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Abstra
t

Sin
e opening a new 
ight 
onne
tion or 
losing an existing 
ight has a great impa
t on

the revenues of an airline, the generation of the 
ight s
hedule is one of the fundamental

problems in airline planning pro
esses.

In this paper we 
on
entrate on a spe
ial 
ase of the problem. In 
ontrast to airlines

operating on regular s
hedules, the market for 
harter airlines is well-known and the s
hedule

is allowed to 
hange 
ompletely from period to period. Thus, pre
ise adjustments to the

demands of the market have a great potential for minimizing operating 
osts.

We propose a 
ombined Bran
h-and-Cut approa
h to solve the airline s
hedule generation

problem. To tighten the linear relaxation bound, we add 
utting planes whi
h adjust the

number of air
raft and the spill of passengers to the demand on ea
h itinerary.

For real-world problems from a large European 
harter airline we obtain solutions within

a very few per
ent of optimality with running times in the order of minutes on a 
ustomary

personal 
omputer for most of the data sets.

Key Words: Capa
itated network design; Dantzig-Wolfe de
omposition;

set partitioning, set pa
king; Bran
h-and-Cut



1 Introdu
tion

Planning air
raft and 
rews is a very 
omplex task. Thus, it is a 
urrent pra
ti
e at airlines'

planning departments to break up the resour
e planning into a number of stages whi
h are then

solved in a sequential manner. In the �rst stage, information on the market are 
olle
ted and

analyzed. The result of the market analysis is a demand estimation whi
h is based on origin-

destination pairs. The timetable is 
onstru
ted in the next step. In this s
hedule generation step,

the airline de
ides whi
h dire
t 
ights should be o�ered in the new s
hedule. Also, the optimization

of departure times is done, and operational 
onstraints like 
eet sizes are 
onsidered, too. Next,

the air
raft type to use on ea
h operated 
ight will be determined (
eet assignment). Determing

air
raft routes (rotations) is the obje
tive of the tail assignment. Using these air
raft rotations,

pairings (duties) for yet unpersonalized 
rew members (
o
kpit and 
abin 
rew) are determined in

the 
rew pairing. Personalized monthly s
hedules are then 
onstru
ted using the 
rew pairings in

the 
rew rostering. Finally, very 
lose to the day-of-operation some 
hanges to the 
ight s
hedule

may be
ome ne
essary (day-of-operation 
hanges).

Sin
e the s
hedule generation problem (SGP) must be solved early in the airlines' overall

planning pro
ess, its solution quality has a great in
uen
e on all subsequent steps. Most airlines,

however, seem to 
onstru
t their s
hedules manually. As this task is very 
omplex and time


onsuming, it is 
ommon pra
ti
e to only lo
ally 
hange the last s
hedule to adopt it to the new

requirements. This also implies that the new s
hedule may inherit properties that are unne
essary

and 
ostly.

In this paper we address a spe
ial 
ase of the s
hedule generation problem for the airline

industry whi
h arises parti
ularly in 
harter business. In 
ontrast to regularly operating 
arriers,


harter airlines have more freedom to 
hange their s
hedule from period to period. Furthermore,

as in our 
ase, there often are 
lose business links to one or more tour operators who sell 
ights

or even 
omplete va
ation pa
kages (
ight, hotel, rental 
ar, et
.) to their 
ustomers. Then large


ontingents of the seats are booked before the s
hedule generation pro
ess is terminated, whi
h, in

addition to the data about 
ustomer behavior in the past, gives a very a

urate knowledge about

the market.

Our solution approa
h in
orporates the most important operational 
onstraints in the planning

phase, like blo
k times, minimum ground times, and 
urfews. Thus, our model 
ombines s
hedule

generation and 
eet (or even tail) assignment.

2 Related Work

Network design problems have been intensively studied. Espe
ially for problems arising in the

tele
ommuni
ations industry and in the 
ontext of freight transportation, numerous su

essful

algorithms have been developed. Solution strategies in
lude te
hniques based on linear program-

ming, Lagrangean relaxation and Bender's de
omposition, 
ommonly used in 
ombination with

bran
h-and-bound (
f., e.g. Magnanti et al. [17℄, [18℄, Holmberg and Hellstrand [13℄, Holmberg

and Yuan [14℄, Balakrishnan et al. [2℄, Sridhar and Park [26℄, Lamar et al. [15℄ and Chang and

Gavish [6℄). For additional referen
es and appli
ations see, for example, the 
omprehensive survey

by Magnanti and Wong [19℄, the overview by Minoux [20℄, and the re
ent review by Craini
 and

Laporte [8℄.

In 
ontrast to that, the published literature on network design problems for airlines is s
ant.

