTREAM_MANIP_INT setWidth(int w);

ABA_OSTREAM_MANIP_INT setPrecision(int p);

� ABA OSTREAM::setFormatFlag(fmtflags)

� The objective function sense can be changed in the ABA LP classes with the function

void ABA_LP::sense(const ABA_OPTSENSE &newSense).

� The != operator is now available for the class ABA STRING.

3.14 Miscellaneous

Besides some bug �xes we made many minor improvements. The most important ones are listed here.

� The output for the output levels SubProblem and LinearProgram is formatted in a nicer way.

� Besides those Cplex parameters that could be directly controlled by ABACUS functions, it is now

possible to get or to modify any Cplex 4.0 parameter with the functions:

int CPLEXIF::CPXgetdblparam(int whichParam, double *value);

int CPLEXIF::CPXsetdblparam(int whichParam, double value);

int CPLEXIF::CPXgetintparam(int whichParam, int *value);

int CPLEXIF::CPXsetintparam(int whichParam, int value);

3.14. MISCELLANEOUS 13

� If a linear program is solved with the barrier method, then usually a cross over to an optimal basic

solution is performed. The value of a variable in the optimal solution of the barrier method before

the cross over can be obtained with the function double barXVal(int i). If this \pre-cross over"

solution is available, can be checked with the function SOLSTAT barXValStatus() const.

� The minimal required violation of a constraint or variable in a pool separation or pool pricing,

respectively, can be speci�ed as a parameter of the functions ABA SUB::constraintPoolSeparation

and ABA SUB::variablePoolSeparation. The minimal violation is also a parameter of the function

ABA POOL::separate and of rede�nitions of this function in derived classes.

14 CHAPTER 3. NEW FEATURES

Chapter 4

Design

From a user's point of view, who wants to implement a linear-programming based branch-and-bound

algorithm, ABACUS provides a small system of base classes from which the application speci�c classes

can be derived. All problem independent parts are \invisible" for the user such that he can concentrate

on the problem speci�c algorithms and data structures.

The basic ideas are pure virtual functions, virtual functions, and virtual dummy functions. A pure

virtual function has to be implemented in a class derived by the user of the framework, e.g., the ini-

tialization of the branch-and-bound tree with a subproblem associated with the application. In virtual

functions we provide default implementations, which are often useful for a big number of applications,

but can be rede�ned if required, e.g., the branching strategy. Finally, under a virtual dummy function

we understand a virtual function that does nothing in its default implementation, but can be rede�ned

in a derived class, e.g., the separation of cutting planes. It is not a pure virtual function as its de�nition

is not required for the correctness of the algorithm.

Moreover, an application based on ABACUS can be re�ned step by step. Only the derivation of a

few new classes and the de�nition of some pure virtual functions is required to get a branch-and-bound

algorithm running. Then, this branch-and-bound algorithm can be enhanced by the dynamic generation

of constraints and/or variables, primal heuristics, or the implementation of new branching or enumeration

strategies.

Default strategies are available for numerous parts of the branch-and-bound algorithm, which can be

controlled via a parameter �le. If none of the system strategies meets the requirements of the application,

the default strategy can simply be replaced by the rede�nition of a virtual function in a derived class.

4.1 Basics

The inheritance graph of any set of classes in C++ must be a directed acyclic graph. Very often these

inheritance graphs form forests or trees. Also the inheritance graph of ABACUS is designed as a tree

with a single exception where we use multiple inheritance.

The following sections and Table 4.1 give a survey of the di�erent classes of ABACUS. The details

are outlined in Section 4.2.

ABACUS

Pure Kernel Application Base Auxiliaries

Linear Program Master Basic Data Structures

Pool Subproblem Tools

Branch & Bound Constraints

Variables

Table 4.1: The classes of ABACUS.

15

16 CHAPTER 4. DESIGN

Basically the classes of ABACUS can be divided in three di�erent main groups. The application base

classes are the most important ones for the user. From these classes the user of the framework has to

derive the classes for his applications. The pure kernel classes are usually invisible for the user. To

this group belong, e.g., classes for supporting the branch-and-bound algorithm, for the solution of linear

programs, and for the management of constraints and variables. Finally, there are the auxiliaries, i.e.,

classes providing basic data structures and tools, which can optionally be used for the implementation of

an application.

4.1.1 Application Base Classes

The following classes are usually involved in the derivation process for the implementation of a new

application.

The Master

The class ABA MASTER is one of the central classes of the framework. It controls the optimization process

and stores global data structures for the optimization. For each new application a class has to be derived

from the class ABA MASTER.

The Subproblem

The class ABA SUB represents a subproblem of the implicit enumeration, i.e., a node of the branch-and-

bound tree. The subproblem optimization is performed by the solution of linear programming relaxations.

Usually, most running time is spent within the member functions of this class. Also from the class ABA SUB

a new class has to be derived for each new application. By rede�ning virtual functions in the derived

class problem speci�c algorithms as, e.g., cutting plane or column generation, can be embedded.

The Constraints and Variables

ABACUS provides some default concepts for the representation of constraints and variables. However,

it still might be necessary that for a new application special classes have to be derived from the classes

ABA CONSTRAINT and ABA VARIABLE, which then implement application speci�c methods and storage

formats.

4.1.2 Pure Kernel Classes

This group covers classes that are required for the implementation of the kernel of ABACUS but usually

of no direct importance for the user of the framework.

The Root of the Class Tree

All classes of ABACUS have the common base class ABA ABACUSROOT.

The Linear Program

The part of the inheritance graph related to the solution of linear programs contains several classes. There

is a general interface to the linear program from which a class for the solution of linear programming

relaxations within our branch-and-bound algorithm is derived. Both classes are independent from the

used LP-solver, which can be plugged in via a separate class. Currently, we support the LP-solvers Cplex

and SoPlex.

The Pool

Constraints and variables are stored in pools. We provide an abstract base class for the representation

of pools and derive from this class a standard realization of a pool. Several other classes are required for

a safe management of active and inactive constraints and variables.

4.2. DETAILS 17

The Branch-and-Bound Auxiliary Classes

Various classes are required to support the linear-programming based branch-and-bound algorithm, e.g.,

for the management of the branch-and-bound tree, for the storage of the active and inactive constraints,

special bu�ers for newly generated constraints and variables, for the control of the tailing o� e�ect, and

for �xing variables by reduced costs. An important part of the inheritance graph in this context is formed

by the various branching rules, which allow a very exible implementation of branching strategies.

4.1.3 Auxiliaries

We use the following classes for the implementation of other classes within ABACUS, but they might

also be useful for the implementation of new applications.

The Basic Data Structures

ABACUS is complemented by a set of basic data structures. Most of them are implemented as generic

classes (templates).

The Tools

Finally, we also provide some useful tools, e.g., for generating output, measuring time, and sorting.

4.2 Details

In this section we describe the di�erent subtrees in the class hierarchy and their classes. We give this

description not in the form of a manual by describing each member of the class (this is later done partially

in Chapter 5 and in detail in the reference manual), but we try to explain the problems, our ideas, why

we designed the class hierarchy and the single classes as we did, and discuss also some alternatives.

4.2.1 The Root of the Class-Tree

It is well known that global variables, constants, or functions can cause a lot of problems within a big

software system. This is even worse for frameworks such asABACUS that are used by other programmers

and may be linked together with other libraries. Here, name conicts and undesired side e�ects are almost

inevitable. Since global variables can also make a future parallelization more di�cult we have avoided

them completely.

We have embedded functions and enumerations that might be used by all other classes in the class

ABA ABACUSROOT. We use this class as a base class for all classes within our systems. Since the class

ABA ABACUSROOT contains no data members, objects of derived classes are not blown up.

Currently, ABA ABACUSROOT implements only an enumeration with the di�erent exit codes of the

framework and implements some public member functions. The most important one of them is the

function exit(), which calls the system function exit(). This construction turns out to be very helpful

for debugging purposes.

4.2.2 The Master

In an object oriented implementation of a linear-programming based branch-and-bound algorithm we

require one object that controls the optimization, in particular the enumeration and resource limits,

and stores data that can be accessed from any other object involved in the optimization of a speci�c

instance. This task is performed by the class ABA MASTER, which is not identical with the root node

of the enumeration tree. For each application of ABACUS we have to derive a class from ABA MASTER

implementing problem speci�c \global" data and functions.

Every object, which requires access to this \global" information, stores a pointer to the corresponding

object of the class ABA MASTER. This holds for almost all classes of the framework. For example the class

18 CHAPTER 4. DESIGN

ABA SUB, implementing a subproblem of the branch-and-bound tree, has as a member a pointer to an

object of the class ABA MASTER (other members of the class ABA SUB are omitted):

class ABA_SUB {

ABA_MASTER *master_;

};

Then, we can access within a member function of the class ABA SUB, e.g., the global upper bound by

calling

master_->upperBound();

where upperBound() is a member function of the class ABA MASTER.

Encapsulating this global information in a class is also important, if more than one linear-programming

based branch-and-bound is solved within one application. If the pricing problem within a branch-and-

price algorithm is again solved with the help ofABACUS, e.g., then separate master objects with di�erent

global data are used.

The Base Class Global

Within a speci�c application there are always some global data members as the output and error streams,

zero tolerances, a big number representing \in�nity", and some functions related with these data. For the

same reasons we discussed already in the description of the class ABA ABACUSROOT we should avoid storing

these data in global variables. It is also not reasonable to add these data to the class ABA ABACUSROOT,

because it would blow up every derived class of ABA ABACUSROOT and it is neither necessary nor desired

to have extra output streams, zero tolerances, etc., for every object.

Instead of implementing this data directly in the class ABA MASTERwe designed an extra class ABA GLO-

BAL, from which the class ABA MASTER is derived. The reason is that there are several classes, especially

some basic data structures, which might be useful in programs that are not branch-and-bound algorithms.

To simplify their reuse these classes have a pointer to an object of the class ABA GLOBAL instead of one

to an object of the class ABA MASTER.

Branch-and-Bound Data and Functions

The class ABA MASTER augments the data inherited from the class ABA GLOBAL with speci�c data members

and functions for branch-and-bound. It has objects of classes as members that store the list of subproblems

which still have to be processed in the implicit enumeration (class ABA OPENSUB), and that store the

variables which might be �xed by reduced cost criteria in later iterations (class ABA FIXCAND). Moreover,

the solution history, timers for parts of the optimization, and a lot of other statistical information is

stored within the class ABA MASTER.

The class ABA MASTER also provides default implementations of pools for the storage of constraints

and variables. We explain the details in Section 4.2.5.

A branch-and-bound framework requires also a exible way for de�ning enumeration strategies. The

corresponding virtual functions are de�ned in the class ABA MASTER, but for a better understanding we

explain this concept in Section 4.2.7, when we discuss the data structure for the open subproblems.

Limits on the Optimization Process

The control of limits on the optimization process, e.g., the amounts of CPU time and wall-clock time,

and the size of the enumeration tree are performed by members of the class ABA MASTER during the

optimization process. Also the guarantee of the solution is monitored by the class ABA MASTER.

4.2. DETAILS 19

The Initialization of the Branch-and-Bound Tree

When the optimization is started, the root node of the branch-and-bound tree has to be initialized with

an object of the class ABA SUB. However, the class ABA SUB is an abstract class, from which a class

implementing the problem speci�c features of the subproblem optimization has to be derived. Therefore,

the initialization of the root node is performed by a pure virtual function returning a pointer to a class

derived from the class ABA SUB. This function has to be de�ned by a problem speci�c class derived from

the class ABA MASTER.

The Sense of the Optimization

For simpli�cation often programs that can be used for minimization and maximization problems use

internally only one sense of the optimization, e.g., maximization. Within a framework this strategy is

dangerous, because if we access internal results, e.g., the reduced costs, from an application, we might

misinterpret them. Therefore, ABACUS also works internally with the true sense of optimization. The

value of the best known feasible solution is denoted primal bound , the value of a linear programming

relaxation is denoted dual bound if all variables price out correctly. The functions lowerBound() and

upperBound() interpret the primal or dual bound, respectively, depending on the sense of the optimiza-

tion. An equivalent method is also used for the local bounds of the subproblems.

Reading Parameters

Computer programs in a UNIX environment often use con�guration �les for the control of certain para-

meters. Usually, these parameters are stored in the home directory of the user or the directory of the

program and start with a `.'. We use a similar concept for reading the parameters of ABACUS. These

parameters are read from the �le .abacus.

However, as ABACUS is a framework for the implementation of di�erent algorithms, there are further

requirements for the parameter concept. First, there should be a simple way for reading problem speci�c

parameters. An extendable parameter format should relieve the user of opening and reading his own

parameter �les. Second, a user of our system might have several applications. It should be possible to

specify parameters for di�erent applications and to rede�ne application dependent parameters de�ned in

the �le .abacus.

Therefore, we provide the following parameter concept. All parameters read from the �le .abacus

are written into a dictionary. Application speci�c parameters can be speci�ed in extra parameter �les

following a very simple format. For �les using our parameter format we provide already an input func-

tion. The parameters read by this input function are also written to the parameter dictionary. Hence,

parameters of the �le .abacus can be easily rede�ned. Moreover, we also provide simple functions to

extract the values of the parameters from the dictionary.

The parameters in .abacus include limits on the resources of the optimization process, control of

various strategies (e.g., the enumeration strategy, the branching strategy, zero tolerances for various

decisions, the amount of output, parameters for the LP-solver). A detailed list of parameters can be

found in Section 5.2.26.

4.2.3 The Subproblem

The class ABA SUB represents a subproblem of the implicit enumeration, i.e., a node of the branch-and-

bound tree. The class subproblem is an abstract class, from which a problem speci�c subproblem has to

be derived. In this derivation process problem speci�c functions can be added, e.g., for the generation of

variables or constraints.

The Root Node of the Branch-and-Bound Tree

For the root node of the optimization the constraint and variable sets can be initialized explicitly. As

in many applications the initial variable and constraint sets are in a one-to-one correspondence with the

items of the initial variable and constraint pools, we provide this default initialization mechanism. By

20 CHAPTER 4. DESIGN

default, the �rst linear program is solved with the barrier method followed by a crossover to a basic

solution, but we provide a exible mechanism for the selection of the LP-method (see Section 5.2.11).

The Other Nodes of the Branch-and-Bound Tree

As long as only globally valid constraints and variables are used it would be correct to initialize the

constraint and variable system of a subproblem with the system of the previously processed subproblem.

However, ABACUS is designed also for locally valid constraints and variables. Therefore, each subprob-

lem inherits the �nal constraint and variable system of the father node in the enumeration tree. This

system might be modi�ed by the applied branching rule. Moreover, this approach avoids also tedious

recomputations and makes sure that heuristically generated constraints do not get lost.

If conventional branching strategies, like setting a binary variable, changing the bounds of an integer

variable, or even adding a branching constraint are applied, then the basis of the last solved linear program

of the father is still dual feasible. As we store the basis status of the variables and slack variables we can

avoid phase 1 of the simplex method if we use the dual simplex method.

If due to another branching method, e.g., for branch-and-price algorithms, the dual feasibility of the

basis is lost, another LP-method can be used.

Branch-and-Bound

A linear-programming based branch-and-bound algorithm in its simpliest form is obtained if linear pro-

gramming relaxations in each subproblem are solved that are neither enhanced by the generation of

cutting planes nor by the dynamic generation of variables. Such an algorithm requires only two problem

speci�c functions: one to check if a given LP-solution is a feasible solution of the optimization problem,

and one for the generation of the sons.

The �rst function is problem speci�c, because, if constraints of the integer programming formulation

are violated, the condition that all discrete variables have integer values is not su�cient. Therefore, for

safety this function is declared pure virtual.

The second required problem speci�c function is usually only a one-liner, which returns the problem

speci�c subproblem generated by a branching rule.

Hence, the implementation of a pure branch-and-bound algorithm does not require very much e�ort.

The Optimization of the Subproblem

The core of the class ABA SUB is its optimization by a cutting plane algorithm. As dynamically generated

variables are dual cuts we also use the notion cutting plane algorithm for a column generation algorithm.

By default, the cutting plane algorithm only solves the LP-relaxation and tries to �x and set variables

by reduced costs. Within the cutting plane algorithm four virtual dummy functions for the separation of

constraints, for the pricing of variables, for the application of primal heuristics, and for �xing variables

by logical implications are called. In a problem speci�c class derived from the class ABA SUB these virtual

functions can be rede�ned. Motivated by duality theory (see [Thi95]), we handle constraint and variable

generation equivalently. If both constraints and variables are generated, then by default constraints are

generated. In addition to the mandatory pricing phase before the fathoming of a subproblem, we price

out the inactive variables every k iterations. The value of k can be controlled by a parameter. By the

rede�nition of a virtual function other strategies for the separation/pricing decision can be implemented.

Adding Constraints

Cutting planes may not only be generated in the function separate() but also in other functions of

the cutting plane phase. For the maximum cut problem, e.g., it is advantageous if the generation of

cutting planes is also possible in the function improve(), in which usually primally feasible solutions are

computed heuristically. If not all constraints of the integer programming formulation are active, then it

might be necessary to solve a separation problem also for the feasibility test. Therefore, we allow the

generation of cutting planes in every subroutine of the cutting plane algorithm.

4.2. DETAILS 21

Adding Variables

Like for constraints, we also allow the generation of variables during the complete subproblem optimiza-

tion.

Bu�ering New Constraints and Variables

New constraints and variables are not immediately added to the subproblem, but stored in bu�ers and

added at the beginning of the next iteration. We present the details of this concept in Section 4.2.7.

Removing Constraints and Variables

In order to avoid corrupting the linear program and the sets of active constraints and variables, and to

allow the removal of variables and constraints in any subroutine of the cutting plane phase, we also bu�er

these variables and constraints. The removal is executed before constraints and variables are added at

the beginning of the next iteration of the cutting plane algorithm.

Moreover, we provide default functions for the removal of constraints according to the value or the

basis status of the slack variables. Variables can be removed according to the value of the reduced

costs. These operations can be controlled by parameters and the corresponding virtual functions can be

rede�ned if other criteria should be applied. We try to remove constraints also before a branching step

is performed.

The Active Constraints and Variables

In order to allow a exible combination of constraint and variable generation, every subproblem has

its own set of active constraints and variables, which are represented by the generic class ABA ACTIVE.

By default, the variables and the constraints of the last solved linear program of the father of the

subproblem are inherited. Therefore, the local constraint and variable sets speed up the optimization.

The disadvantage of these local copies is that more memory is allocated per subproblem. However, this

local storage of the active constraints and variables will simplify a future parallelization of the framework.

Together with the active constraints and variables we also store in every subproblem the LP-statuses

of the variables and slack variables, the upper and lower bounds of the variables, and if a variable is �xed

or set.

The Linear Program

As for active constraints and variables also every subproblem has its own linear program, which is

only set up for an active subproblem. Of course, the initialization at the beginning and the deletion

of the linear program at the end of the subproblem optimization costs some running time compared

to a global linear program, which could be stored in the master. However, a local linear program in

every subproblem will again simplify the implementation of a parallel version of ABACUS. Our current

computational experience shows that this overhead is not too big. However, if in future computational

experiments it turns out that these local linear programs slow down the overall running time signi�cantly,

the implementation of a special sequential version of the code with one global linear program will not be

too di�cult, whereas the opposite direction would be harder to realize.

The LP-Method

Currently, three di�erent methods are available in state of the art LP-solvers: the primal simplex method,

the dual simplex method, and the barrier method in combination with crossing over techniques for the

determination of an optimal basic solution. The choice of the method can be essential for the performance

of solution of the linear program. If a primal feasible basis is available, the primal simplex method is

often the right choice. If a dual feasible basis is available, the dual simplex method is usually preferred.

And �nally, if no basis is known, or the linear programs are very large, often the barrier methods yields

the best running times.

22 CHAPTER 4. DESIGN

Therefore, by default a linear program is solved by the barrier method, if it is the �rst linear program

solved in the root node or constraints and variables have been added at the same time, by the primal

simplex method, if constraints have been removed or variables have been added, and by the dual simplex

method, if constraints have been added, or variables have been removed, or it is the �rst linear program

of a subproblem.

However, it should be possible to add problem speci�c decision criteria. Here, again a virtual function

gives us all exibility. We keep control when this function is invoked, namely at the point when all

decisions concerning addition and removal of constraints and variables have been taken. The function

has as arguments the correct numbers of added and removed constraints and variables. If we want to

choose the LP-method problem speci�cally, then we only have to rede�ne this function in a class derived

from the class ABA SUB.

Generation of Non-Liftable Constraints

If constraint and variable generation are combined, then the active constraints must be lifted if a variable

is added, i.e., the column of the new variable must be computed. This lifting can not always be done in a

straightforward way, it can even require the solution of another optimization problem. Moreover, lifting

is not only required when a variable is added, but this problem has to be attacked already during the

solution of the pricing problem.

In order to allow the usage of constraints that cannot be lifted or for which the lifting cannot be

performed e�ciently, we provide a management of non-liftable constraints. Each constraint has a ag

if it is liftable. If the pricing routine is called and non-liftable constraints are active, then all non-

liftable constraints are removed, the linear programming relaxation is solved again, and we continue with

the cutting plane algorithm before we come back to the pricing phase. In order to avoid an in�nite

repetition of this process we forbid the further generation of non-liftable constraints during the rest of

the optimization of this subproblem.

Reoptimization

If the root of the remaining branch-and-bound tree changes, but the new root has been processed earlier,

then it can be advantageous to optimize the corresponding subproblem again, in order to get improved

conditions for �xing variables by reduced costs. Therefore, we provide the reoptimization of a subprob-

lem. The di�erence to the ordinary optimization is that no branching is �nally performed even if the

subproblem is not fathomed. If it turns out during the reoptimization that the subproblem is fathomed,

then we can fathom all subproblems contained in the subtree rooted at this subproblem.

Branching

Virtual functions for the exible de�nition of branching strategies are implemented in the class ABA SUB.

We explain them together with the concept of branching rules in Section 4.2.7.

If constraints are generated heuristically, then the concept of delayed branching can be advantageous.

Instead of generating the sons of a subproblem in a branching step, the subproblem is put back into the

set of open subproblems. There it stays several rounds dormant, i.e., other subproblems are optimized

in the meantime, until the subproblem is processed again. If between two successive optimizations of the

subproblem good cutting planes are generated that can be separated from the pool, then this technique

can accelerate the optimization. The maximal numbers of optimizations and the minimal number of

dormant rounds can be controlled by parameters.

Memory Allocation

Since constraints and variables are added and removed dynamically, we also provide a dynamic memory

management system, which requires no user interaction. If there is not enough memory already allocated

to add a constraint or variable, memory reallocations are performed automatically. As the reallocation

of the local data, in particular of the linear program, can require a lot of CPU time, if it is performed

4.2. DETAILS 23

regularly, we allocate some extra space for the addition of variables and constraints, and for the nonzero

entries of the matrix of the LP-solver.

Activation and Deactivation

In order to save memory we set up those data structures that are only required if the subproblem is

active, e.g., the linear program, at the beginning of the subproblem optimization and delete the memory

again when the subproblem becomes inactive. We observed that the additional CPU time required for

these operations is negligible, but the memory savings are signi�cant.

4.2.4 Constraints and Variables

Constraints and variables are central items within linear-programming based branch-and-bound algo-

rithms. As ABACUS is a system for general mixed integer optimization problems and combinatorial

optimization problems we require an abstract concept for the representation of constraints and variables.

Linear programming duality motivated us to embed common features of constraints and variables in a

joint base class.

Constraint/Variable versus Row/Column

Usually, the notions constraint and row, and the notions variable and column, respectively, are used

equivalently.

Within ABACUS constraints and rows are di�erent items. Constraints are stored in the pool and a

subproblem has a set of active constraints. Only if a constraint is added to the linear program, then the

corresponding row is computed. More precisely, a row is a representation of a constraint associated with

a certain variable set.

The reasons for this di�erentiation can be explained with the subtour elimination constraints of the

traveling salesman problem, which are de�ned for subsetsW of the nodes of a graph as x(E(W)) � jW j�1.

Storing this inequality as it is added to the linear program would require to store all edges (variables)

with both endnodes in the set W . Such a format would require O(jW j

2

) storage space. However, it would

be also su�cient to store the node set W requiring 0(jW j) storage space. Given the variable e associated

with the edge (t; h), then the coe�cient of e in the subtour elimination constraint is 1 if t and h are

contained in W , 0 otherwise.

For the solution of the traveling salesman problem we also want to apply sparse graph techniques.

Therefore, storing the coe�cients of all active and inactive variables of a subtour elimination constraint

would waste a lot of memory. If we store only the coe�cients of the variables that are active when the

constraint is generated, then the computation of the coe�cient of an added variable would be di�cult or

even impossible. However, if we store all nodes de�ning the constraint, then the coe�cients of variables

that are later added can be determined easily.

E�cient memory management and dynamic variable generation are the reason why we distinguish

between constraints and rows. Each constraint must have a member function that returns the coe�cient

for a variable such that we can determine the row corresponding to a set of variables.

In these considerations \constraint" can be also replaced by \variable" and \row" by \column". A

column is the representation of a variable corresponding to a certain constraint set. Again, we use the

traveling salesman problem as example. A variable for the traveling salesman problem corresponds to an

edge in a graph. Hence, it can be represented by its end nodes. The column associated with this variable

consists of the coe�cients of the edge for all active constraints.

We implemented these concepts in the classes ABA CONSTRAINT/ABA VARIABLE, which are used for the

representation of active constraints and variables and for the storage of constraints and variables in the

pools, and ABA ROW/ABA COLUMN, which are used in particular in the interface to the LP-solver.

This di�erentiation between constraints/variables and rows/columns is not used by any other system

for the implementation of linear-programming based branch-and-bound algorithms, because they are

usually designed for the solution of general mixed integer optimization problems, which do not necessarily

24 CHAPTER 4. DESIGN

require this distinction. However, this concept is crucial for a practically e�cient and simple application

of ABACUS to combinatorial optimization problems.

Common Features of Constraints and Variables

Constraints and variables have several common features, which we consider in a common base class.

A constraint/variable is active if it belongs to the constraint/variable set of an active subproblem.

An active constraint/variable must not be removed from its pool. As in a parallel implementation

of ABACUS there can be several active subproblems, each constraint/variable has a counter for the

number of active subproblems, in which it is active.

Besides being active there can be other reasons why a constraint/variable should not be deleted from

its pool, e.g., if the constraint/variable has just been generated, then it is put into a bu�er, but is not yet

activated (we explain the details in Section 4.2.7). In such a case we want to set a lock on the constraint

that it cannot be removed. Again, in a parallel implementation, but also in a sequential one, we may

want to set locks at the same time on the same constraint for di�erent reasons. Hence, we count the

number of locks of each constraint/variable.

Constraints and variables can be locally or globally valid. Therefore, we provide a ag in the common

base class of constraints and variables. The functions to determine if a local constraint or variable is valid

for a certain subproblem are associated directly with the classes for constraints and variables, respectively.

It has been stated that the use of locally valid constraints and variables should be avoided as it requires

a nasty bookkeeping [PR91]. In order to free the user from this, we have embedded the management

of local constraints and variables in ABACUS. The validity of a constraint/variable is automatically

checked if it is regenerated from the pool.

We also distinguish between dynamic variables/constraints and static ones. As soon as a static vari-

able/constraint becomes active it cannot be deactivated. An example for static variables are the variables

in a general mixed integer optimization problem, examples for static constraints are the constraints of

the problem formulation of a general mixed integer optimization problem or the degree constraints of

the traveling salesman problem. Dynamic constraints are usually cutting planes. In column generation

algorithm variables can be dynamic, too.

A crucial point in the implementation of a special variable or constraint class is the tradeo� between

performance and memory usage. We have observed that a memory e�cient storage format can be one

of the keys to the solutions of larger instances. Such formats are in general not very useful for the

computation of the coe�cient of a single variable/constraint. Moreover, if the coe�cients of a constraint

for several variables or the coe�cients of a variable for several constraints have to be computed, e.g.,

when the row/column format of the constraint/variable is generated in order to add it to the LP-solver,

then these operations can become a bottleneck. However, given a di�erent format, using more memory,

it might be possible to perform these operations more e�ciently.

Therefore, we distinguish between the compressed format and the expanded format of a constraint/var-

iable. Before a bigger number of time consuming coe�cient computations is performed, we try to

generate the expanded format, afterwards the constraint/variable is compressed.

Of course, both expanded and compressed formats are rather constraint/variable speci�c. But we

provide the bookkeeping already in the common base class and try to expand the constraint/variable,

e.g., when it is added to the linear program. Afterwards it is compressed again. The implementation of

the expansion and compression is optional.

We use again the subtour elimination constraint of the traveling salesman problem as an example for

the compressed and expanded format. For an inequality x(E(W)) � jW j�1 we store the nodes of the set

W in the compressed format. The computation of the coe�cient of an edge (t; h) requires O(jW j) time

and space. As expanded format we use an array inSubtour of type bool of length n (n is the number

of nodes of the graph) and inSubtour[v] is true if and only if v 2 W . Now, we can determine the

coe�cient of an edge (variable) in constant time.

Constraints

ABACUS provides all three di�erent types of constraints: equations, �-inequalities and �-inequalities.

4.2. DETAILS 25

The only pure virtual function is the computation of a coe�cient of a variable. We use this function

to generate the row format of a constraint, to compute the slack of an LP-solution, and to check if an

LP-solution violates a constraint. All these functions are declared virtual such that they can be rede�ned

for performance reasons.

We distinguish between locally and globally valid constraints. By default, a locally valid constraint

is considered to be valid for the subproblem it was generated and for all subproblems in the tree rooted

at this subproblem. This criterion is implemented in a virtual function such that it can be rede�ned for

special constraints.

If variables are generated dynamically, we distinguish between liftable and non-liftable constraints.

Non-liftable constraints have to be removed before the pricing problem can be solved (see Section 4.2.3).

ABACUS provides a default non-abstract constraint class with the class ABA ROWCON, where a con-

straint is represented by its row format, i.e., only the numbers of variables with nonzero coe�cients and

the corresponding coe�cients are stored. This format is useful, e.g., for constraints of general mixed

integer optimization problems. From the class ABA ROWCON we derive the class ABA SROWOCN, which im-

plements some member functions more e�ciently as it assumes that the variable set is static, i.e., no

variables are generated dynamically.

Variables

ABACUS supports continuous, integer, and binary variables in the class ABA VARIABLE. Each variable

has a lower and an upper bound, which can be set to plus/minus in�nity if the variable is unbounded.

We also memorize if a variable is �xed.

The following functions have their dual analogons in the class ABA CONSTRAINT. The only pure virtual

function is now the function that returns a coe�cient in a constraint. With this function the generation

of the column format and the computation of the reduced cost can be performed. We say a variable is

violated if it does not price out correctly.

Also variables can be locally or globally valid. A subproblem is by default associated with a locally

valid variable. The variable is then valid in all subproblems on the path from this subproblem to the root

node. Of course, this virtual function can be rede�ned for problem speci�c variables.

We provide already a non-abstract derived variable class. The class ABA COLVAR implements a variable

that is represented by the column format, i.e., only the nonzero coe�cients together with the numbers of

the corresponding rows are stored.

4.2.5 Constraint and Variable Pools

Every constraint and variable either induced by the problem formulation or generated in a separation or

pricing step is stored in a pool. A pool is a collection of constraints and variables. We will see later that

it is advantageous to keep separate pools for variables and constraints. Then, we will also discuss when

it is useful to have also di�erent pools for di�erent types of constraints or variables. But for simplicity

we assume now that there is only one variable pool and one constraint pool.

There are two reasons for the usage of pools: saving memory and an additional separation/pricing

method.

A constraint or variable usually belongs to the set of active constraints or variables of several subprob-

lems that still have to be processed. Hence, it is advantageous to store in the sets of active constraints

or variables only pointers to each constraint or variable, which is stored at some central place, i.e., in a

pool that is a member of the corresponding master of the optimization. Our practical experiments show

that this memory sensitive storage format is of very high importance, since already this pool format uses

a large amount of memory.

Pool Separation/Pricing

From the point of view of a single subproblem a pool may not only contain active but also inactive

constraints or variables. The inactive items can be checked in the separation or pricing phase, respectively.

We call these techniques pool separation and pool pricing. Again, motivated by duality theory we use the

26 CHAPTER 4. DESIGN

notion \separation" also for the generation of variables, i.e., for pricing. Pool separation is advantageous

in two cases. First, pool separation might be faster than the direct generation of violated constraints or

variables. In this case, we usually check the pool for violated constraints or variables, and only if no item

is generated, we use the more time consuming direct method. Second, pool separation turns out to be

advantageous, if a class of constraints or variables can be separated/priced out only heuristically. In this

case, it can happen that the heuristic cannot generate the constraint or variable although it is violated.

However, earlier in the optimization process this constraint or variable might have been generated. In this

case the constraint or variable can be easily regenerated from the pool. Computational experiments show

that this additional separation or pricing method can decrease the running time signi�cantly [JRT94].

During the regeneration of constraints and variables from the pools we also have to take into account

that a constraint or variable might be only locally valid.

The pool separation is also one reason for using di�erent pools for variables and constraints. Otherwise,

each item would require an additional ag and a lot of unnecessary work would have to be performed

during the pool separation.

Pool separation is also one of the reasons why it can be advantageous to provide several constraint or

variable pools. Some constraints, e.g., might be more important during the pool separation than other

constraints. In this case, we might check this \important" pool �rst and only if we fail in generating any

item we might proceed with other pools or continue immediately with direct separation techniques.

Other classes of constraints or variables might be less important in the sense that they cannot or can

only very seldomly be regenerated from the pool (e.g., locally valid constraints or variables). Such items

could be kept in a pool that immediately removes all items that do not belong to the active constraint

or variable set of any subproblem which still has to be processed. A similar strategy might be required

for constraints or variables requiring a big amount of memory.

Finally, there are constraints for which it is advantageous to stay active in any case (e.g., the con-

straints of the problem formulation in a general mixed integer optimization problem, or the degree con-

straints for the traveling salesman problem). Also for these constraints separate pools are advantageous.

Garbage Collection

In any case, as soon as a lot of constraints or variables are generated dynamically we can observe that

the pools become very, very large. In the worst case this might cause an abnormal termination of the

program if it runs out of memory. But already earlier the optimization process might be slowed down

since pool separation takes too long. Of course, the second point can be avoided by limited strategies in

pool separation, which we will discuss later. But to avoid the �rst problem we require suitable cleaning

up and garbage collection strategies.

The simplest strategy is to remove all items belonging not to any active variable or constraint set of

any active or open subproblem in a garbage collection process. The disadvantage of this strategy might be

that good items are removed that are accidentally momentarily inactive. A more sophisticated strategy

might be counting the number of linear programs or subproblems where this item has been active and

removing initially only items with a small counter.

Unfortunately, if the enumeration tree grows very large or if the number of constraints and variables

that are active at a single subproblem is high, then even the above brute force technique for the reduction

of a pool turns out to be insu�cient.

Hence, we have to divide constraints and variables into two groups. On the one hand the items that

must not be removed from the pool, e.g., the constraints and variables of the problem formulation of

a general mixed integer optimization problem, and on the other hand those items that can either be

regenerated in the pricing or separation phase or are not important for the correctness of the algorithm,

e.g., cutting planes. If we use the data structures we will describe now, then we can remove safely an

item of the second group.

Pool Slots

So far, we have assumed that the sets of active variables or constraints store pointers to variables or

constraints, respectively, which are stored in pools. If we would remove the variable or constraint, i.e.,

4.2. DETAILS 27

delete the memory we have allocated for this object, then errors can occur if we access the removed item

from a subproblem. These fatal errors could be avoided if a message is sent to every subproblem where

the deleted item is currently active. This technique would require additional memory and running time.

Therefore, we propose a data structure that can handle this problem very simply and e�ciently.

A pool is not a collection of constraints or variables, but a collection of pool slots (class ABA POOLSLOT).

Each slot stores a pointer to a constraint or variable or a 0-pointer if it is void. The sets of active con-

straints or variables store pointers to the corresponding slots instead of storing pointers to the constraints

or variables directly. So, if a constraint or variable has been removed a 0-pointer will be found in the

slot and the subproblem recognizes that the constraint or variable must be eliminated since it cannot be

regenerated. The disadvantage of this method is that �nally our program may run out of memory since

there are many useless slots.

In order to avoid this problem we add a version number as data member to each pool slot. Initially

the version number is 0 and becomes 1 if a constraint or variable is inserted in the slot. After an item in

a slot is deleted a new item can be inserted into the slot. Each time a new item is stored in the slot the

version number is incremented. The sets of active constraints and variables do not only store pointers

to the corresponding slots but also the version number of the slot when the pointer is initialized. If a

member of the active constraints or variables is accessed we compare its original and current version

number. If these numbers are not equal we know that this is not the constraint or variable we were

originally pointing to and remove it from the active set. We call the data structure storing the pointer to

the pool slot and the original version number a reference to a pool slot (class ABA POOLSLOTREF). Hence,

the sets of active constraints and variables are arrays of references to pool slots. We present an example

for this pool concept in Figure 4.1. The numbers in the boxes are arbitraryly chosen version numbers.

Standard Pool

The class ABA POOL is an abstract class, which does not specify the storage format of the collection of pool

slots. The simplest implementation is an array of pool slots. The set of free pool slots can be implemented

by a linked list. This concept is realized in the class ABA STANDARDPOOL. Moreover, a ABA STANDARDPOOL

can be static or dynamic. A dynamic ABA STANDARDPOOL is automatically enlarged, when it is full, an

item is inserted, and the cleaning up procedure fails. A static ABA STANDARDPOOL has a �xed size and no

automatic reallocation is performed.

More sophisticated implementations might keep an order of the pool slots such that \important"

items are detected earlier in a pool separation such that a limited pool separation might be su�cient. A

criterion for this order could be the number of subproblems where this constraint or variable is active or

has been active. We will consider such a pool in a future release.

Default Pools

The number of the pools is very problem speci�c and depends mainly on the separation and pricing meth-

ods. Since in many applications a pool for variables, a pool for the constraints of the problem formulation,

and a pool for cutting planes are su�cient, we implemented this default concept. If not speci�ed dif-

ferently, in the initialization of the pools, in the addition of variables and constraints, and in the pool

pricing and pool separation these default pools are used. We use a static ABA STANDARDPOOL for the

default constraint and cutting planes pools. The default variable pool is a dynamic ABA STANDARDPOOL,

because the correctness of the algorithm requires that a variable which does not price out correctly can

be added in any case, whereas the loss of a cutting plane that cannot be added due to a full pool has

no e�ect on the correctness of the algorithm as long as it does not belong to the integer programming

formulation.

If instead of the default pool concept an application speci�c pool concept is implemented, then the

user of the framework must make sure that there is at least one variable pool and one constraint pool

and these pools are embedded in a class derived from the class ABA MASTER.

With this concept we provide a high exibility: An easy to use default implementation, which can be

changed by the rede�nition of virtual functions and the application of non-default function arguments.

28 CHAPTER 4. DESIGN

C
o

n
stra

in
t

C
o

n
stra

in
t

C
o

n
stra

in
t

C
o

n
stra

in
t

C
o

n
stra

in
t

C
o

n
stra

in
t

C
o

n
stra

in
t

C
o

n
stra

in
t

C
o

n
stra

in
t

C
o

n
stra

in
t

2 2 2 2 Constraint Pool1 3 1 3 3

2 2 21 3 1

Active Constraints

Active Variables

Subproblem

21 3

Active Constraints

Active Variables

Subproblem

Variable Pool2 1 1 3 2 2 3 33

2 1 1 2 2 2 3 1 3

V
a
ria

b
le

V
a
ria

b
le

V
a
ria

b
le

V
a
ria

b
le

V
a
ria

b
le

V
a
ria

b
le

V
a
ria

b
le

V
a
ria

b
le

V
a
ria

b
le

1

3

Figure 4.1: The pool concept.

4.2. DETAILS 29

All classes involved in this pool concept are designed as generic classes such that they can be used

both for variables and constraints.

4.2.6 Linear Programs

Since ABACUS is a framework for the implementation of linear-programming based branch-and-bound

algorithms it is obvious that the solution of linear programs plays a central role, and we require a class

concept of the representation of linear programs. Moreover, linear programs might not only be used for

the solution of LP-relaxations in the subproblems, but they can also be used for other purposes, e.g., for

the separation of lift-and-project cutting planes of zero-one optimization problems [BCC93a, BCC93b]

and within heuristics for the determination of good feasible solutions in mixed integer programming

[HP93].

Therefore, we would like to provide two basic interfaces for a linear program. The �rst one should

be in a very general form for linear programs de�ned by a constraint matrix stored in some sparse

format. The second one should be designed for the solution of the LP-relaxations in the subprob-

lem. The main di�erences to the �rst interface are that the constraint matrix is stored in the abstract

ABA VARIABLE/ABA CONSTRAINT format instead of the ABA COLUMN/ABA ROW format and that �xed and set

variables should be eliminated.

Another important design criterion is that the solution of the linear programs should be independent

from the used LP-solver, and plugging in a new LP-solver should be simple.

The Basic Interface

The result of these requirements is the class hierarchy of Figure 4.2. The class ABA LP is an abstract

base class providing the public functions that are usually expected: initialization, optimization, addition

of rows and columns, deletion of rows and columns, access to the problem data, the solution, the slack

variables, the reduced costs, and the dual variables. These functions do some minor bookkeeping and

call a pure virtual function having the same name but starting with an underscore (e.g, optimize()

calls optimize). These functions starting with an underscore are exactly the functions that have to be

implemented by an LP-solver.

The LP-Solver Cplex

The class ABA CPLEXIF implements these solver speci�c functions for the LP-solver Cplex [Cpl94]. If a

linear program should be solved with Cplex, an object of the class ABA CPLEXIF is instantiated. As long

as only public members that are inherited from the class ABA LP are used except the constructors (which

is usually su�cient) using another LP-solver means only replacing the name ABA CPLEXIF by its name in

the instantiation after a similar class for this solver as the class ABA CPLEXIF has been implemented.

The advantage of encapsulating the implementation in an extra class instead of using only the private

functions is that several LP-solvers can be made available within the framework and changing the solver

means only changing the name in the instantiation.

The LP-Solver SoPlex

In an equivalent way the class ABA SOPLEXIF implements an interface to the LP-solver SoPlex.

Linear Programming Relaxations

The most important linear programs being solved within this system are the LP-relaxations solved in

the optimization of the subproblems. However, the active constraints and variables of a subproblem are

not stored in the format required by the class ABA LP. Therefore, we have to implement a transformation

from the ABA VARIABLE/ABA CONSTRAINT format to the ABA COLUMN/ABA ROW format.

Two options are available for the realization of this transformation: either it can be implemented

in the class ABA SUB or in a new class derived from the class ABA LP. We decided to implement such an

30 CHAPTER 4. DESIGN

ABA_LP

ABA_LPSUBCPLEX

ABA_SOPLEXIF ABA_CPLEXIF ABA_LPSUB

ABA_LPSUBSOPLEX

Figure 4.2: The linear programming classes.

interface class, which we call ABA LPSUB, for the following reasons. First, the interface is better structured.

Second, the subproblem optimization becomes more robust for later modi�cations of the class ABA LP.

Third, we regard the class ABA LPSUB as a preprocessor for the linear programs solved in the subproblem,

because �xed and set variables can be eliminated from the linear program submitted to the solver. It

depends on the used solution method if all �xed and set variables should be eliminated. If the simplex

method is used and a basis is known, then only nonbasic �xed and set variables should be eliminated. If

the barrier method is used we can eliminate all �xed and set variables. The encapsulation of the interface

between the subproblem and the class ABA LP supports a more exible adaption of the elimination to other

LP-solvers in the future and also enables us to use other LP-preprocessing techniques, e.g., constraint

elimination, or changing the bounds of variables under certain conditions (see [Sav94]), without modifying

the variables and constraints in the subproblem. Preprocessing techniques other than elimination of �xed

and set variables are currently not implemented.

Solving Linear Programming Relaxations

The subproblem optimization in the class ABA SUB uses only the public functions of the class ABA LPSUB,

which is again an abstract class independent from the used LP-solver. Currently the linear programs can

be solved either by Cplex or SoPlex.

A linear program solving the relaxations within a subproblem with the LP-solver Cplex is de�ned

by the class ABA LPSUBCPLEX, which is derived from the classes ABA LPSUB and ABA CPLEXIF. The class

ABA LPSUBCPLEX only implements a constructor passing the arguments to the base classes. Using a di�er-

ent LP-solver in this context requires the de�nition of a class equivalent to the class ABA LPSUBCPLEX and

a rede�nition of the virtual function ABA LPSUB *ABA SUB::generateLp(), which is a one-line function

allocating an object of the class ABA LPSUBCPLEX and returning a pointer to this object.

This concept is used for implementing interfaces to the LP-solver SoPlex by the class ABA SOPLEXIF

(the equivalent of ABA CPLEXIF) and the class ABA LPSUBSOPLEX (the equivalent of ABA SUBCPLEX).

Therefore, it is easy to use di�erent LP-solvers for di�erent ABACUS applications and it is also

possible to use di�erent LP-solvers in a single ABACUS application. For instance, if there is a very fast

method for the solution of the linear programs in the root node of the enumeration tree, but all other

linear programs should be solved by Cplex, then only a simple modi�cation of ABA SUB::generateLp()

is required.

To avoid multiple instances of the class ABA LP in objects of the class ABA LPSUBCPLEX or ABA LPSUBSO-

PLEX, the classes ABA CPLEXIF, ABA SOPLEXIF, and ABA LPSUB are virtually derived from the class ABA LP.

In order to save memory we do not make copies of the LP-data in any of the classes of this hierarchy

except for the data that is passed to the LP-solvers in the classes ABA CPLEXIF and ABA SOPLEXIF.

4.2.7 Auxiliary Classes for Branch-and-Bound

In this section we are going to discuss the design of some important classes that support the linear-

programming based branch-and-bound algorithm. These are classes for the management of the open

subproblems, for bu�ering newly generated constraints and variables, for the implementation of branching

4.2. DETAILS 31

rules, for the candidates for �xing variables by reduced costs, for the control of the tailing o� e�ect, and

for the storage of a solution history.

The Set of Open Subproblems

During a branch-and-bound algorithm subproblems are dynamically generated in branching steps and

later optimized. Therefore, we require a data structure that stores pointers to all unprocessed and

dormant subproblems and supports the insertion and the extraction of a subproblem.

One of the important issues in a branch-and-bound algorithm is the enumeration strategy, i.e., which

subproblem is extracted from the set of open subproblems for further processing. It would be possible

to implement the di�erent classical enumeration strategies, like depth-�rst search, breadth-�rst search,

or best-�rst search within this class. But in this case, an application-speci�c enumeration strategy could

not be added in a simple way by a user of ABACUS. Of course, with the help of inheritance and virtual

functions a technique similar to the one we implemented for the usage of di�erent LP-solvers for the

subproblem optimization could be applied. However, there is a much simpler solution for this problem.

In the class ABA MASTERwe de�ne a virtual member function that compares two subproblems according

to the selected enumeration strategy and returns 1 if the �rst subproblem has higher priority, �1 if the

second one has higher priority, and 0 if both subproblems have equal priority. Application speci�c

enumeration strategies can be integrated by a rede�nition of this virtual function. In order to compare

two subproblems within the extraction operation of the class ABA OPENSUB this comparison function of

the associated master is called.

The class ABA OPENSUB implements the set of open subproblems as a doubly linked linear list. Each

time when another subproblem is required for further processing the complete list is scanned and the

best subproblem according to the applied enumeration strategy is extracted. This implementation has

the additional advantage, that it is very easy to change the enumeration strategy during the optimization

process, e.g., to perform a diving strategy, which uses best-�rst search but performs a limited depth �rst

search every k iterations.

The drawback of this implementation is the linear running time of the extraction of a subproblem. If

the set of open subproblems would be implemented by a heap, then the insertion and the extraction of a

subproblem would require logarithmic time, whereas in the current implementation the insertion requires

constant, but the extraction requires linear time. But if the enumeration strategy is changed, the heap

has to be reinitialized from scratch, which requires linear time.

However, it is typical for a linear-programming based branch-and-bound algorithm that a lot of work

is performed in the subproblem optimization, but the total number of subproblems is comparatively

small. Also the performance analysis of our current applications shows that the running time spent in

the management of the set of open subproblems is negligible. Due to the encapsulation of the management

of the set of open subproblem in the private part of the class ABA OPENSUB, it will be no problem to change

the implementation, as soon as it is required.

In order to allow the special fathoming technique for fathoming more than one subproblem in case of

a contradiction (even though it is currently not implemented), the class ABA OPENSUB supports also the

removal of an arbitrary subproblem. This operation cannot be performed in logarithmic time in a heap,

but requires linear time. A data structure providing logarithmic running time for the insertion, extraction

of the minimal element, and removal of an arbitrary element is, e.g., a red-black tree [Bay72, GS78].

According to our current experience it seems that the implementation e�ort for these enhanced data

structures does not pay.

We provide four rather common enumeration strategies per default: best-�rst search, breadth-�rst

search, depth-�rst search, and a simple diving strategy performing depth-�rst search until the �rst feasible

solution is found and continuing afterwards with best-�rst search.

If the branching strategy is branching on a binary variable, then these default enumeration strategies

are further re�ned. We can often observe in mixed integer programming that feasible solutions are sparse,

i.e., only a small number of variables have a nonzero value. Setting a binary variable to one may induce

a subproblem with a smaller number of feasible solutions than for its brother in which the branching

variable is set to zero. Therefore, if two subproblems have the same priority in the enumeration, we

32 CHAPTER 4. DESIGN

prefer that one with the branching variable set to one. This resolution of subproblems having equal

priority is performed in a virtual function, such that it can be adapted to each speci�c application or can

be extended to other branching strategies.

Bu�ering Generated Variables and Constraints

Usually, new constraints are generated in the separation phase. However, it is possible that in some

applications violated constraints are also generated in other subroutines of the cutting plane algorithm.

In particular, if not all constraints of the integer programming formulation are active in the subproblem

a separation routine might have to be called to check the feasibility of the LP-solution. Another example

is the maximum cut problem, for which it is rather convenient if new constraints can also be generated

while we try to �nd a better feasible solution after the linear program has been solved. Therefore, it

is necessary that constraints can be added by a simple function call from any part of the cutting plane

algorithm.

This requirement also holds for variables. For instance, when we perform a special rounding algorithm

on a fractional solution during the optimization of the traveling salesman problem, we may detect useful

variables that are currently inactive. It should be possible to add such important variables before they

may be activated in a later pricing step.

It can happen that too many variables or constraints are generated such that it is not appropriate to

add all of them, but only the \best" ones. Measurements for \best" are di�cult, for constraints this can

be the slack or the distance between the fractional solution and the associated hyperplane, for variables

this can be the reduced costs.

Therefore, we have implemented a bu�er for generated constraints and variables in the generic class

ABA CUTBUFFER, which can be used both for variables and constraints. There is one object of this class

for bu�ering variables, the other one for bu�ering constraints. Constraints and variables that are added

during the subproblem optimization are not added directly to the linear program and the active sets

of constraints and variables, but are added to these bu�ers. The size of the bu�ers can be controlled

by parameters. At the beginning of the next iteration items out of the bu�ers are added to the active

constraint and variable sets and the bu�ers are emptied. An item added to a bu�er can receive an optional

rank given by a oating point number. If all items in a bu�er have a rank, then the items with maximal

rank are added. As the rank is only speci�ed by a oating point number, di�erent measurements for the

quality of the constraints or variables can be applied. The number of added constraints and variables

can be controlled again by parameters.

If an item is discarded during the selection of the constraints and variables from the bu�ers, then

usually it is also removed from the pool and deleted. However, it may happen that these items should

be kept in the pool in order to regenerate them in later iterations. Therefore, it is possible to set an

additional ag while adding a constraint or variable to the bu�er that prevents it from being removed

from the pool if it is not added. Constraints or variables that are regenerated form a pool receive this

ag automatically.

Another advantage of this bu�ering technique is that adding a constraint or variable does not change

immediately the current linear program and active sets. The update of these data structures is performed

at the beginning of the cutting plane or column generation algorithm before the linear program is solved.

Hence, this bu�ering method together with the bu�ering of removed constraints and variables relieves us

also from some nasty bookkeeping.

Branching

It should be possible that in a framework for linear-programming based branch-and-bound algorithms

many di�erent branching strategies can be embedded. Standard branching strategies are branching on a

binary variable by setting it to 0 or 1, changing the bounds of an integer variable, or splitting the solution

space by a hyperplane such that in one subproblem a

T

x � � and in the other subproblem a

T

x � � must

hold. A straightforward generalization is that instead of one variable or one hyperplane we use k variables

or k hyperplanes, which results in 2

k

-nary enumeration tree instead of a binary enumeration tree.

4.2. DETAILS 33

Another branching strategy is branching on a set of equations a

1

T

x = �

1

; : : : ; a

l

T

x = �

l

. Here, l new

subproblems are generated by adding one equation to the constraint system of the father in each case. Of

course, as for any branching strategy, the complete set of feasible solutions of the father must be covered

by the sets of feasible solutions of the generated subproblems.

For branch-and-price algorithms often di�erent branching rules are applied. Variables not satisfying

the branching rule have to be eliminated and it might be necessary to modify the pricing problem. The

branching rule of Ryan and Foster [RF81] for set partitioning problems also requires the elimination of a

constraint in one of the new subproblems.

So it is obvious that we require on the one hand a rather general concept for branching, which does

not only cover all mentioned strategies, but should also be extendable to \unknown" branching methods.

On the other hand it should be simple for a user of the framework to adapt an existing branching

strategy like branching on a single variable by adding a new branching variable selection strategy.

Again, an abstract class is the basis for a general branching scheme, and overloading a virtual function

provides a simple method to change the branching strategy. We have developed the concept of branching

rules. A branching rule de�nes the modi�cations of a subproblem for the generation of a son. In a

branching step as many rules as new subproblems are instantiated. The constructor of a new subproblem

receives a branching rule. When the optimization of a subproblem starts, the subproblem makes a copy of

the member data de�ning its father, i.e., the active constraints and variables, and makes the modi�cations

according to its branching rule.

The abstract base class for di�erent branching rules is the class ABA BRANCHRULE, which declares a

pure virtual function modifying the subproblem according to the branching rule. We have to declare

this function in the class ABA BRANCHRULE instead of the class ABA SUB because otherwise adding a new

branchrule would require a modi�cation of the class ABA SUB.

We derive from the abstract base class ABA BRANCHRULE classes for branching by setting a binary

variable (class ABA SETBRANCHRULE), for branching by changing the lower and upper bound of an integer

variable (class ABA BOUNDBRANCHRULE), for branching by setting an integer variable to a value (class

ABA VALBRANCHRULE), and branching by adding a new constraint (class ABA CONBRANCHRULE).

This concept of branching rules should allow almost every branching scheme. Especially, it is inde-

pendent of the number of generated sons of a subproblem. Further branching rules can be implemented

by deriving new classes from the class ABA BRANCHRULE and de�ning the pure virtual function for the

corresponding modi�cation of the subproblem.

In order to simplify changing the branching strategy we implemented the generation of branching rules

in a hierarchy of virtual functions of the class ABA SUB. By default, the branching rules are generated by

branching on a single variable. If a di�erent branching strategy should be implemented a virtual function

must be rede�ned in a class derived from the class ABA SUB.

Often in a special branch-and-cut algorithm we only want to modify the branching variable selection

strategy. A new branching variable selection strategy can be implemented again by rede�ning a virtual

function.

Candidates for Fixing

Each time when all variables price out correctly during the processing of the root node of the branch-and-

bound tree, we store those nonbasic variables that cannot be �xed together with their statuses, reduced

costs, and the current dual bound in an object of the class ABA FIXCAND. Later, when the primal bound

improves, we can try to �x these variables by reduced cost criteria. This data structure can also be

updated if the root node of the remaining branch-and-bound tree changes.

Tailing O�

We implemented the class ABA TAILOFF to memorize the values of the last solved linear programs of a

subproblem to control the tailing o� e�ect. An instance of this class is a member of each subproblem.

34 CHAPTER 4. DESIGN

Solution History

The class ABA HISTORY stores the solution history, i.e., it memorizes the primal and the dual bound and

the current time whenever a new primal or dual bound is found.

4.2.8 Basic Generic Data Structures

We have implemented several basic data structures as templates. We only sketch these classes briey.

For the details on the implementations we refer to text books about algorithms and data structures such

as, e.g., [CLR90].

Arrays

Arrays are already supported by C++ as in C. To provide in addition to the subscript operator []

simpler construction, destruction, reallocation, copying, and assignment we have implemented the class

ABA ARRAY.

A Bu�er for Objects

Arrays are frequently used for bu�ering data, i.e., there is an additional counter that is initially 0. Then,

objects are inserted in the array at the position of the counter, which is afterwards incremented. In order

to simplify such bu�ering operations we have encapsulated an array together with the counter in the class

ABA BUFFER.

Actually, a bu�er is a special array such that the class ABA BUFFER should be derived from the class

ABA ARRAY. Unfortunately, the version of the GNU-compiler we were using when we developed this part

of the system had a bug in the inheritance of templates. In a future release we will derive this class from

ABA ARRAY.

Bounded Stack

A stack stores a set of elements according to the last-in-�rst-out principle, i.e., only the last inserted

element can be accessed or removed. A linked list could implement such a data structure in which an

unlimited number of elements (limited only by the available memory) can be inserted. We would have to

sacri�ce some e�ciency for this exibility. Therefore, we use an array for implementing a stack having a

maximal size. If it turns out that the initial estimation on the maximal size is too small, the stack can

be reallocated.

Ring

A ring is a collection of elements that has a maximal size. If this maximal size is reached but a new

element is inserted, then the oldest element is replaced. No element can be removed explicitly from the

ring except that the ring can be emptied in a single step. The class ABA RING implements such a data

structure with an array. We need a ring in the framework to memorize the last k (e.g., k = 10) values of

the LP-solution in the subproblem optimization, in order to control the tailing o� e�ect. Since this data

structure might be useful for other purposes we implemented it as a template.

Linked Lists

The classes ABA LIST and ABA DLIST provide implementations of a linked list and a doubly linked list,

respectively.

Bounded Heap

A heap is a data structure representing a complete binary tree, where each node satis�es the so called

\heap-property". For similar e�ciency reasons, we discussed already in the context of the stack, we

provide an implementation ABA BHEAP of a heap with limited size by an array.

4.2. DETAILS 35

Bounded Priority Queue

A priority queue is a data structure storing a set of elements where each element is associated with a

key. The priority queue provides the operations inserting an element, �nding the element with minimal

key, and extracting the element with minimal key. We provide an implementation ABA BPRIOQUEUE of a

priority queue of limited size with the help of a heap.

Hash Table

In a hash table a set of elements is stored by computing for each element the address in the table via a

hash function applied to the key of the element. As the number of possible values of keys is usually much

greater than the number of addresses in the table we require techniques for resolving collisions, i.e., if

more than one element is mapped to the same address.

We use direct addressing and collision resolution by chaining in the class ABA HASH. For integer keys

we implemented the Fibonacci hash function and for strings a hash function proposed in [Knu93].

Dictionary

A dictionary in our context is a data structure storing elements together with some additional data.

Besides the insertion of an element we provide a look up operation returning the data associated with an

element. For the implementation of the class ABA DICTIONARY we use a hash table.

4.2.9 Other Basic Data Structures

In this section we shortly outline some other basic data structures, which are not implemented as tem-

plates. These are classes for the representation of sparse vectors, for sparse graphs, for strings, and for

disjoint sets.

Sparse Vector

Typically, mixed integer optimization problems have a constraint matrix with a very small number of

nonzero elements. Storing also the zero elements of constraints would waste a lot of memory and increase

the running time. Therefore, we implemented in the class ABA SPARVEC, a data structure which stores only

the non-zero elements of a vector together with their coe�cients in two arrays. With this implementation

the critical operation is the determination of the coe�cient of an original component.

In the worst case, i.e., if the coe�cient is zero, the complete array must be scanned. However, in a

performance analysis of our current applications it turns out that more sophisticated implementations

using sorted elements such that binary search can be performed or using hash tables are not necessary.

To simplify the dynamic insertion of elements, which is very common within this software system, an

automatic reallocation is performed if the arrays implementing the sparse vector are full. By default, the

arrays are increased by ten percent but this value can be changed in the constructor.

We use the class ABA SPARVEC mainly as base class of the classes ABA ROW and ABA COLUMN, which

are essential in the interface to the LP-solver and also used for the implementation of special types of

constraints and variables.

String

We also implement the class ABA STRING for the representation of character strings. We provide only

those member functions which are currently required in our software system. This class still requires

extensions in the future.

Disjoint Sets

We provide the classes ABA SET and ABA FASTSET for maintaining disjoint sets represented by integer

numbers. The operations for generating a set, union of sets, and �nding the representative of the set the

element is contained in are e�ciently supported.

36 CHAPTER 4. DESIGN

4.2.10 Tools

The following classes are not data structures in a narrow sense, but provide useful tools for the manage-

ment of the output, for measuring time, and for sorting.

Output Streams

A framework like ABACUS requires di�erent levels of output. A lot of information is required during

the development and debugging phase of an application, only some information on the progress of the

solution process and the �nal results are desired in ordinary runs, and �nally there should be no output

at all if an application of ABACUS is used as a subprogram.

In order to satisfy these requirements usually output statements are either enclosed in

#ifdef

...

#endif

preprocessor instructions or each output statement is preceded by a statement of the form

if (outLevel == ...)

We rejected the �rst method immediately since changing the output level would require a recompilation

of the code. The second method has the drawback that all these if-statements before output operations

are not very nice and make the source code less readable.

Therefore, we make use of the C++ output streams and derive from the class ostream of the i/o-

stream library a class ABA OSTREAM implementing a specialized output stream that can be turned on and

o�. More precisely, we can apply the output operator << as usual, but write to an object of the class

ABA OSTREAM instead of ostream. If the output should be suppressed, we call a member function to turn

it o�. If output is desired again later in the program, it can be turned on again. The class ABA OSTREAM

is a �lter in this context for an output stream of the class ostream that can be turned on and o� at any

time.

The disadvantage of this �lter is that if at a certain output level one output statement should pass,

the next one should be �ltered out, etc., then a lot of code has to be inserted in the program for turning

the output on and o�, which leads to a less readable code than the classical remedy.

However, we observed that for ABACUS a rather simple structure of output levels and output

statements is su�cient. Between the two extreme cases that no output is generated (Silent) and a lot of

output is produced (Full) there are only three levels supported. On each level in addition to all output

of the preceding levels some extra information is given. After the level Silent follows the level Statistics

generating only some statistical information at the end of the run. At the level Subproblem a short

information on the status of the optimization is output at the end of each subproblem optimization.

Finally, at the output level LinearProgram similar output is generated after every solved linear program.

Therefore, turning the output streams on and o� is required very seldomly within ABACUS and its

applications such that this concept improves the readability of the code.

Under the operating system UNIX output written to cout can be redirected to a �le. Unfortunately,

in this case no output is visible on the screen. Therefore, we have implemented in the class ABA OSTREAM

also the option to generate a log-�le. If this option is chosen output is both written on the screen and to

the log-�le. This e�ect can also be obtained by using the UNIX command tee. However, the output levels

for the log-�le and the standard output may be di�erent, e.g., one can choose output level Subproblem

for the standard output stream to monitor the optimization process, but Full output on the log-�le for

a later analysis of the run.

