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Simulated Annealing has proven to be a very sucessful heuristic for

various combinatorial optimization problems. It is a randomized algo-

rithm that attempts to �nd the global optimum with high probability

by local exchanges. In this paper we give a new proof of the conver-

gence of Simulated Annealing by applying results about rapidly mixing

Markov chains. With this proof technique it is possible to obtain bet-

ter bounds for the �nite time behaviour of Simulated Annealing than

previously known.

1 Introduction

Simulated Annealing was �rst introduced by Kirkpatrick et al. [8] as

a random local search heuristic to solve large combinatorial optimization

problems. With respect to many excellent experimental results [7] it is a

general method that yields most times good performance results even when

dealing with NP-hard problems.

An instance of a combinatorial optimization problem can be formalized as

a pair (
; c). 
 is the set of con�gurations, c : 
! R

+

is the cost function,

that assigns costs to each element of 
. We assume that we are dealing

with a minimization problem, i.e. we are looking for a con�guration with

minimal cost. The set of gobal minima is called 


min

.
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Simulated Annealing explores the con�guration space starting from an ar-

bitrary chosen con�guration and and generates a new one according to a

certain neighborhood structure N � 


2

. According to the initial implemen-

tation of Simulated Annealing we assume that the neighborhood structure

is symmetric and the probability to generate a certain neighboring con�gu-

ration is � 2 [0; 1]. Furthermore, we take it for granted that the underlying

graph induced by the neighborhood structure is strongly connected. This

implies that for every pair f; g 2 
 there exist a path f = v

1

; v

2

; : : : ; v

l

= g

with (v

i

; v

i+1

) 2 N . d(f; g) denotes the length of the shortest of these paths.

Every time a new solution is generated, its cost is evaluated and the new

solution is either accepted or rejected according to an acceptance rule.

The following algorithm shows the general structure of Simulated An-

nealing.

simulated annealing(X

0

; T

0

)

(given: an initial state X

0

and an initial value T

0

)

t = 0;

k = 0;

while (outer-loop criterion not satis�ed)

while (inner-loop criterion not satis�ed)

X =generate(X

k

);

if accept(X;X

k

; T

n

) X

k+1

= X

else X

k+1

= X

k

;

k = k + 1;

end(while);

T

t+1

= update (T

t

);

t = t+ 1;

end(while);

end;

The acceptance rule is de�ned in such a way that it is also possible to

accept worse con�gurations with higher cost than the current con�guration.

This is necessary in order not to get stuck in a local optimum. But the

probability to accept worse con�gurations is lowered during the algorithm.

This probability is driven by a so called cooling schedule, i.e. a monotonically

decreasing sequence of temperatures (T

t

)

t2N

with T

t

! 0 as t ! 1. The

acceptance function has the following structure:

accept(f; g; T

t

)

r =random number in [0; 1];

if r � e

(c(f)�c(g))=T

t

)

return 'accepted'

else return 'not accepted';

end;

Coming to a rigorous mathematical model, we take the variable X

k

in

the algorithm as a random variable of the con�guration space in the natural



way. Since the next con�guration depends only on the current con�guration,

the best suitable mathematical model to examine Simulated Annealing is an

inhomogeneous Markov chain.

With respect to the above de�ned strongly connected neighborhood struc-

ture N � 


2

we get the following transition probabilities. For technical

reasons, we also assume that we stay at each state with a probability of at

least 1=2, so that we obtain:

8(f; g) 2 


2

p

(t)

fg

=

8

>

<

>

:

minf1; e

c(f)�c(g)

T

t

g

�

2

for f 6= g; (f; g) 2 N

0 for f 6= g; (f; g) =2 N

1�

P

f

0

6=f

p

(t)

ff

0

for f = g

Clearly p

(t)

ff

� 1=2, so that the chain is aperiodic. Assuming �xed transition

probabilities p

(t)

fg

(�xed temperature T

t

) the resulting homogeneous chain is

also ergodic and

�(t)

f

=

e

�c(f)

T

t

P

g

e

�c(g)

T

t

is the stationary distribution. Let c

min

= minfc(f) jf 2 
g. Obviously

�

�

f

= lim

t!1

�(t)

f

= lim

t!1

1

P

g

e

c(f)�c(g)

T

t

=

�

0; if c(f) > c

min

1

]ff jc(f)=c

min

g

; if c(f) = c

min

:

The limit distribution is therefore a constant probability vector, which prob-

ability charges are concentrated on the global optima of the solution space.

