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Abstrat

Sine opening a new ight onnetion or losing an existing ight has a great impat on

the revenues of an airline, the generation of the ight shedule is one of the fundamental

problems in airline planning proesses.

In this paper we onentrate on a speial ase of the problem. In ontrast to airlines

operating on regular shedules, the market for harter airlines is well-known and the shedule

is allowed to hange ompletely from period to period. Thus, preise adjustments to the

demands of the market have a great potential for minimizing operating osts.

We propose a ombined Branh-and-Cut approah to solve the airline shedule generation

problem. To tighten the linear relaxation bound, we add utting planes whih adjust the

number of airraft and the spill of passengers to the demand on eah itinerary.

For real-world problems from a large European harter airline we obtain solutions within

a very few perent of optimality with running times in the order of minutes on a ustomary

personal omputer for most of the data sets.

Key Words: Capaitated network design; Dantzig-Wolfe deomposition;

set partitioning, set paking; Branh-and-Cut



1 Introdution

Planning airraft and rews is a very omplex task. Thus, it is a urrent pratie at airlines'

planning departments to break up the resoure planning into a number of stages whih are then

solved in a sequential manner. In the �rst stage, information on the market are olleted and

analyzed. The result of the market analysis is a demand estimation whih is based on origin-

destination pairs. The timetable is onstruted in the next step. In this shedule generation step,

the airline deides whih diret ights should be o�ered in the new shedule. Also, the optimization

of departure times is done, and operational onstraints like eet sizes are onsidered, too. Next,

the airraft type to use on eah operated ight will be determined (eet assignment). Determing

airraft routes (rotations) is the objetive of the tail assignment. Using these airraft rotations,

pairings (duties) for yet unpersonalized rew members (okpit and abin rew) are determined in

the rew pairing. Personalized monthly shedules are then onstruted using the rew pairings in

the rew rostering. Finally, very lose to the day-of-operation some hanges to the ight shedule

may beome neessary (day-of-operation hanges).

Sine the shedule generation problem (SGP) must be solved early in the airlines' overall

planning proess, its solution quality has a great inuene on all subsequent steps. Most airlines,

however, seem to onstrut their shedules manually. As this task is very omplex and time

onsuming, it is ommon pratie to only loally hange the last shedule to adopt it to the new

requirements. This also implies that the new shedule may inherit properties that are unneessary

and ostly.

In this paper we address a speial ase of the shedule generation problem for the airline

industry whih arises partiularly in harter business. In ontrast to regularly operating arriers,

harter airlines have more freedom to hange their shedule from period to period. Furthermore,

as in our ase, there often are lose business links to one or more tour operators who sell ights

or even omplete vaation pakages (ight, hotel, rental ar, et.) to their ustomers. Then large

ontingents of the seats are booked before the shedule generation proess is terminated, whih, in

addition to the data about ustomer behavior in the past, gives a very aurate knowledge about

the market.

Our solution approah inorporates the most important operational onstraints in the planning

phase, like blok times, minimum ground times, and urfews. Thus, our model ombines shedule

generation and eet (or even tail) assignment.

2 Related Work

Network design problems have been intensively studied. Espeially for problems arising in the

teleommuniations industry and in the ontext of freight transportation, numerous suessful

algorithms have been developed. Solution strategies inlude tehniques based on linear program-

ming, Lagrangean relaxation and Bender's deomposition, ommonly used in ombination with

branh-and-bound (f., e.g. Magnanti et al. [17℄, [18℄, Holmberg and Hellstrand [13℄, Holmberg

and Yuan [14℄, Balakrishnan et al. [2℄, Sridhar and Park [26℄, Lamar et al. [15℄ and Chang and

Gavish [6℄). For additional referenes and appliations see, for example, the omprehensive survey

by Magnanti and Wong [19℄, the overview by Minoux [20℄, and the reent review by Craini and

Laporte [8℄.

In ontrast to that, the published literature on network design problems for airlines is sant.

Atually, we are aware of no referene treating the shedule generation problem.

Daskin and Panayotopoulos [10℄ present an integer program that assigns airraft to routes in a

single-hub-and-spoke network. The routes are prede�ned sequenes of ight legs originating and

terminating at the hub. They propose a Lagrangean relaxation of the problem and ombine it

with heuristis for onverting the Lagrangean solutions into pimal feasible solutions. Barnhart and

Shneur [4℄ desribe the express shipment servie design problem. Airraft routes and shedules

to pik up and deliver shipments have to be designed. A single hub is involved in the problem.

Based on impliit olumn generation, a multi-label shortest path algorithm on an appropriately

2



strutured network is employed to determine new airraft routes. B�udenbender et al. [5℄ present

a problem similar to the one disussed here. In the ontext of letter mail transportation, the

diret ight network design problem is introdued formally, and results for a pratial appliation

are given. The problem is solved using a two-phase heuristi. Rexing et al. [23℄ make hanges

to a given ight shedule by assigning time windows to eah ight. After disretizing these time

windows, the model is allowed to selet departure times. Diret and iterative solution approahes

are proposed.

3 The Mathematial Model

Roughly, an instane of the shedule generation problem (SGP) is the following: given a eet and

a set of origin-destination pairs (OD-pairs) with assoiated passenger demands, �nd rotations for

all airraft of the eet suh that the total pro�t is maximized. The next setion gives a more

detailed desription of the problem with all its side onstraints.

3.1 Problem desription

The eet onsists of two sets K = K

full

_

[ K

part

of airraft, where K

full

is the eet owned by

the airline and K

part

is a set of planes that may be rented from other arriers. The planes in

K

full

are available throughout the whole planning period, and those in K

part

are only available

within spei�ed time intervals. If utilized, these planes have to be piked up and delivered at

ertain airports. The rental and the (re-)positioning osts have to be provided. Eah eet onsists

of types of airraft with individual harateristis as blok times, minimum ground times, seat

apaities and ost oeÆients. Sine our example sets ontain only short and medium haul ights

(up to 5 hours of blok time), we do not onsider airraft ranges.

The set A of all airports an be partitioned into two sets of home airports H and those abroad

A. In our ase we have 18 airports in the home ountry and approximately 40 airports abroad.

Planes follow a rotation, that is in the morning, they leave an airport in H and have to return to

suh an airport in the night again. Eah airport has spei�ed opening hours, and for eah ight

a blok time is given. In addition, airraft rotations have to omply with a number of regulations

whih will be desribed in Setion 3.2.2.

Due to the nature of the harter business, ustomers always book a trip starting and ending

at H with a stay at their destination airport in A of one up to several weeks. This results in

symmetrial demands for the OD-pairs from H to A and the orresponding return OD-pair, if one

assumes, as ommon in the harter planning proess, an even distribution of the itineraries over

the season.

On the way to their destination, passengers may have to hange planes or to endure a short stop-

over. However, they seem to tolerate at most one intermediate stop. We assume that passengers

an swith to another airraft if the time between landing and departure is at least a given

minimum onnet time. Thus, passenger itineraries inlude either an intermediate stop in H or

an intermediate stop in A, maybe in ombination with an airraft swith, but not both.

The objetive funtion is made up of several omponents. On the inome side there are revenues

for eah passenger transported on an OD-pair. In ontrast to regularly operating airlines, we do

not have to distinguish di�erent lasses. On the ost side there are �x osts for every assignment of

an airraft to a ight leg, hire harges for rented airraft, osts for repositioning airraft, osts for

eah transported passenger (servie, handling harges et.), and penalties for passengers rejeted

due to apaity bottleneks.

