
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 97.299

A Polyhedral Approach to the

Multi-Layer Crossing Minimization Problem

by

Michael J�unger, Eva K. Lee,

Petra Mutzel, Thomas Odenthal

1997

To appear in: G. Di Battista (ed.), Graph Drawing '97 (Proc.), Rome,

Lecture Notes in Computer Science, Springer-Verlag

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr. 1

50969 K�oln



Keywords: Crossing number, linear ordering problem, branch-and-cut



A Polyhedral Approach to the Multi-Layer

Crossing Minimization Problem

(Extended Abstract)

Michael J�unger

1?

, Eva K. Lee

2??

, Petra Mutzel

3?

, and Thomas Odenthal

4

1

Institut f�ur Informatik, Universit�at zu K�oln, mjuenger@informatik.uni-koeln.de

2

Ind. & Sys. Eng., Georgia Institute of Technology, evakylee@isye.gatech.edu

3

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, mutzel@mpi-sb.mpg.de

4

Ind. Eng. & Op. Res., Columbia University, odenthal@ieor.columbia.edu

Abstract. We study the multi-layer crossing minimization problem from

a polyhedral point of view. After the introduction of an integer program-

ming formulation of the multi-layer crossing minimization problem, we

examine the 2-layer case and derive several classes of facets of the as-

sociated polytope. Preliminary computational results for 2- and 3-layer

instances indicate, that the usage of the corresponding facet-de�ning in-

equalities in a branch-and-cut approach may only lead to a practically

useful algorithm, if deeper polyhedral studies are conducted.

1 Introduction

The crossing number of a graph G is the minimum number of edge-crossings

needed in any embedding of G in the plane. The Crossing Number (CN) problem,

that is, to determine the crossing number of a given graph G, is well-known to

be NP-hard (Garey and Johnson, 1983). Thus, there is little hope to �nd a

polynomial-time algorithm for (CN) on general graphs. Moreover, formulae for

the crossing number are only known for restricted types of graphs. We refer the

reader to Richter and Thomassen (1994) and Shahrokhi et al. (1995) for surveys.

A (proper) k-layered graph is a graph whose node-set is partitioned into k

layers with the property that edges join only nodes in consecutive layers. Such

graphs arise for example in work
ow diagrams and are usually drawn such that

all nodes in the same layer are placed on a horizontal line.

A natural combination of the two concepts crossing number and layered

graphs is the multi-layer crossing minimization problem, which is to minimize

the number of edge-crossings of a multi-layered graph. Harary (1969), Harary

and Schwenk (1972), Watkins (1970) and War�eld (1977) give �rst structural

results.
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From an algorithmic point of view, there have been extensive studies on

crossing minimization for 2-layered graphs. In particular, during the 80's a lot

of e�ort was focused on the design of heuristics for drawing such graphs with

few crossings. Among others, we mention the barycenter heuristic (Sugiyama

et al., 1981), the median heuristic (Eades and Wormald, 1994) and the greedy

heuristics (Eades and Kelly, 1986). As reported in J�unger and Mutzel (1996),

the barycenter heuristic yields the best results in terms of number of crossings

and solution time.

Other approaches involve formulating the problems as integer programs. In

the case of the crossing number problem, the geometric relationships between

nodes and edges in the graph are di�cult to be represented by an integer pro-

gram. However, if the graph under consideration is \well-structured", this ap-

proach may be applicable and polyhedral theory and branch-and-cut algorithms

may be able to provide an exact solution. This approach was �rst employed

in J�unger and Mutzel (1996) for the one-sided two-layer crossing minimization

problem. This problem is to �nd the minimum number of edge-crossings in a

2-layered graph, when one node-permutation of the two layers is �xed. J�unger

and Mutzel (1996) showed that this problem can be transformed into a linear

ordering problem which can then be solved by a branch-and-cut algorithm.

In this paper, we �rst address the (two-sided) two-layer crossing minimization

problem. We �rst formulate this problem as an integer program, in which the

optimal solution corresponds to a crossing-minimal representation of the graph.

Next, we extend the integer programming formulation to a more general case {

the proper multi-layer crossing minimization problem { which is to determine

the minimum number of crossings in a (proper) multi-layered graph.