Many asymptotic convergence results, already published in the mid 80`s, are

concerned with the choice of an appropriate cooling schedule. This schedule

should guarantee the convergence of the probability distribution to �

�

as

t!1. One of the most remarkable is that of Hajek [5]:

The depth of a local minimum f is taken to be the smallest number d(f)

such that there is a con�guration g with c(f) > c(g) reachable at height

c(f)+d(f) from f . This means that there is a path from f to g using a con-

�guration h with c(h) = c(f)+d(f) and the maximal cost of a con�guration

in every path is at least c(f) + d(f). This implies

lim

t!1

P (X

t

2 


min

) = 1 ,

1

X

t=1

exp

�

�

D

T

t

�

=1; (1)

where D is the maximum of all depth d(f) of all con�gurations f , that are

local but not global minima. Therefore, Hajek suggested a logarithmic

cooling schedule T

t

=

�

log(t)

with � � D.



In addition, many other authors (see e.g. [9] for an overview) were able

to prove asymptotic convergence with a logarithmic cooling schedule and

di�erent, most times easier accessible values of �. But, in�nitly many steps

are quite di�cult to perform. Therefore, �nite type bounds of the proximity

of the probability distribution P (t) of the con�guration space after genera-

tion of t transitions to the uniform distribution on the set of optimal states

�

�

are of special interest.

Anily and Federgruen [1], Gidas [4] and Mitra et al. [13] have

obtained independently similar deterministic upper bounds of this proximity

using a logarithmic cooling schedule T

t

= �= ln(t) with � chosen according

to Hajek's result. To the best of our knowledge the bound of Mitra et

al. [13] is the best published so far:

Let 


�

be the set of local minima and r = min

f2
n


�
max

g2


d(f; g) be

the radius of the underlying graph. Then we de�ne a =

1

r

(�)

r

and b =

�

r�

,

where � is the di�erence between the minimal cost and the next to least

cost value and � is the maximal cost di�erence between two neighboring

con�gurations. Then there exists c

1

2 N with

t � c

1

�

1

�

�

1

minfa;bg

)

X

f2


jP (t)

f

� �

�

f

j � �

For the m-city travelling salesman problem this bound would be of size

�

�m

2m+1

[9].

In the following we give a new proof for the convergence of the distri-

bution of Simulated Annealing using a logarithmic cooling schedule T

t

=


= ln(t) to the distribution �

�

that is concentrated on the optimal states.

Our proof technique enables us to give considerably better �nite time bounds

than established so far. Our bound for the n-city travelling salesman prob-

lem for example would be

2

c

1

m

2

log(m)

�

c

2

m

and thus the super-exponent in the

result of Mitra is removed. As an easy consequence we can derive that

Simulated Annealing is with high probability in a global minimum after

exponentially many steps.

2 Convergence Bounds

The main inequality of this section is stated in the following theorem:

Theorem 1 The distribution P (t) of the inhomogeneous Markov chain, that

corresponds to Simulated Annealing with logarithmic cooling schedule, satis-

�es for su�ciently large t:

kP (t+ 1)� �(t+ 1)k

t+1

�

1

p

t

c(G);



where c(G) is a problem-dependent parameter and kxk

t

=

P

f

x

2

f

�(t)

f

.

The proof is technical and uses a recent result of Mihail [12] about

homogeneous Markov chains. It relates the di�erence of the distribution at

time t and the stationary distribution to the di�erence of the distribution

at time t � 1 and the stationary distribution. The main tool is Sinclair

and Jerrum's [6] conductance

�

p

= min

A�
;

P

u2A

�

u

�1=2

P

u2A

P

v=2A

�

u

p

uv

P

u2A

�

u

(2)

of an ergodic Markov chain with transition probabilities p

uv

and station-

ary distribution �. The mathematics behind this appraoch dates back to

Cheeger [2] and Lawler and Sokal [10]. Sinclair and Jerrum's [6]

used Cheeger's inequality to derive a result for the running time of ran-

dom walks on graphs based on their conductance properties. Later Mihail

[12] proved a version of this running time bound basically without linear

algebra tools and this version is especially helpful here.

Proof:

p

kP (t)� �(t+ 1)k

t+1

=

s

X

u

(P (t)

u

� �(t+ 1)

u

)

2

�(t+ 1)

u

=
















 

P (t)

u
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u

+ �(t)

u

� �(t+ 1)

u

p

�(t+ 1)

u

!

u
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u
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u
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u
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2

�

s

X

u

(P (t)

u

� �(t)

u

)

2

�(t+ 1)

u

+

s

X

u

(�(t)

u

� �(t+ 1)

u

)

2

�(t+ 1)

u

: (3)

In order to estimate the di�erence between the two stationary distributions

we consider

�(t)

f

�(t+ 1)

f

=

P

g

(t+ 1)

c(f)�c(g)




P

g

t

c(f)�c(g)