Of course, several instances of the class ABA OSTREAM can be used. The default version of ABACUS

uses one for the normal output messages, i.e., as �lter for cout and one for the warning and error messages,

i.e., as �lter for cerr. In an application it is possible to introduce another output stream for the problem

speci�c output.

4.2. DETAILS 37

Timers

For a simple measurement of the CPU and the wall-clock time of parts of the program we implemented

the classes ABA TIMER, ABA CPUTIMER, ABA COWTIMER. The ABA TIMER is the base class of the two other

classes and provides the basic functionality of a timer, like starting, stopping, resetting, output, retrieving

the time, and checking if the current time exceeds some value. The actual measurement of the time is

performed by the pure virtual function theTime(). This is the only function (besides the constructors

and the destructor) that is de�ned by the classes ABA CPUTIMER and ABA COWTIMER.

This class hierarchy is a nice, small example where inheritance and late binding save a lot of imple-

mentational e�ort.

Sorting

Sorting an array of elements according to another array of keys is quite frequently required. Usually,

sorting functions are good candidates for template functions, but we prefer to embed these functions in a

template class. The advantage is that we can provide within a class also member variables for swapping

elements of the arrays, which have the same advantages as global variables from point of view of the

sorting functions (they do not have to be put on the stack for each function call), but do not have global

scope. Within the class ABA SORTER we implemented the quicksort and the heapsort algorithm.

38 CHAPTER 4. DESIGN

Chapter 5

Using ABACUS

Section 5.1 provides the basic guidelines how a new application can be attacked with the help ofABACUS.

While this section describes the �rst steps a user should follow, we discuss in Section 5.2 advanced features,

in particular how default strategies can be modi�ed according to problem speci�c requirements.

We strongly encourage to study this chapter together with the example of the ABACUS distribution.

In this example all concepts of Section 5.1 and several features of Section 5.2 can be found.

In the following sections we also present pieces of C++ code. When we discuss variables that are of

the type \pointer to some type", then we usually omit for convenience of presentation the \pointer to"

and the operator � if there is no danger of confusion. For instance, given the variable

ABA_ARRAY<ABA_CONSTRAINT*> *constraints;

we also say \the constraints are stored in the array constraints" instead of \the pointer to constraints

are stored in the array *constraints".

In order to simplify the use ABACUS we are using the following style for the names of classes,

functions, variables, and enumerations.

� Names of classes and names of enumerations are written with upper case letters (e.g., class

ABA COLUMN).

� Members of enumerations begin with an upper case letter, e.g., enum STATUSfFixed, Setg.

� All other names (functions, objects, variables, function arguments) start with a lower case letter

(e.g., optimize()).

� We use upper case letters within all names to increase the readability (e.g., generateSon()).

� Names of data members of classes end with an underscore such that they can be easily distinguished

from local variables of member functions.

� We do not refrain from using a long name if it helps expressing the concepts behind the name.

5.1 Basics

In this section we explain how our framework is used for the implementation of a new application. This

section should provide only the guidelines for the �rst steps of an implementation, for details we refer to

Section 5.2 and to the documentation in the reference manual.

If we want to use ABACUS for a new application we have to derive problem speci�c classes from some

base classes. Usually, only four base classes of ABACUS are involved: ABA VARIABLE, ABA CONSTRAINT,

ABA MASTER, and SUBPROBLEM. For some applications it is even possible that the classes ABA VARIABLE

and/or ABA CONSTRAINT are not included in the derivation process if those concepts provided already by

ABACUS are su�cient. By the de�nition of some pure virtual functions of the base classes in the derived

39

40 CHAPTER 5. USING ABACUS

ABA_MASTER

ABA_ABACUSROOT

ABA_SUBABA_GLOBAL ABA_CONVAR

ABA_CONSTRAINTABA_VARIABLE

ABA_MYCONSTRAINTABA_MYVARIABLE

ABA_MYSUB

ABA_MYMASTER

Figure 5.1: Embedding problem speci�c classes in ABACUS.

classes and the rede�nition of some virtual functions a problem speci�c algorithm can be composed.

Figure 5.1 shows how the problem speci�c classes MYMASTER, MYSUB, MYVARIABLE, and MYCONSTRAINT are

embedded in the inheritance graph of ABACUS.

Throughout this section we only use the default pool concept of ABACUS, i.e., we have one pool for

static constraints, one pool for dynamically generated cutting planes, and one pool for variables. We will

outline how an application speci�c pool concept can be implemented in Section 5.2.1.

5.1.1 Constraints and Variables

The �rst step in the implementation of a new application is the analysis of its variable and constraint

structure. We require at least one constraint class derived from the class ABA CONSTRAINT and at least

one variable class derived from the class ABA VARIABLE. The used variable and constraint classes have to

match such that a row or a column of the constraint matrix of an LP-relaxation can be generated.

We derive from the class ABA VARIABLE the class MYVARIABLE storing the attributes speci�c to the

variables of our application, e.g., its number, or the tail and the head of the associated edge of a graph.

Then we derive the class MYCONSTRAINT from the class ABA CONSTRAINT

class MYCONSTRAINT : public ABA_CONSTRAINT {

public:

virtual double coeff(ABA_VARIABLE *v);

};

The function ABA CONSTRAINT::coeff(ABA VARIABLE *v) is a pure virtual function. Hence, we de�ne it

in the class MYCONSTRAINT. It returns the coe�cient of variable v in the constraint. Usually, we need in

an implementation of the function coeff(ABA VARIABLE *v) access to the application speci�c attributes

of the variable v. Therefore, we have to cast v to a pointer to an object of the class MYVARIABLE for

the computation of the coe�cient of v. Such that this cast can be performed safely, the variables and

constraints used within an application have to be compatible. If run time type information (RTTI) is

supported on your system, these casts can be performed safely.

The function coeff() is used within the framework when the row format of a constraint is computed,

e.g., when the linear program is set up, or a constraint is added to the linear program. When the

column associated with a variable is generated, then the virtual member function coeff() of the class

ABA VARIABLE is used, which is in contrast to the function coeff() of the class ABA CONSTRAINT not an

abstract function:

double ABA_VARIABLE::coeff(ABA_CONSTRAINT *con)

{

5.1. BASICS 41

return con->coeff(this);

}

This method of de�ning the coe�cients of the constraint matrix via the constraints of the matrix originates

from cutting plane algorithms. Whereas in a column generation algorithm we usually have a di�erent

view on the problem, i.e., the coe�cients of the constraint matrix are de�ned with the help of the

variables. In this case, it is appropriate to de�ne the function MYCONSTRAINT::coeff(ABA VARIABLE *v)

analogously to the function ABA VARIABLE::coeff(ABA CONSTRAINT *v) and to de�ne the the function

MYVARIABLE::coeff(ABA CONSTRAINT *v).

ABACUS provides two constraint/variable pairs in its application independent kernel. The most

simple one is where each variable is identi�ed by an integer number (class ABA NUMVAR) and each con-

straint is represented by its nonzero coe�cients and the corresponding number of the variables (class

ABA ROWCON). We use this constraint/variable pair for general mixed integer optimization problems.

The constraint/variable pair ABA NUMCON/ABA COLVAR is dual to the previous one. Here the constraints

are given by an integer number, but we store the nonzero coe�cients and the corresponding row numbers

for each variable. Therefore, this constraint/variable pair is useful for column generation algorithms.

ABACUS is not restricted to a single constraint/variable pair within one application. There can be

an arbitrary number of constraint and variable classes. It is only required that the coe�cients of the

constraint matrix can be safely computed for each constraint/variable pair.

5.1.2 The Master

There are two main reasons why we require a problem speci�c master of the optimization. The �rst reason

is that we have to embed problem speci�c data members like the problem formulation. The second reason

is the initialization of the �rst subproblem, i.e., the root node of the branch-and-bound tree has to be

initialized with a subproblem of the class MYSUB. Therefore, a problem speci�c master has to be derived

from the class ABA MASTER:

class MYMASTER : public ABA_MASTER {};

The Constructor

Usually, the input data is read from a �le by the constructor or they are speci�ed by the arguments of

the constructor.

From the constructor of the class MYMASTER the constructor of the base class ABA MASTER must be

called:

ABA_MASTER(const char *problemName, bool cutting, bool pricing,

ABA_OPTSENSE::SENSE optSense = ABA_OPTSENSE::Unknown,

double eps = 1.0e-4, double machineEps = 1.0e-7,

double infinity = 1.0e30);

Whereas the �rst three arguments are mandatory, the other ones are optional.

problemName The name of the problem being solved.

cutting If true, then cutting planes are generated.

pricing If true, then inactive variables are priced out.

optSense The sense of the optimization.

eps A zero-tolerance used within all member functions of objects that have a pointer

to this global object.

machineEps Another zero tolerance to compare a value of a oating point variable with

0. This value is usually less than eps, because eps includes some \safety"

tolerance, e.g., to test if a constraint is violated.

infinity All oating point numbers greater than infinity are regarded as \in�nitely

big".

42 CHAPTER 5. USING ABACUS

An optional argument of the constructor of the class ABA MASTER is the sense of the optimization. For

some problems (e.g., the binary cutting stock problem or the traveling salesman problem) the sense of

the optimization is already known when this constructor is called. For other problems (e.g, the mixed

integer optimization problem) the sense of the optimization is determined later when the input data is

read in the constructor of the speci�c application. In this case, the sense of the optimization has to be

initialized explicitly before the optimization is started with the function optimize().

The following example of a constructor for the class MYMASTER sets up the master for a branch-and-cut

algorithm and initializes the optimization sense explicitly as it is read from the input �le.

MYMASTER::MYMASTER(const char *problemName) :

ABA_MASTER(problemName, true, false),

{

// read the data from the file problemName

if (/* problemName is a minimization problem*/)

initializeOptSense(ABA_OPTSENSE::Min);

else

initializeOptSense(ABA_OPTSENSE::Max);

}

Initialization of the Constraints and Variables

The constraints and variables that are not generated dynamically, e.g., the degree constraints of the

traveling salesman problem or the constraints and variables of the problem formulation of a general

mixed integer optimization problem, have to be set up and inserted in pools in a member function of

the class MYMASTER. These initializations can be also performed in the constructor, but we recommend to

use the virtual dummy function initializeOptimization() for this purpose, which is called after the

optimization is started with the function optimize().

By default, ABACUS provides three di�erent pools: one for variables and two for constraints. The

�rst constraint pool stores the constraints that are not dynamically generated and with which the �rst

LP-relaxation of the �rst subproblem is initialized. The second constraint pool is empty at the beginning

and is �lled up with dynamically generated cutting planes. In general, ABACUS provides a more exible

pool concept to which we will come back later, but for many applications the default pools are su�cient.

After the initial variables and constraints are generated they have to be inserted into the default pools

by calling the function

virtual void initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_BUFFER<ABA_VARIABLE*> &variables,

int varPoolSize,

int cutPoolSize,

bool dynamicCutPool = false);

Here, constraints are the initial constraints, variables are the initial variables, varPoolSize is the

initial size of the variable pool, and cutPoolSize is the initial size of the cutting plane pool. The size

of the variable pool is always dynamic, i.e., this pool is increased if required. By default, the size of the

cutting plane pool is �xed, but it becomes dynamic if the argument dynamicCutPool is true.

There is second version of the function |initializePools()| that allows the insertion of an initial set

of cutting planes into the cut pool.

The function initializeOptimization() can be also used to determine a feasible solution by a

heuristic such that the primal bound can be initialized.

Hence, the function initializeOptimization() could look as follows under the assumption that

the functions nVar() and nCon() are de�ned in the class MYMASTER and return the number of variables

and the number of the constraints, respectively. In the example we initialize the size of the cut pool

with 2*nCon(). As the arguments of the constructors of the classes MYVARIABLE and MYCONSTRAINT are

problem speci�c we replace them by \. . . ".

5.1. BASICS 43

After the pools are set up the primal bound is initialized with the value of a feasible solution returned

by the function myHeuristic(). While the initialization of the pools is mandatory the initialization of

the primal bound is optional.

void MYMASTER::initializeOptimization()

{

ABA_BUFFER<ABA_VARIABLE*> variables(this, nVar());

for (int i = 0; i < nVar(); i++)

variables.push(new MYVARIABLE(...));

ABA_BUFFER<ABA_CONSTRAINT*> constraints(this, nCon());

for (i = 0; i < nCon(); i++)

constraints.push(new MYCONSTRAINT(...));

initializePools(constraints, variables, nVar(), 2*nCon());

primalBound(myHeuristic());

}

The First Subproblem

The root of the branch-and-bound tree has to be initialized with an object of the problem speci�c

subproblem class MYSUB, which is derived from the class ABA SUB. This initialization must be performed

by a de�nition of the pure virtual function firstSub(), which returns a pointer to the �rst subproblem.

In the following example we assume that the constructor of the class MYSUB for the root node of the

enumeration tree has only a pointer to the associated master as argument.

ABA_SUB *MYMASTER::firstSub()

{

return new MYSUB(this);

}

5.1.3 The Subproblem

Finally, we have to derive a problem speci�c subproblem from the class ABA SUB:

class MYSUB : public ABA_SUB {};

Besides the constructors only two pure virtual functions of the base class ABA SUB have to be de�ned,

which check if a solution of the LP-relaxation is a feasible solution of the mixed integer optimization

problem, and generate the sons after a branching step, respectively. Moreover, the main functionality of

the problem speci�c subproblem is to enhance the branch-and-bound algorithm with dynamic variable

and constraint generation and sophisticated primal heuristics.

The Constructors

The class ABA SUB has two di�erent constructors: one for the root node of the optimization and one for

all other subproblems of the optimization. This di�erentiation is required as the constraint and variable

set of the root node can be initialized explicitly, whereas for the other nodes this data is copied from the

father node and possibly modi�ed by a branching rule. Therefore, we also have to implement these two

constructors for the class MYSUB.

The root node constructor for the class ABA SUB must be called from the root node constructor of the

class MYSUB.

ABA_SUB(ABA_MASTER *master,

double conRes, double varRes, double nnzRes,

bool relativeRes = true,

ABA_BUFFER<ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *> *constraints = 0,

ABA_BUFFER<ABA_POOLSLOT<ABA_VARIABLE, ABA_CONSTRAINT> *> *variables = 0);

44 CHAPTER 5. USING ABACUS

master A pointer to the corresponding master of the optimization.

conRes The additional memory allocated for constraints.

varRes The additional memory allocated for variables.

nnzRes The additional memory allocated for nonzero elements of the constraint matrix.

relativeRes If this argument is true, then reserve space for variables, constraints, and nonzeros of

the previous three arguments is given in percent of the original numbers. Otherwise,

the numbers are interpreted as absolute values (casted to integer).

constraints The pool slots of the initial constraints. If the value is 0, then all constraints of the

default constraint pool are taken.

variables The pool slots of the initial variables. If the value is 0, then all variables of the

default variable pool are taken.

The values of the arguments conRes, varRes, and nnzRes should only be good estimations. An under-

estimation does not cause a run time error, because space is reallocated internally as required. However,

many reallocations decrease the performance. If the \Number of Cplex reinitializations" in the statistics

output is high compared to the total number of linear programs, then the estimated values should be

corrected. An overestimation only wastes memory.

In the following implementation of a constructor for the root node we do not specify additional memory

for variables, because we suppose that no variables are generated dynamically. We accept the default

settings of the last three arguments, as this is normally a good choice for many applications.

MYSUB::MYSUB(MYMASTER *master) :

ABA_SUB(master, 50.0, 0.0, 100.0)

{ }

While there are some alternatives for the implementation of the root node for the application, the con-

structor of non-root nodes has usually the same form for all applications, but might be augmented with

some problem speci�c initializations.

MYSUB::MYSUB(ABA_MASTER *master, ABA_SUB *father, ABA_BRANCHRULE *branchRule) :

ABA_SUB(master, father, branchRule)

{}

master A pointer to the corresponding master of the optimization.

father A pointer to the father in the enumeration tree.

branchRule The rule de�ning the subspace of the solution space associated with this node.

More information about branching rules can be found in Section 5.2.7. As long

as you are using only the default branching on variables you do not have to

know anything about the class ABA BRANCHRULE.

The root node constructor for the class MYSUB has to be called from the function firstSub() of the

class MYMASTER. The constructor for non-root nodes has to be called in the function generateSon() of

the class MYSUB.

The Feasibility Check

After the LP-relaxation is solved we have to check if its optimum solution is a feasible solution of our

optimization problem. Therefore, we have to de�ne the pure virtual function feasible() in the class

MYSUB, which should return true if the LP-solution is a feasible solution of the optimization problem,

and false otherwise:

bool MYSUB::feasible()

{}

If all constraints of the integer programming formulation are present in the LP-relaxation, then the LP-

solution is feasible if all discrete variables have integer values. This check can be performed by calling

the member function integerFeasible() of the base class ABA SUB:

5.1. BASICS 45

bool MYSUB::feasible()

{

return integerFeasible();

}

If the LP-solution is feasible and its value is better than the primal bound, then ABACUS automatically

updates the primal bound. However, the update of the solution itself is problem speci�c, i.e., this update

has to be performed within the function feasible().

The Generation of the Sons

Like the pure virtual function firstSub() of the class ABA MASTER, which generates the root node of the

branch-and-bound tree, we need a function generating a son of a subproblem. This function is required as

the nodes of the branch-and-bound tree have to be identi�ed with a problem speci�c subproblem of the

class MYSUB. This is performed by the pure virtual function generateSon(), which calls the constructor

for a non-root node of the class MYSUB and returns a pointer to the newly generated subproblem. If

the constructor for non-root nodes of the class MYSUB has the same arguments as the corresponding

constructor of the base class ABA SUB, then the function generateSon() can have the following form:

ABA_SUB *MYSUB::generateSon(ABA_BRANCHRULE *rule)

{

return new MYSUB(master_, this, rule);

}

This function is automatically called during a branching process. If the already built-in branching strate-

gies are used, we do not have to care about the generation of the branching rule rule. How other

branching strategies can be implemented is presented in Section 5.2.7.

A Branch-and-Bound Algorithm

The two constructors, the function feasible(), and the function generateSon() must be implemented

for the subproblem class of every application. As soon as these functions are available, a branch-and-

bound algorithm can be performed. All other functions of the class MYSUB that we are going to explain

now, are optional in order to improve the performance of the implementation.

The Separation

Problem speci�c cutting planes can be generated by rede�ning the virtual dummy function separate().

In this case, also the argument cutting in the constructor of the class ABA MASTER should receive the value

true, otherwise the separation is skipped. The �rst step is the rede�nition of the function separate()

of the base class ABA SUB.

int MYSUB::separate()

{ }

The function separate() returns the number of generated constraints.

We distinguish between the separation from scratch and the separation from a constraint pool. Newly

generated constraints have to be added by the function addCons() to the bu�er of the class ABA SUB,

which returns the number of added constraints. Constraints generated in earlier iterations that have

been become inactive in the meantime might be still contained in the cut pool. These constraints can

be regenerated by calling the function constraintPoolSeparation(), which adds the constraints to the

bu�er without an explicit call of the function addCons().

A very simple separation strategy is implemented in the following example of the function separate().

Only if the pool separation fails, we generate new cuts from scratch. The generated constraints are

added with the function addCons() to the internal bu�er, which has a limited size. The number of

constraints that can still be added to this bu�er is returned by the function conBufferSpace(). The

46 CHAPTER 5. USING ABACUS

function mySeparate() performs here the application speci�c separation. If more cuts are added with

the function addCons() than there is space in the internal bu�er for cutting planes, then the redundant

cuts are discarded. The function addCons() returns the number of actually added cuts.

int MYSUB::separate()

{

int nCuts = constraintPoolSeparation();

if (!nCuts) {

ABA_BUFFER<ABA_CONSTRAINT*> newCuts(master_, conBufferSpace());

nCuts = mySeparate(newCuts);

if (nCuts) nCuts = addCons(newCuts);

}

return nCuts;

}

Note, ABACUS does not automatically check if the added constraints are really violated. Adding only

non-violated constraints, can cause an in�nite loop in the cutting plane algorithm, which is only left if

the tailing o� control is turned on (see Section 5.2.26).

While constraints added with the function addCons() are usually allocated by the user, they are

deleted by ABACUS. They must not be deleted by the user (see Section 5.2.13).

If not all constraints of the integer programming formulation are active, and all discrete variables have

integer values, then the solution of a separation problem might be required to check the feasibility of the

LP-solution. In order to avoid a redundant call of the same separation algorithm later in the function

separate(), constraints can be added already here by the function addCons().

In the following example of the function feasible() the separation is even performed if there are

discrete variables with fractional values such that the separation routine does not have to be called a

second time in the function separate().

bool MYSUB::feasible()

{

bool feasible;

if (integerFeasible()) feasible = true;

else feasible = false;

ABA_BUFFER<ABA_CONSTRAINT*> newCuts(master_, conBufferSpace());

int nSep = mySeparate(newCuts);

if (nSep) {

feasible = false;

addCons(newCuts);

}

return feasible;

}

Pricing out Inactive Variables

The dynamic generation of variables is performed very similarly to the separation of cutting planes. Here,

the virtual function pricing() has to be rede�ned and the argument pricing in the constructor of the

class ABA MASTER should receive the value true, otherwise the pricing is skipped.

We illustrate the rede�nition of the function pricing() by an example that is an analogon to the

example given for the function separate().

5.1. BASICS 47

int MYSUB::pricing()

{

int nNewVars = variablePoolSeparation();

if (!nNewVars) {

ABA_BUFFER<ABA_VARIABLE*> newVariables(master_, addVarBufferSpace());

nNewVars = myPricing(newVariables);

if (nNewVars) nNewVars = addVars(newVariables);

}

return nNewVars;

}

While variables added with the function addVars() are usually allocated by the user, they are deleted

by ABACUS. They must not be deleted by the user (see Section 5.2.13).

Primal Heuristics

After the LP-relaxation has been solved in the subproblem optimization the virtual function improve()

is called. Again, the default implementation does nothing but in a rede�nition in the derived class MYSUB

application speci�c primal heuristics can be inserted:

int MYSUB::improve(double &primalValue)

{ }

If a better feasible solution is found its value has to be stored in primalValue and the function should

return 1, otherwise it should return 0. In this case, the value of the primal bound is updated by ABACUS,

whereas the solution itself has to be updated within the function improve() as already explained for the

function feasible().

It is also possible to update the primal bound already within the function improve() if this is more

convenient to reduce internal bookkeeping. In the following example we apply the two problem speci�c

heuristics myFirstHeuristic() and mySecondHeuristic(). After each heuristic we check if the value of

the solution is better than the best known one with the function call master ->betterPrimal(value). If

this function returns true we update the value of the best known feasible solution by calling the function

master ->primalBound().

int MYSUB::improve(double &primalValue)

{

int status = 0;

double value;

myFirstHeuristic(value);

if (master_->betterPrimal(value)) {

master_->primalBound(value);

primalValue = value;

status = 1;

}

mySecondHeuristic(value);

if (master_->betterPrimal(value)) {

master_->primalBound(value);

primalValue = value;

status = 1;

}

return status;

}

48 CHAPTER 5. USING ABACUS

Accessing Important Data

For a complete description of all members of the class ABA SUB we refer to the documentation in the

reference manual. However, in most applications only a limited number of data is required for the

implementation of problem speci�c functions, like separation or pricing functions. For simpli�cation we

want to state some of these members here:

int nCon() const; returns the number of active constraints.

int nVar() const; returns the number of active variables.

ABA VARIABLE *variable(int i); returns a pointer to the i-th active variable.

ABA CONSTRAINT *constraint(int i); returns a pointer to the i-th active constraint.

double *xVal ; an array storing the values of the variables after the

linear program is solved.

double *yVal an array storing the values of the dual variables after

the linear program is solved.

5.1.4 Starting the Optimization

After the problem speci�c classes are de�ned as discussed in the previous sections, the optimization can

be performed with the following main program. We suppose that the master of our new application has

as only parameter the name of the input �le.

#include "mymaster.h"

int main(int argc, char **argv)

{

MYMASTER master(argv[1]);

master.optimize();

return master.status();

}

If ABACUS is used on Windows NT together with Cplex, the Cplex DLL must be loaded at the beginning

and unloaded at the end of the main program. For details we refer to the Cplex documentation and the

example program of the ABACUS distribution.

5.2. ADVANCED FEATURES 49

5.2 Advanced Features

In the previous section we described the �rst steps for the implementation of a linear-programming based

branch-and-bound algorithm with ABACUS. Now, we present several advanced features of ABACUS.

We show how various built-in strategies can be used instead of the default strategies and how new problem

speci�c concepts can be integrated.

5.2.1 Using other Pools

By default, ABACUS provides one variable pool, one constraint pool for constraints of the problem

formulation, and another constraint pool for cutting planes. For certain applications the implementation

of a di�erent pool concept can be advantageous. Suppose we would like to provide two di�erent pools

for cutting planes for our application instead of our default cutting plane pool. These pools have to be

declared in the class MYMASTER and we also provide two public functions returning pointers to these pools.

class MYMASTER : public ABA_MASTER {

public:

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *myCutPool1()

{

return myCutPool1_;

}

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *myCutPool2()

{

return myCutPool2_;

}

private:

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *myCutPool1_;

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *myCutPool2_;

};

Now, instead of the default cutting plane pool we set up our two problem speci�c cut pools in the func-

tion initializeOptimization(). This is done by using 0 as last argument of the function initialize-

Pools(), which sets the size of the default cut pool to 0. The size of the variable pool is chosen arbitrarily.

Then, we allocate the memory for our pools. For simpli�cation, we suppose that the size of each cut pool

is 1000.

void MYMASTER::initializeOptimization()

{

// initialize the constraints and variables

initializePools(constraints, variables, 3*variables.number(), 0);

myCutPool1_ = new ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE>(this, 1000);

myCutPool2_ = new ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE>(this, 1000);

}

The following rede�nition of the function separate() shows how constraints can be separated from and

added to our pools instead of the default cut pool. If a pointer to a pool is speci�ed as an argument of

the function constraintPoolSeparation(), then constraints are regenerated from this pool instead of

the default cut pool. By specifying a constraint pool as the second argument of the function addCons()

the constraints are added to this pool instead of the default cut pool. As the member master of the

base class ABA SUB is a pointer to an object of the class ABA MASTER we require an explicit cast to call

the member functions myCutPool1() and myCutPool2() of the class MYMASTER.

int MYSUB::separate()

{

50 CHAPTER 5. USING ABACUS

ABA_BUFFER<ABA_CONSTRAINT*> newCuts(master_, 100);

int nCuts = constraintPoolSeparation(0, ((MYMASTER*) master_)->myCutPool1());

if (!nCuts) {

nCuts = mySeparate1(newCuts);

if (nCuts) nCuts = addCons(newCuts, ((MYMASTER*) master_)->myCutPool1());

}

if (!nCuts) {

nCuts = constraintPoolSeparation(0, ((MYMASTER*) master_)->myCutPool2());

if (!nCuts) {

nCuts = mySeparate2(newCuts);

if (nCuts) nCuts = addCons(newCuts, ((MYMASTER*) master_)->myCutPool2());

}

}

return nCuts;

}

Using application speci�c variable pools can be done in an analogous way with the two functions

variablePoolSeparation() and addVars().

5.2.2 Pool without Multiple Storage of Items

One of the data structures using up very large parts of the memory are the pools for constraints and

variables. Limiting the size of the pool has two side e�ects. First, pool separation or pricing is less

powerful with a small pool. Second, the branch-and-bound tree might be processed with reduced speed,

since subproblems cannot be initialized with the constraint and variable system of the father node.

On the other hand it can be observed that the same constraint or variable is generated several times in

the course of the optimization. This could be avoided by scanning completely the pool before separating or

pricing from scratch. But, if direct separation or pricing are fast, such a strategy can be less advantageous.

Therefore ABACUS provides the template class ABA NONDUPLPOOL that avoids storing the same con-

straint or variable more than once in a pool. More precisely, when an item is inserted in such a pool,

the inserted item is compared with the already available items. If it is already present in the pool, the

inserted item is deleted and replaced by the already available item.

In order to use this pool, you have to set up your own pool as explained in Section 5.2.1. Instead

of a ABA STANDARDPOOL you have to use now an ABA NONDUPLPOOL. For constraints or variables that are

inserted in a pool of the template class ABA NONDUPLPOOL, the virtual functions hashKey, name, and equal

of the base class ABA CONVAR have to be rede�ned. These functions are used in the comparison of a new

item and the items that are already stored in the pool. For the details of these functions we refer to the

reference manual.

5.2.3 Constraints and Variables

We discussed the concept of expanding and compressing constraints and variables already in Section 4.2.4.

This feature can be activated for a speci�c constraint or variable class if the virtual dummy functions

expand() and compress() are rede�ned. Here we give an example for constraints, but it can be applied

to variables analogously. We discussed the expanded and compressed format of the subtour elimination

constraints already in Section 4.2. The nodes de�ning the subtour elimination constraint are contained

in the bu�er nodes . When the constraint is expanded each node of the subtour elimination constraint

is marked.

void SUBTOUR::expand()

{

if(expanded()) return;

marked_ = new bool[graph_->nNodes() + 1];

int nGraph = graph_->nNodes();

5.2. ADVANCED FEATURES 51

for (int v = 1; v <= nGraph; v++)

marked_[v] = false;

int nNodes = nodes_.size();

for (int v = 0; v < nNodes; v++)

marked_[nodes_[v]] = true;

}

For the compression of the constraint only the allocated memory is deleted.

void SUBTOUR::compress()

{

if (!expanded()) return;

delete marked_;

}

Constraints

Often, the de�nition of constraint speci�c expanded and compressed formats provides already su�ciently

e�cient running times for the generation of the row format, the computation of the slack of a given

LP-solution, or the check if the constraint is violated.

If nevertheless further tuning is required, then the functions genRow() and slack() can be rede�ned.

The function

virtual int genRow(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,

ABA_ROW &row);

stores the row format associated with the variable set variables in row and returns the number of

nonzero coe�cients stored in row.

The function

virtual double slack(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,

double *x);

returns the slack of the vector x associated with the variable set variables. Instead of rede�ning the

function violated() due to performance issues, the function slack() should be rede�ned because this

function is called from the function violated() and uses most of the joint running time.

Variables

The equivalents of the class ABA VARIABLE to the functions genRow() and slack() of the class ABA CON-

STRAINT are the functions genColumn() and redCost(). Also for these two functions a rede�nition due

to performance reasons can be considered if the expansion/compression concept is not su�cient or cannot

be applied.

The function

virtual int genColumn(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *constraints,

ABA_COLUMN &col);

stores the column format of the variable associated with the constraint set constraints in the argument

col and returns the number of nonzero coe�cients stored in col.

The function

virtual double redCost(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *constraints,

double *y);

returns the reduced cost of the variable corresponding to the dual variables y of the active constraints

constraints. As a rede�nition of the virtual member function slack() of the class ABA CONSTRAINT

might speed up the function violated(), also a rede�nition of the function redCost() can speed up the

function violated() of the class ABA VARIABLE.

52 CHAPTER 5. USING ABACUS

5.2.4 Infeasible Linear Programs

As long as we do not generate variables dynamically, a subproblem can be immediately fathomed if the

LP-relaxation is infeasible. However, if not all variables are active we have to check if the addition of

an inactive variable can restore the feasibility. An infeasibility can either be detected when the linear

program is set up, or later by the LP-solver (see [Thi95]).

If �xed and set variables are eliminated, it might happen when the row format of a constraint is

generated in the initialization of the linear program that a constraint has a void left hand side but can

never be satis�ed due to its right hand side. In this case, the function

virtual int initMakeFeas(ABA_BUFFER<ABA_INFEASCON*> &infeasCon,

ABA_BUFFER<ABA_VARIABLE*> &newVars,

ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> **pool);

is called. The default implementation always returns 1 to indicate that no variables could be added to

restore feasibility. If it might be possible that in our application the addition of variables could restore

the feasibility, then this function has to be rede�ned in a derived class.

The bu�er infeasCon stores pointers to objects storing the infeasible constraints and the kind of

infeasibility. The new variables should be added to the bu�er newVars, and if the variables should be

added to an other pool than the default variable pool, then a pointer to this pool should be assigned to

*pool. If variables have been added that could restore the feasibility for all infeasible constraints, then

the function should return 0, otherwise it should return 1.

If an infeasible linear program is detected by the LP-solver, then the function

virtual int makeFeasible();

is called. The default implementation of the virtual dummy function does nothing except returning 1

in order to indicate that the feasibility cannot be restored. Otherwise, an iteration of the dual simplex

method has to be emulated according to the algorithm outlined in [Thi95]. When the function is called it

is guaranteed that the current basis is dual feasible. Exactly one of the member variables infeasVar or

infeasCon of the class ABA SUB is nonnegative. If infeasVar is nonnegative, then it holds the number

of an infeasible variable, if infeasCon is nonnegative, then it holds the number of an infeasible slack

variable. The array bInvRow stores the row of the basis inverse corresponding to the infeasible variable

(only basic variables can be infeasible). Then the inactive variables have to be scanned like in the function

pricing(). Variables that might restore the feasibility have to be added by the function addCons(). If

no such candidate is found the subproblem can be fathomed.

5.2.5 Other Enumeration Strategies

With the parameter EnumerationStrategy in the �le .abacus the enumeration strategies best-�rst

search, breadth-�rst search, depth-�rst search, and a diving strategy can be controlled (see Section 5.2.26).

Another problem speci�c enumeration strategy can be implemented by rede�ning the virtual function

virtual int enumerationStrategy(ABA_SUB *s1, ABA_SUB *s2);

which compares the two subproblems s1 and s2 and returns 1 if the subproblem s1 should be processed

before s2, returns �1 if the subproblem s2 should be processed before s1, and returns 0 if the two

subproblems have the same precedence in the enumeration.

We provide again an implementation of the depth-�rst search strategy as an example for a reimple-

mentation of the function enumerationStrategy().

int MYMASTER::enumerationStrategy(ABA_SUB *s1, ABA_SUB *s2)

{

if(s1->level() > s2->level()) return 1;

if(s1->level() < s2->level()) return -1;

return 0;

}

5.2. ADVANCED FEATURES 53

In the default implementation of the depth-�rst search strategy we do not return 0 immediately if the

two subproblems have the same level in the enumeration tree, but we call the virtual function

int ABA_MASTER::equalSubCompare(ABA_SUB *s1, ABA_SUB *s2);

which return 0 if both subproblems have not been generated by setting a binary variable. Otherwise, that

subproblem has higher priority where the branching variable is set to the upper bound, i.e., it returns 1

if the branching variable of s1 is set to the upper bound, �1 if the branching variable of s2 is set to the

upper bound, and 0 otherwise. Other strategies for resolving equally good subproblems for the built-in

enumeration strategies depth-�rst search and best-�rst search can be implemented by a rede�nition of

this virtual function. Moreover, this function can also be generalized for other enumeration strategies.

5.2.6 Selection of the Branching Variable

The default branching variable selection strategy can be changed by the rede�nition of the virtual function

int ABA_SUB::selectBranchingVariable(int &variable);

in a class derived from the class ABA SUB. If a branching variable is found it has to be stored in the

argument variable and the function should return 0. If the function fails to �nd a branching variable,

it should return 1. Then, the subproblem is automatically fathomed.

Here we present an example where the �rst fractional variable is chosen as branching variable. In

general, this is not a very good strategy.

int MYSUB::selectBranchingVariable(int &variable)

{

for (int i = 0; i < nVar(); i++)

if (fracPart(xVal_[i]) > master_->machineEps()) {

variable = i;

return 0;

}

return 1;

}

The function fracPart(double x) returns the absolute value of the fractional part of x.

5.2.7 Using other Branching Strategies

Although branching on a variable is often an adequate strategy for branch-and-cut algorithms, it is in

general useless for branch-and-price algorithms. But also for branch-and-cut algorithms other branching

strategies, e.g., branching on a constraint can be interesting alternatives.

For the implementation of di�erent branching strategies we have introduced the concept of branching

rules in the class ABA BRANCHRULE (see Section 4.2.7). The virtual function

int ABA_SUB::generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*> &rules);

returns 0 if it can generate branching rules and stores for each subproblem, that should be generated,

a branching rule in the bu�er rules. If no branching rules can be generated, this function returns 1

and the subproblem is fathomed. The default implementation of the function generateBranchRules()

generates two rules for two new subproblems by branching on a variable. These rules are represented

by the classes ABA SETBRANCHRULE for binary variables and ABA BOUNDBRANCHRULE for integer variables,

which are derived from the abstract class ABA BRANCHRULE. Moreover, we provide also rules for branching

on constraints (ABA CONBRANCHRULE), and for branching by setting an integer variable to a �xed value

(ABA VALBRANCHRULE). Other branching rules have to be derived from the class ABA BRANCHRULE. The

default branching strategy can be replaced by the rede�nition of the virtual function generateBranch-

Rules() in a class derived from the class ABA SUB.

54 CHAPTER 5. USING ABACUS

Branching on a Variable

The default branching strategy of ABACUS is branching on a variable. Di�erent branching variable

selection strategies can be chosen in the parameter �le (see Section 5.2.26). If a problem speci�c

branching variable selections strategy should be implemented it is not required to rede�ne the function

ABA SUB::generateBranchRule(), but a rede�nition of the function

int ABA_SUB::selectBranchingVariable(int &variable)

is su�cient. If a branching variable is found it should be stored in the function argument variable and

selectBranchingVariable() should return 0, otherwise it should return 1.

If no branching variable is found, the subproblem is fathomed.

Branching on a Constraint

As all constraints used in ABACUS, also branching constraints have to be inserted in a pool. The

function ABA POOL::insert() returns a pointer to the pool slot the constraint is stored in that is required

in the constructor of ABA CONBRANCHRULE. Although the default cut pool can be used for the branching

constraints, an extra pool for branching constraints is recommended, because �rst no redundant work in

the pool separation is performed, and second the branching constraint pool should be dynamic such that

all branching constraints can be inserted. This pool for the branching constraints should be added to

your derived master class. It is su�cient that the size of the branching pool is only a rough estimation.

If the branching pool is dynamic, it will increase automatically if required.

class MYMASTER : ABA_MASTER {

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *branchingPool_;

}

MYMASTER::MYMASTER(const char *problemName) :

ABA_MASTER(problemName, true, false)

{

branchingPool_ = new ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE>(this,

size,

true);

}

MYMASTER::~MYMASTER()

{

delete branchingPool_;

}

The constraint branching rules have to be generated in the function MYSUB::generateBranchRules(). It

might be necessary to introduce a new class derived from the class ABA CONSTRAINT for the representation

of your branching constraint. For simpli�cation we assume here that your branching constraint is also of

type MYCONSTRAINT. Each constraint is added to the branching pool.

If the generation of branching constraints failed, you might try to resort to the standard branching

on variables.

int MYSUB::generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*> &rules)

{

if (/* branching constraints can be found */) {

ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *poolSlot;

/* generate the branching rule for the first new subproblem */

MYCONSTRAINT *constraint1 = new MYCONSTRAINT(...);

5.2. ADVANCED FEATURES 55

poolSlot = ((MYMASTER *) master_)->branchingPool_->insert(constraint1);

rules.push(new ABA_CONBRANCHRULE(master_, poolSlot);

/* generate the branching rule for the second new subproblem */

MYCONSTRAINT *constraint2 = new MYCONSTRAINT(...);

poolSlot = ((MYMASTER *) master_)->branchingPool_->insert(constraint2);

rules.push(new ABA_CONBRANCHRULE(master_, poolSlot);

return 0;

}

else

return ABA_SUB::generateBranchRules(rules); // resort to standard branching

}

Moreover, a branching constraint should be locally valid and not dynamic. This has to be speci�ed

when calling the constructor of the base class ABA CONSTRAINT. Of course, the subproblem de�ned by the

branching constraint is not available at the time when the branching constraint is generated. However, any

locally valid constraint requires an associated subproblem in the constructor. Therefore, the (incorrect)

subproblem in which the branching constraint is generated should be used. ABACUS will modify the

associated subproblem later in the constructor of the subproblem generated with the constraint branching

rule.

When the subproblem generated by the branching constraint is activated at the beginning of its

optimization the branching constraint is not immediately added to the linear program and the active

constraints, but it is inserted into the bu�er for added constraints similarly as cutting planes are added

(see Section 5.2.16).

Problem Speci�c Branching Rules

A problem speci�c branching rule is introduced by the derivation of a new class MYBRANCHRULE from

the base class ABA BRANCHRULE. As example we show how a branching rule for setting a variable to its

lower or upper bound is implemented. This example has some small di�erences to the ABACUS class

ABA SETBRANCHRULE.

class MYBRANCHRULE : public ABA_BRANCHRULE {

public:

MYBRANCHRULE(ABA_MASTER *master, int variable, ABA_FSVARSTAT::STATUS status);

virtual ~MYBRANCHRULE();

virtual int extract(ABA_SUB *sub);

private:

int variable_; // the branching variable

ABA_FSVARSTAT::STATUS status_; // the status of the branching variable

};

The constructor initializes the branching variable and its status (ABA FSVARSTAT::SetToLowerBound or

ABA FSVARSTAT::SetToUpperBound).

MYBRANCHRULE::MYBRANCHRULE(ABA_MASTER *master,

int variable,

ABA_FSVARSTAT::STATUS status) :

ABA_BRANCHRULE(master),

variable_(variable),

status_(status)

{ }

56 CHAPTER 5. USING ABACUS

MYBRANCHRULE::~MYBRANCHRULE()

{ }

The pure virtual function extract() of the base class ABA BRANCHRULE has to be de�ned in every new

branching rule. This function is called when the subproblem is activated at the beginning of its opti-

mization. During the activation of the subproblem a copy of the �nal constraint and variable system

of the father subproblem is made. The function extract() should modify this system according to the

branching rule.

In our example we �rst check if setting the branching variable causes a contradiction. In this case we

return 1 in order to indicate that the subproblem can be fathomed immediately. Otherwise we set the

branching variable and return 0.

int MYBRANCHRULE::extract(ABA_SUB *sub)

{

if (sub->fsVarStat(variable_)->contradiction(status_))

return 1;

sub->fsVarStat(variable_)->status(status_);

return 0;

}

As a second example for the design of a branching rule we show how the constraint branching rule of

ABACUS is implemented. After inserted the branching constraint in a pool slot the constraint branching

rule can be constructed with this pool slot.

class ABA_CONBRANCHRULE : public ABA_BRANCHRULE {

public:

ABA_CONBRANCHRULE(ABA_MASTER *master,

ABA_POOLSLOT<ABA_CONSTRAINT,

ABA_VARIABLE> *poolSlot);

virtual ~ABA_CONBRANCHRULE();

virtual int extract(ABA_SUB *sub);

private:

ABA_POOLSLOTREF<ABA_CONSTRAINT, ABA_VARIABLE> poolSlotRef_;

};

ABA_CONBRANCHRULE::ABA_CONBRANCHRULE(ABA_MASTER *master,

ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *poolSlot) :

ABA_BRANCHRULE(master),

poolSlotRef_(poolSlot)

{ }

ABA_CONBRANCHRULE::~ABA_CONBRANCHRULE()

{ }

In the function extract() the branching constraint is added to the subproblem. This should always

be done with the function ABA SUB::addBranchingConstraint(). Since adding a branching constraint

cannot cause a contradiction, we always return 0.

int ABA_CONBRANCHRULE::extract(ABA_SUB *sub)

{

if (sub->addBranchingConstraint(poolSlotRef_.slot())) {

master_->err() << "ABA_CONBRANCHRULE::extract(): addition of branching ";

master_->err() << "constraint to subproblem failed." << endl;

5.2. ADVANCED FEATURES 57

exit(Fatal);

}

return 0;

}

5.2.8 Strong Branching

In order to reduce the size of the enumeration tree, it is important to select \good" branching rules. We

present a framework for measuring the quality of the branching rules. First, we describe the basic idea

and explain the details later.

A branching step is performed by generating a set of branching rules, each one de�nes a son of the

current subproblem. We call such a set of branching rules a sample. For instance, if we branch on a single

binary variable, the corresponding sample consists of two branching rules, one de�ning the subproblem

in which the branching variable is set to the upper bound, the other one the subproblem in which the

branching variable is set to the lower bound. Instead of generating a single branching sample, it is now

possible to generate a set of branching samples and selecting from this set the \best" sample for generating

the sons of the subproblem. In this evaluation process for each branching rule of each branching sample

a rank is computed. In the default implementation this rank is given by performing a limited number

of iterations of the dual simplex method for the �rst linear program of the subproblem de�ned by the

branching rule. For maximization problems we select that sample for which the maximal rank of its rules

is minimal. For minimization problems we select that sample for which the minimal rank of its rules is

maximal.

Both the computation of the ranks and the comparison of the rules can be adapted to problem speci�c

criteria.

Default Strong Branching

Strong branching can be turned on for the built-in branching strategies that are controlled by the parame-

ter BranchingStrategy of the con�guration �le. With the parameter NBranchingVariableCandidates

the number of tested branching variables can be indicated (see also Section 5.2.26).

Strong Branching with Special Branching Variable Selection

In order to use strong branching in combination with a problem speci�c branching variable selection

strategy, it is only necessary to rede�ne the virtual function

int ABA_SUB::selectBranchingVariableCandidates(ABA_BUFFER<int> &candidates)

in the problem speci�c subproblem class. In the bu�er candidates the indices of the variables that

should be tested as branching variables are collected. If at least one candidate is found, the function

should return 1, otherwise 0.

ABACUS tests all candidates by solving (partially) the �rst linear program of all potential sons and

selects the branching variable as previously explained.

Ranking Branching Rules

In the default version the rank of a branching rule is computed by the function lpRankBranchingRule().

The rank can be determined di�erently by rede�ning the virtual function

double ABA_SUB::rankBranchingRule(ABA_BRANCHRULE *branchRule)

that returns a oating point number associated with the rank of the branchRule.

58 CHAPTER 5. USING ABACUS

Comparing Branching Samples

After a rank to each rule of each branching sample has been assigned by the function rankBranching-

Rule() all branching samples are compared and the best one is selected. This comparison is performed

by the virtual function

int ABA_SUB::compareBranchingSampleRanks(ABA_ARRAY<double> &rank1,

ABA_ARRAY<double> &rank2)

that compares the ranks rank1 of all rules of one branching sample with the ranks rank2 of the rules of

another branching sample. It returns 1 if the ranks stored in rank1 are better, 0 if both ranks are equal,

and -1 if the ranks stored in rank2 are better.

For maximization problems in the default version of compareBranchingSampleRanks() the array

rank1 is better if its maximal entry is less than the maximal entry of rank2 (min-max criteria). For

minimization problems rank1 is better if its minimal entry is greater than the minimal entry of rank2

(max-min criteria).

Problem speci�c orders of the ranks of branching samples can be implemented by rede�ning the virtual

function compareBranchingSampleRanks().

Selecting Branching Samples

If the rede�nition of the function compareBranchingSample() is not adequate for a problem speci�c

selection of the branching sample, then the virtual function

int ABA_SUB::selectBestBranchingSample(int nSamples,

ABA_BUFFER<ABA_BRANCHRULE*> **samples)

can be rede�ned. The number of branching samples is given by the integer number nSamples, the array

samples stores pointers to bu�ers storing the branching rules of the samples. The function should return

the number of the best branching sample.

Strong Branching with other Branching Rules

As explained in Section 5.2.7 other branching strategies than branching on variables can be chosen by

rede�ning the virtual function

int ABA_SUB::generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*> &rules);

in the problem speci�c subproblem class. Instead of generating immediately a single branching sample

and storing it in the bu�er rules it is possible to generate �rst a set of samples and selecting the best

one by calling the function

int ABA_SUB::selectBestBranchingSample(int nSamples,

ABA_BUFFER<ABA_BRANCHRULE*> **samples).

For problem speci�c branching rules that are not already provided by ABACUS, but derived from the

base class ABA BRANCHRULE, it is necessary to rede�ne the virtual function

void ABA_BRANCHRULE::extract(ABA_LPSUB *lp)

if the ranks of the branching rules are computed by solving the �rst linear program of the potential sons

as ABACUS does in its default version. Similar as the function

int ABA_BRANCHRULE::extract(SUB *sub)

(see Section 5.2.7) modi�es the subproblem according to the branching rule, the virtual function

void extract(ABA_LPSUB *lp)

5.2. ADVANCED FEATURES 59

should modify the linear programming relaxation in order to evaluate the branching rule.

In addition the virtual function

void ABA_BRANCHRULE::unextract(ABA_LPSUB *lp)

must also be rede�ned. It should undo the modi�cations of the linear programming relaxation performed

by extract(ABA LPSUB *lp).

5.2.9 Activating and Deactivating a Subproblem

Entry points at the beginning and at the end of the subproblem optimization are provided by the functions

activate() and deactivate().

5.2.10 Calling ABACUS Recursively

The separation or pricing problem in a branch-and-bound algorithm can again be a mixed integer opti-

mization problem. In this case, it might be appropriate to solve this problem again with an application of

ABACUS. The pricing problem of a solver for binary cutting stock problems, e.g., is under certain con-

ditions a general mixed integer optimization problem [VBJN94]. The following example shows how this

part of the function pricing() could look like for the binary cutting stock problem. First, we construct

an object of the class LPFORMAT, storing the pricing problem formulated as a mixed integer optimization

problem, then we initialize the solver of the pricing problem. The class MIP is derived from the class

ABA MASTER for the solution of general mixed integer optimization problems (the classes LPFORMAT and

MIP are not part of the ABACUS kernel but belong to a not publicly available ABACUS application).

After the optimization we retrieve the value of the optimal solution.

LPFORMAT knapsackProblem(master_, nOrigVar_, 1 + nSosCons_, &optSense,

origObj_, lBound, uBound, varType, constraints);

MIP *knapsackSolver = new MIP(&knapsackProblem, "CSP-Pricer");

knapsackSolver->optimize();

optKnapsackValue = knapsackSolver->primalBound();

5.2.11 Selecting the LP-Method

Before the linear programming relaxation is solved, the virtual function

ABA_LP::METHOD ABA_SUB::chooseLpMethod(int nVarRemoved, int nConRemoved,

int nVarAdded, int nConAdded)

is called in each iteration of the cutting plane algorithm. The parameters of the function refer to the

number of removed and added variables and constraints. If a linear programming relaxation should be

solved with a strategy di�erent from the default strategy, then this virtual function must be rede�ned in

the class MYSUB. According to the criteria of our new application the function chooseLpMethod() must

return ABA LP::Barrier, ABA LP::Primal, or ABA LP::Dual.

5.2.12 Generating Output

We recommend to use also for problem speci�c output the built-in output and error streams via the

member functions out() and err() of the class ABA GLOBAL:

master_->out() << "This is a message for the output stream." << endl;

master_->err() << "This is a message for the error stream." << endl;

60 CHAPTER 5. USING ABACUS

For messages output from members of the class ABA MASTER and its derived classes dereferencing the

pointer to the master can be omitted:

out() << "This is a message for the output stream from a master class." << endl;

err() << "This is a message for the error stream from a master class." << endl;

The functions out() and err() can receive optionally an integer number as argument giving the amount

of indentation. One unit of indentation is four blanks.

The amount of output can be controlled by the parameter OutLevel in the �le .abacus (see Sec-

tion 5.2.26). If some output should be generated although it is turned o� for a certain output level at

this point of the program, then it can be turned temporarily on.

int MYSUB::myFunction()

{

if (master_->outLevel() == ABA_MASTER::LinearProgram) master_->out().on();

master_->out() << "This output appears only for output level ";

master_->out() << "`LinearProgram'." << endl;

if (master_->outLevel() == ABA_MASTER::LinearProgram) master_->out().off();

}

5.2.13 Memory Management

The complete memory management of data allocated in member functions of application speci�c classes

has to be performed by the user, i.e., memory allocated in such a function also has to be deallocated in an

application speci�c function. However, there are some exceptions. As soon as a constraint or a variable

is added to a pool its memory management is passed to ABACUS. This also holds if the constraint or

variable is added to a pool with the functions ABA SUB::addCons() or ABA SUB::addVars(). Constraints

and variables are allocated in problem speci�c functions, but deallocated by the framework.

Another exception are branching rules added to a subproblem. But this is only relevant for applications

that add a problem speci�c branching rule. If variables are �xed or set by logical implications, then

objects of the class ABA FSVARSTAT are allocated. Also for these objects the further memory management

is performed by the framework.

In order to save memory a part of the data members of a subproblem can be accessed only when the

subproblem is currently being optimized. These data members are listed in Table 5.1.

Member Description

tailOff tailing o� manager

lp linear programming relaxation

addVarBuffer bu�er for adding variables

addConBuffer bu�er for adding constraints

removeVarBuffer bu�er for removing variables

removeConBuffer bu�er for removing constraints

xVal values of the variables in the last solved ABA LP

yVal values of the dual variables in the last solved ABA LP

Table 5.1: Activated members of ABA SUB.

5.2.14 Eliminating Constraints

In order to keep the number of active constraints within a moderate size active constraints can be

eliminated by setting the built-in parameter ConstraintEliminationMode to Basic or NonBinding (see

Section 5.2.26). Other problem speci�c strategies can be implemented by rede�ning the virtual function

5.2. ADVANCED FEATURES 61

void MYSUB::conEliminate(ABA_BUFFER<int> &remove)

{

for (int i = 0; i < nCon(); i++)

if (/* constraint i should be eliminated */)

remove.push(i);

}

within the subproblem of the new application.

The function conEliminate() is called within the cutting plane algorithm. Moreover, we provide

an even more exible method for the elimination of constraints by the functions removeCon() and

removeCons(), which can be called from any function within the cutting plane method. The functions

void ABA_SUB::removeCon(int i);

void ABA_SUB::removeCons(ABA_BUFFER<int> &remove);

which remove the constraint i or the constraints stored in the bu�er remove, respectively.

Both constraints removed by the function conEliminate() and by explicitly calling the function

remove() are not removed immediately from the active constraints and the linear program, but bu�ered,

and the updates are performed at the beginning of the next iteration of the cutting plane method.

5.2.15 Eliminating Variables

Similarly to the constraint elimination, variables can be eliminated either by setting the parameter

VariableEliminationMode to ReducedCost or by rede�ning the virtual function varEliminate() ac-

cording to the needs of our application.

void ABA_SUB::varEliminate(ABA_BUFFER<int> &remove)

{

for (int i = 0; i < nVar(); i++)

if (/* variable i should be eliminated)

remove.push(i);

}

By analogy to the removal of constraints we provide functions to remove variables within any function of

the cutting plane algorithm. The functions

void ABA_SUB::removeVar(int i);

void ABA_SUB::removeVars(ABA_BUFFER<int> &remove);

which remove the variable i or the variables stored in the bu�er remove, respectively.

Like eliminated constraints eliminated variables are bu�ered and the update is performed at the

beginning of the next iteration of the cutting plane algorithm.

5.2.16 Adding Constraints/Variables in General

The functions separate() and pricing() provide interfaces where constraints/variables are usually

generated in the cutting plane or column generation algorithm. Moreover, to provide a high exibility we

allow the addition and removal of constraints and variables within any subroutine of the cutting plane

or column generation algorithm as we have already pointed out.

Note, while constraints or variables added with the function addCons() or addVars() are usually

allocated by the user, they are deleted by ABACUS. They must not be deleted by the user (see Sec-

tion 5.2.13).

The sizes of the bu�ers that store the constraints/variables being added can be controlled by the

parameters MaxConBuffered and MaxVarBuffered in the parameter �le .abacus. At the start of the next

iteration the best MaxConAdd constraints and the best MaxVarAdd variables are added to the subproblem.

62 CHAPTER 5. USING ABACUS

This evaluation of the bu�ered items is only possible if a rank has been speci�ed for each item in the

functions addCons() and addVars(), respectively.

Moreover, we provide further features for the addition of cutting planes with the function addCons():

virtual int addCons(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_POOL<ABA_CONSTRAINT, ABA_VARIABLE> *pool = 0,

ABA_BUFFER<bool> *keepInPool = 0,

ABA_BUFFER<double> *rank = 0);

The bu�er constraints holds the constraints being added. All other arguments are optional or ignored

if they are 0. If the argument pool is not 0, then the constraints are added to this pool instead of the

default pool. If the ag (*keepInPool)[i] is true for the i-th added constraint, then this constraint

will even be stored in the pool if it is not added to the active constraints. In order to de�ne an order of

the bu�ered constraints a rank has to be speci�ed for each constraint in the function addCons().

As constraints can be added with the function addCons(), the function

virtual int addVars(ABA_BUFFER<ABA_VARIABLE*> &variables,

ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> *pool = 0,

ABA_BUFFER<bool> *keepInPool = 0,

ABA_BUFFER<double> *rank = 0);

can be used for a exible addition of variables to the bu�er in a straightforward way.

The function pricing() handles non-liftable constraints correctly (see Section 4.2.3). However, if

variables are generated within another part of the cutting plane algorithm and non-liftable constraints

are present, then run-time errors or wrong results can be produced. If ABACUS is compiled in the safe

mode (-DABACUSSAFE) this situation is recognized and the program stops with an error message. If in

an application both non-liftable constraints are generated and variables are added outside the function

pricing(), then the user has to remove non-liftable constraints explicitly to avoid errors.

Activation of a Subproblem

After a subproblem becomes active the virtual function activate() is called. Its default implementation

in the class ABA SUB does nothing but it can be rede�ned in the derived class MYSUB. In this function

application speci�c data structures that are only required for an active subproblem can be set up, e.g., a

graph associated with the subproblem:

void MYSUB::activate()

{ }

Deactivation of a Subproblem

The virtual function deactivate() is the counterpart of the function activate(). It is called at the end

of the optimization of a subproblem and again its default implementation does nothing. In this function,

e.g., memory allocations performed in the function activate() can be undone:

void MYSUB::deactivate()

{ }

5.2.17 Fixing and Setting Variables by Logical Implications

Variables can by �xed and set by logical implications by rede�ning the virtual functions

void MYSUB::fixByLogImp(ABA_BUFFER<int> &variables,

ABA_BUFFER<ABA_FSVARSTAT*> &status)

{}

5.2. ADVANCED FEATURES 63

and

void MYSUB::setByLogImp(ABA_BUFFER<int> &variables,

ABA_BUFFER<ABA_FSVARSTAT*> &status)

{}

The bu�ers variables hold the variables being �xed or set, respectively, and the bu�ers status the

statuses they are �xed or set to, respectively. The following piece of code gives a fragment of an imple-

mentation of the function fixByLogImp().

void MYSUB::fixByLogImp(ABA_BUFFER<int> &variables,

ABA_BUFFER<ABA_FSVARSTAT*> &status)

{

for (int i = 0; i < nVar(); i++)

if (/* condition for fixing i to lower bound holds */) {

variables.push(i);

status.push(new ABA_FSVARSTAT(master_, ABA_FSVARSTAT::FixedToLowerBound));

}

else if (/* condition for fixing i to upper bound holds */) {

variables.push(i);

status.push(new ABA_FSVARSTAT(master_, ABA_FSVARSTAT::FixedToUpperBound));

}

}

Setting variables by logical implications can be implemented analogously by replacing \FixedTo" with

\SetTo".

5.2.18 Loading an Initial Basis

By default, the barrier method is used for the solution of the �rst linear program of the subproblem.

However, a basis can be also loaded, and then, the LP-method can be accordingly selected with the func-

tion chooseLpMethod() (see Section 5.2.11). The variable and slack variable statuses can be initialized

in the constructor of the root node like in the following example.

MYSUB::MYSUB(ABA_MASTER *master) :

ABA_SUB(master, 50.0, 0.0, 100.0)

{

ABA_LPVARSTAT::STATUS lStat;

for (int i = 0; i < nVar(); i++) {

lStat = /* one of ABA_LPVARSTAT::AtLowerBound, ABA_LPVARSTAT::Basic,

or ABA_LPVARSTAT::AtUpperBound */;

lpVarStat(i)->status(lStat);

}

ABA_SLACKSTAT::STATUS sStat;

for (int i = 0; i < nCon(); i++) {

sStat = /* one of ABA_SLACKSTAT::Basic or ABA_SLACKSTAT::NonBasicZero */;

slackStat(i)->status(sStat)

}

}

5.2.19 Integer Objective Functions

If all objective function values of feasible solutions have integer values, then a subproblem can be fathomed

earlier because its dual bound can be rounded up for a minimization problem, or down for a maximization

problem, respectively. This feature can be controlled by the parameter ObjInteger of the parameter �le

(see Section 5.2.26).

64 CHAPTER 5. USING ABACUS

This feature can depend on the speci�c problem instance. Moreover, if variables are generated dy-

namically, it is even possible that this attribute depends on the currently active variable set. Therefore,

we provide the function

void ABA_MASTER::objInteger(bool switchedOn);

with which the automatic rounding of the dual bound can be turned on (if switchedOn is true) or o�

(if switchedOn is false).

Helpful for the analysis if all objective function values of all feasible solutions are integer with respect

to the currently active variable set of the subproblem might be the function

bool ABA_SUB::objAllInteger();

that returns true if all active variables of the subproblem are discrete and their objective function

coe�cients are integer, and returns false otherwise.

If the set of active variables is static, i.e., no variables are generated dynamically, then the func-

tion objAllInteger() could be called in the constructor of the root node of the enumeration tree and

according to the result the ag of the master can be set:

MYSUB::MYSUB(ABA_MASTER *master) :

ABA_SUB(master, 50.0, 0.0, 100.0)

{

master_->objInteger(objAllInteger());

}

By default, we assume that the objective function values of feasible solutions can also have noninteger

values.

5.2.20 An Entry Point at the End of the Optimization

While the virtual function initializeOptimization() is called at the beginning of the optimization and

can be rede�ned for the initialization of application speci�c data (e.g., the variables and constraints), the

virtual function terminateOptimization() is called at the end of the optimization. Again, the default

implementation does nothing and a rede�ned version can be used, e.g., for visualizing the best feasible

solution on the screen.

5.2.21 Output of Statistics

At the end of the optimization a solution history and some general statistics about the optimization are

output. Problem speci�c statistics can be output by rede�ning the virtual function output() of the class

ABA MASTER in the class MYMASTER. The default implementation of the function output() does nothing. Of

course, application speci�c output can be also generated in the function terminateOptimization(), but

then this output appears before the solution history and some other statistics. If the function output()

is used, problem speci�c statistics are output between the general statistics and the value of the optimum

solution.

5.2.22 Accessing Internal Data of the LP-Solver

The class ABA SUB has the member function ABA LPSUB *lp() that allows a direct access of the data of

the linear program solved within the subproblem. If the member functions of the class ABA LPSUB and

its base class ABA LP are not su�cient to retrieve a speci�c information, a direct access of the data of the

LP-Solvers Cplex and SoPlex is possible.

The data retrieved from your LP-solver in this direct way has to be interpreted very carefully. Since

variables might be automatically eliminated the actual linear program submitted to the LP-solver might

di�er from the linear programming relaxation. Only if LP-data is accessed through the member functions

of the class ABA LPSUB the \real" linear programming relaxation is obtained.

5.2. ADVANCED FEATURES 65

Warning: Do not modify the data of the LP-solver using the pointers to the internal data structures

and the functions of the Cplex or SoPlex callable library. A correct modi�cation of the LP-data is only

guaranteed by the member functions of the class ABA SUB.

