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1 General Introduction 
 

It is widely accepted that nonverbal behaviors are an essential part of the human 

communication process: Burgoon (1994) summarizes that 60-65% of social meaning is 

communicated nonverbally. Therefore, the ability to accurately interpret other people’s 

nonverbal behaviors is essential for successful social interactions, as it allows one to adjust 

one’s own behavior to that of a social other. Indeed, throughout development, we become 

experts at attributing mental states and intentions to people based on nonverbal cues like 

facial expressions, hand gestures and bodily postures.  

 

1.1 The Importance of Dynamic Aspects of Nonverbal Behavior in 

Communication 

 
However, meaningful information is not only conveyed by static cues, but also by 

movements of the eyes, face, head or body. Thus, the spatiotemporal characteristics of 

perceived behavior also have an effect on how this information is processed (Birdwhistell, 

1970). For example Krumhuber & Kappas (2005) found that temporal aspects of facial 

displays influence the perception of authenticity in a smile, with smiles with a longer onset- 

and offset-duration being considered as more genuine. In the same line, temporal aspects of 

the contraction of facial muscles in the production of “eye-brow-flashes” have an effect on 

the decoding process by an observer (Grammer, Schiefenhövel, Schleidt, Lorenz, & Eibl-

Eibesfeldt, 1988). In this line, Grammer, Filova & Fieder (1997) aptly state that various 

kinematic elements contribute to the impression elicited by a nonverbal cue „By raising an 

arm fast or slow, with fist clenched or not, the movement staying at the maximum flexion 

for a certain time and going back fast or slowly“ (p. 99) a variety of meanings may be 

conveyed.  

 

Interestingly, such spatiotemporal properties, like duration, acceleration, rhythm and 

succession of actions, can not only describe one individual’s movements, but also the social 

dynamics of an interacting dyad (Georgescu et al., 2013; Santos, David, Bente, & Vogeley, 

2008). Indeed, research was able to show that flexible, online kinematic adjustments occur 
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between partners during a dyadic interaction (for a review see Becchio, Sartori, & Castiello, 

2010).  

 

To conclude, it becomes evident that subtle movement dynamics influence how nonverbal 

behaviors are perceived and interpreted by an observer. Some research indicates that the 

subtle dynamics of movements may even have a stronger impact on the observer’s 

impressions than so-called semantic aspects (i.e. a predefined ascribed meaning; Grammer, 

Honda, Juette, & Schmitt, 1999). It is therefore imperative that the nonverbal behavior 

research further acknowledges the importance of such dynamic properties of movement and 

focuses on them in order to be able to better characterize their influence on cognitive 

processes of information decoding and impression formation. In this regard, Burgoon and 

colleagues (1989) suggest that “we need to understand nonverbal communication as an 

ongoing, dynamic process rather than just a static snapshot of cues or final outcomes at one 

moment of time” (p. 23). 

 

1.2 Methodological Approaches to the Study of Dynamic Nonverbal Cues 

 

Research investigating effects of nonverbal behavior is confronted with several basic 

methodological problems. One of these problems concerns the fact that nonverbal behaviors 

are both encoded and decoded automatically and outside awareness (Choi et al., 2005). 

Thus, considering that throughout development human observers learn to extract 

information from nonverbal cues implicitly, it is important that we include both explicit and 

implicit measures in our investigation of the perception of nonverbal behaviors. Therefore, 

in addition to evaluative and person judgment tasks, which target explicit attitudes towards 

the stimulus material, functional magnetic resonance imaging (fMRI) opens up another level 

of analysis. This is particularly useful, since the automatic cognitive response to visual 

stimuli is not consciously accessible, hence, the neural correlates may even be more 

informative of an underlying cognitive process than its behavioral correlates. FMRI is a 

method for measuring brain activity within a strong static magnet field combined with radio 

wave pulses and gradients (Heeger & Ress, 2002; Horwitz, Friston, & Taylor, 2000). It is an 

indirect measure because it does not measure neural activity per se, but it only measures the 



Alexandra L. Georgescu                                                          Dynamics of Nonverbal Communication 

 13 

secondary physiological changes, which are brought upon by neural activity. This has been 

termed the so-called blood oxygenation level-dependent (BOLD) effect. Cognitive 

processing is associated with an increase in neuronal firing rates and this increased neural 

activity leads to increased metabolic requirements for the neurons. Consequently, a series of 

physiological changes in the local network of blood vessels takes place, including cerebral 

blood volume and blood flow. This leads to a decrease in deoxyhaemoglobin compared to 

oxyhaemoglobin in the venous pool. Deoxyhaemoglobin and oxyhaemoglobin have 

different magnetic properties. Deoxyhaemoglobin is paramagnetic and introduces an 

inhomogeneity into the nearby magnetic field, whereas oxyhaemoglobin is weakly 

diamagnetic and has little effect. Hence, a decrease in deoxyhaemoglobin causes an increase 

in image intensity (Heeger & Ress, 2002; Horwitz et al., 2000). Although the hemodynamic-

metabolic details are not yet fully understood, the validity of the BOLD signal has been 

confirmed by relating it to direct neurophysiological intracortical recordings of neural 

activity (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Raichle & Mintun, 2006). 

FMRI has several advantages over other brain imaging techniques. First, it noninvasively 

records brain signals without the risks associated with radiation exposure inherent in other 

scanning methods, such as X-ray Computed Tomography and Positron Emission 

Tomography. Second, it has high spatial resolution (Heeger & Ress, 2002; Horwitz et al., 

2000). Third, its recording is not limited to the cortical surface as is the case for 

Electroencephalography (EEG) and Magnetoencephalography (MEG) (Horwitz et al., 2000). 

 

Another important tool for nonverbal research are virtual characters. They provide an 

experimental apparatus that has i) the potential to be controlled more precisely than any 

human actor, and ii) the advantage of physical presence and ecological validity (Vogeley & 

Bente, 2010). Their use as stimulus material in research studies enables more flexibility in 

experimental designs, by allowing i) the dissociation of movement information from 

appearance information and ii) the fine-grained and highly controlled manipulation of 

parameters of interest (ibid.). The utility and validity of digital simulation techniques in 

nonverbal behavior research has been amply demonstrated in previous studies, showing that 

character animations of nonverbal behavior lead to realistic social impressions and highly 

correlate with judgments based on live-action video recordings (Bente G., Krämer N.C., 

Petersen A., & De Ruiter J.P., 2001; G Bente, Petersen, Krämer, & de Ruiter, 2001). 
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1.3 The Neural Mechanisms of Processing Human Actions 
 

An essential line of research in social cognitive science has been concerned with the 

investigation of the ability to understand other persons. The ability to perceive and 

understand others’ socially meaningful movements relies on the integration of information 

into relevant motion cues, leading to ascriptions of mental states to others (Santos et al., 

2010). The neural mechanisms subserving these processes are described below. 

  

The neural mechanisms that enable observers to identify “what” other people are doing have 

been robustly associated with the so-called action observation network (AON, Julie Grèzes 

et al., 2001; Marsh et al., 2010; Saygin, 2007; see Fig. 1). This network includes the bilateral 

posterior superior temporal sulcus (pSTS), the inferior parietal lobe (IPL) and a premotor 

node, which encompasses the inferior frontal gyrus (IFG, pars opercularis), the ventral and 

dorsal premotor cortices (PMv, PMd) and the supplementary motor area (SMA). For 

example, research has shown that the perception of biological motion (i.e. seeing point-light 

displays (PLDs) of a human performing articulated movements) is associated with increased 

activation in the pSTS and the premotor cortex (PM) (Bonda, Petrides, Ostry, & Evans, 

1996; Saygin, 2007). The AON has also been engaged by observing people perform various 

instrumental, transitive actions (i.e. manipulating an object), but also by intransitive actions, 

be they communicative (e.g. Lotze et al., 2006; Schippers, Gazzola, Goebel, & Keysers, 

2009), expressive (e.g. Calvo-Merino, Glaser, Grèzes, Passingham, & Haggard, 2005; J 

Grèzes, Wicker, Berthoz, & de Gelder, 2009), or symbolic actions (e.g. Désy & Théoret, 

2007; Molnar-Szakacs, Wu, Robles, & Iacoboni, 2007; Montgomery, Isenberg, & Haxby, 

2007; Villarreal et al., 2008) and even during nonverbal communicative interactions 

(Centelles, Assaiante, Nazarian, Anton, & Schmitz, 2011). It has been proposed that it 

performs an automatic kinematic analysis of movements with respect to goal-intentionality 

(Santos et al., 2010). 

 

However, the question of understanding “why” people are performing actions has been 

associated with a more inferential processing, often termed as “mentalizing” (Frith & Frith, 

2003). This refers to the ability to attribute mental states (i.e. thoughts, emotions, beliefs and 

intentions) to other people and is also known as a Theory of Mind (ToM, Premack & 
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Woodruff, 1978). Thus, mentalizing refers to an explicit reasoning about other people’s 

minds. Studies investigating mentalizing processes have found a set of brain regions that 

seems to be dedicated to such social cognition, namely the so-called social neural network 

(SNN; Adolphs, 2009; Frith, 2007; see Fig. 1). The SNN is thought to include regions along 

the cortical midline and in the temporal lobes, namely the medial prefrontal cortex (mPFC), 

the posterior cingulate cortex (PCC), the temporoparietal junction (TPJ) and adjacent pSTS 

as well as the insular cortex and the temporal poles (TP) (ibid.). For example, studies asking 

participants to evaluate nonverbal behavior e.g. (Kuzmanovic et al., 2012), to infer the 

mental states from the eye region (Baron-Cohen et al., 1999), or to think about the 

motivations behind actions (Brass, Schmitt, Spengler, & Gergely, 2007) have been found to 

elicit activation in areas of the SNN.  