� (1 + 1=t)

c

max

=


(4)

due to

(t+ 1)

c(f)�c(g)




t

c(f)�c(g)




= (1 + 1=t)

c(f)�c(g)




� (1 + 1=t)

c

max

=


;



where c

max

= maxfc(f)jf 2 
g. Applying the main result of Mihail [12]

we get

kP (t+ 1)� �(t+ 1)k

t+1

� (1� �(t+ 1)

2

)kP (t) � �(t+ 1)k

t+1

(�(t+ 1) is the conductance of the homogeneous chain with constant tran-

sition matrix p

t+1

and stationary distribution �(t + 1)) and therefore from

(3):

p

kP (t+ 1)� �(t+ 1)k

t+1

�

p

(1��(t+ 1)

2

)

�

q

(1 + 1=t)

c

max

=


kP (t)� �(t)k

t

+

s

X

u

(�(t)

u

� �(t+ 1)

u

)

2

�(t+ 1)

u

!

: (5)

The next step is to relate the time-dependent conductance �(t) to the con-

ductance � in the uniform case (uniform distribution: �

u

= 1=j
j):

We get for all t 2 N:

�(t) =

P

f2A

P

g=2A

�(t)

f

p

(t)

fg

P

h2A

�(t)

h

=

P

f2A;g=2A;(f;g)2N

minft

�c(f)=


; t

�c(g)=


g

2n

P

h2A

t

�c(h)=


� t

�c

max

=


]f(f; g) 2 N jf 2 A; g =2 Ag

2njAj

� �t

�c

max

=


and therefore

p

1� �(t+ 1)

2

� 1�

�

2

2t

3c

max




: (6)

By choosing 
 = 48c

max

, we get with t �

�

2

�

2

�

16

:

1�

�

2

2t

3c

max

=


� 1�

1

t

1=8

: (7)

So we can obtain an estimation of the �rst factor in (5):

r

(1� (�(t+ 1)

2

)(1 +

1

t

)

c

max

=


� 1�

1

2t

1=4

(8)

Next we consider the second part of the sum in (5):

s

X

u

(�(t)

u

� �(t+ 1)

u

)

2

�(t+ 1)

u

=

s

X

u

�

�(t)

2

u

�(t+ 1)

u

� 2�(t)

u

+ �(t+ 1)

u

�

(4)

�

q

(1 + 1=t)

c

max

=


� 1

�

p

1=t: (9)



Thus we get the following conclusion:

p

kP (t)� �(t)k

t

� 4t

�1=4

) �

1

4t

1=4

p

kP (t)� �(t)k

t

+

s

X

u

(�(t)

u

� �(t+ 1)

u

)

2

�(t+ 1)

u

� 0: (10)

Finally we can establish the last estimation:

Lemma 2 Let t

0

=

�

2

�

2

�

16

and 
 = 48c

max

. This implies the following

inequality for all t � t

0

:

p

kP (t+ 1)� �(t+ 1)k

t+1

�

1

4

p

t

max

�

5;

16

�

8

p

kP (t

0

+ 1)� �(t

0

+ 1)k

t

0

+1

�

:

Proof: For t = t

0

, the claim is obvious. For t > t

0

we distinguish two cases.

(i)

p

kP (t)� �(t)k

t

� 4t

�1=4

. The proof follows with (5) and (10) by in-

duction.

p

kP (t+ 1)� �(t+ 1)k

t+1

� (1�

1

4t

1=4

)

p

kP (t)� �(t)k

t

� (1�

1

t

)

p

kP (t)� �(t)k

t

� (1�

1

t

)

1

4

p

t� 1

max

�

5;

16

�

8

p

kP (t

0

+ 1)� �(t

0

+ 1)k

t

0

+1

�

�

1

4

p

t

max

�

5;

16

�

8

p

kP (t

0

+ 1)� �(t

0

+ 1)k

t

0

+1

�

(ii)

p

kP (t)� �(t)k

t

� 4t

�1=4

. Straightforward calculation with the help of

(9).

p

kP (t)� �(t)k

t

+

s

X

u

(�(t)

u

� �(t+ 1)

u

)

2

�(t+ 1)

u

�

4

t

1=4

+

r

1

t

�

5

t

1=4

The main theorem follows with

c(G) = max

2

�

5;

16

�

8

kP (t

0

+ 1)� �(t

0

+ 1)k

t

0

+1

�

immediately from the last lemma. 2

Now it is easy to derive the following corollary:



Corollary 3 The distribution P (t) of the Simulated Annealing Markov chain

converges to the constant probability vector �

�

, of which probability charges

are concentrated uniformly on the global optima.