Accessing Internal Data of Cplex

Internal data of Cplex is retrieved with the functions

struct cpxlp *ABA_CPLEXIF::cplexLp();

struct cpxenv *ABA_CPLEXIF::cplexEnv(); // only Cplex 4.0

that return pointers to the internal Cplex data structure of the linear programming relaxation.

Since the linear programming relaxation of a subproblem is designed independently from the LP-solver

an explicit cast to the class ABA LPSUBCPLEX is required:

#ifdef ABACUS_LP_CPLEX40

currentEnv = ((ABA_LPSUBCPLEX*) lp())->cplexEnv();

#endif

currentLp = ((ABA_LPSUBCPLEX*) lp())->cplexLp();

The class ABA LPSUBCPLEX is derived from the classes ABA LPSUB and ABA CPLEXIF. If your compiler

supports on your system already run time type information (RTTI), then the cast can be done in a safer

way.

Accessing Internal Data of SoPlex

Internal data of SoPlex is retrieved with the functions

SoPlex *ABA_SOPLEXIF::soplex();

that returns a pointer to the internal SoPlex data structure of the linear programming relaxation.

Since the linear programming relaxation of a subproblem is designed independently from the LP-solver

an explicit cast to the classes ABA LPSUBSOPLEX is required:

soplex = ((ABA_LPSUBSOPLEX*) lp())->soplex();

The class ABA LPSUBSOPLEX is derived from the class ABA LPSUB and ABA SOPLEX. If your compiler supports

on your system already run time type information (RTTI), then the cast can be done in a safer way.

5.2.23 Problem Speci�c Fathoming Criteria

Sometimes structural problem speci�c information can be used for fathoming a subproblem. Such criteria

can be implemented by rede�ning the virtual function ABA SUB::exceptionFathom(). This function is

called before the separation or pricing is performed. If this function returns false (as the default

implementation in the base class ABA SUB does), we continue with separation or pricing. Otherwise, if it

returns true, the subproblem is fathomed.

5.2.24 Enforcing a Branching Step

ABACUS enforces a branching step if a tailing o� e�ect is observed. Other problem speci�c criteria for

branching instead of continuing the cutting plane or column generation algorithm can be speci�ed by

rede�ning the function ABA SUB::exceptionBranch(). This criterion is checked before the separation or

pricing is performed. If the function returns true, a branching step is performed. Otherwise, we continue

with the separation or pricing. The default implementation of the base class ABA SUB always returns

false.

66 CHAPTER 5. USING ABACUS

5.2.25 Advanced Tailing O� Control

ABACUS automatically controls the tailing o� e�ect according to the parameters TailOffNLps and

TailOffPercent of the con�guration �le .abacus. However, sometimes it turns out that certain solutions

of the LP-relaxations should be ignored in the tailing o� control. The function ignoreInTailingOff()

can be used to control better the tailing o� e�ect. If this function is called, the next LP-solution

is ignored in the tailing-o� control. Calling ignoreInTailingOff() can, e.g., be considered in the

following situation: If only constraints that are required for the integer programming formulation of the

optimization problem are added then the next LP-value could be ignored in the tailing-o� control. Only

\real" cutting planes should be considered in the tailing-o� control (this is only an example strategy that

might not be practical in many situations, but sometimes turned out to be e�cient).

5.2.26 Parameters

The setting of several parameters heavily inuences the running time. Good candidates are the mod-

i�cation of the enumeration strategy with the parameter EnumerationStrategy, the control of the

tailing o� e�ect with the parameters TailOffNLps and TailOffPercent, an adaption of the skipping

method for the cut generation with the parameters SkipFactor and SkipByNode, and the parameters

CplexPrimalPricing and CplexDualPricing to control the pricing strategies of Cplex.

Here we present a complete list of the parameters that can be modi�ed for the �ne tuning of the

algorithm in the �le .abacus. Almost all parameters can be modi�ed with member functions of the class

ABA MASTER. Usually, these member functions have the same name as the parameter, but the �rst letter

is a lower case letter.

Warning: The integer numbers used in the parameter �les must not exceed the value of INT MAX given

in the �le <limits.h>. The default values are correct for platforms representing the type int with 32

bits (usually 2147483647 on machines using the b-complement).

EnumerationStrategy

This parameter controls the enumeration strategy in the branch-and-bound algorithm.

Valid settings:

Best best-�rst search

Breadth breadth-�rst search

Depth depth-�rst search

Dive depth-�rst search until the �rst feasible solution is

found, then best-�rst search

Default value: Best

Guarantee

The branch-and-bound algorithm stops as soon as a primal bound and a global dual bound are known such

that it can be guaranteed that the value of an optimum solution is at most Guarantee percent better

than the primal bound. The value 0.0 means determination of an optimum solution. If the program

terminates with a guarantee greater than 0, then the status of the master is ABA MASTER::Guarantee

instead of ABA MASTER::Optimal.

Valid settings:

A nonnegative oating point number.

Default value: 0.0

5.2. ADVANCED FEATURES 67

MaxLevel

This parameter indicates the maximal level that should be reached in the enumeration tree. Instead

of performing a branching operation any subproblem having level MaxLevel is fathomed. If the value

of MaxLevel is 1, then no branching is done, i.e., a pure cutting plane algorithm is performed. If the

maximal enumeration level is reached, the master of the optimization receives the status MaxLevel in

order to indicate that the problem does not necessarily terminate with an optimum solution.

Valid settings:

A positive integer number.

Default value: 999999

MaxCpuTime

This parameter indicates the maximal CPU time that may be used by the optimization process. If the

CPU time exceeds this value, then the master of the optimization receives the status MaxCpuTime in order

to indicate that the problem does not necessarily terminate with an optimum solution. In this case, the

real CPU time can exceed this value since we check the used CPU time only in the main loop of the

cutting plane algorithm. Under the operating system UNIX a more exact check can be done with the

command limit, which kills the process if the maximal CPU time is exceeded, whereas our CPU time

control \softly" terminates the run, i.e., the branch-and-bound tree is cleaned, all relevant destructors

are called, and the �nal output is generated.

Valid settings:

A string in the format hfhg:mm:ss, where the �rst number represents the hours, the second

one the minutes, and the third one the seconds. Note, internally this string is converted to

seconds. Therefore, its value must be less than INT MAX seconds.

Default value: 99999:59:59

MaxCowTime

This parameter indicates the maximal elapsed time (wall clock time) that may be used by the process. If

the elapsed time exceeds this value, then the master of the optimization receives the status MaxCowTime

in order to indicate that the problem does not necessarily terminate with an optimum solution. In this

case, the real elapsed time can exceed this value since we check the elapsed time only in the main loop

of the cutting plane algorithm.

Valid settings:

A string in the format hfhg:mm:ss, where the �rst number represents the hours, the second

one the minutes, and the third one the seconds. Note, internally this string is converted to

seconds. Therefore, its value must be less than INT MAX seconds.

Default value: 99999:59:59

ObjInteger

If this parameter is true, then we assume that all feasible solutions have integer objective function

values. In this case, we can fathom a subproblem in the branch-and-bound algorithm already when the

gap between the solution of the linear programming relaxation and the primal bound is less than 1.

Valid settings:

false or true

Default value: false

68 CHAPTER 5. USING ABACUS

TailO�NLps

This parameter indicates the number of linear programs considered in the tailing o� analysis (see para-

meter TailOffPercent).

Valid settings:

An integer number. If this number is nonpositive, then the tailing o� control is turned o�.

Default value: 0

TailO�Percent

This parameter indicates the minimal change in percent of the objective function value between the

solution of TailOffNLps successive linear programming relaxations in the subproblem optimization which

is required such that we do not try to stop the cutting plane algorithm and to enforce a branching step.

Valid settings:

A nonnegative oating point number.

Default value: 0.0001

DelayedBranchingThreshold

This number indicates how often a subproblem should be put back into the set of open subproblems

before a branching step is executed. The value 0 means that we branch immediately at the end of the

�rst optimization, if the subproblem is not fathomed. We try to keep the subproblem MinDormantRounds

untouched, i.e., other subproblems are optimized if possible before we turn back to the optimization of

this subproblem.

Valid settings:

A positive integer number.

Default value: 0

MinDormantRounds

The minimal number of iterations we try to keep a subproblem dormant if delayed branching is applied.

Valid settings:

A positive integer number.

Default value: 1

OutputLevel

We can control the amount of output during the optimization by this parameter.

For the parameter values Subproblem and LinearProgram a seven column output is generated with

the following meaning:

#sub total number of subproblems

#open current number of open subproblems

current the number of the currently optimized subproblem

#iter number of iterations in the cutting plane algorithm

ABA LP value of the LP-relaxation

dual global dual bound

primal primal bound

Valid settings:

5.2. ADVANCED FEATURES 69

Silent No output.

Statistics Output of the result and some statistics at the end

of the optimization.

Subproblem Additional one-line output after the �rst solved

ABA LP of the root node and at the end of the op-

timization of each subproblem.

LinearProgram Additional one-line output after the solution of a lin-

ear program.

Full Detailed output in all phases of the optimization.

Default value: Full

LogLevel

We can control the amount of output written to the log �le in the same way as the output to the standard

output stream.

Valid settings:

See parameter OutputLevel. If the LogLevel is not Silent two log �les are created. While

the �le with the name of the problem instance and the extension .log contains the output

written to ABA MASTER::out() (�ltered according the LogLevel), the all messages written to

ABA MASTER::err() are also written to the �le with the name of the problem instance and

the extension .error.log.

Default value: Silent

PrimalBoundInitMode

This parameter controls the initialization of the primal bound. The modes Optimum and OptimumOne are

useful for tests.

Valid settings:

None The primal bound is initialized with \in�nity" for

minimization problems and \minus in�nity" for max-

imization problems, respectively.

Optimum The primal bound is initialized with the value of an

optimum solution, if it can be read from the �le with

the name of the parameter OptimumFileName.

OptimumOne The primal bound is initialized with the value of an

optimum solution plus one for minimization prob-

lems, and the value of an optimum solutions minus

one for maximization problems. This is only possi-

ble if the value of an optimum solution can be read

from the �le with the name given by the parameter

OptimumFileName.

Default value: None

70 CHAPTER 5. USING ABACUS

PricingFrequency

This parameter indicates the number of iterations between two additional pricing steps in the cutting

plane phase for algorithms performing both constraint and variable generation. If this number is 0, then

no additional pricing is performed.

Valid settings:

A nonnegative integer number.

Default value: 0

SkipFactor

This parameter indicates the frequency of cutting plane and variable generationskipping!factor in the

subproblems according to the parameter SkippingMode. The value 1 means that cutting planes and

variables are generated in every subproblem independent from the skipping mode.

Valid settings:

A positive integer number.

Default value: 1

SkippingMode

This parameter controls the skipping mode, i.e., if constraints or variables are generated in a subproblem.

Valid settings:

SkipByNode Generate constraints and variables only every

SkipFactor processed node.

SkipByLevel Generate constraints and variables only every

SkipFactor level in the branch-and-bound tree.

Default value: SkipByNode

FixSetByRedCost

Variables are �xed and set by reduced cost criteria if and only if this parameter is true. The default

setting is false, as �xing or setting variables to 0 can make the pricing problem intractable in branch-

and-price algorithms.

Valid settings:

false or true

Default value: false

PrintLP

If this parameter is true, then the linear program is output every iteration. This is only useful for

debugging.

Valid settings:

false or true

Default value: false

5.2. ADVANCED FEATURES 71

CplexPrimalPricing

This parameter controls the pricing strategy of the primal simplex method of the LP-solver Cplex. The

notions are taken from the reference manuals of Cplex 3.0 and Cplex 4.0 [Cpl94, Cpl95].

Valid settings:

CPX PPRIIND PARTIAL Reduced cost pricing

CPX PPRIIND AUTO Hybrid reduced cost pricing and Devex pricing

CPX PPRIIND DEVEX Devex pricing

CPX PPRIIND STEEP Steepest edge pricing

CPX PPRIIND STEEPQSTART Steepest edge pricing with slack norms

CPX PPRIIND FULL Full pricing

Default value: CPX PPRIIND AUTO

CplexDualPricing

This parameter controls the default pricing strategy of the dual simplex method of the LP-solver Cplex.

The notions are taken form the reference manual of Cplex 3.0 and Cplex 4.0 [Cpl94, Cpl95].

Valid settings:

CPX DPRIIND AUTO Determined automatically

CPX DPRIIND FULL Standard dual pricing

CPX DPRIIND STEEP Steepest edge pricing

CPX DPRIIND FULLSTEEP Steepest edge pricing in slack space

CPX DPRIIND STEEPQSTART Steepest edge pricing, unit initial norms

Default value: CPX DPRIIND STEEP

CplexOutputLevel

The LP-solver Cplex provides the output of information when a linear program is solved. This parameter

controls the amount of this amount for a linear programming relaxation solved by Cplex. The output is

directly written to the standard output and is not �ltered by our output stream concept.

Valid settings:

0 No output of Cplex.

1 Output every refactorization of Cplex.

2 Output every iteration of Cplex.

Default value: 1

MaxConAdd

This parameter determines the maximal number of constraints added to the linear programming relax-

ation per iteration in the cutting plane algorithm.

Valid settings:

A nonnegative integer number.

Default value: 100

72 CHAPTER 5. USING ABACUS

MaxConBu�ered

After the cutting plane generation the MaxConAdd best constraints are selected from all generated con-

straints that are kept in a bu�er. This parameter indicates the size of this bu�er.

Valid settings:

A nonnegative integer number.

Default value: 100

MaxVarAdd

This parameter determines the maximal number of variables added to the linear programming relaxation

per iteration in the cutting plane algorithm.

Valid settings:

A nonnegative integer number.

Default value: 100

MaxVarBu�ered

After the variable generation the MaxVarAdd best variables are selected from all generated variables that

are kept in a bu�er. This parameter indicates the size of this bu�er.

Valid settings:

A nonnegative integer number.

Default value: 100

MaxIterations

The parameter limits the number of iterations of the cutting plane phase of a single subproblem.

Valid settings:

A nonnegative integer number or �1 if unlimited.

Default value: -1

EliminateFixedSet

Fixed and set variables are eliminated from the linear program submitted to the LP-solver if this para-

meter is true and the variable is eliminable. By default, a variable is eliminable if it has not been basic

in the last solved linear program.

Valid settings:

false or true

Default value: false

NewRootReOptimize

If the root of the remaining branch-and-bound tree changes and this node is not the active subproblem,

then we reoptimize this subproblem, if this parameter is true. The reoptimization might provide better

criteria for �xing variables by reduced costs.

Valid settings:

false or true

Default value: false

5.2. ADVANCED FEATURES 73

OptimumFileName

This parameter indicates the name of a �le storing the values of the optimum solutions. Each line of

this �le consists of a problem name and the value of the corresponding optimum solution. This is the

only optional parameter. Having the optimum values of some instances at hand can be very useful in the

testing phase.

Valid settings:

A string.

Default value: This parameter is commented out in the �le .abacus.

ShowAverageCutDistance

If this parameter is true, then the average Euclidean distance of the fractional solution from the added

cutting planes is output every iteration of the cutting plane phase.

Valid settings:

false or true

Default value: false

ConstraintEliminationMode

The parameter indicates the method how constraints are eliminated in the cutting plane algorithm.

Valid settings:

None No constraints are eliminated.

NonBinding The non-binding dynamic constraints are eliminated.

Basic The dynamic constraints with basic slack variables

are eliminated.

Default value: Basic

VariableEliminationMode

This parameter indicates the method how variables are eliminated in a column generation algorithm.

Valid settings:

None No variables are eliminated.

ReducedCost Nonbasic dynamic variables that are neither �xed

nor set and for which the absolute value of the re-

duced costs exceeds the value given by the parameter

VarElimEps are removed.

Default value: ReducedCost

ConElimEps

The parameter indicates the tolerance for the elimination of constraints by the method NonBinding.

Valid settings:

A nonnegative oating point number.

Default value: 0.001

74 CHAPTER 5. USING ABACUS

VarElimEps

This parameter indicates the tolerance for the elimination of variables by the method ReducedCost.

Valid settings:

A nonnegative oating point number.

Default value: 0.001

VbcLog

This parameter indicates if a log-�le of the enumeration tree should be generated, which can be read by

the VBC-tool [Lei95]. The VBC-tool is a utility for the visualization of the branch-and-bound tree.

Valid settings:

None No �le for the VBC-Tool is generated.

File The output is written to a �le with the name

<name>.<pid>.tree. <name> is the problem name as

speci�ed in the constructor of the class ABA MASTER

and <pid> is the process id.

Pipe The control instructions for the VBC-Tool are writ-

ten to the global output stream. Each control instuc-

tion starts with a $ sign. If the standard output of

an ABACUS application is piped through the VBC-

Tool, lines starting with a $ sign are regarded as

control instructions, all other lines written to a text

window.

Default value: None

NBranchingVariableCandidates

This number indicates how many candidates for branching variables should be tested according to the

BranchingStrategy. If this number is 1, a single variable is determined (if possible) that is the branching

variable. If this number is greater than 1 each candidate is tested and the best branching variable is

selected, i.e., for each candidate the two linear programs of potential sons are solved. The variable

for which the minimal change of the two objective function values is maximal is selected as branching

variable.

Valid settings:

Positive integer number.

Default value: 1

DefaultLpSolver

This parameter determines the LP-solver that should be applied per default for each subproblem.

Valid settings:

Cplex

SoPlex

Default value: Cplex

5.2. ADVANCED FEATURES 75

SoPlexRepresentation

This parameter selects the basis representation of the LP-solver SoPlex. This can be either a row or a

column basis. Traditionally, LP-solvers use a column basis. However, if there are more rows than columns

in the linear programs, as it sometimes happens in branch-and-cut algorithms, then a row basis might be

more e�cient. Unfortunately our tests turn out that only the row basis is stable in SoPlex 1.0.

Valid settings:

Row

Column

Default value: Row

5.2.27 Reading a Parameter File

ABACUS provides a concept for the implementation of application parameter �les, which is very easy

to use. In these �les it is both possible to overwrite the values of parameters already de�ned in the �le

.abacus and to de�ne extra parameters for the new application.

The format for parameter �les is very simple. Each line contains the name of a parameter separated

by an arbitrary number of whitespaces from its value. Both parameter name and parameter value can

be an arbitrary character string. A line may have at most 1024 characters. Empty lines are allowed. All

lines starting with a `#' are considered as comments.

The following lines give an example for the parameter �le .myparameters.

#

First, we overwrite two parameters from the file .abacus.

#

EnumerationStrategy Depth

OutputLevel LinearProgram

#

Here are the parameters of our new application.

#

#

Our application has two different separation strategies

All calls all separators in each iteration

Hierarchical follows a hierarchy of the separators

#

SeparationStrategy All

#

The parameter MaxNodesPerCut limits the number of nodes involved

in a cutting plane that is defined by a certain subgraph.

#

MaxNodesPerCut 1000

Here, we suppose that the class MYMASTER has two members that are initialized from the parameter �le.

class MYMASTER : public ABA_MASTER {

/* public and protected members */

private:

ABA_STRING separationStrategy_;

int maxNodesPerCut_;

/* other private members */

};

76 CHAPTER 5. USING ABACUS

The parameter �le can be read by rede�ning the virtual function initializeParameters(), which does

nothing in its default implementation.

void MYMASTER::initializeParameters()

{

readParameters(".myparameters");

int status;

status = getParameter("SeparationStrategy", separationStrategy_);

if (status) {

err() << "MYMASTER::initializeParameters(): ";

err() << "parameter SeparationStrategy missing." << endl;

exit(Fatal);

}

status = getParameter("MaxNodesPerCut", maxNodesPerCut_);

if (status) {

err() << "MYMASTER::initializeParameters(): ";

err() << "parameter MaxNodesPerCut missing." << endl;

exit(Fatal);

}

}

Parameter �les having our format can be read by the function ABA MASTER::readParameters(), which

inserts all parameters in a table. Then, the parameters can be extracted from the table with the function

ABA MASTER::getParameter(), which is overloaded in the following way:

int getParameter(const char *name, int ¶meter);

int getParameter(const char *name, double ¶meter);

int getParameter(const char *name, ABA_STRING ¶meter);

int getParameter(const char *name, bool ¶meter);

int getParameter(const char *name, char ¶meter);

If a parameter with the name name is found in the parameter table then its value is stored in the argument

parameter and the function getParameter() returns 0, otherwise it returns 1.

Parameters of the base class ABA MASTER that are rede�ned in the �le .myparameters do not have

to be extracted explicitly, but are initialized automatically. Note, the parameters speci�ed in the �le

.abacus are read in the constructor of the class ABA MASTER, but an application speci�c parameter �le is

read when the optimization starts (function ABA MASTER::optimize().

5.3. USING THE ABACUS TEMPLATES 77

5.3 Using the ABACUS Templates

ABACUS also provides several basic data structures as templates. For several fundamental types and

some ABACUS classes the templates are instantiated already in the library libabacus.a. However, if

you want to use one of the ABACUS templates for one of your classes then you have to instantiate the

templates for these classes yourself.

Moreover, in order to keep the library small, we instantiated the templates only for those types which

are required in the kernel of the ABACUS system. Therefore, it can happen that the linker complains

about unde�ned symbols. In this case you have to instantiate these templates, too.

For instance, you want to use an ABA ARRAY template for your class MYCONSTRAINT and the fundamental

type unsigned int, for which we have no instantiations in the library libabacus.a. Then you can

instantiate the corresponding templates in a �le myarray.cc.

//

// This is the file myarray.cc.

//

#include "abacus/array.h" // the header of the class ABA ARRAY

#include "abacus/array.inc" // the member functions of the class ABA ARRAY

template class ABA ARRAY<MYCONSTRAINT>;

template class ABA ARRAY<unsigned int>;

// end of file myarray.cc

The �le myarray.cc should be compiled and linked together with your �les and the library libabacus.a.

In the �le in which you are using the array templates only the �le array.h should be included.

For more information on templates we refer to the documentation of the templates for the GNU

compiler

1

. We prefer the method using the g++ compiler ag -fno-implicit-templates.

1

http://funnelweb.utcc.utk.edu/~harp/gnu/gcc-2.7.0/gcc 98.html#SEC101

78 CHAPTER 5. USING ABACUS

Chapter 6

Reference Manual

The reference manual covers only those classes and class members which are relevant for the user. There-

fore, the declarations of the classes in this chapter contain only a subset of the actual members, e.g.,

private members are usually not documented here. For some classes the copy constructor and/or assign-

ment operator have not been de�ned, but the default copy constructor and/or assignment operator are

not correct. In this case we declare this function and/or this operator as a private member of its class such

that its invalid usage is detected already at compile time. In this reference manual this is documented

by including the copy constructor and/or assignment operator in the private part of a function. Even if

there are other private members of the class they are not documented here.

This reference manual is automatically compiled from the source �les of ABACUS. The advantage

of this method is that we can always provide an up to date version of the reference manual in future

releases of the software. The major drawback of this procedure is that the lack of order of the functions

in the current source �les is reected in the reference manual. In particular, there is a often a di�erence

of the order of the member functions in the header of a class and in the documentation. We plan to

reorder the functions in one of the next releases. Until this is done, we recommend the reader to �nd

the documentation of a function with the help of the index or with the HTML version of the reference

manual.

At the end of the reference manual a list of all preprocessor ags is given.

6.1 Application Base Classes

In order to implement an ABACUS application problem speci�c classes have to be derived from the

classes ABA MASTER and ABA SUB. ABACUS provides already some non-abstract classes derived from the

classes ABA CONSTRAINT and ABA VARIABLE, but if there is application speci�c structure to be exploited,

classes also have to be derived from ABA VARIABLE and ABA CONSTRAINT.

Some other classes are included in this section because they are base classes of the application base

classes ABA MASTER, ABA SUB, ABA CONSTRAINT and ABA VARIABLE. The class ABA ABACUSROOT is a base

class of every class of the system. The class ABA GLOBAL is a base class of the class ABA MASTER. Common

features of constraints and variables are embedded in the class ABA CONVAR, from which the classes

ABA CONSTRAINT and ABA VARIABLE are derived.

6.1.1 ABA ABACUSROOT

This class is the base class of all other classes of ABACUS. By embedding an enumeration and some

useful functions in this class we can avoid a global scope of these names.

For Compilers that to not provide the type bool so far, we add this type here.

class ABA_ABACUSROOT {

public:

79

80 CHAPTER 6. REFERENCE MANUAL

virtual ~ABA_ABACUSROOT();

enum EXITCODES{Ok, Fatal};

virtual void exit(enum EXITCODES code) const;

const char *onOff(bool value);

double fracPart(double x) const;

};

enum EXITCODES

This enumeration de�nes the codes used be the function exit().

Ok

The program terminates without error.

Fatal

A severe error occurred leading to an immediate termination of the program.

Destructor (virtual)

The destructor is only implemented since it should be virtual function.

ABA_ABACUSROOT::~ABA_ABACUSROOT()

exit (virtual)

The function exit() terminates the program and returns code to the environment from which the

program was called.

void ABA_ABACUSROOT::exit(enum EXITCODES code) const

Arguments:

code

The exit code given to the environment.

onO�

The function onO�() converts a boolean variable to the strings "on" and "off".

const char *ABA_ABACUSROOT::onOff(bool value)

Return Value:

"on"

If value is true,

"off"

otherwise.

Arguments:

value

The boolean variable being converted.

6.1. APPLICATION BASE CLASSES 81

fracPart

double ABA_ABACUSROOT::fracPart(double x) const

Return Value:

The absolute value of the fractional part of the value x. E.g., it holds fracPart(2.33) ==

0.33 and fracPart(-1.77) == 0.77.

Arguments:

The value of which the fractional part is computed.

6.1.2 ABA GLOBAL

ABA GLOBAL. This class stores global data (e.g., a zero tolerance, an output stream) und functions

operating with this data. For each application there is usually one global object and almost every object

in this system has a pointer to an associated global object or a pointer to an object of a class derived

from ABA GLOBAL (e.g., ABA MASTER).

Like the class ABA ABACUSROOT, the class ABA GLOBAL helps us to avoid names with global scope.

class ABA_GLOBAL : public ABA_ABACUSROOT {

public:

ABA_GLOBAL(double eps = 1.0e-4, double machineEps = 1.0e-7,

double infinity = 1.0e30);

virtual ~ABA_GLOBAL();

friend ostream &operator<<(ostream &out, const ABA_GLOBAL &rhs);

virtual ABA_OSTREAM& out(int nTab = 0);

virtual ABA_OSTREAM& err(int nTab = 0);

double eps() const;

void eps(double e);

double machineEps() const;

void machineEps(double e);

double infinity() const;

void infinity(double x);

bool isInfinity(double x) const;

bool isMinusInfinity(double x) const;

bool equal(double x, double y) const;

bool isInteger(double x) const;

bool isInteger(double x, double eps) const;

virtual char enter(istream &in);

private:

ABA_GLOBAL(const ABA_GLOBAL &rhs);

const ABA_GLOBAL &operator=(const ABA_GLOBAL &rhs);

};

Constructor

The constructor initializes our �ltered output and error stream with the standard output stream cout

and the standard error stream cerr.

ABA_GLOBAL::ABA_GLOBAL(double eps, double machineEps, double infinity)

Arguments:

eps

82 CHAPTER 6. REFERENCE MANUAL

The zero-tolerance used within all member functions of objects which have a pointer

to this global object (default value 1.0e-4).

machineEps

The machine dependent zero tolerance (default value 1.0e-7).

infinity

All values greater than infinity are regarded as \in�nite big", all values less than

-infinity are regarded as \in�nite small" (default value 1.0e30).

Destructor (virtual)

ABA_GLOBAL::~ABA_GLOBAL()

Output Operator

The output operator writes some of the data members to an ouput stream.

ostream &operator<<(ostream &out, const ABA_GLOBAL &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The object being output.

out (virtual)

The function out() returns a reference to the output stream associated with this global object after

writing nTab (default value 0) tabulators on this stream. This tabulator is not the normal tabulator but

consists of four blanks.

ABA_OSTREAM& ABA_GLOBAL::out(int nTab)

Return Value:

A reference to the global output stream.

Arguments:

nTab

The number of tabulators which should be written to the global output stream.

The default value is 0.

6.1. APPLICATION BASE CLASSES 83

err (virtual)

The function err() behaves like the function out() except that the global error stream is used instead

of the global output stream.

ABA_OSTREAM& ABA_GLOBAL::err(int nTab)

Return Value:

A reference to the global error stream.

Arguments:

nTab

The number of tabulators which should be written to the global error stream. The

default value is 0.

eps

double ABA_GLOBAL::eps() const

Return Value:

The zero tolerance.

eps

This version of the function eps() sets the zero tolerance.

void ABA_GLOBAL::eps(double e)

Arguments:

e

The new value of the zero tolerance.

machineEps

The function machineEps() provides a machine dependent zero tolerance. The machine dependent zero

tolerance is used, e.g., to test if a oating point value is 0. This value is usually less than eps(), which

provides, e.g., a safety tolerance if a constraint is violated.

double ABA_GLOBAL::machineEps() const

Return Value:

The machine dependent zero tolerance.

machineEps

This version of the function machineEps() sets the machine dependent zero tolerance.

void ABA_GLOBAL::machineEps(double e)

Arguments:

e

The new value of the machine dependent zero tolerance.

84 CHAPTER 6. REFERENCE MANUAL

in�nity

The function infinity() provides a oating point value of \in�nite" size. Especially, we assume that

-infinity() is the lower and infinity() is the upper bound of an unbounded variable in the linear

program.

double ABA_GLOBAL::infinity() const

Return Value:

A very large oating point number. The default value of infinity() is 1.0e30.

in�nity

This version of the function infinity() sets the \in�nite value".

void ABA_GLOBAL::infinity(double x)

Arguments:

x

The new value representing \in�nity".

isIn�nity

bool ABA_GLOBAL::isInfinity(double x) const

Return Value:

true

If x is regarded as \in�nite" large,

false

otherwise.

Arguments:

x

The value compared with \in�nity".

isMinusIn�nity

bool ABA_GLOBAL::isMinusInfinity(double x) const

Return Value:

true

If x is regarded as in�nite small;

false

otherwise.

Arguments:

x

The value compared with \minus in�nity".

6.1. APPLICATION BASE CLASSES 85

equal

bool ABA_GLOBAL::equal(double x, double y) const

Return Value:

true

If the absolute di�erence of x and y is less than the machine dependent zero toler-

ance,

false

otherwise.

Arguments:

x

The �rst value being compared.

y

The second value being compared.

isInteger

bool ABA_GLOBAL::isInteger(double x) const

Return Value:

true

If the value x di�ers at most by the machine dependent zero tolerance from an

integer value,

false

otherwise.

isInteger

bool ABA_GLOBAL::isInteger(double x, double eps) const

Return Value:

true

If the value x di�ers at most by eps from an integer value,

false

otherwise.

enter (virtual)

The virtual function enter() displays the string ENTER> on the global output stream and waits for a

character on the input stream in, e.g., a keystroke if in == cin.

char ABA_GLOBAL::enter(istream &in)

Return Value:

The character read from the input stream.

Arguments:

in

The input stream the character should be read from.

86 CHAPTER 6. REFERENCE MANUAL

6.1.3 ABA MASTER

As the name already indicates, the class ABA MASTER is the central object of the framework. The most

important tasks of the class ABA MASTER is the management of the implicit enumeration. Moreover, it

provides already default implementations for constraints, cutting planes, and variables pools. The class

ABA MASTER also stores various parameter settings and compiles statistics about the solution process.

The class ABA MASTER is an abstract class from which a problem speci�c master has to be derived.

class ABA_MASTER : public ABA_GLOBAL {

public:

enum STATUS {Optimal, Error, Unprocessed, Processing,

Guaranteed, MaxLevel, MaxCpuTime,

MaxCowTime, ExceptionFathom};

enum OUTLEVEL {Silent, Statistics, Subproblem, LinearProgram, Full};

enum ENUMSTRAT {BestFirst, BreadthFirst, DepthFirst, DiveAndBest};

enum BRANCHINGSTRAT {CloseHalf, CloseHalfExpensive};

enum PRIMALBOUNDMODE {NoPrimalBound, OptimalPrimalBound,

OptimalOnePrimalBound};

enum SKIPPINGMODE{SkipByNode, SkipByLevel};

enum CONELIMMODE {NoConElim, NonBinding, Basic};

enum VARELIMMODE {NoVarElim, ReducedCost};

enum VBCMODE {None, File, Pipe};

enum LPSOLVER {Cplex, SoPlex};

ABA_MASTER(const char *problemName, bool cutting, bool pricing,

ABA_OPTSENSE::SENSE optSense = ABA_OPTSENSE::Unknown,

double eps = 1.0e-4, double machineEps = 1.0e-7,

double infinity = 1.0e30);

virtual ~ABA_MASTER();

STATUS optimize();

double lowerBound() const;

double upperBound() const;

double primalBound() const;

double dualBound() const;

void primalBound(double x);

void dualBound(double x);

bool betterDual(double x) const;

bool primalViolated(double x) const;

bool betterPrimal(double x) const;

bool feasibleFound() const;

virtual int enumerationStrategy(ABA_SUB *s1, ABA_SUB *s2);

bool guaranteed();

double guarantee();

void printGuarantee();

6.1. APPLICATION BASE CLASSES 87

bool check();

bool knownOptimum(double &optVal);

virtual void output();

bool cutting() const;

bool pricing() const;

ABA_OPTSENSE *optSense();

ABA_HISTORY *history();

ABA_OPENSUB *openSub();

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *conPool();

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *cutPool();

ABA_STANDARDPOOL<ABA_VARIABLE, ABA_CONSTRAINT> *varPool();

ABA_SUB *root();

ABA_SUB *rRoot();

STATUS status() const;

ABA_STRING *problemName();

ABA_COWTIMER *totalCowTime();

ABA_CPUTIMER *totalTime();

ABA_CPUTIMER *lpTime();

ABA_CPUTIMER *lpSolverTime();

ABA_CPUTIMER *separationTime();

ABA_CPUTIMER *improveTime();

ABA_CPUTIMER *pricingTime();

ABA_CPUTIMER *branchingTime();

int nSub() const;

int nLp() const;

int highestLevel() const;

int nNewRoot() const;

int nSubSelected() const;

void printParameters();

ENUMSTRAT enumerationStrategy() const;

void enumerationStrategy(ENUMSTRAT strat);

BRANCHINGSTRAT branchingStrategy() const;

void branchingStrategy(BRANCHINGSTRAT strat);

LPSOLVER defaultLpSolver() const;

void defaultLpSolver(LPSOLVER lpSolver);

bool soPlexRowRep() const;

void soPlexRowRep(bool rep);

int nBranchingVariableCandidates() const;

void nBranchingVariableCandidates(int n);

double requiredGuarantee() const;

void requiredGuarantee(double g);

int maxLevel() const;

void maxLevel(int ml);

const ABA_STRING& maxCpuTime() const;

void maxCpuTime(const ABA_STRING &t);

const ABA_STRING& maxCowTime() const;

void maxCowTime(const ABA_STRING &t);

bool objInteger() const;

void objInteger(bool b);

int tailOffNLp() const;

void tailOffNLp(int n);

double tailOffPercent() const;

void tailOffPercent(double p);

88 CHAPTER 6. REFERENCE MANUAL

OUTLEVEL outLevel() const;

void outLevel(OUTLEVEL mode);

OUTLEVEL logLevel() const;

void logLevel(OUTLEVEL mode);

bool delayedBranching(int nOpt_) const;

void dbThreshold(int threshold);

int dbThreshold() const;

int minDormantRounds() const;

void minDormantRounds(int nRounds);

PRIMALBOUNDMODE pbMode() const;

void pbMode(PRIMALBOUNDMODE mode);

int pricingFreq () const;

void pricingFreq(int f);

int skipFactor() const;

void skipFactor(int f);

void skippingMode(SKIPPINGMODE mode);

SKIPPINGMODE skippingMode() const;

CONELIMMODE conElimMode() const;

void conElimMode(CONELIMMODE mode);

VARELIMMODE varElimMode() const;

void varElimMode(VARELIMMODE mode);

double conElimEps() const;

void conElimEps(double eps);

double varElimEps() const;

void varElimEps(double eps);

bool fixSetByRedCost() const;

void fixSetByRedCost(bool on);

bool printLP() const;

void printLP(bool on);

ABA_STRING& cplexPrimalPricing();

void cplexPrimalPricing(const char *method);

ABA_STRING& cplexDualPricing();

void cplexDualPricing(const char *method);

int cplexOutputLevel() const;

void cplexOutputLevel(int level);

int maxConAdd() const;

void maxConAdd(int max);

int maxConBuffered() const;

void maxConBuffered(int max);

int maxVarAdd() const;

void maxVarAdd(int max);

int maxVarBuffered() const;

void maxVarBuffered(int max);

int maxIterations() const;

void maxIterations(int max);

bool eliminateFixedSet() const;

void eliminateFixedSet(bool turnOn);

bool newRootReOptimize() const;

void newRootReOptimize(bool on);

const ABA_STRING &optimumFileName() const;

void optimumFileName(const char *name);

bool showAverageCutDistance() const;

void showAverageCutDistance(bool on);

6.1. APPLICATION BASE CLASSES 89

VBCMODE vbcLog() const;

void vbcLog(VBCMODE mode);

void readParameters(const char *fileName);

int getParameter(const char *name, int ¶m);

int getParameter(const char *name, double ¶m);

int getParameter(const char *name, ABA_STRING ¶m);

int getParameter(const char *name, bool ¶m);

int getParameter(const char *name, char ¶m);

int getParameter(const char *name, unsigned int ¶m);

protected:

virtual void initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_BUFFER<ABA_VARIABLE*> &Variables,

int varPoolSize,

int cutPoolSize,

bool dynamicCutPool = false);

virtual void initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_BUFFER<ABA_CONSTRAINT*> &cuts,

ABA_BUFFER<ABA_VARIABLE*> &Variables,

int varPoolSize,

int cutPoolSize,

bool dynamicCutPool = false);

void initializeOptSense(ABA_OPTSENSE::SENSE sense);

int bestFirstSearch(ABA_SUB* s1, ABA_SUB* s2);

virtual int equalSubCompare(ABA_SUB *s1, ABA_SUB *s2);

int depthFirstSearch(ABA_SUB* s1, ABA_SUB* s2);

int breadthFirstSearch(ABA_SUB* s1, ABA_SUB* s2);

int diveAndBestFirstSearch(ABA_SUB *s1, ABA_SUB* s2);

private:

virtual ABA_SUB *firstSub() = 0;

virtual void initializeOptimization();

virtual void terminateOptimization();

virtual void initializeParameters();

ABA_MASTER(const ABA_MASTER &rhs);

const ABA_MASTER &operator=(const ABA_MASTER& rhs);

};

enum STATUS

The various statuses of the optimization process.

Optimal

The optimization terminated with an error and without reaching one of the resource

limits. If there is a feasible solution then the optimal solution has been computed.

Error

An error occurred during the optimization process.

Unprocessed

The initial status, before the optimization starts.

Processing

The status while the optimization is performed.

90 CHAPTER 6. REFERENCE MANUAL

Guaranteed

If not the optimal solution is determined, but the required guarantee is reached,

then the status is Guaranteed.

MaxLevel

The status, if subproblems are ignored since the maximum enumeration level is

exceeded.

MaxCpuTime

The status, if the optimization terminates since the maximum cpu time is exceeded.

MaxCowTime

The status, if the optimization terminates since the maximum wall-clock time is

exceeded.

ExceptionFathom

The status, if at least one subproblem has been fathomed according to a problem

speci�c criteria determined in the function |ABA SUB::exceptionFathom().

enum OUTLEVEL

This enumeration de�nes the di�erent output levels:

Silent

No output at all.

Statistics

No output during the optimization, but output of �nal statistics.

Subproblem

In addition to the previous level also a single line of output after every subproblem

optimization.

LinearProgram

In addition to the previous level also a single line of output after every solved linear

program.

Full

Tons of output.

enum ENUMSTRAT

The enumeration de�ning the di�erent enumeration strategies for the branch and bound algorithm.

BestFirst

Best-�rst search, i.e., select the subproblem with best dual bound, i.e., the subprob-

lem having minimal dual bound for a minimization problem, or the subproblem

having maximal dual bound for a maximization problem.

BreadthFirst

Breadth-�rst search, i.e., select the subproblem with minimal level in the enumer-

ation tree.

DepthFirst

Depth-�rst search, i.e., select the subproblem with maximal level in the enumeration

tree.

DiveAndBest

6.1. APPLICATION BASE CLASSES 91

As long as no primal feasible solution is known the next subproblem is selected

according to the depth-�rst search strategy, otherwise the best-�rst search strategy

is applied.

enum BRANCHINGSTRAT

This enumeration de�nes the two currently implemented branching variable selection strategies.

CloseHalf

Selects the variable with fractional part closest to 0:5.

CloseHalfExpensive

Selects the variable with fractional part close to 0:5 (within some interval around

0:5) and has highest absolute objective function coe�cient.

enum PRIMALBOUNDMODE

This enumeration provides various methods for the initialization of the primal bound. The modes

OptimalPrimalBound and OptimalOnePrimalBound can be useful in the testing phase. For these modes

the value of an optimum solution must stored in the �le given by the parameter OptimumFileName in the

parameter �le.

NoPrimalBound

The primal bound is initialized with �1 for maximization problems and 1 for

minimization problems, respectively.

OptimalPrimalBound

The primal bound is initialized with the value of the optimum solution.

OptimalOnePrimalBound

The primal bound is initialized with the value of optimum solution minus 1 for

maximization problems and with the value of the optimum solution plus one for

minimization problems, respectively.

enum SKIPPINGMODE

The way nodes are skipped for the generation of cuts.

SkipByNode

Cuts are only generated in every SkipFactor subproblem, where SkipFactor can

be controlled with the parameter �le .abacus.

SkipByLevel

Cuts are only generated in every SkipFactor level of the enumeration tree.

enum CONELIMMODE

This enumeration de�nes the ways for automatic constraint elimination during the cutting plane phase.

NoConElim

No constraints are eliminated.

NonBinding

Nonbinding constraints are eliminated.

Basic

Constraints with basic slack variable are eliminated.

92 CHAPTER 6. REFERENCE MANUAL

enum VARELIMMODE

This enumeration de�nes the ways for automatic variable elimination during the column generation

algorithm.

NoVarElim

No variables are eliminated.

ReducedCost

Variables with high absolute reduced costs are eliminated.

enum VBCMODE

This enumeration de�nes what kind of output can be generated for the VBCTOOL.

None

No output for the tree interface.

File

Output for the tree interface is written to a �le.

Pipe

Output for the tree interface is pipe to the standard output.

enum VBCMODE

This enumeration de�nes the available LP-solvers.

Cplex

The LP-solver Cplex.

SoPlex

The LP-solver SoPlex.

�rstSub (virtual)

virtual ABA_SUB *firstSub() = 0

Return Value:

The pure virtual function firstSub() should return a pointer to the �rst subproblem of the

optimization, i.e., the root node of the enumeration tree. This is a pure virtual function since

a pointer to a problem speci�c subproblem should be returned, which is derived from the class

ABA SUB.

Constructor

ABA_MASTER::ABA_MASTER(const char *problemName, bool cutting, bool pricing,

ABA_OPTSENSE::SENSE optSense,

double eps, double machineEps, double infinity)

Arguments:

problemName

The name of the problem being solved. Must not be a 0-pointer.

cutting

6.1. APPLICATION BASE CLASSES 93

If true, then cutting planes can be generated if the function ABA SUB::separate()

is rede�ned.

pricing

If true, then inactive variables are priced in, if the function ABA SUB::pricing()

is rede�ned.

optSense

The sense of the optimization. The default value is ABA OPTSENSE::Unknown. If

the sense is unknown when this constructor is called, e.g., if it is read from a �le in

the constructor of the derived class, then it must be initialized in the constructor

of the derived class.

eps

The zero-tolerance used within all member functions of objects which have a pointer

to this master (default value 1.0e-4).

machineEps

The machine dependent zero tolerance (default value 1.0e-7).

infinity

All values greater than infinity are regarded as \in�nite big", all values less than

-infinity are regarded as \in�nite small" (default value 1.0e30).

Destructor (virtual)

ABA_MASTER::~ABA_MASTER()

optimize

The function optimize() performs the optimization by branch-and-bound.

ABA_MASTER::STATUS ABA_MASTER::optimize()

Return Value:

The status of the optimization.

initializeOptimization (virtual)

The default implementation of initializeOptimization() does nothing. This virtual function can be

used as an entrance point to perform some initializations after optimize() is called.

void ABA_MASTER::initializeOptimization()

initializePools (virtual)

The virtual function initializePools() sets up the default pools for variables, constraints, and cutting

planes.

void ABA_MASTER::initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_BUFFER<ABA_VARIABLE*> &variables,

int varPoolSize,

int cutPoolSize,

bool dynamicCutPool)

Arguments:

constraints

94 CHAPTER 6. REFERENCE MANUAL

The constraints of the problem formulation are inserted in the constraint pool. The

size of the constraint pool equals the number of constraints.

variables

The variables of the problem formulation are inserted in the variable pool.

varPoolSize

The size of the pool for the variables. If more variables are added the variable pool

is automatically reallocated.

cutPoolSize

The size of the pool for cutting planes.

dynamicCutPool

If this argument is true, then the cut is automatically reallocated if more constraints

are inserted than cutPoolSize. Otherwise, non-active constraints are removed if

the pool becomes full. The default value is false.

initializePools (virtual)

The virtual function initializePools() is overloaded such that also a �rst set of cutting planes can be

inserted into the cutting plane pool.

void ABA_MASTER::initializePools(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_BUFFER<ABA_CONSTRAINT*> &cuts,

ABA_BUFFER<ABA_VARIABLE*> &variables,

int varPoolSize,

int cutPoolSize,

bool dynamicCutPool)

Arguments:

constraints

The constraints of the problem formulation are inserted in the constraint pool. The

size of the constraint pool equals the number of constraints.

cuts

The constraints that are inserted in the cutting plane pool. The number of con-

straints in the bu�er must be less or equal than the size of the cutting plane pool

cutPoolSize.

variables

The variables of the problem formulation are inserted in the variable pool.

varPoolSize

The size of the pool for the variables. If more variables are added the variable pool

is automatically reallocated.

cutPoolSize

The size of the pool for cutting planes.

dynamicCutPool

If this argument is true, then the cut is automatically reallocated if more constraints

are inserted than cutPoolSize. Otherwise, non-active constraints are removed if

the pool becomes full. The default value is false.

6.1. APPLICATION BASE CLASSES 95

intializeOptSense

The function initializeOptSense() can be used to initialize the sense of the optimization in derived

classes, if this has not been already performed when the constructor of ABA MASTER has been called.

void ABA_MASTER::initializeOptSense(ABA_OPTSENSE::SENSE sense)

Arguments:

sense

The sense of the optimization (ABA OPTSENSE::Min or ABA OPTSENSE::Max).

terminateOptimization (virtual)

The default implementation of terminateOptimization() does nothing. This virtual function can be

used as an entrance point after the optimization process is �nished.

void ABA_MASTER::terminateOptimization()

enumerationStrategy (virtual)

The virtual function enumerationStrategy() analyzes the enumeration strategy set in the parameter �le

.abacus and calls the corresponding comparison function for the subproblems s1 and s2. This function

should be rede�ned for application speci�c enumeration strategies.

int ABA_MASTER::enumerationStrategy(ABA_SUB *s1, ABA_SUB *s2)

Return Value:

If s1 has higher priority than s2 it returns 1, if s2 has higher priority it returns �1, and if

both subproblems have equal priority it returns 0.

Arguments:

s1

A pointer to subproblem.

s2

A pointer to subproblem.

bestFirstSearch

The function bestFirstSearch() implements the best �rst search enumeration. If the bounds of both

subproblems are equal, then the subproblems are compared with the function equalSubCompare().

int ABA_MASTER::bestFirstSearch(ABA_SUB *s1, ABA_SUB *s2)

Return Value:

-1

If subproblem s1 has a worse dual bound than s2, i.e., if it has a smaller dual bound

for minimization or a larger dual bound for maximization problems.

1

If subproblem s2 has a worse dual bound than s1.

0

If both subproblems have the same priority in the enumeration strategy.

96 CHAPTER 6. REFERENCE MANUAL

Arguments:

s1

A subproblem.

s2

A subproblem.

equalSubCompare (virtual)

The virtual function equalSubCompare() is called from the function bestFirstSearch() and from the

function depthFirstSearch() if the subproblems s1 and s2 have the same priority. If both subproblems

were generated by setting a binary variable, then that subproblem has higher priority of which the

branching variable is set to upper bound.

This function can be rede�ned to resolve equal subproblems according to problem speci�c criteria.

int ABA_MASTER::equalSubCompare(ABA_SUB *s1, ABA_SUB *s2)

Return Value:

0

If both subproblems were not generated by setting a variable, or the branching

variable of both subproblems is set to the same bound.

1

If the branching variable of the �rst subproblem ist set to the upper bound.

-1

If the branching variable of the second subproblem ist set to the upper bound.

Arguments:

s1

A subproblem.

s2

A subproblem.

depthFirstSearch

The function depthFirstSearch() implements the depth �rst search enumeration strategy, i.e., the

subproblem with maximum level is selected. If the level of both subproblems are equal, then the

subproblems are compared with the function equalSubCompare().

int ABA_MASTER::depthFirstSearch(ABA_SUB* s1, ABA_SUB* s2)

Return Value:

-1

If subproblem s1 has higher priority,

0

if both subproblems have equal priority,

1

otherwise.

Arguments:

6.1. APPLICATION BASE CLASSES 97

s1

The �rst subproblem.

s2

The second subproblem.

breadthFirstSearch

The function breadthFirstSearch() implements the breadth �rst search enumeration strategy, i.e., the

subproblem with minimum level is selected. If both subproblems have the same level, the smaller one

is the one which has been generated earlier, i.e., the one with the smaller id.

int ABA_MASTER::breadthFirstSearch(ABA_SUB* s1, ABA_SUB* s2)

Return Value:

-1

If subproblem s1 has higher priority,

0

if both subproblems have equal priority,

1

otherwise.

Arguments:

s1

The �rst subproblem.

s2

The second subproblem.

diveAndBestFirstSearch

The function diveAndBestFirstSearch() performs depth-�rst search until a feasible solution is found,

then the search process is continued with best-�rst search.

int ABA_MASTER::diveAndBestFirstSearch(ABA_SUB *s1, ABA_SUB* s2)

Return Value:

-1

If subproblem s1 has higher priority,

0

if both subproblems have equal priority,

1

otherwise.

Arguments:

s1

The �rst subproblem.

s2

The second subproblem.

98 CHAPTER 6. REFERENCE MANUAL

lowerBound

double ABA_MASTER::lowerBound() const

Return Value:

The value of the global lower bound.

upperBound

double ABA_MASTER::upperBound() const

Return Value:

The value of the global upper bound.

primalBound

double ABA_MASTER::primalBound() const

Return Value:

The value of the primal bound, i.e., the lowerBound() for a maximization problem and the

upperBound() for a minimization problem, respectively.

primalBound

This version of the function primalBound() sets the primal bound to x and makes a new entry in the

solution history. It is an error if the primal bound gets worse.

void ABA_MASTER::primalBound(double x)

Arguments:

x

The new value of the primal bound.

dualBound

double ABA_MASTER::dualBound() const

Return Value:

The value of the dual bound, i.e., the upperBound() for a maximization problem and the

lowerBound() for a minimization problem, respectively.

dualBound

This version of the function dualBound() sets the dual bound to x and makes a new entry in the solution

history. It is an error if the dual bound gets worse.

void ABA_MASTER::dualBound(double x)

Arguments:

x

The new value of the dual bound.

6.1. APPLICATION BASE CLASSES 99

betterDual

bool ABA_MASTER::betterDual(double x) const

Return Value:

true

If x is better than the best known dual bound.

false

otherwise.

Arguments:

x

The value being compared with the best know dual bound.

primalViolated

The function primalViolated() can be used to compare a value with the one of the best known primal

bound.

bool ABA_MASTER::primalViolated(double x) const

Return Value:

true

If x is not better than the best known primal bound,

false

otherwise.

Arguments:

x

The value being compared with the primal bound.

betterPrimal

The function betterPrimal() can be used to check if a value is better than the best know primal bound.

bool ABA_MASTER::betterPrimal(double x) const

Return Value:

true

If x is better than the best known primal bound,

false

otherwise.

Arguments:

x

The value compared with the primal bound.

100 CHAPTER 6. REFERENCE MANUAL

feasibleFound

bool ABA_MASTER::feasibleFound() const

Return Value:

true

If a feasible solution of the optimization problem has been found.

false

otherwise.

root

The function root() can be used to access the root node of the branch-and-bound tree.

ABA_SUB* ABA_MASTER::root()

Return Value:

A pointer to the root node of the enumeration tree.

rRoot

ABA_SUB* ABA_MASTER::rRoot()

Return Value:

A pointer to the root of the remaining branch-and-bound tree, i.e., the subproblem which is

an ancestor of all open subproblems and has highest level in the tree.

guaranteed

The function guaranteed() can be used to check if the guarantee requirements are ful�lled, i.e., the

di�erence between upper bound and the lower bound in respect to the lowerBound is less than this

guarantee value in percent. If the lower bound is zero, but the upper bound is nonzero, we cannot give

any guarantee.

Warning: A guarantee for a solution can only be given if the pricing problem is solved exactly or no

column generation is performed at all.

bool ABA_MASTER::guaranteed()

Return Value:

true

If the guarantee requirements are ful�lled,

false

otherwise.

guarantee

The function guarantee() can be used to access the guarantee which can be given for the best known

feasible solution. It is an error to call this function if the lower bound is zero, but the upper bound is

nonzero.

double ABA_MASTER::guarantee()

Return Value:

The guarantee for best known feasible solution in percent.

6.1. APPLICATION BASE CLASSES 101

printGuarantee

The function printGuarantee() writes the guarantee nicely formated on the output stream associated

with this object. If no bounds are available, or the lower bound is zero, but the upper bound is nonzero,

then we cannot give any guarantee.

void ABA_MASTER::printGuarantee()

check

The function check() can be used to control the correctness of the optimization if the value of the

optimum solution has been loaded. This is done, if a �le storing the optimum value is speci�ed with the

parameter OptimumFileName in the con�guration �le .abacus.

bool ABA_MASTER::check()

Return Value:

true

If the optimum solution of the problem is known and equals the primal bound,

false

otherwise.

knownOptimum

The function knownOptimum() opens the �le speci�ed with the parameter OptimumFileName in the con-

�guration �le .abacus and tries to �nd a line with the name of the problem instance (as speci�ed in the

constructor of ABA MASTER) as �rst string.

bool ABA_MASTER::knownOptimum(double &optVal)

Return Value:

true

If a line with problemName has been found,

false

otherwise.

Arguments:

optVal

If the return value is true, then optVal holds the optimum value found in the

line with the name of the problem instance as �rst string. Otherwise, optVal is

unde�ned.

output (virtual)

The function output() does nothing but can be rede�ned in derived classes for output before the timing

statistics.

void ABA_MASTER::output()

102 CHAPTER 6. REFERENCE MANUAL

problemName

ABA_STRING *ABA_MASTER::problemName()

Return Value:

A pointer to the name of the instance being optimized (as speci�ed in the constructor of this

class).

optSense

ABA_OPTSENSE *ABA_MASTER::optSense()

Return Value:

A pointer to the object holding the optimization sense of the problem.

history

ABA_HISTORY *ABA_MASTER::history()

Return Value:

A pointer to the object storing the solution history of this branch and cut problem.

openSub

ABA_OPENSUB *ABA_MASTER::openSub()

Return Value:

A pointer to the set of open subproblems.

conPool

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *ABA_MASTER::conPool()

Return Value:

A pointer to the default pool storing the constraints of the problem formulation.

cutPool

ABA_STANDARDPOOL<ABA_CONSTRAINT, ABA_VARIABLE> *ABA_MASTER::cutPool()

Return Value:

A pointer to the default pool for the generated cutting planes.

varPool

ABA_STANDARDPOOL<ABA_VARIABLE, ABA_CONSTRAINT> *ABA_MASTER::varPool()

Return Value:

A pointer to the default pool storing the variables.

6.1. APPLICATION BASE CLASSES 103

cutting

bool ABA_MASTER::cutting() const

Return Value:

true

If cutting has been set to true in the call of the constructor of the class ABA MASTER,

i.e., if cutting planes should be generated in the subproblem optimization.

false

otherwise.

pricing

bool ABA_MASTER::pricing() const

Return Value:

true

If pricing has been set to true in the call of the constructor of the class ABA MASTER,

i.e., if a columns should be generated in the subproblem optimization.

false

otherwise.

totalCowTime

ABA_COWTIMER *ABA_MASTER::totalCowTime()

Return Value:

A pointer to the timer measuring the total wall clock time.

totalTime

ABA_CPUTIMER *ABA_MASTER::totalTime()

Return Value:

A pointer to the timer measuring the total cpu time for the optimization.

lpTime

ABA_CPUTIMER *ABA_MASTER::lpTime()

Return Value:

A pointer to the timer measuring the cpu time spent in members of the LP-interface.

lpSolverTime

ABA_CPUTIMER *ABA_MASTER::lpSolverTime()

Return Value:

A pointer to the timer measuring the cpu time required by Cplex.

104 CHAPTER 6. REFERENCE MANUAL

separationTime

ABA_CPUTIMER *ABA_MASTER::separationTime()

Return Value:

A pointer to the timer measuring the cpu time spent in the separation of cutting planes.

improveTime

ABA_CPUTIMER *ABA_MASTER::improveTime()

Return Value:

A pointer to the timer measuring the cpu time spent in the heuristics for the computation of

feasible solutions.

pricingTime

ABA_CPUTIMER *ABA_MASTER::pricingTime()

Return Value:

A pointer to the timer measuring the cpu time spent in pricing.

branchingTime

ABA_CPUTIMER *ABA_MASTER::branchingTime()

Return Value:

A pointer to the timer measuring the cpu time spent in �nding and selecting the branching

rules.

nSub

int ABA_MASTER::nSub() const

Return Value:

The number of generated subproblems.

nLp

int ABA_MASTER::nLp() const

Return Value:

The number of optimized linear programs (only LP-relaxations).

highestLevel

int ABA_MASTER::highestLevel () const

Return Value:

The highest level in the tree which has been reached during the implicit enumeration.

6.1. APPLICATION BASE CLASSES 105

nNewRoot

int ABA_MASTER::nNewRoot() const

Return Value:

The number of root changes of the remaining branch-and-cut tree.

nSubSelected

int ABA_MASTER::nSubSelected() const

Return Value:

The number of subproblems which have already been selected from the set of open subprob-

lems.

initializeParameters (virtual)

The virtual function initializeParameters() is only a dummy. This function can be used to initialize

parameters of derived classes and to overwrite parameters read from the �le .abacus by the function

initializeParameters().

void ABA_MASTER::initializeParameters()

readParameters

The function readParameters() opens the parameter �le fileName, reads all parameters, and inserts

them in the parameter table. A parameter �le may have at most 1024 characters per line.

void ABA_MASTER::readParameters(const char *fileName)

Arguments:

fileName

The name of the parameter �le.

getParameter

The function getParameter() searches for the parameter name in the parameter table. This function is

overloaded for di�erent types of the argument parameter.

int ABA_MASTER::getParameter(const char *name, int ¶meter)

Return Value:

0

If the parameter is found,

1

otherwise.

Arguments:

name

The name of the parameter.

parameter

The variable parameter receives the value of the parameter, if the function returns

1, otherwise it is unde�ned.

106 CHAPTER 6. REFERENCE MANUAL

getParameter

int ABA_MASTER::getParameter(const char *name, unsigned int ¶meter)

getParameter

int ABA_MASTER::getParameter(const char *name, double ¶meter)

getParameter

int ABA_MASTER::getParameter(const char *name, ABA_STRING ¶meter)

getParameter

int ABA_MASTER::getParameter(const char *name, bool ¶meter)

getParameter

int ABA_MASTER::getParameter(const char *name, char ¶meter)

printParameters

The function printParameters()writes all parameters of the class ABA MASTER together with their values

to the global output stream.

void ABA_MASTER::printParameters()

�xSetByRedCost

bool ABA_MASTER::fixSetByRedCost() const

Return Value:

true

Then variables are �xed and set by reduced cost criteria.

false

Then no variables are �xed or set by reduced cost criteria.

�xSetByRedCost

The function fixSetByReCost() turns �xing and setting variables by reduced cost on or o�.

void ABA_MASTER::fixSetByRedCost(bool on)

Arguments:

on

If true, then variable �xing and setting by reduced cost is turned on. Otherwise it

is turned of.

printLP

bool ABA_MASTER::printLP() const

Return Value:

true

Then the linear program is output every iteration of the subproblem optimization.

false

The linear program is not output.

6.1. APPLICATION BASE CLASSES 107

printLP

The function printLP() turns the output of the linear program in every iteration on or o�.

void ABA_MASTER::printLP(bool on)

Arguments:

on

If true, then the linear program is output, otherwise it is not output.

cplexPrimalPricing

ABA_STRING& ABA_MASTER::cplexPrimalPricing()

Return Value:

The primal pricing strategy for Cplex (see your Cplex manual).

cplexPrimalPricing

The function cplexPrimalPricing() changes the pricing method of the primal simplex algorithm of the

LP-solver Cplex.

Note, this function does not automatically change the pricing strategy of already constructed objects

of the class ABA CPLEXIF or the derived class ABA LPSUBCPLEX. Only the pricing strategy of objects

constructed after this function call is changed. In order to change the primal pricing strategy of \living"

objects of the class ABA CPLEXIF, use the function ABA CPLEXIF::setppriind().

void ABA_MASTER::cplexPrimalPricing(const char *method)

Arguments:

method

A string with the new primal pricing method. Consult your Cplex manual for valid

strategies.

cplexDualPricing

ABA_STRING& ABA_MASTER::cplexDualPricing()

Return Value:

The dual pricing strategy for Cplex (see your Cplex manual).

cplexDualPricing

The function cplexDualPricing() changes the pricing method of the dual simplex algorithm of the

LP-solver Cplex.

Note, this function does not automatically change the pricing strategy of already constructed objects

of the class ABA CPLEXIF or the derived class ABA LPSUBCPLEX. Only the pricing strategy of objects

constructed after this function call is changed. In order to change the dual pricing strategy of \living"

objects of the class ABA CPLEXIF, use the function ABA CPLEXIF::setdpriind().

void ABA_MASTER::cplexDualPricing(const char *method)

Arguments:

method

A string with the new dual pricing method. Consult your Cplex manual for valid

strategies.

108 CHAPTER 6. REFERENCE MANUAL

cplexOutputLevel

int ABA_MASTER::cplexOutputLevel() const

Return Value:

The output level of Cplex (0: no ouput of Cplex, 1: a line of output every refactorization, 2:

A line of output every iteration).

cplexOutputLevel

The function cplexOutputLevel() sets the amount of output produced by the LP-Solver Cplex.