To summarize, the shedule generation problem is the problem to determine airraft rotations

observing operational onstraints and eet sizes, and to route passengers taking seat apaities

into aount, suh that the ombined airraft and passenger osts are minimized, i.e. that the

overall gain is maximized. Determing the airraft routes is suÆient, but departure and arrival

times are introdued as muh as neessary to model the situation where passengers are allowed to

swith airraft.
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We denote the lassial ights, i.e. from take o� to touh down and inluding information on

departure times, by ights. To stress this we sometimes use the terminology of a diret ight. A

via ight onsists of two ompatible suessive diret ights f

1;2

with dest(f

1

) = orig(f

2

), either

in H or A. When we desribe oeÆient redution tehniques and utting planes below, we will

make use of the onept of aggregated ights. Here, \synonymous" diret ights in our model are

aggregated to a single (diret) ight. In this ase it is possible that several airraft serve suh a

single ight. Essentially, we an aggregate ights if the orresponding OD-pair \o ! d" is not

involved in any via ight.

3.2 Shedule Generation Model

We model SGP as a apaitated network design problem with additional onstraints (see Setion 2,

espeially Magnanti and Wong [19℄, and Minoux [20℄). Compared to the general model, however,

we have to observe some additional onstraints: we an only introdue an ar if it is part of a

feasible \virtual" route of an airraft starting and ending in H. Moreover, the passenger ow

between two nodes an only traverse at most two ight ars.

We remark that SGP or rather its orresponding deision problem is strongly NP-omplete.

This an be seen by using 3-PARTITION, whih is known to be strongly NP-omplete (see Garey

and Johnson [12℄). A proof an be found in Noltemeier [21℄.

3.2.1 Assumptions

Based on the problem desription in Setion 3.1 we make the following assumptions. Extensions

of this model will be disussed in Setion 7 where some of these assumptions will be dropped.

A1 (Assoiated home bases)

Eah airraft has an assoiated home base in H where it is parked over night. The seletion

of home bases an be onsidered as a part of the optimization and is done with respet to

given airport apaity onstraints.

A2 (Symmetri demands)

The demands are symmetri for eah OD-pair, i.e. dem(o ! d) = dem(d ! o) for eah day

of the week. This assumption is motivated by the fat that vaations are usually booked for

a multiple of a week, i.e. the departure and arrival day of the week are idential for eah

passenger.

A3 (Symmetri apaities)

In resemblane to Assumption A2, the daily airraft rotations must provide symmetri

apaities, i.e. ap(o! d) = ap(d! o) for eah rotation. Thus, in this model the travelers

will be transported bak to their home airport one or several weeks later using the same

airraft rotation.

A4 (Via ights)

Airraft rotations an ontain two symmetri via ights (i.e., a pair of orresponding via

ights) in the home ountry or one via ight abroad, but not both. Observe that this

assumption is stronger than the restritions on passenger itineraries as desribed above.

A5 (Passenger itineraries)

Passenger itineraries onsist of at most two ight legs, i.e. doing a stop-over with or without

swithing to another airraft is allowed only one.

Remark: By Assumptions A2 and A3 we do not have to onsider both OD-pairs \o ! d" and

\d ! o".
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3.2.2 Airraft Rotations

Feasible airraft rotations must meet several requirements, inluding

� airport opening hours,

� earliest departure times and latest arrival times at the airports, if opening hours are not

vaation-friendly (for example, very early in the morning),

� urfews (for example, by noise restritions), and

� minimum ground times depending on departure and arrival airports of ontained ights (for

example for loading/unloading, refueling, and atering).

Flight durations and osts for eah subeet and for eah ight are given, as well as airraft

utilization osts and the rentals for airraft. Passenger dependent osts (as landing fees) are

modeled on passenger itineraries (see the next setion for details).

Time

p

p

H01

H02

H03

A01

A02
1
1

2
2

Figure 1: Illustration of airraft rotations; with via ights in H

Figure 1 gives an example for airraft rotations. There are three home airports (H01, H02, and

H03) and two airports abroad involved. The airports' time lines are displayed by horizontal lines.

The (adjusted) airport opening hours are marked by left braes. Two rotation exerpts are shown,

both with via ights in the home ountry. Rotation p

1

1

, i.e. the �rst rotation (lower index) for �rst

airraft (upper index) starts at H01 with a ight to H02, then ontinuing to A02. Analogously,

p

2

2

serves ights H03-H02 and H02-A01. As mentioned in Setion 3.1, only the routes have to be

determined. Obviously, the possibility of a passenger to get a onneting ight is determined by

the exat departure and arrival times. The use of time windows in our approah is desribed in

Setion 3.2.3.

Daily airraft rotations follow a �xed pattern. The sequene of airports in the home ountry

and abroad is �xed. In our speial ase, the sequene is H

0

; H

1

; A

2

; A

3

; H

4

; A

5

; H

6

; A

7

; H

8

; H

9

,

where H

j

2 H and A

j

2 A, i.e an airraft rotation is made up of a sequene of ompatible ights

f

0

; : : : ; f

8

, with dest(f

j

) = orig(f

j+1

); j = 0; : : : ; 7. This struture will be used in the \layered"

olumn generation network, whih will be desribed in Setion 4.1 (see Figure 3). The assumptions

imply that not all possible sequenes of ompatible ights are feasible. For example, assumption

A1 and the minimum blok time for ights imply that we have an upper bound on the length

of daily airraft rotations. Thus, some of these ights may be empty, i.e., the airraft will stay

on the ground. The ights f

0

; f

1

; f

7

; f

8

, are used to model via ights in the home ountry and f

2

represents via ights abroad.

Airraft rotations and passenger itineraries will be linked very losely. The revenue per pas-

senger for the itinerary is known, as well as passenger dependent osts on airraft (for example,

servie harges and landing fees). Thus, an objetive oeÆient ombining both terms an be

easily alulated.
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3.2.3 Linking Airraft Rotations and Passenger Itineraries

Considering again the example from Figure 1, Figure 2 shows six feasible passenger itineraries

i

j

; j = 1; :::; 6. Observe, that itineraries are linked with rotations. To improve the eÆieny of our

approah an aggregated version will be used in our implementation.

i
i3

i4
i6

p

p2

Time

1
1

2

1 i2

i5

H01 H02 H02 A02

H03 H02 H02 A01

Figure 2: Illustration of link between airraft rotations and passenger itineraries

As motivated before, departure and arrival times are important information for realisti airraft

swithes. Sine we are only interested in the sequene while onsidering all operational onstraints

we provide as muh onneting points as possible. To desribe our approah, we have to onsider

the two ases where via ights in the origin ountry or via ights abroad our.

In the �rst ase this is realized by \ompressing" the middle part of the rotation, i.e. the ights

f

1

to f

7

, and plaing this part on the middle of the day. Thus, the ights f

0

and f

8

are done as

soon or late as possible, respetively.

In the latter ase where via ights abroad are involved, we use the analog pratie to reate

time windows between f

1

and f

2

, and f

2

and f

3

.

3.3 Notation and Problem Parameters

Sets:

A: the set of all airports, indexed by a. Indies a

�

and a

+

are used for start and end airports.

K: the set of all airraft, indexed by k.




k

d

: the set of all feasible airraft rotations for airraft k on day d, indexed by p.

M : the set of all OD-pairs (\markets"), indexed by m.

I

m

d

: the set of all passenger itineraries for OD-pair m on day d, indexed by i.

F : the set of all ights, indexed by (f; d) or just f , d day.

Deision variables:

�

k

p

: = 1, if rotation p own by airraft k is in the solution, otherwise = 0.

Y

k

ad

: slak/surplus variables to model the position of airraft k on airport a and day d, espeially

used for rental airraft.

x

i

: number of passengers taken on itinerary i.

s

m

d

: the passenger spill on the OD-pair m on day d.