A branch-and-bound approach (Valls et al., 1996a, J�unger and Mutzel, 1996)

and a tabu search (Valls et al., 1996b) were employed to determine the minimum

crossing numbers in 2-layered graphs. In this paper, we will focus on polyhedral

combinatorics to take advantage of the inherent structural properties of the

problem. In Section 3, we de�ne the polytope associated with the 2-layer crossing

number problem as P

CROSS

(G). Several classes of facet-de�ning inequalities

for P

CROSS

(G) will be reported. Most of the inequalities are derived from a

combinatorial characterization of 2-layer planar graphs, i.e., graphs that can be

drawn on two layers without edge-crossings. In Section 4, separation procedures

for each class of facet-de�ning inequalities are described. Based on these facets,

we implemented a branch-and-cut algorithm and compare its performance with

a pure branch-and-bound algorithm.

2 The Integer Programming Formulations

Let G = (V

1

; V

2

; E) be a bipartite graph with jV

1

j = n

1

and jV

2

j = n

2

. The

Two-Layer Crossing Minimization (TLCM) problem consists of determining the

minimum number of crossings among the two layers of G such that nodes can

be permuted in both layers and edges are drawn as straight lines. Any solution

is uniquely determined by the permutations �

1

and �

2

of V

1

and V

2

. We de�ne



x

ij

= 1 if �

1

(i) < �

1

(j), 0 otherwise; and y

ij

= 1 if �

2

(i) < �

2

(j), 0 otherwise.

For a given �

1

and �

2

, the number of crossings can be expressed as

C(�

1

; �

2

) =

n

1

�1

X

i=1

n

1

X

k=i+1

X

j2N(i)

X

l2N(k)

x

ik

� y

lj

+ x

ki

� y

jl

; (1)

where N (v) = fw 2 V j e = (v; w) 2 Eg denotes the set of neighbors of

v 2 V = V

1

[ V

2

in G.

For a �xed permutation �

1

of V

1

, this problem can be transformed to a linear

ordering problem and solved with a branch-and-cut algorithm in short compu-

tation time (J�unger and Mutzel, 1996). The case of two freely permutable layers

was handled by a branch-and-bound algorithm in which trivial lower bounds

were employed for partial permutations of the smaller layer and the branch-

and-cut algorithm for one-sided crossing minimization was applied for complete

permutations of the smaller layer. In this paper, we describe an approach for

solving (TLCM) directly.

We �rst present a nonlinear integer program for �nding the minimumnumber

of crossings for a 2-layered graph.

min C(�

1

; �

2

)

s.t. x

ij

+ x

jk

+ x

ki

� 2 1 � i < j < k � n

1

(2)

y

ij

+ y

jk

+ y

ki

� 2 1 � i < j < k � n

2

(3)

x

ij

+ x

ji

= 1 1 � i < j � n

1

(4)

y

ij

+ y

ji

= 1 1 � i < j � n

2

(5)

x

ij

; y

ij

2 f0; 1g:

(NTLCM)

The 3-cycle-constraints, (2) and (3), constraints (4) and (5) and the binary

restriction on the variables are needed to ensure that the resulting vectors x and

y are incidence vectors of feasible linear orderings of the nodes on both layers

(Gr�otschel et al., 1985).

To formulate the problem as an integer linear program, we introduce the

crossing variables, c

ijkl

; to denote if edges (i; j) and (k; l) cross (where i < j,

k < l, i < k, and j 6= l). This leads to the following integer linear programming

formulation for (TLCM).

For notational convenience, we assume without loss of generality that nodes

in the �rst layer have smaller indices than nodes in the second layer and that

i; k 2 V

1

and j; l 2 V

2

. Moreover, since two edges incident at a node cannot result

in a crossing, we will employ the notation \for all (i; j); (k; l) 2 E" to describe

the situation in which i < j, k < l, i < k, and j 6= l.

min

X

(i;j);(k;l)2E

c

ijkl

s.t. x

ik

+ y

lj

� c

ijkl

� 1 (i; j); (k; l) 2 E (6)

x

ki

+ y

jl

� c

ijkl

� 1 (i; j); (k; l) 2 E (7)

(2); (3); (4) and (5)

x

ij

; y

ij

; c

ijkl

2 f0; 1g:

(ITLCMa)



Theorem1. (NTLCM) and (ITLCMa) are equivalent formulations for (TLCM).