 

 
Figure 1. Action Observation Network (AON) and Social Neural Network (SNN). Depicted are the key regions 
involved in social cognition in a medial and lateral view of the brain. See text for details and abbreviations 
(adapted from Blakemore, 2008). 
 

Both networks, the AON and the SNN have been proposed to be involved in understanding 

the intentions behind others actions and may have distinct but complementary functions (De 

Lange, Spronk, Willems, Toni, & Bekkering, 2008; Keysers & Gazzola, 2007; Uddin, 

Iacoboni, Lange, & Keenan, 2007; Zaki, Hennigan, Weber, & Ochsner, 2010). More 
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specifically, it has been proposed that the AON is required for both low- and high-level 

identification of actions and the SNN is required for high-level conscious mental inference 

and evaluation of social stimuli (Brass et al., 2007; de Lange et al., 2008; Keysers & 

Gazzola, 2007; Santos et al., 2010; Spunt, Falk, & Lieberman, 2010; Spunt, Satpute, & 

Lieberman, 2011; Thioux, Gazzola, & Keysers, 2008; Uddin et al., 2007; Van Overwalle & 

Baetens, 2009). In other words, the AON encodes the observable, perceptual-motor 

properties of others’ actions and the SNN interprets those properties in terms of 

unobservable mental states and traits. Despite the fact that the AON and SNN are rarely 

concurrently active (for a review, see Van Overwalle & Baetens, 2009), it seems that under 

specific conditions both systems might be involved in the processing of whole-body 

nonverbal behavior during social interactions (e.g. Centelles et al., 2011). Thus, the exact 

relationship between SNN and AON is complex and still to be explored. 

 

1.4 High-Functioning Autism and the Processing of Nonverbal Cues 

 

High-functioning autism (HFA) is a pervasive neurodevelopmental disorder of the autism 

spectrum that is characterized by sociocommunicative impairments on the one hand but 

intact non-social cognitive capacities on the other (Klin, 2006). More specifically, one of the 

core deficits of individuals with HFA concerns the interpretation of nonverbal behaviors. 

For instance, individuals with autism show an atypical processing and decoding of 

nonverbal cues such as facial expressions and gaze behavior (Senju & Johnson, 2009a; 

Uljarevic & Hamilton, 2013). However, deficits in processing dynamic aspects of nonverbal 

behavior in single-agent and dyadic contexts have also been observed: Individuals with 

Autism Spectrum Disorder (ASD) have not only been shown to have both a compromised 

perception of biological motion (for a review, see Kaiser & Pelphrey, 2012) but also a 

deficit in the detection of social contingencies (Castelli, Frith, Happé, & Frith, 2002;  

Gergely, 2001; Klin, 2000). In the same line, a recent study by Centelles, Assaiante, 

Etchegoyhen, Bouvard and Schmitz (2013) has found that autistic children were less 

accurate at deciding whether two point-light characters were communicating or not based on 

their movement patterns alone. Furthermore, some person perception studies have come to 

the conclusion that the degree to which nonverbal information contributes to complex 
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subjective social decisions is significantly lower in individuals with HFA than in typically 

developing individuals (Kuzmanovic, Schilbach, Lehnhardt, Bente, & Vogeley, 2011; 

Schwartz, Bente, Gawronski, Schilbach, & Vogeley, 2010).  

To conclude, investigating the neural processing of nonverbal behavior in HFA promotes a 

better understanding of this disorder and additionally enables a better specification of the 

mechanisms underlying social cognition in healthy individuals. 

 

1.5 Aim of the Current Thesis 
 

With the present studies we hoped to address several open questions in the field of 

nonverbal behavior research. One question concerned the validity of using virtual characters 

as a tool for investigating dynamic aspects of nonverbal behavior in neuroimaging studies 

(Studies 1-4). Another question concerned the contribution of different dynamic movement 

characteristics to the processing of nonverbal behavior. More specifically, we focused on the 

duration of social gaze cues (study 1 and study 2), the kinematics of biological motion 

(study 3) and the contingency of movement patterns in a dyadic context (study 3 and study 

4). Further, we sought to contribute to the ongoing debate on how the two neural networks 

AON and SNN are involved in ascribing meaning to movements (study 3). Finally, the 

question of perturbations of nonverbal processing in HFA was addressed (study 2 and study 

4). Thus, in four different experiments (two published, one accepted, one under revision), 

we used methodologies such as fMRI, virtual characters and experimental psychological 

paradigms in order to address the aforementioned questions.  
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2 Studies 1 and 2: The Dynamics of Social Gaze 
 

2.1 Theoretical Background 

 

2.1.1 The Role of Gaze Behavior in Social Cognition 
 

The eye region provides essential information related to a person’s identity, emotional state 

and focus of attention (Kleinke, 1986). Interestingly, eyes have even been proverbially 

referred to as a “window to the soul”. Indeed, the perceived gaze behavior of another person 

allows inferences about their underlying mental states (Baron-Cohen, Wheelwright, Hill, 

Raste, & Plumb, 2001; Simon Baron-Cohen, Wheelwright, & Jolliffe, 1997; Eskritt & Lee, 

2007). Consequently, being able to accurately attribute mental states of our social others 

based on their social gaze cues allows for the coordination of attention and activities 

between interaction partners (Argyle & Cook, 1976; Kleinke, 1986).  

In particular, the direction of perceived gaze is important. As an indicator of another’s focus 

of attention (Mason, Tatkow, & Macrae, 2005), perceived direct gaze may express social 

interest and the intention to communicate (Cary, 1978; Kleinke, 1986). A sensitivity to 

direct gaze is seen from a very early age, with newborns spending more time looking at 

faces with direct compared to averted gaze (e.g. Farroni, Csibra, Simion, & Johnson, 2002). 

Research has repeatedly shown that direct gaze is detected faster and more accurately than 

averted gaze (Conty, Tijus, Hugueville, Coelho, & George, 2006; Senju, Kikuchi, 

Hasegawa, Tojo, & Osanai, 2008; Senju, Tojo, Yaguchi, & Hasegawa, 2005; Senju, 

Yaguchi, Tojo, & Hasegawa, 2003; Wallace, Coleman, Pascalis, & Bailey, 2006). 

Moreover, direct gaze, as compared to averted gaze, has been shown to modulate various 

aspects of cognitive and attentional processing, a phenomenon termed as the so-called “eye-

contact effect” (Senju & Johnson, 2009b). In this line, direct gaze facilitates performance in 

gender discrimination tasks (Macrae, Hood, Milne, Rowe, & Mason, 2002), facial identity 

recognition tasks (Hood, Macrae, Cole-Davies, & Dias, 2003; Smith, Hood, & Hector, 2006) 

and person memory tasks (Mason, Hood, & Macrae, 2004) and has an enhancing effect on 

likeability and attractiveness ratings of others (Mason et al., 2005). 
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However, it is important to note that, not only the direction of perceived gaze is informative 

during person perception, but also more dynamic aspects of gaze behavior (Foa, Foa, & 

Schwarz, 1981). For example, the same direct gaze cue may have multiple meanings 

depending on more subtle aspects of the behavior: Standing by the side of a road and 

making eye contact with drivers either with the intention of demanding a lift (i.e. hitch-

hiking; Ellsworth, Merrill, & Henson, 1972) or with no particular intention at all (Snyder et 

al., 1974) increased the likelihood of actually receiving a lift in the first study but not in the 

second one. One such dynamic aspect of gaze behavior is its duration. For example, being 

looked at longer than a short glance results in more compliance with a request (Guéguen & 

Jacob, 2002). Moreover, humans learn to use the relative gaze duration towards different 

objects in the environment to infer other people’s preferences (Einav & Hood, 2006; 

Montgomery, Bach, & Moran, 1998). In terms of person perception, when a target person is 

displaying prolonged direct gaze toward an observer, the former are rated as more likeable 

(Argyle, Lefebvre & Cook, 1974), potent (Brooks, Church, & Fraser, 1986) and as having 

more self-esteem (Droney & Brooks, 1993). In the context of social interactions, sustained 

mutual eye contact can moderate interpersonal distance (Argyle & Dean, 1965). In this line, 

increasing perceived duration of direct gaze can enhance the degree of intimacy between 

interaction partners and, depending on the context, evoke the impression of either affiliation 

or threat (Argyle, Lefebvre & Cook, 1974). In the same line, Ellsworth and colleagues 

(1972), have suggested that “the stare, in effect, is a demand for a response, and in a 

situation where there is no appropriate response, tension will be evoked, and the subject will 

be motivated to escape the situation” (p311). 

Taken together, social gaze cues provide unique access to investigate critical mechanisms of 

social cognition. While the perception of gaze direction has been investigated more 

extensively in the past, dynamic aspects of gaze behavior have not been comprehensively 

looked at, despite the fact that they are known to modulate the communicative content 

transmitted by the eyes (Argyle & Cook, 1976; Kleinke, 1986). 
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2.1.2 Neural Correlates of Social Gaze Processing 

 

Electrophysiological evidence has indicated differential neural activity for direct versus 

averted gaze (Conty, N’Diaye, Tijus, & George, 2007; Gale, Spratt, Chapman, & 

Smallbone, 1975; Hietanen, Leppänen, Peltola, Linna-Aho, & Ruuhiala, 2008; Senju et al., 

2005). For example, recent event-related potential evidence showed that the dissociation 

between direct and averted gaze processing occurs as soon as 160 ms, and source 

reconstruction showed that it involved regions of the SNN (Conty et al., 2007). FMRI 

studies have further explored the cortical networks involved in processing gaze direction 

(for reviews, see Grosbras, Laird, & Paus, 2005; Itier & Batty, 2009; Nummenmaa & 

Calder, 2009; Senju & Johnson, 2009b). In a recent review, Senju and Johnson (2009b) 

mention a total of six regions which have been reported to show differential activity between 

direct and averted gaze, namely the fusiform gyrus (FG), the posterior superior temporal 

sulcus (pSTS), the dorsomedial prefrontal cortex (dmPFC), the orbitofrontal cortex (OFC) 

and the amygdala. These regions are known to be part of the SNN, which is required for 

conscious mental inference and evaluation of social stimuli (Van Overwalle & Baetens, 

2009). Interestingly, not all social gaze studies have found activations in all of these regions 

of the SNN since the neural response to gaze direction interacts with task demands and 

context, to influence precisely which ones are engaged (Senju & Johnson, 2009b).  