Data and parameters:

6



N : the length of the planning period in days, 1 � d � N .



k

p

: ost for using airraft k on rotation p.



i

: osts (i.e., �pro�t) per passenger own on itinerary i.

ap

k

: seat apaity of airraft k.

n

k

d

: = 1, if airraft k is available on day d, otherwise = 0.

r

k

ad

; s

k

ad

: 2 f�1; 0; 1g, lower and upper bounds on the supplementary variables Y

k

ad

.

dem

m

d

: the demand for the OD-pair m on day d.

�

k

fp

: the multiple of the airraft apaity ap

k

provided in rotation p for the ight f , maybe 0.

Æ

fp

; Æ

fi

: = 1, if airraft rotation p or passenger itinerary i ontains the ight f , respetively,

otherwise = 0.

Æ

ip

: = 1, if the passenger itinerary i and the airraft rotation p are sharing a ight, otherwise = 0.

orig(i); dest(i); orig(p); dest(p); orig(f); dest(f): origin and destination of passenger itinerary i, air-

raft rotation p, and ight f , respetively.

3.4 Path-based Mixed Integer Programming Formulation

(SGM =) Minimize

X

1�d�N

0

�

X

k2K

X

p2


k

d



k

p

�

k

p

+

X

m2M

X

i2I

m

d



i

x

i

1

A

(1)

subjet to

X

m2M

X

i2I

m

d

Æ

fi

x

i

�

X

k2K

ap

k

X

p2


k

d

�

k

fp

�

k

p

8 (f; d) 2 F (�

(f;d)

) (2)

X

p2


k

d

nf0g

�

k

p

� n

k

d

8 k 2 K; 8 1 � d � N (�

kd

) (3)

X

p2


k

d+1

orig(p)=a

�

k

p

�

X

p2


k

d

dest(p)=a

�

k

p

� Y

k

ad

= 0 8 k 2 K; 8 a 2 A;

8 1 � d � d+ 1 � N

(

kda

) (4)

X

p2


k

1

orig(p)=a

�

k

p

�

X

p2


k

N

dest(p)=a

�

k

p

� Y

k

aN

= 0 8 k 2 K; 8 a 2 A (

kNa

) (5)

r

k

ad

� Y

k

ad

� s

k

ad

8 k 2 K; 8 a 2 A;

8 1 � d � N

(6)

X

i2I

m

d

x

i

+ s

m

d

= dem

m

d

8 m 2M; 8 1 � d � N (�

md

) (7)

�

k

p

binary 8 k 2 K; 8 p 2 


k

(8)

x

i

� 0 8 m 2M; 8 i 2 I

m

(9)

s

m

d

� 0 8 m 2M; 8 1 � d � N (10)
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The objetive funtion (1) minimizes the total ost, whih is the sum of airraft utilization

osts and osts on passenger itineraries. The link between provided airraft apaities and trans-

ported passengers on itineraries is done by onstraint set (2). Airraft availability is ensured by

onstraints (3). Constraint sets (4) and (5) de�ne lassial ow onservation onstraints for the

airraft rotations. For modeling omplex situations where airraft are only available partially, the

slak and surplus variables Y

k

ad

are introdued. Lower and upper bounds on these supplementary

variables are enfored by onstraints (6). The relationship between the number of transported pas-

sengers for an OD-pair and the orresponding spill is given by (7). Constraints (8) impose binary

values for the path variables. Finally, passenger and spill variables are ensured to be non-negative

by onstraint sets (9) and (10).

3.5 Overview of the Algorithm

Depending on the number of possible airraft rotations, we propose to use a branh-and-ut or a

branh-and-ut-and-prie algorithm to solve the problem.

In the given instanes, there is only a moderate number of number of feasible rotations when

using aggregation. Thus working on the expliit integer linear program is possible. For larger

instanes, olumn generation will beome neessary. The linear relaxation of SGM, i.e. (1) { (10)

provides only a weak relaxation. We will develop utting planes valid throughout the branh-and-

bound tree to tighten the relaxation.

4 Column Generation Subproblems

For large shedule generation instanes, i.e. for instanes with a large number of airports in H

and A, and many OD-pairs with positive demands, the number of feasible airraft rotations an

beome very large and thus an not be handled expliitely anymore. Also, relaxing all or some of

Assumptions A1, A3, and A4 drastially inreases the number of airraft rotations. In this ase

we propose to apply a branh-and-prie tehnique utilizing onstrained shortest path problems

for generating new rotations dynamially, and thus to solve the problem. We refer the reader,

beside many other referenes, to Lasdon [16℄ for a detailed introdution, and to Barnhart et al. [3℄

and Desaulniers et al. [11℄ for reent artiles on modeling and solving problems using branh-

and-prie. For the given instanes and when observing all assumptions, the number of airraft

rotations is of moderate size, and thus we work on the expliitely enumerated set of all rotations

in our omputational study.

In Setion 4.1 we desribe the airraft rotation subproblem, while Setion 4.2 disusses the

passenger itinerary subproblem.

4.1 Airraft Rotation Subproblem

Let (�; x) be the solution vetor of the urrent restrited master problem (RMP), and let (�; �; ; �)

be its assoiated dual solution vetor. Then, the redued ost �

k

p

of an airraft rotation p 2 


k

d

for

airraft k on day d, starting and ending at airport a

�

; a

+

2 A, respetively, is

�

k

p

= 

k

p

+

X

(f;d)2F

ap

k

�

k

fp

�

(f;d)

� �

kd

� 

kda

�
+ 

kda

+
; (11)

using the onvention 

k0a

�
= 

kNa

�
for the period wraparound. Observe, that SGM (i.e. (1) -

(10)) and (11) allow di�erent airports a

�

6= a

+

for departure in the morning and arrival in the

night, and thus is more general. We will disuss this as a possible extension in Setion 7. For eah

airraft and eah liensed home base a single network is de�ned. Nodes represent airport-layer

pairs aording to the airraft rotation pattern. Furthermore, soure and sink nodes are added

and assoiated with the home base. Two di�erent ar types are used. Ars adjaent to the soure

or the sink node are utilization ars. They are used to keep trak of the number of utilized airraft.
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Ars onneting airport-layer nodes represent ight ativities. Basi restritions suh as airraft

ranges and urfews an be onsidered diretly in the network, beause only admissible ight ars

are inserted.

The airraft rotation subproblem now is the problem of �nding an airraft rotation that satis�es

all operational onstraints, and pries out to have negative redued ost. This problem an be

ast as the problem of �nding shortest paths in the network de�ned above. There is a one-to-one

orrespondane between feasible paths in the network and admissible airraft rotations. Further,

the redued ost omponents in (11) an be transfered to the ars of the network, suh that the

paths ost equals the redued ost. To omply with the station opening hours and airraft rotation

pattern, the networks an be solved by utilizing a resoure-onstrained shortest path algorithm.

For example, eah ar in the network uses up an amount of the resoure \time" (e.g., ying,

ground and waiting time). The omsumption of this resoure is heked at eah node in the

network. Time intervals represent the assoiated airport opening hours. Beside other possibilities,

this network an be used to enumerate all admissible paths. They an be stored in olumn pools,

and redued osts an be alulated using (11). Figure 3 illustrates this network struture. An

H02

H03

H01H01H01 A01

H02source

H01

H03

H H A A210 3 H4

A03

A02 H02 sink

H8 H9

H02

H03

Figure 3: Network struture for the airraft rotation subproblem, home base H01

exerpt for a network for an airraft with home base H01 is shown. A rotation serving a via

ight between home airports H01 and H02 (see layers 0 and 1, and 8 and 9), and serving ights

H02{A01{H02 to airport A01 abroad is shown by solid lines. This rotation omits nodes in layers

three to seven. Other ights in the network are indiated by dashed lines. Between layers there

is not neessarily a omplete bipartite graph. For example, airport-layer nodes H01 in layers 0

and 1 are not onneted, beause this only represents staying on the ground, and some ars may

missing aused by urfews. A speial ar for not utilizing the airraft is also shown and onnets

the soure node with the sink node.