Note, this function does not automatically change the amount of output of already constructed objects

of the class ABA CPLEXIF or the derived class ABA LPSUBCPLEX. Only the output of objects constructed

after this function call is changed. In order to change the amount of output of \living" objects of the

class ABA CPLEXIF, use the function ABA CPLEXIF::iterationInformation().

void ABA_MASTER::cplexOutputLevel(int level)

Arguments:

level

If 0 no output is generated, if 1 output every refactorization is generated, if 2 output

every iteration is generated.

maxConAdd

int ABA_MASTER::maxConAdd() const

Return Value:

The maximal number of constraints which should be added in every iteration of the cutting

plane algorithm.

maxConAdd

The function maxConAdd() sets the maximal number of constraints that are added in an iteration of the

cutting plane algorithm.

void ABA_MASTER::maxConAdd(int max)

Arguments:

max

The maximal number of constraints.

maxConBu�ered

int ABA_MASTER::maxConBuffered() const

Return Value:

The size of the bu�er for generated constraints in the cutting plane algorithm.

6.1. APPLICATION BASE CLASSES 109

maxConBu�ered

The function maxConBuffered() changes the maximal number of constraints that are bu�ered in an

iteration of the cutting plane algorithm.

Note, this function changes only the default value for subproblems that are activated after its call.

void ABA_MASTER::maxConBuffered(int max)

Arguments:

max

The new maximal number of bu�ered constraints.

maxVarAdd

int ABA_MASTER::maxVarAdd() const

Return Value:

The maximal number of variables which should be added in the column generation algorithm.

maxVarAdd

The function maxVarAdd() changes the maximal number of variables that are added in an iteration of

the subproblem optimization.

void ABA_MASTER::maxVarAdd(int max)

Arguments:

max

The new maximal number of added variables.

maxVarBu�ered

int ABA_MASTER::maxVarBuffered() const

Return Value:

The size of the bu�er for the variables generated in the column generation algorithm.

maxVarBu�ered

The function maxVarBuffered() changes the maximal number of variables that are bu�ered in an itera-

tion of the subproblem optimization.

Note, this function changes only the default value for subproblems that are activated after its call.

void ABA_MASTER::maxVarBuffered(int max)

Arguments:

max

The new maximal number of bu�ered variables.

maxIterations

int ABA_MASTER::maxIterations() const

Return Value:

The maximal number of iterations per subproblem optimization (-1 means no iteration limit).

110 CHAPTER 6. REFERENCE MANUAL

maxIterations

The function maxIterations() changes the default value for the maximal number of iterations of the

optimization of a subproblem.

Note, this function changes only this value for subproblems that are constructed after this function call.

For already constructed objects the value can be changed with the function ABA SUB::maxIterations().

void ABA_MASTER::maxIterations(int max)

Arguments:

max

The new maximal number of iterations of the subproblem optimization (-1 means

no limit).

optimumFileName

const ABA_STRING &ABA_MASTER::optimumFileName() const

Return Value:

The name of the �le that stores the optimum solutions.

optimumFileName

The function optimumFileName() changes the name of the �le in which the value of the optimum solution

is searched.

void ABA_MASTER::optimumFileName(const char *name)

Arguments:

name

The new name of the �le.

eliminateFixedSet

bool ABA_MASTER::eliminateFixedSet() const

Return Value:

true

Then we try to eliminate �xed and set variables from the linear program.

false

Fixed or set variables are not eliminated.

eliminateFixedSet

This version of the function eliminateFixedSet() can be used to turn the elimination of �xed and set

variables on or o�.

void ABA_MASTER::eliminateFixedSet(bool turnOn)

Arguments:

turnOn

The elimination is turned on if turnOn is true, otherwise it is turned o�.

6.1. APPLICATION BASE CLASSES 111

newRootReOptimize

bool ABA_MASTER::newRootReOptimize() const

Return Value:

true

Then a new root of the remaining branch-and-bound tree is reoptimized such that

the associated reduced costs can be used for the �xing of variables.

false

A new root is not reoptimized.

newRootReOptimize

The function newRootReOptimize() turns the reoptimization of new root nodes of the remaining branch

and bound tree on or o�.

void ABA_MASTER::newRootReOptimize(bool on)

Arguments:

on

If true, new root nodes are reoptimized.

showAverageCutDistance

bool ABA_MASTER::showAverageCutDistance() const

Return Value:

true

Then the average distance of the fractional solution from all added cutting planes

is output every iteration of the subproblem optimization.

false

The average cut distance is not output.

showAverageCutDistance

The function showAverageCutDistance() turns the output of the average distance of the added cuts

from the fractional solution on or o�.

void ABA_MASTER::showAverageCutDistance(bool on)

Arguments:

on

If true the output is turned on, otherwise it is turned o�.

vbcLog

ABA_MASTER::VBCMODE ABA_MASTER::vbcLog() const

Return Value:

The mode of output for the Vbc-Tool.

112 CHAPTER 6. REFERENCE MANUAL

vbcLog

The function vbcLog() changes the mode of output for the Vbc-Tool. This function should only be called

before the optimization is started with the function ABA MASTER::optimize().

void ABA_MASTER::vbcLog(VBCMODE mode)

Arguments:

mode

The new mode.

conElimMode

ABA_MASTER::CONELIMMODE ABA_MASTER::conElimMode() const

Return Value:

The mode for the elimination of constraints.

conElimMode

The function conElimMode() changes the constraint elimination mode.

void ABA_MASTER::conElimMode(CONELIMMODE mode)

Arguments:

mode

The new constraint elimination mode.

varElimMode

ABA_MASTER::VARELIMMODE ABA_MASTER::varElimMode() const

Return Value:

The mode for the elimination of variables.

varElimMode

The function varElimMode() changes the variable elimination mode.

void ABA_MASTER::varElimMode(VARELIMMODE mode)

Arguments:

mode

The new variable elimination mode.

conElimEps

double ABA_MASTER::conElimEps() const

Return Value:

The zero tolerance for the elimination of constraints by the slack criterion.

6.1. APPLICATION BASE CLASSES 113

conElimEps

The function conElimEps() chances the tolerance for the elimination of constraints by the slack criterion.

void ABA_MASTER::conElimEps(double eps)

Arguments:

eps

The new tolerance.

varElimEps

double ABA_MASTER::varElimEps() const

Return Value:

The zero tolerance for the elimination of variables by the reduced cost criterion.

varElimEps

The function varElimEps() chances the tolerance for the elimination of variables by the reduced cost

criterion.

void ABA_MASTER::varElimEps(double eps)

Arguments:

eps

The new tolerance.

enumerationStrategy

ABA_MASTER::ENUMSTRAT ABA_MASTER::enumerationStrategy() const

Return Value:

The enumeration strategy.

enumerationStrategy

This version of the function enumerationStrategy() changes the enumeration strategy.

void ABA_MASTER::enumerationStrategy(ENUMSTRAT strat)

Arguments:

strat

The new enumeration strategy.

branchingStrategy

ABA_MASTER::BRANCHINGSTRAT ABA_MASTER::branchingStrategy() const

Return Value:

The branching strategy.

114 CHAPTER 6. REFERENCE MANUAL

branchingStrategy

This version of the function branchingStrategy() changes the branching strategy.

void ABA_MASTER::branchingStrategy(BRANCHINGSTRAT strat)

Arguments:

strat

The new branching strategy.

defaultLpSolver

ABA_MASTER::LPSOLVER ABA_MASTER::defaultLpSolver() const

Return Value:

The default LP-Solver.

defaultLpSolver

This version of the function defaultLpSolver() changes the default LP-solver.

void ABA_MASTER::defaultLpSolver(LPSOLVER lpSolver)

Arguments:

lpSolver

The new solver.

soPlexRowRep

bool ABA_MASTER::soPlexRowRep() const

Return Value:

true

if the default SoPlex basis representation ROW.

false

if the default SoPlex basis representation COLUMN.

soPlexRowRep

void ABA_MASTER::soPlexRowRep(bool rep)

Arguments:

rep

If rep is true, then the default SoPlex basis representation is ROW, otherwise it is

COLUMN.

nBranchingVariableCandidates

int ABA_MASTER::nBranchingVariableCandidates() const

Return Value:

The number of variables that should be tested for the selection of the branching variable.

6.1. APPLICATION BASE CLASSES 115

nbranchingVariableCandidates

This version of the function nbranchingVariableCandidates() sets the number of tested branching

variable candidates.

void ABA_MASTER::nBranchingVariableCandidates(int n)

Arguments:

n

The new value of the number of tested variables for becoming branching variable.

requiredGuarantee

double ABA_MASTER::requiredGuarantee() const

The guarantee speci�cation for the optimization.

requiredGuarantee

This version of the function requiredGuarantee() changes the guarantee speci�cation.

void ABA_MASTER::requiredGuarantee(double g)

Arguments:

g

The new guarantee speci�cation. This must be a nonnative value. Note, if the

guarantee speci�cation is changed after a single node of the enumeration tree has

been fathomed, then the overall guarantee might di�er from the new value.

maxLevel

int ABA_MASTER::maxLevel() const

Return Value:

The maximal depth up to which the enumeration should be performed. By default the max-

imal enumeration depth is INT MAX.

maxLevel

This version of the function maxLevel() changes the maximal enumeration depth. If it is set to 1 the

branch-and-cut algorithm becomes a pure cutting plane algorithm.

void ABA_MASTER::maxLevel(int max)

Arguments:

max

The new value of the maximal enumeration level.

maxCpuTime

const ABA_STRING& ABA_MASTER::maxCpuTime() const

Return Value:

The maximal cpu time which can be used by the optimization.

116 CHAPTER 6. REFERENCE MANUAL

maxCpuTime

The function maxCpuTime() sets the maximal usable cpu time for the optimization.

void ABA_MASTER::maxCpuTime(const ABA_STRING &t)

Arguments:

t

The new value of the maximal cpu time.

maxCowTime

const ABA_STRING& ABA_MASTER::maxCowTime() const

Return Value:

The maximal wall-clock time for the optimization.

maxCowtime

This version of the function maxCowTime() set the maximal wall-clock time for the optimization.

void ABA_MASTER::maxCowTime(const ABA_STRING &t)

Arguments:

t

The new value of the maximal wall-clock time.

objInteger

bool ABA_MASTER::objInteger() const

Return Value:

true

Then we assume that all feasible solutions have integral objective function values,

false

otherwise.

objInteger

This version of function objInteger() sets the assumption that the objective function values of all

feasible solutions are integer.

void ABA_MASTER::objInteger(bool b)

Arguments:

b

The new value of the assumption.

tailO�NLp

int ABA_MASTER::tailOffNLp() const

Return Value:

The number of linear programs considered in the tailing o� analysis.

6.1. APPLICATION BASE CLASSES 117

tailO�NLp

The function tailOffNLp() sets the number of linear programs considered in the tailing o� analysis.

This new value is only relevant for subproblems activated after the change of this value.

void ABA_MASTER::tailOffNLp(int n)

Arguments:

n

The new number of LPs for the tailing o� analysis.

tailO�Percent

double ABA_MASTER::tailOffPercent() const

Return Value:

The minimal change of the dual bound for the tailing o� analysis in percent.

tailO�Percent

This version of the function tailOffPercent() sets the minimal change of the dual bound for the tailing

o� analysis. This change is only relevant for subproblems activated after calling this function.

void ABA_MASTER::tailOffPercent(double p)

Arguments:

p

The new value for the tailing o� analysis.

outLevel

ABA_MASTER::OUTLEVEL ABA_MASTER::outLevel() const

Return Value:

The output mode.

outLevel

The version of the function outLevel() sets the output mode.

void ABA_MASTER::outLevel(OUTLEVEL mode)

Arguments:

mode

The new value of the output mode.

logLevel

ABA_MASTER::OUTLEVEL ABA_MASTER::logLevel() const

Return Value:

The output mode for the log-�le.

118 CHAPTER 6. REFERENCE MANUAL

logLevel

This version of the function logLevel() sets the output mode for the log-�le.

void ABA_MASTER::logLevel(OUTLEVEL mode)

Arguments:

mode

The new value of the output mode.

delayedBranching

bool ABA_MASTER::delayedBranching(int nOpt) const

Return Value:

true

If the number of optimizations nOpt of a subproblem exceeds the delayed branching

threshold,

false

otherwise.

Arguments:

nOpt

The number of optimizations of a subproblem.

dbThreshold

The function dbThreshold() sets the number of optimizations of a subproblem until sons are created in

ABA SUB::branching(). If this value is 0, then a branching step is performed at the end of the subproblem

optimization as usually if the subproblem can be fathomed. Otherwise, if this value is strictly positive,

the subproblem is put back for a later optimization. This can be advantageous if in the meantime good

cutting planes or primal bounds can be generated. The number of times the subproblem is put back

without branching is indicated by this value.

void ABA_MASTER::dbThreshold(int threshold)

Arguments:

threshold

The new value of the delayed branching threshold.

dbThreshold

int ABA_MASTER::dbThreshold() const

Return Value:

The number of optimizations of a subproblem until sons are created. For further detatails we

refer to dbThreshold(int).

6.1. APPLICATION BASE CLASSES 119

minDormantRound

int ABA_MASTER::minDormantRounds() const

Return Value:

The maximal number of rounds, i.e., number of subproblem optimizations, a subproblem is

dormant, i.e., it is not selected from the set of open subproblem if its status is Dormant, if

possible.

minDormantRounds

The function minDormantRounds() sets the number of rounds a subproblem should stay dormant.

void ABA_MASTER::minDormantRounds(int nRounds)

Arguments:

nRounds

The new minimal number of dormant rounds.

pbMode

ABA_MASTER::PRIMALBOUNDMODE ABA_MASTER::pbMode() const

Return Value:

The mode of the primal bound initialization.

pbMode

This version of the function pbMode() sets the mode of the primal bound initialization.

void ABA_MASTER::pbMode(PRIMALBOUNDMODE mode)

Arguments:

mode

The new mode of the primal bound initialization.

pricingFreq

int ABA_MASTER::pricingFreq() const

Return Value:

The number of linear programs being solved between two additional pricing steps. If no

additional pricing steps should be executed this parameter has to be set to 0. The default

value of the pricing frequency is 0. This parameter does not inuence the execution of pricing

steps which are required for the correctness of the algorithm.

pricingFreq

This version of the function pricingFreq() sets the number of linear programs being solved between

two additional pricing steps.

void ABA_MASTER::pricingFreq(int f)

Arguments:

f

The pricing frequency.

120 CHAPTER 6. REFERENCE MANUAL

skipFactor

int ABA_MASTER::skipFactor() const

Return Value:

The frequency of subproblems in which constraints or variables should be generated.

skipFactor

This version of the function skipFactor() sets the frequency for constraint and variable generation.

void ABA_MASTER::skipFactor(int f)

Arguments:

f

The new value of the frequency.

skippingMode

ABA_MASTER::SKIPPINGMODE ABA_MASTER::skippingMode() const

Return Value:

The skipping strategy.

skippingMode

This version of the function skippingMode() sets the skipping strategy.

void ABA_MASTER::skippingMode(SKIPPINGMODE mode)

Arguments:

mode

The new skipping strategy.

6.1.4 ABA SUB

This class implements an abstract base class for a subproblem of the enumeration, i.e., a node of the

branch-and-bound tree. The core of this class is the solution of the linear programming relaxation. If a

derived class provides methods for the generation of cutting planes and/or variables, then the subproblem

is processed by a cutting plane and/or column generation algorithm. Essential is that every subproblem

has its own sets of active constraints and variables, which provides a very high exibility.

class ABA_SUB : public ABA_ABACUSROOT {

public:

enum STATUS {Unprocessed, Active, Dormant, Processed, Fathomed};

enum PHASE {Done, Cutting, Branching, Fathoming};

ABA_SUB(

ABA_MASTER *master,

double conRes,

double varRes,

double nnzRes,

bool relativeRes = true,

ABA_BUFFER<ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *> *constraints = 0,

ABA_BUFFER<ABA_POOLSLOT<ABA_VARIABLE, ABA_CONSTRAINT> *> *variables = 0);

6.1. APPLICATION BASE CLASSES 121

ABA_SUB(ABA_MASTER *master, ABA_SUB *father, ABA_BRANCHRULE *branchRule);

virtual ~ABA_SUB();

int level() const;

int id() const;

STATUS status() const;

int nVar() const;

int maxVar() const;

int nCon() const;

int maxCon() const;

double lowerBound() const;

double upperBound() const;

double dualBound() const;

ABA_SUB *father();

ABA_LPSUB *lp();

void maxIterations(int max);

ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *actCon();

ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *actVar();

ABA_CONSTRAINT *constraint(int i);

ABA_SLACKSTAT *slackStat(int i);

ABA_VARIABLE *variable(int i);

double lBound(int i) const;

double uBound(int i) const;

ABA_FSVARSTAT *fsVarStat(int i);

ABA_LPVARSTAT *lpVarStat(int i);

double xVal(int i) const;

double yVal(int i) const;

bool ancestor(ABA_SUB *sub);

ABA_MASTER *master();

void removeVars(ABA_BUFFER<int> &remove);

void removeVar(int i);

double nnzReserve() const;

bool relativeReserve() const;

ABA_BRANCHRULE *branchRule();

bool objAllInteger();

virtual void removeCons(ABA_BUFFER<int> &remove);

virtual void removeCon(int i);

int addConBufferSpace() const;

int addVarBufferSpace() const;

int nDormantRounds() const;

void ignoreInTailingOff();

virtual int addBranchingConstraint(

ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *slot);

protected:

virtual int addCons(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_POOL<ABA_CONSTRAINT, ABA_VARIABLE> *pool = 0,

ABA_BUFFER<bool> *keepInPool = 0,

ABA_BUFFER<double> *rank = 0);

virtual int addCons(

ABA_BUFFER<ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE>*> &newCons);

virtual int addVars(ABA_BUFFER<ABA_VARIABLE*> &variables,

ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> *pool = 0,

122 CHAPTER 6. REFERENCE MANUAL

ABA_BUFFER<bool> *keepInPool = 0,

ABA_BUFFER<double> *rank = 0);

virtual int addVars(

ABA_BUFFER<ABA_POOLSLOT<ABA_VARIABLE, ABA_CONSTRAINT>*> &newVars);

virtual int variablePoolSeparation(

int ranking = 0,

ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> *pool = 0,

double minViolation = 0.001);

virtual int constraintPoolSeparation(

int ranking = 0,

ABA_POOL<ABA_CONSTRAINT, ABA_VARIABLE> *pool = 0,

double minViolation = 0.001);

virtual void activate();

virtual void deactivate ();

virtual int generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*> &rules);

virtual int branchingOnVariable(ABA_BUFFER<ABA_BRANCHRULE*> &rules);

virtual int selectBranchingVariable(int &variable);

virtual int selectBranchingVariableCandidates(ABA_BUFFER<int> &candidates);

virtual int selectBestBranchingSample(int nSamples,

ABA_BUFFER<ABA_BRANCHRULE*> **samples);

virtual void rankBranchingSample(ABA_BUFFER<ABA_BRANCHRULE*> &sample,

ABA_ARRAY<double> &rank);

virtual double rankBranchingRule(ABA_BRANCHRULE *branchRule);

double lpRankBranchingRule(ABA_BRANCHRULE *branchRule, int iterLimit = -1);

virtual int compareBranchingSampleRanks(ABA_ARRAY<double> &rank1,

ABA_ARRAY<double> &rank2);

int closeHalfExpensive(int &branchVar, ABA_VARTYPE::TYPE branchVarType);

int closeHalfExpensive(ABA_BUFFER<int> &variables,

ABA_VARTYPE::TYPE branchVarType);

int closeHalf(int &branchVar, ABA_VARTYPE::TYPE branchVarType);

int closeHalf(ABA_BUFFER<int> &branchVar, ABA_VARTYPE::TYPE branchVarType);

int findNonFixedSet(ABA_BUFFER<int> &branchVar,

ABA_VARTYPE::TYPE branchVarType);

int findNonFixedSet(int &branchVar, ABA_VARTYPE::TYPE branchVarType);

virtual int initMakeFeas(ABA_BUFFER<ABA_INFEASCON*> &infeasCon,

ABA_BUFFER<ABA_VARIABLE*> &newVars,

ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> **pool);

virtual int makeFeasible();

virtual bool goodCol(ABA_COLUMN &col, ABA_ARRAY<double> &row,

double x, double lb, double ub);

virtual void setByLogImp(ABA_BUFFER<int> &variable,

ABA_BUFFER<ABA_FSVARSTAT*> &status);

virtual bool feasible() = 0;

bool integerFeasible();

virtual bool primalSeparation();

virtual int separate();

virtual void conEliminate(ABA_BUFFER<int> &remove);

virtual void nonBindingConEliminate(ABA_BUFFER<int> &remove);

virtual void basicConEliminate(ABA_BUFFER<int> &remove);

virtual void varEliminate(ABA_BUFFER<int> &remove);

void redCostVarEliminate(ABA_BUFFER<int> &remove);

virtual int pricing();

virtual int improve(double &primalValue);

6.1. APPLICATION BASE CLASSES 123

virtual ABA_SUB *generateSon(ABA_BRANCHRULE *rule) = 0;

bool boundCrash() const;

virtual bool pausing();

bool infeasible();

virtual void varRealloc(int newSize);

virtual void conRealloc(int newSize);

virtual ABA_LP::METHOD chooseLpMethod(int nVarRemoved, int nConRemoved,

int nVarAdded, int nConAdded);

void dualBound(double x);

virtual bool tailingOff();

bool betterDual(double x) const;

void lBound(int i, double l);

void uBound(int i, double u);

virtual void selectVars();

virtual void selectCons();

virtual int fixByRedCost(bool &newValues, bool saveCand);

virtual void fixByLogImp(ABA_BUFFER<int> &variable,

ABA_BUFFER<ABA_FSVARSTAT*> &status);

virtual int fixAndSet(bool &newValues);

virtual int fixing(bool &newValues, bool saveCand = false);

virtual int setting(bool &newValues);

virtual int setByRedCost();

virtual void fathom(bool reoptimize);

virtual bool fixAndSetTime();

virtual int fix(int i, ABA_FSVARSTAT *newStat, bool &newValue);

virtual int set(int i, ABA_FSVARSTAT *newStat, bool &newValue);

virtual int set(int i, ABA_FSVARSTAT::STATUS newStat, bool &newValue);

virtual int set(int i, ABA_FSVARSTAT::STATUS newStat, double value,

bool &newValue);

virtual double dualRound(double x);

virtual double guarantee();

virtual bool guaranteed();

virtual bool removeNonLiftableCons();

virtual int prepareBranching(bool &lastIteration);

virtual void fathomTheSubTree();

virtual int optimize();

virtual void reoptimize();

virtual void initializeVars(int maxVar);

virtual void initializeCons(int maxCon);

virtual PHASE branching();

virtual PHASE fathoming();

virtual PHASE cutting();

virtual ABA_LPSUB *generateLp();

virtual int initializeLp();

virtual int solveLp();

virtual bool exceptionFathom();

virtual bool exceptionBranch();

ABA_MASTER *master_;

ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *actCon_;

ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *actVar_;

ABA_SUB *father_;

ABA_LPSUB *lp_;

ABA_ARRAY<ABA_FSVARSTAT*> *fsVarStat_;

124 CHAPTER 6. REFERENCE MANUAL

ABA_ARRAY<ABA_LPVARSTAT*> *lpVarStat_;

ABA_ARRAY<double> *lBound_;

ABA_ARRAY<double> *uBound_;

ABA_ARRAY<ABA_SLACKSTAT*> *slackStat_;

ABA_TAILOFF *tailOff_;

double dualBound_;

int nIter_;

int lastIterConAdd_;

int lastIterVarAdd_;

ABA_BRANCHRULE *branchRule_;

bool allBranchOnSetVars_;

ABA_LP::METHOD lpMethod_;

ABA_CUTBUFFER<ABA_VARIABLE, ABA_CONSTRAINT> *addVarBuffer_;

ABA_CUTBUFFER<ABA_CONSTRAINT, ABA_VARIABLE> *addConBuffer_;

ABA_BUFFER<int> *removeVarBuffer_;

ABA_BUFFER<int> *removeConBuffer_;

double *xVal_;

double *yVal_;

double *bInvRow_;

int infeasCon_;

int infeasVar_;

bool genNonLiftCons_;

private:

ABA_SUB(const ABA_SUB &rhs);

const ABA_SUB &operator=(const ABA_SUB &rhs);

};

enum STATUS

A subproblem can have di�erent statuses:

Unprocessed

The status after generation, but before optimization of the subproblem.

Active

The subproblem is currently processed.

Dormant

The subproblem is partially processed and waiting in the set of open subproblems

for further optimization.

Processed

The subproblem is completely processed but could not be fathomed.

Fathomed

The subproblem is fathomed.

enum PHASE

The optimization of the subproblem can be in one of the following phases:

Done

The optimization is done.

Cutting

6.1. APPLICATION BASE CLASSES 125

The iterative solution of the LP-relaxation and the generation of cutting planes

and/or variables is currently performed.

Branching

We try to generate further subproblems as sons of this subproblem.

Fathoming

The subproblem is currently being fathomed.

master

ABA MASTER *master

A pointer to the corresponding master of the optimization.

actCon

ABA ACTIVE<ABA CONSTRAINT, ABA VARIABLE> *actCon

The active constraints of the subproblem.

actVar

ABA ACTIVE<ABA VARIABLE, ABA CONSTRAINT> *actVar

The active variables of the subproblem.

father

ABA SUB *father

A pointer to the father in the branch-and-cut tree.

lp

ABA LPSUB *lp

A pointer to the corresponding linear program.

fsVarStat

ABA ARRAY<ABA FSVARSTAT*> *fsVarStat

A pointer to an array storing the status of �xing and setting of the active variables. Although

�xed and set variables are already kept at their value by the adaption of the lower and upper

bounds, we store this information, since, e.g., a �xed or set variable should not be removed,

but a variable with an upper bound equal to the lower bound can be removed.

lpVarStat

ABA ARRAY<ABA LPVARSTAT*> *lpVarStat

A pointer to an array storing the status of each active variable in the linear program.

126 CHAPTER 6. REFERENCE MANUAL

lBound

ABA ARRAY<double> *lBound

A pointer to an array with the local lower bound of the active variables.

uBound

ABA ARRAY<double> *uBound

A pointer to an array with the local upper bounds of the active variables.

slackStat

ABA ARRAY<ABA SLACKSTAT*> *slackStat

A pointer to an array storing the statuses of the slack variables of the last solved linear

program.

tailO�

ABA TAILOFF *tailOff

A pointer to the tailing o� manager.

dualBound

double dualBound

The dual bound of the subproblem.

nIter

int nIter

The number of iterations in the cutting plane phase.

lastIterConAdd

int lastIterconAdd

The last iteration in which constraints have been added.

lastIterVarAdd

int lastIterVarAdd

The last iteration in which variables have been added.

branchRule

ABA BRANCHRULE *branchRule

The branching rule for the subproblem.

6.1. APPLICATION BASE CLASSES 127

allBranchOnSetVars

bool allBranchOnSetVars

If true, then the branching rule of the subproblem and of all ancestor on the path to the root

node are branching on a binary variable.

lpMethod

ABA LP::METHOD lpMethod

The solution method for the next linear program.

addVarBu�er

ABA CUTBUFFER<ABA VARIABLE, ABA CONSTRAINT> *addVarBuffer

The bu�er of the newly generated variables.

addConBu�er

ABA CUTBUFFER<ABA CONSTRAINT, ABA VARIABLE> *addConBuffer

The bu�er of the newly generated constraints.

removeVarBu�er

ABA BUFFER<int> *removeVarBuffer

The bu�er of the variables which are removed at the beginning of the next iteration.

removeConBu�er

ABA BUFFER<int> *removeConBuffer

The bu�er of the constraints which are removed at the beginning of the next iteration.

xVal

double *xVal

The last LP-solution.

yVal

double *yVal

The dual variables of the last linear program.

bInvRow

double *bInvRow

A row of the basis inverse associated with the infeasible variable infeasVar or slack variable

infeasCon .

128 CHAPTER 6. REFERENCE MANUAL

infeasCon

int infeasCon

The number of an infeasible constraint.

infeasVar

int infeasVar

The number of an infeasible variable.

genNonLiftCons

genNonLiftCons

If true, then the management of non-liftable constraints is performed.

feasible (virtual)

The pure virtual function feasible() checks for the feasibility of a solution of the LP-relaxation. If the

function returns true and the value of the primal bound is worse than the value of this feasible solution,

the value of the primal bound is updated automatically.

virtual bool feasible() = 0

Return Value:

true

If the LP-solution is feasible,

false

otherwise.

generateSon (virtual)

virtual ABA_SUB *generateSon(ABA_BRANCHRULE *rule) = 0

Return Value:

The function generateSon() returns a pointer to an object of a problem speci�c subprob-

lem derived from the class ABA SUB, which is generated from the current subproblem by the

branching rule rule.

Arguments:

rule

The branching rule with which the subproblem is generated.

6.1. APPLICATION BASE CLASSES 129

Constructor

The constructor for the root node of the enumeration tree.

ABA_SUB::ABA_SUB(

ABA_MASTER *master,

double conRes,

double varRes,

double nnzRes,

bool relativeRes,

ABA_BUFFER<ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *> *constraints,

ABA_BUFFER<ABA_POOLSLOT<ABA_VARIABLE, ABA_CONSTRAINT> *> *variables)

Arguments:

master

A pointer to the corresponding master of the optimization.

conRes

The additional memory allocated for constraints.

varRes

The additional memory allocated for variables.

nnzRes

The additional memory allocated for nonzero elements of the constraint matrix.

relativeRes

If this argument is true, then reserve space for variables, constraints, and nonzeros

given by the previous three arguments, is given in percent of the original numbers.

Otherwise, the numbers are interpreted as absolute values (casted to integer). The

default value is true.

constraints

The pool slots of the initial constraints. If the value is 0, then the constraints of

the default constraint pool are taken. The default value is 0.

variables

The pool slots of the initial variables. If the value is 0, then the variables of the

default variable pool are taken. The default value is 0.

Constructor

The constructor for non-root nodes of the enumeration tree.

ABA_SUB::ABA_SUB(ABA_MASTER *master, ABA_SUB *father, ABA_BRANCHRULE *branchRule)

Arguments:

master

A pointer to the corresponding master of the optimization.

father

A pointer to the father in the enumeration tree.

branchRule

The rule de�ning the subspace of the solution space associated with this subproblem.

130 CHAPTER 6. REFERENCE MANUAL

Destructor (virtual)

ABA_SUB::~ABA_SUB()

optimize (virtual)

The function optimize() performs the optimization of the subproblem.

int ABA_SUB::optimize()

Return Value:

0

If the optimization has been performed without error,

1

otherwise.

activate (virtual)

The virtual function activate() does nothing but can be used as an entrance point for problem speci�c

activations by v a reimplementation in derived classes.

void ABA_SUB::activate()

initializeVars (virtual)

The function initializeVars() initializes the active variable set.

void ABA_SUB::initializeVars(int maxVar)

Arguments:

maxVar

The maximal number of variables of the subproblem.

initializeCons (virtual)

The function initializeCons() initializes the active constraint set.

void ABA_SUB::initializeCons(int maxCon)

Arguments:

maxCon

The maximal number of constraints of the subproblem.

deactivate (virtual)

The virtual function deactivate() can be used as entrance point for problem speci�c deactivations after

the subproblem optimization. The default version of this function does nothing. This function is only

called if the function activate() for the subproblem has been executed.

void ABA_SUB::deactivate()

6.1. APPLICATION BASE CLASSES 131

setByLogImp (virtual)

The default implementation of setByLogImp() does nothing. In derived classes this function can be

reimplemented.

void ABA_SUB::setByLogImp(ABA_BUFFER<int> &variables,

ABA_BUFFER<ABA_FSVARSTAT*> &status)

Arguments:

variable

The variables which should be set have to be inserted in this bu�er.

status

The status of the set variables.

cutting (virtual)

The function cutting() iteratively solves the LP-relaxation, generates constraints and/or variables. Also

generating variables can be regarded as \cutting", namely as generating cuts for the dual problem.

ABA_SUB::PHASE ABA_SUB::cutting ()

Return Value:

Fathoming

If one of the conditions for fathoming the subproblem is satis�ed.

Branching

If the subproblem should be splitted in further subproblems.

prepareBranching (virtual)

The function prepareBranching() is called before a branching step to remove constraints.

int ABA_SUB::prepareBranching(bool &lastIteration)

Return Value:

1

If constraints have been removed,

0

otherwise.

Arguments:

lastIteration

This argument is always set to true in the function call.

132 CHAPTER 6. REFERENCE MANUAL

solveLp (virtual)

The function solveLp() solves the LP-relaxation of the subproblem.

int ABA_SUB::solveLp ()

Return Value:

0

The linear program has an optimimal solution.

1

If the linear program is infeasible.

2

If the linear program is infeasible for the current variable set, but non-liftable con-

straints have to be removed before a pricing step can be performed.

exceptionFathom (virtual)

The function exceptionFathom() can be used to specify a problem speci�c fathoming criterium that is

checked before the separation or pricing. The default implementation always returns false.

bool ABA_SUB::exceptionFathom()

Return Value:

true

If the subproblem should be fathomed,

false

otherwise.

exceptionBranch (virtual)

The function exceptionBranch() can be used to specify a problem speci�c criteria for enforcing a

branching step. This criterium is checked before the separation or pricing. The default implementation

always returns false.

bool ABA_SUB::exceptionBranch()

Return Value:

true

If the subproblem should be fathomed,

false

otherwise.

�xAndSetTime (virtual)

The virtual function fixAndSetTime() controls if variables should be �xed or set when all variables price

out corretly. The default implementation always returns true.

bool ABA_SUB::fixAndSetTime()

Return Value:

true

If variables should be �xed and set,

false

otherwise.

6.1. APPLICATION BASE CLASSES 133

makeFeasible (virtual)

The default implementation of makeFeasible() does nothing.

If there is an infeasible structural variable then it is stored in infeasVar , otherwise infeasVar is

-1. If there is an infeasible slack variable, it is stored in infeasCon , otherwise it is -1. At most one

of the two members infeasVar and infeasCon can be nonnegative. A reimplementation in a derived

class should generate variables to restore feasibility or con�rm that the subproblem is infeasible.

The strategy for the generation of inactive variables is completely problem and user speci�c. For

testing if a variable might restore again the feasibility the functions ABA VARIABLE::useful() and

ABA SUB::goodCol() might be helpful.

int ABA_SUB::makeFeasible()

Return Value:

0

If feasibility can be restored,

1

otherwise.

goodCol (virtual)

bool ABA_SUB::goodCol(ABA_COLUMN &col,

ABA_ARRAY<double> &row,

double x,

double lb,

double ub)

Return Value:

true

If the column col might restore feasibiblity if the variable with value x turns out

to be infeasible,

false

otherwise.

Arguments:

col

The column of the variable.

row

The row of the basis inverse associated with the infeasible variable.

x

The LP-value of the infeasible variable.

lb

The lower bound of the infeasible variable.

ub

The upper bound of the infeasible variable.

134 CHAPTER 6. REFERENCE MANUAL

pricing (virtual)

The function pricing() should generate inactive variables which do not price out correctly. The default

implementation does nothing and returns 0.

int ABA_SUB::pricing()

Return Value:

The number of new variables.

primalSeparation (virtual)

The function primalSeparation() is a virtual function which controls, if during the cutting plane phase

a (primal) separation step or a pricing step (dual separation) should be performed.

Per default a pure cutting plane algorithm performs always a primal separation step, a pure column

generation algorithm never performs a primal separation, and a hybrid algorithm generates usually cutting

planes but from time to time also inactive variables are priced out depending on the pricingFrequency().

bool ABA_SUB::primalSeparation()

Return Value:

true

Then cutting planes are generated in this iteration.

false

Then columns are generated in this iteration.

xVal

double ABA_SUB::xVal(int i) const

Return Value:

The value of the i-th variable in the last solved linear program.

Arguments:

i

The number of the variable under consideration.

yVal

double ABA_SUB::yVal(int i) const

Return Value:

The value of the i-th dual variable in the last solved linear program.

Arguments:

i

The number of the variable under consideration.

6.1. APPLICATION BASE CLASSES 135

dualRound (virtual)

double ABA_SUB::dualRound(double x)

Return Value:

If all objective function values of feasible solutions are integer the function dualRound()

returns x rounded up to the next integer if this is a minimization problem, or x rounded down

to the next integer if this is a maximization problem, respectively. Otherwise, the return value

is x.

Arguments:

x

The value that should be rounded if possible.

guaranteed (virtual)

bool ABA_SUB::guaranteed()

Return Value:

true

If the lower and the upper bound of the subproblem satis�es the guarantee require-

ments,

false

otherwise.

guarantee (virtual)

The function guarantee() may not be called if the lower bound is 0 and upper bound not equal to 0.

double ABA_SUB::guarantee()

Return Value:

The guarantee that can be given for the subproblem.

ancestor

bool ABA_SUB::ancestor(ABA_SUB *sub)

Return Value:

true

If this subproblem is an ancestor of the subproblem sub. We de�ne that a sub-

problem is its own ancestor,

false

otherwise.

Arguments:

sub

A pointer to a subproblem.

136 CHAPTER 6. REFERENCE MANUAL

removeNonLiftableCons (virtual)

bool ABA_SUB::removeNonLiftableCons()

Return Value:

true

If all active constraints can be lifted.

false

otherwise.

chooseLpMethod (virtual)

The virtual function chooseLpMethod() controls the method used to solve a linear programming relax-

ation. The default implementation chooses the barrier method for the �rst linear program of the root

node and for all other linear programs it tries to choose a method such that phase 1 of the simplex method

is not required.

ABA_LP::METHOD ABA_SUB::chooseLpMethod(int nVarRemoved,

int nConRemoved,

int nVarAdded,

int nConAdded)

Return Value:

The method the next linear programming relaxation is solved with.

Arguments:

nVarRemoved

The number of removed variables.

nConRemoved

The number of removed constraints.

nVarAdded

The number of added variables.

nConAdded

The number of added constraint.

master

ABA_MASTER *ABA_SUB::master()

Return Value:

A pointer to the master of the optimization.

removeVars (virtual)

With function removeVars() variables can be removed from the set of active variables. The variables

are not removed when this function is called, but are bu�ered and removed at the beginning of the next

iteration.

void ABA_SUB::removeVars(ABA_BUFFER<int> &remove)

Arguments:

remove

The variables which should be removed.

6.1. APPLICATION BASE CLASSES 137

removeVar (virtual)

The function removeVar() can be used to remove a single variable from the set of active variables. Like

in the function removeVars() the variable is bu�ered and removed at the beginning of the next iteration.

void ABA_SUB::removeVar(int i)

Arguments:

i

The variable which should be removed.

selectVars (virtual)

The virtual dummy function selectVars() is called before variables are selected from the variable bu�er.

It can be rede�ned in a derived class e.g., to remove multiply inserted variables from the bu�er.

void ABA_SUB::selectVars()

selectCons (virtual)

The virtual dummy function selectCons() is called before constraint are selected from the constraint

bu�er. It can be rede�ned in a derived class e.g., to remove multiply inserted constraints from the bu�er.

void ABA_SUB::selectCons()

nnzReserve

double ABA_SUB::nnzReserve() const

Return Value:

The additional space for nonzero elements of the constraint matrix when it is passed to the

LP-solver.

relativeReserve

bool ABA_SUB::relativeReserve() const

Return Value:

true

If the reserve space for variables, constraints, and nonzeros is given in percent of

the original space, and false if its given as absolute value,

false

otherwise.

branchRule

ABA_BRANCHRULE *ABA_SUB::branchRule()

Return Value:

A pointer to the branching rule of the subproblem.

138 CHAPTER 6. REFERENCE MANUAL

addCons (virtual)

The function addBranchingConstraint() adds a branching constraint to the constraint bu�er such

that it is automatically added at the beginning of the cutting plane algorithm. It should be used in

de�nitions of the pure virtual function BRANCHRULE::extract(). The function addCons() tries to add

new constraints to the constraint bu�er and a pool. The memory management of added constraints is

passed to ABACUS by calling this function.

int ABA_SUB::addCons(ABA_BUFFER<ABA_CONSTRAINT*> &constraints,

ABA_POOL<ABA_CONSTRAINT, ABA_VARIABLE> *pool,

ABA_BUFFER<bool> *keepInPool,

ABA_BUFFER<double> *rank)

Return Value:

0

If the constraint could be added,

1

otherwise.

Return Value:

The number of added constraints.

Arguments:

slot

A pointer to the pools slot containing the branching constraint.

Arguments:

constraints

The new constraints.

pool

The pool in which the new constraints are inserted. If the value of this argument

is 0, then the cut pool of the master is selected. Its default value is 0.

keepInPool

If (*keepInPool)[i] is true, then the constraint stays in the pool even if it is not

activated. The default value is a 0-pointer.

rank

If this pointer to a bu�er is nonzero, this bu�er should store a rank for each con-

straint. The greater the rank, the better the variable. The default value of rank is

0.

addVars (virtual)

The function addVars() tries to add new variables to the variable bu�er and a pool. The memory

management of added variables is passed to ABACUS by calling this function.

int ABA_SUB::addVars(ABA_BUFFER<ABA_VARIABLE*> &variables,

ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> *pool,

ABA_BUFFER<bool> *keepInPool,

ABA_BUFFER<double> *rank)

Return Value:

6.1. APPLICATION BASE CLASSES 139

The number of added variables.

Arguments:

variable

The new variables.

pool

The pool in which the new variables are inserted. If the value of this argument is

0, then the default variable pool is taken. The default value is 0.

keepInPool

If (*keepInPool)[i] is true, then the variable stays in the pool even if it is not

activated. The default value is a 0-pointer.

rank

If this pointer to a bu�er is nonzero, this bu�er should store a rank for each variable.

The greater the rank, the better the variable. The default value of rank is 0.

variablePoolSeparation (virtual)

The function variablePoolSeparation() tries to generate inactive variables from a pool.

int ABA_SUB::variablePoolSeparation(int ranking,

ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> *pool,

double minAbsViolation)

Return Value:

The number of generated variables.

Arguments:

ranking

This parameter indicates how the ranks of geneated variables should be computed

(0: no ranking; 1: violation is rank, 2: absolute value of violation is rank). The

default value is 0.

pool

The pool the variables are generated from. If pool is 0, then the default variable

pool is used. The default value of pool is 0.

minAbsViolation

A violated constraint/variable is only added if the absolute value of its violation is

at least minAbsViolation. The default value is 0.001.

constraintPoolSeparation (virtual)

The function constraintPoolSeparation() tries to generate inactive constraints from a pool.

int ABA_SUB::constraintPoolSeparation(int ranking,

ABA_POOL<ABA_CONSTRAINT, ABA_VARIABLE> *pool,

double minViolation)

Return Value:

The number of generated constraints.

Arguments:

140 CHAPTER 6. REFERENCE MANUAL

ranking

This parameter indicates how the ranks of violated constraints should be computed

(0: no ranking; 1: violation is rank, 2: absolute value of violation is rank). The

default value is 0.

pool

The pool the constraints are generated from. If pool is 0, then the default constraint

pool is used. The default value of pool is 0.

minAbsViolation

A violated constraint/variable is only added if the absolute value of its violation is

at least minAbsViolation. The default value is 0.001.

addConBu�erSpace

The function addConBufferSpace() can be used to determine the maximal number of the constraints

which still can be added to the constraint bu�er. A separation algorithm should stop as soon as the

number of generated constraints reaches this number because further work is useless.

int ABA_SUB::addConBufferSpace() const

Return Value:

The number of constraints which still can be inserted into the constraint bu�er.

addVarBu�erSpace

The function addVarBufferSpace() can be used to determine the maximal number of the variables

which still can be added to the variable bu�er. A pricing algorithm should stop as soon as the number

of generated variables reaches this number because further work is useless.

int ABA_SUB::addVarBufferSpace() const

Return Value:

The number of variables which still can be inserted into the variable bu�er.

objAllInteger

If all variables are Binary or Integer and all objective function coe�cients are integral, then all objective

function values of feasible solutions are integral. The function objAllInteger() tests this condition for

the current set of active variables.

Note, the result of this function can only be used to set the global parameter if actVar contains all

variables of the problem formulation.

bool ABA_SUB::objAllInteger()

Return Value:

true

If this condition is satis�ed by the currently active variable set,

false

otherwise.

6.1. APPLICATION BASE CLASSES 141

integerFeasible

The function integerFeasible() can be used to check if the solution of the LP-relaxation is primally

feasible if for feasibility an integral value for all binary and integer variables is su�cient. This function

can be called from the function feasible() in derived classes.

bool ABA_SUB::integerFeasible()

Return Value:

true

If the LP-value of all binary and integer variables is integral,

false

otherwise.

nDormantRounds

int ABA_SUB::nDormantRounds() const

Return Value:

The number of subproblem optimization the subproblem is already dormant.

ignoreInTailingO�

The function ignoreInTailingOff() can be used to control better the tailing-o� e�ect. If this function is

called, the next LP-solution is ignored in the tailing-o� control. Calling ignoreInTailingOff() can e.g.

be considered in the following situation: If only constraints that are required for the integer programming

formulation of the optimization problem are added then the next LP-value could be ignored in the

tailing-o� control. Only \real" cutting planes should be considered in the tailing-o� control (this is only

an example strategy that might not be practical in many situations, but sometimes turned out to be

e�cient).

void ABA_SUB::ignoreInTailingOff()

branching (virtual)

The function branching() is called if the global lower bound of a branch-and-cut node is still strictly less

than the local upper bound, but either no violated cutting planes or variables are found, or we abort the

cutting phase for some other strategic reason (e.g., observation of a tailing o� e�ect, or branch pausing).

Usually, two new subproblems are generated. However, our implementation of branching() is more

sophisticated that allows di�erent branching. Moreover, we also check if this node is only paused. If this

is the case the node is put back into the list of open branch-and-cut nodes without generating sons of

this node.

Finally if none of the previous conditions is satis�ed we generate new subproblems.

ABA_SUB::PHASE ABA_SUB::branching()

Return Value:

Done

If sons of the subproblem could be generated,

Fathoming

otherwise.

142 CHAPTER 6. REFERENCE MANUAL

generateBranchRules (virtual)

The function generateBranchRules() tries to �nd rules for splitting the current subproblem in further

subproblems. Per default we generate rules for branching on variables (branchingOnVariable()). But

by rede�ning this function in a derived class any other branching strategy can be implemented.

int ABA_SUB::generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*> &rules)

Return Value:

0

If branching rules could be found,

1

otherwise.

Arguments:

rules

If branching rules are found, then they are stored in this bu�er.

branchingOnVariable (virtual)

The function branchingOnVariable() generates branching rules for two new subproblems by selecting a

branching variable with the function selectBranchingVariable(). If a new branching variable selection

strategy should be used the function selectBranchingVariable() should be rede�ned.

int ABA_SUB::branchingOnVariable(ABA_BUFFER<ABA_BRANCHRULE*> &rules)

Return Value:

0

If branching rules could be found,

1

otherwise

Arguments:

rules

If branching rules are found, then they are stored in this bu�er. The length of this

bu�er is the number of active variables of the subproblem. If more branching rules

are generated a reallocation has to be performed.

selectBranchingVariable (virtual)

The function selectBranchingVariable() chooses a branching variable.

The function selectBranchingVariableCandidates() is asked to generate depending in the para-

meter NBranchingVariableCandidates of the �le .abacus candidates for branching variables. If only

one candidate is generate, this one becomes the branching variable. Otherwise, the pairs of branching

rules are generated for all candidates and the \best" branching variables is determined with the function

selectBestBranchingSample().

int ABA_SUB::selectBranchingVariable(int &variable)

Return Value:

0

6.1. APPLICATION BASE CLASSES 143

If a branching variable is found,

1

otherwise.

Arguments:

variable

Holds the branching variable if one is found.

selectBranchingVariableCandidates

The function selectBranchingVariableCandidates() selects depending on the branching variable strat-

egy given by the parameter BranchingStrategy in the �le .abacus candidates that for branching vari-

ables.

Currently two branching variable selection strategies are implemented. The �rst one (CloseHalf) �rst

searches the binary variables with fractional part closest to 0:5. If there is no fractional binary variable

it repeats this process with the integer variables.

The second strategy (CloseHalfExpensive) �rst tries to �nd binary variables with fraction close to

0:5 and high absolute objective function coe�cient. If this fails, it tries to �nd an integer variable with

fractional part close to 0:5 and high absolute objective function coe�cient.

If neither a binary nor an integer variable with fractional value is found then for both strategies we

try to �nd non-�xed and non-set binary variables. If this fails we repeat this process with the integer

variables.

Other branching variable selection strategies can be implemented by rede�ning this virtual function

in a derived class.

int ABA_SUB::selectBranchingVariableCandidates(ABA_BUFFER<int> &candidates)

Return Value:

0

If a candidate is found,

1

otherwise.

Arguments:

candidates

The candidates for branching variables are stored in this bu�er. We try to �nd as

many variables as �t into the bu�er.

closeHalf

The function closeHalf() searches a branching variable of type branchVarType, with fraction as close

to 0:5 as possible.

int ABA_SUB::closeHalf(int &branchVar, ABA_VARTYPE::TYPE branchVarType)

Return Value:

0

If a branching variable is found,

1

otherwise.

144 CHAPTER 6. REFERENCE MANUAL

Arguments:

branchVar

Holds the branching variable if one is found.

branchVartype

The type of the branching variable can be restricted either to ABA VARTYPE::Binary

or ABA VARTYPE::Integer.

closeHalf

The function closeHalf() searches searches several possible branching variable of type branchVarType,

with fraction as close to 0:5 as possible.

int ABA_SUB::closeHalf(ABA_BUFFER<int> &variables, ABA_VARTYPE::TYPE branchVarType)

Return Value:

0

If at least one branching variable is found,

1

otherwise.

Arguments:

variables

Stores the possible branching variables.

branchVartype

The type of the branching variable can be restricted either to ABA VARTYPE::Binary

or ABA VARTYPE::Integer.

closeHalfExpensive

The function closeHalfExpensive() selects a single branching variable of type branchVarType, with

fractional part close to 0:5 and high absolute objective function coe�cient.

int ABA_SUB::closeHalfExpensive(int &branchVar, ABA_VARTYPE::TYPE branchVarType)

Return Value:

0

If a branching variable is found,

1

otherwise.

Arguments:

branchVar

Holds the number of the branching variable if one is found.

branchVartype

The type of the branching variable can be restricted either to ABA VARTYPE::Binary

or ABA VARTYPE::Integer.

6.1. APPLICATION BASE CLASSES 145

closeHalfExpensive

This version of the function closeHalfExpensive() selects several candidates for branching variables

of type branchVarType. Thos variables with fractional part close to 0:5 and high absolute objective

function coe�cient are selected..

int ABA_SUB::closeHalfExpensive(ABA_BUFFER<int> &branchVar,

ABA_VARTYPE::TYPE branchVarType)

Return Value:

0

If at least one branching variable is found,

1

otherwise.

Arguments:

branchVar

Holds the numbers of possible branching variables if at least one is found. We try

to �nd as many candidates as �t into this bu�er. We abort the function with a fatal

error if the size of the bu�er is 0.

branchVartype

The type of the branching variable can be restricted either to ABA VARTYPE::Binary

or ABA VARTYPE::Integer.

�ndNonFixedSet

The function findNonFixedSet() selects the �rst variable that is neither �xed nor set.

int ABA_SUB::findNonFixedSet(int &branchVar, ABA_VARTYPE::TYPE branchVarType)

Return Value:

0

If a variable neither �xed nor set is found,

1

otherwise.

Arguments:

branchVar

Holds the number of the branching variable if one is found.

branchVarType

The type of the branching have (ABA VARTYPE::Binary or ABA VARTYPE::Integer).

146 CHAPTER 6. REFERENCE MANUAL

�ndNonFixedSet

The function findNonFixedSet() selects the �rst variables that are neither �xed nor set.

int ABA_SUB::findNonFixedSet(ABA_BUFFER<int> &branchVar,

ABA_VARTYPE::TYPE branchVarType)

Return Value:

0

If at least one variable neither �xed nor set is found,

1

otherwise.

Arguments:

branchVar

Holds the number of the possible branching variables if one is found.

branchVartype

The type of the branching variable can be restricted either to ABA VARTYPE::Binary

or ABA VARTYPE::Integer.

selectBestBranchingSample (virtual)

The function selectBestBranchingSample() evaluates branching samples (we denote a branching sam-

ple the set of rules de�ning all sons of a subproblem in the enumeration tree). For each sample the

ranks are determined with the function rankBranchingSample(). The ranks of the various samples are

compared with the function compareBranchingSample().

int ABA_SUB::selectBestBranchingSample(int nSamples,

ABA_BUFFER<ABA_BRANCHRULE*> **samples)

Return Value:

The number of the best branching sample, or -1 in case of an internal error.

Arguments:

nSamples

The number of branching samples.

samples

An array of pointer to bu�ers storing the branching rules of each sample.

rankBranchingSample (virtual)

The function rankBranchingSample() computes for each branching rule of a branching sample a rank

with the function rankBranchingRule().

void ABA_SUB::rankBranchingSample(ABA_BUFFER<ABA_BRANCHRULE*> &sample,

ABA_ARRAY<double> &rank)

Arguments:

sample

A branching sample.

rank

An array storing the rank for each branching rule in the sample after the function

call.

6.1. APPLICATION BASE CLASSES 147

rankBranchRule (virtual)

The function rankBranchingRule() computes the rank of a branching rule. This default implementation

computes the rank with the function lpRankBranchingRule(). By rede�ning this virtual function the

rank for a branching rule can be computed di�erently.

double ABA_SUB::rankBranchingRule(ABA_BRANCHRULE *branchRule)

Return Value:

The rank of the branching rule.

Arguments:

branchRule

A pointer to a branching rule.

lpRankBranchingRule

The function lpRankBranchingRule() computes the rank of a branching rule by modifying the linear pro-

gramming relaxation of the subproblem according to the branching rule and solving it. This modi�ction

is undone after the solution of the linear program.

It is useless, but no error, to call this function for branching rules for which the virtual dummy

functions extract(ABA LPSUB*) and unExtract(ABA LPSUB*) of the base class ABA BRANCHRULE are not

rede�ned.

double ABA_SUB::lpRankBranchingRule(ABA_BRANCHRULE *branchRule, int iterLimit)

Arguments:

branchRule

A pointer to a branching rule.

iterLimit

The maximal number of iterations that should be performed by the simplex method.

If this number is negative there is no iteration limit (besides internal limits of the

LP-solver). The default value is -1.

compareBranchingSampleRanks (virtual)

The function compareBranchingSampleRanks() compares the ranks of two branching samples. For

maximimization problem that rank is better for which the maximal rank of a rule is minimal, while for

minimization problem the rank is better for which the minimal rank of a rule is maximal. If this value

equals for both ranks we continue with the secand greatest value, etc.

int ABA_SUB::compareBranchingSampleRanks(ABA_ARRAY<double> &rank1,

ABA_ARRAY<double> &rank2)

Return Value:

1

If rank1 is better.

0

If both ranks are equal.

-1

If rank2 is better.

148 CHAPTER 6. REFERENCE MANUAL

fathoming (virtual)

The function fathoming() fathoms the node, and if certain conditions are satis�ed, also its ancestor.

The third central phase of the optimization of a subproblem is the Fathoming of a subproblem. A

subproblem is fathomed if it can be guaranteed that this subproblem cannot contain a better solution

than the best known one. This is the case if the global upper bound does not exceed the local lower

bound (maximization problem assumed) or the subproblem cannot contain a feasible solution either if

there is a �xing/setting contradiction or the LP-relaxation turns out to be infeasible.

Note, use the function ExceptionFathom() for specifying problem speci�c fathoming criteria.

ABA_SUB::PHASE ABA_SUB::fathoming()

Return Value:

The function always returns Done.

fathom (virtual)

The function fathom() fathoms a node and recursively tries to fathom its father.

void ABA_SUB::fathom(bool reoptimize)

Arguments:

reoptimize

If reoptimize is true, then we perform a reoptimization in the new root.

�xAndSet (virtual)

The function fixAndSet() tries to �x and set variables both by logical implications and reduced cost

criteria.

int ABA_SUB::fixAndSet(bool &newValues)

Return Value:

1

If a contradiction is found,

0

otherwise.

Arguments:

newValues

If a variables is set or �xed to a value di�erent from the last LP-solution, newValues

is set to true, otherwise it is set to false.

�xing (virtual)

The function fixing() tries to �x variables by reduced cost criteria and logical implications.

int ABA_SUB::fixing(bool &newValues, bool saveCand)

Return Value:

1

If a contradiction is found,

0

6.1. APPLICATION BASE CLASSES 149

otherwise.

Arguments:

newValues

The parameter newValues becomes true if variables are �xed to other values as in

the current LP-solution.

saveCand

If the parameter saveCand is true a new candidate list of variables for �xing is

generated. The default value of saveCand is false. Candidates should not be saved

if �xing is performed after the addition of variables.

setting (virtual)

The function setting() tries to set variables by reduced cost criteria and logical implications like

fixing(), but instead of global conditions only locally valid conditions have to be satis�ed.

int ABA_SUB::setting(bool &newValues)

Return Value:

1

If a contradiction has been found,

0

otherwise.

Arguments:

newValues

The parameter newValues becomes true if variables are �xed to other values as in

the current LP-solution (setByRedCost() cannot set variables to new values).

�xByRedCost (virtual)

The function fixByRedCost() tries to �x variables according to the reduced cost criterion.

int ABA_SUB::fixByRedCost(bool &newValues, bool saveCand)

Return Value:

1

If a contradiction is found,

0

otherwise.

Arguments:

newVales

If variables are �xed to di�erent values as in the last solved linear program, then

newValues becomes true.

saveCand

If saveCand is true, then a new list of candidates for later calls is compiled. This

is only possible when the root of the remaining branch-and-bound is processed.

150 CHAPTER 6. REFERENCE MANUAL

�xByLogImp (virtual)

The function fixByLogImp() should collect the numbers of the variables to be �xed in variable and

the respective statuses in status. The default implementation of fixByLogImp() does nothing. This

function has to be rede�ned if variables should be �xed by logical implications in derived classes.

void ABA_SUB::fixByLogImp(ABA_BUFFER<int> &variables,

ABA_BUFFER<ABA_FSVARSTAT*> &status)

Arguments:

variables

The variables which should be �xed.

status

The statuses these variables should be �xed to.

setByRedCost (virtual)

The function setByRedCost() tries to set variables according to the reduced cost criterion.

int ABA_SUB::setByRedCost()

Return Value:

1

If a contradiction is found,

0

otherwise.

constraint

ABA_CONSTRAINT *ABA_SUB::constraint(int i)

Return Value:

A pointer to the i-th active constraint.

Arguments:

i

The constraint being accessed.

variable

ABA_VARIABLE *ABA_SUB::variable(int i)

Return Value:

A pointer to the i-th active variable.

Arguments:

i

The number of the variable being accessed.

6.1. APPLICATION BASE CLASSES 151

lBound

The function lBound() can be used to access the lower of an active variable of the subproblem. Warning:

This is the lower bound of the variable within the current subproblem which can di�er from its global

lower bound.

double ABA_SUB::lBound(int i) const

Return Value:

The lower bound of the i-th variable.

Arguments:

i

The number of the variable.

lBound

This version of the function lBound() sets the local lower bound of a variable. It does not change the

global lower bound of the variable. The bound of a �xed or set variable should not be changed.

void ABA_SUB::lBound(int i, double x)

Arguments:

i

The number of the variable.

x

The new value of the lower bound.

uBound

The function uBound() can be used to access the upper of an active variable of the subproblem. Warning:

This is the upper bound of the variable within the current subproblem which can di�er from its global

upper bound.

double ABA_SUB::uBound(int i) const

Return Value:

The upper bound of the i-th variable.

Arguments:

i

The number of the variable.

uBound

This version of the function uBound() sets thef local upper bound of a variable. This does not change

the global lower bound of the variable. The bound of a �xed or set variable should not be changed.

void ABA_SUB::uBound(int i, double x)

Arguments:

i

The number of the variable.

x

The new value of the upper bound.

152 CHAPTER 6. REFERENCE MANUAL

fsVarStat

ABA_FSVARSTAT *ABA_SUB::fsVarStat(int i)

Return Value:

A pointer to the status of �xing/setting of the i-th variable. Note, this is the local status

of �xing/setting that might di�er from the global status of �xing/setting of the variable

(variable(i)->fsVarStat()).

Arguments:

i

The number of the variable.

lpVarStat

ABA_LPVARSTAT *ABA_SUB::lpVarStat(int i)

Return Value:

A pointer to the status of the variable i in the last solved linear program.

Arguments:

i

The number of the variable.

slackStat

ABA_SLACKSTAT *ABA_SUB::slackStat(int i)

Return Value:

A pointer to the status of the slack variable i in the last solved linear program.

Arguments:

i

The number of the slack variable.

generateLp (virtual)

The virtual function generateLp() instantiates an LP for the solution of the LP-relaxation in this sub-

problem. The generated LP is solved with CPLEX. By rede�ning this function in a derived class other

LP-solvers can be used.

ABA_LPSUB *ABA_SUB::generateLp()

Return Value:

A pointer to an object of type ABA LPSUBCPLEX.

reoptimize (virtual)

The function reoptimize() repeats the optimization of an already optimized subproblem. This function

is used to determine the reduced costs for �xing variables of a new root of the remaining branch-and-bound

tree.

void ABA_SUB::reoptimize ()

6.1. APPLICATION BASE CLASSES 153

level

int ABA_SUB::level() const

Return Value:

The level of the subproblem in the branch-and-bound tree.

id

int ABA_SUB::id() const

Return Value:

The identity number of the subproblem.

lowerBound

double ABA_SUB::lowerBound() const

Return Value:

A lower bound on the optimal solution of the subproblem.

upperBound

double ABA_SUB::upperBound() const

Return Value:

An upper bound on the optimal solution of the subproblem.

dualBound

double ABA_SUB::dualBound() const

Return Value:

A bound which is better than the optimal solution of the subproblem in respect to the sense

of the optimization, i.e., an upper for a maximization problem or a lower bound for a mini-

mization problem, respectively.

dualBound

The function dualBound() sets the dual bound of the subproblem, and if the subproblem is the root node

of the enumeration tree and the new value is better than its dual bound, also the global dual bound is

updated. It is an error if the dual bound gets worse.

In normal applications it is not required to call this function explicitly. This is already done by

ABACUS during the subproblem optimization.

void ABA_SUB::dualBound(double x)

Arguments:

x

The new value of the dual bound.

154 CHAPTER 6. REFERENCE MANUAL

betterDual

bool ABA_SUB::betterDual(double x) const

Return Value:

true

If x is better than the best known dual bound of the subproblem,

false

otherwise.

father

ABA_SUB *ABA_SUB::father()

Return Value:

A pointer to the father of the subproblem in the branch-and-bound tree.

lp

ABA_LPSUB *ABA_SUB::lp()

Return Value:

A pointer to the linear program of the subproblem.

boundCrash

bool ABA_SUB::boundCrash() const

Return Value:

true

If the dual bound is worse than the best known primal bound,

false

otherwise.

status

ABA_SUB::STATUS ABA_SUB::status() const

Return Value:

The status of the subproblem optimization.

maxIterations

The function maxIterations() sets the maximal number of iterations in the cutting plane phase. Setting

this value to 1 implies that no cuts are generated in the optimization process of the subproblem.

void ABA_SUB::maxIterations(int max)

Arguments:

max

The maximal number of iterations.

