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1 Introduction

A cut is the set of all the edges of a graph G = (V;E) that go across the members

of a partition of V in two sets. More precisely, for a subset W � V , which de�nes

the partition (W;W ) (or, (W;V nW )) of V , the associated cut is denoted by �(W )

and de�ned by

�(W ) =

n

(i; j) 2 E j i 2W; j 2 W

o

;

where (i; j) denotes the edge with endpoints i and j. The sets W and W are called

the shores of the cut �(W ). In the de�nition of a cut the case where one of the shores

is the empty set and the other is the set V is not excluded. The cut corresponding

to these two shores is the empty set and it is called the empty cut.

If G is connected, then for two distinct node sets A and B the edge sets �(A) and

�(B) coincide if and only if A = B. Therefore, the number of distinct cuts of G is

half the number of the subsets of V , i.e., 2

jV j�1

.

Given a simple loop-less graph G = (V;E) with n = jV j nodes and m = jEj edges,

and a weight function c :E ! IR, which associates a weight c

ij

(or c

e

) with every

edge e = (i; j) of E, the maximum cut problem (max-cut problem for short) is to �nd

a cut in G of maximum weight, where the weight of a cut is de�ned in the obvious

way as the sum of the weights of its edges.

The max-cut problem is NP-hard ([9]) and is one of the most interesting and studied

problems in Combinatorial Optimization. Under some conditions on the graph G

or on the weight function, max-cut is polynomially solvable, e.g., when G is planar.

Since here we are interested in some computational issues concerning NP-hard in-

stances that occur in some relevant applications, we will not mention most of the

theoretical results concerning max-cut and we will omit most of the important ref-

erences to the literature. Excellent sources of information and of pointers are the

book of Deza and Laurent [4] and the annotated bibliography of Laurent [10].

2 Spin glasses

A spin glass is an alloy of magnetic impurities (e.g., particles of iron) diluted in a

\host" non-magnetic metal (e.g., gold). The magnetic impurities have a spin, i.e.,



a magnetic moment that can be described as a unit vector in IR

3

. The magnetic

�eld generated by the spin of a particle may interact with the spin of another. As

a result, the spins of the two particles tend to be parallel and oriented in the same

direction or in opposite directions. We say that there is a positive interaction in

the �rst case and a negative interaction in the second. The magnetic moment of an

impurity produces a magnetic polarization of the conduction electrons of the host

which has an oscillatory behavior when the distance between impurities changes. A

model of the interaction J of two particles at distance r is given, e.g., by

J(r) = A

cos(Dr)

Br

3

;

where the constants A, B, and D depend on the material. Due to the random

positions of the particles in the host, positive and negative interactions are equally

possible. This fact makes the behavior of a spin glass particularly interesting. At

relatively high temperature the thermal uctuations make the spins chaotically ori-

ented in all possible directions; the material reveals an anti-ferromagnetic behav-

ior. At relatively low temperatures the e�ect of the interactions between impurities

becomes dominant and the orientations of the spins tend to some stable ordered

con�gurations that induce a local magnetization of the material.

This singular behavior of spin glasses has attracted a lot of interest. Fischer and

Herts in a book [5] on spin glasses, an excellent reference for the interested reader,

have estimated that in the 1980's more that 400 papers per year were published on

spin glasses in the Physics literature. Researchers have developed several theories

to explain the behavior of spin glasses. Some of these theories predict contradicting

phenomena. Unfortunately it is very di�cult to validate these theories by physical

experiments: most of the interesting things happen when a spin glasses reaches a

ground state, i.e., a spin con�guration of minimal energy. To reach a ground state in

a physical experiment the material has to be cooled towards 0

o

K very slowly and a

correct cooling process may take an excessive amount of time. For this reason some

mathematical models have been developed to test these theories and the experiments

are conducted via computer simulation.

The energy interaction between two particles i and j with spins S

i

and S

j

, respec-

tively, is given by H

ij

= J

ij

S

j

� S

j

, and so it is proportional to the interaction J

ij

and to the scalar product of the two 3-dimensional vectors.

Consider now a spin glass having n spins in a given con�guration ! (represented

by n 3-dimensional vectors and suppose that the whole system is under an exterior

magnetic �eld of strength h and orientation given by the 3-dimensional unit vector F .