4.2 Passenger Itinerary Subproblem

Again, let (�; �; ; �) be the urrent dual solution vetor. The redued ost �

i

of an passenger

itinerary i 2 I

m

d

for OD-pair m on day d is

�

i

= 

i

�

X

(f;d)2F

Æ

fi

�

(f;d)

� �

md

: (12)

The number of passenger itineraries is small, beause only one airraft swith is allowed by

Assumption A5. Thus, we propose to expliitly enumerate all itineraries, and ompute their

redued osts diretly, when neessary.
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5 Obtaining Integer Solutions

Solving the linear relaxation of the formulation as stated in Setion 3.4 diretly leads to high fra-

tionality in the airraft rotation variables �

k

p

. In this setion, we will identify the set of onstraints

of SGM ausing the frationality and being responsible for the weak linear relaxation. We propose

oeÆient redution and utting planes to tighten the linear relaxation bound. Further, we will

disuss a depth-�rst heuristi and branhing strategies for obtaining integer solutions.

5.1 Causes of Frationality

This frationality is aused by onstraint set (2) of SGM,

X

m2M

X

i2I

m

d

Æ

fi

x

i

�

X

k2K

ap

k

X

p2


k

d

�

k

fp

�

k

p

8 (f; d) 2 F:

For the analysis, we take a look on a single OD-pair. We ignore the remainder of the involved

airraft rotations, and the airraft utilization and ow onservation onstraints, sine they only

play a minor role.

OD-pair Demand Rev./Pass.

H01{A01 144 DEM -360

H02{A01 174 DEM -365

H03{A01 162 DEM -380

Table 1: Demand data

Path Operating Rotations, providing a

Variable Costs apaity of 174 seats per ight

p

1

DEM 45,000 H01 A01 H01

p

2

DEM 47,000 H02 A01 H02

p

3

DEM 53,000 H03 A01 H03

p

4

DEM 77,000 H01 A01 H02 A01 H01

p

5

DEM 83,000 H01 A01 H03 A01 H01

p

6

DEM 85,000 H02 A01 H03 A01 H02

Table 2: Operating osts and rotations

Assume, there are three OD-pairs H01{A01, H02{A01, and H03{A01, and only one subeet

(the Airbus A320 with an apaity of 174 seats) involved in this problem. Via ights are not

allowed. Using the demand and revenue data of Table 1 and the airraft rotations, operational

osts and apaities of Table 2, the optimal solution to the relaxed problem of SGM is ahieved by

�

p

4

� 0:448, �

p

5

� 0:379, �

p

6

� 0:552 and all other path variables =0, with an objetive funtion

(ost) value of DEM -64,013. The apaity provided is equal to the demand and all passengers

are transported. The optimal integral solution is ahieved by �

p

1

= �

p

6

= 1 and all passengers

transported, with an objetive funtion value of DEM -46.910, thus giving an integrality gap of

�26.7%.

5.2 CoeÆient Redution

A method to tighten the linear relaxation bound and thus to improve the solution behavior is to

redue eah oeÆient of the airraft rotations in onstraint set (2) to be not greater than the

left hand side (LHS). Obviously, no integral solutions are ut o� by this pratie. Usually, the
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Path Operating Rotation and

Variable Costs provided apaities (after preproessing)

p

1

DEM 45,000 H04 (144) A02 (144) H04

p

2

DEM 47,000 H05 (174) A02 (174) H05

p

3

DEM 53,000 H06 (162) A02 (162) H06

p

4

DEM 77,000 H04 (144) A02 (174) H05 (174) A02 (144) H04

p

5

DEM 83,000 H04 (144) A02 (162) H06 (162) A02 (144) H04

p

6

DEM 85,000 H05 (174) A02 (162) H06 (162) A02 (174) H05

Table 3: Operating osts, apaities, and rotations

demand of passengers using a ight is greater than eah airraft apaity, partiularly if passenger

itineraries and via ights are involved. Using again the demand data of Table 1, the provided seat

apaities for the above example beome as summarized in Table 3. The optimal solution to the

relaxed problem is ahieved by �

p

4

= 0:503067, �

p

5

= 0:496933, �

p

6

= 0:496933, with an objetive

funtion value of DEM -54,6891, and an integrality gap of �14.2%. Again, all passengers are

transported.

5.3 `Min-Cover' Inequalities

Lifted over inequalities were introdued by Crowder et al. [9℄ and applied to pure binary programs.

Padberg et al. [22℄ and van Roy and Wolsey [27℄ extended these inequalities to generalized ow

over inequalities for mixed-binary programs. Our utting planes are related to the uts desribed

in these referenes. We will ompare the results of our omputational experiments with results

obtained by the CPLEX mixed-integer program solver (see [1℄) and MINTO (see Savelsbergh and

Nemhauser [25℄) in Setion 6.2.4. In these solvers uts following the line of Crowder et al. are used.

To desribe the appliation of min-over inequalities to the SGP, we temporarily assume, that

no via ights are involved in the planning proess, i.e., no itineraries onsisting of two ights are

given and thus demands an only be satis�ed by diret ights. In the following we onsider a

spei� aggregated diret ight loally, i.e. we ignore the remaining part of the rotations and the

airraft utilization onstraints.

Now assume that oeÆient redution has already been performed and onsider a �xed ag-

gregated ight (f; d) 2 F with a demand of the orresponding OD-pair of dem. The passenger

itinerary and airraft rotation linking onstraint (2) an be rewritten as follows. The LHS redues

to a single passenger variable, say x

i

. The right hand side (RHS) an be expanded by using the

atual provided apaity ap

k

f

(p) of eah airraft rotation p, inorporating the multiplier �

k

fp

and

the redued oeÆients. Thus,

x

i

�

X

k2K

X

p2


k

d

ap

k

f

(p) �

k

p

: (13)

Let 

1

< : : : < 

n

be the di�erent (non-zero) apaities ap

k

f

(p) in (13). Observe, that there

may be more di�erent apaities 

j

than airraft apaities. The airraft rotations an now be

partitioned aording to their apaities, i.e.




j

d

=

�

(p; k) j k 2 K; p 2 


k

d

; ap

k

f

(p) = 

j

	

for 1 � j � n. Introdue new variables y

j

ounting the number of airraft serving (f; d), eah

providing a orresponding apaity of 

j

, i.e.

y

j

=

X

(p;k)2


j

d

�

k

p

(2 N):
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The variables y

j

are impliitly integral. Further, we use the variable sp to denote the number of

passengers that are spilled on this ight. Obviously, the following over inequality must hold:



1

y

1

+ : : :+ 

n

y

n

� dem� sp: (14)

Let

X =

�

(y; sp) 2 N

n+1

j Inequality (14) holds for (y; sp)

	

be the set of all feasible integer on�gurations, and P = onv(X) the onvex hull of X . The loal

subproblems ourring in SGM are of moderate size, sine the number of di�erent airraft seat

apaities is limited. Thus, we an alulate all faets of P in advane during a preproessing step.

The omputation of the faets is performed using e.g. PORTA [7℄. The inequalities orresponding

to the faets of P are valid for SGM (in absene of the negleted onstraints). Clearly, they are

valid for the omplete SGM, too, but not neessarily faet induing anymore.