 

2.1.3 Social Gaze Processing in Individuals with HFA 

 

In autism spectrum disorders, atypical processing of eye stimuli have been repeatedly 

observed (Senju & Johnson, 2009a). For example, autistic persons are impaired in reading 

others’ mental states from the eye region (Baron-Cohen et al., 2001). A series of behavioral 

studies have demonstrated that direct gaze does not elicit the so-called “eye contact effect” 

in individuals with autism. This means that perceived eye contact is neither preferred by nor 

does it offer any perceptual advantage or modulate cognition and attention in autistic 

persons (for a review, see Senju & Johnson, 2009a). For example, individuals with autism 

spectrum disorders have been found to be equally efficient in detecting direct as well as 

averted gaze and did not show the facilitative effect of eye contact characteristic for 
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typically developing participants (Senju et al., 2003). Furthermore, an absence of a 

preferential reaction to gaze in contrast to non-biological cues has been found repeatedly 

(e.g. Ristic et al., 2005; Senju, Tojo, Dairoku, & Hasegawa, 2004). For instance, Vlamings, 

Stauder, Van Son and Mottron (2005) showed that arrows and eye stimuli triggered attention 

in the same way in autistic persons whereas control participants showed faster reaction times 

for the eyes.  

 

Only two fMRI studies so far have investigated the neural processing of direct compared to 

averted gaze in individuals with HFA relative to a control group in a realistic situation 

(Hagen, Stoyanova, Rowe, Baron-Cohen, & Calder, 2013; Pitskel et al., 2011). Both studies 

used computer-generated characters to implement two gaze direction conditions (toward the 

viewer and away from them). Despite the differing context and task demands, both studies 

reached similar conclusions: They found that regions of the SNN were engaged by direct 

compared to averted gaze in control but not in HFA participants and suggested that this was 

due to the fact that direct gaze was a less salient stimulus for autistic participants. 

Interestingly, it has been suggested that gaze processing deficits in HFA result from an 

impairment to extract relevant information from the eye region necessary for social 

communication (Pelphrey, Morris, & McCarthy, 2005). However, in order to answer this 

question, experimental paradigms need to allow for the dissociation of social perception of 

gaze cues on the one hand and social processing thereof on the other. It is thus important to 

take a closer look, not only at gaze direction but also at specific subtle aspects of gaze 

behavior, like duration, as well as their neural correlates to determine how exactly 

individuals with ASD perceive and process gaze stimuli differently compared to 

neurotypical individuals. To our knowledge, this is the first investigation of the processing 

of both gaze direction and duration in adults typically developed adults and individuals with 

HFA, which allowed us to investigate detection and evaluation processes with the same 

stimulus material. 
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2.2 Experimental Design and Hypotheses 
 

The aim of study 1 and study 2 was to investigate the influence of the two factors gaze 

direction and gaze duration on the judgment of likeability of virtual human faces in HFA 

participants and typically developed individuals.  

The paradigm used by both studies had a two by three factorial design with the two factors 

(a) gaze direction, varied on two levels (direct or averted) and (b) gaze duration varied on 

three levels (1, 2.5 and 4 seconds) (see Fig. 2). The stimulus material consisted of 20 

computer-generated faces (10 male and 10 female) created using the commercially available 

3D animation software Poser 6.0 (Curious Labs Inc. Santa Cruz, USA). Each trial began 

with the display of a face, the gaze of which was initially averted. After a short blink (150 

ms), the character directed its gaze toward the participant and after a variable period of time 

(depending on the condition of interest, either 1, 2.5 or 4 seconds), the virtual character 

looked again away by shifting its gaze back to the initial position. The task required 

participants to watch each animation and evaluate the likeability of the animated faces on a 

four-point likeability scale (see Fig. 2). 22 right-handed participants (12 male; mean age: 

27.2 ± 3.9 years) took part in study 1. A group of 13 HFA individuals (9 male; mean age: 

31.23 ± 4.87 years) participated in study 2. They were diagnosed and recruited in the autism 

outpatient clinic at the Department of Psychiatry of the University Hospital of Cologne in 

Germany. Furthermore, 13 matched control participants (9 male; mean age: 30.23 ± 3 years; 

some were from study 1) volunteered to take part in study 2. 
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Figure 2. A. Experimental design. B. An example of a virtual face stimulus and a sample direct gaze trial. 
The participants’ task was to observe and rate the perceived likeability of each face on a 4-point scale. 

 

We hypothesized that, in typically developed individuals, direct compared to averted gaze 

would activate the pSTS, a region that has been robustly linked to the perception of gaze 

behavior (Bristow, Rees, & Frith, 2007; Calder et al., 2002; Ethofer, Gschwind, & 

Vuilleumier, 2011; Hagen et al., 2013; Pelphrey, Viola, & McCarthy, 2004; Pitskel et al., 

2011). Further, we assumed that increasing gaze duration would engage the mPFC, a region 

associated with the evaluation of social stimuli (Amodio & Frith, 2006; Zysset, Huber, 
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Ferstl, & von Cramon, 2002). We further assumed that these effects would be weaker or 

absent in participants with HFA, given the fact that direct gaze may hold less salience for 

them (Senju & Johnson, 2009a). 

 

2.3 Findings and Conclusions 
 

Behavioral data were tested by a two-way repeated measures analysis of variance (ANOVA) 

using SPSS (PASW Statistics 18). Results revealed that HFA participants showed no 

significant difference in likeability ratings depending on gaze duration, while the control 

group rated the virtual characters as more likeable with increasing gaze duration (see Fig 2). 

The behavioral analysis revealed no main effect of gaze duration (F(2, 48) = 1.1, p = .34) or 

group (F(1, 24) = 2.92, p = .1), possibly because of the low sample size (see Fig. 3). 
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Figure 3. The plot illustrates the effects of gaze duration on likeability ratings. The scales on the y-axis 
indicate the mean of stimuli ratings. A score of 1 refers to rating a face as “dislikable” and one of 4 as 
“likeable”. Error bars show 1 standard error of the mean. HFA = High-functioning autism; CON = Control 
group 
 

In terms of neural activations, both study 1 and study 2 suggest that there are two 

complementary cognitive processes related to the two factors gaze direction and duration for 

typically developing adults. Furthermore, these processes seem to recruit distinct neural 

areas within the SNN. On the one hand, the recruitment of the pSTS, the insula, the PCun 

and the TPJ for processing direct compared to averted gaze indicates salience detection. On 

the other hand, a parametric analysis of the processing of increasing gaze duration revealed 

the involvement of regions of the mPFC (the dACC and the mOFC). These regions are 

typically associated with outcome monitoring, hence indicating higher-order social cognitive 

processes related to the evaluation of the ongoing communicational input conveyed by 

prolonged eye contact. However, in the HFA group, solely the pSTS was engaged by direct 

compared to averted gaze, while several regions of the SNN, namely the PCun, the TPJ and 
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the FG were activated by the opposite contrast. This result supports previous research 

findings demonstrating atypical neural processing of gaze direction in autistic individuals 

relative to a control group (Grice et al., 2005; Hagen et al., 2013; Pitskel et al., 2011, 2011; 

Senju et al., 2005). Moreover, in the HFA group, while processing increasing gaze duration 

did not elicit any differential activations, decreasing gaze duration was correlated with 

neural activity in the PCun (see Fig. 4). The analysis of the group x condition interaction 

evaluating brain regions more responsive to direct than to averted gaze in the typical 

compared to the HFA group, revealed activations in the mOFC, the right Cun and PCun, left 

MTG, extending to the aSTS and bilaterally the TPJ (localized in the posterior terminal of 

the ascending branch of the STS; see Fig. 3).  

 

 
Figure 4 Neural Results of Study 2: Gaze Duration. A. Neural activation associated with increasing gaze 
duration for the control group. B. Direct group comparison between the control and HFA group for the 
neural processing of increasing gaze duration. Plots illustrate corresponding contrast estimates obtained for 
the four stimulus categories for three different local maxima: left dACC (-9, 33, 15), right mOFC (11, 38, -
17) and left insula (-38, -9, -6). Error bars represent confidence intervals. C. Neural activation associated 
with decreasing gaze duration for the HFA group. The principally activated voxels are overlaid on the mean 
structural anatomic image of the 26 participants: p < .001, cluster-level corrected; DGd+ = increasing direct 
gaze duration; DGd- = decreasing direct gaze duration; CON = control group; HFA = high-functioning 
autism group; dACC = dorsal anterior cingulated cortex; mOFC = medial orbitofrontal cortex. 

While direct gaze and increasing direct gaze duration may signal social salience and a 

communicative intent to typically developing individuals, gaze duration does not hold the 

same relevance for individuals with HFA. However, the present results also demonstrate, 

that in participants with HFA, gaze processing deficits are not based on gaze direction 

discrimination per se. Thus, it is not a deficit in perception of social stimuli but in the 

processing thereof. Rather, they seem to result from atypically ascribing salience and from 
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being impaired in using subtle aspects of gaze, such as the duration of direct gaze, to 

understand others. 