6.1. APPLICATION BASE CLASSES 155

�x (virtual)

The function fix() �xes a variable.

int ABA_SUB::fix(int i, ABA_FSVARSTAT *newStat, bool &newValue)

Return Value:

1

If a contradiction is found,

0

otherwise.

Arguments:

i

The number of the variable being �xed.

newStat

A pointer to an object storing the new status of the variable.

newValue

If the variable is �xed to a value di�erent from the one of the last LP-solution, the

argument newValue is set to true. Otherwise, it is set to false.

set (virtual)

The function set() sets a variable.

int ABA_SUB::set(int i, ABA_FSVARSTAT *newStat, bool &newValue)

Return Value:

1

If a contradiction is found,

0

otherwise.

Arguments:

i

The number of the variable being set.

newStat

A pointer to the object storing the new status of the the variable.

newValue

If the variable is set to a value di�erent from the one of the last LP-solution,

newValue is set to true. Otherwise, it is set to false.

156 CHAPTER 6. REFERENCE MANUAL

set (virtual)

The function set() sets a variable.

int ABA_SUB::set(int i, ABA_FSVARSTAT::STATUS newStat, bool &newValue)

Return Value:

1

If a contradiction is found,

0

otherwise.

Arguments:

i

The number of the variable being set.

newStat

The new status of the variable.

newValue

If the variable is set to a value di�erent from the one of the last LP-solution,

newValue is set to true. Otherwise, it is set to false.

set (virtual)

The function set() sets a variable.

int ABA_SUB::set(int i, ABA_FSVARSTAT::STATUS newStat, double value, bool &newValue)

Return Value:

1

If a contradiction is found,

0

otherwise.

Arguments:

i

The number of the variable being set.

newStat

The new status of the variable.

value

The value the variable is set to.

newValue

If the variable is set to a value di�erent from the one of the last LP-solution,

newValue is set to true. Otherwise, it is set to false.

6.1. APPLICATION BASE CLASSES 157

pausing (virtual)

Sometimes it is appropriate to put a subproblem back into the list of open subproblems. This is called

pausing. In the default implementation the virtual function pausing() always returns false.

It could be useful to enforce pausing a node if a tailing o� e�ect is observed during its �rst optimization.

bool ABA_SUB::pausing()

Return Value:

true

The function pausing() should return true if this condition is satis�ed,

false

otherwise.

conEliminate (virtual)

The function conEliminate() can be used as an entry point for application speci�c elimination of con-

straints by rede�nig it in derived classes.

The default implementation of this function calls either the function nonBindingConEliminate() or

the function basicConEliminate() depending on the constraint elimination mode of the master that is

initialized via the parameter �le.

void ABA_SUB::conEliminate(ABA_BUFFER<int> &remove)

Arguments:

remove

The constraints that should be eliminated must be inserted in this bu�er.

nonBindingConEliminate (virtual)

The function nonBindingConEliminate() retrieves the dynamic constraints with slack exceeding the

value given by the parameter ConElimEps.

void ABA_SUB::nonBindingConEliminate(ABA_BUFFER<int> &remove)

Arguments:

remove

Stores the nonbinding constraints.

basicConEliminate (virtual)

The function basicConEliminate() retrieves all dynamic constraints having basic slack variable.

void ABA_SUB::basicConEliminate(ABA_BUFFER<int> &remove)

Arguments:

remove

Stores the nonbinding constraints.

158 CHAPTER 6. REFERENCE MANUAL

varEliminate (virtual)

The function varEliminate() provides an entry point for application speci�c variable elimination that

can be implemented by rede�ning this function in a derived class.

The default implementation selects the variables with the function redCostVarEliminate().

void ABA_SUB::varEliminate(ABA_BUFFER<int> &remove)

Arguments:

remove

The variables that should be removed have to be stored in this bu�er.

redCostVarEliminate

The function redCostVarEliminate() retrieves all variables with \wrong" reduced costs.

void ABA_SUB::redCostVarEliminate(ABA_BUFFER<int> &remove)

Arguments:

remove

The variables with \wrong" reduced cost are stored in this bu�er.

fathomTheSubTree (virtual)

The function fathomTheSubTree() fathoms all nodes in the subtree rooted at this subproblem. Dormant

and Unprocessed nodes are also removed from the set of open subproblems.

void ABA_SUB::fathomTheSubTree()

actCon

ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *ABA_SUB::actCon()

Return Value:

A pointer to the currently active constraints.

actVar

ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *ABA_SUB::actVar()

Return Value:

A pointer to the currently active variables.

separate (virtual)

The virtual dummy function separate()must be rede�ned in derived classes for the generation of cutting

planes. The default implementation does nothing.

int ABA_SUB::separate()

Return Value:

The number of generated cutting planes.

6.1. APPLICATION BASE CLASSES 159

improve (virtual)

The function improve() can be rede�ned in derived classes in order to implement primal heuristics for

�nding feasible solutions. The default implementation does nothing.

int ABA_SUB::improve(double &primalValue)

Return Value:

0

If no better solution could be found,

1

otherwise.

Arguments:

primalValue

Should hold the value of the feasible solution, if a better one is found.

infeasible

bool ABA_SUB::infeasible()

Return Value:

true

If the subproblem does not contain a feasible solution,

false

otherwise.

addVars (virtual)

The function addVars() adds both the variables in newVars to the set of active variables and to the linear

program of the subproblem. If the new number of variables exceeds the maximal number of variables an

automatic reallocation is performed.

int ABA_SUB::addVars(

ABA_BUFFER<ABA_POOLSLOT<ABA_VARIABLE, ABA_CONSTRAINT> *> &newVars)

Return Value:

The number of added variables.

Arguments:

newVars

A bu�er storing the pool slots of the new variables.

addCons (virtual)

The function addCons() adds constraints to the active constraints and the linear program.

int ABA_SUB::addCons(

ABA_BUFFER<ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE>*> &newCons)

Return Value:

The number of added constraints.

Arguments:

newCons

A bu�er storing the pool slots of the new constraints.

160 CHAPTER 6. REFERENCE MANUAL

removeCons (virtual)

The function removeCons() adds constraints to the bu�er of the removed constraints, which will be

removed at the beginning of the next iteration of the cutting plane algorithm.

void ABA_SUB::removeCons(ABA_BUFFER<int> &remove)

Arguments:

remove

The constraints which should be removed.

removeCon (virtual)

The following version of the function removeCon() adds a single constraint to the set of constraints which

are removed from the active set at the beginning of the next iteration.

void ABA_SUB::removeCon(int i)

Arguments:

i

The number of the constraint being removed.

varRealloc (virtual)

The function varRealloc() reallocates memory that at most newSize variables can be handled in the

subproblem.

void ABA_SUB::varRealloc(int newSize)

Arguments:

newSize

The new maximal number of variables in the subproblem.

conRealloc (virtual)

The function conRealloc() reallocates memory that at most newSize constraints can be handled in the

subproblem.

void ABA_SUB::conRealloc(int newSize)

Arguments:

newSize

The new maximal number of constraints of the subproblem.

nVar

int ABA_SUB::nVar() const

Return Value:

The number of active variables.

6.1. APPLICATION BASE CLASSES 161

nCon

int ABA_SUB::nCon() const

Return Value:

The number of active constraints.

maxVar

int ABA_SUB::maxVar() const

Return Value:

The maximum number of variables which can be handled without reallocation.

maxCon

int ABA_SUB::maxCon() const

Return Value:

The maximum number of constraints which can be handled without reallocation.

initializeLp (virtual)

The function initializeLp() initializes the linear program.

int ABA_SUB::initializeLp()

Return Value:

0

If the linear program could be initialized successfully.

1

If the linear program turns out to be infeasible.

initMakeFeas (virtual)

The default implementation of the virtual initMakeFeas() does nothing. A reimplementation of this

function should generate inactive variables until at least one variable v which satis�es the function

ABA INFEASCON::goodVar(v) for each infeasible constraint is found.

int ABA_SUB::initMakeFeas(ABA_BUFFER<ABA_INFEASCON*> &infeasCons,

ABA_BUFFER<ABA_VARIABLE*> &newVars,

ABA_POOL<ABA_VARIABLE, ABA_CONSTRAINT> **pool)

Return Value:

0

If the feasibility might have been restored,

1

otherwise.

Arguments:

infeasCons

162 CHAPTER 6. REFERENCE MANUAL

The infeasible constraints.

newVars

The variables that might restore feasibility should be added here.

pool

A pointer to the pool to which the new variables should be added. If this is a

0-pointer the variables are added to the default variable pool. The default value is

0.

tailingO� (virtual)

The function tailingOff() is called when a tailing o� e�ect according to the parameters TailOffPercent

and TailOffNLps of the parameter �le is observed. This function can be rede�ned in derived classes in

order to perform actions to resolve the tailing o� (e.g., switching on an enhanced separation strategy).

bool ABA_SUB::tailingOff()

Return Value:

true

If a branching step should be enforced. But before branching a pricing operation is

perfored. The branching step is only performed if no variables are added. Otherwise,

the cutting plane algorithm is continued.

false

If the cutting plane algorithm should be continued.

6.1.5 ABA CONVAR

ABA CONVAR is the common base class for constraints and variables, which are implemented in the derived

classes ABA CONSTRAINT and ABA VARIABLE, respectively. It might seem a bit strange to implement a

common base class for these two objects. Besides several technical reasons, there is linear programming

duality which motivates this point of view. E.g., the separation problem for the primal problem is

equivalent to the pricing problem for the dual problem.

ABA CONVAR is not the base class for constraints and variables as they are used in the interface to the

linear programming solver. There are the classes ABA ROW and ABA COLUMN for this purpose. ABA CONVAR

is the father of a class hierarchy for abstract constraints and variables which are used in the branch-and-

bound algorithm.

class ABA_CONVAR : public ABA_ABACUSROOT {

public:

ABA_CONVAR (ABA_MASTER *master, ABA_SUB *sub, bool dynamic, bool local);

virtual ~ABA_CONVAR();

bool active() const;

bool local() const;

bool global() const;

virtual bool dynamic() const;

bool expanded() const;

virtual void print(ostream &out);

void _expand();

void _compress();

ABA_SUB *sub();

void sub(ABA_SUB *sub);

virtual unsigned hashKey();

virtual const char *name();

6.1. APPLICATION BASE CLASSES 163

virtual bool equal(ABA_CONVAR *cv);

protected:

ABA_MASTER *master_;

ABA_SUB *sub_;

bool expanded_;

int nReferences_;

bool dynamic_;

int nActive_;

int nLocks_;

bool local_;

private:

virtual void expand();

virtual void compress();

};

master

ABA MASTER *master

A pointer to the corresponding master of the optimization.

sub

ABA SUB *sub

A pointer to the subproblem associated with the constraint/variable. This may be also the

0-pointer.

expanded

bool expanded

true, if expanded version of constraint/variables available.

nReferences

int nReferences

The number of references to the pool slot the constraint is stored (ABA POOLSLOTREF).

dynamic

bool dynamic

If this member is true then the constraint/variable can be also removed from the active

formulation after it is added the �rst time. For constraints/variables which should be never

removed from the active formulation this member should be set to false.

164 CHAPTER 6. REFERENCE MANUAL

nActive

int nActive

The number of active subproblems of which the constraint/variable belongs to the set of

active constraints/variables. This value is always 0 after construction and has to be set and

reset during the subproblem optimization. This member is mainly used to accelerate pool

separation and to control that the same variable is not multiply included into a set of active

variables.

nLocks

int nLocks

The number of locks which have been set on the constraint/variable.

local

bool local

This ag is true if the constraint/variable is only locally valid, otherwise it is false.

Constructor

ABA_CONVAR::ABA_CONVAR(ABA_MASTER *master, ABA_SUB *sub, bool dynamic, bool local)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

A pointer the subproblem the constraint/variable is associated with. If the item is

not associated with any subproblem, then this can also be the 0-pointer.

dynamic

If this argument is true, then the constraint/variable can also be removed again

from the set of active constraints/variables after it is added once.

local

If local is true, then the constraint/variable is only locally valid.

Destructor (virtual)

ABA_CONVAR::~ABA_CONVAR()

active

The function active() checks if the constraint/variable is active in at least one active subproblem. In a

parallel implementation this can be more than one subproblem.

bool ABA_CONVAR::active() const

Return Value:

true

If the constraint/variable is active,

false

otherwise.

6.1. APPLICATION BASE CLASSES 165

local

bool ABA_CONVAR::local() const

Return Value:

true

If the constraint/variable is only locally valid,

false

otherwise.

global

bool ABA_CONVAR::global() const

Return Value:

true

If the constraint/variable is globally valid,

false

otherwise.

sub

ABA_SUB *ABA_CONVAR::sub()

Return Value:

A pointer to the subproblem associated with the constraint/variable. Note, this can also be

the 0-pointer.

sub

This version of the function sub() associates a new subproblem with the constraint/variable.

void ABA_CONVAR::sub(ABA_SUB *sub)

Arguments:

sub

The new subproblem associated with the constraint/variable.

dynamic (virtual)

bool ABA_CONVAR::dynamic() const

Return Value:

true

If the constraint/variable can be also removed from the set of active constraints/var-

iables after it has been activated,

false

otherwise.

166 CHAPTER 6. REFERENCE MANUAL

expanded

bool ABA_CONVAR::expanded() const

Return Value:

true

If the expanded format of a constraint/variable is available,

false

otherwise.

expand

The function expand() tries to generate the expanded format of the constraint/variable. This will be

only possible if the virtual function expand() is rede�ned for the speci�c constraint/variable.

void ABA_CONVAR::_expand()

compress

The function compress() removes the expanded format of the constraint/variable. This will be only

possible if the virtual function compress() is rede�ned for the speci�c constraint/variable.

void ABA_CONVAR::_compress()

expand (virtual)

The default implementation of the function expand() is void. It should be rede�ned in derived classes.

void ABA_CONVAR::expand()

compress (virtual)

Also the default implementation of the function compress() is void. It should be rede�ned in derived

classes.

void ABA_CONVAR::compress()

print (virtual)

The function writes the constraint/variable on the stream out. This function is used since the output

operator cannot be declared virtual. The default implementation writes "ABA CONVAR::print() is

only a dummy." on the stream out. We do not declare this function pure virtual since it is not really

required, mainly only for debugging. In this case a constraint/variable speci�c rede�nition is strongly

recommended.

Normally, the implementation out << *this should be su�cient.

void ABA_CONVAR::print(ostream &out)

Arguments:

out

The output stream.

6.1. APPLICATION BASE CLASSES 167

hashKey (virtual)

The function hashKey() should provide a key for the constraint/variable that can be used to insert it

into a hash table. As usual for hashing, it is not required that any two items have di�erent keys.

This function is required if the constraint/variable is stored in a pool of the class ABA NONDUPLPOOL.

The default implementation shows a warning and calls exit(). This function is not a pure virtual

function because in the default version of ABACUS it is not required.

unsigned ABA_CONVAR::hashKey()

Return Value:

An integer providing a hash key for the constraint/variable.

name (virtual)

The function name() should return the name of the constraint/variable. This function is required to

emulate a simple run time type information (RTTI) that is still missing in G++. This function will be

removed as soon as RTTI is supported su�ciently.

A user must take care that for each rede�ned version of this function in a derived class a unique name

is returned. Otherwise fatal run time errors can occur. Therefore, we recommend to return always the

name of the class.

This function is required if the constraint/variable is stored in a pool of the class ABA NONDUPLPOOL.

The default implementation shows a warning and calls exit(). This function is not a pure virtual

function because in the default version of ABACUS it is not required.

const char *ABA_CONVAR::name()

Return Value:

The name of the constraint/variable.

equal (virtual)

The function equal() should compare if the constraint/variable is identical (in a mathematical sense)

with the constraint/variable cv. Using RTTI or its emulation provided by the function name() it is

su�cient to implement this functions for constraints/variables of the same type.

This function is required if the constraint/variable is stored in a pool of the class ABA NONDUPLPOOL.

The default implementation shows a warning and calls exit(). This function is not a pure virtual

function because in the default version of ABACUS it is not required.

bool ABA_CONVAR::equal(ABA_CONVAR *cv)

Return Value:

true

If the constraint/variable represented by this object represents the same item as

the constraint/variable cv,

false

otherwise.

Arguments:

cv

The constraint/variable that should be compared with this object.

168 CHAPTER 6. REFERENCE MANUAL

6.1.6 ABA CONSTRAINT

Constraints are one of the central items in a linear-programming based branch-and-bound algorithm.

This class forms the virtual base class for all possible constraints given in pool format and is derived from

the common base class ABA CONVAR of all constraints and variables.

class ABA_CONSTRAINT : public ABA_CONVAR {

public:

ABA_CONSTRAINT (ABA_MASTER *master, ABA_SUB *sub,

ABA_CSENSE::SENSE sense, double rhs,

bool dynamic, bool local, bool liftable);

ABA_CONSTRAINT (ABA_MASTER *master);

ABA_CONSTRAINT(const ABA_CONSTRAINT &rhs);

virtual ~ABA_CONSTRAINT();

ABA_CSENSE *sense();

virtual double coeff(ABA_VARIABLE *v) = 0;

virtual double rhs();

bool liftable() const;

virtual bool valid(ABA_SUB *sub);

virtual int genRow(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *var,

ABA_ROW &row);

virtual double slack(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,

double *x);

virtual bool violated(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,

double *x, double *sl = 0);

virtual bool violated(double slack) const;

void printRow(ostream &out, ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *var);

virtual double distance(double *x,

ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *actVar);

protected:

virtual ABA_INFEASCON::INFEAS voidLhsViolated(double newRhs) const;

ABA_CSENSE sense_;

double rhs_;

ABA_CONCLASS *conClass_;

bool liftable_;

private:

const ABA_CONSTRAINT &operator=(const ABA_CONSTRAINT &rhs);

};

sense

ABA CSENSE sense

The sense of the constraint.

rhs

double rhs

The right hand side of the constraint.

6.1. APPLICATION BASE CLASSES 169

conClass

ABA CONCLASS *conClass

The constraint classi�cation

liftable

bool liftable

This member is true if also coe�cients of variables which have been inactive at generation

time can be computed, false otherwise.

coe� (virtual)

virtual double coeff(ABA_VARIABLE *v) = 0

Return Value:

The coe�cient of the variable v in the constraint.

Arguments:

v

A pointer to a variable.

Constructor

ABA_CONSTRAINT::ABA_CONSTRAINT(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

double rhs,

bool dynamic,

bool local,

bool liftable)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

A pointer to the subproblem associated with the constraint. This can be also the

0-pointer.

sense

The sense of the constraint.

rhs

The right hand side of the constraint.

dynamic

If this argument is true, then the constraint can be removed from the active con-

straint set during the cutting plane phase of the subproblem optimization.

local

170 CHAPTER 6. REFERENCE MANUAL

If this argument is true, then the constraint is considered to be only locally valid.

In this case the argument sub must not be 0 as each locally valid constraint is

associated with a subproblem.

liftable

If this argument is true, then a lifting procedure must be available, i.e., that the co-

e�cients of variables which have not been active at generation time of the constraint

can be computed.

Constructor

The following constructor initializes an empty constraint. This constructor is, e.g., useful if parallel

separation is applied. In this case the constraint can be constructed and receive later its data by message

passing.

ABA_CONSTRAINT::ABA_CONSTRAINT (ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

Copy Constructor

ABA_CONSTRAINT::ABA_CONSTRAINT(const ABA_CONSTRAINT &rhs)

Arguments:

rhs

The constraint being copied.

Destructor (virtual)

ABA_CONSTRAINT::~ABA_CONSTRAINT()

sense

ABA_CSENSE *ABA_CONSTRAINT::sense()

Return Value:

A pointer to the sense of the constraint.

rhs (virtual)

double ABA_CONSTRAINT::rhs()

Return Value:

The right hand side of the constraint.

6.1. APPLICATION BASE CLASSES 171

liftable

The function liftable() checks if the constraint is liftable, i.e., if the coe�cients of variables inactive

at generation time of the constraint can be computed later.

bool ABA_CONSTRAINT::liftable() const

Return Value:

true

If the constraint can be lifted,

false

otherwise.

valid (virtual)

The function valid() checks if the constraint is valid for the subproblem sub. Per default, this is the

case if the constraint is globally valid, or the subproblem associated with the constraint is an ancestor of

the subproblem sub in the enumeration tree.

bool ABA_CONSTRAINT::valid(ABA_SUB *sub)

Return Value:

true

If the constraint is valid for the subproblem sub,

false

otherwise.

Arguments:

sub

The subproblem for which the validity is checked.

genRow (virtual)

The function genRow() generates the row format of the constraint associated with the variable set var.

This function is declared virtual since faster constraint speci�c implementations might be desirable.

int ABA_CONSTRAINT::genRow(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *var,

ABA_ROW &row)

Return Value:

The number of nonzero elements in the row format row.

Arguments:

var

The variable set for which the row format should be computed.

row

Stores the row format after calling this function.

172 CHAPTER 6. REFERENCE MANUAL

slack (virtual)

The function slack() computes the slack of the vector x associated with the variable set variables.

double ABA_CONSTRAINT::slack(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,

double *x)

Return Value:

The slack induced by the vector x.

Arguments:

variables

The variable set associated with the vector x.

x

The values of the variables.

violated (virtual)

The function violated() checks if a constraint is violated by a vector x associated with a variable set.

bool ABA_CONSTRAINT::violated(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,

double *x,

double *sl)

Return Value:

true

If the constraint is violated,

false

otherwise.

Arguments:

variables

The variables associated with the vector x.

x

The vector for which the violation is checked.

sl

If sl is nonzero, then *sl will store the value of the violation, i.e., the slack.

violated (virtual)

This version of function violated() checks for the violation given the slack of a vector.

bool ABA_CONSTRAINT::violated(double slack) const

Return Value:

true

If the constraint is an equation and the slack is nonzero, or if the constraint is a

�-inequality and the slack is negative, or the constraint is a �-inequality and the

slack is positive,

false

6.1. APPLICATION BASE CLASSES 173

otherwise.

Arguments:

slack

The slack of a vector.

voidLhsViolated (virtual)

The function voidLhsViolated() can be called if after variable elimination the left hand side of the

constraint has become void and the right hand side has been adapted to newRhs. Then this function

checks if the constraint is violated.

ABA_INFEASCON::INFEAS ABA_CONSTRAINT::voidLhsViolated(double newRhs) const

Return Value:

If the value newRhs violates the sense of the constraint, i.e, it is </>/!= 0 and the sense of

the constraint is >=/<=/=, then we return the infeasibility mode (TooLarge or TooSmall),

otherwise we return Feasible.

Arguments:

newRhs

The right hand side of the constraint after the elimination of the variables.

printRow

The function printRow() writes the row format of the constraint associated with the variable set var on

an output stream.

void ABA_CONSTRAINT::printRow(ostream &out,

ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *var)

Arguments:

out

The output stream.

var

The variables for which the row format should be written.

distance (virtual)

The function distance().

double ABA_CONSTRAINT::distance(double *x,

ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *actVar)

Return Value:

The Euclidean distance of the vector x associated with the variable set actVar to the hyper-

plane induced by the constraint.

Arguments:

x

The point for which the distance should be computed.

actVar

The variables associated with x.

174 CHAPTER 6. REFERENCE MANUAL

6.1.7 ABA VARIABLE

Variables are one of the central items in a linear-programming based branch-and-bound algorithm. This

class forms the virtual base class for all possible variables given in pool format and is derived from the

common base class ABA CONVAR of all constraints and variables.

class ABA_VARIABLE : public ABA_CONVAR {

public:

ABA_VARIABLE(ABA_MASTER *master, ABA_SUB *sub, bool dynamic, bool local,

double obj, double lBound, double uBound,

ABA_VARTYPE::TYPE type);

virtual ~ABA_VARIABLE();

ABA_VARTYPE::TYPE varType() const;

bool discrete();

bool binary();

bool integer();

virtual double obj();

double uBound() const;

double lBound() const;

void uBound(double newValue);

void lBound(double newValue);

ABA_FSVARSTAT *fsVarStat();

virtual bool valid(ABA_SUB *sub);

virtual int genColumn(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *actCon,

ABA_COLUMN &col);

virtual double coeff(ABA_CONSTRAINT *con);

virtual bool violated(double rc) const;

virtual bool violated(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *constraints,

double *y, double *slack = 0);

virtual double redCost(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *actCon,

double *y);

virtual bool useful(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *actCon,

double *y,

double lpVal);

void printCol(ostream &out,

ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *constraints);

protected:

ABA_FSVARSTAT fsVarStat_;

double obj_;

double lBound_;

double uBound_;

ABA_VARTYPE type_;

};

fsVarStat

ABA FSVARSTAT fsVarStat

The global status of �xing and setting of the variable.

obj

double obj

6.1. APPLICATION BASE CLASSES 175

The objective function coe�cient of the variable.

lBound

double lBound

The lower bound of the variable.

uBound

double uBound

The upper bound of the variable.

type

ABA VARTYPE type

The type of the variable.

Constructor

ABA_VARIABLE::ABA_VARIABLE(ABA_MASTER *master,

ABA_SUB *sub,

bool dynamic,

bool local,

double obj,

double lBound,

double uBound,

ABA_VARTYPE::TYPE type)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

A pointer to the subproblem associated with the variable. This can also be the

0-pointer.

dynamic

If this argument is true, then the variable can also be removed again from the set

of active variables after it is added once.

local

If this argument is true, then the variable is only locally valid, otherwise it is

globally valid. As a locally valid variable is always associated with a subproblem,

the argument sub must not be 0 if local is true.

obj

The objective function coe�cient.

lBound

The lower bound of the variable.

uBound

The upper bound of the variable.

type

The type of the variable.

176 CHAPTER 6. REFERENCE MANUAL

Destructor (virtual)

ABA_VARIABLE::~ABA_VARIABLE()

varType

ABA_VARTYPE::TYPE ABA_VARIABLE::varType() const

Return Value:

The type of the variable.

discrete

bool ABA_VARIABLE::discrete()

Return Value:

true

If the type of the variable is Integer or Binary,

false

otherwise.

binary

bool ABA_VARIABLE::binary()

Return Value:

true

If the type of the variable is Binary,

false

otherwise.

integer

bool ABA_VARIABLE::integer()

Return Value:

true

If the type of the variable is Integer,

false

otherwise.

obj (virtual)

double ABA_VARIABLE::obj()

Return Value:

The objective function coe�cient.

6.1. APPLICATION BASE CLASSES 177

lBound

double ABA_VARIABLE::lBound() const

Return Value:

The lower bound of the variable.

lBound

This version of the function lBound() sets the lower bound of the variable.

void ABA_VARIABLE::lBound(double newBound)

Arguments:

newBound

The new value of the lower bound.

uBound

double ABA_VARIABLE::uBound() const

Return Value:

The upper bound of the variable.

uBound

This version of the function uBound() sets the upper bound of the variable.

void ABA_VARIABLE::uBound(double newBound)

Arguments:

newBound

The new value of the upper bound.

fsVarStat

ABA_FSVARSTAT *ABA_VARIABLE::fsVarStat()

Return Value:

A pointer to the global status of �xing and setting of the variable. Note, this is the global

status of �xing/setting that might di�er from the local status of �xing/setting a variable

returned by the function ABA SUB::fsVarStat().

valid (virtual)

bool ABA_VARIABLE::valid(ABA_SUB *sub)

Return Value:

true

If the variable is globally valid, or the subproblem sub is an ancestor in the enu-

meration tree of the subproblem associated with the variable,

false

otherwise.

Arguments:

sub

The subproblem for which validity of the variable is checked.

178 CHAPTER 6. REFERENCE MANUAL

coe� (virtual)

The function coeff() computes the coe�cient of the variable in the constraint con. Per default the coef-

�cient of a variable is computed indirectly via the coe�cient of a constraint. Problem speci�c rede�nitions

might be required.

double ABA_VARIABLE::coeff(ABA_CONSTRAINT *con)

Return Value:

The coe�cient of the variable in the constraint con.

Arguments:

con

The constraint of which the coe�cient should be computed.

genColumn (virtual)

The function genColumn() computes the column col of the variable associated with the active constraints

*actCon. Note, the upper and lower bound of the column are initialized with the global upper and lower

bound of the variable. Therefore, an adaption with the local bounds might be required.

int ABA_VARIABLE::genColumn(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *actCon,

ABA_COLUMN &col)

Return Value:

The number of nonzero entries in col.

Arguments:

actCon

The constraints for which the column of the variable should be computed.

col

Stores the column when the function terminates.

violated (virtual)

The function violated() checks, if a variable does not price out correctly, i.e., if the reduced cost rc is

positive for a maximization problem and negative for a minimization problem, respectively.

bool ABA_VARIABLE::violated(double rc) const

Return Value:

true

If the variable does not price out correctly.

false

otherwise.

Arguments:

rc

The reduced cost of the variable.

6.1. APPLICATION BASE CLASSES 179

violated (virtual)

This version of the function violated() checks if the variable does not price out correctly, i.e., if the

reduced cost of the variable associated with the constraint set constraints and the dual variables y are

positive for a maximization problem and negative for a minimization problem, respectively.

bool ABA_VARIABLE::violated(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *constraints,

double *y,

double *r)

Return Value:

true

If the variable does not price out correctly.

false

otherwise.

Arguments:

constraints

The constraints associated with the dual variables y.

y

The dual variables of the constraint.

r

If r is not the 0-pointer, it will store the reduced cost after the function call. Per

default r is 0.

redCost (virtual)

The function redCost()computes the reduced cost of the variable corresponding the constraint set actCon

and the dual variables y.

double ABA_VARIABLE::redCost(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *actCon,

double *y)

Return Value:

The reduced cost of the variable.

Arguments:

actCon

The constraints associated with the dual variables y.

y

The dual variables of the constraint.

180 CHAPTER 6. REFERENCE MANUAL

useful (virtual)

An (inactive) discrete variable is considered as useful() if its activation might not produce only solutions

worse than the best known feasible solution. This is the same criterion for �xing inactive variables by

reduced cost criteria.

bool ABA_VARIABLE::useful(ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *actCon,

double *y,

double lpVal)

Return Value:

true

If the variable is considered as useful,

false

otherwise.

Arguments:

actCon

The active constraints.

y

The dual variables of these constraints.

lpVal

The value of the linear program.

printcol

The function printCol() writes the column of the variable corresponding to the constraints on the

stream out.

void ABA_VARIABLE::printCol(ostream &out,

ABA_ACTIVE<ABA_CONSTRAINT, ABA_VARIABLE> *constraints)

Arguments:

out

The output stream.

constraints

The constraints for which the column should be written.

6.2 System Classes

This section documents (almost) all internal system classes of ABACUS. This classes are usually not

involved in the derivation process for the implementation. However for retrieving special information

(e.g., about the linear program) or for advanced usage we provide here a detailed documentation.

6.2. SYSTEM CLASSES 181

6.2.1 ABA OPTSENSE

We can either minimize or maximize the objective function. We encapsulate this information in a class

since it is required in various classes, e.g., in the master of the branch-and-bound algorithm and in the

linear program.

class ABA_OPTSENSE : public ABA_ABACUSROOT {

public:

enum SENSE {Min, Max, Unknown};

ABA_OPTSENSE(SENSE s = Unknown);

friend ostream &operator<<(ostream& out, const ABA_OPTSENSE &rhs);

void sense(SENSE s);

SENSE sense() const;

bool min() const;

bool max() const;

bool unknown() const;

};

enum SENSE

The enumeration de�ning the sense of optimization.

Min

Minimization problem.

Max

Maximization problem.

Unknown

Unknown optimization sense, required to recognize uninitialized object.

Constructor

The constructor initializes the optimization sense.

ABA_OPTSENSE::ABA_OPTSENSE(SENSE s)

Arguments:

s

The sense of the optimization. The default value is Unknown.

Output Operator

The output operator writes the optimization sense on an output stream in the form maximize, minimize,

or unknown.

ostream &operator<<(ostream &out, const ABA_OPTSENSE &rhs)

Return Value:

The output stream.

Arguments:

out

The output stream.

rhs

The sense being output.

182 CHAPTER 6. REFERENCE MANUAL

sense

ABA_OPTSENSE::SENSE ABA_OPTSENSE::sense() const

Return Value:

The sense of the optimization.

sense

This version of the function sense() sets the optimization sense.

void ABA_OPTSENSE::sense(SENSE s)

Arguments:

s

The new sense of the optimization.

min

bool ABA_OPTSENSE::min() const

Return Value:

true

If it is minimization problem,

false

otherwise.

max

bool ABA_OPTSENSE::max() const

Return Value:

true

If it is maximization problem,

false

otherwise.

unknown

bool ABA_OPTSENSE::unknown() const

Return Value:

true

If the optimization sense is unknown,

false

otherwise.

6.2. SYSTEM CLASSES 183

6.2.2 ABA CSENSE

The most important objects in a cutting plane algorithm are constraints, which can be equations (Equal)

or inequalities with the sense � (Less) or the sense � (Greater). We implement the sense of optimization

as a class since we require it both in the classes ABA CONSTRAINT and ABA ROW.

class ABA_CSENSE : public ABA_ABACUSROOT {

public:

enum SENSE {Less, Equal, Greater};

ABA_CSENSE(ABA_GLOBAL *glob);

ABA_CSENSE(ABA_GLOBAL *glob, SENSE s);

ABA_CSENSE(ABA_GLOBAL *glob, char s);

friend ostream& operator<<(ostream &out, const ABA_CSENSE &rhs);

const ABA_CSENSE &operator=(SENSE rhs);

SENSE sense() const;

void sense(SENSE s);

void sense(char s);

};

enum SENSE

Less

�

Equal

=

Greater

�

Constructor

If the default constructor is used, the sense is unde�ned.

ABA_CSENSE::ABA_CSENSE(ABA_GLOBAL *glob)

Arguments:

glob

A pointer to the corresponding global object.

Constructor

This constructor initializes the sense.

ABA_CSENSE::ABA_CSENSE(ABA_GLOBAL *glob, SENSE s)

Arguments:

glob

A pointer to the corresponding global object.

s

The sense.

184 CHAPTER 6. REFERENCE MANUAL

Constructor

With this constructor the sense of the constraint can also be initialized with a single letter.

ABA_CSENSE::ABA_CSENSE(ABA_GLOBAL *glob, char s)

Arguments:

glob

A pointer to the corresponding global object.

s

A character representing the sense: E or e stand for Equal, G and g stand for

Greater, and L or l stand for Less.

Output Operator

The output operator writes the sense on an output stream in the form <=, =, or >=.

ostream &operator<<(ostream &out, const ABA_CSENSE &rhs)

Return Value:

The output stream.

Arguments:

out

The output stream.

rhs

The sense being output.

Assignment Operator

The default assignment operator is overloaded such that also the enumeration SENSE can be used on the

right hand side.

const ABA_CSENSE &ABA_CSENSE::operator=(SENSE rhs)

Return Value:

A reference to the sense.

Arguments:

rhs

The new sense.

sense

ABA_CSENSE::SENSE ABA_CSENSE::sense() const

Return Value:

The sense of the constraint.

6.2. SYSTEM CLASSES 185

sense

This overloaded version of sense() changes the sense of the constraint.

void ABA_CSENSE::sense(SENSE s)

Arguments:

s

The new sense.

sense

The sense can also be changed by a character as in the constructor ABA CSENSE(ABA GLOBAL *glob,

char s).

void ABA_CSENSE::sense(char s)

Arguments:

s

The new sense.

6.2.3 ABA VARTYPE

Variables can be of three di�erent types: Continuous, Integer or Binary. We distinguish Integer and

Binary variables since some operations are performed di�erently (e.g., branching).

class ABA_VARTYPE : public ABA_ABACUSROOT {

public:

enum TYPE {Continuous, Integer, Binary};

ABA_VARTYPE();

ABA_VARTYPE(TYPE t);

friend ostream &operator<<(ostream &out, const ABA_VARTYPE &rhs);

TYPE type() const;

void type(TYPE t);

bool discrete() const;

bool binary() const;

bool integer() const;

};

enum TYPE

The enumeration with the di�erent variable types.

Continuous

A continuous variable.

Integer

A general integer variable.

Binary

A variable having value 0 or 1.

Constructor

The default constructor lets the type of the variable uninitialized.

ABA_VARTYPE::ABA_VARTYPE()

186 CHAPTER 6. REFERENCE MANUAL

Constructor

This constructor initializes the variable type.

ABA_VARTYPE::ABA_VARTYPE(TYPE t)

Arguments:

t

The variable type.

Output Operator

The output operator writes the variable type to an output stream in the format Continuous, Integer,

or Binary.

ostream &operator<<(ostream &out, const ABA_VARTYPE &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The variable type being output.

type

ABA_VARTYPE::TYPE ABA_VARTYPE::type() const

Return Value:

The type of the variable.

type

This version of the function type() sets the variable type.

void ABA_VARTYPE::type(TYPE t)

Arguments:

t

The new type of the variable.

discrete

bool ABA_VARTYPE::discrete() const

Return Value:

true

If the type of the variable is Integer or Binary,

false

otherwise.

6.2. SYSTEM CLASSES 187

binary

bool ABA_VARTYPE::binary() const

Return Value:

true

If the type of the variable Binary,

false

otherwise.

integer

bool ABA_VARTYPE::integer() const

Return Value:

true

If the type of the variable is Integer,

false

otherwise.

6.2.4 ABA FSVARSTAT

If a variable is �xed to a value, then this means that it keeps this value \forever". If it is set, then the

variable keeps the value in the subproblem where the setting is performed and in the subproblems of the

subtree rooted at this subproblem.

class ABA_FSVARSTAT : public ABA_ABACUSROOT {

public:

enum STATUS {Free, SetToLowerBound, Set, SetToUpperBound,

FixedToLowerBound, Fixed, FixedToUpperBound};

ABA_FSVARSTAT(ABA_GLOBAL *glob);

ABA_FSVARSTAT(ABA_GLOBAL *glob, STATUS status);

ABA_FSVARSTAT(ABA_GLOBAL *glob, STATUS status, double value);

ABA_FSVARSTAT(ABA_FSVARSTAT *fsVarStat);

friend ostream &operator<<(ostream& out, const ABA_FSVARSTAT &rhs);

STATUS status() const;

void status(STATUS stat);

void status(STATUS stat, double val);

void status(const ABA_FSVARSTAT *stat);

double value() const;

void value(double val);

bool fixed() const;

bool set() const;

bool fixedOrSet() const;

bool contradiction(ABA_FSVARSTAT *fsVarStat) const;

bool contradiction(STATUS status, double value = 0) const;

};

188 CHAPTER 6. REFERENCE MANUAL

enum STATUS

The enumeration de�ning the di�erent statuses of variables from the point of view of �xing and setting:

Free

The variable is neither �xed nor set.

SetToLowerBound

The variable is set to its lower bound.

Set

The variable is set to a value which can be accessed with the member function

value().

SetToUpperbound

The variable is set to its upper bound.

FixedToLowerBound

The variable is �xed to its lower bound.

Fixed

The variable is �xed to a value which can be accessed with the member function

value().

FixedToUpperBound

The variable is �xed to its upper bound.

Constructor

This constructor initializes the status as Free.

ABA_FSVARSTAT::ABA_FSVARSTAT(ABA_GLOBAL *glob)

Arguments:

glob

A pointer to a global object.

Constructor

This constructor initializes the status explicitely.

ABA_FSVARSTAT::ABA_FSVARSTAT(ABA_GLOBAL *glob, STATUS status)

Arguments:

glob

A pointer to a global object.

status

The initial status that must neither be Fixed nor Set. For these two statuses the

next constructor has to be used.

6.2. SYSTEM CLASSES 189

Constructor

This constructor initializes the status explicitely to Fixed or Set.

ABA_FSVARSTAT::ABA_FSVARSTAT(ABA_GLOBAL *glob, STATUS status, double value)

Arguments:

glob

A pointer to a global object.

status

The initial status that must be Fixed or Set.

value

The value associated with the status Fixed or Set.

Constructor

This constructor makes a copy.

ABA_FSVARSTAT::ABA_FSVARSTAT(ABA_FSVARSTAT *fsVarStat)

Arguments:

fsVarStat

The status is initialized with a copy of *fsVarStat.

Output Operator

The output operator writes the status and, if the status is Fixed or Set, also its value on an output

stream.

ostream &operator<<(ostream& out, const ABA_FSVARSTAT &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The variable status being output.

status

ABA_FSVARSTAT::STATUS ABA_FSVARSTAT::status() const

Return Value:

The status of �xing or setting.

190 CHAPTER 6. REFERENCE MANUAL

status

This version of the function status() assigns a new status. For specifying also a value in case of the

statuses Fixed or Set the next version of this function can be use.

void ABA_FSVARSTAT::status(STATUS stat)

Arguments:

stat

The new status.

status

This version of the function status() can assign a new status also for the statuses Fixed and Set.

void ABA_FSVARSTAT::status(STATUS stat, double val)

Arguments:

stat

The new status.

val

A value associated with the new status.

status

A version of status() for assigning the status of an other object of the class ABA FSVARSTAT.

void ABA_FSVARSTAT::status(const ABA_FSVARSTAT *stat)

Arguments:

stat

A pointer to the object that status and value is copied.

value

double ABA_FSVARSTAT::value() const

Return Value:

The value of �xing or setting if the variable has status Fixed or Set.

value

This version of value() assigns a new value of �xing or setting.

void ABA_FSVARSTAT::value(double val)

Arguments:

val

The new value.

6.2. SYSTEM CLASSES 191

�xed

bool ABA_FSVARSTAT::fixed() const

Return Value:

true

If the status is FixedToLowerBound, Fixed, or FixedToUpperBound,

false

otherwise.

set

bool ABA_FSVARSTAT::set() const

Return Value:

true

If the status is SetToLowerBound, Set, or SetToUpperBound,

false

otherwise.

�xedOrSet

bool ABA_FSVARSTAT::fixedOrSet() const

Return Value:

false

If the status is Free,

true

otherwise.

contradiction

We say there is a contradiction between two status if they are �xed/set to di�erent bounds or values.

However, two statuses are not contradiction if one of them is \�xed" and the other one is \set", if this

�xing/setting refers to the same bound or value.

bool ABA_FSVARSTAT::contradiction(ABA_FSVARSTAT *fsVarStat) const

Return Value:

true

If there is a contradiction between the status of this object and fsVarStat,

false

otherwise.

Arguments:

fsVarStat

A pointer to the status with which contradiction is is tested.

192 CHAPTER 6. REFERENCE MANUAL

contradiction

Another version of the function contradiction().

bool ABA_FSVARSTAT::contradiction(STATUS status, double value) const

Return Value:

true

If there is a contradiction between the status of this object and (status,value),

false

otherwise.

Arguments:

status

The status with which contradiction is checked.

value

The value with which contradiction is checked. The default value of value is 0.

6.2.5 ABA LPVARSTAT

After the solution of a linear program by the simplex method each variable receives a status indicating if

the variable is contained in the basis of the optimal solution, or is nonbasic and has a value equal to its

lower or upper bound, or is a free variable not contained in the basis. We extend this notion since later

in the interface from a cutting plane algorithm to the linear program variables might be eliminated.

class ABA_LPVARSTAT : public ABA_ABACUSROOT {

public:

enum STATUS {AtLowerBound, Basic, AtUpperBound, NonBasicFree,

Eliminated, Unknown};

ABA_LPVARSTAT(ABA_GLOBAL *glob);

ABA_LPVARSTAT(ABA_GLOBAL *glob, STATUS status);

ABA_LPVARSTAT(ABA_LPVARSTAT *lpVarStat);

friend ostream &operator<<(ostream& out, const ABA_LPVARSTAT &rhs);

STATUS status() const;

void status(STATUS stat);

void status(const ABA_LPVARSTAT *stat);

bool atBound() const;

bool basic() const;

};

enum STATUS

The enumeration of the statuses a variable gets from the linear program solver:

AtLowerBound

The variable is at its lower bound, but not in the basis.

Basic

The variable is in the basis.

AtUpperBound

The variable is at its upper bound , but not in the basis.

6.2. SYSTEM CLASSES 193

NonBasicFree

The variable is unbounded and not in the basis.

Eliminated

The variable has been removed by our preprocessor in the class ABA LPSUB. So, it

is not present in the LP-solver.

Unknown

The LP-status of the variable is unknown since no LP has been solved. This status

is also assigned to variables which are �xed or set, yet still contained in the LP to

avoid a wrong setting or �xing by reduced costs.

Constructor

This constructor initializes the status as Unknown.

ABA_LPVARSTAT::ABA_LPVARSTAT(ABA_GLOBAL *glob)

Arguments:

glob

A pointer to the corresponding global object.

Constructor

This constructor initializes the ABA LPVARSTAT.

ABA_LPVARSTAT::ABA_LPVARSTAT(ABA_GLOBAL *glob, STATUS status)

Arguments:

glob

A pointer to the corresponding global object.

status

The initial status.

Constructor

This constructor make a copy of *lpVarStat.

ABA_LPVARSTAT::ABA_LPVARSTAT(ABA_LPVARSTAT *lpVarStat)

Arguments:

lpVarStat

A copy of this object is made.

194 CHAPTER 6. REFERENCE MANUAL

Output Operator

The output operator writes the STATUS to an output stream in the form AtLowerBound, Basic, AtUpper-

Bound, NonBasicFree, Eliminated, Unknown.

ostream &operator<<(ostream& out, const ABA_LPVARSTAT &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The status being output.

status

ABA_LPVARSTAT::STATUS ABA_LPVARSTAT::status() const

Return Value:

The LP-status.

status

This version of status() sets the status.

void ABA_LPVARSTAT::status(STATUS stat)

Arguments:

stat

The new LP-status.

status

Another version of the function status() for setting the status.

void ABA_LPVARSTAT::status(const ABA_LPVARSTAT *stat)

Arguments:

stat

The new LP-status.

atBound

bool ABA_LPVARSTAT::atBound() const

Return Value:

true

If the variable status is AtUpperBound or AtLowerBound,

false

otherwise.

6.2. SYSTEM CLASSES 195

basic

bool ABA_LPVARSTAT::basic() const

Return Value:

true

If the status is Basic,

false

otherwise.

6.2.6 ABA SLACKSTAT

As for the structural variables the simplex method also assigns a unique status to each slack variable. A

slack variable can be a basic or a nonbasic variable. If it is a nonbasic variable, then we distinguish if the

slack variable has value zero or nonzero.

class ABA_SLACKSTAT : public ABA_ABACUSROOT {

public:

enum STATUS {Basic, NonBasicZero, NonBasicNonZero, Unknown};

ABA_SLACKSTAT(ABA_GLOBAL *glob);

ABA_SLACKSTAT(ABA_GLOBAL *glob, STATUS status);

friend ostream &operator<<(ostream& out, const ABA_SLACKSTAT &rhs);

STATUS status() const;

void status(STATUS stat);

void status(const ABA_SLACKSTAT *stat);

};

enum STATUS

The di�erent statuses of a slack variable:

Basic

The slack variable belongs to the basis.

NonBasicZero

The slack variable does not belong to the basis and has value zero.

NonBasicNonZero

The slack variable does not belong to the basis and has a nonzero value.

Unknown

The status of the slack variable is not known since no linear program with the

corresponding constraint has been solved.

Constructor

This constructor initializes the status as Unknown.

ABA_SLACKSTAT::ABA_SLACKSTAT(ABA_GLOBAL *glob)

Arguments:

glob

A pointer to the corresponding global object.

196 CHAPTER 6. REFERENCE MANUAL

Constructor

A constructor with initialization.

ABA_SLACKSTAT::ABA_SLACKSTAT(ABA_GLOBAL *glob, STATUS status)

Arguments:

glob

A pointer to the corresponding global object.

status

The slack variable receives the status status.

Output Stream

The output operator writes the status to an output stream in the format Basic, NonBasicZero, Non-

BasicNonZero, or Unknown.

ostream &operator<<(ostream &out, const ABA_SLACKSTAT &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The status being output.

status

ABA_SLACKSTAT::STATUS ABA_SLACKSTAT::status() const

Return Value:

The status of the slack variable.

status

This version of the function status() sets the status of the slack variable.

void ABA_SLACKSTAT::status(STATUS stat)

Arguments:

stat

The new status of the slack variable.

status

This version of the function status() sets the status to the one of *stat.

void ABA_SLACKSTAT::status(const ABA_SLACKSTAT *stat)

Arguments:

stat

The status of the slack variable is set to *stat.

6.2. SYSTEM CLASSES 197

6.2.7 ABA LP

The following section provides a generic interface class to linear programs, from which we will derive

further classes both for the solution of LP-relaxations (ABA LPSUB) with a linear-programming based

branch-and-bound algorithm and for interfaces to LP-solvers (ABA CPLEXIF).

The framework should be very exible in the use of di�erent LP-solvers. Therefore, we implement

in the class ABA LP a very general interface to the linear program. All functions of the framework

communicate with the linear program only by the public functions of the class ABA LP. Linear programs

cannot only be used for solving the LP-relaxation within the branch-and-cut algorithm. There are also

techniques in integer programming where linear programming is used for generating cutting planes and

for applying heuristics. Therefore, we design the class ABA LP that it can be used very generally.

class ABA_LP : public ABA_ABACUSROOT {

public:

enum OPTSTAT{Optimal, Unoptimized, Error,

Feasible, Infeasible, Unbounded};

enum SOLSTAT{Available, Missing};

enum METHOD {Primal, Dual, Barrier};

ABA_LP (ABA_MASTER *master);

virtual ~ABA_LP ();

friend ostream &operator<<(ostream& out, const ABA_LP& rhs);

void initialize(ABA_OPTSENSE sense, int nRow, int maxRow,

int nCol, int maxCol,

ABA_ARRAY<double> &obj, ABA_ARRAY<double> &lBound,

ABA_ARRAY<double> &uBound, ABA_ARRAY<ABA_ROW*> &rows);

void initialize(ABA_OPTSENSE sense, int nRow, int maxRow,

int nCol, int maxCol,

ABA_ARRAY<double> &obj, ABA_ARRAY<double> &lBound,

ABA_ARRAY<double> &uBound, ABA_ARRAY<ABA_ROW*> &rows,

ABA_ARRAY<ABA_LPVARSTAT::STATUS> &lpVarStat,

ABA_ARRAY<ABA_SLACKSTAT::STATUS> &slackStat);

virtual void loadBasis(ABA_ARRAY<ABA_LPVARSTAT::STATUS> &lpVarStat,

ABA_ARRAY<ABA_SLACKSTAT::STATUS> &slackStat);

ABA_OPTSENSE sense() const;

void sense(const ABA_OPTSENSE &newSense);

int nRow() const;

int maxRow() const;

int nCol() const;

int maxCol() const;

int nnz() const;

double obj(int i) const;

double lBound(int i) const;

double uBound(int i) const;

void row(int i, ABA_ROW &r) const;

double rhs(int i) const;

virtual double value() const;

virtual double xVal(int i);

virtual double barXVal(int i);

virtual double reco(int i);

virtual double yVal(int c);

virtual double slack(int c);

SOLSTAT xValStatus() const;

SOLSTAT barXValStatus() const;

SOLSTAT yValStatus() const;

198 CHAPTER 6. REFERENCE MANUAL

SOLSTAT recoStatus() const;

SOLSTAT slackStatus() const;

SOLSTAT basisStatus() const;

int nOpt() const;

virtual bool infeasible() const;

virtual int getInfeas(int &infeasRow, int &infeasCol, double *bInvRow);

virtual ABA_LPVARSTAT::STATUS lpVarStat(int i);

virtual ABA_SLACKSTAT::STATUS slackStat(int i);

virtual OPTSTAT optimize(METHOD method);

void remRows(ABA_BUFFER<int> &ind);

void addRows(ABA_BUFFER<ABA_ROW*> &newRows);

void remCols(ABA_BUFFER<int> &cols);

void addCols(ABA_BUFFER<ABA_COLUMN*> &newCols);

void changeRhs(ABA_ARRAY<double> &newRhs);

virtual void changeLBound(int i, double newLb);

virtual void changeUBound(int i, double newUb);

virtual int pivotSlackVariableIn(ABA_BUFFER<int> &rows);

void rowRealloc(int newSize);

void colRealloc(int newSize);

int writeBasisMatrix(const char *fileName);

int setSimplexIterationLimit(int limit);

int getSimplexIterationLimit(int &limit);

protected:

void colsNnz(int nRow, ABA_ARRAY<ABA_ROW*> &rows, ABA_ARRAY<int> &nnz);

void rows2cols(int nRow, ABA_ARRAY<ABA_ROW*> &rows,

ABA_ARRAY<ABA_SPARVEC*> &cols);

void rowRangeCheck(int r) const;

void colRangeCheck(int i) const;

private:

ABA_LP(const ABA_LP &rhs);

const ABA_LP &operator=(const ABA_LP &rhs);

};

enum OPTSTAT

The optimization status of the linear program.

Unoptimized

Optimization is still required, this is also the case for reoptimization.

Optimized

The optimization has been performed, yet only a call to getSol() can give us the

status of optimization.

Error

An error has happened during optimization.

Optimal

The optimal solution has been computed.

Feasible

A primal feasible solution for the linear program, but not the optimal solution has

been found.

6.2. SYSTEM CLASSES 199

Infeasible

The linear program is primal infeasible.

Unbounded

The linear program is unbounded.

enum SOLSTAT

This enumeration describes if parts of the solution like x-values, reduced costs, etc. are available.

Available

The part of the solution is available.

Missing

The part of the solution is missing.

enum METHOD

The solution method for the linear program.

Primal

The primal simplex method.

Dual

The dual simplex method.

Barrier

The barrier method.

Constructor

ABA_LP::ABA_LP (ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

Destructor (virtual)

ABA_LP::~ABA_LP()

initialize

The function initialize() loads the linear program de�ned by its arguments.

void ABA_LP::initialize(ABA_OPTSENSE sense,

int nRow,

int maxRow,

int nCol,

int maxCol,

ABA_ARRAY<double> &obj,

ABA_ARRAY<double> &lBound,

ABA_ARRAY<double> &uBound,

ABA_ARRAY<ABA_ROW*> &rows)

Arguments:

200 CHAPTER 6. REFERENCE MANUAL

sense

The sense of the objective function.

nCol

The number of columns (variables).

maxCol

The maximal number of columns.

nRow

The number of rows.

maxRow

The maximal number of rows.

obj

An array with the objective function coe�cients.

lb

An array with the lower bounds of the columns.

ub

An array with the upper bounds of the columns.

rows

An array storing the rows of the problem.

initialize

This version of the function initialize() performs like its previous version, but also initializes the basis

with the arguments:

void ABA_LP::initialize(ABA_OPTSENSE sense,

int nRow,

int maxRow,

int nCol,

int maxCol,

ABA_ARRAY<double> &obj,

ABA_ARRAY<double> &lBound,

ABA_ARRAY<double> &uBound,

ABA_ARRAY<ABA_ROW*> &rows,

ABA_ARRAY<ABA_LPVARSTAT::STATUS> &lpVarStat,

ABA_ARRAY<ABA_SLACKSTAT::STATUS> &slackStat)

Arguments:

lpVarStat

An array storing the status of the columns.

slackStat

An array storing the status of the slack variables.

6.2. SYSTEM CLASSES 201

loadBasis (virtual)

The function loadBasis() loads a new basis for the linear program.

void ABA_LP::loadBasis(ABA_ARRAY<ABA_LPVARSTAT::STATUS> &lpVarStat,

ABA_ARRAY<ABA_SLACKSTAT::STATUS> &slackStat)

Arguments:

lpVarStat

An array storing the status of the columns.

slackStat

An array storing the status of the slack variables.

optimize (virtual)

The function optimize() performs the optimization of the linear program.

ABA_LP::OPTSTAT ABA_LP::optimize(METHOD method)

Return Value:

The status of the optimization.

Arguments:

method

The method with which the optimization is performed.

remRows

The function remRows() removes rows of the linear program.

void ABA_LP::remRows(ABA_BUFFER<int> &ind)

Arguments:

ind

The numbers of the rows that should be removed.

addRows

The function addRows() adds rows to the linear program. If the new number of rows exceeds the maximal

number of rows a reallocation is performed.

void ABA_LP::addRows(ABA_BUFFER<ABA_ROW*> &newRows)

Arguments:

newRows

The rows that should be added to the linear program.

rowRealloc

The function rowRealloc() performs a reallocation of the row space of the linear program.

void ABA_LP::rowRealloc(int newSize)

Arguments:

newSize

The new maximal number of rows of the linear program.

202 CHAPTER 6. REFERENCE MANUAL

remCols

The function remCols() removes columns from the linear program.

void ABA_LP::remCols(ABA_BUFFER <int> &cols)

Arguments:

cols

The numbers of the columns that should be removed.

addCols

The function addCols() adds columns to the linear program. If the new number of columns exceeds the

maximal number of columns a reallocation is performed.

void ABA_LP::addCols(ABA_BUFFER<ABA_COLUMN*> &newCols)

Arguments:

newCols

The new columns that are added.

colRealloc

The function colRealloc() performs a reallocation of the column space of the linear program.

void ABA_LP::colRealloc(int newSize)

Arguments:

newSize

The new maximal number of columns of the linear program.

changeRhs

The function changeRhs() changes the complete right hand side of the linear program.

void ABA_LP::changeRhs(ABA_ARRAY<double> &newRhs)

Arguments:

newRhs

The new right hand side of the rows.

changeLBound (virtual)

The function changeLBound()changes the lower bound of a single column.

void ABA_LP::changeLBound(int i, double newLb)

Arguments:

i

The column.

newLb

The new lower bound of the column.

6.2. SYSTEM CLASSES 203

changeUBound (virtual)

The function changeUBound() changes the upper bound of a single column.

void ABA_LP::changeUBound(int i, double newUb)

Arguments:

i

The column.

newUb

The new upper bound of the column.

pivotSlackVariableIn (virtual)

The function pivotSlackVariableIn() pivots the slack variables stored in the bu�er rows into the basis.

int ABA_LP::pivotSlackVariableIn(ABA_BUFFER<int> &rows)

Return Value:

0

All variables could be pivoted in,

1

otherwise.

Arguments:

rows

The numbers of the slack variables that should be pivoted in.

sense

ABA_OPTSENSE ABA_LP::sense() const

Return Value:

The optimization sense of the linear program.

sense

void ABA_LP::sense(const ABA_OPTSENSE &newSense)

Arguments:

newSense

The new sense of the optimization.

nRow

int ABA_LP::nRow() const

Return Value:

The current number of rows.

204 CHAPTER 6. REFERENCE MANUAL

maxRow

int ABA_LP::maxRow() const

Return Value:

The maximal number of rows which can currently be stored. However, more rows can be

added to the LP since in this case the automatic reallocation is executed.

nCol

int ABA_LP::nCol() const

Return Value:

The current number of columns.

maxCol

int ABA_LP::maxCol() const

Return Value:

The maximal number of columns which can currently be stored. However, more columns can

be added to the LP since in this case the automatic reallocation is executed or a reallocation

can be performed by an explicit call to colRealloc().

nnz

int ABA_LP::nnz() const

Return Value:

The number of nonzero elements in the constraint matrix. To be more exact, this is the number

of elements stored in the sparse representation of the constraint matrix. If a (redundant)

coe�cient with value zero is stored, this element is also counted.

obj

double ABA_LP::obj(int i) const

Return Value:

The objective function coe�cient of column i.

Arguments:

i

A column.

lBound

double ABA_LP::lBound(int i) const

Return Value:

The lower bound of column i.

Arguments:

i

A column.

6.2. SYSTEM CLASSES 205

uBound

double ABA_LP::uBound(int i) const

Return Value:

The upper bound of column i.

Arguments:

i

A column.

row

The function row() retrieves a row from the linear program.

void ABA_LP::row(int i, ABA_ROW &r) const

Arguments:

i

The number of the row.

r

Stores the row after calling this function.

rhs

double ABA_LP::rhs(int i) const

Return Value:

The right hand side of the i-th row.

Arguments:

i

The number of the row.

value (virtual)

double ABA_LP::value() const

Return Value:

The solution of the ABA LP after the optimization has been performed.

xVal (virtual)

double ABA_LP::xVal(int i)

Return Value:

The x-value of column i in the solution of the linear program.

Arguments:

i

The number of a column.

206 CHAPTER 6. REFERENCE MANUAL

barXVal (virtual)

double ABA_LP::barXVal(int i)

Return Value:

The x-value of column i in the barrier solution before crossing over to a basis solution of the

linear program.

Arguments:

i

The number of a column.

reco (virtual)

double ABA_LP::reco(int i)

Return Value:

The reduced cost of column i.

Arguments:

i

The number of a column.

yVal (virtual)

double ABA_LP::yVal(int c)

Return Value:

The dual variable of row c.

Arguments:

c

The number of a row.

slack (virtual)

double ABA_LP::slack(int c)

Return Value:

The value of the slack variable of row c.

Arguments:

c

The number of a row.

xValStatus

ABA_LP::SOLSTAT ABA_LP::xValStatus() const

Return Value:

Available

If the x-values can be retrieved,

Missing

otherwise.

6.2. SYSTEM CLASSES 207

barXValStatus

ABA_LP::SOLSTAT ABA_LP::barXValStatus() const

Return Value:

Available

If the x-values of the barrier solution before cross over can be retrieved,

Missing

otherwise.

recoStatus

ABA_LP::SOLSTAT ABA_LP::recoStatus() const

Return Value:

Available

If the reduced costs can be retrieved,

Missing

otherwise.

yValStatus

ABA_LP::SOLSTAT ABA_LP::yValStatus() const

Return Value:

Available

If the dual variables can be retrieved,

Missing

otherwise.

slackStatus

ABA_LP::SOLSTAT ABA_LP::slackStatus() const

Return Value:

Available

If the status of the slack variables can be retrieved,

Missing

otherwise.

basisStatus

ABA_LP::SOLSTAT ABA_LP::basisStatus() const

Return Value:

Available

If the status of the columns can be retrieved,

Missing

otherwise.

208 CHAPTER 6. REFERENCE MANUAL

nOpt

int ABA_LP::nOpt() const

Return Value:

The number of optimizations of the ABA LP.

infeasible (virtual)

bool ABA_LP::infeasible() const

Return Value:

true

If the optimization status is Infeasible,

false

otherwise.

getInfeas (virtual)

The function getInfeas() can be called if the last linear program has been solved with the dual simplex

method and is infeasible and all inactive variables price out correctly. Then, the basis is dual feasible,

but primal infeasible, i.e., some variables or slack variables violate their bounds. In this case the function

getInfeas() determines an infeasible variable or slack variable.

int ABA_LP::getInfeas(int &infeasRow, int &infeasCol, double *bInvRow)

Return Value:

0

On success,

1

otherwise.

Arguments:

infeasRow

Holds after the execution the number of an infeasible slack variable, or �1.

infeasVar

Holds after the execution the number of an infeasible column, or �1.

bInvRow

Holds after the execution the row of the basis inverse corresponding to the infeasible

column or slack variable, which is always a basic variable.

If getInfeas() is successful, then either infeasRow or infeasVar is �1 and the other argu-

ment holds the nonnegative number of the infeasible variable.

lpVarStat (virtual)

ABA_LPVARSTAT::STATUS ABA_LP::lpVarStat(int i)

Return Value:

The status of column i in the linear program.