Proof. Let (x; y; c) be a feasible solution to (ITLCMa). Clearly, (x; y) is also

feasible for (NTLCM). From (6) and (7), if x

ik

= y

lj

= 1 or x

ki

= y

jl

= 1, then

c

ijkl

= 1. On the other hand, if either x

ik

= 0 or y

lj

= 0, then c

ijkl

can be either

0 or 1. However, for the sake of minimization, we must have c

ijkl

= 1 if and

only if x

ik

= y

lj

= 1 or x

ki

= y

jl

= 1. In other words, c

ijkl

= 1 if and only if

x

ik

� y

lj

= 1 or x

ki

� y

jl

= 1.

To prove the other direction, let (x; y) be a feasible solution to (NTLCM).

De�ne c

ijkl

= x

ik

� y

lj

+ x

ki

� y

jl

. Clearly, (x; y; c) is feasible for (ITLCMa). 2

Formulation (ITLCMa) can be reduced via variable substitutions from equa-

tions (4) & (5) to the following formulation (ITLCMb).

min

X

(i;j);(k;l)2E

c

ijkl

s.t.

�c

ijkl

� y

jl

� x

ik

� c

ijkl

(i; j); (k; l) 2 E; j < l (8)

1� c

ijkl

� y

lj

+ x

ik

� 1 + c

ijkl

(i; j); (k; l) 2 E; j > l (9)

0 � x

ij

+ x

jk

� x

ik

� 1 1 � i < j < k � n

1

(10)

0 � y

ij

+ y

jk

� y

ik

� 1 1 � i < j < k � n

2

(11)

x

ij

; y

ij

; c

ijkl

2 f0; 1g:

A generalization of this approach to the (proper) Multi-Layer Crossing Min-

imization (MLCM) problem is straightforward. A (proper) multi-layered graph,

G = (V;E), is a graph in which the node-set V is partitioned into disjoints sets:

V = V

1

[ V

2

[ : : :[ V

p

with jV

i

j = n

i

such that for all edges (u; v) 2 E, we must

have u 2 V

i

, v 2 V

i+1

; for some i = 1; : : : ; p� 1. In other words, edges are only

allowed between successive layers. Indeed, we can write E = E

1

[E

2

[ : : :[E

p�1

with E

i

the edge-set between nodes from layer i and i+1; i = 1; : : : ; p�1. Using

this property, we only need to couple successive layers with crossing variables.

The corresponding integer program for (MLCM) can be written as:

min

p�1

X

r=1

X

(i;j);(k;l)2E

r

c

r

ijkl

s.t.

�c

r

ijkl

� x

r+1

jl

� x

r

ik

� c

r

ijkl

(i; j); (k; l) 2 E

r

; j < l (12)

1� c

r

ijkl

� x

r+1

lj

+ x

r

ik

� 1 + c

r

ijkl

(i; j); (k; l) 2 E

r

; j > l (13)

0 � x

r

ij

+ x

r

jk

� x

r

ik

� 1 1 � i < j < k � n

r

(14)

x

r

ij

; y

r

ij

; c

r

ijkl

2 f0; 1g:

where r = 1; : : : ; p� 1.

In a general multi-layered graph the restriction on the edges is relaxed in such a

way that edges are allowed to span more than two layers. A solution for (MLCM)



can be adapted to a general multi-layered graph by introducing a dummy-node

on a layer whenever an edge crosses this layer (see Eades and Wormald (1994)

for the transformation). Applying this technique, our integer programming for-

mulation can be employed within popular layout-algorithms (Sugiyama et al.,

1981).