 

3 Study 3: Neural Correlates of the Perception of Nonverbal 

Behavior in Dyadic Interactions 
 

3.1 Theoretical Background 
 

3.1.1 The Importance of Whole-Body Movements in Social Cognition 
 

As previously stated in the introduction (chapter 1.1), nonverbal meaningful information is 

not only conveyed by specific gestures, facial expressions or body postures, but also by full-

body movements (Santos et al., 2008). Interestingly, it seems that even in earliest stages of 

development, humans are sensitive to the kinematic properties of biological motion. Indeed, 

a great number of studies have suggested that people are able to implicitly extract 

information about observed activities, identities, emotions, and context from the kinematic 

information inherent in a movement (for a review, see Blake & Shiffrar, 2007; Knoblich, 

2006). Moreover, this is not only the case for individual actions but also for actions 

performed in an interacting context: Dyadic interactions such as dancing, sparring or 

shaking hands can be accurately identified when presented as reduced-cue stimuli (e.g. 

Centelles et al., 2011; Dittrich, 1993).  

 

 

 

 

 

 

 

 



Alexandra L. Georgescu                                                          Dynamics of Nonverbal Communication 

 28 

3.1.2 Generating Mental State Content Based on Movement Characteristics: The 

Case of Movement Fluency and Contingency Information 

 

Two important kinematic properties of human movement are 1) movement fluency and 2) 

movement contingency (Blakemore et al., 2003; Georgescu et al., 2013). While the first can 

be described as a characteristic of the movements of an individual agent, the latter describes 

the spatiotemporal dynamics between agents and is a characteristic of the dyad. 

 

Human movements are characterized by a smooth velocity, following a bell-shaped 

acceleration profile, the so-called minimum-jerk velocity (Hogan, 1984). The velocity is 

smooth, because, mathematically, the derivative of acceleration (i.e. “jerk”) is minimized 

over the movement trajectory (Abend, Bizzi, & Morasso, 1982). Another way of describing 

this kinematic characteristic of biological motion is by using the two-thirds power law of 

motion. This law suggests that biological movements slow down at curved relative to 

straight parts of the trajectory (Lacquaniti, Terzuolo, & Viviani, 1983). Indeed, 

(Morewedge, Preston, & Wegner, 2007) have found that human and nonhuman targets (be 

they animals, robots and animations) are more likely to be considered to possess mental 

states when they move “at speeds similar to the speed of natural human movement” (p.1). In 

the same line, research has found that movements that follow such a smooth velocity profile 

are more likely to be perceived as intentional and animate (Pyles, Garcia, Hoffman, & 

Grossman, 2007). To conclude, we will continue to refer to this characteristic of biological 

motion, which describes a smooth velocity profile, as movement fluency. 

 

Apart from the physical properties of biological motion itself, the complex dynamics of 

movement patterns also facilitate the perception of meaning in a visual stimulus. Anecdotal 

evidence, as well as scientific research has found that human observers tend to interpret an 

interaction between moving non-biological objects as a social encounter when their 

movement patterns are contingent (Castelli, Happé, Frith, & Frith, 2000; Gobbini, Koralek, 

Bryan, Montgomery, & Haxby, 2007; Santos et al., 2010, 2008; J. Schultz, Friston, 

O’Doherty, Wolpert, & Frith, 2005; Schultz, Imamizu, Kawato, & Frith, 2004). In the 

context of social interaction research, the term “social contingency” has been used to 

describe an above chance probabilistic mutual relationship between the actions of two 
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interactants (Moran et al., 1992). Humans are able to extract information about social 

contingencies to identify categories of interaction such as playing, fighting, chasing etc 

(Berry, Misovich, Kean, & Baron, 1992; Bloom & Veres, 1999; Blythe, Miller, & Todd, 

1996; Rimé, Boulanger, Laubin, Richir, & Stroobants, 1985; Scholl & Tremoulet, 2000). 

The available cues that might enable humans to access such information include timing and 

spacing contingencies (Gergely and Watson 1999). Thus, henceforth we refer to contingency 

as the “noncoincidental bidirectional coordination of movement patterns both in the 

temporal and the spatial domain between two interacting agents, which result in meaningful 

patterns of mutual social coordination” ( Georgescu et al., 2013). 

 

3.1.3 Neural Correlates of Generating Mental State Content Based on Movement 

Stimuli 

 

3.1.3.1 Neural Correlates of Processing Biological Movements 

 

The involvement of the AON in the perception of biological motion has been previously 

attested (e.g. Saygin, Wilson, Hagler, Bates, & Sereno, 2004; Saygin, 2007). In fact, it has 

been suggested that the AON might be tuned specifically to biological motion and that it 

would respond to a lesser extent to nonbiological or robotic movements (Casile et al., 2010; 

Dayan et al., 2007; Kilner, Paulignan, & Blakemore, 2003; Press, 2011). Two fMRI studies 

indicated that, both when stimuli are of point (Dayan et al., 2007; BA6 and BA44) and 

human form (Casile et al., 2010; BA6), observing movements obeying the two-thirds power 

law activates premotor structures to a greater extent than observing movements with the 

inverted kinematic profile. Press and colleagues (2011) presented the participants of an 

MEG study with human form or point form arm movements, which moved with human or 

constant velocity profiles. Only when observing movements with biological velocity 

(irrespective of form), sensorimotor activation changed across time in a manner that would 

be expected if executing the actions. In order to investigate the influence of kinematics on 

social perception, research is increasingly relying on robotic stimuli to operationalize 

nonbiological movement. Tai, Scherfler, Brooks, Sawamoto, & Castiello (2004), for 

example, found a significant neural response in the left premotor cortex, a key node of the 
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AON, for subjects observing manual grasping actions by a human but not by a robot model. 

Nevertheless, findings in this research area are still inconclusive, since two fMRI studies 

found that the AON was strongly activated by the sight of both human and robotic actions, 

with no significant differences between the two (Gazzola, Rizzolatti, Wicker, & Keysers, 

2007; Oberman, McCleery, Ramachandran, & Pineda, 2007). The inconsistency in previous 

findings may be due to the fact that often motion kinematics are confounded with 

appearance information, and it is not clear neither which factors contribute to the findings, 

nor to what extent they do so. In fact, it is most likely that an interaction between 

kinematics, agent form and task demands might modulate social perception (Cross et al., 

2011; Saygin, Chaminade, Ishiguro, Driver, & Frith, 2011). Thus, it is important to study 

how movement fluency modulates AON activity, when appearance information is not 

confounded with kinematic information. 

 

3.1.3.2 Neural Correlates of Processing Contingent Movement Patterns 

 

Observing contingent movement patterns between objects can elicit increased neural 

activation in the SNN (Castelli et al., 2000; Castelli et al., 2002; Martin & Weisberg, 2003; 

Ohnishi et al., 2004; Tavares, Lawrence, & Barnard, 2008). The pSTS, for example, is 

activated not just by the perception of human biological motion (Allison, Puce, & 

McCarthy, 2000; Bonda et al., 1996; Saxe, Xiao, Kovacs, Perrett, & Kanwisher, 2004), but 

also by movements of nonbiological agents, when exhibiting intentionality as reflected by 

interactive dynamics (Castelli et al., 2000; Gobbini et al., 2011; Santos et al., 2010; Schultz 

et al., 2005, 2004). Further, Castelli and colleagues (2000) performed a PET study and used 

animations of moving geometric figures, similar to those developed by Heider and Simmel 

(1944). They found increased activations in ventral mPFC and temporal regions (FG and 

TP), when comparing contingent with random motion animations. Such findings support the 

so-called “intentionality hypothesis”, which claims that the impression of an animate and 

mindful agent is not based on motion information alone but includes inferences about the 

causes of these motions (Gelman, Durgin, & Kaufman, 1995; Santos et al., 2008).  
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3.1.3.3 Neural Correlates of Processing Dyadic Nonverbal Social Interactions 

 

Despite the fact that social interactions are an abundant stimulus in our environment, 

surprisingly little research has studied how it is perceived and processed on a neural level.  

 

Due to the methodological constraints mentioned in the introduction (chapter 1.2), some 

studies have used pictures of interacting individuals. For example, Walter and colleagues 

(2004) presented participants with cartoon stories of characters engaged in social interaction 

and asked them to chose a logical ending. They found that the mPFC is involved in 

understanding social intentions. Pierno, Becchio, Turella, Tubaldi and Castiello (2008) 

presented participants with pictures of triadic interactions between two individuals or with 

two actors performing individual object-related actions. The authors have found that the 

observation of social interactions evoked activity within the dmPFC, the PCun, IFG and 

angular gyrus (in the TPJ). Kujala, Carlson and Hari (2011) used still pictures of two 

individuals either facing toward or away from each other and a passive viewing task. 

Activations within the amygdala, pSTS and dmPFC were sensitive to the interactional 

position and distinguished humans facing toward from humans facing away. Finally, 

Canessa and colleagues (2012) used pictures of social interactions between two individuals 

(either cooperative or affective) and found that the right TPJ was involved in processing 

both types of interactions, suggesting that both situational contexts require the inference of 

action goals. Furthermore, while the AON was more involved in processing cooperative 

compared to affective interactions, the SNN was more engaged by the opposite contrast. 