When via ights and passenger itineraries are involved, min-over inequalities an be used,

too, although the situation beomes more ompliated. In ontrast to the ase without via ights,

the variables y

j

; 1 � j � n orrespond to the number of airraft with a ertain apaity 

j

serving

a diret ight or a follow-on. A follow-on is a sequene of two ompatible suessive diret ights.

In our ase, we onsider follow-ons ompletely in H and follow-ons ompletely in A (i.e. the via

ights as desribed above), in addition to the diret ights. However, the number of allowed via

ights is small in our test instanes, and the loal min-over faets an be alulated expliitly,

see Setion 6.2.

Observe that for our omputational study all faets to the (loal) min-over polyhedron are

alulated expliitly. The omputational e�ort for expliitly omputing the faets depends on the

demand dem, the number of di�erent airraft seat apaities 

1

; : : : ; 

n

, and the number of allowed

via ights. If omputation time exeeds justi�able limits, \aggregated" apaities an be used. If,

for example, an airraft rotation with a apaity of 

l

seats serves a diret ight twie, this an be

seen as an airraft with seat apaity 

j

= 2

l

serving this diret ight one. This may inrease

the number of di�erent apaities, but leads to deeper uts than expressing this as 2

l

. Thus, the

expanded version should be used whenever possible.

5.4 A Depth-First Heuristi

To obtain good feasible solutions quikly, we use a searh heuristi. The heuristi �xes airraft

rotations to 1 in a depth-�rst manner, and an be applied at every node of the branh-and-bound

tree. Obviously, every airraft rotation solution taking airraft utilization and ow onservation

onstraints into aount yields a feasible solution. Thus, we do not have to employ olumn

generation while applying the heuristi.

➊ Fix one (or a few) airraft rotation variable(s) �

k

p

with

ROUND THRESHOLD � �

k

p

< 1

to 1. ROUND THRESHOLD is a value near to 1, and gives the threshold for the variable

to be a andidate for rounding to 1. Usual values hosen are 0.85 or 0.95.

➋ Resolve the LP without employing olumn generation.

➌ Fix airraft rotation variables �

k

p

with high (positive) redued osts exeeding a given limit

to 0.

➍ If the urrent solution is integer, update the best feasible solution.

➎ If the urrent objetive funtion value is smaller than best known feasible solution, goto ➊.
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➏ Make a few baktraking steps using di�erent airraft rotation variable(s) in ➊,

or: start a omplete new searh with ➊,

or: stop the heuristi.

This heuristi an be extended for weekly problems in a straightforward way. A weekly rotation

for an airraft in K

full

has to be found and �xed. This rotation onsists of airraft rotation

variables �

k

p

for every day of the week. Airraft from K

part

are handled similar. The eÆieny of

this heuristi will be stated in Setion 6.2.

5.5 Branhing

We have applied di�erent branhing strategies in our omputational experiments to obtain integer

solutions. Although the standard branhing rule on variable dihotomy makes the priing problem

more ompliated, the empirial results are worth mentioning. Thus, besides more sophistiated

branhing rules it will be desribed here, too.

5.5.1 Variable Dihotomy

The standard branhing rule for Mixed Integer Programming is not diretly appliable if olumn

generation is used. In the ase that variables are set to 0, the priing problem must inorporate

these deisions and not return to this variable again. This leads essentially to �nding the l+1-best

variable in the subproblem, if l variables are already set to 0. In addition, setting variables to 0

does not divide the searh spae in two equal-sized parts, whih is usually preferred. Nevertheless,

setting variables only to 1 is losely related to the depth-�rst heuristi (when working on a �xed

set of olumns) and yields good solutions.

5.5.2 Number of used Airraft

If the number n

0

of airraft used on day d in the urrent relaxation, i.e.

n

0

=

X

k2

�

K

X

p2


k

d

�

k

p

(15)

with

�

K = K, is frational, branhes that require this number to be � bn

0

 and � dn

0

e an be

reated. This rule an be applied to subsets of K, too. For example, the set K of all airraft an be

partitioned into subeet groups K = K

1

_

[ � � �

_

[K

l

, eah ontaining the same airraft type. Thus,

the number of airraft used of a given type (n

0

in (15) with K = K

i

for a subeet i) is required to

be � bn

0

 and � dn

0

e, respetively.

5.5.3 Number of Airraft on Diret Flights

Consider an aggregated diret ight (f; d) on a �xed day d. This ight may be own by several

airraft rotations involving several airraft in the urrent relaxation. Obviously, the number of

airraft serving this ights has to be integral. Thus, for a frational value

r

0

=

X

k2K

X

p2


k

d

(f;d)2p

�

k

p

;

branhes foring the number to be � br

0

 and � dr

0

e may be reated. Analog to 5.5.2, this rule

an be applied to subeet groups, too.
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5.5.4 Number of Airraft on Follow-Ons

Consider two ompatible suessive diret ights (f

j

; d); dest(f

1

) = orig(f

2

); j = 1; 2. As intro-

dued in Setion 5.3, the ombination f

1

! f

2

is alled a follow-on. A Ryan/Foster-like branhing

rule (Ryan and Foster [24℄) on follow-ons is frequently used for routing and sheduling type prob-

lems (see, for example Desaulniers et al. [11℄ and Barnhart et al. [28℄). In most formulations,

a task has to be overed exatly one. Thus, the ow on this follow-on is fored to be 0 or 1,

respetively.

In our formulation, several airraft may serve diret ights and follow-ons. We propose an

extension of this rule appliable to the SGP. If the number of airraft r

0

serving a follow-on is

frational with

r

0

=

X

k2K

X

p2


k

d

(f

1

!f

2

)2p

�

k

p

;

two branhes � br

0

 and � dr

0

e as desribed above are reated.

6 Computational Results

To prove the eÆieny of our approah, we provide experimental results on data sets reeived

from a major harter airline. These instanes desribe a typial summer week. There are 18 home

airports, and �40 destination airports. All of them are reahable by short and medium haul

ights.

We would like to remark, that for the results given in this paper perturbed data sets have been

used. The revenues given do not orrespond to revenues of the airline! Besides, it seems that the

harter airline used a di�erent objetive funtion and maybe some additional onstraints. Thus,

the improvements of our solutions ompared to the hand solutions provided by the harter airline

seem to be non realisti.

All omputational results are obtained on a ustomary 333 MHz Pentium-II personal omputer

equipped with 256 MByte RAM. All run-times shown in the tables are in seonds, and do not

inlude the time for reading the input �les and preparing the initial data (suh as kernel LP and

networks).

The BnP (Branh-&-Prie) library developed at ZAIK is used as a framework. The primal und

dual simplex algorithms of CPLEX [1℄ are used for solving all LP relaxations, and are alled as a

subroutine from BnP.

6.1 Data Sets

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Num. H airports 16 11 16 13 14 16 15

Num. A airports 9 10 11 11 11 15 12

Num. of OD-pairs 47 48 60 54 55 89 63

Sum of demands 10.011 10.071 12.220 10.768 14.707 19.601 18.124

Num. of AC types 6 7 7 7 6 11 9

Num. of AC 29 30 30 30 33 64 53

jK

full

j + jK

part

j 26+3 26+4 26+4 26+4 26+7 26+38 26+27

Table 4: Charateristis of \Summer 1998" data set (single days)

The harateristis of our test instanes are presented in Table 4. The olumns show eah

day of a standard summer week (Summer 1998), named S98-Mo through S98-Su. The rows

Num. H airports and Num. A airports give the number of home airports and airports abroad,
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respetively. The next both rows indiate the demand struture. The number of OD-pairs with

nonzero demand, and the overall sum of passengers are given. In the last blok, Num. of AC

types shows the number of di�erent subeets involved. Finally, Num. of AC gives the number

of available airraft. The both omponents indiate the number of own airraft (jK

full

j) and the

number of airraft the ompany may rent from other arriers (jK

part

j).