A
tually, we are aware of no referen
e treating the s
hedule generation problem.

Daskin and Panayotopoulos [10℄ present an integer program that assigns air
raft to routes in a

single-hub-and-spoke network. The routes are prede�ned sequen
es of 
ight legs originating and

terminating at the hub. They propose a Lagrangean relaxation of the problem and 
ombine it

with heuristi
s for 
onverting the Lagrangean solutions into pimal feasible solutions. Barnhart and

S
hneur [4℄ des
ribe the express shipment servi
e design problem. Air
raft routes and s
hedules

to pi
k up and deliver shipments have to be designed. A single hub is involved in the problem.

Based on impli
it 
olumn generation, a multi-label shortest path algorithm on an appropriately
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stru
tured network is employed to determine new air
raft routes. B�udenbender et al. [5℄ present

a problem similar to the one dis
ussed here. In the 
ontext of letter mail transportation, the

dire
t 
ight network design problem is introdu
ed formally, and results for a pra
ti
al appli
ation

are given. The problem is solved using a two-phase heuristi
. Rexing et al. [23℄ make 
hanges

to a given 
ight s
hedule by assigning time windows to ea
h 
ight. After dis
retizing these time

windows, the model is allowed to sele
t departure times. Dire
t and iterative solution approa
hes

are proposed.

3 The Mathemati
al Model

Roughly, an instan
e of the s
hedule generation problem (SGP) is the following: given a 
eet and

a set of origin-destination pairs (OD-pairs) with asso
iated passenger demands, �nd rotations for

all air
raft of the 
eet su
h that the total pro�t is maximized. The next se
tion gives a more

detailed des
ription of the problem with all its side 
onstraints.

3.1 Problem des
ription

The 
eet 
onsists of two sets K = K

full

_

[ K

part

of air
raft, where K

full

is the 
eet owned by

the airline and K

part

is a set of planes that may be rented from other 
arriers. The planes in

K

full

are available throughout the whole planning period, and those in K

part

are only available

within spe
i�ed time intervals. If utilized, these planes have to be pi
ked up and delivered at


ertain airports. The rental and the (re-)positioning 
osts have to be provided. Ea
h 
eet 
onsists

of types of air
raft with individual 
hara
teristi
s as blo
k times, minimum ground times, seat


apa
ities and 
ost 
oeÆ
ients. Sin
e our example sets 
ontain only short and medium haul 
ights

(up to 5 hours of blo
k time), we do not 
onsider air
raft ranges.

The set A of all airports 
an be partitioned into two sets of home airports H and those abroad

A. In our 
ase we have 18 airports in the home 
ountry and approximately 40 airports abroad.

Planes follow a rotation, that is in the morning, they leave an airport in H and have to return to

su
h an airport in the night again. Ea
h airport has spe
i�ed opening hours, and for ea
h 
ight

a blo
k time is given. In addition, air
raft rotations have to 
omply with a number of regulations

whi
h will be des
ribed in Se
tion 3.2.2.

Due to the nature of the 
harter business, 
ustomers always book a trip starting and ending

at H with a stay at their destination airport in A of one up to several weeks. This results in

symmetri
al demands for the OD-pairs from H to A and the 
orresponding return OD-pair, if one

assumes, as 
ommon in the 
harter planning pro
ess, an even distribution of the itineraries over

the season.

On the way to their destination, passengers may have to 
hange planes or to endure a short stop-

over. However, they seem to tolerate at most one intermediate stop. We assume that passengers


an swit
h to another air
raft if the time between landing and departure is at least a given

minimum 
onne
t time. Thus, passenger itineraries in
lude either an intermediate stop in H or

an intermediate stop in A, maybe in 
ombination with an air
raft swit
h, but not both.

The obje
tive fun
tion is made up of several 
omponents. On the in
ome side there are revenues

for ea
h passenger transported on an OD-pair. In 
ontrast to regularly operating airlines, we do

not have to distinguish di�erent 
lasses. On the 
ost side there are �x 
osts for every assignment of

an air
raft to a 
ight leg, hire 
harges for rented air
raft, 
osts for repositioning air
raft, 
osts for

ea
h transported passenger (servi
e, handling 
harges et
.), and penalties for passengers reje
ted

due to 
apa
ity bottlene
ks.