To this date, there have been only four neuroimaging studies using dynamic moving stimuli 

of humans engaged in nonverbal interactions. Hirai and Kakigi (2009) performed an MEG 

study to investigate the neural activity in response to the interaction information between 

two PLDs of motion-captured boxing agents who were either facing each other (interaction), 

or whose positions were swapped (no interaction). They have found that the interaction 

information can affect the neural activity in the bilateral occipitotemporal region, on average 

300-400ms after the onset of a two-agent BM stimulus. Iacoboni and colleagues (2004) 

conducted an fMRI study that required participants to passively watch movie clips depicting 

everyday social interactions. The observation of the relational segment of the movie clip, 

during which two persons were interacting, compared to the observation of the segment of 
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the movie clip depicting a single individual agent, yielded increased activity in two key 

areas of the SNN, the PCun and the dmPFC. Sinke, Sorger, Goebel and De Gelder (2010) 

investigated brain activity in subjects observing movie clips of two persons with blurred 

faces interact in two different contexts (teasing or threatening). They have found stronger 

amygdala activation for threatening than teasing interactions, regardless of whether the 

emotional context was attended to or not. In a recent study, Centelles and colleagues (2011) 

used fMRI and PLDs to investigate the perception of communicative interactions between 

two motion-captured agents. In the interaction condition, one actor performed a 

communicative action, which triggered a reaction from the other actor, and in the no 

interaction condition the two agents were moving independently side by side. Results 

showed that both the AON and the SNN were involved in the processing of the interaction 

condition versus the no interaction condition.  

 

Yet, there are several shortcomings to these studies, which limit their interpretation. Hirai 

and Kakigi (2009) did use dynamic nonverbal interactions, however they were not 

communicative. Centelles and colleagues (2011) used communicative nonverbal interactions 

but they were short, ritualized behaviors, with a learned social response expectancy (e.g. 

directives like “come here” or “sit down”). While Sinke and colleagues (2010) and Iacoboni 

and colleagues (2004) did look at more complex communicative interactions, their research 

questions and contol conditions were either not robust enough or not focused on the 

relational component. To conclude, the main problem with the previous research is that it’s 

very hard to find i) an ecologically valid stimulus material that allows systematic 

manipulation of the parameters of interest; ii) a control condition where the relational aspect 

of an interaction is eliminated, without also eliminating the communicative aspect and iii) an 

appropriate control condition which ensures that low-level action features like the quantity 

of movement or the size or scale of the movements in space is comparable across conditions. 
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3.2 Experimental Design and Hypotheses 
 

The major objective of the present fMRI study was to employ a novel design that would 

allow us to systematically manipulate both fluency and contingency information in 

nonverbal social interaction stimuli. This would help clarify the weight of these two factors 

in and the contribution of the two neural networks, AON and SNN, to the perception of 

nonverbal communicative interactions.  

 

The paradigm used was adapted from a recently developed method to examine social 

interaction from a third-person perspective, (Bente et al., 2001; Bente, Senokozlieva, 

Pennig, Al-Issa, & Fischer, 2008). During fMRI 21 male participants (mean age: 26.86 ± 

2.56 years) watched 10s long silent videos of communicative nonverbal interactions 

between two anonymous, standardized virtual agents. They were asked to rate on a four-

point scale how natural they perceived each scene to be. We directly manipulated the 

movement fluency and contingency information present in the videos in a two-by-two 

factorial design. First, to manipulate the movement fluency, kinematics of the original dyads 

were changed in such a way that the movements would not comply with the two-thirds 

power law and would look rigid and jerky instead of smooth. Second, to manipulate the 

contingency information, the original dyads were changed in such a way that one of two 

interactants was substituted by the mirrored image of the other, resulting in the presentation 

of a single agent and its reflection about the midline. This effectively eliminated the 

contribution of one of the two agents from the interaction. Scrambled videos served as a 

baseline. Across conditions, we ensured that movement quantity was comparable (see Fig 

5). 
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Figure 5. Design and Sample Stimuli of Study 3. A. Sample stimuli and the 2x2 factorial experimental 
design. CS = contingent + smooth; CR = contingent + rigid;  MS = mirrored + smooth; MR = mirrored + 
rigid. B. Example of still caption of a scrambled video C. Example of an experimental trial: The 
participants’ task was to observe each video and rate the perceived naturalness of each scene on a 4-point 
scale 
 

We assumed that both factors would have an effect of the perceived naturalness of the 

scenes. In concordance with Centelles and colleagues (2011) we hypothesized that both the 

AON and the SNN would be involved in the processing of contingent information in the 

context of dyadic social interactions. With respect to the kinematics manipulation, we 

hypothesized that there would be no biological bias of the AON, because it would be the 

perceived communicative intentions which would drive the effect rather than movement 

fluency. 
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3.3 Findings and Conclusions 

Behavioral data were tested by a two-way repeated measures analysis of variance (ANOVA) 

using SPSS (PASW Statistics 18) with contingency and fluency as within-subject 

independent variables. Results show that people are sensitive to contingency information 

(F(1, 20)=64.9, p<.0001) and to movement fluency (F(1,20)=57.4, p<.0001). Furthermore, 

there was a significant interaction effect between contingency and movement fluency 

(F(1,20)=31.2, p<.0001) indicating that contingent (compared to mirrored) movements 

increased naturalness ratings more in videos with smooth compared to rigid kinematics. 

Neurally, we found that the perception of contingent compared to mirrored movements was 

associated with a significant increase of neural activity in the AON, involving bilaterally the 

IFG (extending bilaterally to the premotor cortex) the STG and pSTS, (extending to the 

extrastriate area), (see Fig. 6). This finding corroborates previous research and suggests that 

the stronger AON engagement for contingent patterns is likely related to the fact that 

processing the movements of a dyad requires more complex action representations than 

those of agents performing individual actions (Centelles et al., 2011). However, our design 

allows us to extend this claim by showing that, it is not just the communicative nature of 

perceived nonverbal movements but the inherent relational/reciprocal information, which 

defines the complexity of action representations. The lack of SNN activation for the 

processing of contingent information may seem surprising, however, the task of the present 

study rather triggered intuitive evaluation processes rather than inferential ones. 
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Figure 6. Neural Results of Study: Effects of Contingency. 3 A. Differential neural activity for observing 
contingent compared to mirrored movement patterns. B. Plots illustrate corresponding contrast estimates 
obtained for the four stimulus categories for three different local maxima: left IPL (-48, -34, 42), right pSTS 
(54, -42, 8) and right IFG (56, 16, 6). Error bars represent standard errors. The principally activated voxels 
are overlaid on the mean structural anatomic image of the 21 male participants: p < .05, cluster-level 
corrected; L = left hemisphere; R = right hemisphere; IFG = inferior temporal gyrus; pSTS = posterior 
superior temporal sulcus; IPL = inferior parietal lobule. 

 

 

The observation of videos where characters were moving with fluent compared to those with 

rigid kinematics did not reveal any differential neural response. This confirms our 

hypothesis that there is no biological bias for the AON, possibly because the humanoid 

appearance of the agents contextualizes their action goals. We argue that a movement 

analysis with respect to goal-intentionality may take place in order to enable the observer to 

represent the agents’ intentions in a social context but that this does not require a tight 

kinematics match. The opposite contrast, investigating the perception of rigid vs. smooth 

kinematics revealed activations in regions of the SNN, namely the left inferior frontal gyrus 

(IFG, pars triangularis), the left angular gyrus, corresponding to the left TPJ, as well as 

bilaterally the dorsal medial prefrontal cortex (dmPFC; see Fig. 7). We assume that a 

mismatch between the expectation with respect to the agents’ biological nature on the one 
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hand and the nonbiological kinematics of their movements on the other prompts inferences 

about the intentions behind the agents’ actions.  

 
Figure 7. Neural Results of Study 3: Effects of Movement Fluency. A. Regions of the SNN associated with 
the observation of videos with rigid compared to smooth movement velocity. B. Plots illustrate 
corresponding contrast estimates obtained for the four stimulus categories for two different local maxima: 
right dmPFC (10, 46, 28) and left TPJ (-42, -56, 40). Error bars represent standard errors. C. Interaction 
effect evaluating brain regions more responsive to contingent than to noncontingent videos when the motion 
was biological, than when it was nonbiological. The principally activated voxels are overlaid on the mean 
structural anatomic image of the 21 male participants: p < .001, cluster-level corrected; extent threshold: 10 
voxels; L = left hemisphere; R = right hemisphere; TPJ = temporo-parietal junction; dmPFC = dorsomedial 
prefrontal cortex. 
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4 Study 4: Generating Mental State from Animacy Cues in 

High-Functioning Autism 
 

4.1 Theoretical Background 
 

4.1.1 The Relevance of Animacy for Social Cognition 
 

“Animacy” is a term denoting the perception of other entities as sentient or alive beings 

(Santos et al., 2008). The ability to discriminate between animate and inanimate things 

appears early in development (e.g. Gelman et al., 1995) and seems to be universal (Barrett, 

Todd, Miller, & Blythe, 2005). Thus, inferring intentionality from perceived movement can 

be used as an empirical indicator for animacy (Santos et al., 2008).  

 

Interestingly, the attribution of intentionality to moving entities does not necessarily require 

an organism-shaped body (ibid.). In the early 1950s, William Grey Walter designed two 

autonomous mobile robots, Elmer and Elsie, that were equipped with a light source and 

sensor and that were programmed to explore their environment, avoiding obstacles in search 

of other light sources. Given these settings, when placed together in a room, the two robots 

displayed a cycle of highly coordinated behavior by oscillating around each other. Walter 

noted that “Crude though they are, they (the robots) give an eerie impression of 

purposefulness, independence and spontaneity” (Walter, 1950; p.45).  

 

An elegant paradigm for the investigation of animacy perception from watching 

nonbiological agents has been introduced by Heider and Simmel (1944). The researchers 

used silent videos of moving geometric shapes, where one object either followed another 

and/or reacted to its movements. Despite their nonbiological appearance, the two objects 

were ascribed human qualities and the resulting interactive movement patterns were defined 

as social encounters. Santos and colleagues (2008) for example, looked further into the 

specific kinematic factors that would influence animacy perception and found that animacy 

experience increased with the time a moving object paused in the vicinity of a second object 



Alexandra L. Georgescu                                                          Dynamics of Nonverbal Communication 

 39 

and with increasing complexity of interaction between the objects (approach and 

responsiveness).  