The omplete week S98-Week makes up one further instane. It onsists of 18 home airports,

38 abroad and of 266 OD-pairs. The sum of demands and the number of subeets and available

AC an be obtained by summing the harateristis of the involved days.

6.2 Results

The results had been arried out in various test series. Deisions that have to be done inlude

whether via ights are involved (and if, where they are allowed) or not. Also, the distribution of

airraft at the beginning of the planning horizon may be predetermined or onsidered as part of

the optimization. They interat with the airport apaities, sine only limited spae for parking

airraft overnight is available. Further, they must observe the defaults of the airline. The airline

provided hand-made shedules to us and the airraft distributions from these solution will be used.

The number of spilled passengers plays an important role, too. Although, usually the market data

give overbooked demands, the passenger spill should not exeed ertain limits. Thus, restriting

the spill on ertain OD-pairs or the overall spill, maybe in ombination with penalty osts, is

possible.

In this setion we give omputational results for di�erent senarios. We split the results into

four parts. Setions 6.2.1 and 6.2.2 deal with the SGP using a predetermined or free airraft

distribution, respetively, but with no via ights allowed. Results for the weekly problem an

be found in setion 6.2.2, too. Setion 6.2.3 disusses the ase with via ights involved. In

Setion 6.2.4, we ompare the results ahieved by our optimizer with the results obtained by

CPLEX (see [1℄) and MINTO (see Savelsbergh and Nemhauser [25℄).

6.2.1 Results without via ights, �xed distribution of AC

Table 5 summarizes the results for eah day of the \Summer 1998" instane. In this instanes the

airraft distribution was predetermined using the distribution in the given hand-solution. The �rst

blok of this table gives information on the solution of the branh-and-bound root node. The row

LB w/o uts shows the relaxation lower bound (LB) after solving SGM without any additional

uts. The number of utting plane iterations and inserted min-over uts is given next. The LB

of the tightened relaxation is given in the next row. The bound improvement is shown in the row

Bound impr. and is alulated by

�

LB w/o uts � LB w/uts

LB w/o uts

�

. The row CPU displays the used CPU

time in seonds. The next bloks show information on the �rst and best feasible solutions found.

The CPU time was limited to 1 hour. B&B node gives the number of the branh-and-bound node

in whih this solution was found. Next, again information on the utting plane proess are shown.

New uts were only generated for branh-and-bound nodes with depth � 3, and the numbers refer

to all nodes but the root node. Only suessful runs of the separation routine, i.e. runs �nding

violated uts, were ounted in Cut iter.. For all instanes the depth-�rst heuristi applied in the

root node yields a (�rst) feasible solution. Thus, there are no branh-and-bound and utting

plane information for the \First feas." blok. The objetive value and the gap (giving the quality

guarantee) are provided next. For a feasible solution with objetive value \Obj. feas." the latter

is alulated by

�

LB w/uts � Obj. feas.

LB w/uts

�

. Next, the aumulated CPU time is shown. For a rough

omparison of our obtained solutions with the given hand-solutions, the number of (overall) spilled

passengers and the number of utilized airraft are given. The last blok provides information on

the hand-solution. Although we do not allow via ights in these runs, the airline solution ontains

via ights, and its evaluation was elaborated inorporating these via ights. A omparision of

our obtained solutions (without via ights) with the given hand-solution (ontaining via ights)

shows, that our approah redues the number of used airraft, but inreases the number of spilled
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node

LB w/o uts -1,230,556 -1,186,034 -1,242,441 -1,381,389 -1,592,853 -2,178,304 -2,118,376

Cut iter. 4 4 2 5 7 11 9

Cuts inser. 38 29 27 45 75 144 130

LB w/uts -1,146,974 -1.120.285 -1,165,879 -1,274,329 -1,505,859 -2,057,952 -2,003,195

Bound impr. 6.79% 5.54% 6.31% 7.75% 5.46% 5.53% 5.43%

CPU 4 5 15 7 27 94 139

First feas.

Obj. -1,117,702 -1,099,686 -1,163,920 -1,240,945 -1,482,556 -1,962,334 -1,904,021

Gap 2.55% 1.84% 0.17% 2.61% 1.55% 4.65% 4.95%

CPU 6 7 19 9 33 115 230

Spilled Pass. 1045 1,053 2,053 1,050 1,424 1,878 1,804

Num. used AC 22 23 23 24 28 49 39

Best feas.

B&B node 53 2 7 7 7 15 17

Cut iter. 2 2 2 0 1 1 0

Cuts inser. 3 2 3 0 1 4 0

Obj. -1,136,116 -1,119,281 -1,163,921 -1,273,197 -1,486,976 -2,051,895 -1,947,594

Gap 0.95% 0.09% 0.17% 0.09% 1.25% 0.29% 2.78%

CPU 123 11 59 34 407 487 2,168

Spilled Pass. 808 939 2,053 717 1,394 1,226 1,186

Num. used AC 22 23 23 24 28 52 40

Airl. Sol.

Spilled Pass. 553 445 852 617 631 709 598

Num. used AC 29 30 30 30 33 64 53

Table 5: Results for \Summer 1998" (�xed distribution of airraft, w/o via ights)

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Fixed AC distribution

Constraints 197 200 224 212 213 320 257

Variables 3,898 2,665 11,257 5,883 7,340 17,231 13,401

Nonzero's 19,119 11,824 58,418 28,884 38,427 87,732 70,336

Cuts 644 2,094 4,836 1,151 3,030 3,254 6,376

Table 6: Statistis on \Summer 1998" data set (�xed distribution of airraft, w/o via ights)
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passengers. The objetive value is improved by about 21% in average, but this improvement must

be handled very arefully as disussed above.

The harateristis of the aggregated linear programs and the number of prealulated min-

over inequalities are shown in Table 6. For this omputational study, �xed osts for transporting

a passenger are independent of the used airraft type. Using the more detailed ost omponents

will of ourse not inuene the number of min-over inequalities but the required times for solving

the linear programs. The size of the linear programs is moderate and no dynami olumn gen-

eration is needed. Clearly, if more ights per rotation are allowed or more airports are involved

this number will inrease signi�antly. Min-over uts are omputed and stored in a database

whenever a new \loal" problem ours. The running-time required to alulate all uts neessary

for the problems in this paper is less than 2 hours.

These results demonstrate that \mathematially" onvining solutions to the SGP ould be

obtained using the proposed model. The lower bounds were improved by 6.12% in average and the

average gap amounts to 0.80%. In these runs neither the passenger spill was bounded (global or

on OD-pairs) nor penalty osts for spilled passengers were applied. A drawbak of these solutions

is the high number of spilled passengers. It ranges between 1; 16 and 2; 41 times the orresponding

spill in the given hand-solutions. The demands are usually made up of two or three di�erent

omponents, FIX, ProRata and I. The omponent FIX represents the largest part. In average,

this is more than 85%. It ontains espeially seats already sold to tour operators. In ontrast,

the omponents ProRata and I are sold diretly. Thus, spilling passengers from FIX should be

avoided. Table 7 summarizes the results for all days inorporating limited and penalized spill. No

penalty osts apply for spilling passengers from ProRata and I but a linearization of a quadrati

ost funtion for spilling passenger from FIX is harged. The objetive value given does not reet

the penalty ost and thus is omparable to our other results. These results are not ahieved in a

single run but are the outome of an iterative and interative proess in whih penalty osts and

hard limits have been set and readjusted a (very) few times. In an industrial use of our system

the skills of sheduler are still neessary, yet. The number of used airraft inreased ompared

to Table 5 but is still a redution ompared to the airline hand solution. Also, renting airraft is

usually due to a long term ontrat and so it is not the most important aim to redue the number

of airraft used. Further, the number of spilled passengers ould be dereased ompared to both

our previous solution and the hand solutions.