The energy of the system is given by the following Hamiltonian:

H(!) = �

n�1

X

i=1

n

X

j=i+1

J

ij

S

i

� S

j

� h

n

X

i=1

S

i

� F:

An important simpli�cation in the study of the Hamiltonian is to assume that all

the spins are parallel to each other and can only assume one of the two possible

opposite orientations. This means that the 3-dimensional vector S

i

that describes

the orientation of spin i can now be replaced by the �1 variable s

i

. Analogously,

treating the exterior �eld as a spin with index 0, we can represent the orientation

of the exterior �eld with the �1 variable s

0

. The model that results from this

simpli�cation is called the Ising model.

Let us now associate a graph G = (V;E) to a spin glass with n impurities. The

node set is de�ned by V = f0; 1; : : : ; ng, while the edge set is given by all the pairs

of indices that correspond to spins with nonzero mutual interaction.



A con�guration is now any assignment of �1 values to the (n+1)-dimensional node-

vector s, i.e., it is a partitioning of the node set V into two sets V

+

and V

�

, made

of all nodes with s-value +1, and �1, respectively. For W � V , let us denote by

(W ) the set of edges of G having both the endpoints in W . Then, noticing that E

can be partitioned into the three sets (V

+

), (V

�

), and �(V

+

), the Hamiltonian

of the system can be written as

H(!) = �

X

(i;j)2(V

+

)

J

ij

s

i

s

j

�

X

(i;j)2(V

�

)

J

ij

s

i

s

j

�

X

(i;j)2�(V

+

)

J

ij

s

i

s

j

= �

X

(i;j)2(V

+

)

J

ij

�

X

(i;j)2(V

�

)

J

ij

+

X

(i;j)2�(V

+

)

J

ij

= �C + 2

X

(i;j)2�(V

+

)

J

ij

;

where C =

P

(i;j)2E

J

ij

is a constant. Therefore, by assigning the weight c

ij

= �J

ij

to each edge (i; j) in E, a con�guration of minimal energy can be determined by

computing a maximum c-weighted cut in G.

Several models of spin glasses have been considered depending on the type of in-

teraction and on the range of the interactions. In the Gaussian models the values

of the interactions are drawn from a Gaussian distribution with 0 mean and pre-

scribed variance. In the �J models the interaction may assume only the two values

�J drawn from a binary distribution. The long range models are those where any

two spins may have a nonzero interaction; the associated graphs are dense. In the

short range models the spins are assumed to be located at regular positions in 2- or

3-dimensional structures; a spin is supposed to interact only with its nearest neigh-

bors. The resulting graphs are two or three dimensional grid graphs. In all cases

the node corresponding to the exterior �eld is connected to any other node of the

graph with a �xed interaction value.

When the size of the grid is not big enough to approximate a real spin glass, the

behavior of the spin at the boundary of the grid may produce erratic results. For this

reason often the extreme points of any line of the grid are assumed to be connected.

The resulting graph is a toroidal two or three dimensional grid. These models are

said to have periodic boundary conditions.

The only models whose ground state is known to be e�ciently computable with

a polynomial time algorithm for arbitrary interaction values are the 2-dimensional

grid problems with no exterior magnetic �eld, since the associated graphs are planar.

For all the other instances �nding a ground state exactly is a di�cult problem. For

these reasons many researchers have done experiments where the max-cut problem

is solved heuristically using Monte Carlo, genetic, evolutionary, and similar other

methods.

A typical experiment goes along these lines: a number of instances is randomly

generated; then for each instance the (approximate) ground state is computed and

a corresponding physical quantity, e.g., the energy, is recorded. Finally, the average

value of such a quantity and the statistical error are produced.

The results of such an experiment are a�ected by two kinds of errors:

- algorithmic errors, due to the fact that the energy computed is always an over-

estimation of the real one.



- statistical errors, due to the fact that the size of the instances produced and

the number of instances analyzed are not big enough, due to the limited speed

of the solution algorithms.

Therefore, the challenge for those who devise exact optimization algorithms is to

�nd the exact optimal solution of large instances of max-cut in a reasonably short

time. If this goal is reached, one can then run experiments whose results have no

algorithmic errors and smaller statistical errors, because they can be based on larger

instance sizes and on larger numbers of instances.