Arguments:

i

The number of a column.

6.2. SYSTEM CLASSES 209

slackStat (virtual)

ABA_SLACKSTAT::STATUS ABA_LP::slackStat(int i)

Return Value:

The status of the slack variable of row i.

Arguments:

i

The number of a row.

colsNnz

The function colsNnz() computes the number of nonzero elements in each column of a given set of rows.

void ABA_LP::colsNnz(int nRow, ABA_ARRAY<ABA_ROW*> &rows, ABA_ARRAY<int> &nnz)

Arguments:

nRow

The number of rows.

rows

The array storing the rows.

nnz

An array of length at least the number of columns of the linear program which will

hold the number of nonzero elements of each column.

rows2cols

The function rows2cols() computes the columnwise representation of the row matrix.

void ABA_LP::rows2cols(int nRow,

ABA_ARRAY<ABA_ROW*> &rows,

ABA_ARRAY<ABA_SPARVEC*> &cols)

Arguments:

nRow

The number of rows.

rows

The array storing the rows.

cols

An array holding pointers to sparse vectors which will contain the columnwise repre-

sentation of the constraint matrix de�ned by rows. The length of this array must be

at least the number of columns. The elements of the array must not be 0-pointers.

Sparse vectors of su�cient length should be allocated before the function is called.

The size of these sparse vectors can be determined with the function colsNnz().

210 CHAPTER 6. REFERENCE MANUAL

rowRangeCheck

The function rowRangeCheck() terminates the program if there is no row with index r.

void ABA_LP::rowRangeCheck(int r) const

Arguments:

r

The number of a row of the linear program.

colRangeCheck

The function colRangeCheck() terminates the program if there is no column with index i.

void ABA_LP::colRangeCheck(int i) const

Arguments:

i

The number of a column.

Output Operator

The output operator writes the objective function, followed by the constraints, the bounds on the columns

and the solution values (if available) to an output stream.

ostream &operator<<(ostream& out, const ABA_LP& rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The linear program being output.

writeBasisMatrix

The function writeBasisMatrix() writes the complete basis of an optimal linear program to a �le.

int ABA_LP::writeBasisMatrix(const char *fileName)

Return Value:

0

If a basis is available and could be written,

1

otherwise.

Arguments:

fileName

The name of the �le the basis is written to.

6.2. SYSTEM CLASSES 211

setSimplexIterationLimit

The function setSimplexIterationLimit() changes the iteration limit of the Simplex algorithm.

int ABA_LP::setSimplexIterationLimit(int limit)

Return Value:

0

If the iteration limit could be set,

1

otherwise.

Arguments:

limit

The new value of the iteration limit.

getSimplexIterationLimit

The function getSimplexIterationLimit().

int ABA_LP::getSimplexIterationLimit(int &limit)

Return Value:

0

If the iteration limit could be get,

1

otherwise.

Arguments:

limit

Stores the iteration limit if the return value is 0.

6.2.8 ABA CPLEXIF

The class ABA CPLEXIF implements the interface to the LP-solver Cplex and is a derived class from LP.

ABA CPLEXIF is not an abstract class. Hence, an object of this class can be used for the explicit solution

of a linear program.

LP-relaxations within the branch-and-bound algorithms are provided by the class ABA LPSUBCPLEX,

which is derived from this class and the class ABA LPSUB.

In the class ABA CPLEXIF we do not follow our naming conventions several times in order to use the

same names as in the Cplex manual [Cpl94].

class ABA_CPLEXIF : public virtual ABA_LP {

public:

ABA_CPLEXIF(ABA_MASTER *master,

double nnzSurplus = 0.0,

bool relativeSurplus = true);

ABA_CPLEXIF(ABA_MASTER *master,

ABA_OPTSENSE sense,

int nRow,

int maxRow,

int nCol,

212 CHAPTER 6. REFERENCE MANUAL

int maxCol,

ABA_ARRAY<double> &obj,

ABA_ARRAY<double> &lb,

ABA_ARRAY<double> &ub,

ABA_ARRAY<ABA_ROW*> &rows,

double nnzSurplus = 0.0,

bool relativeSurplus = true);

virtual ~ABA_CPLEXIF();

void iterationInformation(int level);

void setppriind(int priind);

void setdpriind(int priind);

#ifdef ABACUS_LP_CPLEX40

int CPXgetdblparam(int whichParam, double *value);

int CPXsetdblparam(int whichParam, double value);

int CPXgetintparam(int whichParam, int *value);

int CPXsetintparam(int whichParam, int value);

struct cpxenv *cplexEnv();

#endif

struct cpxlp *cplexLp();

void print();

private:

ABA_CPLEXIF(const ABA_CPLEXIF &rhs);

const ABA_CPLEXIF &operator=(const ABA_CPLEXIF &rhs);

};

Constructor

This constructor does not initialize the problem data of the linear program. It must be loaded later with

the function initialize().

ABA_CPLEXIF::ABA_CPLEXIF(ABA_MASTER *master,

double nnzSurplus,

bool relativeSurplus)

Arguments:

master

A pointer to the corresponding master of the optimization.

nnzSurplus

Additional space for nonzero elements in the constraint matrix of Cplex. Its default

value is 0.

relativeSurplus

If this argument is true, then the additional number of nonzeros is relative in

percent to the initial number of nonzeros, otherwise it is interpreted as an absolute

value. The default value is true.

Constructor

A constructor with initialization.

ABA_CPLEXIF::ABA_CPLEXIF(ABA_MASTER *master,

ABA_OPTSENSE sense,

int nRow,

6.2. SYSTEM CLASSES 213

int maxRow,

int nCol,

int maxCol,

ABA_ARRAY<double> &obj,

ABA_ARRAY<double> &lb,

ABA_ARRAY<double> &ub,

ABA_ARRAY<ABA_ROW*> &rows,

double nnzSurplus,

bool relativeSurplus)

Arguments:

master

A pointer to the corresponding master of the optimization.

sense

The sense of the objective function.

nCol

The number of columns (variables).

maxCol

The maximal number of columns.

nRow

The number of rows.

maxRow

The maximal number of rows.

obj

An array with the objective function coe�cients.

lb

An array with the lower bounds of the columns.

ub

An array with the upper bounds of the columns.

rows

An array storing the rows of the problem.

nnzSurplus

Additional space for nonzero elements in the constraint matrix of Cplex. Its default

value is 0.

relativeSurplus

If this argument is true, then the additional number of nonzeros is relative in

percent to the initial number of nonzeros, otherwise it is interpreted as an absolute

value. The default value is true.

Destructor (virtual)

ABA_CPLEXIF::~ABA_CPLEXIF()

214 CHAPTER 6. REFERENCE MANUAL

iterationInformation

The function iterationInformation() emulates the Cplex function setitfoind() and setscr ind(1).

Note: The output of Cplex is not compatible with the ABA OSTREAM class of this framework and is

always written to stdout.

void ABA_CPLEXIF::iterationInformation(int level)

Arguments:

level

If level is 0, then no iteration information is output, if level is 1 then itera-

tion information is output after every refactorization, and if level is 2, then this

information is output every iteration.

setppriind

The function setppriind() emulates the Cplex function with the same name.

void ABA_CPLEXIF::setppriind(int priind)

Arguments:

priind

The primal pricing strategy. See your Cplex manual for the possible values.

setdpriind

The function setdpriind() emulates the Cplex function with the same name.

void ABA_CPLEXIF::setdpriind(int priind)

Arguments:

priind

The dual pricing strategy. See your Cplex manual for the possible values.

CPXgetdblparam

The function CPXgetdblparam() emulates the Cplex function with the same name that obtains the

current value of a Cplex parameter of type double.

This function is only available in Cplex versions 4.0 or newer.

int ABA_CPLEXIF::CPXgetdblparam(int whichParam, double *value)

Return Value:

If the value of the parameter can be obtained 0 is returned, otherwise a nonzero value.

Arguments:

whichParam

The name of the parameter (see your Cplex manual).

value

Holds the parameter value in case of a successful call.

6.2. SYSTEM CLASSES 215

CPXsetdblparam

The function CPXsetdblparam() emulates the Cplex function with the same name that sets the value of

a Cplex parameter of type double.

This function is only available in Cplex versions 4.0 or newer.

int ABA_CPLEXIF::CPXsetdblparam(int whichParam, double value)

Return Value:

If the value of the parameter can be set 0 is returned, otherwise a nonzero value.

Arguments:

whichParam

The name of the parameter (see your Cplex manual).

value

The new value of the parameter.

CPXgetintparam

The function CPXgetintparam() emulates the Cplex function with the same name that obtains the

current value of a Cplex parameter of type int.

This function is only available in Cplex versions 4.0 or newer.

int ABA_CPLEXIF::CPXgetintparam(int whichParam, int *value)

Return Value:

If the value of the parameter can be obtained 0 is returned, otherwise a nonzero value.

Arguments:

whichParam

The name of the parameter (see your Cplex manual).

value

Holds the parameter value in case of a successful call.

CPXsetintparam

The function CPXsetintparam() emulates the Cplex function with the same name that sets the value of

a Cplex parameter of type int.

This function is only available in Cplex versions 4.0 or newer.

int ABA_CPLEXIF::CPXsetintparam(int whichParam, int value)

Return Value:

If the value of the parameter can be set 0 is returned, otherwise a nonzero value.

Arguments:

whichParam

The name of the parameter (see your Cplex manual).

value

The new value of the parameter.

216 CHAPTER 6. REFERENCE MANUAL

cplexLp

The function cplexLp() should be used carefully because it breaks the class principle. In particular, it

should not be used to to modify the internal data structures of Cplex.

struct cpxlp *ABA_CPLEXIF::cplexLp()

Return Value:

A pointer to the internal problem representation of Cplex.

cplexEnv

The function cplexEnv() is only available in Cplex Version 4.0 and newer. Like the function cplexLp()

this function should be used very carefully. In particular, it should not be used to to modify the internal

data structures of Cplex.

struct cpxenv *ABA_CPLEXIF::cplexEnv()

Return Value:

A pointer to the cplex environment.

print

The function print() writes the program loaded by Cplex to the standard output. This function is

especially useful for debugging, but breaks the stream concept of ABACUS.

void ABA_CPLEXIF::print()

6.2.9 ABA SOPLEXIF

class ABA_SOPLEXIF : public virtual ABA_LP {

public:

ABA_SOPLEXIF(ABA_MASTER *master);

ABA_SOPLEXIF(ABA_MASTER *master,

ABA_OPTSENSE sense, int nRow, int maxRow, int nCol, int maxCol,

ABA_ARRAY<double> &obj, ABA_ARRAY<double> &lb,

ABA_ARRAY<double> &ub, ABA_ARRAY<ABA_ROW*> &rows);

virtual ~ABA_SOPLEXIF();

friend ostream &operator<<(ostream& out, const ABA_SOPLEXIF& rhs);

SoPlex *soplex();

private:

ABA_SOPLEXIF(const ABA_SOPLEXIF &rhs);

const ABA_SOPLEXIF &operator=(const ABA_SOPLEXIF &rhs);

};

Constructor

This constructor does not initialize the problem data of the linear program. It must be loaded later with

the function initialize().

ABA_SOPLEXIF::ABA_SOPLEXIF(ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

6.2. SYSTEM CLASSES 217

Constructor

A constructor with initialization.

ABA_SOPLEXIF::ABA_SOPLEXIF(ABA_MASTER *master,

ABA_OPTSENSE sense,

int nRow,

int maxRow,

int nCol,

int maxCol,

ABA_ARRAY<double> &obj,

ABA_ARRAY<double> &lb,

ABA_ARRAY<double> &ub,

ABA_ARRAY<ABA_ROW*> &rows)

Arguments:

master

A pointer to the corresponding master of the optimization.

sense

The sense of the objective function.

nCol

The number of columns (variables).

maxCol

The maximal number of columns.

nRow

The number of rows.

maxRow

The maximal number of rows.

obj

An array with the objective function coe�cients.

lb

An array with the lower bounds of the columns.

ub

An array with the upper bounds of the columns.

rows

An array storing the rows of the problem.

Destructor (virtual)

ABA_SOPLEXIF::~ABA_SOPLEXIF()

218 CHAPTER 6. REFERENCE MANUAL

Output Operator

The output operator writes the linear program to an output stream in the format of the LP-solver SoPlex.

ostream &operator<<(ostream& out, const ABA_SOPLEXIF& rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The linear program being output.

soplex

The function soplex() should be used carefully because it breaks the class principle. In particular, it

should not be used to to modify the internal data structures of Soplex.

SoPlex *ABA_SOPLEXIF::soplex()

Return Value:

A pointer to the internal problem representation of Soplex.

6.2.10 ABA LPSUB

This class is derived from the class LP to implement the linear programming relaxations of a subproblem.

We require this class as the ABA CONSTRAINT/ABA VARIABLE format of the constraints/variables has to be

transformed to the ABA ROW/ABA COLUMN format required by the class LP. Moreover the class ABA LPSUB

is also a preprocessor for the linear programs. Currently we only provide the elimination of (nonbasic)

�xed and set variables. Future extensions should be considered.

The class ABA LPSUB is still an abstract class independent of the used LP-solver. Classes for solving

LP-relaxation with the LP-solvers Cplex or SoPlex are the classes ABA LPSUBCPLEX or ABA LPSUBSOPLEX,

respectively.

class ABA_LPSUB : public virtual ABA_LP {

public:

ABA_LPSUB (ABA_MASTER *master, ABA_SUB *sub);

virtual ~ABA_LPSUB();

int trueNCol() const;

int trueNnz() const;

double lBound(int i) const;

double uBound(int i) const;

virtual double value() const;

virtual double xVal(int i);

virtual double barXVal(int i);

virtual double reco(int i);

virtual ABA_LPVARSTAT::STATUS lpVarStat(int i);

virtual int getInfeas(int &infeasCon, int &infeasVar, double *bInvRow);

virtual bool infeasible() const;

ABA_BUFFER<ABA_INFEASCON*> *infeasCon();

virtual void loadBasis(ABA_ARRAY<ABA_LPVARSTAT::STATUS> &lpVarStat,

6.2. SYSTEM CLASSES 219

ABA_ARRAY<ABA_SLACKSTAT::STATUS> &slackStat);

protected:

void initialize();

private:

ABA_LPSUB(const ABA_LPSUB &rhs);

const ABA_LPSUB &operator=(const ABA_LPSUB &rhs);

};

Constructor

ABA_LPSUB::ABA_LPSUB (ABA_MASTER *master, ABA_SUB *sub)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

The subproblem of which the LP-relaxation is solved.

Destructor (virtual)

ABA_LPSUB::~ABA_LPSUB()

initialize

The function initialize() has to be called in the constructor of the class derived from this class and

from a class implementing an LP-solver. This function will pass the linear program of the associated

subproblem to the solver.

void ABA_LPSUB::initialize()

trueNCol

int ABA_LPSUB::trueNCol() const

Return Value:

The number of columns which are passed to the LP-solver, i.e., the number of active variables

of the subproblem minus the number of eliminated variables.

trueNnz

int ABA_LPSUB::trueNnz() const

Return Value:

The number of nonzeros which are currently present in the constraint matrix of the LP-solver.

220 CHAPTER 6. REFERENCE MANUAL

lBound (virtual)

double ABA_LPSUB::lBound(int i) const

Return Value:

The lower bound of variable i. If a variable is eliminated, we return the value the eliminated

variable is �xed or set to.

Arguments:

i

The number of a variable.

uBound (virtual)

double ABA_LPSUB::uBound(int i) const

Return Value:

The upper bound of variable i. If a variable is eliminated, we return the value the eliminated

variable is �xed or set to.

Arguments:

i

The number of a variable.

value (virtual)

double ABA_LPSUB::value() const

Return Value:

The objective function value of the linear program.

xVal (virtual)

double ABA_LPSUB::xVal(int i)

Return Value:

The x-value of variable i after the solution of the linear program.

barXVal (virtual)

double ABA_LPSUB::barXVal(int i)

Return Value:

The x-value of variable i after the solution of the linear program before crossing over to a

basic solution.

reco (virtual)

double ABA_LPSUB::reco(int i)

Return Value:

The reduced cost of variable i. We de�ne the reduced costs of eliminated variables as 0.

6.2. SYSTEM CLASSES 221

lpVarStat (virtual)

ABA_LPVARSTAT::STATUS ABA_LPSUB::lpVarStat(int i)

Return Value:

The status of the variable in the linear program. If the variable i is eliminated, then

ABA LPVARSTAT::Eliminated is returned.

getInfeas (virtual)

The function getInfeas() is called if the last linear program has been solved with the dual simplex

method and is infeasible. In this case it computes the infeasible basic variable or constraint and the

corresponding row of the basis inverse.

int ABA_LPSUB::getInfeas(int &infeasCon, int &infeasVar, double *bInvRow)

Return Value:

0

If no error occurs,

1

otherwise.

Arguments:

infeasCon

If nonnegative, this is the number of the infeasible slack variable.

infeasVar

If nonnegative, this is the number of the infeasible structural variable. Note, either

infeasCon or infeasVar is nonnegative.

bInvRow

An array containing the corresponding row of the basis inverse.

infeasible (virtual)

bool ABA_LPSUB::infeasible() const

Return Value:

true

If the LP turned out to be infeasible either if the base class LP detected an infeasi-

bility during the solution of the linear program or infeasible constraints have been

memorized during the construction of the LP or during the addition of constraints,

false

otherwise.

infeasCon

ABA_BUFFER<ABA_INFEASCON*> *ABA_LPSUB::infeasCon()

Return Value:

A pointer to the bu�er holding the infeasible constraints.

222 CHAPTER 6. REFERENCE MANUAL

loadBasis (virtual)

The function loadBasis() loads a new basis for the linear program. The function rede�nes a virtual

function of the base class LP. Eliminated variables have to be considered when the basis is loaded.

void ABA_LPSUB::loadBasis(ABA_ARRAY<ABA_LPVARSTAT::STATUS> &lpVarStat,

ABA_ARRAY<ABA_SLACKSTAT::STATUS> &slackStat)

Arguments:

lpVarStat

An array storing the status of the columns.

slackStat

An array storing the status of the slack variables.

6.2.11 ABA LPSUBCPLEX

This class is derived from the classes ABA LPSUB and ABA CPLEX and implements the solution of the linear

programming relaxation of a subproblem using the LP-solver Cplex. The class LP is a virtual base class

of ABA LPSUBCPLEX.

class ABA_LPSUBCPLEX : public ABA_LPSUB, public ABA_CPLEXIF {

public:

ABA_LPSUBCPLEX(ABA_MASTER *master, ABA_SUB *sub);

virtual ~ABA_LPSUBCPLEX();

private:

ABA_LPSUBCPLEX(const ABA_LPSUBCPLEX &rhs);

const ABA_LPSUBCPLEX &operator=(const ABA_LPSUBCPLEX &rhs);

};

Constructor

ABA_LPSUBCPLEX::ABA_LPSUBCPLEX(ABA_MASTER *master, ABA_SUB *sub)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

The subproblem of which the LP-relaxation is solved.

Destructor (virtual)

ABA_LPSUBCPLEX::~ABA_LPSUBCPLEX()

6.2.12 ABA LPSUBSOPLEX

This class is derived from the classes ABA LPSUB and ABA SOPLEX and implements the solution of the

linear programming relaxation of a subproblem using the LP-solver SoPlex. The class LP is a virtual base

class of ABA LPSUBSOPLEX.

6.2. SYSTEM CLASSES 223

class ABA_LPSUBSOPLEX : public ABA_LPSUB, public ABA_SOPLEXIF {

public:

ABA_LPSUBSOPLEX(ABA_MASTER *master, ABA_SUB *sub);

virtual ~ABA_LPSUBSOPLEX();

private:

ABA_LPSUBSOPLEX(const ABA_LPSUBSOPLEX &rhs);

const ABA_LPSUBSOPLEX &operator=(const ABA_LPSUBSOPLEX &rhs);

};

Constructor

ABA_LPSUBSOPLEX::ABA_LPSUBSOPLEX(ABA_MASTER *master, ABA_SUB *sub)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

The subproblem of which the LP-relaxation is solved.

Destructor (virtual)

ABA_LPSUBSOPLEX::~ABA_LPSUBSOPLEX()

6.2.13 ABA BRANCHRULE

Branching should be very exible within such a framework. Therefore in a branching step each generated

subproblem receives an object of the class ABA BRANCHRULE. When the subproblem is activated, it copies

the active variables, their bounds and statuses, and the active constraints from the father, and then

modi�es the subproblem according to the branching rule.

This class is an abstract base class for all branching rules within this framework. We provide by non-

abstract derived classes standard branching schemes for setting a binary variable to its lower or upper

bound (ABA SETBRANCHRULE), for setting an integer variable to a certain value (ABA VALBRANCHRULE), for

changing the bounds of an integer variable (ABA CONBRANCHRULE), and for adding a branching constraint

(ABA CONBRANCHRULE).

class ABA_BRANCHRULE : public ABA_ABACUSROOT {

public:

ABA_BRANCHRULE(ABA_MASTER *master);

virtual ~ABA_BRANCHRULE();

virtual int extract(ABA_SUB *sub) = 0;

virtual void extract(ABA_LPSUB *lp);

virtual void unExtract(ABA_LPSUB *lp);

virtual bool branchOnSetVar();

virtual void initialize(ABA_SUB* sub);

protected:

ABA_MASTER *master_;

};

master

ABA MASTER *master

A pointer to the corresponding master of the optimization.

224 CHAPTER 6. REFERENCE MANUAL

extract (virtual)

The function extract() modi�es a subproblem by setting the branching variable.

virtual int extract(ABA_SUB *sub) = 0

Return Value:

0

If the subproblem can be modi�ed according to the branching rule.

1

If a contradiction occurs.

Arguments:

sub

The subproblem being modi�ed.

Constructor

ABA_BRANCHRULE::ABA_BRANCHRULE(ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

Destructor (virtual)

ABA_BRANCHRULE::~ABA_BRANCHRULE()

branchOnSetVar (virtual)

The virtual function branchOnSetVar() should indicate if the branching is performed by setting a binary

variable. This is only required as in the current version of the GNU-compiler run time type information

is not satisfactorily implemented.

bool ABA_BRANCHRULE::branchOnSetVar()

Return Value:

The default implementation returns always false. This function must be rede�ned in the class

ABA SETBRANCHRULE, where it has to return true.

extract (virtual)

The virtual function extract() should modify the linear programming relaxation lp in order to determine

the quality of the branching rule in a linear programming based branching rule selection. The default

implementation does nothing except writing a warning to the error stream. If a derived concrete branching

rule should be used in LP-based branching rule selection then this function has to be rede�ned.

void ABA_BRANCHRULE::extract(ABA_LPSUB *lp)

Arguments:

lp

A pointer to a the linear programming relaxtion of a a subproblem.

6.2. SYSTEM CLASSES 225

unExtract (virtual)

The virtual function unExtract() should undo the modi�ctions of the linear programming relaxtion lp.

This function has to be rede�ned in a derived class, if also extract(ABA LPSUB*) is rede�ned there.

void ABA_BRANCHRULE::unExtract(ABA_LPSUB *lp)

Arguments:

lp

A pointer to a the linear programming relaxtion of a a subproblem.

initialize (virtual)

The function initialize is a virtual dummy function doing nothing. It is called from the constructor of

the subproblem and can be used to perform initializations of the branching rule that can be only done

after the generation of the subproblem.

void ABA_BRANCHRULE::initialize(ABA_SUB* sub)

Arguments:

sub

A pointer to the subproblem that should be used for the initialization.

6.2.14 ABA SETBRANCHRULE

This class implements a branching rule for setting a binary variable to its lower or upper bound.

class ABA_SETBRANCHRULE : public ABA_BRANCHRULE {

public:

ABA_SETBRANCHRULE(ABA_MASTER *master, int variable,

ABA_FSVARSTAT::STATUS status);

virtual ~ABA_SETBRANCHRULE();

friend ostream &operator<<(ostream &out, const ABA_SETBRANCHRULE &rhs);

virtual int extract(ABA_SUB *sub);

virtual void extract(ABA_LPSUB *lp);

virtual void unExtract(ABA_LPSUB *lp);

virtual bool branchOnSetVar();

bool setToUpperBound() const;

int variable() const;

};

Constructor

ABA_SETBRANCHRULE::ABA_SETBRANCHRULE(ABA_MASTER *master,

int variable,

ABA_FSVARSTAT::STATUS status)

Arguments:

master

A pointer to the corresponding master of the optimization.

variable

The branching variable.

status

The status the variable is set to (SetToLowerBound or SetToUpperBound).

226 CHAPTER 6. REFERENCE MANUAL

Destructor (virtual)

ABA_SETBRANCHRULE::~ABA_SETBRANCHRULE()

Output Operator

The output operator writes the number of the branching variable and its status on an output stream.

ostream &operator<<(ostream &out, const ABA_SETBRANCHRULE &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The branching rule being output.

extract (virtual)

The function extract() modi�es a subproblem by setting the branching variable.

int ABA_SETBRANCHRULE::extract(ABA_SUB *sub)

Return Value:

0

If the subproblem can be modi�ed according to the branching rule.

1

If a contradiction occurs.

Arguments:

sub

The subproblem being modi�ed.

extract (virtual)

The function extract() is overloaded to modify directly the linear programming relaxation. This required

to evaluate the quality of a branching rule with linear programming methods. The changes have to be

undone with the function unextract() before the next linear program is solved.

void ABA_SETBRANCHRULE::extract(ABA_LPSUB *lp)

Arguments:

lp

A pointer to the linear programming relaxation of a subproblem.

6.2. SYSTEM CLASSES 227

branchOnSetVar (virtual)

The function branchOnSetVar() rede�nes the virtual function of the base class ABA BRANCHRULE as this

branching rule is setting a binary variable.

bool ABA_SETBRANCHRULE::branchOnSetVar()

Return Value:

Always true.

setToUpperBound

bool ABA_SETBRANCHRULE::setToUpperBound() const

Return Value:

true

If the branching variable is set to the upper bound,

false

otherwise.

variable

int ABA_SETBRANCHRULE::variable() const

Return Value:

The number of the branching variable.

6.2.15 ABA BOUNDBRANCHRULE

This class implements a branching rule for modifying the lower and the upper bound of a variable.

class ABA_BOUNDBRANCHRULE : public ABA_BRANCHRULE {

public:

ABA_BOUNDBRANCHRULE(ABA_MASTER *master, int variable, double lBound,

double uBound);

virtual ~ABA_BOUNDBRANCHRULE();

friend ostream &operator<<(ostream &out, const ABA_BOUNDBRANCHRULE &rhs);

virtual int extract(ABA_SUB *sub);

virtual void extract(ABA_LPSUB *lp);

virtual void unExtract(ABA_LPSUB *lp);

int variable() const;

double lBound() const;

double uBound() const;

};

Constructor

ABA_BOUNDBRANCHRULE::ABA_BOUNDBRANCHRULE(ABA_MASTER *master,

int variable,

double lBound,

double uBound)

Arguments:

228 CHAPTER 6. REFERENCE MANUAL

master

A pointer to the corresponding master of the optimization.

variable

The branching variable.

lBound

The lower bound of the branching variable.

uBound

The upper bound of the branching variable.

Destructor (virtual)

ABA_BOUNDBRANCHRULE::~ABA_BOUNDBRANCHRULE()

Output Operator

The output operator writes the branching variable together with its lower and upper bound to an output

stream.

ostream &operator<<(ostream &out, const ABA_BOUNDBRANCHRULE &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The branch rule being output.

extract (virtual)

The function extract() modi�es a subproblem by changing the lower and the upper bound of the

branching variable.

int ABA_BOUNDBRANCHRULE::extract(ABA_SUB *sub)

Return Value:

0

If the subproblem is successfully modi�ed.

1

If the modi�cation causes a contradiction.

Arguments:

sub

The subproblem being modi�ed.

6.2. SYSTEM CLASSES 229

variable

int ABA_BOUNDBRANCHRULE::variable() const

Return Value:

The number of the branching variable.

lBound

double ABA_BOUNDBRANCHRULE::lBound() const

Return Value:

The lower bound of the branching variable.

uBound

double ABA_BOUNDBRANCHRULE::uBound() const

Return Value:

The upper bound of the branching variable.

6.2.16 ABA VALBRANCHRULE

This class implements a branching rule for setting a variable to a certain value.

class ABA_VALBRANCHRULE : public ABA_BRANCHRULE {

public:

ABA_VALBRANCHRULE(ABA_MASTER *master, int variable, double value);

virtual ~ABA_VALBRANCHRULE();

friend ostream &operator<<(ostream &out, const ABA_VALBRANCHRULE &rhs);

virtual int extract(ABA_SUB *sub);

virtual void extract(ABA_LPSUB *lp);

virtual void unExtract(ABA_LPSUB *lp);

int variable() const;

double value() const;

};

Constructor

ABA_VALBRANCHRULE::ABA_VALBRANCHRULE(ABA_MASTER *master, int variable, double value)

Arguments:

master

The corresponding master of the optimization.

variable

The branching variable.

value

The value the branching variable is set to.

Destructor (virtual)

ABA_VALBRANCHRULE::~ABA_VALBRANCHRULE()

230 CHAPTER 6. REFERENCE MANUAL

Output Operator

The output operator writes the branching variable together with its value to an output stream.

ostream &operator<<(ostream &out, const ABA_VALBRANCHRULE &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The branching rule being output.

extract (virtual)

The function extract() modi�es a subproblem by setting the branching variable.

int ABA_VALBRANCHRULE::extract(ABA_SUB *sub)

Return Value:

0

If the subproblem can be modi�ed according to the branching rule.

1

If a contradiction occurs.

Arguments:

sub

The subproblem being modi�ed.

variable

int ABA_VALBRANCHRULE::variable() const

Return Value:

The number of the branching variable.

value

double ABA_VALBRANCHRULE::value() const

Return Value:

The value of the branching variable.

6.2. SYSTEM CLASSES 231

6.2.17 ABA CONBRANCHRULE

This class implements the branching by adding a constraint to the set of active constraints.

class ABA_CONBRANCHRULE : public ABA_BRANCHRULE {

public:

ABA_CONBRANCHRULE(ABA_MASTER *master,

ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *poolSlot);

virtual ~ABA_CONBRANCHRULE();

friend ostream &operator<<(ostream &out, const ABA_CONBRANCHRULE &rhs);

virtual int extract(ABA_SUB *sub);

virtual void extract(ABA_LPSUB *lp);

virtual void unExtract(ABA_LPSUB *lp);

virtual void initialize(ABA_SUB *sub);

ABA_CONSTRAINT *constraint();

private:

const ABA_CONBRANCHRULE &operator=(const ABA_CONBRANCHRULE &rhs);

};

Constructor

Note, the subproblem associated with the branching constraint will be modi�ed in the constructor of the

subproblem generated with this branching rule such that later the check for local validity of the branching

constraint is performed correcly.

ABA_CONBRANCHRULE::ABA_CONBRANCHRULE(

ABA_MASTER *master,

ABA_POOLSLOT<ABA_CONSTRAINT, ABA_VARIABLE> *poolSlot)

Arguments:

master

A pointer to the corresponding master of the optimization.

poolSlot

A pointer to the pool slot of the branching constraint.

Destructor (virtual)

ABA_CONBRANCHRULE::~ABA_CONBRANCHRULE()

Output Operator

The output operator writes the branching constraint on an output stream.

ostream &operator<<(ostream &out, const ABA_CONBRANCHRULE &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The branch rule being output.

232 CHAPTER 6. REFERENCE MANUAL

extract (virtual)

The function extract() adds the branching constraint to the subproblem.

int ABA_CONBRANCHRULE::extract(ABA_SUB *sub)

Return Value:

Always 0, since there cannot be a contractiction.

Arguments:

sub

The subproblem being modi�ed.

initialize (virtual)

The function initialize rede�nes the virtual function of the base class ABA BRANCHRULE in order to initialize

the subproblem associated with the branching constraint.

void ABA_CONBRANCHRULE::initialize(ABA_SUB* sub)

Arguments:

sub

A pointer to the subproblem that is associated with the branching constraint.

constraint (virtual)

ABA_CONSTRAINT *ABA_CONBRANCHRULE::constraint()

Return Value:

A pointer to the branching constraint or a 0-pointer, if this constraint is not available.

6.2.18 ABA POOL

Every constraint and variable has to to be stored in a pool. This class implements an abstract tem-

plate class for a pool, which can be used to store objects of the class ABA VARIABLE or of the class

ABA CONSTRAINT. A constraint or variable is not directly stored in the pool, but in an ABA POOLSLOT.

Hence, a pool is a collection of pool slots.

A pool has two template arguments: the BaseType and the CoType. Only two scenarios make sense

in the current context. For a pool storing constraints the BaseType is ABA CONSTRAINT and the CoType is

ABA VARIABLE. For a pool storing variables the BaseType is ABA VARIABLE and the corresponding CoType

is ABA CONSTRAINT.

The class ABA POOL is an abstract class from which concrete classes have to be derived, implementing

the data structures for the storage of pool slots. We provide already in the class ABA STANDARDPOOL a

simple but convenient implementation of a pool. We refer to all constraints and variables via the class

ABA POOLSLOTREF.

template<class BaseType, class CoType>

class ABA_POOL : public ABA_ABACUSROOT {

public:

enum RANKING {NO_RANK, RANK, ABS_RANK};

ABA_POOL(ABA_MASTER *master);

virtual ~ABA_POOL();

virtual ABA_POOLSLOT<BaseType, CoType> *insert(BaseType *cv) = 0;

6.2. SYSTEM CLASSES 233

void removeConVar(ABA_POOLSLOT<BaseType, CoType> *slot);

int number() const;

virtual int separate(double *z,

ABA_ACTIVE<CoType, BaseType> *active,

ABA_SUB *sub,

ABA_CUTBUFFER<BaseType, CoType> *cutBuffer,

double minAbsViolation = 0.001,

int ranking = 0) = 0;

protected:

virtual int softDeleteConVar(ABA_POOLSLOT<BaseType, CoType> *slot);

virtual void hardDeleteConVar(ABA_POOLSLOT<BaseType, CoType> *slot);

virtual ABA_POOLSLOT<BaseType, CoType> *getSlot() = 0;

virtual void putSlot(ABA_POOLSLOT<BaseType, CoType> *slot) = 0;

ABA_MASTER *master_;

int number_;

};

enum RANKING

The enumeration RANKING indicates how the rank of a constraint/variable in a pool separation is deter-

mined.

NO RANK

No rank is computed.

RANK

The violation computed by the function violated() of the classes ABA CONSTRAINT

or ABA VARIABLE is used as rank.

ABS RANK

The absolute value of the violation is taken as rank.

master

ABA MASTER *master

A pointer to the corresponding master of the optimization.

number

int number

The current number of constraints in the pool.

separate (virtual)

The function separate() checks if a pair of a vector and an active constraint/variable set violates any

item in the pool. If the pool is a constraint pool, then the vector is an LP-solution and the active set

is the set of active variables. Otherwise, if the pool is a variable pool, then the vector contains the dual

variables and the active set is the set of associated active constraints.

234 CHAPTER 6. REFERENCE MANUAL

virtual int separate(double *z, ABA_ACTIVE<CoType, BaseType> *active,

ABA_SUB *sub,

ABA_CUTBUFFER<BaseType, CoType> *cutBuffer,

double minAbsViolation = 0.001,

RANKING ranking = NO_RANK) = 0

Return Value:

The number of violated items.

Arguments:

z

The vector for which violation is checked.

active

The constraint/variable set associated with z.

sub

The subproblem for which validity of the violated item is required.

cutBuffer

The violated constraints/variables are added to this bu�er.

minAbsViolation

A violated constraint/variable is only added to the cutBuffer if the absolute value

of its violation is at least minAbsViolation. The default value is 0.001.

ranking

If 1, the violation is associated with a rank of item in the bu�er, if 2 the absolute

violation is used, if 0 no rank is associated with the item.

insert (virtual)

The function insert() tries to insert a constraint/variable in the pool.

virtual ABA_POOLSLOT<BaseType, CoType> *insert(BaseType *cv) = 0

Return Value:

A pointer to the pool slot where the item has been inserted, or 0 if the insertion failed.

Arguments:

cv

The constraint/variable being inserted.

getSlot (virtual)

The function getSlot() tries to �nd a free slot in the pool. This function is protected since it should be

only used by insert(). The data structure managing the free poolslots can be individually de�ned for

each derived pool class.

virtual ABA_POOLSLOT* getSlot() = 0

Return Value:

A pointer to a free ABA POOLSLOT where a constraint/variable can be inserted. If no pool slot

is available getSlot() returns 0.

6.2. SYSTEM CLASSES 235

putSlot (virtual)

The virtual function putSlot() makes an ABA POOLSLOT again available for later calls of getSlot(). If

somebody else refers to this constraint the function should abort with an error message.

virtual void putSlot(ABA_POOLSLOT *slot) = 0

Arguments:

slot

The slot made available for further use.

Constructor

The constructor initializes an empty pool.

ABA_POOL<BaseType, CoType>::ABA_POOL(ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

Destructor (virtual)

ABA_POOL<BaseType, CoType>::~ABA_POOL()

removeConVar

The function removeConVar() removes the constraint/variable stored in a pool slot and adds the slot to

the list of free slots.

void ABA_POOL<BaseType, CoType>::removeConVar(ABA_POOLSLOT<BaseType, CoType> *slot)

Arguments:

slot

The pool slot from which the constraint/variable is removed.

softDeleteConVar

The function softDeleteConVar() removes the constraint/variable stored in the pool slot slot from the

pool if the constraint/variable can be deleted. If the constraint/variable can be removed the slot is added

to the set of free slots.

int ABA_POOL<BaseType, CoType>::softDeleteConVar(

ABA_POOLSLOT<BaseType, CoType> *slot)

Return Value:

0

If the constraint/variable could be deleted.

1

otherwise.

Arguments:

slot

A pointer to the pool slot from wich the constraint/variable should be deleted.

236 CHAPTER 6. REFERENCE MANUAL

hardDeleteConVar

The function hardDeleteConVar() removes a constraint/variable from the pool and adds the slot to the

set of free slots.

void ABA_POOL<BaseType, CoType>::hardDeleteConVar(ABA_POOLSLOT<BaseType, CoType>

*slot)

Arguments:

slot

A pointer to the pool slot from wich the constraint/variable should be deleted.

number

int ABA_POOL<BaseType, CoType>::number() const

Return Value:

The current number of items in the pool.

6.2.19 ABA STANDARDPOOL

This class is derived from the class ABA POOL and provides a very simple implementation of a pool which

is su�cient for a large class of applications. The pool slots are stored in an array and the set of free slots

is managed by a linear list.

A standard pool can be static or dynamic. A static standard pool has a �xed size, whereas a dynamic

standard pool is automatically enlarged by ten percent if it is full and an item is inserted.

template<class BaseType, class CoType>

class ABA_STANDARDPOOL : public ABA_POOL<BaseType, CoType> {

public:

ABA_STANDARDPOOL(ABA_MASTER *master, int size, bool autoRealloc = false);

virtual ~ABA_STANDARDPOOL();

friend ostream &operator<<(ostream &out, const ABA_STANDARDPOOL &rhs);

virtual ABA_POOLSLOT<BaseType, CoType> *insert(BaseType *cv);

virtual void increase(int size);

int cleanup();

int size() const;

ABA_POOLSLOT<BaseType, CoType> *slot(int i);

virtual int separate(double *x,

ABA_ACTIVE<CoType, BaseType> *active,

ABA_SUB *sub,

ABA_CUTBUFFER<BaseType, CoType> *cutBuffer,

double minAbsViolation = 0.001,

int ranking = 0);

protected:

ABA_STANDARDPOOL(const ABA_STANDARDPOOL &rhs);

const ABA_STANDARDPOOL &operator=(const ABA_STANDARDPOOL &rhs);

};

Constructor

The constructor for an empty pool.

6.2. SYSTEM CLASSES 237

ABA_STANDARDPOOL<BaseType, CoType>::ABA_STANDARDPOOL(ABA_MASTER *master,

int size,

bool autoRealloc)

Arguments:

master

A pointer to the corresponding master of the optimization.

size

The maximal number of items which can be inserted in the pool without realloca-

tion.

autoRealloc

If this argument is true an automatic reallocation is performed if the pool is full.

Destructor (virtual)

The destructor deletes all slots. The destructor of a pool slot deletes then also the respective constraint

or variable.

ABA_STANDARDPOOL<BaseType, CoType>::~ABA_STANDARDPOOL()

Output Operator

The output operator calls the output operator of each item of a non-void pool slot.

ostream &operator<<(ostream &out, const ABA_STANDARDPOOL<BaseType, CoType> &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The pool being output.

insert (virtual)

The function insert() tries to insert a constraint/variable in the pool. If there is no free slot available,

we try to generate free slots by removing redundant items, i.e., items which have no reference to them.

If this fails, we either perform an automatic reallocation of the pool or remove non-active items.

ABA_POOLSLOT<BaseType, CoType> * ABA_STANDARDPOOL<BaseType, CoType>::insert(

BaseType *cv)

Return Value:

A pointer to the pool slot where the item has been inserted, or 0 if the insertion failed.

Arguments:

cv

The constraint/variable being inserted.

238 CHAPTER 6. REFERENCE MANUAL

increase (virtual)

The function increase() enlarges the pool to store. To avoid fatal errors we do not allow decreasing the

size of the pool.

void ABA_STANDARDPOOL<BaseType, CoType>::increase(int size)

Arguments:

size

The new size of the pool.

cleanup

The function cleanup() scans the pool, removes all deletable items, i.e., those items without having

references, and adds the corresponding slots to the list of free slots.

int ABA_STANDARDPOOL<BaseType, CoType>::cleanup()

Return Value:

The number of \cleaned" slots.

size

int ABA_STANDARDPOOL<BaseType, CoType>::size() const

Return Value:

The maximal number of constraints/variables that can be inserted in the pool.

slot

ABA_POOLSLOT<BaseType, CoType> *ABA_STANDARDPOOL<BaseType, CoType>::slot(int i)

Return Value:

A pointer to the i-th slot in the pool.

Arguments:

i

The number of the slot being accessed.

separate (virtual)

The function separate() checks if a pair of a vector and an active constraint/variable set violates any

item in the pool. If the pool is a constraint pool, then the vector is an LP-solution and the active set the

set of active variables. Otherwise, if the pool is a variable pool, then the vector stores the values of the

dual variables and the active set the associated active constraints.

Before a constraint or variable is generated we check if it is valid for the subproblem sub.

The function de�nes the pure virtual function of the base class ABA POOL.

This is a very simple version of the pool separation. Future versions might scan a priority queue of

the available constraints until a limited number of constraints is tested or separated.

6.2. SYSTEM CLASSES 239

int ABA_STANDARDPOOL<BaseType, CoType>::separate(

double *z,

ABA_ACTIVE<CoType, BaseType> *active,

ABA_SUB *sub,

ABA_CUTBUFFER<BaseType, CoType> *cutBuffer,

double minAbsViolation,

int ranking)

Return Value:

The number of violated items.

Arguments:

z

The vector for which violation is checked.

active

The constraint/variable set associated with z.

sub

The subproblem for which validity of the violated item is required.

cutBuffer

The violated constraints/variables are added to this bu�er.

minAbsViolation

A violated constraint/variable is only added to the cutBuffer if the absolute value

of its violation is at least minAbsViolation. The default value is 0.001.

ranking

If 1, the violation is associated with a rank of item in the bu�er, if 2 the absolute

violation is used, if 0 no rank is associated with the item.

6.2.20 ABA NONDUPLPOOL

The class ABA NONDUPLPOOL provides an ABA STANDARDPOOL with the additional feature that the same

constraint is at most stored once in the pool. For constraints and variables inserted in this pool the

virtual member functions name(), hashKey(), and equal() of the base class ABA CONVAR have to be

de�ned. Using these three functions, we check at insertation time if a constraint or variable is already

stored in the pool.

The implementation is unsafe in the sense that the data structure for registering a constraint is

corrupted if a constraint is removed directly from the pool slot without using a function of this class.

template<class BaseType, class CoType>

class ABA_NONDUPLPOOL : public ABA_STANDARDPOOL<BaseType, CoType> {

public:

ABA_NONDUPLPOOL(ABA_MASTER *master, int size, bool autoRealloc = false);

virtual ~ABA_NONDUPLPOOL();

virtual ABA_POOLSLOT<BaseType, CoType> *insert(BaseType *cv);

virtual ABA_POOLSLOT<BaseType, CoType> *present(BaseType *cv);

virtual void increase(int size);

void statistics(int &nDuplications, int &nCollisions) const;

ABA_NONDUPLPOOL(const ABA_NONDUPLPOOL &rhs);

const ABA_NONDUPLPOOL &operator=(const ABA_NONDUPLPOOL &rhs);

};

240 CHAPTER 6. REFERENCE MANUAL

Constructor

The constructor for an empty pool.

ABA_NONDUPLPOOL<BaseType, CoType>::ABA_NONDUPLPOOL(ABA_MASTER *master,

int size,

bool autoRealloc)

Arguments:

master

A pointer to the corresponding master of the optimization.

size

The maximal number of items which can be inserted in the pool without realloca-

tion.

autoRealloc

If this argument is true an automatic reallocation is performed if the pool is full.

Destructor (virtual)

ABA_NONDUPLPOOL<BaseType, CoType>::~ABA_NONDUPLPOOL()

insert (virtual)

Before the function insert() tries to insert a constraint/variable in the pool, it checks if the con-

straint/variable is already contained in the pool. If the constraint/variable cv is contained in the pool,

it is deleted.

ABA_POOLSLOT<BaseType, CoType> * ABA_NONDUPLPOOL<BaseType, CoType>::insert(

BaseType *cv)

Return Value:

A pointer to the pool slot where the item has been inserted, or a pointer to the pool slot if

the item is already contained in the pool, or 0 if the insertion failed.

Arguments:

cv

The constraint/variable being inserted.

present

The function present() checks if a constraint/variables is already contained in the pool.

template<class BaseType, class CoType>

ABA_POOLSLOT<BaseType, CoType> *ABA_NONDUPLPOOL<BaseType, CoType>::present(

BaseType *cv)

Return Value:

A pointer to the pool slot storing a constraint/variable that is equivalent to cv according to

the function ABA CONVAR::equal(). If there is no such constraint/variable 0 is returned.

Arguments:

cv

A pointer to a constraint/variable for which it should be checked if an equivalent

item is already contained in the pool.

6.2. SYSTEM CLASSES 241

increase (virtual)

The function increase() enlarges the pool to store. To avoid fatal errors we do not allow decreasing the

size of the pool.

void ABA_NONDUPLPOOL<BaseType, CoType>::increase(int size)

Arguments:

size

The new size of the pool.

statistics

The function statistics() determines the number of constraints that have not been inserted into the

pool, because an equivalent was already present. Also the number of collisions in the hash table is

computed. If this number is high, it might indicate that your hash function is not chosen very well.

void ABA_NONDUPLPOOL<BaseType, CoType>::statistics(int &nDuplications,

int &nCollisions) const

Arguments:

nDuplications

The number of constraints that have not been inserted into the pool because an

equivalent one was already present.

nCollisions

The number of collisions in the hash table.

6.2.21 ABA POOLSLOT

Constraints or variables are not directly stored in a pool. But are stored in a pool slot, which form again

the basic building blocks of a pool. The reason is that in order to save memory it can be necessary that a

constraint or variable in the pool has to be deleted although it is still contained in the active formulation

of an inactive subproblem. Of course this deletion can be only done with constraints/variables which can

be regenerated or which are not required for the correctness of the algorithm (e.g., for a cutting plane,

but not for a variable or constraint of the problem formulation of a general mixed integer optimization

problem).

Such that the deletion of a variable or constraint cannot cause a run-time error, we store it in a pool

slot. Together with the pointer to the constraint/variable we store also its version number. The version

number is initially zero and incremented each time when a new item is inserted in the pool slot. When

we refer to a constraint/variable, e.g., from the sets of active constraints or variables, then we point

to the slot and memorize the version number (class ABA POOLSLOTREF), when this reference has been

set up. Later by comparing the version number of ABA POOLSLOTREF and the one of the corresponding

ABA POOLSLOT we can check if still the constraint/variable is contained in the slot which is supposed to

be there. Usually, if the expected constraint/variable is missing, it is ignored.

WARNING: A ABA POOLSLOT must not be deleted before the termination of the optimization

process, except that it can be guaranteed that there is no reference to this slot from any other place

of the program.

template<class BaseType, class CoType> class ABA_POOLSLOT : public ABA_ABACUSROOT {

public:

ABA_POOLSLOT(ABA_MASTER *master,

ABA_POOL<BaseType, CoType> *pool,

BaseType *convar = 0);

242 CHAPTER 6. REFERENCE MANUAL

~ABA_POOLSLOT();

BaseType *conVar() const;

private:

ABA_POOLSLOT(const ABA_POOLSLOT<BaseType, CoType> &rhs);

const ABA_POOLSLOT<BaseType, CoType>

&operator=(const ABA_POOLSLOT<BaseType, CoType> &rhs);

};

Constructor

ABA_POOLSLOT<BaseType, CoType>::ABA_POOLSLOT(ABA_MASTER *master,

ABA_POOL<BaseType, CoType> *pool,

BaseType *conVar)

Arguments:

master

A pointer to the corresponding master of the optimization.

pool

The pool this slot belongs to.

conVar

The constraint/variable inserted in this slot if not 0. The default value is 0.

Destructor

The destructor for the poolslot must not be called if there are references to its constraint/variable.

ABA_POOLSLOT<BaseType, CoType>::~ABA_POOLSLOT()

conVar

BaseType * ABA_POOLSLOT<BaseType, CoType>::conVar() const

Return Value:

A pointer to the constraint/variable in the pool slot.

6.2.22 ABA POOLSLOTREF

As already explained in the class ABA POOLSLOT we do not refer directly to constraints/variables but store

a pointer to a pool slot and memorize the version number of the slot at initialization time of the class

ABA POOLSLOTREF.

template<class BaseType, class CoType>

class ABA_POOLSLOTREF : public ABA_ABACUSROOT {

public:

ABA_POOLSLOTREF(ABA_MASTER *master);

ABA_POOLSLOTREF(ABA_POOLSLOT<BaseType, CoType> *slot);

ABA_POOLSLOTREF(const ABA_POOLSLOTREF<BaseType, CoType> &rhs);

~ABA_POOLSLOTREF();

friend ostream &operator<<(ostream &out, const ABA_POOLSLOTREF &rhs);

BaseType *conVar() const;

unsigned long version() const;

6.2. SYSTEM CLASSES 243

ABA_POOLSLOT<BaseType, CoType> *slot() const;

void slot(ABA_POOLSLOT<BaseType, CoType> *s);

private:

const ABA_POOLSLOTREF<BaseType, CoType>

&operator=(const ABA_POOLSLOTREF<BaseType, CoType> &rhs);

};

Constructor

This constructor generates an object referencing to no pool slot.

ABA_POOLSLOTREF<BaseType, CoType>::ABA_POOLSLOTREF(ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

Constructor

This constructor initializes the reference to a pool slot with a given slot. Also the constraint/variable

contained in this slot receives a message that a new references to it is created.

ABA_POOLSLOTREF<BaseType, CoType>::ABA_POOLSLOTREF(

ABA_POOLSLOT<BaseType, CoType> *slot)

Arguments:

slot

The pool slot that is referenced now.

Copy Constructor

ABA_POOLSLOTREF<BaseType, CoType>::ABA_POOLSLOTREF(const ABA_POOLSLOTREF &rhs)

Arguments:

rhs

The pool slot that is copied in the initialization process.

Destructor

ABA_POOLSLOTREF<BaseType, CoType>::~ABA_POOLSLOTREF()

Output Operator

The output operator writes the constraint/variable stored in the referenced slot to an output stream.

ostream &operator<<(ostream &out, const ABA_POOLSLOTREF<BaseType, CoType> &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The reference to a pool slot being output.

244 CHAPTER 6. REFERENCE MANUAL

conVar

BaseType* ABA_POOLSLOTREF<BaseType, CoType>::conVar() const

Return Value:

A pointer to the constraint/variable stored in the referenced slot if the version number of the

slot is equal to the version number at construction/initialization time of this slot. Otherwise,

it returns 0.

version

unsigned long ABA_POOLSLOTREF<BaseType, CoType>::version() const

Return Value:

The version number of the constraint/variable stored in the referenced slot at construction

time of the reference to this slot.

slot

ABA_POOLSLOT<BaseType, CoType>* ABA_POOLSLOTREF<BaseType, CoType>::slot() const

Return Value:

A pointer to the referenced slot.

slot

This version of the function slot() initializes the referenced pool slot.

void ABA_POOLSLOTREF<BaseType, CoType>::slot(ABA_POOLSLOT<BaseType, CoType> *s)

Arguments:

s

The new slot that is referenced. This must not be a 0-pointer.

6.2.23 ABA ROW

This class re�nes its base class ABA SPARVEC for the representation of constraints in the row format. This

class plays an essential role in the interface with the LP-solver.

This class should not be confused with the class ABA CONSTRAINT, which is an abstract class for

the representation of constraints within the framework. Moreover, the class ABA ROWCON derived from

the class ABA CONSTRAINT provides a constraint representation in row format, but there are also other

representations of constraints.

class ABA_ROW : public ABA_SPARVEC {

public:

ABA_ROW(ABA_GLOBAL *glob,

int nnz,

const ABA_ARRAY<int> &s,

const ABA_ARRAY<double> &c,

const ABA_CSENSE sense, double r);

ABA_ROW(ABA_GLOBAL *glob,

int nnz,

const ABA_ARRAY<int> &s,

const ABA_ARRAY<double> &c,

6.2. SYSTEM CLASSES 245

const ABA_CSENSE::SENSE sense, double r);

ABA_ROW(ABA_GLOBAL *glob,

int nnz,

int *s,

double *c,

ABA_CSENSE::SENSE sense,

double r);

ABA_ROW(ABA_GLOBAL *glob, int size);

~ABA_ROW();

friend ostream &operator<<(ostream& out, const ABA_ROW &rhs);

double rhs() const;

void rhs(double r);

ABA_CSENSE *sense();

void sense(ABA_CSENSE &s);

void sense(ABA_CSENSE::SENSE s);

void copy(const ABA_ROW &row);

void delInd(ABA_BUFFER<int> &buf, double rhsDelta);

protected:

ABA_CSENSE sense_;

double rhs_;

};

sense

ABA CSENSE sense

The sense of the row.

rhs

double rhs

The right hand side of the row.

Constructor

ABA_ROW::ABA_ROW(ABA_GLOBAL *glob,

int nnz,

const ABA_ARRAY<int> &s,

const ABA_ARRAY<double> &c,

const ABA_CSENSE sense,

double r)

Arguments:

glob

A pointer to the corresponding global object.

nnz

The number of nonzero elements of the row.

s

The array storing the nonzero elements.

c

246 CHAPTER 6. REFERENCE MANUAL

The array storing the nonzero coe�cients of the elements of s.

sense

The sense of the row.

r

The right hand side of the row.

Constructor

This is an equivalent constructor using ABA CSENSE::SENSE instead of an object of the class SENSE to

initialize the sense of the constraint.

ABA_ROW::ABA_ROW(ABA_GLOBAL *glob,

int nnz,

const ABA_ARRAY<int> &s,

const ABA_ARRAY<double> &c,

const ABA_CSENSE::SENSE sense,

double r)

Constructor

This is also an equivalent constructor except that s and c are C-style arrays.

ABA_ROW::ABA_ROW(ABA_GLOBAL *glob, int nnz,

int *s, double *c,

ABA_CSENSE::SENSE sense, double r)

Constructor

A constructor without initialization of the nonzeros of the row.

ABA_ROW::ABA_ROW(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

The maximal numbers of nonzeros.

Destructor (virtual)

ABA_ROW::~ABA_ROW()

Output Operator

The output operator writes the row on an output stream in format like -2.5 x1 + 3 x3 <= 7. Only

variables with nonzero coe�cients are output. The output operator does neither output a '+' before the

�rst coe�cient of a row, if it is positive, nor outputs coe�cients with absolute value 1.

ostream &operator<<(ostream& out, const ABA_ROW &rhs)

Return Value:

A reference to the output stream.

Arguments:

6.2. SYSTEM CLASSES 247

out

The output stream.

rhs

The row being output.

rhs

double ABA_ROW::rhs() const

Return Value:

The right hand side stored in the row format.

rhs

This version of rhs() sets the right hand side of the row.

void ABA_ROW::rhs(double r)

Arguments:

r

The new value of the right hand side.

sense

ABA_CSENSE *ABA_ROW::sense()

Return Value:

A pointer to the sense of the row.

sense

This version of sense() sets the sense of the row.

void ABA_ROW::sense(ABA_CSENSE &s)

Arguments:

s

The new sense of the row.

sense

And another version of sense() to set the sense of the row.

void ABA_ROW::sense(ABA_CSENSE::SENSE s)

Arguments:

s

The new sense of the row.

248 CHAPTER 6. REFERENCE MANUAL

copy

The function copy() behaves like an assignment operator, however, the maximal number of the elements

of this row only has to be at least the number of nonzeros of row.

void ABA_ROW::copy(const ABA_ROW &row)

Arguments:

row

The row that is copied.

delInd

The function delInd() removes the indices listed in buf from the support of the row and subtracts

rhsDelta from its right hand side.

void ABA_ROW::delInd(ABA_BUFFER<int> &buf, double rhsDelta)

Arguments:

buf

The components being removed from the row.

rhsDelta

The correction of the right hand side of the row.

6.2.24 ABA COLUMN

In the same way as the class ABA ROW re�nes the class ABA SPARVEC for the representation of constraints

in row format, the class ABA COLUMN re�nes ABA SPARVEC for the representation of variables in column

format. This class should not be confused with the class ABA VARIABLE for the abstract representation of

variables within the framework. Again, there is a class ABA COLVAR derived from ABA VARIABLE having a

member of type ABA COLUMN, but there are also other classes derived from ABA VARIABLE.

class ABA_COLUMN : public ABA_SPARVEC {

public:

ABA_COLUMN(ABA_GLOBAL *glob,

double obj,

double lb,

double ub,

int nnz,

ABA_ARRAY<int> &s,

ABA_ARRAY<double> &c);

ABA_COLUMN(ABA_GLOBAL *glob, int maxNnz);

ABA_COLUMN(ABA_GLOBAL *glob,

double obj,

double lb,

double ub,

ABA_SPARVEC &vec);

~ABA_COLUMN();

friend ostream& operator<<(ostream &out, const ABA_COLUMN &rhs);

double obj() const;

void obj(double c);

double lBound() const;

void lBound(double l);

6.2. SYSTEM CLASSES 249

double uBound() const;

void uBound(double u);

void copy(const ABA_COLUMN &col);

};

Constructor

ABA_COLUMN::ABA_COLUMN(ABA_GLOBAL *glob,

double obj,

double lb,

double ub,

int nnz,

ABA_ARRAY<int> &s,

ABA_ARRAY<double> &c)

Arguments:

glob

A pointer to the corresponding global object.

obj

The objective function coe�cient.

lb

The lower bound.

ub

The upper bound.

nnz

The number of nonzero elements stored in the arrays s and c.

s

An array of the nonzero elements of the column.

c

An array of the nonzero coe�cients associated with the elements of s.

Constructor

Another constructor generating an uninitialized column.

ABA_COLUMN::ABA_COLUMN(ABA_GLOBAL *glob, int maxNnz)

Arguments:

glob

A pointer to the corresponding global object.

maxNnz

The maximal number of nonzero elements that can be stored in the row.

250 CHAPTER 6. REFERENCE MANUAL

Constructor

A constructor using a sparse vector for the initialization.

ABA_COLUMN::ABA_COLUMN(ABA_GLOBAL *glob,

double obj,

double lb,

double ub,

ABA_SPARVEC &vec)

Arguments:

glob

A pointer to the corresponding global object.

obj

The objective function coe�cient.

lb

The lower bound.

ub

The upper bound.

vec

A sparse vector storing the support and the coe�cients of the column.

Destructor (virtual)

ABA_COLUMN::~ABA_COLUMN()

Output Operator

ostream &operator<<(ostream &out, const ABA_COLUMN &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The column being output.

obj

double ABA_COLUMN::obj() const

Return Value:

The objective function coe�cient of the column.

6.2. SYSTEM CLASSES 251

obj

This version of the function obj() sets the objective function coe�cient of the column.

void ABA_COLUMN::obj(double c)

Arguments:

c

The new value of the objective function coe�cient.

lBound

double ABA_COLUMN::lBound() const

Return Value:

The lower bound of the column.

lBound

This version of the function lBound() sets the lower bound of the column.

void ABA_COLUMN::lBound(double l)

Arguments:

l

The new value of the lower bound.

uBound

double ABA_COLUMN::uBound() const

Return Value:

The upper bound of the column.

uBound

This version of the function uBound() sets the upper bound of the column.

void ABA_COLUMN::uBound(double u)

Arguments:

u

The new value of the upper bound.

copy

The function copy() is very similar to the assignment operator, yet the columns do not have to be of

equal size. A reallocation is performed if required.

void ABA_COLUMN::copy(const ABA_COLUMN &col)

Arguments:

col

The column that is copied.

252 CHAPTER 6. REFERENCE MANUAL

6.2.25 ABA NUMCON

Like the class ABA NUMVAR for variables we provide the class ABA NUMCON for constraints which are uniquely

de�ned by an integer number.

class ABA_NUMCON : public ABA_CONSTRAINT {

public:

ABA_NUMCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

bool dynamic,

bool local,

bool liftable,

int number,

double rhs);

virtual ~ABA_NUMCON();

friend ostream &operator<<(ostream &out, const ABA_NUMCON &rhs);

virtual double coeff(ABA_VARIABLE *v);

virtual void print(ostream &out);

int number() const;

};

Constructor

ABA_NUMCON::ABA_NUMCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

bool dynamic,

bool local,

bool liftable,

int number,

double rhs)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

A pointer to the subproblem associated with the constraint. This can be also the

0-pointer.

sense

The sense of the constraint.

dynamic

If this argument is true, then the constraint can be removed from the active con-

straint set during the cutting plane phase of the subproblem optimization.

local

If this argument is true, then the constraint is considered to be only locally valid.

As a local constraint is associated with a subproblem, sub must not be 0 if local

is true.

liftable

6.2. SYSTEM CLASSES 253

If this argument is true, then a lifting procedure must be available, i.e., that the co-

e�cients of variables which have not been active at generation time of the constraint

can be computed.

number

The identi�cation number of the constraint.

rhs

The right hand side of the constraint.

Destructor (virtual)

ABA_NUMCON::~ABA_NUMCON()

Output Operator

The output operator writes the identi�cation number and the right hand side to an output stream.

ostream &operator<<(ostream &out, const ABA_NUMCON &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The variable being output.

coe� (virtual)

double ABA_NUMCON::coeff(ABA_VARIABLE *v)

Return Value:

The coe�cient of the variable v.

Arguments:

v

The variable of which the coe�cient is determined. It must point to an object of

the class ABA COLVAR.

print (virtual)

The function print() writes the row format of the constraint on an output stream. It rede�nes the

virtual function print() of the base class ABA CONVAR.

void ABA_NUMCON::print(ostream &out)

Arguments:

out

The output stream.

254 CHAPTER 6. REFERENCE MANUAL

number

int ABA_NUMCON::number() const

Return Value:

Returns the identi�cation number of the constraint.