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Solutions

Obj. -1,132,803 -1,083,427 -1,125,464 -1,271,571 -1,444,010 -1,881,585 -1,903,347

Gap 1.24% 3.29% 3.47% 0.22% 4.11% 8.57% 4.98%

Spilled Pass. 476 409 773 604 631 689 583

Num. used AC 23 25 26 25 31 54 42

Table 7: Results for \Summer 1998" (�xed distribution of airraft, with bounded spill, w/o via

ights)

6.2.2 Results without via ights, free distribution of AC

Table 8 shows the results for a predetermined airraft distribution for rented airraft only, as

explained above. Own airraft are allowed to reposition. For the two data sets \S98-Tu" and

\S98-We" the solution to the relaxation is feasible, too. For most of the data sets, the number of

spilled passenger is smaller ompared to the solution with �xed airraft distribution. The lower

bounds were improved by 5.67% in average and the average gap amounts to 0.84%.

Table 9 summarizes the results for the omplete week instane \Summer 1998" without via

ights, where own airraft are allowed to reposition. The �rst blok of this table gives information

on the solution of the branh-and-bound root node, the seond shows information on the �rst and
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node

LB w/o uts -1,332,149 -1,209,941 -1,286,956 -1,411,771 -1,653,388 -2,222,227 -2,155,338

Cut iter. 4 8 4 4 6 9 12

Cuts inser. 43 36 40 53 78 145 139

LB w/uts -1,243,407 -1,149,911 -1,199,076 -1,305,578 -1,559,230 -2,109,345 -2,047,228

Bound impr. 6.66% 4.96% 6.83% 7.52% 5.69% 5.08% 5.02%

CPU 3 8 23 9 28 77 141

First feas.

Obj. -1,229,153 -1,149,910 -1,199,075 -1,245,924 -1,327,036 -2,030,912 -1,905,485

Gap 1.15% 0% 0% 4.56% 14.8% 3.72% 6.92%

CPU 4 9 27 12 31 177 183

Spilled Pass. 566 890 1,686 1,232 2,010 1,351 868

Num. used AC 23 24 23 22 28 48 41

Best feas.

B&B node 194 0 0 19 12 42 10

Cut iter. 0 0 0 0 1 1 0

Cuts inser. 0 0 0 0 14 1 0

Obj. -1,232,572 -1,149,910 -1,199,075 -1,302,818 -1,539,635 -2,079,489 -2,003,694

Gap 0.87% 0% 0% 0.21% 1.26 % 1.42% 2.13%

CPU 305 9 27 103 189 3,522 676

Spilled Pass. 534 890 1,686 761 841 1,157 887

Num. used AC 23 24 23 23 30 52 41

Table 8: Results for \Summer 1998" (free distribution of airraft, w/o via ights)

best feasible solution found. The olumns Sp. Pass. and Num. AC give the number of spilled

passengers and the sum of the number of utilized airraft, respetively.

LB w/o uts Cut iter. Cuts inser. LB w/uts B. impr.

Root node -11,254,926 12 620 -10,566,445 6.12%

B&B node Cut iter. Cuts inser. Obj. Gap Sp. Pass. Num. AC

First feas. { { { -10,015,498 5.21% 9,042 204

Best feas. 5 0 0 -10,355,282 2.00% 9,480 204

Table 9: Results for omplete week \Summer 1998" (free distribution of airraft, w/o via ights)

A omparision of our best feasible (weekly) solution to the given hand-solution showed, that

we spill about 5075 passengers more than the airline, but redue the sum of used airraft from

269 to 204 and inrease the objetive value about 23%.

Remark, that the best feas. solution above ahieves a better objetive value and redues the

number of spilled passengers ompared to the joined solution with �xed airraft distribution (see

Table 5).

6.2.3 Results with via ights

Table 10 summarizes the results for the \Summer 1998" instane with via ights inluded. The

airraft distribution was predetermined using the distribution in the given hand-solution. The set

of onsidered via ights was restrited to a given (from the airline) set of allowed via ights.

The lower bounds were improved by 5.97% in average and the average gap amounts to 0.54%.

Sine the number of possible ights inreases by inluding via ights, the objetive value of the

relaxation of the SGM with additional via ights without any additional uts and the objetive

value of the tightened relaxation are better than the orresponding objetive values without via

ights (see Table 5). All but one feasible solutions inlude via ights. This seems to happen
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node

LB w/o uts -1,275,794 -1,197,550 -1,274,681 -1,415,317 -1,627,163 -2,223,668 -2,133,967

Cut iter. 4 4 5 4 5 8 9

Cuts inser. 39 29 44 47 72 123 146

LB w/uts -1,188,105 -1,129,078 -1,196,086 -1,314,771 -1,538,560 -2,102,624 -2,016,670

Bound impr. 6.88% 5.72% 6.17% 7.10% 5.45% 5.44% 5.50%

CPU 16 8 89 21 59 235 328

First feas.

Obj. -1,179,838 -1,129,078 -1,193,168 -1,314,247 -1,518,790 -2,010,409 -1,879,896

Gap 0.78% 0.00% 0.24% 0.00% 1.28% 4.39% 6.78%

CPU 30 8 89 21 59 285 352

Spilled Pass. 824 1,008 1,735 713 1,223 1,943 1,308

Num. used AC 23 23 23 22 29 48 39

Best feas.

B&B node 18 1 13 9 3 7 5

Cut iter. 1 0 8 3 3 2 4

Cuts inser. 1 0 15 11 5 5 12

Obj. -1,180,671 -1,129,078 -1,193,168 -1,314,247 -1,518,790 -2,080,883 -1,959,598

Gap 0.63% 0.00% 0.00% 0.00% 1.28% 1.03% 2.83%

CPU 57 8 480 107 132 1,156 807

Spilled Pass. 797 1,008 1,735 713 1,223 1,260 1,092

Num. used AC 23 23 23 22 29 51 42

Table 10: Results for \Summer 1998" (�xed distribution of airraft, with via ights)

beause in general a via ight inluding two OD-pairs with low demands is heaper than two

non-via ights inluding one OD-pair eah.

6.2.4 Results obtained by MINTO and CPLEX

We ompared the lower bounds and feasible solutions obtained by our BnP-Optimizer with the

results by the MINTO mixed-integer solver (Savelsbergh and Nemhauser [25℄, Version 3.0a, whih

is alling CPLEX [1℄ as a subroutine for solving the LP relaxations) and the CPLEX mixed-integer

pakage, Version 6.0 (see [1℄).

The omputational results shown in the previous setions have been obtained by solving an ag-

gregated (mixed-integer) version working on subeet groups rather than solving the single (mixed-

binary) airraft formulation. I.e., if there are two airraft of the same subeet group serving the

same rotation, the orresponding variable will take the value two in ontrast to two single airraft

rotation variables taking the value one. Instead of working on individual airraft for this ompar-

ison we only onsider the ase where an airraft rotation is allowed to be own at most one for

eah subeet group, whih is a restrition but yields a mixed-binary problem.