3 Formulations and relaxations of max-cut

A standard way to solve an NP-hard combinatorial optimization problem exactly

is to �rst formulate it as a mathematical programming problem and then to relax

some of its constraints in order to solve it in polynomially time. The solution to the

relaxed problem is �nally used as a upper bound (in the case of maximization) in

an enumeration scheme like branch-and-bound or branch-and-cut.

Depending on whether the variables of the mathematical programming problem

describe the shores of a cut or its edges, we have the so called node formulation or

the edge formulation, respectively.

3.1 Node formulation

This is the most natural formulation. A cut �(W ) of G is represented by a vector

�

W

in IR

V

, i.e., by a vector whose components are indexed by the nodes of G. For

u 2 V the component �

W

u

associated with u is equal to 1 if u 2 W and is equal

to �1 if u 2 W . Thus the solution set is quite simple, being the collection of all

possible �1 n-dimensional vectors. However, the objective function is nonlinear:

the contribution of the edge (i; j) to the objective function is 0 if �

W

i

= �

W

j

and c

ij

if �

W

i

= �

W

j

; therefore, if can be expressed as c

ij

(1� �

W

i

�

W

j

)=2.

Let L(G; c) be the symmetric n�n matrix associated with G and c, whose entry `

ij

is de�ned by

`

ij

=

8

>

>

>

<

>

>

>

:

�c

ij

for i 6= j and (i; j) 2 E

0 for i 6= j and (i; j) =2 E

�

P

(i;k)2�(fig)

c

ik

for i = j:

L(G; c) is called the Laplacian matrix. Noticing that (�

W

u

)

2

= 1 for all u 2 V , it

easy to check that the maximum cut problem can be formulated as follows:

max

(

1

4

x

T

L(G; c)x j x 2 f�1; 1g

n

)

:

If we relax the feasible region to a sphere of radius

p

n with origin 0, which clearly

contains all the �1 points, the optimal value of the resulting problem can be given

in closed form, once the largest eigenvalue �

max

of L(G; c) has been computed. It



is actually given by

n

4

�

max

(L(G; c)), which provides an upper bound to the problem

that can be evaluated e�ciently.

A better bound is based on the observation that if for z 2 IR

V

we denote by diag(z)

the diagonal matrix with the diagonal made of the components of the vector z and

if z satis�es e

T

z = 0, where e 2 IR

V

is a vector of all 1's, then the value of a cut does

not change if diag(z) is added to L(G; c). On the other hand, the optimal value of

the relaxation depends on z. Therefore one can compute the upper bound

�(G; c) =

n

4

inf

n

�

max

(L(G; c) + diag(z) j z 2 IR

V

; e

T

z = 0

o

: (1)

This bound can be computed quite e�ciently if G is sparse, since the sparsity of

the matrix L(G; c) can be exploited. The bound has been computed by Poljak and

Rendl [12] on graphs of sizes up to a few hundred nodes. The same authors also

report on optimal solutions, obtained by inserting the computation of the bound in

a branch-and-bound framework, for graphs of sizes up to 80 nodes.

3.2 Edge formulation: the semide�nite relaxation

Let x be an n-dimensional �1 vector that can be interpreted as a descriptor of the

cut �(S) of G, according to the node formulation of the previous section. Consider

the matrix X = xx

T

. The matrix X has the following properties that can be easily

veri�ed: (i) X is symmetric; (ii) each diagonal entry of X is equal to 1; (iii) X is

positive semide�nite (psd); (iv) the entry x

ij

of X is equal to �1 if the edge (i; j)

belongs to the cut �(S); hence the weight of �(S) can be expressed as tr(L(G; c)X),

where tr(A) is the trace of A, i.e., the sum of its diagonal entries; (v) X is integer.

On the other hand, any matrix X satisfying the above �ve conditions can be written

as xx

T

, where x is the descriptor of a cut. From the conditions (i) and (ii) it is clear

that the the matrix X represents

�

n

2

�

variables, one for each edge of a complete

graph on n nodes; therefore the conditions (i){(v) provide an edge formulation of

the max-cut problem.