6.2.26 ABA ROWCON

Earlier we explained that we distinguish between the constraint and the row format. We have seen

already that a constraint is transformed to the row format when it is added to the linear program.

However, for some constraints of certain optimization problems the row format itself is the most suitable

representation. Therefore the class ABA ROWCON implements constraints stored in the class ABA ROW.

class ABA_ROWCON : public ABA_CONSTRAINT {

public:

ABA_ROWCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

int nnz,

const ABA_ARRAY<int> &support,

const ABA_ARRAY<double> &coeff,

double rhs,

bool dynamic,

bool local,

bool liftable);

ABA_ROWCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

int nnz,

int *support,

double *coeff,

double rhs,

bool dynamic,

bool local,

bool liftable);

virtual ~ABA_ROWCON();

virtual double coeff(ABA_VARIABLE *v);

virtual void print(ostream &out);

ABA_ROW *row();

protected:

ABA_ROW row_;

};

row

ABA ROW row

The representation of the constraint.

6.2. SYSTEM CLASSES 255

Constructor

ABA_ROWCON::ABA_ROWCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

int nnz,

const ABA_ARRAY<int> &support,

const ABA_ARRAY<double> &coeff,

double rhs,

bool dynamic,

bool local,

bool liftable)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

A pointer to the subproblem associated with the constraint. This can also be the

0-pointer.

sense

The sense of the constraint.

nnz

The number of nonzero elements of the constraint.

support

The array storing the variables with nonzero coe�cients.

coeff

The nonzero coe�cients of the variables stored in support.

rhs

The right hand side of the constraint.

dynamic

If this argument is true, then the constraint can be removed from the active con-

straint set during the cutting plane phase of the subproblem optimization.

local

If this argument is true, then the constraint is considered to be only locally valid.

As a locally valid constraint is associated with a subproblem, sub must not be 0 if

local is true.

liftable

If this argument is true, then a lifting procedure must be available, i.e., that the co-

e�cients of variables which have not been active at generation time of the constraint

can be computed.

256 CHAPTER 6. REFERENCE MANUAL

Constructor

This constructor is equivalent to the previous constructor except that it uses C-style arrays for support

and coeff.

ABA_ROWCON::ABA_ROWCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

int nnz,

int *support,

double *coeff,

double rhs,

bool dynamic,

bool local,

bool liftable)

Destructor (virtual)

ABA_ROWCON::~ABA_ROWCON()

coe� (virtual)

The function coeff() computes the coe�cient of a variable which must be of type ABA NUMVAR. It rede�nes

the virtual function coeff() of the base class ABA CONSTRAINT.

Warning: The worst case complexity of the call of this function is the number of nonzero elements

of the constraint.

double ABA_ROWCON::coeff(ABA_VARIABLE *v)

Return Value:

The coe�cient of the variable v.

Arguments:

v

The variable of which the coe�cient is determined.

print (virtual)

The function print() writes the row format of the constraint on an output stream. It rede�nes the

virtual function print() of the base class ABA CONVAR.

void ABA_ROWCON::print(ostream &out)

Arguments:

out

The output stream.

row

ABA_ROW *ABA_ROWCON::row()

Return Value:

A pointer to the object of the class ABA ROW representing the constraint.

6.2. SYSTEM CLASSES 257

6.2.27 ABA NUMVAR

This class is derived from the class ABA VARIABLE and implements a variable which is uniquely de�ned

by a number.

class ABA_NUMVAR : public ABA_VARIABLE {

public:

ABA_NUMVAR(ABA_MASTER *master,

ABA_SUB *sub,

int number,

bool dynamic,

bool local,

double obj,

double lBound,

double uBound,

ABA_VARTYPE::TYPE type);

virtual ~ABA_NUMVAR();

friend ostream &operator<<(ostream &out, const ABA_NUMVAR &rhs);

int number() const;

protected:

int number_;

};

numvar

int number

The identi�cation number of the variable.

Constructor

ABA_NUMVAR::ABA_NUMVAR(ABA_MASTER *master,

ABA_SUB *sub,

int number,

bool dynamic,

bool local,

double obj,

double lBound,

double uBound,

ABA_VARTYPE::TYPE type)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

A pointer to the subproblem associated with variable. This can also be the 0-pointer.

number

The number of the column associated with the variable.

dynamic

If this argument is true, then the variable can also be removed again from the set

of active variables after it is added once.

258 CHAPTER 6. REFERENCE MANUAL

local

If this argument is true, then the variable is only locally valid, otherwise it is

globally valid. As a locally valid variable is associated with a subproblem, sub

must not be 0, if local is true.

obj

The objective function coe�cient of the variable.

lBound

The lower bound of the variable.

uBound

The upper Bound of the variable.

type

The type of the variable.

Destructor (virtual)

ABA_NUMVAR::~ABA_NUMVAR()

Output Operator

The output operator writes the number of the variable to an output stream.

ostream &operator<<(ostream &out, const ABA_NUMVAR &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The variable being output.

number

int ABA_NUMVAR::number () const

Return Value:

The number of the variable.

6.2.28 ABA SROWCON

The member functions genRow() and slack() of the class ABA ROWCON can be signi�cantly improved if

the variable set is static, i.e., no variables are added or removed during the optimization. Therefore we

implement the class ABA SROWCON.

6.2. SYSTEM CLASSES 259

class ABA_SROWCON : public ABA_ROWCON {

public:

ABA_SROWCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

int nnz,

const ABA_ARRAY<int> &support,

const ABA_ARRAY<double> &coeff,

double rhs,

bool dynamic,

bool local,

bool liftable);

ABA_SROWCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

int nnz,

int *support,

double *coeff,

double rhs,

bool dynamic,

bool local,

bool liftable);

virtual ~ABA_SROWCON();

virtual int genRow(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *var,

ABA_ROW &row);

virtual double slack(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,

double *x);

};

Constructor

ABA_SROWCON::ABA_SROWCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

int nnz,

const ABA_ARRAY<int> &support,

const ABA_ARRAY<double> &coeff,

double rhs,

bool dynamic,

bool local,

bool liftable)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

A pointer to the subproblem associated with the constraint. This can be also the

0-pointer.

sense

The sense of the constraint.

nnz

260 CHAPTER 6. REFERENCE MANUAL

The number of nonzero elements of the constraint.

support

The array storing the variables with nonzero coe�cients.

coeff

The nonzero coe�cients of the variables stored in support.

rhs

The right hand side of the constraint.

dynamic

If this argument is true, then the constraint can be removed from the active con-

straint set during the cutting plane phase of the subproblem optimization.

local

If this argument is true, then the constraint is considered to be only locally valid.

As a locally valid constraint is associated with a subproblem, sub must not be 0 if

local is true.

liftable

If this argument is true, then a lifting procedure must be available, i.e., that the co-

e�cients of variables which have not been active at generation time of the constraint

can be computed.

Constructor

This constructor is equivalent to the previous constructor except that it uses C-style arrays for support

and coeff.

ABA_SROWCON::ABA_SROWCON(ABA_MASTER *master,

ABA_SUB *sub,

ABA_CSENSE::SENSE sense,

int nnz,

int *support,

double *coeff,

double rhs,

bool dynamic,

bool local,

bool liftable)

Destructor (virtual)

ABA_SROWCON::~ABA_SROWCON()

genRow (virtual)

The function genRow() generates the row format of the constraint associated with the variable set var.

This function rede�nes a virtual function of the base class ABA ROWCON.

int ABA_SROWCON::genRow(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *var,

ABA_ROW &row)

Return Value:

It returns the number of nonzero elements in the row format.

Arguments:

6.2. SYSTEM CLASSES 261

var

The variable set for which the row format is generated is only a dummy since the

the variable set is assumed to be �xed for this constraint class.

row

Holds the row format of the constraint after the execution of this function.

slack (virtual)

The function slack() computes the slack of a vector associated with the variable set variables. This

function rede�nes a virtual function of the base class ABA ROWCON.

double ABA_SROWCON::slack(ABA_ACTIVE<ABA_VARIABLE, ABA_CONSTRAINT> *variables,

double *x)

Return Value:

The slack of the vector x.

Arguments:

variable

The variable set for which the row format is generated is only a dummy since the

the variable set is assumed to be �xed for this constraint class.

x

An array of length equal to the number of variables.

6.2.29 ABA COLVAR

Some optimization problems, in particular column generation problems, are better described from a

variable point of view instead of a constraint point of view. For such context we provide the class

ABA COLVAR which similar to the class ABA ROWCON stores the nonzero coe�cient explicitly in an object of

the class ABA COLUMN.

The constraint class which is associated with this variables class is the class ABA NUMCONwhich identi�es

constraints only by a unique integer number. ABA NUMCON is an abstract class.

class ABA_COLVAR : public ABA_VARIABLE {

public:

ABA_COLVAR(ABA_MASTER *master,

ABA_SUB *sub,

bool dynamic,

bool local,

double lBound,

double uBound,

ABA_VARTYPE::TYPE varType,

double obj,

int nnz,

ABA_ARRAY<int> &support,

ABA_ARRAY<double> &coeff);

ABA_COLVAR(ABA_MASTER *master,

ABA_SUB *sub,

bool dynamic,

bool local,

double lBound,

double uBound,

262 CHAPTER 6. REFERENCE MANUAL

ABA_VARTYPE::TYPE varType,

double obj, ABA_SPARVEC &vector);

virtual ~ABA_COLVAR();

friend ostream &operator<<(ostream &out, const ABA_COLVAR &rhs);

virtual void print(class ostream &out);

virtual double coeff(ABA_CONSTRAINT *con);

double coeff(int i);

ABA_COLUMN *column();

protected:

ABA_COLUMN column_;

};

column

ABA COLUMN column

The column representing the variable.

Constructor

ABA_COLVAR::ABA_COLVAR(ABA_MASTER *master,

ABA_SUB *sub,

bool dynamic,

bool local,

double lBound,

double uBound,

ABA_VARTYPE::TYPE varType,

double obj,

int nnz,

ABA_ARRAY<int> &support,

ABA_ARRAY<double> &coeff)

Arguments:

master

A pointer to the corresponding master of the optimization.

sub

A pointer to the subproblem associated with the variable. This can be also the

0-pointer.

dynamic

If this argument is true, then the variable can be removed from the active variable

set during the subproblem optimization.

local

If this argument is true, then the constraint is considered to be only locally valid.

As a local variable is associated with a subproblem, sub must not be 0 if local is

true.

lBound

The lower bound of the variable.

uBound

The upper bound of the variable.

6.2. SYSTEM CLASSES 263

varType

The type of the variable.

obj

The objective function coe�cient of the variable.

nnz

The number of nonzero elements of the variable.

support

The array storing the constraints with the nonzero coe�cients.

coeff

The nonzero coe�cients of the constraints stored in support.

Constructor

A constructor substituting nnz, support, and coeff of the previous constructor by an object of the class

ABA SPARVEC.

ABA_COLVAR::ABA_COLVAR(ABA_MASTER *master,

ABA_SUB *sub,

bool dynamic,

bool local,

double lBound,

double uBound,

ABA_VARTYPE::TYPE varType,

double obj,

ABA_SPARVEC &vector)

Destructor (virtual)

ABA_COLVAR::~ABA_COLVAR()

Output Operator

The output operator writes the column representing the variable to an output stream.

ostream &operator<<(ostream &out, const ABA_COLVAR &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The variable being output.

264 CHAPTER 6. REFERENCE MANUAL

print (virtual)

The function print() writes the column representing the variable to an output stream. It rede�nes the

virtual function print() of the base class ABA CONVAR.

void ABA_COLVAR::print(class ostream &out)

Arguments:

out

The output stream.

coe� (virtual)

double ABA_COLVAR::coeff(ABA_CONSTRAINT *con)

Return Value:

The coe�cient of the constraint con.

Arguments:

con

The constraint of which the coe�cient is computed. This must be a pointer to the

class ABA NUMCON.

coe�

This version of the function coeff() computes the coe�cient of a constraint with a given number.

double ABA_COLVAR::coeff(int i)

Return Value:

The coe�cient of constraint i.

Arguments:

i

The number of the constraint.

column

ABA_COLUMN *ABA_COLVAR::column()

Return Value:

A pointer to the column representing the variable.

6.2.30 ABA ACTIVE

This template class implements the sets of active constraints and variables which are associated with

each subproblem. Note, also an inactive subproblem can have an active set of constraints and variables,

e.g., the sets with which its unprocessed sons in the enumeration tree are initialized.

If an active set of constraints is instantiated then the BaseType should be ABA CONSTRAINT and the

CoType should be ABA VARIABLE, for an active set of variables this is vice versa.

6.2. SYSTEM CLASSES 265

template <class BaseType, class CoType>

class ABA_ACTIVE : public ABA_ABACUSROOT {

public:

ABA_ACTIVE(ABA_MASTER *master, int max);

ABA_ACTIVE(ABA_MASTER *master, ABA_ACTIVE *a, int max);

ABA_ACTIVE(const ABA_ACTIVE<BaseType, CoType> &rhs);

~ABA_ACTIVE();

friend ostream &operator<<(ostream &out,

const ABA_ACTIVE<BaseType, CoType> &rhs);

int number() const;

int max() const;

BaseType* operator[](int i);

ABA_POOLSLOTREF<BaseType, CoType>* poolSlotRef(int i);

void insert(ABA_POOLSLOT<BaseType, CoType> *ps);

void insert(ABA_BUFFER<ABA_POOLSLOT<BaseType, CoType> *> &ps);

void remove(ABA_BUFFER<int> &del);

void realloc(int newSize);

private:

const ABA_ACTIVE<BaseType, CoType>

&operator=(const ABA_ACTIVE<BaseType, CoType> & rhs);

};

Constructor

ABA_ACTIVE<BaseType, CoType>::ABA_ACTIVE(ABA_MASTER *master, int max)

Arguments:

master

A pointer to the corresponding master of the optimization.

max

The maximal number of active constraints/variables.

Constructor

In addition to the previous constructor, this constructor initializes the active set.

ABA_ACTIVE<BaseType, CoType>::ABA_ACTIVE(ABA_MASTER *master,

ABA_ACTIVE<BaseType, CoType> *a,

int max)

Arguments:

master

A pointer to the corresponding master of the optimization.

a

At most max active constraints/variables are taken from this set.

max

The maximal number of active constraints/variables.

266 CHAPTER 6. REFERENCE MANUAL

Copy Constructor

ABA_ACTIVE<BaseType, CoType>::ABA_ACTIVE(const ABA_ACTIVE<BaseType, CoType> &rhs)

Arguments:

rhs

The active set that is copied.

Destructor

ABA_ACTIVE<BaseType, CoType>::~ABA_ACTIVE()

Output Operator

The output operator writes all active constraints and variables to an output stream. If an associated

pool slot is void, or the item is newer than the one we refer to, then "void" is output.

ostream &operator<<(ostream &out, const ABA_ACTIVE<BaseType, CoType> &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The active set being output.

number

int ABA_ACTIVE<BaseType, CoType>::number() const

Return Value:

The current number of active items.

max

int ABA_ACTIVE<BaseType, CoType>::max() const

Return Value:

The maximum number of storable active items (without reallocation).

Subscript Operator

BaseType* ABA_ACTIVE<BaseType, CoType>::operator[](int i)

Return Value:

A pointer to the i-th active item or 0 if this item has been removed in the meantime.

Arguments:

i

The number of the active item.

6.2. SYSTEM CLASSES 267

poolSlotRef

ABA_POOLSLOTREF<BaseType, CoType> * ABA_ACTIVE<BaseType, CoType>::poolSlotRef(int i)

Return Value:

The i-th entry in the ABA ARRAY active.

Arguments:

i

The number of the active item.

insert

The function insert() adds a constraint/variable to the active items.

void ABA_ACTIVE<BaseType, CoType>::insert(ABA_POOLSLOT<BaseType, CoType> *ps)

Arguments:

ps

The pool slot storing the constraint/variable being added.

insert

The function insert() is overloaded that also several items can be added at the same time.

void ABA_ACTIVE<BaseType, CoType>::insert(

ABA_BUFFER<ABA_POOLSLOT<BaseType, CoType> *> &ps)

Arguments:

ps

The bu�er storing the pool slots of all constraints/variables that are added.

remove

The function remove() removes items from the list of active items.

void ABA_ACTIVE<BaseType, CoType>::remove(ABA_BUFFER<int> &del)

Arguments:

del

The numbers of the items that should be removed. These numbers must be upward

sorted.

realloc

The function realloc() changes the maximum number of active items which can be stored in an object

of this class.

void ABA_ACTIVE<BaseType, CoType>::realloc(int newSize)

Arguments:

newSize

The new maximal number of active items.

268 CHAPTER 6. REFERENCE MANUAL

6.2.31 ABA CUTBUFFER

This template class implements a bu�er for constraints and variables which are generated during the

cutting plane or column generation phase. There are two reasons why constraints/variables are bu�ered

instead of being added immediately. First, the set of active constraints/variables should not be falsi�ed

during the cut/variable generation. Second, optionally a rank can be assigned to each bu�ered item.

Then not all, but only the best items according to this rank are actually added.

template<class BaseType, class CoType>

class ABA_CUTBUFFER : public ABA_ABACUSROOT {

public:

ABA_CUTBUFFER(ABA_MASTER *master, int size);

~ABA_CUTBUFFER();

int size() const;

int number() const;

int space() const;

int insert(ABA_POOLSLOT<BaseType, CoType> *slot, bool keepInPool);

int insert(ABA_POOLSLOT<BaseType, CoType> *slot, bool keepInPool,

double rank);

void remove(ABA_BUFFER<int> &index);

ABA_POOLSLOT<BaseType, CoType> *slot(int i);

private:

ABA_CUTBUFFER(const ABA_CUTBUFFER<BaseType, CoType> &rhs);

const ABA_CUTBUFFER<BaseType, CoType>

&operator=(const ABA_CUTBUFFER<BaseType, CoType> &rhs);

};

Constructor

ABA_CUTBUFFER<BaseType, CoType>::ABA_CUTBUFFER(ABA_MASTER *master, int size)

Arguments:

master

A pointer to the corresponding master of the optimization.

size

The maximal number of constraints/variables which can be bu�ered.

Destructor

ABA_CUTBUFFER<BaseType, CoType>::~ABA_CUTBUFFER()

size

int ABA_CUTBUFFER<BaseType, CoType>::size() const

Return Value:

The maximal number of items that can be bu�ered.

number

int ABA_CUTBUFFER<BaseType, CoType>::number() const

Return Value:

The number of bu�ered items.

6.2. SYSTEM CLASSES 269

space

int ABA_CUTBUFFER<BaseType, CoType>::space() const

Return Value:

The number of items which can still be inserted into the bu�er.

slot

ABA_POOLSLOT<BaseType, CoType> * ABA_CUTBUFFER<BaseType, CoType>::slot(int i)

Return Value:

A pointer to the i-th ABA POOLSLOT that is bu�ered.

insert

The function insert() adds a slot to the bu�er.

int ABA_CUTBUFFER<BaseType, CoType>::insert(ABA_POOLSLOT<BaseType, CoType> *slot,

bool keepInPool)

Return Value:

0

If the item can be inserted.

1

If the bu�er is already full.

Arguments:

slot

The inserted pool slot.

keepInPool

If the ag keepInPool is true, then the item stored in the slot is not removed

from the pool, even if it is discarded in extract(). Items regenerated from a pool

should always have this ag set to true.

insert

In addition to the previous version of the function insert() this version also adds a rank to the item

such that all bu�ered items can be sorted with the function sort().

int ABA_CUTBUFFER<BaseType, CoType>::insert(ABA_POOLSLOT<BaseType, CoType> *slot,

bool keepInPool,

double rank)

Return Value:

0

If the item can be inserted.

1

If the bu�er is already full.

Arguments:

rank

A rank associated with the constraint/variable.

270 CHAPTER 6. REFERENCE MANUAL

remove

The function remove() removes the speci�ed elements from the bu�er.

void ABA_CUTBUFFER<BaseType, CoType>::remove(ABA_BUFFER<int> &index)

Arguments:

index

The numbers of the elements which should be removed.

6.2.32 ABA INFEASCON

If a constraint is transformed from its pool to the row format it may turn out that the constraint is infea-

sible since variables are �xed or set such that all nonzero coe�cients of the left hand side are eliminated

and the right hand side has to be updated. The enumeration INFEAS indicates if the constraint's left

hand side, which is implicitly zero, is either TooLarge, Feasible, or TooSmall.

class ABA_INFEASCON : public ABA_ABACUSROOT {

public:

enum INFEAS {TooSmall = -1, Feasible, TooLarge};

ABA_INFEASCON(ABA_MASTER *master, ABA_CONSTRAINT *con, INFEAS inf);

ABA_CONSTRAINT *constraint();

INFEAS infeas() const;

bool goodVar(ABA_VARIABLE *v);

};

enum INFEAS

The di�erent ways of infeasibility of a constraint.

TooSmall

The left hand side is too small for the right hand side.

Feasible

The constraint is not infeasible.

TooLarge

The left hand side is too large for the right hand side.

Constructor

ABA_INFEASCON::ABA_INFEASCON(ABA_MASTER *master, ABA_CONSTRAINT *con, INFEAS inf)

Arguments:

master

A pointer to the corresponding master of the optimization.

con

The infeasible constraint.

inf

The way of infeasibility.

6.2. SYSTEM CLASSES 271

constraint

ABA_CONSTRAINT *ABA_INFEASCON::constraint()

Return Value:

A pointer to the infeasible constraint.

infeas

ABA_INFEASCON::INFEAS ABA_INFEASCON::infeas() const

Return Value:

The way of infeasibility of the constraint.

goodVar

bool ABA_INFEASCON::goodVar(ABA_VARIABLE *v)

Return Value:

true

If the variable v might reduce the infeasibility,

false

otherwise.

Arguments:

v

A variable for which we test if its addition might reduce infeasibility.

6.2.33 ABA OPENSUB

During a branch-and-bound algorithm a set of open subproblems has to be maintained. New subproblems

are inserted in this set after a branching step, or when a subproblem becomes dormant. A subproblem

is extracted from this list if it becomes the active subproblem which is optimized.

class ABA_OPENSUB : public ABA_ABACUSROOT {

public:

ABA_OPENSUB(ABA_MASTER *master);

int number() const;

bool empty() const;

double dualBound() const;

private:

ABA_OPENSUB(const ABA_OPENSUB &rhs);

const ABA_OPENSUB &operator=(const ABA_OPENSUB &rhs);

};

272 CHAPTER 6. REFERENCE MANUAL

Constructor

The constructor does not initialize the member dualBound since this can only be done if we know the

sense of the objective function which is normally unknown when the constructor of the class ABA MASTER

is called which again calls this constructor.

ABA_OPENSUB::ABA_OPENSUB(ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

number

int ABA_OPENSUB::number() const

Return Value:

The current number of open subproblems contained in this set.

emtpy

bool ABA_OPENSUB::empty() const

Return Value:

true

If there is no subproblem in the set of open subproblems,

false

otherwise.

dualBound

double ABA_OPENSUB::dualBound() const

Return Value:

The value of the dual bound of all subproblems in the list.

6.2.34 ABA FIXCAND

Variables can be only �xed according to the reduced costs and statuses of variables of the root of the

remaining branch-and-bound tree. However, if we store these values, we can repeat the �xing process

also in any other node of the enumeration tree when we �nd a better global lower bound.

Possible candidates for �xing are all variables which have the status AtLowerBound or AtUpperBound.

We store all these candidates together with their values in this class.

If we try to �x variables according to reduced cost criteria in nodes which are not the root of the

remaining branch-and-cut tree, we always have to take the candidates and values from this class.

class ABA_FIXCAND : public ABA_ABACUSROOT {

public:

ABA_FIXCAND(ABA_MASTER *master);

~ABA_FIXCAND();

private:

ABA_FIXCAND(const ABA_FIXCAND &rhs);

const ABA_FIXCAND &operator=(const ABA_FIXCAND &rhs);

};

6.2. SYSTEM CLASSES 273

Constructor

ABA_FIXCAND::ABA_FIXCAND(ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

Destructor

ABA_FIXCAND::~ABA_FIXCAND()

6.2.35 ABA TAILOFF

During the cutting plane phase of the optimization of a single subproblem it can be quite often ob-

served that during the �rst iterations a signi�cant decrease of the optimum value of the LP occurs, yet,

this decrease becomes smaller and smaller in later iterations. This e�ect is called tailing o� ([PR91]).

Experimental results show that it might be better to branch, although violated constraints can still be

generated, than to continue the cutting plane phase. This class stores the history of the values of the

last LP-solutions and implements all functions to control this tailing-o� e�ect. The parameters are taken

from the associated master.

class ABA_TAILOFF : public ABA_ABACUSROOT {

public:

ABA_TAILOFF(ABA_MASTER *master);

~ABA_TAILOFF();

friend ostream &operator<<(ostream &out, const ABA_TAILOFF &rhs);

bool tailOff() const;

int diff(int nLps, double &d) const;

};

Constructor

The constructor takes the length of the tailing o� history from ABA MASTER::tailOffNLp().

ABA_TAILOFF::ABA_TAILOFF(ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

Destructor

ABA_TAILOFF::~ABA_TAILOFF()

Output Operator

The output operator writes the memorized LP-values on an output stream.

ostream &operator<<(ostream &out, const ABA_TAILOFF &rhs)

Return Value:

A reference to the output stream.

274 CHAPTER 6. REFERENCE MANUAL

Arguments:

out

The output stream.

rhs

The tailing-o� manager being output.

tailO�

The function tailOff() checks if there is a tailing-o� e�ect. We assume a tailing-o� e�ect if during the

last ABA MASTER::tailOffNLps() iterations of the cutting plane algorithms the dual bound changed at

most ABA MASTER::tailOffPercent() percent.

bool ABA_TAILOFF::tailOff() const

Return Value:

true

If a tailing o� e�ect is observed,

false

otherwise.

di�

The function diff() can be used to retrieve the di�erence between the last and a previous LP-solution

in percent.

int ABA_TAILOFF::diff(int nLps, double &d) const

Return Value:

0

If the di�erence could be computed, i.e., the old LP-value nLPs before the last one

is store in the history,

1

otherwise.

Arguments:

nLps

The number of LPs before the last solved linear program with which the last solved

LP-value should be compared.

d

Contains the absolute di�erence bewteen the value of the last solved linear program

and the value of the linear program solved nLPs before in percent relative to the

older value.

6.3. BASIC DATA STRUCTURES 275

6.2.36 ABA HISTORY

This class implements the storage of the solution history. Each time when a better feasible solution or

globally valid dual bound is found, it should be memorized in this class.

class ABA_HISTORY : public ABA_ABACUSROOT {

public:

ABA_HISTORY(ABA_MASTER *master);

friend ostream& operator<<(ostream& out, const ABA_HISTORY &rhs);

void update();

};

Constructor

The constructor initializes a history table with 100 possible entries. If this number is exceeded an

automatic reallocation is performed.

ABA_HISTORY::ABA_HISTORY(ABA_MASTER *master)

Arguments:

master

A pointer to the corresponding master of the optimization.

Output Operator

ostream& operator<<(ostream& out, const ABA_HISTORY &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The solution history being output.

update

The function update() adds an additional line to the history table, primal bound, dual bound, and the

time are taken from the corresponding master object. The history table is automatically reallocated if

necessary.

Usually an explicit call to this function from an application class is not required since update() is

automatically called if a new global primal or dual bound is found.

void ABA_HISTORY::update()

6.3 Basic Data Structures

This subsection documents various basic data structures which we have used within ABACUS. They can

also be used within an application. The templated basic data structures are documented in Section 6.4.

276 CHAPTER 6. REFERENCE MANUAL

6.3.1 ABA SPARVEC

If the number of components of a vector having nonzero coe�cients is small (sparse), then it is more

adequate to store only the number of these components together with the nonzero coe�cients.

class ABA_SPARVEC : public ABA_ABACUSROOT {

public:

ABA_SPARVEC(ABA_GLOBAL *glob,

int size,

double reallocFac = 10.0);

ABA_SPARVEC(ABA_GLOBAL *glob,

int size,

const ABA_ARRAY<int> &s,

const ABA_ARRAY<double> &c,

double reallocFac = 10.0);

ABA_SPARVEC(ABA_GLOBAL *glob,

int size,

int *s,

double *c,

double reallocFac = 10.0);

ABA_SPARVEC(const ABA_SPARVEC& rhs);

~ABA_SPARVEC();

const ABA_SPARVEC& operator=(const ABA_SPARVEC& rhs);

friend ostream& operator<<(ostream& out, const ABA_SPARVEC& rhs);

int support(int i) const;

double coeff(int i) const;

double origCoeff(int i) const;

void insert(int s, double c);

void leftShift(ABA_BUFFER<int> &del);

void copy (const ABA_SPARVEC &vec);

void clear();

void rename(ABA_ARRAY<int> &newName);

int size() const;

int nnz() const;

double norm();

void realloc();

void realloc(int newSize);

protected:

void rangeCheck(int i) const;

ABA_GLOBAL *glob_;

int size_;

int nnz_;

double reallocFac_;

int *support_;

double *coeff_;

};

glob

ABA GLOBAL *glob

A pointer to the corresponding global object.

6.3. BASIC DATA STRUCTURES 277

size

int size

The maximal number of nonzero coe�cients which can be stored without reallocation.

nnz

int nnz

The number of stored elements (\nonzeros").

reallocFac

double reallocFac

If a new element is inserted but the sparse vector is full, then its size is increased by

reallocFac percent.

support

int *support

The array storing the nonzero variables.

coe�

double *coeff

The array storing the corresponding nonzero coe�cients.

Constructor

The constructor for an empty sparse vector.

ABA_SPARVEC::ABA_SPARVEC(ABA_GLOBAL *glob,

int size,

double reallocFac)

Arguments:

glob

A pointer to the corresponding global object.

size

The maximal number of nonzeros of the sparse vector (without reallocation).

reallocFac

The reallocation factor (in percent of the original size), which is used in a default

reallocation if a variable is inserted when the sparse vector is already full. Its default

value is 10.

278 CHAPTER 6. REFERENCE MANUAL

Constructor

A constructor with initialization of the support and coe�cients of the sparse vector. The minimum value

of size and s.size is the number of nonzeros of the sparse vector.

ABA_SPARVEC::ABA_SPARVEC(ABA_GLOBAL *glob,

int size,

const ABA_ARRAY<int> &s,

const ABA_ARRAY<double> &c,

double reallocFac)

Arguments:

glob

A pointer to the corresponding global object.

size

The maximal number of nonzeros (without reallocation).

s

An array storing the support of the sparse vector, i.e., the elements for which a

(normally nonzero) coe�cient is given in c.

c

An array storing the coe�cients of the support elements given in s. This array

must have at least the length of the minimum of size and s.size().

reallocFac

The reallocation factor (in percent of the original size), which is used in a default

reallocation if a variable is inserted when the sparse vector is already full. Its default

value is 10.

Constructor

This constructor is equivalent to the previous one except that it is using C-style arrays for the initialization

of the sparse vector.

ABA_SPARVEC::ABA_SPARVEC(ABA_GLOBAL *glob,

int nnz,

int *s,

double *c,

double reallocFac)

Copy Constructor

ABA_SPARVEC::ABA_SPARVEC(const ABA_SPARVEC& rhs)

Arguments:

rhs

The sparse vector that is copied.

Destructor

ABA_SPARVEC::~ABA_SPARVEC()

6.3. BASIC DATA STRUCTURES 279

Assignment Operator

The assignment operator requires that the left hand and the right hand side have the same length

(otherwise use the function copy()).

const ABA_SPARVEC& ABA_SPARVEC::operator=(const ABA_SPARVEC& rhs)

Return Value:

A reference to the left hand side.

Arguments:

rhs

The right hand side of the assignment.

Output Operator

The output operator writes the elements of the support and their coe�cients line by line on an output

stream.

ostream& operator<<(ostream &out, const ABA_SPARVEC &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The sparse vector being output.

support

int ABA_SPARVEC::support(int i) const

Return Value:

The support of the i-th nonzero element.

Arguments:

i

The number of the nonzero element.

coe�

The function coeff().

double ABA_SPARVEC::coeff(int i) const

Return Value:

The coe�cient of the i-th nonzero element.

Arguments:

i

The number of the nonzero element.

280 CHAPTER 6. REFERENCE MANUAL

origcoe�

The function origCoeff()

double ABA_SPARVEC::origCoeff(int i) const

Return Value:

The coe�cient having support i.

Arguments:

i

The number of the original coe�cient.

insert

The function insert() adds a new support/coe�cient pair to the vector. If necessary a reallocation of

the member data is performed automatically.

void ABA_SPARVEC::insert(int s, double c)

Arguments:

s

The new support.

c

The new coe�cient.

leftShift

The function leftShift() deletes the elements listed in a bu�er from the sparse vector. The numbers

of indices in this bu�er must be upward sorted. The elements before the �rst element in the bu�er are

unchanged. Then the elements which are not deleted are shifted left in the arrays.

void ABA_SPARVEC::leftShift(ABA_BUFFER<int> &del)

Arguments:

del

The numbers of the elements removed from the sparse vector.

copy

The function copy() is very similar to the assignment operator, yet the size of the two vectors need not

be equal and only the support, the coe�cients, and the number of nonzeros is copied. A reallocation is

performed if required.

void ABA_SPARVEC::copy(const ABA_SPARVEC &vec)

Arguments:

vec

The sparse vector that is copied.

clear

The function clear() removes all nonzeros from the sparse vector.

void ABA_SPARVEC::clear()

6.3. BASIC DATA STRUCTURES 281

rename

The function rename() replaces the index of the support by new names.

void ABA_SPARVEC::rename(ABA_ARRAY<int> &newName)

Arguments:

newName

The new names (support) of the elements of the sparse vector. The array newName

must have at least a length equal to the maximal element in the support of the

sparse vector.

size

int ABA_SPARVEC::size() const

Return Value:

The maximal length of the sparse vector.

nnz

int ABA_SPARVEC::nnz() const

Return Value:

The number of nonzero elements. This is not necessarily the correct number of nonzeros, yet

the number of coe�cient/support pairs, which are stored. Some of these pairs may have a

zero coe�cient.

norm

double ABA_SPARVEC::norm()

Return Value:

The Euclidean norm of the sparse vector.

realloc

The function realloc() increases the size of the sparse vector by reallocFac percent of the original

size. This function is called if an automatic reallocation takes place.

void ABA_SPARVEC::realloc()

realloc

This other version of realloc() reallocates the sparse vector to a given length. It is an error to decrease

size below the current number of nonzeros.

void ABA_SPARVEC::realloc(int newSize)

Arguments:

newSize

The new maximal number of nonzeroes that can be stored in the sparse vector.

282 CHAPTER 6. REFERENCE MANUAL

rangeCheck

This function terminates the program with an error message if i is negative or greater or equal than the

number of nonzero elements.

void ABA_SPARVEC::rangeCheck(int i) const

Arguments:

i

An integer that should be checked if it is in the range of the sparse vector.

6.3.2 ABA SET

This class implements a data structure for collections of dynamic disjoint sets of integers. Each set has a

unique representative being one member of the set. We provide the operations generation of a set with

one element, union of sets, and the determination of the set some element is currently contained in.

class ABA_SET : public ABA_ABACUSROOT {

public:

ABA_SET (ABA_GLOBAL *glob, int size);

void makeSet(int x);

bool unionSets(int x, int y);

int findSet(int x);

protected:

ABA_GLOBAL *glob_;

ABA_ARRAY<int> parent_;

};

glob

ABA GLOBAL *glob

A pointer to the corresponding global object.

parent

ABA ARRAY<int> parent

The collection of sets is implemented by a collection of trees. parent [i] is the parent of

node i in the tree representing the set containing i. If i is the root of a tree then parent [i]

is i itself.

Constructor

ABA_SET::ABA_SET(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

Only integers between 0 and size-1 can be inserted in the set.

6.3. BASIC DATA STRUCTURES 283

makeSet

The function makeSet() creates a set storing only one element and adds it to the collection of sets.

void ABA_SET::makeSet(int x)

Arguments:

x

The single element of the new set.

unionSets

The function unionSets() unites the two sets which contain x and y, respectively. This operation may

only be performed if both x and y have earlier been added to the collection of sets by the function

makeSet().

We do not use the heuristic attaching the smaller subtree to the bigger one, since we want to guarantee

that the representative of x is always the representative of the two united sets.

bool ABA_SET::unionSets(int x, int y)

Return Value:

true

If both sets have been disjoint before the function call,

false

otherwise.

Arguments:

x

An element of the �rst set of the union operation.

y

An element in the second set of the union operation.

�ndSet

The function findSet() �nds the representative of the set containing x. This operation may be only

performed if x has been earlier added to the collection of sets by the function makeSet().

int ABA_SET::findSet(int x)

Return Value:

The representative of the set containing x.

Arguments:

x

An element of the searched set.

284 CHAPTER 6. REFERENCE MANUAL

6.3.3 ABA FASTSET

This class is derived from the class ABA SET and holds for each set a rank which approximates the

logarithm of the tree size representing the set and is also an upper bound for the height of this tree. In

a union operation the tree with smaller rank is attached to the tree with larger rank.

class ABA_FASTSET : public ABA_SET {

public:

ABA_FASTSET (ABA_GLOBAL *glob, int size);

bool unionSets(int x, int y);

};

Constructor

ABA_FASTSET::ABA_FASTSET(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

Only integers between 0 and size-1 can be inserted in the set.

unionSets()

The function unionSets() unites the sets x and y. It di�ers from the function unionSets() of the base

class ABA SET such that the tree with smaller rank is attached to the one with larger rank. Therefore, x

is no more guaranteed to be the representative of the joint set.

bool ABA_FASTSET::unionSets(int x, int y)

Return Value:

true

If both sets have been disjoint before the function call,

false

otherwise.

Arguments:

x

An element of the �rst set of the union operation.

y

An element in the second set of the union operation.

6.3.4 ABA STRING

The class ABA STRING implements are very simple class for the representation of character strings.

class ABA_STRING : public ABA_ABACUSROOT {

public:

ABA_STRING(ABA_GLOBAL *glob, const char* cString = "");

ABA_STRING(ABA_GLOBAL *glob, const char* cString, int index);

ABA_STRING(const ABA_STRING &rhs);

6.3. BASIC DATA STRUCTURES 285

~ABA_STRING();

const ABA_STRING& operator=(const ABA_STRING &rhs);

const ABA_STRING& operator=(const char *rhs);

friend int operator==(const ABA_STRING &lhs, const ABA_STRING &rhs);

friend int operator==(const ABA_STRING &lhs, const char *rhs);

friend int operator!=(const ABA_STRING &lhs, const ABA_STRING &rhs);

friend int operator!=(const ABA_STRING &lhs, const char *rhs);

friend ostream& operator<<(ostream &out, const ABA_STRING &rhs);

char& operator[](int i);

const char& operator[](int i) const;

int size() const;

int ascii2int(int i = 0) const;

unsigned int ascii2unsignedint() const;

double ascii2double() const;

bool ascii2bool() const;

bool ending(const char *end) const;

char *string();

};

Constructor

ABA_STRING::ABA_STRING(ABA_GLOBAL *glob, const char *cString)

Arguments:

glob

A pointer to the corresponding global object.

cString

The initializing string, by default the empty string.

Constructor

A constructor building a string from a string and an integer. This constructor is especially useful for

building variable or constraint names like con18.

ABA_STRING::ABA_STRING(ABA_GLOBAL *glob, const char *cString, int index)

Arguments:

glob

A pointer to the corresponding global object.

cString

The initializing string.

index

The integer value appending to the cString (must be less than MAX INT).

Copy Constructor

ABA_STRING::ABA_STRING(const ABA_STRING &rhs)

Arguments:

rhs

The string that is copied.

286 CHAPTER 6. REFERENCE MANUAL

Destructor

ABA_STRING::~ABA_STRING()

Assignment Operator

The assignment operator makes a copy of the right hand side and reallocates memory if required.

const ABA_STRING& ABA_STRING::operator=(const ABA_STRING &rhs)

Return Value:

A reference to the object.

Arguments:

rhs

The right hand side of the assignment.

Assignment Operator

The assignment operator is overloaded for character strings.

const ABA_STRING& ABA_STRING::operator=(const char *rhs)

Comparison Operator

int operator==(const ABA_STRING &lhs, const ABA_STRING &rhs)

Return Value:

0

If both strings are not equal,

1

otherwise.

Arguments:

lhs

The left hand side of the comparison.

rhs

The right hand side of the comparison.

Comparison Operator

The comparison operator is overloaded for character strings on the right hand side.

int operator==(const ABA_STRING &lhs, const char *rhs)

6.3. BASIC DATA STRUCTURES 287

Not-Equal Operator

int operator!=(const ABA_STRING &lhs, const ABA_STRING &rhs)

Return Value:

0

If both strings are equal,

1

otherwise.

Arguments:

lhs

The left hand side of the comparison.

rhs

The right hand side of the comparison.

Not-Equal Operator

The not-equal operator is overloaded for character strings on the right hand side.

int operator!=(const ABA_STRING &lhs, const char *rhs)

Output Operator

ostream& operator<<(ostream &out, const ABA_STRING &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The string being output.

Subscript Operator

With the subscript operator a single character of the string can be accessed or modi�ed.

char& ABA_STRING::operator[](int i)

Return Value:

A reference to the i-th character of the string.

Arguments:

i

The number of the character that should be accessed or modi�ed. The �rst character

has number 0.

288 CHAPTER 6. REFERENCE MANUAL

Subscript Operator

The subscript operator is overloaded for constant use.

const char& ABA_STRING::operator[](int i) const

size

int ABA_STRING::size() const

Return Value:

The length of the string, not including the 'n0' terminating the string.

ascii2int

The function ascii2int() is very similar to the function atoi() from <string.h>. It converts the

substring starting at component i and ending in the �rst following component with 'n0' to an integer.

ascii2int(0) converts the complete string.

int ABA_STRING::ascii2int(int i) const

Return Value:

The string converted to an integer value.

Arguments:

i

The number of the character at which the conversion should start. The default

value of i is 0.

ascii2double

The function ascii2double() emulates the function atof() of the standard C library and converts the

string to a oating point number.

double ABA_STRING::ascii2double() const

Return Value:

The string converted to a oating point number.

ascii2unsignedint

The function ascii2unsignedint() converts the string to an unsigned int value.

unsigned int ABA_STRING::ascii2unsignedint() const

Return Value:

The string converted to an unsigned integer.

ascii2bool

The function ascii2bool() converts the string to a boolean value. This is only possible for the strings

"true" and "false".

bool ABA_STRING::ascii2bool() const

Return Value:

The string converted to true or false.

6.4. TEMPLATES 289

ending

bool ABA_STRING::ending(const char *end) const

Return Value:

true

If the string ends with the string end,

false

otherwise.

Arguments:

end

The string with which the ending of the string is compared.

string

char *ABA_STRING::string()

Return Value:

The char* representing the string to make it accessible for C-functions.

6.4 Templates

Various basic data structures are available as templates within ABACUS. For the instantiation of tem-

plates we refer to Section 5.3.

6.4.1 ABA ARRAY

One of the basic classes is a template for arrays. It can be used like a \normal" C-style array, yet has

some additional nice features, especially we do not have to care for the allocation and deallocation of

memory. The �rst index of an array is 0 as usual in C++.

template <class Type> class ABA_ARRAY : public ABA_ABACUSROOT {

public:

ABA_ARRAY(ABA_GLOBAL *glob, int size);

ABA_ARRAY(ABA_GLOBAL *glob, int size, Type init);

ABA_ARRAY(ABA_GLOBAL *glob, const ABA_BUFFER<Type> &buf);

ABA_ARRAY(const ABA_ARRAY<Type> &rhs);

~ABA_ARRAY();

const ABA_ARRAY<Type>& operator=(const ABA_ARRAY<Type>& rhs);

const ABA_ARRAY<Type>& operator=(const ABA_BUFFER<Type>& rhs);

friend ostream& operator<<(ostream& out, const ABA_ARRAY<Type> &array);

Type& operator[](int i);

const Type& operator[](int i) const;

void copy(const ABA_ARRAY<Type>& rhs);

void copy(const ABA_ARRAY<Type>& rhs, int l, int r);

void leftShift(ABA_BUFFER<int> &ind);

void leftShift(ABA_ARRAY<bool> &remove);

void set(int l, int r, Type val);

void set(Type val);

int size() const;

void realloc(int newSize);

void realloc(int newSize, Type init);

};

290 CHAPTER 6. REFERENCE MANUAL

Constructor

A constructor without initialization.

ABA_ARRAY<Type>::ABA_ARRAY(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

The length of the array.

Constructor

A constructor with initialization.

ABA_ARRAY<Type>::ABA_ARRAY(ABA_GLOBAL *glob, int size, Type init)

Arguments:

glob

A pointer to the corresponding global object.

size

The length of the array.

init

The initial value of all elements of the array.

Constructor

ABA_ARRAY<Type>::ABA_ARRAY(ABA_GLOBAL *glob, const ABA_BUFFER<Type> &buf)

Arguments:

glob

A pointer to the corresponding global object.

buf

The array receives the length of this bu�er and all bu�ered elements are copied to

the array.

Copy Constructor

ABA_ARRAY<Type>::ABA_ARRAY(const ABA_ARRAY<Type> &rhs)

Arguments:

rhs

The array being copied.

Destructor

ABA_ARRAY<Type>::~ABA_ARRAY()

6.4. TEMPLATES 291

Assignment Operator

The assignment operator can only be used for arrays with equal length.

const ABA_ARRAY<Type>& ABA_ARRAY<Type>::operator=(const ABA_ARRAY<Type>& rhs)

Return Value:

A reference to the array on the left hand side.

Arguments:

rhs

The array being assigned.

Assignment Operator

To assign an object of the class ABA BUFFER to an object of the class ABA ARRAY the size of the left hand

side must be at least the size of rhs. Then all bu�ered elements of rhs are copied.

const ABA_ARRAY<Type>& ABA_ARRAY<Type>::operator=(const ABA_BUFFER<Type>& rhs)

Return Value:

A reference to the array on the left hand side.

Arguments:

rhs

The bu�er being assigned.

Output Operator

The output operator writes �rst the number of the element and a ':' followed by the value of the element

line by line to the stream out.

ostream& operator<<(ostream &out, const ABA_ARRAY<Type> &array)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

array

The array being output.

Subscript Operator

Type& ABA_ARRAY<Type>::operator[](int i)

Return Value:

The i-th element of the array.

Arguments:

i

The element being accessed.

292 CHAPTER 6. REFERENCE MANUAL

Subscript Operator

The operator [] is overloaded for constant use.

const Type& ABA_ARRAY<Type>::operator[](int i) const

copy

The function copy() copies all elements of rhs. The di�erence to the operator = is that also copying

between arrays of di�erent size is allowed. If necessary the array on the left hand side is reallocated.

void ABA_ARRAY<Type>::copy(const ABA_ARRAY<Type> &rhs)

Arguments:

rhs

The array being copied.

copy

This version of the function copy() copies the elements rhs[l], rhs[l+1],. . . , rhs[r] into the compo-

nents 0,. . . ,r-l of the array. If the size of the array is smaller than r-l+1 storage is reallocated.

void ABA_ARRAY<Type>::copy(const ABA_ARRAY<Type> &rhs, int l, int r)

Arguments:

rhs

The array that is partially copied.

l

The �rst element being copied.

r

the last element being copied.

leftShift

The function leftShift() removes the components listed in ind by shifting the remaining components

to the left. Memory management of the removed components must be carefully implemented by the user

of this function to avoid memory leaks.

void ABA_ARRAY<Type>::leftShift(ABA_BUFFER<int> &ind)

Arguments:

ind

The compenents being removed from the array.

leftShift

This version of the function leftShift() removes all components i with marked[i]==true from the

array by shifting the other components to the left.

void ABA_ARRAY<Type>::leftShift(ABA_ARRAY<bool> &remove)

Arguments:

remove

The marked components are removed from the array.

6.4. TEMPLATES 293

set

The function set() assigns the same value to a subset of the components of the array.

void ABA_ARRAY<Type>::set(int l, int r, Type val)

Arguments:

l

The �rst component the value is assigned.

r

The last component the value is assigned.

val

The new value of these components.

set

This version of the function set() initializes all components of the array with the same value.

void ABA_ARRAY<Type>::set(Type val)

Arguments:

val

The new value of all components.

size

int ABA_ARRAY<Type>::size() const

Return Value:

The length of the array.

realloc

The length of an array can be changed with the function realloc(). If the array is enlarged all elements

of the old array are copied and the values of the additional new elements are unde�ned. If the array is

shortened only the �rst newSize elements are copied.

void ABA_ARRAY<Type>::realloc(int newSize)

Arguments:

newSize

The new length of the array.

realloc

The function realloc() is overloaded such that also an initialization with a new value of the elements

of the array after reallocation is possible.

void ABA_ARRAY<Type>::realloc(int newSize, Type init)

Arguments:

newSize

The new length of the array.

init

The new value of all components of the array.

294 CHAPTER 6. REFERENCE MANUAL

6.4.2 ABA BUFFER

Often we need a data structure for bu�ering information. This class implements such a bu�er by an array

and storing the number of already bu�ered elements. If the initial size of the bu�er turns out to be too

small, then the bu�er can be reallocated.

template <class Type> class ABA_BUFFER : public ABA_ABACUSROOT {

public:

ABA_BUFFER(ABA_GLOBAL *glob, int size);

ABA_BUFFER(const ABA_BUFFER<Type> &rhs);

~ABA_BUFFER();

const ABA_BUFFER<Type>& operator=(const ABA_BUFFER<Type>& rhs);

friend ostream& operator<<(ostream& out, const ABA_BUFFER<Type> &buffer);

Type& operator[](int i);

const Type& operator[](int i) const;

int size() const;

int number() const;

bool full() const;

bool empty() const;

void push(Type item);

Type pop();

void clear();

void leftShift(ABA_BUFFER<int> &ind);

void realloc (int newSize);

};

Constructor

The constructor generates an empty bu�er.

ABA_BUFFER<Type>::ABA_BUFFER(ABA_GLOBAL *glob, int size)

Arguments:

glob

The corresponding global object.

size

The size of the bu�er.

Copy Constructor

ABA_BUFFER<Type>::ABA_BUFFER(const ABA_BUFFER<Type> &rhs)

Arguments:

rhs

The bu�er being copied.

Destructor

ABA_BUFFER<Type>::~ABA_BUFFER()

6.4. TEMPLATES 295

Assignment Operator

The assignment operator is only allowed between bu�ers having equal size.

const ABA_BUFFER<Type>& ABA_BUFFER<Type>::operator=(const ABA_BUFFER<Type>& rhs)

Return Value:

A reference to the bu�er on the left hand side of the assignment operator.

Arguments:

rhs

The bu�er being assigned.

Output Operator

The output operator writes all bu�ered elements line by line to an output stream in the format number:

value.

ostream& operator<<(ostream &out, const ABA_BUFFER<Type> &buffer)

Return Value:

A reference to the stream the bu�er is written to.

Arguments:

out

The output stream.

buffer

The bu�er being output.

Subscript Operator

The operator [] can be used to access an element of the bu�er. It is only allowed to access bu�ered

elements.

Type& ABA_BUFFER<Type>::operator[](int i)

Return Value:

The i-th element of the bu�er.

Arguments:

i

The number of the component which should be returned.

Subscript Operator

The operator [] is overloaded that it can be also used to access elements of constant bu�ers.

const Type& ABA_BUFFER<Type>::operator[](int i) const

size

int ABA_BUFFER<Type>::size() const

Return Value:

The maximal number of elements which can be stored in the bu�er.

296 CHAPTER 6. REFERENCE MANUAL

number

int ABA_BUFFER<Type>::number() const

Return Value:

The number of bu�ered elements.

full

bool ABA_BUFFER<Type>::full() const

Return Value:

true

If no more elements can be inserted into the bu�er,

false

otherwise.

empty

bool ABA_BUFFER<Type>::empty() const

Return Value:

true

If no items are bu�ered,

false

otherwise.

push

The function push() inserts an item into the bu�er. It is a fatal error to perform this operation if the

bu�er is full.

void ABA_BUFFER<Type>::push(Type item)

Arguments:

item

The item that should be inserted into the bu�er.

pop

The function pop() removes and returns the last inserted item from the bu�er. It is a fatal error to

perform this operation on an empty bu�er.

Type ABA_BUFFER<Type>::pop()

Return Value:

The last item that has been inserted into the bu�er.

clear

The function clear() sets the number of bu�ered items to 0 such that the bu�er is empty.

void ABA_BUFFER<Type>::clear()

6.4. TEMPLATES 297

leftShift

The function leftShift() removes the components listed in the bu�er ind by shifting the remaining

components to the left. The values stored in ind have to be upward sorted. Memory management of the

removed components must be carefully implemented by the user of this function to avoid memory leaks.

void ABA_BUFFER<Type>::leftShift(ABA_BUFFER<int> &ind)

Arguments:

ind

The numbers of the components being removed.

realloc

The length of a bu�er can be changed with the function realloc(). If the size of the bu�er is increased

all bu�ered elements are copied. If the size is decreased the number of bu�ered elements is updated if

necessary.

void ABA_BUFFER<Type>::realloc(int newSize)

Arguments:

newSize

The new length of the bu�er.

6.4.3 ABA LISTITEM

We call the basic building block of a linked list an item that is implemented by the class ABA LISTITEM.

A ABA LISTITEM stores a copy of the inserted element and a pointer to its successor.

template<class Type> class ABA_LISTITEM : public ABA_ABACUSROOT {

friend class ABA_LIST<Type>;

public:

ABA_LISTITEM (const Type &elem, ABA_LISTITEM<Type> *succ);

friend ostream& operator<<(ostream &out, const ABA_LISTITEM<Type> &item);

Type elem() const;

ABA_LISTITEM<Type> *succ() const;

};

Constructor

ABA_LISTITEM<Type>::ABA_LISTITEM(const Type &elem, ABA_LISTITEM<Type> *succ)

Arguments:

elem

A copy of elem becomes the element of the list item.

succ

A pointer to the successor of the item in the list.

298 CHAPTER 6. REFERENCE MANUAL

Output Operator

ostream& operator<<(ostream &out, const ABA_LISTITEM<Type> &item)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

item

The list item being output.

elem

Type ABA_LISTITEM<Type>::elem() const

Return Value:

The element of the item.

succ

ABA_LISTITEM<Type> * ABA_LISTITEM<Type>::succ() const

Return Value:

The successor of the item in the list.

6.4.4 ABA LIST

The following sections implement a template for a linked linear list. Two classes are required for the

representation of this data structure. The �rst one ABA LISTITEM forms the basic building block of the

list storing an element and a pointer to the next item of the list, the second one is the ABA LIST itself.

template<class Type> class ABA_LIST : public ABA_ABACUSROOT {

friend class ABA_LISTITEM<Type>;

public:

ABA_LIST(ABA_GLOBAL *glob);

~ABA_LIST();

friend ostream& operator<<(ostream&, const ABA_LIST<Type> &list);

void appendHead(const Type &elem);

void appendTail(const Type &elem);

int extractHead(Type &elem);

int firstElem(Type& elem) const;

bool empty() const;

private:

ABA_LIST(const ABA_LIST &rhs);

const ABA_LIST<Type>& operator=(const ABA_LIST<Type>& rhs);

};

6.4. TEMPLATES 299

forAllListElem

The iterator forAllListElem assigns to Type e all elements in the list beginning with the �rst element.

Deletions of elements in the list during the application of this iterator can cause an error.

#define forAllListElem(L, item, e) \

for((item = (L).first()) ? (e = (item)->elem()) : (e = e); item !=0; \

(item = (item)->succ()) ? (e = (item)->elem()):(e = e))

Arguments:

L

The list that should be iterated (ABA LIST<Type>).

item

An auxilliary pointer to a list item (ABA LISTITEM<Type> *).

e

The elements in the list are assigned to this variable (Type).

Constructor

The constructor initializes the list with the empty list.

ABA_LIST<Type>::ABA_LIST(ABA_GLOBAL *glob)

Arguments:

glob

A pointer to the corresponding global object.

Destructor

The destructor deallocates the memory of all items in the list.

ABA_LIST<Type>::~ABA_LIST()

Output Operator

The output operator writes all items of the list on an output stream.

ostream& operator<<(ostream &out, const ABA_LIST<Type> &list)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

list

The list being output.

300 CHAPTER 6. REFERENCE MANUAL

appendHead

The function appendHead() adds an element at the front of the list.

void ABA_LIST<Type>::appendHead(const Type &elem)

Arguments:

elem

The element being appended.

appendTail

The function appendTail() adds an element at the end of the list.

void ABA_LIST<Type>::appendTail(const Type &elem)

Arguments:

elem

The element being appended.

extractHead

The function extractHead() assigns to elem the �rst element in the list and removes it from the list.

int ABA_LIST<Type>::extractHead(Type &elem)

Return Value:

0

If the operation can be be executed successfully.

1

If the list is empty.

Arguments:

elem

If the list is nonemty, the �rst element is assigned to elem.

�rstElem

The function firstElem() assign elem the �rst element as the function extractHead() but does not

remove this element from the list.

int ABA_LIST<Type>::firstElem(Type &elem) const

Return Value:

0

If the operation can be be executed successfully.

1

If the list is empty.

Arguments:

elem

If the list is nonemty, the �rst element is assigned to elem.

6.4. TEMPLATES 301

empty

bool ABA_LIST<Type>::empty() const

Return Value:

true

If no element is contained in the list,

false

otherwise.

6.4.5 ABA DLISTITEM

We call the basic building block of a doubly linked list an item, which is implemented by the class

ABA DLISTITEM. A ABA DLISTITEM stores a copy of the inserted element and has pointers to its predecessor

and its successor.

template<class Type> class ABA_DLISTITEM : public ABA_ABACUSROOT {

public:

ABA_DLISTITEM (const Type &elem,

ABA_DLISTITEM<Type> *pred,

ABA_DLISTITEM<Type> *succ);

friend ostream& operator<<(ostream &out, const ABA_DLISTITEM<Type> &item);

Type elem() const;

ABA_DLISTITEM<Type> *succ() const;

ABA_DLISTITEM<Type> *pred() const;

};

Constructor

ABA_DLISTITEM<Type>::ABA_DLISTITEM (const Type &elem, ABA_DLISTITEM<Type> *pred,

ABA_DLISTITEM<Type> *succ)

Arguments:

elem

The element of the item.

pred

A pointer to the previous item in the list.

succ

A pointer to the next item in the list.

Output Operator

ostream& operator<<(ostream &out, const ABA_DLISTITEM<Type> &item)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

item

The list item being output.

302 CHAPTER 6. REFERENCE MANUAL

elem

Type ABA_DLISTITEM<Type>::elem() const

Return Value:

The element stored in the item.

succ

ABA_DLISTITEM<Type>* ABA_DLISTITEM<Type>::succ() const

Return Value:

A pointer to the successor of the item in the list.

pred

ABA_DLISTITEM<Type>* ABA_DLISTITEM<Type>::pred() const

Return Value:

A pointer to the predecessor of the item in the list.

6.4.6 ABA DLIST

The class ABA DLIST implements a doubly linked linear list.

template<class Type> class ABA_DLIST : public ABA_ABACUSROOT {

public:

ABA_DLIST(ABA_GLOBAL *glob);

~ABA_DLIST();

friend ostream& operator<<(ostream&, const ABA_DLIST<Type> &list);

void append(const Type &elem);

int extractHead(Type &elem);

int removeHead();

void remove(const Type &elem);

bool empty() const;

int firstElem(Type& elem) const;

private:

ABA_DLIST(const ABA_DLIST &rhs);

const ABA_DLIST<Type>& operator=(const ABA_DLIST<Type>& rhs);

};

forAllDListElem

The iterator forAllDListElem assigns to Type e all elements in the list beginning with the �rst element.

The additional parameter item has to be of type ABA DLISTITEM<Type>*. Deletions of elements in the

list during the application of this iterator can cause an error.

#define forAllDListElem(L, item, e) \

for((item = (L).first()) ? (e = (item)->elem()) : (e = e); item !=0; \

(item = (item)->succ()) ? (e = (item)->elem()):(e = e))

Arguments:

L

6.4. TEMPLATES 303

The list that should be iterated (ABA DLIST<Type>).

item

An auxilliary pointer to a list item (ABA DLISTITEM<Type> *).

e

The elements in the list are assigned to this variable (Type).

Constructor

The constructor for an empty list.

ABA_DLIST<Type>::ABA_DLIST(ABA_GLOBAL *glob)

Destructor

The destructor deallocates the memory of all items in the list.

ABA_DLIST<Type>::~ABA_DLIST()

Output Operator

The output operator writes all elements of the list on an output stream.

ostream& operator<<(ostream &out, const ABA_DLIST<Type> &list)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

list

The list being output.

append

The function append() adds an element at the end of the list.

void ABA_DLIST<Type>::append(const Type &elem)

Arguments:

elem

The element being appended.

304 CHAPTER 6. REFERENCE MANUAL

extractHead

The function extractHead() assigns to elem the �rst element in the list and removes it from the list.

int ABA_DLIST<Type>::extractHead(Type &elem)

Return Value:

0

If the operation can be executed successfully.

1

If the list is empty.

Arguments:

elem

If the list is nonemty, the �rst element is assigned to elem.

removeHead

If the list is non-empty, the function removeHead() removes the head of the list.

int ABA_DLIST<Type>::removeHead()

Return Value:

0

If the list is non-empty before the function is called,

1

otherwise.

remove

This version of the function remove() scans the list for an item with element elem beginning at the �rst

element of the list. The �rst matching item is removed from the list.

void ABA_DLIST<Type>::remove(const Type &elem)

Arguments:

elem

The element which should be removed.

empty

bool ABA_DLIST<Type>::empty() const

Return Value:

true

If no element is contained in the list,

false

otherwise.

6.4. TEMPLATES 305

�rstElem

The function firstElem() retrieves the �rst element of the list.

int ABA_DLIST<Type>::firstElem(Type &elem) const

Return Value:

0

If the list is not empty,

1

otherwise.

Arguments:

elem

Stores the �rst element of the list after the function call if the list is not empty.

6.4.7 ABA RING

The template ABA RING implements a bounded circular list with the property that if the list is full and an

element is inserted the oldest element of the ring is removed. With this implementation single elements

cannot be removed, but the whole ABA RING can be cleared.

template <class Type> class ABA_RING : public ABA_ABACUSROOT {

public:

ABA_RING(ABA_GLOBAL *glob, int size);

friend ostream &operator<<(ostream &out, const ABA_RING<Type> &ring);

Type& operator[](int i);

const Type& operator[](int i) const;

void insert(Type elem);

void clear();

int size() const;

int number() const;

Type oldest() const;

int oldestIndex() const;

Type newest() const;

int newestIndex() const;

int previous(int i, Type &p) const;

bool empty() const;

bool filled() const;

void realloc(int newSize);

};

Constructor

ABA_RING<Type>::ABA_RING(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

The length of the ring.

306 CHAPTER 6. REFERENCE MANUAL

Output Operator

The output operator writes the elements of the ring to an output stream starting with the oldest element

in the ring.

ostream &operator<<(ostream &out, const ABA_RING<Type> &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The ring being output.