MINTO improved the lower bound in average by � 1% for the binary problem and � 0:02%

for the integer version of the problem. The average gap MINTO sees is 8.53% for the binary

problem, and 34.72% for the integer problem. No solutions for data sets \S98-Sa" and S98-Su"

were found at all. CPLEX did not sueed in improving the bounds at all. The average gaps

amount to 21.11% and 20.62%. (See Appendix for details.) In ontrast to that, the BnP optimizer

improved the lower bounds by 6.11% and 6.12% for the binary and integer problems, respetively,

while average gaps amount to 0.93% and 0.80%.

7 Extensions

The basi assumption of our model is the even distribution of demands over the planning period,

whih is half a year in our ase. Usually, in harter business the ights or omplete vaation
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pakages are booked for one up to several weeks. Assumption A2 stems from this fat and leads

to Assumptions A3 and A1. Weekly shedules repeated for a omplete season are not suÆient

to model big hanges in the demand aused, for example, by the beginning and end of shool

vaations. Our model an be extended by dropping the basi assumption and inorporating more

detailed demand information. In this ase, demands are not symmetri anymore, i.e., Assumption

A2 is dropped. Changes to the model and algorithm are twofold. First, the �xed airraft rotation

pattern has to be relaxed to inlude a) more rotations but still respets the via ight onstraint

(per rotation), or b) all rotations whih are operationally feasible. Seond, the return ight of

eah passenger must be ensured. I.e., if a passenger booked a ight to a destination abroad with

a return ight n weeks (or even days in the extended model) later, it must be ensured that she/he

will be transported bak home again that date. Clearly, this also requires to hoose a suÆiently

long planning horizon.

It would be interesting to analyze the e�ets of this less restrited model on a) the instanes

with symmetri demands used in the previous setion, and b) inluding big demand hanges.

8 Conlusions

In this paper, we study a spei� airline shedule generation problem whih has not been presented

in the literature before. We present a network design model whih models the airline's urrent

pratie as a speial ase. We give a path-based mixed-integer programming formulation and

present a solution approah that allows us to solve real world instanes with nonlinear osts on

airraft rotations and passenger itineraries. Empirially good results on�rm the tight approxima-

tion of the polyhedron onv(SGP) (i. e., the onvex hull of all feasible solutions to SGP) by loal

min-over inequalities. We demonstrate the eÆieny of our approah for real world instanes of

a major harter airline. Our implementation solves most of the instanes with an integrality gap

of a very few perent and running times in the order of minutes on a ustomary PC.
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Appendix

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Relaxation of (1) { (10)

Root node

LB -1,230,547 -1,186,034 -1,242,441 -1,381,218 -1,592,579 -2,178,288 -2,118,325

BnP-Optimizer

Root node

#min-over 38 29 27 42 72 139 130

LB w/uts -1,146,974 -1,120,285 -1,165,879 -1,274,329 -1,505,859 -2,057,953 -2,003,195

Bound impr. 6.79% 5.54% 6.31% 7.74% 5.44 % 5.52% 5.43%

Best feas.

+#min-over 0 2 9 3 2 4 0

Obj. -1,134,839 -1,119,281 -1,163,921 -1,273,197 -1,484,201 -2,033,522 -1,953,032

CPU 35 8 76 46 31 704 438

Gap 1.06% 0.09% 0.17% 0.09% 1.44% 1.19% 2.50%

MINTO, Version 3.0a

Root node

#gen.-f 84 61 89 74 112 191 152

LB w/uts -1,212,309 -1,173,888 -1,237,928 -1,360,490 -1,576,406 -2,160,934 -2,099,787

Bound impr. 1.48% 1.02% 0.36% 1.50% 1.02% 0.80% 0.88%

Cmp. to BnP -5.70% -4.78% -6.18% -6.76% -4.68% -4.77% -4.60%

Best feas.

#gen.-f 769 781 969 854 1,128 919 907

Obj. -1,135,283 -1,109,730 -1,126,033 -1,255,086 -1,434,582 -1,922,616 -1,896,551

B&B node 1,947 21,150 12,150 31,950 21,150 300 7,800

#nodes 131,206 114,691 17,434 46,319 24,437 2,501 8,612

CPU 175 1,505 5,819 4,997 6,534 1,577 7,015

Gap 6.35% 5.47% 9.04% 7.75% 9.00% 12.40% 9.68%

Cmp. to BnP 0.04% -0.94% -3.26% -1.42% -3.34% -5.77% -2.98%

CPLEX (MIP), Version 6.0

Best feas.

Obj. -1,015,095 -1,046,896 -892,065 -1,193,269 -1,262,574 -1,468,056 -1,567,351

B&B node 151,680 137,370 48,550 1 95,350 1,370 8,520

#nodes 349,751 393,441 66,092 135,291 102,245 8,078 19,670

CPU 1,791 1,373 2,926 17 3,730 691 1,768

Gap 17.51% 11.73% 28.20% 13.61% 20.72% 32.61% 23.38%

Cmp. to BnP -10.55% -6.47% -23.36% -6.28% -14.93% -27.81% -19.75%

Table 11: Comparison of BnP-Optimizer with MINTO and CPLEX, Part I

(Results for \Summer 1998" with �xed distribution of airraft, w/o via ights, binary version);

(#gen.-f.: number of generalized ow over uts inserted)
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Relaxation of (1) { (10)

Root node (int.)

LB -1,230,556 -1,186,034 -1,242,441 -1,381,389 -1,592,853 -2,178,304 -2,118,376

BnP-Optimizer

Root node (int.)

#min-over 38 29 27 45 75 144 130

LB w/uts -1,146,974 -1.120.285 -1,165,879 -1,274,329 -1,505,859 -2,057,952 -2,003,195

Bound impr. 6.79% 5.54% 6.31% 7.75% 5.46% 5.53% 5.43%

Best feas.

+#min-over 3 2 3 0 1 4 0

Obj. -1,136,116 -1,119,281 -1,163,921 -1,273,197 -1,486,976 -2,051,895 -1,947,594

CPU 123 11 59 34 407 487 2,168

Gap 0.95% 0.09% 0.17% 0.09% 1.25% 0.29% 2.78%

MINTO, Version 3.0a

Root node

#gen.-f 3 2 2 0 2 1 1

LB w/uts -1,229,661 -1,185,565 -1,241,854 -1,381,389 -1,592,134 -2,178,275 -2,118,327

Bound impr. 0.07% 0.04% 0.04% 0% 0.05% � 0% � 0%

Cmp. to BnP -7.21% -5.92% -6.52% -8.40% -5.73% -5.85% -5.75%

Best feas.

#gen.-f 106 86 17 45 37

Obj. -1,009,030 -1,068,683 732,477 731,477 679,769 n/a n/a

B&B node 75,100 100,300 14,300 90,900 7,200

#nodes 128,792 135,996 48,208 95,528 71,368

CPU 4,317 4,968 2,608 7,422 841

Gap 17.94% 9.86% 41.02% 47.05% 57.30%

Cmp. to BnP -11.19% -4.52% -37.07% -42.55% -54.29%

CPLEX (MIP), Version 6.0

Best feas.

Obj. 1,043,790 -1,075,741 -936,315 -1,114,229 -1,293,978 -1,520,586 -1,548,376

B&B node 61,320 8,050 81,180 76,630 24,430 5,510 6,470

#nodes 402,541 392,793 82,600 119,394 98,211 8,670 19,110

CPU 638 89 3,932 2,554 1,001 2,535 1,320

Gap 15.18% 9.30% 24.64% 19.34% 18.76% 30.19% 26.91%

Cmp. to BnP -8.13% -3.89% -19.56% -12.49% -12.98% -25.89% -20.50%

Table 12: Comparison of BnP-Optimizer with MINTO and CPLEX, Part II

(Results for \Summer 1998" with �xed distribution of airraft, w/o via ights, integer version)
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