The optimal value of the following semide�nite programming problem, obtained by

relaxing condition (v), gives an upper bound of the value of the maximum cut of G:

 (G; c) =

1

4

max ftr(L(G; c)X) j X is symmetric and psd; diag(X) = eg : (2)

Using semide�nite programming duality, Poljak and Rendl [11] proved that �(G; c) =

 (G; c).

Using interior point techniques a semide�nite programming problem, i.e., a problem

where a matrix is constrained to be psd and its entries satisfy linear inequalities

and equations, can be solved very e�ciently. However it is not clear yet how the

sparsity of the matrix L(G; c) can be exploited. The solution of (2) is considerably

faster than the solution of (1) when G is dense.

Another advantage of the bound given by (2) is that the relaxation can be strength-

ened by adding inequalities on the entries of the matrix X that come from the

polyhedral relaxations of the max-cut problem (see the following section). Such an

approach has been successfully tried by Helmberg and Rendl [7], who report on the

solution of several instances with sizes up to 100 nodes to optimality.



3.3 Edge formulation: the polyhedral relaxations

With every cut �(S) of G we associate an incidence vector y

S

2 IR

E

de�ned to have

all the components corresponding to the edges of �(S) at value 1 and all the others

at value 0. Thus a cut is represented by an m-dimensional 0{1 vector.

The convex hull of the incidence vectors of all the cuts of G is the cut polytope

associated to G that we denote here by P

G

.

If a description of P

G

were known in terms of linear inequalities, the max-cut problem

could be solved, in principle, by maximizing the linear function c

T

y over P

G

using

linear programming techniques.

Since a complete system of linear inequalities describing P

G

for any graph G is not

known, one usually considers a polyhedral relaxation of P

G

, i.e., a polytope containing

P

G

whose linear system is fully described. Each inequality of this system has to be

valid for P

G

, i.e., must be satis�ed by the incidence vectors of all the cuts of G.

There are two requirements that a polyhedral relaxation should satisfy. The �rst is

that every feasible integral point should be the incidence vector of a cut. A second

is that every inequality of its de�ning system should not be dominated by another

valid inequality for P

G

.

To satisfy the �rst requirement we should �nd out whether any 0{1 m-dimensional

vector is the incidence vector of a cut. Since, unlike in the case of the node formula-

tion, the answer is no, we have to �nd some combinatorial property that is satis�ed

by all the edge sets that are cuts and is violated by all the others.

Such a property fortunately exists and is very simple: the intersection of every cut

of G with every cycle of G has even cardinality. Moreover, if a subset of E has an

intersection of even cardinality with all the cycles of G, then it is a cut.

The translation of the above property into a system of linear inequalities is as follows:

X

e2F

(1 � y

e

) +

X

e2CnF

y

e

� 1;

for each cycle C of G and

for each F � C with jF j odd.

(3)

The inequalities (3) are called cycle inequalities. It is easy to verify that if a subset

E

0

of E intersects a cycle of G in an odd number of edges F

0

, the inequality de�ned

by such a cycle and by F

0

is violated by the incidence vector of E

0

. Moreover it is

easy to show that the incidence vector of any cut of G satis�es all the inequalities

(3).

Finally, to make sure that y is an incidence vector, the following trivial inequalities

have to be added to the system:

0 � y

e

� 1 for each e 2 E. (4)

The system (3){(4) provides a polyhedral relaxation, called the semimetric polytope

M

G

, whose integral points are exactly the incidence vectors of all the cuts of G. Thus,

the system (3){(4) along with the integrality requirement on y and the objective

function c

T

y, yields an integer linear programming formulation for max-cut.

It is easy to see that if the cycle C has a chord, the corresponding inequalities

(3) are dominated by a positive combination of other cycle inequalities. Moreover,

if an edge e belongs to a triangle (a complete 3-node subgraph) of G, then the



corresponding inequalities (4) are dominated by a positive combination of cycle

inequalities.

Barahona and Mahjoub in [1] did a �rst systematic study of the cut polytope and

proved, among many other results, that the cycle inequalities de�ned by chord-less

cycles and the trivial inequalities de�ned by edges that do not belong to a triangle

of G de�ne facets of P

G

, which means that the system of these inequalities satis�es

the second of the above two requirements.

4 Optimizing over the semimetric polytope

The typical instances that come from spin glass models have several thousand nodes.