Subscript Operator

Type& ABA_RING<Type>::operator[](int i)

Return Value:

The i-th element of the ring. The operation is unde�ned if no element has been inserted in

the i-th position so far.

Arguments:

i

The element being accessed.

Subscript Operator

The operator [] is overloaded for constant use.

const Type& ABA_RING<Type>::operator[](int i) const

insert

The function insert() inserts a new element into the ring. If the ring is already full, this operation

overwrites the oldest element in the ring.

void ABA_RING<Type>::insert(Type elem)

Arguments:

elem

The element being inserted.

clear

The function clear() empties the ring.

void ABA_RING<Type>::clear()

6.4. TEMPLATES 307

size

int ABA_RING<Type>::size() const

Return Value:

The size of the ring.

number

int ABA_RING<Type>::number() const

Return Value:

The current number of elements in the ring.

oldest

Type ABA_RING<Type>::oldest() const

Return Value:

The oldest element in the ring. The result is unde�ned, if the ring is empty.

oldestIndex

int ABA_RING<Type>::oldestIndex() const

Return Value:

The index of the oldest element in the ring. The result is unde�ned, if the ring is empty.

newest

Type ABA_RING<Type>::newest() const

Return Value:

The newest element in the ring. The result is unde�ned if the ring is empty.

newestIndex

int ABA_RING<Type>::newestIndex() const

Return Value:

The index of the newest element in the ring. The result is unde�ned if the ring is empty.

previous

The function previous() can be used to access any element between the oldest and newest inserted

element.

int ABA_RING<Type>::previous(int i, Type &p) const

Return Value:

0

If there are enough elements in the ring such that the element i entries before the

newest one could be accessed,

308 CHAPTER 6. REFERENCE MANUAL

1

otherwise.

Arguments:

i

The element i elements before the newest element is retrieved. If i is 0, then the

function retrieves the newest element.

p

Contains the i-th element before the newest one in a successful call.

empty

bool ABA_RING<Type>::empty() const

Return Value:

true

If no element is contained in the ring,

false

otherwise.

�lled

bool ABA_RING<Type>::filled() const

Return Value:

true

If the ABA RING is completely �lled up,

false

otherwise.

realloc

The function realloc() changes the length of the ring.

void ABA_RING<Type>::realloc(int newSize)

Arguments:

newSize

The new length of the ring. If the ring decreases below the current number of

elements in the ring, then the newSize newest elements stay in the ring.

6.4. TEMPLATES 309

6.4.8 ABA BSTACK

A stack is a data structure storing a set of elements. Following the last-in �rst-out (LIFO) principle the

access to or the deletion of an element is restricted to the most recently inserted element.

In order to provide an e�cient implementation this stack is \bounded", i.e., the number of elements

which can be inserted is limited. However, a reallocation can be performed if required.

template <class Type> class ABA_BSTACK : public ABA_ABACUSROOT {

public:

ABA_BSTACK(ABA_GLOBAL *glob, int size);

friend ostream& operator<<(ostream& out, const ABA_BSTACK<Type> &rhs);

int size() const;

int tos() const;

bool empty() const;

bool full() const;

void push(Type item);

Type top() const;

Type pop();

void realloc (int newSize);

};

Constructor

The constructor initializes an empty stack.

ABA_BSTACK<Type>::ABA_BSTACK(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

The maximal number of elements the stack can store.

Output Operator

The output operator writes the numbers of all stacked elements and the elements line by line on an output

stream.

ostream& operator<<(ostream &out, const ABA_BSTACK<Type> &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The stack being output.

size

int ABA_BSTACK<Type>::size() const

Return Value:

The maximal number of elements which can be inserted into the stack.

310 CHAPTER 6. REFERENCE MANUAL

tos

int ABA_BSTACK<Type>::tos() const

Return Value:

The top of the stack, i.e., the number of the next free component of the stack. This is also

the number of elements currently contained in the stack since the �rst element is inserted in

position 0.

empty

bool ABA_BSTACK<Type>::empty() const

Return Value:

true

If there is no element in the stack,

false

otherwise.

full

bool ABA_BSTACK<Type>::full() const

Return Value:

true

If the maximal number of elements has been inserted in the stack,

false

otherwise.

push

The function push() adds an element to the stack. It is a fatal error to insert an element if the stack is

full.

void ABA_BSTACK<Type>::push(Type item)

Arguments:

item

The element added to the stack.

top

The function top() accesses the last element pushed on the stack without removing it. It is an error to

perform this operation on an empty stack.

Type ABA_BSTACK<Type>::top() const

Return Value:

The last element pushed on the stack.

6.4. TEMPLATES 311

pop

The function pop() accesses like top() the last element pushed on the stack and removes in addition

this item from the stack. It is an error to perform this operation on an empty stack.

Type ABA_BSTACK<Type>::pop()

Return Value:

The last element pushed on the stack.

realloc

The function realloc() changes the maximal number of elements of the stack.

void ABA_BSTACK<Type>::realloc(int newSize)

Arguments:

newSize

The new maximal number of elements on the stack. If newSize is less than the cur-

rent number of elements in the stack, then the newSize oldest element are contained

in the stack after the reallocation.

6.4.9 ABA BHEAP

A heap is the representation of a binary tree by an array a. The root of the tree is associated with a[0].

If a node corresponds to a[i], then its left son corresponds to a[2*i+1] and its right son to a[2*i+2].

This implicit binary tree is completely �lled except possibly its highest level. Every item in the heap has

to ful�l the heap property, i.e., its key has to be less than or equal than the keys of both sons.

This template class implements a heap with a �xed maximal size, however a reallocation can be

performed if required.

The operations insert(), extractMin() require O(logn) running time if n elements are contained in

the heap. The operation getMin() can even be executed in constant time. A heap can also be constructed

from an ABA BUFFER of n elements which requires a running time of O(n) only.

The order of the elements in the heap is given by keys which are inserted together with each element

of the heap. The class Key must be from an ordered type. Given two objects k1 and k2 of type Key then

k1 has higher priority if the expression k1 < k2 holds.

template<class Type, class Key> class ABA_BHEAP : public ABA_ABACUSROOT {

public:

ABA_BHEAP(ABA_GLOBAL *glob, int size);

ABA_BHEAP(ABA_GLOBAL *glob,

const ABA_BUFFER<Type> &elems,

const ABA_BUFFER<Key> &keys);

friend ostream& operator<<(ostream& out, const ABA_BHEAP<Type, Key>& rhs);

void insert(Type elem, Key key);

Type getMin() const;

Key getMinKey() const;

Type extractMin();

void clear();

int size() const;

int number() const;

bool empty() const;

void realloc(int newSize);

};

312 CHAPTER 6. REFERENCE MANUAL

Constructor

ABA_BHEAP<Type, Key>::ABA_BHEAP(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

The maximal number of elements which can be stored.

Constructor

ABA_BHEAP<Type, Key>::ABA_BHEAP(ABA_GLOBAL *glob,

const ABA_BUFFER<Type> &elems,

const ABA_BUFFER<Key> &keys)

Arguments:

glob

A pointer to the corresponding global object.

elem

A ABA BUFFER wich contains the elements.

elem

A ABA BUFFER wich contains the keys.

Output Operator

The output operator writes the elements of the heap together with their keys on an output stream.

ostream& operator<<(ostream& out, const ABA_BHEAP<Type, Key>& rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The heap being output.

insert

The function insert() inserts an item with a key into the heap. It is a fatal error to perform this

operation if the heap is full.

void ABA_BHEAP<Type, Key>::insert(Type elem, Key key)

Arguments:

elem

The element being inserted into the heap.

key

The key of this element.

6.4. TEMPLATES 313

getMin

Type ABA_BHEAP<Type, Key>::getMin() const

Return Value:

The minimum element of the heap. This operation must not be performed if the heap is

empty.

getMinKey

Key ABA_BHEAP<Type, Key>::getMinKey() const

Return Value:

The key of the minimum element of the heap. This operation must not be performed if the

heap is empty.

extractMin

The function extractMin() accesses and removes the minimum element from the heap.

Type ABA_BHEAP<Type, Key>::extractMin()

Return Value:

The minimum element of the heap.

clear

The function clear() empties the heap.

void ABA_BHEAP<Type, Key>::clear()

size

int ABA_BHEAP<Type, Key>::size() const

Return Value:

The maximal number of elements which can be stored in the heap.

number

int ABA_BHEAP<Type, Key>::number() const

Return Value:

The number of elements in the heap.

empty

bool ABA_BHEAP<Type, Key>::empty() const

Return Value:

true

If there are no elements in the heap,

false

otherwise.

314 CHAPTER 6. REFERENCE MANUAL

realloc

The function realloc() changes the size of the heap.

void ABA_BHEAP<Type, Key>::realloc(int newSize)

Arguments:

newSize

The new maximal number of elements in the heap.

6.4.10 ABA BPRIOQUEUE

A priority queue is a data structure storing a set of elements. Each element has a key which must be an

ordered data type. The most important operations are the insertion of an element, the determination of

the element having the minimal key, and the deletion of the element having minimal key.

Since the priority queue is implemented by a heap (class ABA BHEAP) the insertion of a new element

and the deletion of the minimal element require O(logn) time if n elements are stored in the priority

queue. The element having minimal key can be determined in constant time.

To provide an e�cient implementation the priority queue is bounded, i.e., the maximal number of

elements is an argument of the constructor. However, if required, later a reallocation can be performed.

template<class Type, class Key>

class ABA_BPRIOQUEUE : public ABA_ABACUSROOT {

public:

ABA_BPRIOQUEUE(ABA_GLOBAL *glob, int size);

void insert(Type elem, Key key);

int getMin(Type &min) const;

int getMinKey(Key &minKey) const;

int extractMin(Type &min);

void clear();

int size() const;

int number() const;

void realloc(int newSize);

Constructor

The constructor of an empty priority queue.

ABA_BPRIOQUEUE<Type, Key>::ABA_BPRIOQUEUE(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding object.

size

The maximal number of elements the priority queue can hold without reallocation.

insert

The function insert() inserts an element in the priority queue.

void ABA_BPRIOQUEUE<Type, Key>::insert(Type elem, Key key)

Arguments:

elem

6.4. TEMPLATES 315

The element being inserted.

key

The key of the element.

getMin

The function getMin() retrieves the element with minimal key from the priority queue.

int ABA_BPRIOQUEUE<Type, Key>::getMin(Type &min) const

Return Value:

0

If the priority queue is non-empty,

1

otherwise.

Arguments:

min

If the priority queue is non-empty the minimal element is assigned to min.

getMinKey

The function getMinKey() retrieves the key of the minimal element in the priority queue.

int ABA_BPRIOQUEUE<Type, Key>::getMinKey(Key &minKey) const

Return Value:

0

If the priority queue is non-empty,

1

otherwise.

Arguments:

minKey

Holds after the call the key of the minimal element in the priority queue, if the

queue is non-emtpy.

extractMin

The function extractMin() extends the function getMin(min) in the way that the minimal element is

also removed from the priority queue.

int ABA_BPRIOQUEUE<Type, Key>::extractMin(Type& min)

Return Value:

0

If the priority queue is non-empty,

1

otherwise.

Arguments:

min

If the priority queue is non-empty the minimal element is assigned to min.

316 CHAPTER 6. REFERENCE MANUAL

clear

The function clear() makes the priority queue empty.

void ABA_BPRIOQUEUE<Type, Key>::clear()

size

int ABA_BPRIOQUEUE<Type, Key>::size() const

Return Value:

The maximal number of elements which can be stored in the priority queue.

number

int ABA_BPRIOQUEUE<Type, Key>::number() const

Return Value:

The number of elements stored in the priority queue.

realloc

The function realloc() increases the size of the priority queue. It is not allowed to decrease the size of

the priority queue. In this case an error message is output and the program stops.

void ABA_BPRIOQUEUE<Type, Key>::realloc(int newSize)

Arguments:

newSize

The new size of the priority queue.

6.4.11 ABA HASH

This data structure stores a set of items and provides as central functions the insertion of a new item,

the search for an item, and the deletion of an item.

Each item is associated with a key. The set of all possible keys is called the universe. A hash table

has a �xed size n. A hash function assigns to each key of the universe a number in f0; : : : ; n� 1g, which

we denote slot. If an item is inserted in the hash table, then it is stored in the component of the array

associated with its slot. Usually, n is much smaller than the cardinality of the universe. Hence, it can

happen that two elements are mapped to the same slot. This is called a collision. In order to resolve

collisions, each slot of the hash table does not store an item explicitly, but is the start of a linear list

storing all items mapped to this slot.

This template implements a hash table where collisions are resolved by chaining. Currently hash

functions for keys of type int and ABA STRING are implemented. If you want to use this data structure

for other types (e.g., YOURTYPE), you should derive a class from the class ABA HASH and de�ne a hash

function int hf(YOURTYPE key).

template <class KeyType, class ItemType>

class ABA_HASH : public ABA_ABACUSROOT {

public:

ABA_HASH(ABA_GLOBAL *glob, int size);

~ABA_HASH();

friend ostream &operator<<(ostream &out,

const ABA_HASH<KeyType, ItemType> &hash);

6.4. TEMPLATES 317

void insert(const KeyType &newKey, const ItemType &newItem);

void overWrite(const KeyType &newKey, const ItemType &newItem);

ItemType *find(const KeyType &key);

bool find(const KeyType &key, const ItemType &item);

ItemType *initializeIteration(const KeyType &key);

ItemType *next(const KeyType &key);

int remove(const KeyType &key);

int remove(const KeyType &key, const ItemType &item);

int size() const;

int nCollisions() const;

void resize(int newSize);

private:

ABA_HASH(const ABA_HASH &rhs);

ABA_HASH &operator=(const ABA_HASH &rhs);

};

Constructor

ABA_HASH<KeyType, ItemType>::ABA_HASH(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

The size of the hash table.

Destructor

ABA_HASH<KeyType, ItemType>::~ABA_HASH()

Output Operator

The output operator writes row by row all elements stored in the list associated with a slot on an output

stream.

ostream &operator<<(ostream &out, const ABA_HASH<KeyType, ItemType> &hash)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The hash table being output.

318 CHAPTER 6. REFERENCE MANUAL

insert

The function insert() adds an item to the hash table.

void ABA_HASH<KeyType, ItemType>::insert(const KeyType &key,

const ItemType &item)

Arguments:

key

The key of the new item.

item

The item being inserted.

overWrite

The function overWrite() performs a regular insert() if there is no item with the same key in the hash

table, otherwise the item is replaced by the new item.

void ABA_HASH<KeyType, ItemType>::overWrite(const KeyType &key,

const ItemType &item)

Arguments:

key

The key of the new item.

item

The item being inserted.

�nd

The function find() looks for an item in the hash table with a given key.

ItemType * ABA_HASH<KeyType, ItemType>::find(const KeyType &key)

Return Value:

A pointer to an item with the given key, or a 0-pointer if there is no item with this key in the

hash table. If there is more than one item in the hash table with this key, a pointer to the

�rst item found is returned.

Arguments:

key

The key of the searched item.

�nd

This version of the function find() checks if a prespeci�ed item with a prespeci�ed key is contained in

the hash table.

bool ABA_HASH<KeyType, ItemType>::find (const KeyType &key, const ItemType &item)

Return Value:

true

If there is an element (key, item) in the hash table,

6.4. TEMPLATES 319

false

otherwise.

Arguments:

key

The key of the item.

item

The searched item.

initializeIteration

The functions initializeIteration() and next() can be used to iterate through all items stored in

the hash table having the same key. The function initializeIteration() retrieves the �rst item. The

function next() can be used to go to the next item having this key.

template <class KeyType, class ItemType>

ItemType *ABA_HASH<KeyType, ItemType>::initializeIteration(const KeyType &key)

Return Value:

A pointer to the �rst item found in the hash table having key key, or 0 if there is no such

item.

Arguments:

key

The key of the items through which we want to iterate.

next

The function next() can be used to go to the next item in the hash table with key key. Before the �rst

call of next() for a certain can the iteration has to be initialized by calling initializeItaration().

Note, the function next() gives you the next item having key key but not the next item in the linked

list starting in a slot of the hash table.

template <class KeyType, class ItemType>

ItemType *ABA_HASH<KeyType, ItemType>::next(const KeyType &key)

Return Value:

A pointer to the next item having key key, or 0 if there is no more item with this key in the

hash table.

Arguments:

key

The key of the items through which we want to iterate.

320 CHAPTER 6. REFERENCE MANUAL

remove

The function remove() removes the �rst item with a given key from the hash table.

int ABA_HASH<KeyType, ItemType>::remove(const KeyType &key)

Return Value:

0

If an item with the key is found.

1

If there is no item with this key.

Arguments:

key

The key of the item that should be removed.

remove

This version of the function remove() removes the �rst item with a given key and a prespeci�ed element

from the hash table.

int ABA_HASH<KeyType, ItemType>::remove(const KeyType &key, const ItemType &item)

Return Value:

0

If an item with the key is found.

1

If there is no item with this key.

Arguments:

key

The key of the item that should be removed.

item

The item which is searched.

size

int ABA_HASH<KeyType, ItemType>::size() const

Return Value:

The length of the hash table.

nCollisions

int ABA_HASH<KeyType, ItemType>::nCollisions() const

Return Value:

The number of collisions which occurred during all previous calls of the functions insert()

and overWrite().

6.4. TEMPLATES 321

resize

The function resize() can be used to change the size of the hash table.

void ABA_HASH<KeyType, ItemType>::resize(int newSize)

Arguments:

newSize

The new size of the hash table (must be positive).

6.4.12 ABA DICTIONARY

The data structure dictionary is a collection of items with keys. It provides the operations to insert pairs

of keys and items and to look up an item given some key.

template <class KeyType, class ItemType>

class ABA_DICTIONARY : public ABA_ABACUSROOT {

public:

ABA_DICTIONARY(ABA_GLOBAL *glob, int size);

friend ostream &operator<<(ostream &out,

const ABA_DICTIONARY<KeyType, ItemType> &rhs);

void insert(const KeyType &key, const ItemType &item);

ItemType *lookUp(const KeyType &key);

private:

ABA_DICTIONARY(const ABA_DICTIONARY<KeyType, ItemType> &rhs);

const ABA_DICTIONARY &operator=(const ABA_DICTIONARY<KeyType, ItemType> &rhs);

};

Constructor

ABA_DICTIONARY<KeyType, ItemType>::ABA_DICTIONARY(ABA_GLOBAL *glob, int size)

Arguments:

glob

A pointer to the corresponding global object.

size

The size of the hash table implementing the dictionary.

Output Operator

The output operator writes the hash table implementing the dictionary on an output stream.

ostream &operator<<(ostream &out, const ABA_DICTIONARY<KeyType, ItemType> &rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The hash table being output.

322 CHAPTER 6. REFERENCE MANUAL

insert

The function insert() adds the item together with a key to the dictionary.

void ABA_DICTIONARY<KeyType, ItemType>::insert(const KeyType &key,

const ItemType &item)

Arguments:

key

The key of the new item.

item

The new item.

lookUp

ItemType* ABA_DICTIONARY<KeyType, ItemType>::lookUp(const KeyType &key)

Return Value:

A pointer to the item associated with key in the ABA DICTIONARY, or 0 if there is no such

item.

Arguments:

key

The key of the searched item.

6.5 Tools

This section documents some tools for sorting objects, measuring time, and generating output.

6.5.1 ABA SORTER

This class implements several functions for sorting arrays according to increasing keys. We encapsulate

these functions in order to avoid name conicts. Moreover, instead of local variables in the sorting

functions we can provide within the class variables for swapping in order to speed up the sorting.

The sorting functions do not keep the elements of the array storing the keys in place but resort it in

parallel with the array storing the items.

template <class ItemType, class KeyType>

class ABA_SORTER : public ABA_ABACUSROOT {

public:

ABA_SORTER (ABA_GLOBAL *glob);

void quickSort(int n, ABA_ARRAY<ItemType> &items, ABA_ARRAY<KeyType> &keys);

void quickSort(ABA_ARRAY<ItemType> &items, ABA_ARRAY<KeyType> &keys,

int left, int right);

void heapSort(int n, ABA_ARRAY<ItemType> &items, ABA_ARRAY<KeyType> &keys);

Constructor

ABA_SORTER<ItemType, KeyType>::ABA_SORTER(ABA_GLOBAL *glob)

Arguments:

glob

A pointer to the corresponding global object.

6.5. TOOLS 323

quickSort

The function quickSort() sorts the elements of an array of n items according to their keys. This function

is very e�cient for many practical applications. Yet, has a worst case running time of O(n

2

).

void ABA_SORTER<ItemType, KeyType>::quickSort(int n,

ABA_ARRAY<ItemType> &items,

ABA_ARRAY<KeyType> &keys)

Arguments:

n

The number of elements being sorted.

items

The items being sorted.

keys

The keys of the sorted items.

quickSort

This version of the function quickSort() sorts an partial array.

void ABA_SORTER<ItemType, KeyType>::quickSort(ABA_ARRAY<ItemType> &items,

ABA_ARRAY<KeyType> &keys,

int left,

int right)

Arguments:

items

The items being sorted.

keys

The keys of the items.

left

The �rst item in the partial array being sorted.

right

The last item in the partial array being sorted.

heapSort

The function heapSort() sorts an array of n items according to their keys. In many practical applications

this function is inferior to quickSort(), although it has the optimal worst case running time of O(n logn).

void ABA_SORTER<ItemType, KeyType>::heapSort(int n,

ABA_ARRAY<ItemType> &items,

ABA_ARRAY<KeyType> &keys)

Arguments:

n

The number of items being sorted.

items

The items being sorted.

keys

The keys of the items.

324 CHAPTER 6. REFERENCE MANUAL

6.5.2 ABA TIMER

This class implements a base class for timers measuring the CPU time (class ABA CPUTIMER) and the

wall-clock time (class ABA COWTIMER).

class ABA_TIMER : public ABA_ABACUSROOT {

public:

friend ostream& operator<<(ostream& out, const ABA_TIMER& rhs);

void start();

void stop();

void reset();

bool running() const;

long centiSeconds() const;

long seconds() const;

long minutes() const;

long hours() const;

bool exceeds(const ABA_STRING &maxTime) const;

protected:

virtual long theTime() const = 0;

ABA_GLOBAL *glob_;

};

glob

ABA GLOBAL *glob

A pointer to the corresponding global object.

Output Operator

The output operator writes the time in the format hours:minutes:seconds.seconds/100 on an output

stream.

ostream& operator<<(ostream& out, const ABA_TIMER& rhs)

Return Value:

A reference to the output stream.

Arguments:

out

The output stream.

rhs

The timer being output.

start

The timer is started with the function start(). For safety starting a running timer is an error.

void ABA_TIMER::start()

6.5. TOOLS 325

stop

The function stop() stops the timer and adds the di�erence between the current time and the starting

time to the total time. Stopping a non-running timer is an error.

void ABA_TIMER::stop()

reset

The function reset() stops the timer and sets the totalTime to 0.

void ABA_TIMER::reset()

running

bool ABA_TIMER::running() const

Return Value:

true

If the timer is running,

false

otherwise.

centiSeconds

long ABA_TIMER::centiSeconds() const

Return Value:

The currently spent time in

1

100

-seconds. It is not necessary to stop the timer to get the

correct time.

seconds

long ABA_TIMER::seconds() const

Return Value:

The currently spent time in seconds. It is not necessary to stop the timer to get the correct

time. The result is rounded down to the next integer value.

minutes

long ABA_TIMER::minutes() const

Return Value:

The currently spent time in minutes. It is not necessary to stop the timer to get the correct

time. The result is rounded down to the next integer value.

hours

long ABA_TIMER::hours() const

Return Value:

The currently spent time in hours. It is not necessary to stop the timer to get the correct

time. The result is rounded down to the next integer value.

326 CHAPTER 6. REFERENCE MANUAL

exceeds

bool ABA_TIMER::exceeds(const ABA_STRING &maxTime) const

Return Value:

true

If the currently spent time exceeds maxTime,

false

otherwise.

Arguments:

maxTime

A string of the form [[h:]m:]s, where h are the hours, m the minutes, and s the

seconds. Hours and minutes are optional. h can be an arbitrary nonnegative integer,

s and m have to be integers in f0; : : : ; 59g. If m or s are less than 10, then a leading

0 is allowed (e.g. 3:05:09).

theTime

The function theTime() is required for measuring the time di�erence between the time of the call and

some base point (e.g., the program start). It is a pure virtual function because in derived classes di�erent

implementation for elapsed time and CPU time are required.

virtual long theTime() const = 0

Return Value:

The time since some base point (e.g., the program start for the cpu time) in

1

100

seconds.

6.5.3 ABA CPUTIMER

This class derived from ABA TIMER implements a timer measuring the cpu time of parts of a program.

class ABA_CPUTIMER : public ABA_TIMER {

public:

ABA_CPUTIMER(ABA_GLOBAL *glob);

ABA_CPUTIMER(ABA_GLOBAL *glob, long centiSeconds);

virtual ~ABA_CPUTIMER();

};

Constructor

After the application of the constructor the timer is not running, i.e., to measure time it has to be started

explicitly.

ABA_CPUTIMER::ABA_CPUTIMER(ABA_GLOBAL *glob)

Arguments:

glob

A pointer to a global object.

6.5. TOOLS 327

Constructor

This constructor initializes the total time of the timer. The timer is not running, too.

ABA_CPUTIMER::ABA_CPUTIMER(ABA_GLOBAL *glob, long centiSeconds)

Arguments:

glob

A pointer to a global object.

centiSeconds

The intial value of the total time in

1

100

seconds.

Destructor (virtual)

ABA_CPUTIMER::~ABA_CPUTIMER()

6.5.4 ABA COWTIMER

This class derived from ABA TIMER implements a timer measuring the elpased time (clock-of-the-wall

time) of parts of the program.

class ABA_COWTIMER : public ABA_TIMER {

public:

ABA_COWTIMER(ABA_GLOBAL *glob);

ABA_COWTIMER(ABA_GLOBAL *glob, long secs);

virtual ~ABA_COWTIMER();

};

Constructor

After the application of the constructor the timer is not running, i.e., to measure time it has to be started

explicitly.

ABA_COWTIMER::ABA_COWTIMER(ABA_GLOBAL *glob)

Arguments:

glob

A pointer to a global object.

Constructor

This constructor initializes the total time of the timer. The timer is not running, too.

ABA_COWTIMER::ABA_COWTIMER(ABA_GLOBAL *glob, long centiSeconds)

Arguments:

glob

A pointer to a global object.

centiSeconds

The initial value of the timer in

1

100

seconds.

Destructor (virtual)

ABA_COWTIMER::~ABA_COWTIMER()

328 CHAPTER 6. REFERENCE MANUAL

Constructor

The constructor turns the output on and associates it with a \real" stream.

ABA_OSTREAM::ABA_OSTREAM(ostream &out, const char *logStreamName)

Arguments:

out

The \real" stream (usually cout or cerr.)

logStreamName

If logStreamName is not 0, then the output also directed to a log-�le with this name.

The default value of logStreamName is 0.

Destructor

ABA_OSTREAM::~ABA_OSTREAM()

Output Operators

We reimplement the output operator << for all fundamental types, for const char *, and for some other

classes listed below. If the output is turned on the operator of the base class ostream is called. If also

the output to the log�le is turned on, we write the same message also to the log-�le.

ABA_OSTREAM& ABA_OSTREAM::operator<<(char o)

Return Value:

A reference to the output stream.

Arguments:

o

The item being output.

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(unsigned char o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(signed char o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(short o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(unsigned short o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(int o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(unsigned int o)

6.5. TOOLS 329

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(long o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(unsigned long o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(float o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(double o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(const char *o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(const ABA_STRING &o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(const ABA_TIMER &o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(const ABA_HISTORY &o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(const ABA_LP &o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(const ABA_LPVARSTAT &o)

Output Operators

ABA_OSTREAM& ABA_OSTREAM::operator<<(const ABA_CSENSE &o)

Manipulator

A manipulator is a function having as argument a reference to an ABA OSTREAM and returning an

ABA OSTREAM. Manipulators are used that we can call, e.g., the function endl(o) by just writing its

name omitting brackets and the function argument.

ABA_OSTREAM& ABA_OSTREAM::operator<<(ABA_OSTREAM_MANIP m)

Return Value:

A reference to the output stream.

Arguments:

m

An output stream manipulator.

330 CHAPTER 6. REFERENCE MANUAL

o�

The function off() turns the output o�.

void ABA_OSTREAM::off()

on

The function on() turns the output on.

void ABA_OSTREAM::on()

logOn

The function logOn() turns the output to the log�le on.

void ABA_OSTREAM::logOn()

logOn

This version of logOn() turns the output to the log�le on and sets the log-�le to logStreamName.

void ABA_OSTREAM::logOn(const char *logStreamName)

Arguments:

logStreamName

The name of the log-�le.

logO�

The function logOff() turns the output to the log�le o�.

void ABA_OSTREAM::logOff()

log

ofstream* ABA_OSTREAM::log() const

Return Value:

A pointer to the stream associated with the log-�le.

setFormatFlag

The function setFormatFlag() can be used to set the format ags of the output stream and the log �le

similar to the function ios::set() of the iostream library. For a documentation of all possible ags we

refer to the documentation of the GNU C++ Iostream Library.

#ifdef ABACUS_COMPILER_VISUAL_CPP

void ABA_OSTREAM::setFormatFlag(long flag)

#else

void ABA_OSTREAM::setFormatFlag(fmtflags flag)

#endif

Arguments:

flag

The ag being set.

6.5. TOOLS 331

isOn

bool ABA_OSTREAM::isOn() const

Return Value:

true

If the output is turned on,

false

otherwise.

isLogOn

bool ABA_OSTREAM::isLogOn() const

Return Value:

true

If the output to the log�le is turned on,

false

otherwise.

ush

The function flush() ushes the output and the log stream bu�ers of the stream o. This function can

be called via the manipulator o << flush;.

ABA_OSTREAM& flush(ABA_OSTREAM &o)

Return Value:

A reference to the output stream.

Arguments:

o

An output stream.

endl

The function endl() writes an end of line to the output and log-�le of the stream o and ushes both

stream bu�ers. This function can be called via the manipulator o << endl;.

ABA_OSTREAM& endl(ABA_OSTREAM &o)

Return Value:

A reference to the output stream.

Arguments:

o

An output stream.

332 CHAPTER 6. REFERENCE MANUAL

setWidth

The function setWidth() sets the width of the �eld for the next output operation on the log and the

output stream.

In most cases the manipulator setWith is more convenient to use.

ABA_OSTREAM& _setWidth(ABA_OSTREAM &o, int w)

Return Value:

A reference to the output stream.

Arguments:

o

An output stream.

w

The width of the �eld.

setPrecision

The function setPrecision() sets the precision for the output stream.

In most cases the manipulator setPrecision is more convenient to use.

ABA_OSTREAM& _setPrecision(ABA_OSTREAM &o, int p)

Return Value:

A reference to the output stream.

Arguments:

o

An output stream.

p

The precision.

setWidth

The function setWidth can be used for output streams of the class ABA OSTREAM as the function setw for

the class ostream, e.g.:

master ->out() << setw(10) << x << endl;

ABA_OSTREAM_MANIP_INT setWidth(int p)

Return Value:

A manipulator object with the function setWidth().

Arguments:

p

The width of the output �eld.

6.6. PREPROCESSOR FLAGS 333

setPrecision

The function setWidth can be used for output streams of the class ABA OSTREAM in the same way as the

function setprecision for the class ostream, e.g.:

master ->out() << setprecision(10) << x << endl;

ABA_OSTREAM_MANIP_INT setPrecision(int p)

Return Value:

A manipulator object with the function setPrecision().

Arguments:

p

The precision for the output stream.

6.6 Preprocessor Flags

Table 6.1 summarizes all preprocessors ags the are relevant for ABACUS-users.

Flag Description See Section

ABACUS LP CPLEX22 LP-solver Cplex 2.2 2.4.1

ABACUS LP CPLEX30 LP-solver Cplex 3.0 2.4.1

ABACUS LP CPLEX40 LP-solver Cplex 4.0 2.4.1

ABACUS OLD INCLUDE old include �le search path of ABACUS 3.3

ABACUS OLD NAMES old naming conventions of ABACUS 3.2

ABACUS COMPILER GCC GNU C++ compiler 2.8

ABACUS COMPILER VISUAL CPP Visual C++ compiler 2.8

ABACUS SOPLEX LP-solver SoPlex 2.4.2

ABACUS SYS AIX Operating System AIX 2.2

ABACUS SYS IRIX Operating System IRIX 2.2

ABACUS SYS LINUX Operating System Linux 2.2

ABACUS SYS OSF Operating System OSF 2.2

ABACUS SYS HP Operating System HP-UX 2.2

ABACUS SYS SUNOS4 Operating System SUNOS 4.* 2.2

ABACUS SYS SUNOS5 Operating System SUNOS 5.* 2.2

ABACUS SYS WINNT Operating System Windows NT 2.2

Table 6.1: Preprocessor Flags.

334 CHAPTER 6. REFERENCE MANUAL

Chapter 7

Warranty and Copyright

7.1 Warranty

All parts of ABACUS, including the software, the example, and the user's guide and reference manual,

are distributed without any warranty. The entire risk of ABACUS is with its user.

7.2 Copyright

ABACUS may be used freely for non-commercial applications by universities and public research or-

ganizations. However, a valid license code is required. ABACUS may only be used on machines for

which a license code has been assigned according to section 2.6. For commercial licenses please contact

us directly.

335

336 CHAPTER 7. WARRANTY AND COPYRIGHT

Bibliography

[ASC95] INFORMATION PROCESSING SYSTEM Accredited Standards Committee, X3. The

ISO/ANSI C++ Draft, 1995. http://www.cygnus.com/misc/wp/.

[Bay72] R. Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta Infor-

matica, 1:290{306, 1972.

[BCC93a] Egon Balas, Sebastian Ceria, and Gerard Cornuejols. A lift-and-project cutting plane algo-

rithm for mixed 0-1 programs. Mathematical Programming, 58:295{324, 1993.

[BCC93b] Egon Balas, Sebastian Ceria, and Gerard Cornuejols. Solving mixed 0-1 programs by a lift-

and-project method. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 232{242, 1993.

[BJN

+

97] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh, and

Pamela H. Vance. Branch-and-price: Column generation for huge integer programs. Operations

Research, 1997. to appear.

[Boo94] G. Booch. Object-oriented analysis and design with applications. The Benjamin Cummings

Publishing Company, Redwood City, California, 1994.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. MIT Press, Cam-

bridge, 1990.

[Cpl94] Cplex. Using the Cplex Callable Library and Cplex Mixed Integer Library. Cplex Optimization,

Inc, 1994.

[Cpl95] Cplex. Using the Cplex Callable Library. Cplex Optimization, Inc, 1995.

[ES92] M.A. Ellis and B. Stroustrup. The annotated C++ reference manual. AddisonWesley, Reading,

Massachusetts, 1992.

[GS78] L.J. Guibas and R. Sedgewick. A diochromatic framework for balanced trees. In Proceedings of

the 19th annual symposium on foundations of computer science, pages 8{21. IEEE Computer

Society, 1978.

[HP93] Karla Ho�man and Manfred W. Padberg. Solving airline crew scheduling problems by branch-

and-cut. Management Science, 39:657{682, 1993.

[JRT94] Michael J�unger, Gerhardt Reinelt, and Stefan Thienel. Provably good solutions for the trav-

eling salesman problem. Zeitschrift f�ur Operations Research, 40:183{217, 1994.

[JRT95] Michael J�unger, Gerhardt Reinelt, and Stefan Thienel. Practical problem solving with cutting

plane algorithms in combinatorial optimization. In Willian Cook, L�azl�o Lov�asz, and Paul

Seymour, editors, Combinatorial Optimization, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, pages 111{152. American Mathematical Society, 1995.

[KM90] T. Korson and J.D. McGregor. Understanding object-oriented: A unifying paradigm. Com-

munications of the ACM, 33(9):40{60, 1990.

337

338 BIBLIOGRAPHY

[Knu93] Donald E. Knuth. The Stanford GraphBase: a platform for combinatorial computing. Addison-

Wesley, Reading, Massachusetts, 1993.

[Lei95] Sebastian Leipert. Vbctool|a graphical interface for visualization of branch-and-cut

algorithms. Technical report, Institut f�ur Informatik, Universit�at zu K�oln, 1995.

http://www.informatik.uni-koeln.de/ls juenger/projects/vbctool.html.

[PR91] Manfred W. Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM Review, 33:60{100, 1991.

[RF81] D.M. Ryan and B.A. Foster. An integer programming approach to scheduling. In A. Wren,

editor, Computer scheduling of public transport urban passenger vehicle and crew scheduling,

pages 269{280. North Holland, Amsterdam, 1981.

[Sav94] Martin W.P. Savelsbergh. Preprocessing and probing for mixed integer programming problems.

ORSA Journal on Computing, 6:445{454, 1994.

[Str93] B. Stroustrup. The C++ programming language|2nd edition. Addison-Wesley, Reading,

Massachusetts, 1993.

[Thi95] Stefan Thienel. ABACUS|A Branch-And-CUt System. PhD thesis, Universit�at zu K�oln,

1995.

[VBJN94] Pamela H. Vance, Cynthia Barnhart, Ellis J. Johnson, and George L. Nemhauser. Solving

binary cutting stock problems by column generation and branch-and-bound. Computational

Optimization and Applications, 3:111{130, 1994.

[Wun97] Roland Wunderling. Soplex, the sequential object-oriented simplex class library.

Technical report, Konrad Zuse Zentrum f�ur Informationstechnik, Berlin, 1997.

http://www.zib.de/Optimization/Software/Soplex/.

Index

All names set in typewriter style refer to C++

names, �le names, or names in the con�gura-

tion �le. In particular, all names of the reference

manual are written in typewriter style. Members

of classes are sub entries of their classes.

�-inequalities, 24

�-inequalities, 24

-fno-implicit-templates, 77

.abacus, 5, 66, 75

.abacusLicense, 6

ABA ABACUSROOT, 16, 17, 79

Destructor, 80

exit, 80

EXITCODES, 80

fracPart, 81

onOff, 80

ABA ACTIVE, 21, 264

Constructor, 265

Copy Constructor, 266

Destructor, 266

insert, 267

max, 266

number, 266

Output Operator, 266

poolSlotRef, 267

realloc, 267

remove, 267

Subscript Operator, 266

ABA ARRAY, 34, 289

Assignment Operator, 291

Constructor, 290

copy, 292

Copy Constructor, 290

Destructor, 290

leftShift, 292

Output Operator, 291

realloc, 293

set, 293

size, 293

Subscript Operator, 291, 292

ABA BHEAP, 34, 311

clear, 313

Constructor, 312

empty, 313

extractMin, 313

getMin, 313

getMinKey, 313

insert, 312

number, 313

Output Operator, 312

realloc, 314

size, 313

ABA BOUNDBRANCHRULE, 33, 53, 227

Constructor, 227

Destructor, 228

extract, 228

lBound, 229

Output Operator, 228

uBound, 229

variable, 229

ABA BPRIOQUEUE, 35, 314

clear, 316

Constructor, 314

extractMin, 315

getMin, 315

getMinKey, 315

insert, 314

number, 316

realloc, 316

size, 316

ABA BRANCHRULE, 33, 53, 55, 223

branchOnSetVar, 224

Constructor, 224

Destructor, 224

extract, 58, 59, 224

initialize, 225

master , 223

unExtract, 225

ABA BSTACK, 309

Constructor, 309

empty, 310

full, 310

Output Operator, 309

pop, 311

push, 310

realloc, 311

339

340 INDEX

size, 309

top, 310

tos, 310

ABA BUFFER, 34, 294

Assignment Operator, 295

clear, 296

Constructor, 294

Copy Constructor, 294

Destructor, 294

empty, 296

full, 296

leftShift, 297

number, 296

Output Operator, 295

pop, 296

push, 296

realloc, 297

size, 295

Subscript Operator, 295

ABA COLUMN, 23, 248

Constructor, 249, 250

copy, 251

Destructor, 250

lBound, 251

obj, 250, 251

Output Operator, 250

uBound, 251

ABA COLVAR, 25, 41, 261

coeff, 264

column, 264

column , 262

Constructor, 262, 263

Destructor, 263

Output Operator, 263

print, 264

ABA CONBRANCHRULE, 33, 53, 54, 231

constraint, 232

Constructor, 231

Destructor, 231

extract, 232

initialize, 232

Output Operator, 231

ABA CONSTRAINT, 16, 23, 40, 168

coeff, 169

conClass , 169

Constructor, 169, 170

Copy Constructor, 170

Destructor, 170

distance, 173

genRow, 51, 171

liftable, 171

liftable , 169

printRow, 173

rhs, 170

rhs , 168

sense, 170

sense , 168

slack, 51, 172

valid, 171

violated, 51, 172

voidLhsViolated, 173

ABA CONVAR, 162

compress, 166

expand, 166

active, 164

compress, 50, 166

Constructor, 164

Destructor, 164

dynamic, 165

dynamic , 163

equal, 167

expand, 50, 166

expanded, 166

expanded , 163

global, 165

hashKey, 167

local, 165

local , 164

master , 163

nActive , 164

name, 167

nLocks , 164

nReferences , 163

print, 166

sub, 165

sub , 163

ABA COWTIMER, 37, 327

Constructor, 327

Destructor, 327

ABA CPLEXIF, 29, 211

Constructor, 212

cplexEnv, 65, 216

cplexLp, 216

cplexLpcplexLp, 65

CPXgetdblparam, 214

CPXgetintparam, 215

CPXsetdblparam, 215

CPXsetintparam, 215

Destructor, 213

iterationInformation, 214

print, 216

setdpriind, 214

setppriind, 214

ABA CPUTIMER, 37, 326

Constructor, 326, 327

Destructor, 327

INDEX 341

ABA CSENSE, 183

Assignment Operator, 184

Constructor, 183, 184

Output Operator, 184

SENSE, 183

sense, 184, 185

ABA CUTBUFFER, 32, 268

Constructor, 268

Destructor, 268

insert, 269

number, 268

remove, 270

size, 268

slot, 269

space, 269

ABA DICTIONARY, 35, 321

Constructor, 321

insert, 322

lookUp, 322

Output Operator, 321

ABA DLIST, 34, 302

append, 303

Constructor, 303

Destructor, 303

empty, 304

extractHead, 304

firstElem, 305

forAllDListElem, 302

Output Operator, 303

remove, 304

removeHead, 304

ABA DLISTITEM, 301

Constructor, 301

elem, 302

Output Operator, 301

pred, 302

succ, 302

ABA FASTSET, 35

ABA FASTSET, 284

Constructor, 284

unionSets(), 284

ABA FIXCAND, 18, 33, 272

Constructor, 273

Destructor, 273

ABA FSVARSTAT, 60, 187

Constructor, 188, 189

contradiction, 191, 192

fixed, 191

fixedOrSet, 191

Output Operator, 189

set, 191

STATUS, 188

status, 189, 190

value, 190

ABA GLOBAL, 18, 81

Constructor, 81

Destructor, 82

enter, 85

eps, 83

equal, 85

err, 59, 83

infinity, 84

isInfinity, 84

isInteger, 85

isMinusInfinity, 84

machineEps, 83

out, 59, 82

Output Operator, 82

ABA HASH, 35, 316

Constructor, 317

Destructor, 317

find, 318

initializeIteration, 319

insert, 318

nCollisions, 320

next, 319

Output Operator, 317

overWrite, 318

remove, 320

resize, 321

size, 320

ABA HISTORY, 34, 275

Constructor, 275

Output Operator, 275

update, 275

ABA INFEASCON, 270

constraint, 271

Constructor, 270

goodVar, 271

INFEAS, 270

infeas, 271

ABA LIST, 34, 298

appendHead, 300

appendTail, 300

Constructor, 299

Destructor, 299

empty, 301

extractHead, 300

firstElem, 300

forAllListElem, 299

Output Operator, 299

ABA LISTITEM, 297

Constructor, 297

elem, 298

Output Operator, 298

succ, 298

342 INDEX

ABA LP, 29, 197

addCols, 202

addRows, 201

barXVal, 206

barXValStatus, 207

basisStatus, 207

changeLBound, 202

changeRhs, 202

changeUBound, 203

colRangeCheck, 210

colRealloc, 202

colsNnz, 209

Constructor, 199

Destructor, 199

getInfeas, 208

getSimplexIterationLimit, 211

infeasible, 208

initialize, 199, 200

lBound, 204

loadBasis, 201

lpVarStat, 208

maxCol, 204

maxRow, 204

METHOD, 199

nCol, 204

nnz, 204

nOpt, 208

nRow, 203

obj, 204

optimize, 201

OPTSTAT, 198

Output Operator, 210

pivotSlackVariableIn, 203

reco, 206

recoStatus, 207

remCols, 202

remRows, 201

rhs, 205

row, 205

rowRangeCheck, 210

rowRealloc, 201

rows2cols, 209

sense, 203

setSimplexIterationLimit, 211

slack, 206

slackStat, 209

slackStatus, 207

SOLSTAT, 199

uBound, 205

value, 205

writeBasisMatrix, 210

xVal, 205

xValStatus, 206

yVal, 206

yValStatus, 207

ABA LPSUB, 30, 218

barXVal, 220

Constructor, 219

Destructor, 219

getInfeas, 221

infeasCon, 221

infeasible, 221

initialize, 219

lBound, 220

loadBasis, 222

lpVarStat, 221

reco, 220

trueNCol, 219

trueNnz, 219

uBound, 220

value, 220

xVal, 220

ABA LPSUBCPLEX, 30, 222

Constructor, 222

Destructor, 222

ABA LPSUBSOPLEX, 222

Constructor, 223

Destructor, 223

ABA SUBSOPLEX, 30

ABA LPVARSTAT, 192

atBound, 194

basic, 195

Constructor, 193

Output Operator, 194

STATUS, 192

status, 194

ABA MASTER, 16{18, 41, 86

bestFirstSearch, 95

betterDual, 99

betterPrimal, 47, 99

BRANCHINGSTRAT, 91

branchingStrategy, 113, 114

branchingTime, 104

breadthFirstSearch, 97

check, 101

conElimEps, 112, 113

CONELIMMODE, 91

conElimMode, 112

conPool, 102

constraintPoolSeparation, 49

Constructor, 41, 92

cplexDualPricing, 107

cplexOutputLevel, 108

cplexPrimalPricing, 107

cutPool, 102

cutting, 103

INDEX 343

dbThreshold, 118

defaultLpSolver, 114

delayedBranching, 118

depthFirstSearch, 96

Destructor, 93

diveAndBestFirstSearch, 97

dualBound, 98

eliminateFixedSet, 110

enumerationStrategy, 52, 95, 113

ENUMSTRAT, 90

equalSubCompare, 53, 96

feasibleFound, 100

firstSub, 92

fixSetByRedCost, 106

getParameter, 76, 105, 106

guarantee, 100

guaranteed, 100

highestLevel, 104

history, 102

improveTime, 104

initializeOptimization, 49

initializeOptimization, 42, 64, 93

initializeParameters, 76, 105

initializePools, 42, 49, 93, 94

intializeOptSense, 95

knownOptimum, 101

logLevel, 117, 118

lowerBound, 98

lpSolverTime, 103

lpTime, 103

maxConAdd, 108

maxConBuffered, 108, 109

maxCowTime, 116

maxCowtime, 116

maxCpuTime, 115, 116

maxIterations, 109, 110

maxLevel, 115

maxVarAdd, 109

maxVarBuffered, 109

minDormantRound, 119

minDormantRounds, 119

nBranchingVariableCandidates, 114

nbranchingVariableCandidates, 115

newRootReOptimize, 111

nLp, 104

nNewRoot, 105

nSub, 104

nSubSelected, 105

objInteger, 64, 116

openSub, 102

optimize, 48, 93

optimumFileName, 110

optSense, 102

OUTLEVEL, 90

outLevel, 117

output, 64, 101

pbMode, 119

pricing, 103

pricingFreq, 119

pricingTime, 104

primalBound, 47, 98

PRIMALBOUNDMODE, 91

primalViolated, 99

printGuarantee, 101

printLP, 106, 107

printParameters, 106

problemName, 102

readParameters, 105

requiredGuarantee, 115

root, 100

rRoot, 100

separateseparate, 49

separationTime, 104

showAverageCutDistance, 111

skipFactor, 120

SKIPPINGMODE, 91

skippingMode, 120

soPlexRowRep, 114

STATUS, 89

tailOffNLp, 116, 117

tailOffPercent, 117

terminateOptimization, 64, 95

totalCowTime, 103

totalTime, 103

upperBound, 98

varElimEps, 113

VARELIMMODE, 92

varElimMode, 112

varPool, 102

vbcLog, 111, 112

VBCMODE, 92

ABA NONDUPLPOOL, 11, 50, 239

Constructor, 240

Destructor, 240

increase, 241

insert, 240

present, 240

statistics, 241

ABA NUMCON, 41, 252

coeff, 253

Constructor, 252

Destructor, 253

number, 254

Output Operator, 253

print, 253

ABA NUMVAR, 41, 257

344 INDEX

Constructor, 257

Destructor, 258

number, 258

numvar , 257

Output Operator, 258

ABA OPENSUB, 18, 31, 271

Constructor, 272

dualBound, 272

emtpy, 272

number, 272

ABA OPTSENSE, 181

Constructor, 181

max, 182

min, 182

Output Operator, 181

SENSE, 181

sense, 182

unknown, 182

ABA OSTREAM, 36

setPrecision, 332

setWidth, 332

Constructor, 328

Destructor, 328

endl, 331

flush, 331

isLogOn, 331

isOn, 331

log, 330

logOff, 330

logOn, 330

Manipulator, 329

off, 330

on, 330

Output Operators, 328, 329

setFormatFlag, 330

setPrecision, 333

setWidth, 332

ABA POOL, 232

Constructor, 235

Destructor, 235

getSlot, 234

hardDeleteConVar, 236

insert, 234

master , 233

number, 236

number , 233

putSlot, 235

RANKING, 233

removeConVar, 235

separate, 233

softDeleteConVar, 235

ABA POOLSLOT, 27, 241

Constructor, 242, 243

conVar, 242, 244

Copy Constructor, 243

Destructor, 242, 243

Output Operator, 243

slot, 244

version, 244

ABA POOLSLOTREF, 27, 242

ABA RING, 34, 305

clear, 306

Constructor, 305

empty, 308

filled, 308

insert, 306

newest, 307

newestIndex, 307

number, 307

oldest, 307

oldestIndex, 307

Output Operator, 306

previous, 307

realloc, 308

size, 307

Subscript Operator, 306

ABA ROW, 23, 244

Constructor, 245, 246

copy, 248

delInd, 248

Destructor, 246

Output Operator, 246

rhs, 247

rhs , 245

sense, 247

sense , 245

ABA ROWCON, 25, 41, 254

coeff, 256

Constructor, 255, 256

Destructor, 256

print, 256

row, 256

row , 254

ABA SET, 35, 282

Constructor, 282

findSet, 283

glob , 282

makeSet, 283

parent , 282

unionSets, 283

ABA SETBRANCHRULE, 33, 53, 225

branchOnSetVar, 227

Constructor, 225

Destructor, 226

extract, 226

Output Operator, 226

INDEX 345

setToUpperBound, 227

variable, 227

ABA SLACKSTAT, 195

Constructor, 195, 196

Output Stream, 196

STATUS, 195

status, 196

ABA SOPLEXIF, 30, 216

Constructor, 216, 217

Destructor, 217

Output Operator, 218

soplex, 65, 218

ABA SORTER, 37, 322

Constructor, 322

heapSort, 323

quickSort, 323

ABA SPARVEC, 35, 276

Assignment Operator, 279

clear, 280

coeff, 279

coeff , 277

Constructor, 277, 278

copy, 280

Copy Constructor, 278

Destructor, 278

glob , 276

insert, 280

leftShift, 280

nnz, 281

nnz , 277

norm, 281

origcoeff, 280

Output Operator, 279

rangeCheck, 282

realloc, 281

reallocFac , 277

rename, 281

size, 281

size , 277

support, 279

support , 277

ABA SROWCON, 258

Constructor, 259, 260

Destructor, 260

genRow, 260

slack, 261

ABA SROWOCN, 25

ABA STANDARDPOOL, 27, 236

cleanup, 238

Constructor, 236

Destructor, 237

increase, 238

insert, 237

Output Operator, 237

separate, 238

size, 238

slot, 238

ABA STRING, 35, 284

ascii2bool, 288

ascii2double, 288

ascii2int, 288

ascii2unsignedint, 288

Assignment Operator, 286

Comparison Operator, 286

Constructor, 285

Copy Constructor, 285

Destructor, 286

ending, 289

Not-Equal Operator, 287

Output Operator, 287

size, 288

string, 289

Subscript Operator, 287, 288

ABA SUB, 16, 19, 43, 120

actCon, 158

actCon , 125

activate, 59, 62, 130

actVar, 158

actVar , 125

addConBuffer , 127

addConBufferSpace, 140

addCons, 45, 60, 62, 138, 159

addVarBuffer , 127

addVarBufferSpace, 140

addVars, 60, 62, 138, 159

allBranchOnSetVars , 127

ancestor, 135

basicConEliminate, 157

betterDual, 154

bInvRow , 127

boundCrash, 154

branching, 141

branchingOnVariable, 142

branchRule, 137

branchRule , 126

chooseLpMethod, 59, 136

closeHalf, 143, 144

closeHalfExpensive, 144, 145

compareBranchingSampleRanks, 58, 147

conBufferSpace, 45

conEliminate, 60, 157

conRealloc, 160

constraint, 150

constraintPoolSeparation, 46, 139

Constructor, 43, 129

cutting, 131

346 INDEX

deactivate, 59, 130

deactive, 62

Destructor, 130

dualBound, 153

dualBound , 126

dualRound, 135

exceptionBranch, 10, 65, 132

exceptionFathom, 10, 65, 132

father, 154

father , 125

fathom, 148

fathoming, 148

fathomTheSubTree, 158

feasible, 44, 46, 128

findNonFixedSet, 145, 146

firstSub, 43

fix, 155

fixAndSet, 148

fixAndSetTime, 132

fixByLogImp, 62, 150

fixByRedCost, 149

fixing, 148

fsVarStat, 152

fsVarStat , 125

generateBranchRules, 53, 58, 142

generateLp, 152

generateSon, 45, 128

genNonLiftCons , 128

goodCol, 133

guarantee, 135

guaranteed, 135

id, 153

ignoreInTailingOff, 10, 66, 141

improve, 47, 159

infeasCon , 128

infeasible, 159

infeasVar , 128

initializeCons, 130

initializeLp, 161

initializeVars, 130

initMakeFeas, 52, 161

integerFeasible, 141

lastIterConAdd , 126

lastIterVarAdd , 126

lBound, 151

lBound , 126

level, 153

lowerBound, 153

lp, 154

lp , 125

lpMethod , 127

lpRankBranchingRule, 147

lpVarStat, 152

lpVarStat , 125

makeFeasible, 52, 133

master, 136

master , 125

maxCon, 161

maxIterations, 154

maxVar, 161

nCon, 161

nDormantRounds, 141

nIter , 126

nnzReserve, 137

nonBindingConEliminate, 157

nVar, 160

objAllInteger, 64, 140

optimize, 130

pausing, 157

PHASE, 124

prepareBranching, 131

pricing, 46, 134

primalSeparation, 134

rankBranchingRulerankBranchingRule, 57

rankBranchingSample, 146

rankBranchRule, 147

redCostVarEliminate, 158

relativeReserve, 137

removeCon, 61, 160

removeConBuffer , 127

removeCons, 61, 160

removeNonLiftableCons, 136

removeVar, 61, 137

removeVarBuffer , 127

removeVars, 61, 136

reoptimize, 152

selectBestBranchingSample, 58, 146

selectBranchingVariable, 53, 54, 142

selectBranchingVariableCandidates, 57,

143

selectCons, 137

selectVars, 137

separate, 45, 158

set, 155, 156

setByLogImp, 63, 131

setByRedCost, 150

setting, 149

slackStat, 152

slackStat , 126

solveLp, 132

STATUS, 124

status, 154

tailingOff, 162

tailOff , 126

uBound, 151

uBound , 126

INDEX 347

upperBound, 153

varEliminate, 61, 158

variable, 150

variablePoolSeparation, 47, 139

varRealloc, 160

xVal, 134

xVal , 127

yVal, 134

yVal , 127

ABA TAILOFF, 33, 273

Constructor, 273

Destructor, 273

diff, 274

Output Operator, 273

tailOff, 274

ABA TIMER, 37, 324

centiSeconds, 325

exceeds, 326

glob , 324

hours, 325

minutes, 325

Output Operator, 324

reset, 325

running, 325

seconds, 325

start, 324

stop, 325

theTime, 326

ABA VALBRANCHRULE, 33, 53, 229

Constructor, 229

Destructor, 229

extract, 230

Output Operator, 230

value, 230

variable, 230

ABA VARIABLE, 16, 23, 40, 174

binary, 176

coeff, 178

Constructor, 175

Destructor, 176

discrete, 176

fsVarStat, 177

fsVarStat , 174

genColumn, 51, 178

integer, 176

lBound, 177

lBound , 175

obj, 176

obj , 174

printcol, 180

redCost, 51, 179

type , 175

uBound, 177

uBound , 175

useful, 180

valid, 177

varType, 176

violated, 51, 178, 179

ABA VARTYPE, 185

binary, 187

Constructor, 185, 186

discrete, 186

integer, 187

Output Operator, 186

TYPE, 185

type, 186

ABACUS COMPILER GCC, 4, 333

ABACUS COMPILER VISUAL CPP, 4, 333

ABACUS DIR, 6

ABACUS LICENSE DIR, 6

ABACUS LP CPLEX22, 333

ABACUS LP CPLEX30, 333

ABACUS LP CPLEX40, 333

ABACUS OLD INCLUDE, 10, 333

ABACUS OLD NAMES, 9, 333

ABACUS SOPLEX, 333

ABACUS SYS AIX, 333

ABACUS SYS HP, 333

ABACUS SYS IRIX, 333

ABACUS SYS LINUX, 333

ABACUS SYS OSF, 333

ABACUS SYS SUNOS4, 333

ABACUS SYS SUNOS5, 333

ABACUS SYS WINNT, 333

application base class, 16

array, 34

auxiliaries, 16

average cut distance, 73

basis

loading initial, 63

branching, 22, 32

delayed, 22

enforcing, 65

on a constraint, 54

on a variable, 54

problem speci�c, 10

problem speci�c rules, 55

problem speci�c strategies, 53

branching rules, 33

sample, 57

branching variable, 53

BranchingStrategy, 57

bu�er, 34

bu�ering constraints and variables, 32

bugs, 7

348 INDEX

column, 23

column format, 25

Compiler, 3

compiler, 11

Compiling, 7

compressed format, 24

ConElimEps, 73

constraint, 16, 23, 24, 40, 50, 51

active, 21, 24

adding, 20, 61

bu�ering, 21

compressed format, 24, 50

dynamic, 24

eliminating, 60

elimination mode, 73

elimination tolerance, 73

expanded format, 24, 50

globally valid, 25

liftable, 25

locally valid, 24, 25

locked, 24

maximal added, 71

maximal bu�ered, 72

non-liftable, 22

removing, 21

static, 24

ConstraintEliminationMode, 60, 73

Cplex, 4, 29

dual pricing, 71

internal data, 65

output, 71

preprocessor ag, 4

primal pricing, 71

CplexDualPricing, 71

CplexOutputLevel, 71

CplexPrimalPricing, 71

cpu time

maximal, 67

cutting plane algorithm

maximal iterations, 72

DefaultLpSolver, 11, 74

delayed branching, 68

DelayedBranchingThreshold, 68

disjoint set, 35

dormant rounds, 68

dual bound, 19

EliminateFixedSet, 72

elpased time

maximal, 67

enumeration strategies, 52

enumeration strategy, 31, 66

EnumerationStrategy, 52, 66

environment variables, 6

equations, 24

expanded format, 24

fathoming

problem speci�c, 10, 65

�xing

by reduced cost, 70

�xing variables, 33

by logical implications, 62

elimination, 72

FixSetByRedCost, 70

Guarantee, 66

guarantee, 66

hash table, 35

heap, 34

inheritance graph, 15

integer objective function, 63, 67

level in enumeration tree, 67

License, 6

lifting, 22

linear program, 16, 21, 29

infeasible, 52

method, 59

output, 70

relaxation, 29

linked list, 34

Linking, 7

log level, 69

LogLevel, 69

LP-solver, 4

internal data, 64

master, 16, 17, 41

MaxConAdd, 61, 71

MaxConBuffered, 61, 72

MaxCowTime, 67

MaxCpuTime, 67

MaxIterations, 72

MaxLevel, 67

MaxVarAdd, 61, 72

MaxVarBuffered, 61, 72

memory management, 22, 60

MinDormantRounds, 68

naming style, 39

NBranchingVariableCandidates, 10, 11, 57, 74

NewRootReOptimize, 72

ObjInteger, 63, 67

old2newincludes, 10

INDEX 349

old2newnames.pl, 9

open subproblems, 31

optimization, 48

optimum solution values, 73

OptimumFileName, 73

output, 59

output level, 68

output stream, 36

OutputLevel, 68

paramter �le, 75

paramters, 19, 66

platforms, 3

pool, 16, 25, 42, 60

default, 27

initial cutting planes, 42

no multiple storage, 50

pricing, 25

problem speci�c, 49

separation, 25, 49

standard, 27

without duplication, 11

pool slot, 26

preprocessor ag

compiler, 4

Cplex, 4

platform, 3

pricing, 46

frequency, 70

PricingFrequency, 70

primal bound, 19

initialization, 69

primal heuristics, 47

PrimalBoundInitMode, 69

PrintLP, 70

priority queue, 35

problems, 7

pure kernel classes, 16

recursive calls of ABACUS, 59

reference to a pool slot, 27

ring, 34

root node

roptimization, 72

row, 23

row format, 25

sense of the optimization, 19

separation, 45

setting

by reduced cost, 70

setting variables

by logical implications, 62

elimination, 72

ShowAverageCutDistance, 73

SkipFactor, 70

skipping

mode, 70

SkippingMode, 70

solution history, 34

SoPlex, 9, 29

internal data, 65

SoPlexRepresentation, 11, 75

sorting, 37

sparse vector, 35

stack, 34

String, 35

strong branching, 10, 11, 57

comparing branching samples, 58

default, 57

other branching rules, 58

ranking branching rules, 57

selecting branching samples, 58

variable selection, 57

subproblem, 16, 19

activating, 62

deactivate, 62

subtour elimination constraint, 23, 24, 50

tailing o�, 10, 33

advanced control, 66

minimal change, 68

number of LPs, 68

TailOffNLps, 68

TailOffPercent, 68

templates, 77

timer, 37

VarElimEps, 74

variablae

bu�ering, 21

variable, 16, 23, 25, 40, 50, 51

active, 21, 24

adding, 21, 61

binary, 25

compressed format, 24, 50

continuous, 25

dynamic, 24

eliminating, 61

elimination mode, 73

elimination tolerance, 74

expanded format, 24, 50

integer, 25

locally valid, 24, 25

locked, 24

maximal added, 72

maximal bu�ered, 72

removing, 21

350 INDEX

static, 24

VariableEliminationMode, 73

VBC-tool, 74

VbcLog, 74

virtual dummy function, 15

Visual C++, 11