To summarize, the s
hedule generation problem is the problem to determine air
raft rotations

observing operational 
onstraints and 
eet sizes, and to route passengers taking seat 
apa
ities

into a

ount, su
h that the 
ombined air
raft and passenger 
osts are minimized, i.e. that the

overall gain is maximized. Determing the air
raft routes is suÆ
ient, but departure and arrival

times are introdu
ed as mu
h as ne
essary to model the situation where passengers are allowed to

swit
h air
raft.
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We denote the 
lassi
al 
ights, i.e. from take o� to tou
h down and in
luding information on

departure times, by 
ights. To stress this we sometimes use the terminology of a dire
t 
ight. A

via 
ight 
onsists of two 
ompatible su

essive dire
t 
ights f

1;2

with dest(f

1

) = orig(f

2

), either

in H or A. When we des
ribe 
oeÆ
ient redu
tion te
hniques and 
utting planes below, we will

make use of the 
on
ept of aggregated 
ights. Here, \synonymous" dire
t 
ights in our model are

aggregated to a single (dire
t) 
ight. In this 
ase it is possible that several air
raft serve su
h a

single 
ight. Essentially, we 
an aggregate 
ights if the 
orresponding OD-pair \o ! d" is not

involved in any via 
ight.

3.2 S
hedule Generation Model

We model SGP as a 
apa
itated network design problem with additional 
onstraints (see Se
tion 2,

espe
ially Magnanti and Wong [19℄, and Minoux [20℄). Compared to the general model, however,

we have to observe some additional 
onstraints: we 
an only introdu
e an ar
 if it is part of a

feasible \virtual" route of an air
raft starting and ending in H. Moreover, the passenger 
ow

between two nodes 
an only traverse at most two 
ight ar
s.

We remark that SGP or rather its 
orresponding de
ision problem is strongly NP-
omplete.

This 
an be seen by using 3-PARTITION, whi
h is known to be strongly NP-
omplete (see Garey

and Johnson [12℄). A proof 
an be found in Noltemeier [21℄.

3.2.1 Assumptions

Based on the problem des
ription in Se
tion 3.1 we make the following assumptions. Extensions

of this model will be dis
ussed in Se
tion 7 where some of these assumptions will be dropped.

A1 (Asso
iated home bases)

Ea
h air
raft has an asso
iated home base in H where it is parked over night. The sele
tion

of home bases 
an be 
onsidered as a part of the optimization and is done with respe
t to

given airport 
apa
ity 
onstraints.

A2 (Symmetri
 demands)

The demands are symmetri
 for ea
h OD-pair, i.e. dem(o ! d) = dem(d ! o) for ea
h day

of the week. This assumption is motivated by the fa
t that va
ations are usually booked for

a multiple of a week, i.e. the departure and arrival day of the week are identi
al for ea
h

passenger.

A3 (Symmetri
 
apa
ities)

In resemblan
e to Assumption A2, the daily air
raft rotations must provide symmetri



apa
ities, i.e. 
ap(o! d) = 
ap(d! o) for ea
h rotation. Thus, in this model the travelers

will be transported ba
k to their home airport one or several weeks later using the same

air
raft rotation.

A4 (Via 
ights)

Air
raft rotations 
an 
ontain two symmetri
 via 
ights (i.e., a pair of 
orresponding via


ights) in the home 
ountry or one via 
ight abroad, but not both. Observe that this

assumption is stronger than the restri
tions on passenger itineraries as des
ribed above.

A5 (Passenger itineraries)

Passenger itineraries 
onsist of at most two 
ight legs, i.e. doing a stop-over with or without

swit
hing to another air
raft is allowed only on
e.

Remark: By Assumptions A2 and A3 we do not have to 
onsider both OD-pairs \o ! d" and

\d ! o".
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3.2.2 Air
raft Rotations

Feasible air
raft rotations must meet several requirements, in
luding

� airport opening hours,

� earliest departure times and latest arrival times at the airports, if opening hours are not

va
ation-friendly (for example, very early in the morning),

� 
urfews (for example, by noise restri
tions), and

� minimum ground times depending on departure and arrival airports of 
ontained 
ights (for

example for loading/unloading, refueling, and 
atering).

Flight durations and 
osts for ea
h sub
eet and for ea
h 
ight are given, as well as air
raft

utilization 
osts and the rentals for air
raft. Passenger dependent 
osts (as landing fees) are

modeled on passenger itineraries (see the next se
tion for details).

Time

p

p

H01

H02

H03

A01

A02
1
1

2
2

Figure 1: Illustration of air
raft rotations; with via 
ights in H

Figure 1 gives an example for air
raft rotations. There are three home airports (H01, H02, and

H03) and two airports abroad involved. The airports' time lines are displayed by horizontal lines.