 

Thus, by identifying specific intentions and goals in movement patterns, observers may 

detect animacy from movement kinematics. Research using the Heider and Simmel (1944) 

or related paradigms was able to consistently demonstrate that observers make use of their 

implicit knowledge of social contingencies to judge social interactions and to attribute 

intentions, thoughts and desires to moving agents which are perceived as animate (Blythe et 

al., 1996; Rimé et al., 1985; Santos et al., 2010, 2008; Scholl & Tremoulet, 2000). In this 

line, it has been proposed that the ability to identify animacy is a prerequisite for ToM 

(Santos et al., 2008). 

 

4.1.2 Neural Correlates of Animacy Perception 

 

The above mentioned paradigm first introduced by Heider and Simmel (1944) was further 

developed and refined in order to better characterize the behavioral and neural correlates of 

animacy perception. Neuroimaging studies were able to attest the involvement of the brain 

regions related to different aspects of social cognition, hence further corroborating the idea 

that the ability to detect animacy is related to social cognition (for a review see Heberlein, 

2008). Indeed, all brain areas which have been recruited by animacy perception are key 

regions of the SNN, namely the pSTS and the FG associated with social perception, the 

amygdala and the insula associated with processing of salient and affective stimuli and the 

TPJ, the dmPFC, the mOFC and the TP associated with mentalizing and evaluative 

processing (Castelli et al., 2000; Gao, Scholl, & McCarthy, 2012; Gobbini et al., 2011; 

Santos et al., 2010; Schultz et al., 2005, 2004; Schultz et al., 2003; Tavares et al., 2008).  
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4.1.3 Animacy Perception in Individuals with High-Functioning Autism 

 

During development, humans acquire a large set of nonverbal skills and the intuitive 

knowledge to use them during social interactions. This enables them to develop a sense of 

reciprocity with others in order to successfully coordinate their actions and to communicate 

effectively. However, as already mentioned in the introduction (chapter 1.4) and chapter 

2.1.3, HFA is characterized by difficulties with social interaction, both from a participant 

and from an observer perspective.  

Indeed, animacy perception tasks using two interacting shapes have shown group 

differences with regard to the frequency of interpretations referring to mental states between 

individuals with HFA and controls, despite comparable performance on explicit ToM tasks 

(Abell, Happé, & Frith, 2000; Klin, 2000) and preserved skills in physical attributions (Klin 

& Jones, 2006). A recent study used animacy displays of two moving dots which were 

derived from videos of real humans interacting, as well as a forced choice task asking 

participants to categorize patterns of Chasing, Fighting, Flirting, Following, Guarding and 

Playing (McAleer, Kay, Pollick, & Rutherford, 2011). The authors have found a comparable 

performance between HFA and control group in terms of accuracy and response patterns 

(ibid.). However, this task removed the need for mentalizing and solely investigated 

intention understanding. Recognition of action or intention (as opposed to that of affect or 

Theory of Mind) has been found to be intact (Abell et al., 2000). Paralleling these 

difficulties, individuals with HFA showed less pronounced neural responses in the STS, 

TPJ, dmPFC, amygdala, temporal pole and fusiform gyrus in response to animated stimuli 

as compared to controls (Castelli et al., 2002). 

 

4.2 Experimental Design and Hypotheses 
 

Interestingly, Congiu, Schlottmann and Ray (2010) have found that animacy prompts were 

able to amplify animacy attributions in autistic children. Similarly, Rutherford, Pennington, 

and Rogers (2006) showed that children with autism did not differ in animacy judgements 

after a training phase. These findings suggest that animacy perception might be preserved in 



Alexandra L. Georgescu                                                          Dynamics of Nonverbal Communication 

 41 

autism, even if it is not used automatically and autistic persons may overcome their animacy 

perception deficit strategically. In order to investigate this, a paradigm is needed which 

allows i) parametric induction of animacy and ii) the investigation of both perception and 

experience of animacy. 

A parametric task would be able to induce a continuous increase in the experience of 

animacy. Such a task would be most suitable for exploring the relationship between animacy 

attribution and mentalizing processes (Santos et al., 2008). A task that allows inducing a 

continuous graduate increase of animacy perception, could provide a sensitive measure in 

HFA (ibid.). 

The experimental design of study 4 was developed by Santos and colleagues (2008) and 

validated in an fMRI study by Santos and colleagues (2010). The stimuli consisted of short 

video clips displaying two spheres (see Fig. 8). The movement of sphere 1 was either 

continuous without any changes in direction, or contained an interruption followed by an 

approach towards the other sphere (approach). Sphere 2 either remained static or moved 

towards sphere 1 (responsiveness). These movement characteristics, approach and 

responsiveness, were modulated in a 2 by 2 design resulting in four possible stimulus 

categories, resulting in an increasing amount of objective animacy: 1) no approach/no 

responsiveness; 2) no approach/responsiveness; 3) approach/no responsiveness; and 4) 

approach/responsiveness. Participants were instructed to watch each video and rate the 

“person-likeness” of each scenario. 

 
Figure 8. Sample Stimuli of Study 4. Four frames extracted out of a stimulus video clip containing 
approach and responsiveness with arrows indicating the pathways of movements.  
 

Study 4 compared a group of 13 adults with HFA (mean age: 29.08 ± 4.33 years) with 13 

matched controls (mean age: 29.77 ± 4.02 years). By using a more sensitive measure for 

animacy perception, the study aimed to provide empirical support of the assumption that 

individuals with HFA may use different cognitive strategies when processing social 

information.  
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We contrasted the two groups with regard to increasing objective and subjective animacy. 

The objective animacy measure investigated brain regions whose activity correlated with the 

perception of increasing stimulus complexity. The subjective animacy measure investigated 

the activity of which brain areas correlated with increasing ratings of “person-likeness”. 

Because HFA show preserved skills for physical attributions (Klin & Jones, 2006), as well 

as for intention attributions but not for mental states attribution (McAleer et al., 2011), the 

applied cognitive strategies might rely more on physical properties of the stimuli. This, may 

result in a comparable performance in animacy detection but different subjective experience 

between the two groups (Kuzmanovic et al., 2011; Piggot et al., 2004). Thus, we 

hypothesized that HFA and controls would differ with regard to the subjective animacy 

experience, but not with regard to objective animacy perception.  

 

4.3 Findings and Conclusions 
 

Study 4 replicated the increasing recruitment of the SNN for both increasing subjective and 

objective animacy in typically developing participants found by Santos and colleagues 

(2010). The neural activations included bilaterally the insula, the amygdala, the STG, the 

TP, the FG and the ventral and dorsal mPFC (significance threshold for fMRI group results: 

pc < .05 at the cluster-level, corrected for multiple comparisons and p < .001 at the voxel-

level, uncorrected).  

 

The behavioral results did not show a significant group difference in ratings of the four 

stimulus categories with regard to animacy. This indicates comparable behavioral 

performances between the groups in the experimental task. Neurally, increasing perception 

of animacy (objective measure) did not reveal any significant group differences. Both 

groups share a common neural correlate for perceiving increasing complexity in the stimulus 

material. This correlate, included regions of the SNN, namely the vmPFC and the bilateral 

STG. While the STG has been associated with the detection of animacy-inducing movement 

characteristics (Santos et al., 2010; Schultz et al., 2003; Wheatley, Milleville, & Martin, 

2007), the vmPFC plays an important role in generating integrative, evaluative judgments 
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(Amodio & Frith, 2006; Zysset et al., 2002). We conclude that both groups were able to 

detect the physical features of the stimuli, and ascribe intentionality to them. Moreover, the 

common neural substrate of this performance seems to be related to perceptual analysis and 

its evaluation. In contrast, when regarding the subjective animacy measure, we found a 

significant group difference, namely that the bilateral activity in insula, STG, TP, amygdala 

and dmPFC was correlated more strongly with increasing ratings of animacy in controls than 

in HFA (see Fig. 9). This corroborates previous findings showing that the neural mechanism 

involved in the processing of animate stimuli does not recruit neural regions implicated in 

mental inference in the HFA group (Castelli et al., 2002; Schultz et al., 2003) as a result of 

reduced modulation of subjective experience by increasingly social stimuli.  
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Figure 9. Neural Results of Study 4: Subjective Animacy Experience. Within-subject correlations between 
the BOLD signal and the subjective animacy (as indexed by participants’ event-related ratings) that were 
significantly greater in the control than in the HFA group. Activation maps show group differences in the 
parametric modulation of the general neural response to stimuli by subjective animacy and the plots show 
the corresponding contrast estimates for the four levels of subjective animacy, in the following activation 
peaks: R pIns: x=46, y=-12, z=2; dmPFC: x=-2, y=58, z=24; R Amy: x=24, y=-6, z=-18. , The contrast 
estimates were derived from a supplementary 4 x 2 categorical model including regressors for each 
response option, separately for the two groups. R, right; p, posterior; Ins, Insula; dmPFC, dorsomedial 
prefrontal cortex; Amy, Amygdala. 
 
 

Taken together, these results indicate dissociable cognitive strategies applied during an 

animacy judgement task. Thus, we provided for the first time empirical evidence for the 

hypothesis, that feature-based processing of social stimuli is intact in HFA, but that there is 

no modulation of subjective responses to these stimuli that relate to mind attribution and 

increased salience. This corroborates the findings from study 2, and supports the assumption 
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that in HFA the search for meaning within a social environment is guided more strongly by 

rule-based computations than by motivational predisposition to spontaneously respond to 

social stimuli. 