3 Polyhedral Study

Given a bipartite graph G = (V

1

; V

2

; E) with jV

1

j = n

1

and jV

2

j = n

2

, we de�ne a

crossing con�guration to be a vector (x; y; c), where x 2 IB

(

n

1

2

)

and y 2 IB

(

n

2

2

)

are

the linear ordering variables for the �rst and second layer, respectively, and c 2

IB

t

is the vector of crossing variables, with t the total number of crossing variables

for the graph. Let s :=

�

n

1

2

�

+

�

n

2

2

�

+ t. We de�ne the polytope P

CROSS

(G) � IR

s

as

P

CROSS

(G) = convf(x; y; c) 2 IB

s

: (x ; y ; c) is a crossing con�gurationg:

In this section, we �rst show that P

CROSS

(G) is full dimensional. We then

present the various classes of facet-de�ning inequalities we obtained thus far.

We denote a vector of all 1's by the vector e of appropriate dimension.

Theorem2. P

CROSS

(G) is full dimensional.

Sketch of Proof. It su�ces to show that there exist s + 1 a�nely independent

crossing con�gurations. Let P

LO

1

(P

LO

2

) be the linear ordering polytope associ-

ated with the x- (y-) variables. Since P

LO

1

is of dimension

�

n

1

2

�

, there exist

�

n

1

2

�

a�nely independent vectors, x

1

; : : : ; x

(

n

1

2

)

: Similarly, there exist

�

n

2

2

�

a�nely in-

dependent vectors for P

LO

2

, y

1

; : : : ; y

(

n

2

2

)

: Thus the following s + 1 vectors are

in P

CROSS

(G) and are a�nely independent:

i. (x

i

; 0; e); i = 1; : : : ;

�

n

1

2

�

;

ii. (0; y

i

; e); i = 1; : : : ;

�

n

2

2

�

;

iii. (�x

i

; �y

i

; e�e

i

); i = 1; : : : ; t; where �x

i

; �y

i

are chosen so that the vectors satisfy

all the constraints for (ITLCMb) after setting exactly one crossing variable

c

i

to 0;

iv. (e; e; e): 2

Theorem3. The inequalities c

ijkl

� 0 are redundant, while c

ijkl

� 1 are facet-

de�ning for P

CROSS

(G).

Proof. If we add the two parts of inequality (8) together, we clearly get c

ijkl

� 0

for all edges (i; j); (k; l) 2 E; j < l. Similarly, if we add the two parts of inequality

(9) together, we get c

ijkl

� 0 for all edges (i; j); (k; l) 2 E; l < j: Hence c

ijkl

� 0

is redundant.

Clearly, c

ijkl

� 1 is valid for P

CROSS

(G). To show the dimension, note that

for each ijkl, all but one vector from Theorem 2 satisfy c

ijkl

= 1, proving that

it is facet-de�ning. 2



In the next theorem we show that all facet-de�ning inequalities for P

LO

1

(P

LO

2

) are facet-de�ning for P

CROSS

(G).

Theorem4. Let a

T

x � a

0

be a facet-de�ning inequality for P

LO

1

(P

LO

2

). Then

a

T

x � a

0

is also facet-de�ning for P

CROSS

(G).

Sketch of Proof.Validity is trivial.Without loss of generality, we restrict ourselves

to facet-de�ning inequalities corresponding to the x-variables.

Since a

T

x � a

0

is a facet-de�ning inequality for P

LO

1

, there exist

�

n

1

2

�

a�nely

independent vectors satisfying a

T

x � a

0

with equality, namely, x

1

; : : : ; x

(

n

1

2

)

.

Now, order the y variables y

ij

such that i < j. Let D

k

be the set of the �rst

k indices in vector y, and y

D

k

be the corresponding characteristic vector. Then

the following s vectors are a�nely independent:

i. (x

i

; 0; e); i = 1; : : : ;

�

n

1

2

�

;

ii. (x

1

; y

D

k

; e); k = 1; : : : ;

�

n

2

2

�

;

iii. (x

1

; �y

i

; e � e

i

); i = 1; : : : ; t, where �y

i

is chosen such that all constraints in

(ITLCMb) are satis�ed. 2

Similar proof techniques are employed in all the theorems regarding facet-

de�ning properties: proving validity for P

CROSS

(G), and showing that the maxi-

mum number of a�nely independent vectors satisfying the inequality at equality

is s. For space reasons, we omit proofs for the remaining theorems.