Proof:

lim

t!1

kP (t)��

�

k

2

� lim

t!1

kP (t)� �(t)k

2

+ lim

t!1

k�(t)� �

�

k

2

� lim

t!1

p

kP (t)� �(t)k

t

+ 0

� 0

2

With Lemma 2 we can also derive �nite time bounds for Simulated An-

nealing:

Proposition 4 Let � be the di�erence between the minimal cost and the

next to least cost value and c

max

the maximal value of the cost function.

Then there exist constants c

1

; c

2

2 N with

t �

1

�

c

2

�

j
j

�

�

�c

1

c

max

�

)

X

f

jP (X

t

= f)� �

�

f

j � �:

Proof: Let f 2 


min

. Then we get:

j�

f

(t)� �

�

f

j �

1

j


min

j

�

1

j


min

j+ t

��=


j
j

and

t �

�

4j
j

j


min

j�

�


=�

)

1

j


min

j

�

1

j


min

j+ t

��=


j
j

�

�

4j


min

j

:

Now let f =2 


min

. Here we get:

t �

�

4j
j

j


min

j�

�


=�

) j�

f

(t)� �

�

f

j �

�

4j
j

:

Hence

X

f2


j�

f

(t)� �

�

f

j � �=2:

Furthermore we get with Lemma 2:

X

f

jP (X

t

= f)��

f

(t)j �

p

j
j

1

4

p

t� 1

max

�

5;

16

�

8

p

kP (t

0

+ 1)� �(t

0

+ 1)k

t

0

+1

�



and

kP (t

0

+ 1)� �(t

0

+ 1)k

t

0

+1

� j
j(t

0

+ 1)

c

max

=


:

Therefore we get

t �

 

32j
j

3=2

(t

0

+ 1)

��

8

!

4

)

X

f

jP (X

t

= f)� �

f

(t)j � �=2:

and the proposition follows from the above calculations. 2

In the following we will describe an application of Simulated Annealing

to the traveling salesman problem, a well known strongly NP-hard combi-

natorial optimization problem [3]. We consider only a restricted, but still

NP-hard version of this problem with special distance values to get a proper

estimation for � and c

max

.

We are given a set C of m cities and distances d(c

i

; c

j

) 2 f1; 2g for each

pair of cities c

i

; c

j

2 C. We are looking for the shortest tour that connects

all these cities. Given a starting tour, we consider the generation method

for neighboring tours known as 2opt-transitions. We select two cities in the

present tour uniformly at random with probability

1

m(m�1)

and reverse the

order in which these cities in between this pair of cities are visited. Therefore

we get with Proposition 4: 9c

1

; c

2

2 N

t �

2

c

1

m

2

log(m)

�

c

2

m

)

X

f

jP (X

t

) = f)� �

f

(t)j � �:

This bound is considerably smaller than the best bound �

�m

2m+1

published

so far by Mitra et al. [13]. A similar result yields the application of

Simulated Annealing to graph coloring [15], where the super-exponent can

also be removed.

As an easy consequence we could estimate the probability to be in an

optimal state after su�ciently many steps:

Corollary 5 The Markov chain is in an optimal state (i.e. optimal tour)

with probability of at least 3/4 after exponentially many steps.

Proof:

P (X

t

2 


min

) �

X

f2


min

�

�

f

� jP (X

t

2 


min

)�

X

f2


min

�

�

f

j

� 1�

X

f2


min

jP (X

t

= f)� �

�

f

j

2



3 Concluding remarks

We can improve the �nite time bounds of the proximity of the probabil-

ity distribution P (t) after t transitions to the uniform distribution on the

set of optimal states �

�

. Thus, we improve the bound for the �nite time

behaviour of Simulated Annealing considerably. But, this bound is rather

poor for practical purposes. This is broadly in line with practical experi-

ences [9] with logarithmic cooling schedules that ensure the convergence,

however they are far too slow for a practical implementation. Corollary 5

states that Simulated Annealing is in an optimal state with high probability

after a number of steps that exceeds the cardinality of the con�guration

space. Therefore, it would be less time consuming to enumerate the whole

con�guration space. On the other hand we need not to bound the di�erence

jP (t)� �

�

f

j summarized over the whole con�guration space to get Corollary

5. This implies that the exponential size of the bound is possibly not nec-

essary, when one does not summarize over the whole con�guration space of

exponential size. As a consequence, despite the technical di�culties, con-

sidering the maximum norm is possibly better to obtain results improving

those in Corollary 5. But there is no hope at least in the general case to

prove sub-exponential bounds for the performance of Simulated Annealing.

The reason is the following: It is possible to prove for an application of

Simulated Annealing to a specially constructed instance of the 3-coloring

problem and arbitrary cooling schedule [15]:

P (X

t

2 


opt

) � te

�n

;

where n is the the number of vertices to be colored.
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