 

5 General Discussion 
 

The findings of each of the four studies presented in this dissertation have already been 

discussed in their respective chapters (2.3, 3.3, 4.3). However, this section will embed the 

current findings into a larger context of previous research and discuss how they extend 

current knowledge in this field (chapters 5.1-5.4). Finally we will talk about some of the 

limitations of the paradigms (chapter 5.5). 

 

5.1 Virtual Characters as a Tool for Nonverbal Research (Studies 1-4) 
 

In the introduction (chapter 1.2) we mentioned that the investigation of nonverbal behaviors 

is confronted with several methodological problems, which make it hard to capture and very 

difficult to control experimentally. Humans are highly attuned to perceive even slight 

variations both in appearance and movements of social others (Santos et al., 2008). 

Therefore, considering that nonverbal behaviors are highly context-dependent (Gary Bente 

et al., 2008) and both produced and perceived outside of awareness (Choi et al., 2005), the 

use of actors performing nonverbal movements may not be the most appropriate stimulus 

material, because it may be inaccurate and/or inconsistent.  

Such methodological problems can be solved by using thin slices of the behavioral stream 

(Ambady & Rosenthal, 1992) and virtual characters (Vogeley & Bente, 2010). The use of 

samples of naturally occurring nonverbal behaviors, would ensure the inclusion of rich, 

complex nonverbal patterns that would carry implicit movement qualities, thus adding to the 

material’s ecological validity (Ambady & Rosenthal, 1992). Using computer-generated 

virtual characters helps to create stimuli in which movement information is controlled 
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independently from shape information. Apart from allowing to standardize agents’ 

appearance by replacing them with 3D models, it has the advantage of systematic 

manipulability which allows the precise experimental manipulation of the action dynamics 

according to the conditions of interest (Vogeley & Bente, 2010). In the current studies we 

have made use of virtual characters and we were able to further corroborate the validity of 

this research tool for the investigation of nonverbal behavior in a neuroimaging context. 

For example, in the study of social gaze (study 1 and study 2) the systematic modification 

of facial characteristics for the generation of the virtual stimulus faces provided an effective 

countermeasure for confounding influences such as face morphology and non-intended 

mimicry movements (Kuzmanovic et al., 2009). Interestingly, Bailenson, Blascovich, Beall 

and Loomis (2001) have demonstrated that people assign sentience to a virtual character, 

especially when that character exhibits realistic gaze behavior. Thus, in order to increase 

their ecological validity, we included an eye blink in the gaze behaviors of the virtual faces. 

We found that this indeed had a positive effect on ecological validity as confirmed by the 

post-scanning questionnaires. Our findings corroborate previous research, which shows that 

virtual characters are able to elicit the percept of presence and a broad range of responses in 

a human observer. And yet, while they do so, they may also be a more comfortable type of 

stimulus material for individuals with HFA to be exposed to during experimental 

investigations (Parsons & Cobb, 2011). 

In study 3 we used full-body humanoid standardized virtual characters and thin slices of the 

behavioral stream captured from real-life interactions. This stimulus material was developed 

based on 10 videos, filmed at the University of Cologne, originally lasting for 3 minutes and 

depicting dyadic role-play interactions between two seated individuals. Silent animations 

were subsequently created using the keyframing technique and the commercially available 

character animation software Alias MotionBuilder 7.5. This was done by transcribing the 

movement protocols from the original video recordings into virtual space onto two 

anonymous standardized virtual characters. This transcription process is described in detail 

by Bente and colleagues (2008). We chose to map the movements onto virtual characters 

resembling wooden mannequins instead of using point-light displays (PLDs), since the latter 

may not be as appropriate when studying the effects of more complex motion information, 

as is the case of full-body nonverbal behaviors. Hodgins, O’Brien and Tumblin (1998), for 
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example, argue that subtleties of the motion are less perceptible when sparse graphical 

models such as PLDs or stick figures are used and have found that subjects are better able to 

discriminate motion variations with a fully rendered (polygonal) character. Chaminade, 

Hodgins and Kawato (2007), however, found that sensitivity to different motion types is 

only affected by the simplest rendering style (PLDs) but not by a range of fully rendered 

characters, including an ellipsoid model, similar to the mannequin model used in study 3. 

Similarly, McDonnell, Jörg, McHugh, Newell and O’Sullivan (2008) have shown in a study 

that included among other virtual characters a mannequin model, that the perception of 

emotional actions is highly robust and to the most part independent of the character‘s body. 

Still, the neutral mannequin was preferred to a detailed full character, because when more 

detailed models are used, subtle flaws in rendering, body shape, posture, or expression may 

draw attention to appearance from motion and the characters are in danger of entering the 

uncanny valley (Mori, 1970). The uncanny valley states that the more human a robot or 

virtual character looks like, the more likely it is that subtle imperfections are to be perceived 

as strange. In fact, in our studies 1 - 3 we made use of anthropomorphic virtual characters, 

shown either as faces or full-bodies. Such characters have realistic human features but can 

still being easily recognized as artificial. We therefore conclude that we successfully 

managed to avoid the uncanny valley phenomenon in our stimuli. 

 

Finally, study 4 made use of simple geometric shapes (two spheres) which were able to give 

rise to rich percepts of animacy and intentionality just by abiding with certain 

spatiotemporal characteristics (approach from one sphere to the other and responsiveness 

from the addressed sphere to the actively moving sphere). The systematic manipulation of 

these factors allowed us to create a parametric variation in the degree of the complexity of 

movement patterns which would otherwise not have been possible. It also allowed us to 

exclude top-down influence of anthropomorphizing humanoid shapes due to the 

nonbiological appearance information. 
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5.2 The Contribution of Spatiotemporal Movement Characteristics to the 

Processing of Nonverbal Behavior  

5.2.1 Gaze Duration as a Dynamic Aspect of Social Gaze 
 

Gaze behavior is critical in everyday interaction. It can be considered a deictic cue, and can 

be used to direct the attention of another person to an object (Pfeiffer, Vogeley, & 

Schilbach, n.d.). Conversely, by following other persons’ gaze we gain access to their 

attentional focus, which is essential for understanding their mental states (ibid.). Moreover, 

infants spontaneously follow another’s gaze only if the gaze shift is preceded by direct eye 

contact, hence suggesting that social gaze may have an ostensive value (Csibra & Gergely, 

2006; Gergely & Csibra, 2003). This, in turn, explains why it plays a major role in early 

social development as a precursor for ToM (Emery, 2000). Such findings demonstrate that 

there is a lot of subtle complexity in the way gaze is used in order to coordinate behaviors 

and interact with other people. In particular, time parameters of gaze behavior such as 

duration seem to be of great importance. Gaze duration is a much less investigated aspect of 

social gaze compared to gaze direction (Foa et al., 1981; Georgescu et al., n.d.; Kuzmanovic 

et al., 2009). 

 

Our paradigm is the first to investigate temporal aspects of gaze behavior in a neuroimaging 

context and shows an innovative finding as it is able to disentangle effects of salience 

detection on the one hand and evaluation of gaze cues on the other. Moreover, although 

atypical processing of social gaze in HFA is thought to reflect an impairment in 

understanding the intentional nature of gaze cues, little evidence has emerged in the form of 

atypical engagement of the SNN network during gaze perception (Hagen et al., 2013). Our 

parametric manipulation of increasing gaze duration (1s, 2.5s and 4s) was indeed able to 

increase the feelings of self-reference and communicative intent perceived in the stimulus 

material, as confirmed by post-scanning questionnaires of the typically developing group. 

This is mirrored on a neural level, by the involvement of the mPFC in the perception of 

increasing direct gaze duration, a key region of the SNN.  
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5.2.2 Movement Fluency and Contingency as Dynamic Aspects of Movement 

 

The detection of meaning in social stimuli can be based either on kinematic properties of the 

motion itself or on kinematic properties of movement patterns between objects (Blakemore 

et al., 2003; Santos et al., 2008). The investigation of nonverbal communicative dyadic 

interactions may help clarify the role of these two factors in social perception, a question 

which had not been asked hitherto. Thus, fir the first time, Study 3 used humanoid virtual 

characters moving smoothly or rigidly and either engaged in reciprocally contingent or 

perfectly synchronous interactions. We found that social communicative dyadic interactions 

are perceived as more plausible and natural, when there is reciprocity in the contingent 

movement patterns and, to a lesser extent, also when the movements follow a smooth rather 

than a rigid velocity profile. Our operationalization of contingency seemed to have a greater 

influence on the naturalness judgments than movement velocity, most likely because it 

involved the most obvious manipulation. Study 4 used non-anthropomorphic geometric 

shapes to show that the complexity of contingent movement patterns (via systematic 

manipulation of approach and responsiveness characteristics) increases the perception of 

animacy. These findings are mirrored on the neural level by the activation of the two neural 

networks involved in ascribing meaning to movement cues, namely AON and SNN. 

 

5.3 The Involvement of the AON and SNN in the Perception of Meaning from 

Movement Cues 
 

The AON has been found to be activated when a kinematic analysis of movement cues is 

performed in order to decode intentionality. On the other hand, the SNN is engaged by tasks 

which require participants to consciously deliberate on the intentions of observed agents, for 

example when observed actions have an unusual goal, are implausible or inconsistent with 

the context (Brass et al., 2007; de Lange et al., 2008; Keysers & Gazzola, 2007; Santos et 

al., 2010; Spunt et al., 2010; Thioux et al., 2008; Uddin et al., 2007; Van Overwalle & 

Baetens, 2009). 

It has been proposed that the two systems might interact, since the anterior and posterior 
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nodes of the SNN and AON share direct connections (Uddin 2007). Although the exact 

nature of the interactions between the two networks is unknown, it is likely that the 

connectivity between them facilitates the integration of information that is necessary for 

processing social cues. Nevertheless, the exact relationship between SNN and MNS is 

complex and the ways in which the two might contribute independently and interact to 

influence social perception are still to be explored. Indeed, much of the debate in social 

cognition might result from choosing tasks that isolate the processes of just one neural 

network (Keysers & Gazzola, 2007). However, it is essential to start designing tasks that 

reflect the complexity of social life to test how the social brain forms an integrated whole. 