Theorem5. Inequalities (8) and (9) are facet-de�ning for P

CROSS

(G).

Other classes of facet-de�ning inequalities can be derived from the following

characterization of \2-layer planar" graphs (these are graphs that can be drawn

on two layers without crossings) using forbidden subgraphs.

Theorem6. [Harary and Schwenk, 1972, Tomii et al., 1977, Eades et

al., 1986] A 2-layer graph is 2-layer planar if and only if it contains no cycle

and no 3-claw.

In other words, whenever there is a cycle or a 3-claw (see Figure 1 below)

in the graph, we have at least one crossing. Moreover, the exact 2-layer crossing

number for cycle graphs is known.

1

5 6 7

2 3 4

12 3 4

5 6 7

Fig. 1. 3-claw graph



Theorem7. [Harary and Schwenk, 1972, May and Szkatula, 1988] The

2-layer crossing number of a cycle C is

jCj�2

2

.

In the next theorem, we state the valid inequalities arising from cycles as well

as p-claws, i.e., claw graphs such as in Figure 1 with p legs.

Theorem8. The following inequalities are valid for P

CROSS

(G).

(i:)

P

(i;j);(k;l)2C

c

ijkl

�

jCj�2

2

for all cycles Cin G:

(ii:)

P

(i;j);(k;l)2W

c

ijkl

� 1 for all 3-claws W in G:

(iii:)

P

(i;j);(k;l)2W

p

c

ijkl

�

�

p

2

(

p

2

� 1) p even

(

p�1

2

)

2

p odd

for all p-claws W

p

in G:

Though these inequalities are not facet-de�ning, we can derive several classes

of facets from them, which we will describe next. For notational convenience all

integers representing nodes are to be considered modulo jCj.

Theorem9. Let C = (0; : : : ; i � 1; i; i + 1; i + 2; : : : ; jC � 1j; 0) be a cycle of

length jCj in the graph. For every edge (i; i+ 1) 2 C, the following inequality is

facet-de�ning for P

CROSS

(G):

X

(k;l)2C;k 6=i;l 6=i+1

c

i;i+1;k;l

+ c

i;i�1;i+1;i+2

� 1:

Next, we consider any cycle C = (0; : : : ; jC�1j; 0) of length jCj in the graph,

where we �x an arbitrary ordering.

Theorem10. Let S be the set consisting of all pairs of edges (i; j); (k; l) 2 C for

which edge (k; l) has an odd distance from edge (i; j) in the cycle, i.e., k = i+2m

or i = k+2m for m = 1; 2; : : : ; jCj=2, respectively. Then the following inequality

is facet-de�ning for P

CROSS

(G):

X

(i;j);(k;l)2S

c

ijkl

�

jCj � 2

2

:

We now turn to facet-de�ning inequalities based on 3-claws W .

Theorem11. Let T be the set consisting of all pairs of edges of W except those

pairs of edges that are either both within the lower or the upper part of the 3-claw

and are not adjacent to each other. Then the following inequality is facet-de�ning

for P

CROSS

(G):

X

(i;j);(k;l)2T

c

ijkl

� 1:



Another class of inequalities can be constructed from the dome-path. Each of

these structures gives rise to two facet-de�ning inequalities.

i j

k l m

i j

k m l

i j

l k m

a) b) c)

Fig. 2. Dome paths

Theorem12. For k < l < m, the following inequalities are facet-de�ning for

P

CROSS

(G):

x

kl

� 2x

km

+ x

lm

� c

ikjl

� c

iljm

� 0;

�x

kl

+ 2x

km

� x

lm

� c

ikjl

� c

iljm

� 0;

Figure (2 a)

2x

kl

� x

km

+ x

lm

� c

ikjm

� c

imjl

� 1;

�2x

kl

+ x

km

� x

lm

� c

ikjm

� c

imjl

� �1;

Figure (2 b)

x

kl

� x

km

+ 2x

lm

� c

iljk

� c

ikjm

� 1;

�x

kl

+ x

km

� 2x

lm

� c

iljk

� c

ikjm

� �1:

Figure (2 c)

Notice that in each of these inequalities, the linear-ordering variable associ-

ated with the two endnodes of the dome-path always has coe�cient 2.