However their graph are rather sparse. For example, a toroidal 2-dimensional k � k

grid with an extra node that represents the �eld has k

2

+1 nodes but only 3k

2

edges.

At the present state of the art neither the algorithm based on the node formulation

nor those based on the semide�nite relaxation can be used to solve these kinds

of instances. To the contrary, the polyhedral relaxation based on the inequalities

(3){(4), has been shown to be pretty e�ective on them.

How di�cult is it to optimize a linear function on the semimetric polytope M

G

?

A fundamental result in Polyhedral Combinatorics (see, e.g., [6]) states that one can

optimize in polynomial time a linear function over a polytope P if and only if one

can solve in polynomial time the following separation problem: \Given a point x,

�nd an inequality valid for P that is violated by x, or prove that x belongs to P".

For a complete graph the system de�ning M

G

has polynomial size, thus the sep-

aration can be carried out exhaustively. For general graphs the inequality system

may have exponential size, yet a simple polynomial time algorithm is available that

solves the separation problem (see, e.g., [1]).

We have integrated an e�cient implementation of the separation algorithm for the

semimetric polytope in a branch and cut scheme. The resulting software solves

instances which are considerably larger than those solved in the literature and per-

forms much faster than any other software. For example, using this software it was

possible to carry out two experiments on a large number of instances of large size.

[2] and [3] report on two experiments on 2-dimensional grids with Gaussian and

�J interactions, respectively, each based on more that 20; 000 instances on toroidal

grids with sizes ranging from 5� 5 to 100 � 100.

For 3-dimensional grids the situation is quite di�erent: only grids of moderate sizes

can be handled. To analyze larger grids a relaxation for P

G

stronger than the

semimetric one would be necessary.

5 Computation of the exact susceptibility

An important parameter associated with each con�guration ! of a spin glass is its

magnetization � = jV

+

j � jV

�

j. When the glass is subject to an exterior magnetic

�eld of strength h, it is interesting to compute the magnetization as a function



of h. Such a function is called the susceptibility function of the glass, it is stepwise

constant, and it takes a constant value jV j for all h larger that some value h.

If we compute the susceptibility function for a large number of instances and we

take the average, we obtain a continuous function that can be well approximated, at

least in a neighborhood of the origin, with the function �h

1

�

. The parameter � plays

an important role in the study of the long range model and its accurate estimation

requires the exact computation of the susceptibility function.

Usually, in the literature the susceptibility is computed by solving a series of max-

cut instances obtained from the same instance by taking for h the values 0, � , 2� , 3� ,

: : :, for a value � su�ciently small. Although each instance is solved to optimality,

the susceptibility obtained this way is only an approximation of the real one. The

smaller the step size � the better is the approximation but the larger is the number

of instances to be solved to optimality.

Assume now that we have a polyhedral relaxation of P

G

that is tight enough to

provide integral optimal solutions for all the objective functions of interest and that

the separation problem for this relaxation is polynomially solvable. This means

that for these objective functions we can solve the max-cut problem with a pure

cutting-plane algorithm without any recourse to enumeration, variable �xing, and

all the other tricks that are usually exploited in a state-of-the-art branch-and-cut

algorithm. Under this assumption, the susceptibility function can be computed

exactly. We briey describe how this can be done.

Let Bx � b denote the �nite system of inequalities describing P

G

and x

�

the optimal

solution to the problem

maxfcx j Bx � bg: (5)

As Bx � b is a huge system and impossible to represent explicitly, by the assumption

we can think that x

�

has been obtained by a pure cutting plane procedure in a �nite

number of steps. From x

�

we can readily compute the magnetization �

�

. We can

assume that c corresponds to a spin glass instance with a given value of the �eld

strength h. Let d be the incidence vector of the set of the edges incident to node

0, which represents the exterior �eld. We want to know the minimum value � of �

for which problem (5), with the new objective function c + �d, yields an optimal

solution di�erent from x

�

. With this new solution we can compute the value of the

magnetization that immediately follows �

�

in the exact susceptibility function and

the �eld strength h + � at which the change occurs. If we can compute the value

�, the function can be determined exactly by solving at most jV j times problem (5)

with di�erent objective functions.