Nonverbal communicative interactions are indeed a rich source of such complexity and 

would thus be appropriate stimulus material to work with. 

Our results confirm that the AON is involved in processing all types of movement cues but 

additionally show that it is not modulated by movement velocity. However, perceiving two 

bodies engaged in contingent interaction patterns does elicit more AON activation than 

watching two bodies in perfect synchrony. This may be the case because it is more 

challenging to represent the reciprocity of the actions of two agents rather than those of two 

actors performing simultaneously the same movements. Confirming previous research, we 

were able to show that the SNN is only engaged when an implausible action is presented and 

that this implausibility can be defined by an incongruency between previous beliefs about 

the nature of the agent and the velocity of their movements. If an agent looks human but 

moves jerky and robotic, people are more likely to deliberate on the reason for their 

implausible behavior. Interestingly, the SNN was not involved in perceiving contingent 

compared to synchronous movements as previous studies suggested might be the case (e.g. 

Centelles et al., 2011). However, we believe that this is linked to the task of the present 

study, in which participants were asked to judge the naturalness of the scenes, which likely 

stimulates intuitive evaluation processes. They were neither asked to judge the social content 

of these interactions nor to infer their mental states or feelings. Thus, intuitive evaluations, 

compared to deliberate and reflective ones, do not rely on the integration of a wide range of 

social information and decision-making processes and rather trigger a pre-reflective 

simulation process via the AON (Georgescu et al., 2013). 

Our findings are in concert with recent research has shown that under specific conditions 
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both networks might be needed to catch the social intentions carried by whole-body motion 

(Centelles et al., 2011). To infer another person’s intentions, we need to complement 

sensorimotor knowledge with conceptual information about mental states and attitudes 

(Mitchell, Heatherton, & Macrae, 2002). Therefore, kinematic analyses via the AON and 

mentalizing processes via the SNN are not mutually exclusive. (Spunt et al., 2011) 

conducted the first study to simultaneously manipulate and measure the level of action 

identification during the observation of ordinary human actions performed in natural 

contexts. They showed that regions of the AON are involved at all levels of the 

identification task but that the SNN is associated with mentalizing observed actions. Thus 

the AON might be involved, as a more general and early stage of processing, in the 

understanding of a wide range of actions rather than sustaining the perception and 

interpretation of social movement cues which is the functional role of the SNN (Santos et 

al., 2010). Study 3 corroborated for the first time this hypothesis on AON and SNN activity 

in the context of observing nonverbal communicative interactions. 

 

5.4 Perturbations of Nonverbal Processing in High-Functioning Autism 
 

In the introduction chapter (chapter 1.4) we have stated that individuals with HFA have 

problems in decoding nonverbal behaviors (Uljarevic & Hamilton, 2013) and in relying on 

nonverbal behavior to make person judgments (Kuzmanovic et al., 2011; Schwartz et al., 

2010). Neuroimaging studies have demonstrated that the processing of gaze cues, like gaze 

direction, for example, has been found to by atypical in HFA (Hagen et al., 2013; Pitskel et 

al., 2011). Studies investigating the perception of the social contingencies in an interaction 

context also show atypical activation in this network (Castelli et al., 2002; Schwartz et al., 

2010). Interestingly, it has been suggested, that social cognition deficits in HFA may not be 

based in the perception of social cues per se, but result from an impairment to extract 

relevant information from these cues necessary for social communication (Nation & Penny, 

2008; Pelphrey et al., 2005; Ristic et al., 2005; Senju & Johnson, 2009a). Thus experimental 

designs are needed that allow us to characterize what exactly is atypical in HFA, social 

perception or a more high-level processing (e.g. the detection of communication intent) and 

what mechanisms subserve an atypical response to social stimuli. 
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The design of Studies 2 and 4 allowed us to target this question. Study 2 shows that gaze 

processing deficits are not based in eye gaze discrimination per se or in social perception in 

general. Thus social processing is to a certain degree intact in HFA. Moreover, our results 

extend previous research findings by showing that the deficits in social cognition in HFA 

seem to be related to the evaluation and interpretation of cues, and the use of such cues to 

understand the intentions and mental states of other people. In addition, Study 4 shows that, 

despite the fact that the perception of nonverbal cues may be comparable to that of typically 

developed individuals in both behavioral and neural measures, ascribing meaning to a 

stimulus may rely on a different cognitive strategy for individuals with HFA.  

 

5.5 Limitations of the Various Paradigms 
 

Nevertheless, the current thesis is also limited in the interpretation of results, due to 

methodological aspects and operationalization of constructs.  

 

First, the experimental design of studies 1 and 2 has two limitations: i) the direct gaze 

conditions constituted ¾ of all events, and ii) the direct gaze conditions included an 

additional gaze shift compared to the averted gaze condition. Both of these factors could 

have rendered the direct gaze stimuli more salient irrespective of the gaze behavior per se. 

Thus, the activation of the SNN could be elicited by different factors in the two participant 

groups: by an effect of novelty for the averted gaze condition in HFA and by an effect of 

increased motion quantity in the control group, as reflected by the increased pSTS and 

MT/V5 activation, two motion-sensitive regions of the brain. A way of avoiding such a 

confound in the future would be to use a neutral starting point for all videos (e.g. looking 

upwards) and a face with closed eyes as a control condition (instead of averted gaze, which 

is a manipulation of direct gaze).  

 

Second, if noncontingency would have been operationalized differently in study 3, this 

could have revealed a different set of findings. For example, instead of mirroring the actions 

of one agent, we could have time-lagged their actions. In such case, the contrast between 
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contingent and noncontingent interactions might not engage brain networks differentially, 

because viewers would interpret a relationship among people moving simultaneously on 

screen (Iacoboni et al., 2004), even when their behavior is not mutually oriented. This is due 

to the fact that social contingencies in communicative interactions are complex and 

characterized by high levels of variability and noise (Cappella, 1981). Indeed, human adults 

tend to interpret and verbally report social experiences as a series of causally linked events 

(Tenenbaum & Griffiths 2003). 

 

Third, study 3 used humanoid virtual characters in all videos to investigate different 

movement parameters. However, research has shown that factors of kinematics and 

appearance can interact (Cross et al., 2011; Saygin et al., 2011; Shimada, 2010). 

Anthropomorphism and belief about the biological identity of a stimulus have been known 

to facilitate motor resonance, a cognitive process known to involve regions of the AON 

(Chaminade et al., 2007; Stanley, Gowen, & Miall, 2007). Moreover, it has been known that 

top-down factors like appearance and belief about animacy modulate SNN engagement 

(Chaminade et al., 2012, 2007; Krach et al., 2008). Therefore, by using only humanoid 

characters and by informing the participants that the scenes they were watching were based 

on original live-action videos, participants assumed that the nature of the movements they 

were watching was human. While our paradigm allowed us to investigate movement 

information independent of appearance information, we did not manipulate appearance 

information to achieve a balanced design and cannot rule out the top-down influence of 

appearance information on the processing of movement cues. We can however state that the 

influence was kept constant over all conditions and that we investigated movement cues in 

non-humanoid shapes in another study, namely study 4. 

 

Fourth, the interpretation of the results in study 4 is limited due to the nature of the 

paradigm itself. While the novel parametric task developed by Santos and colleagues (2008) 

is able to induce a continuous increase in animacy judgments, there is a confound in the 

stimulus material: Indeed, increasing interactivity of the two spheres is confounded with 

increasing complexity of their movement patterns. Despite the fact, that complexity is 

indeed an intrinsic quality of interactivity, it would be interesting if future studies would try 

to disambiguate the contribution of these two factors to the perception of animacy.  
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Finally, we would like to stress the necessity of using eye-tracking systems for future social 

neuroscience investigations, especially for paradigms on the observation of dyadic social 

interaction. Such systems enable the control of whether participants are compliant regarding 

the instructions and whether they focus their attention on the stimulus material. Moreover, 

without eye-movement monitoring, it could be argued that the differences in neural 

activation might result from imbalanced eye movements in one condition rather than 

another, and this differential eye movement might be related to a participant’s experience 

with the task. Especially paradigms focusing on contingency factors and the observation of 

dyadic interaction would need eye-tracking to explore more in depth what features of these 

complex scenes are attended to at which times exactly.  
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6 Conclusion 
 

Being able to accurately decode nonverbal behaviors is essential for human communication. 

However, meaningful information is not only conveyed by static cues, which have already 

been extensively investigated in the past, but also by subtle movement dynamics. 

Investigating such subtle movement dynamics opens up new avenues for the investigation of 

social cognition in healthy and psychopathological contexts. Thus, this thesis investigated 

the correlates of perceiving and processing dynamic nonverbal social cues in the human 

brain using fMRI along with behavioral methods.  

 

First, we demonstrate the utility and validity of several digital simulation paradigms for 

nonverbal behavior research in a neuroimaging context. Further, we show for the first time 

that the observation of nonverbal communicative interactions is modulated by different 

spatiotemporal factors of perceived movement and that this is associated with both the AON 

and the SNN. In addition, we contribute to an ongoing debate by showing that in the context 

of the observation of complex human interactions, there is no biological bias of the AON. 

Furthermore, we demonstrate for the first time the domain-specificity of the two neural 

networks AON and SNN in the context of observing complex human interactions. Finally, 

we demonstrate that HFA is associated with deficits in social processing more so than social 

perception, but that social perception may rely on other cognitive strategies compared to 

typically developing individuals. 
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