4 Separation Procedures and Computational Experience

In this section, we brie
y highlight the separation procedures and their complex-

ity for the classes of facets described in Section 3. We also report our computa-

tional experience with a branch-and-cut algorithm based on these facets.

Classes of inequalities from Theorem 9 can be separated in polynomial time.

For every �xed edge (i; j), we set up an auxiliary graph G

0

= (V

0

; E

0

) with

V

0

= V and E

0

= E and edge-weights w

kl

= c

ijkl

for every edge (k; l) not

adjacent to i and j. Next we solve a series of shortest path problems, searching

for the shortest path from node a to node b, where a and b are nodes adjacent

to i and j, respectively. We perform this for all combinations of adjacent edges

of node i and j. If the length of the obtained path plus the cost of the �xed

edge is greater than 1, we have found a violated inequality. If we cannot �nd

such a path, then no inequality of this class is violated. The running time of this

separation procedure is O(jEj � S(jV j; jEj) � 2d), where S(jV j; jEj) denotes the

time for solving a shortest path problem and d is the maximum node-degree in

the graph.



In addition, inequalities derived from dome paths can be checked by enumer-

ation, which can be done in polynomial time. Similarly, k-claws can be identi�ed

in polynomial time via enumeration, or by computing a matching between the

nodes incident to a root-node and their adjacent edges (for a �xed k).

We perform a heuristic procedure for separating classes of facets from Theo-

rem 10. We �rst choose a root node, and apply a breadth-�rst-search method to

identify cycles in the graph. Once a cycle is found, the corresponding inequalities

are formed and checked if they are violated by the current fractional solution.

Table 1 shows computational results for a set of 2-layered graphs which have

appeared in the literature: [JM96a] and [JM96b] are the graphs of Figures 1

and 4 in J�unger and Mutzel (1996), respectively. [Mut97a] and [Mut97b] are

the graphs of Figures 1 and 2 in Mutzel (1997). [KW95a] and [KW95b] are the

two bipartite graphs of a 3-partite graph which arises from an illustration of

dependencies in constraint negotiation (Kusiak and Wang, 1995). [Him97a] and

[Him97b] are the two bipartite graphs of a 3-partite graph visualizing features of

a graph-drawing-system. [MS88a] and [MS88b] are again the two bipartite parts

of a 3-partite graph arising from computing invariants of matrices (May and

Szkatula, 1988). [SM96a] and [SM96b] are two bipartite parts of a multi-layered

social networks lattice (Shieh and McCreary, 1996). [Fuk96a] and [Fuk96b] are

the two bipartite parts of a 3-partite graph which came up in the study of

polyhedral face lattices (Fukuda, 1996). Name, jV

1

j; jV

2

j; jEj, No. Var denote

the name of the problem, the number of nodes in each layer, the number of

edges in the graph and the number of variables in the formulation, respectively.

LB and Opt. IP denote the lower bound (the LP-value after adding cuts from

Section 3 to the LP-relaxation and no subsequent branching) and the optimal

objective value for the integer program, respectively.

For each instance in the table, the original lower bound before addition of

cuts is 0. Comparing the values LB and Opt. IP , we observe that cutting planes

helped to close the gap (calculated as (Opt. IP - LB) / Opt. IP) by 50% to 100%.

In particular, out of 14 instances, the gap for 6 of them was completely closed

after the addition of cuts.

In the rest of the table, computational results for 2-layered graphs for algo-

rithm B-C, a branch-and-cut algorithm incorporating the facets from Section 3,

and algorithm B-B, a pure branch-and-bound algorithm, are reported. We used

a SUN ULTRA2 (167MHZ) workstation and CPLEX 4.0 as the branch-and-

bound solver with strong branching selected as the branching variable selection

(We tested various options in CPLEX and strong branching is far superior to

other branching rules).

B-C cuts, B-C time, and B-C nodes denote the total number of cuts added,

the total time required (with time limit set to 3600 seconds), and the total num-

ber of enumeration nodes needed by algorithm B-C. Finally, B-B time and B-B

nodes denote respectively the time required to solve to optimality and the num-

ber of nodes searched by algorithm B-B for solving our formulation of (TLCM)

when no cutting planes are included.