It is not di�cult to show that the sought value for � can be computed by solving

the problem

�tmax

(

cx � cx

�

j Bx � b; dx � dx

�

+

1

t

)

; (6)

where t is a scalar small enough to make x

�

the only integral feasible point.

Again, problem (6) can be solved exactly in practice if the relaxation at hand is

\tight enough". Quite surprisingly, this is the case for the semimetric relaxation

for 2-dimensional toroidal grids and Gaussian interactions. In [13] it is reported

that, using this technique, it was possible to compute the parameter � with high

accuracy. It is amazing that the computed value disagrees substantially with the

value predicted by the scaling theory (see, e.g., [5] for details).



When the interactions are of �J type or in the case of 3-dimensional toroidal grids,

the semimetric relaxation is totally inadequate for this technique. Evidently this

fact calls for stronger relaxations of P

G

.

6 Beyond the semimetric relaxation

The polytope P

K

p

, the cut polytope for a complete graph with p nodes, has been

extensively studied and a number of families of valid inequalities, several of them

facet de�ning for P

K

p

, have been described. In addition, for some of these inequalities

separation procedures have been proposed (see, e.g., [4] for a survey).

How can these results be used when the graph is not complete? A trivial way to

exploit the current knowledge about P

K

p

for the case of an arbitrary graph G, is

to add the missing edges to G and assigning them a zero weight, in order to ob-

tain an arti�cial complete graph. Such a technique has been successfully used for

other combinatorial problems, where the sparsity of the original graph can actually

be exploited to handle the arti�cial complete graph e�ciently. This is the case,

for example, for the traveling salesman problem. On the contrary, for the max-cut

there is no obvious way to exploit the sparsity of the original problem. This means

that if one uses the above technique, the exact solution of max-cut on sparse graphs

has the same computational di�culties of the max-cut on complete graphs. Unfor-

tunately, applications of max-cut, like the study of minimal energy con�gurations

in spin glasses, require the exact solution of instances with several thousand nodes.

Therefore, the solution of these instances is out of reach, unless the problem is solved

in the original sparse graph.

On the other hand, there is no obvious way to use the description of P

K

p

by linear

inequalities to obtain an equivalent description of P

G

, whereG an arbitrary subgraph

of K

p

= (V

p

; E

P

). Moreover, after the publication of the paper by Barahona and

Mahjoub [1], very little e�ort was devoted to the study of P

G

on arbitrary graphs.

A �rst step towards closing the gap of polyhedral knowledge between the max-cut

problem in general and in complete graphs is made in [8] where a technique is

described that we outline here.

We are given a point x

n

2 IR

E

that satis�es all the inequalities (3){(4) but does not

belong to P

G

. We want to �nd an inequality valid for P

G

(possibly facet de�ning)

that is not satis�ed by x

n

. To do so, we want to use the algorithmic and the

structural results that are available for P

K

p

.

First, by a sequence of operations, x

n

is transformed to x

p

2 IR

E

p

, where p is usually

much smaller than n. The point x

p

is guaranteed to be outside P

K

p

but to satisfy

(3){(4). It can be seen as a fractional solution of a cutting plane algorithm applied

to an max-cut instance on the complete graph K

p

.

At this point all the machinery available for the max-cut on complete graphs can

be used. Therefore, some separation procedures for the cut polytope on complete

graphs are applied to x

p

that (hopefully) generate an inequality a

p

x

p

� �, valid for

P

K

p

and violated by x

p

.

Finally, a sequence of lifting procedures is applied to a

p

x

p

� � that transforms it to

an inequality a

n

x

n

� � valid for P

G

and violated by x

n

.



As a by-product, one of these lifting procedures provides a simple way to generate

facet de�ning inequalities for P

G

.

In conclusion, these separation and lifting procedures enrich the description by linear

inequalities of P

G

on arbitrary graphs and yield a relaxation that is stronger than

the semimetric polytope.

We only have very preliminary computational results with the new relaxation of P

G

.

For example, for 243 out of the 20 000 \Gaussian" instances examined in [2] the

recurse to branching was necessary to get the optimal solution using the semimetric

relaxation. With the new relaxation this happened only for one problem; in addition,

it is possible to solve problem (6) also for �J instances of moderate size and to reduce

the computation time for 3-dimensional grids by a factor of ten.
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