The analysis of the computational results has a mixed outcome. For small



Table 1. Computational results for 2-layered graphs

Name jV

1

j jV

2

j jEj No. Var. LB Opt. IP B-C B-C B-C B-B B-B

cuts time nodes time nodes

[JM96a] 8 8 19 193 10 19 45 5.18 9 2.68 14

[JM96b] 10 10 20 249 4 4 20 0.58 1 0.96 2

[Mut97a] 6 9 14 118 2 2 1 0.31 1 0.15 1

[Mut97b] 14 11 28 484 14 24 200 246.09 173 372.11 395

[KW95a] 8 7 15 127 9 10 21 0.42 3 0.41 6

[KW95b] 7 3 14 71 15 15 20 0.30 1 0.07 1

[Him97a] 8 16 26 409 10 19 24 8.87 7 8.17 8

[Him97b] 16 3 8 142 0 0 2 0.11 1 0.007 1

[MS88a] 10 15 39 791 35 35 70 10.83 3 31.77 17

[MS88b] 15 12 41 893 52 54 189 15.28 3 309.97 251

[SM96a] 26 18 29 484 0 0 0 0.21 1 0.012 1

[SM96b] 18 17 29 663 8 12 27 56.09 23 210.33 579

[Fuk96a] 8 12 24 334 18 35 134 3600

�

2372 71.03 153

[Fuk96b] 12 6 24 309 23 45 175 3600

+

1955 597.47 1636

�

Not optimal with lower bound of 31

+

Not optimal with lower bound of 39

problems (e.g., [JM96a]) algorithm B-B { although using more enumeration

nodes than algorithmB-C { has a faster running time than algorithmB-C. More-

over, we mention that the branch-and-bound algorithm of J�unger and Mutzel

(1996) was able to solve instances of (TLCM) to proven optimality when the

smaller layer has 15 or fewer nodes in a fast computation time. Since cutting

plane procedures can be rather expensive, on smaller problems, it is faster to

simply apply a plain branch-and-bound approach.

For problems with a small gap (e.g., [MS88a] and [MS88b]), however, algo-

rithm B-C performs best, both in terms of running time and number of enumer-

ation nodes. On the other hand, we were not able to solve problems [Fuk96a]

and [Fuk96b] to optimality with algorithm B-C within the time-limit. For those

problems the gap is about 50% and this indicates that a deeper study of the

facial structure of P

CROSS

(G) is needed in order to come up with a practical

useful algorithm.

However, we caution that the success of a branch-and-cut approach depends

on many di�erent factors, to name a few, how often and how many cuts should

be generated, how to integrate these cuts e�ectively within the tree search, and

in what order should the cuts be generated. We anticipate further studies to

determine the viability of this approach to our application.

We next focus on the (MLCM) problem and report our experience with al-

gorithms B-C and B-B on some 3-partite graphs. These graphs are [KW95],

[Him97], [MS88], and [SM96], which are the combined 3-partite graphs of the

graphs described above. The contents of Table 2 is similar to that of Table 1.

All cutting planes arising from the two bipartite parts are valid cutting planes



for the combined 3-partite graph. The analysis shows that for smaller problems

([KW95] and [Him97]) algorithm B-B has the best performance, whereas for

the bigger problems ([MS88] and [SM96]), algorithm B-C is the winner. Both

algorithms were not able to solve the combined 3-partite graph of [Fuk96a] and

[Fuk96b] to optimality within the time-limit.

Table 2. Computational results for 3-layered graphs

Name jV

1

j jV

2

j jV

3

j jE

1

j jE

2

j No. LB Opt. B-C B-C B-C B-B B-B

Var. IP cuts time nodes time nodes

[KW95] 8 7 3 15 14 198 24 27 153 2.57 15 0.76 9

[Him97] 8 16 3 26 8 551 10 21 82 21.61 15 8.55 7

[MS88] 10 15 12 39 41 1684 87 91 469 268.54 19 3553.85 908

[SM96] 26 18 17 29 29 1347 8 13 35 331.63 21 530.33 1579
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