The (adjusted) airport opening hours are marked by left bra
es. Two rotation ex
erpts are shown,

both with via 
ights in the home 
ountry. Rotation p

1

1

, i.e. the �rst rotation (lower index) for �rst

air
raft (upper index) starts at H01 with a 
ight to H02, then 
ontinuing to A02. Analogously,

p

2

2

serves 
ights H03-H02 and H02-A01. As mentioned in Se
tion 3.1, only the routes have to be

determined. Obviously, the possibility of a passenger to get a 
onne
ting 
ight is determined by

the exa
t departure and arrival times. The use of time windows in our approa
h is des
ribed in

Se
tion 3.2.3.

Daily air
raft rotations follow a �xed pattern. The sequen
e of airports in the home 
ountry

and abroad is �xed. In our spe
ial 
ase, the sequen
e is H

0

; H

1

; A

2

; A

3

; H

4

; A

5

; H

6

; A

7

; H

8

; H

9

,

where H

j

2 H and A

j

2 A, i.e an air
raft rotation is made up of a sequen
e of 
ompatible 
ights

f

0

; : : : ; f

8

, with dest(f

j

) = orig(f

j+1

); j = 0; : : : ; 7. This stru
ture will be used in the \layered"


olumn generation network, whi
h will be des
ribed in Se
tion 4.1 (see Figure 3). The assumptions

imply that not all possible sequen
es of 
ompatible 
ights are feasible. For example, assumption

A1 and the minimum blo
k time for 
ights imply that we have an upper bound on the length

of daily air
raft rotations. Thus, some of these 
ights may be empty, i.e., the air
raft will stay

on the ground. The 
ights f

0

; f

1

; f

7

; f

8

, are used to model via 
ights in the home 
ountry and f

2

represents via 
ights abroad.

Air
raft rotations and passenger itineraries will be linked very 
losely. The revenue per pas-

senger for the itinerary is known, as well as passenger dependent 
osts on air
raft (for example,

servi
e 
harges and landing fees). Thus, an obje
tive 
oeÆ
ient 
ombining both terms 
an be

easily 
al
ulated.
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3.2.3 Linking Air
raft Rotations and Passenger Itineraries

Considering again the example from Figure 1, Figure 2 shows six feasible passenger itineraries

i

j

; j = 1; :::; 6. Observe, that itineraries are linked with rotations. To improve the eÆ
ien
y of our

approa
h an aggregated version will be used in our implementation.

i
i3

i4
i6

p

p2

Time

1
1

2

1 i2

i5

H01 H02 H02 A02

H03 H02 H02 A01

Figure 2: Illustration of link between air
raft rotations and passenger itineraries

As motivated before, departure and arrival times are important information for realisti
 air
raft

swit
hes. Sin
e we are only interested in the sequen
e while 
onsidering all operational 
onstraints

we provide as mu
h 
onne
ting points as possible. To des
ribe our approa
h, we have to 
onsider

the two 
ases where via 
ights in the origin 
ountry or via 
ights abroad o

ur.

In the �rst 
ase this is realized by \
ompressing" the middle part of the rotation, i.e. the 
ights

f

1

to f

7

, and pla
ing this part on the middle of the day. Thus, the 
ights f

0

and f

8

are done as

soon or late as possible, respe
tively.

In the latter 
ase where via 
ights abroad are involved, we use the analog pra
ti
e to 
reate

time windows between f

1

and f

2

, and f

2

and f

3

.

3.3 Notation and Problem Parameters

Sets:

A: the set of all airports, indexed by a. Indi
es a

�

and a

+

are used for start and end airports.

K: the set of all air
raft, indexed by k.




k

d

: the set of all feasible air
raft rotations for air
raft k on day d, indexed by p.

M : the set of all OD-pairs (\markets"), indexed by m.

I

m

d

: the set of all passenger itineraries for OD-pair m on day d, indexed by i.

F : the set of all 
ights, indexed by (f; d) or just f , d day.

De
ision variables:

�

k

p

: = 1, if rotation p 
own by air
raft k is in the solution, otherwise = 0.

Y

k

ad

: sla
k/surplus variables to model the position of air
raft k on airport a and day d, espe
ially

used for rental air
raft.

x

i

: number of passengers taken on itinerary i.

s

m

d

: the passenger spill on the OD-pair m on day d.

Data and parameters:
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N : the length of the planning period in days, 1 � d � N .




k

p

: 
ost for using air
raft k on rotation p.




i

: 
osts (i.e., �pro�t) per passenger 
own on itinerary i.


ap

k

: seat 
apa
ity of air
raft k.

n

k

d

: = 1, if air
raft k is available on day d, otherwise = 0.

r

k

ad

; s

k

ad

: 2 f�1; 0; 1g, lower and upper bounds on the supplementary variables Y

k

ad

.

dem

m

d

: the demand for the OD-pair m on day d.

�

k

fp

: the multiple of the air
raft 
apa
ity 
ap

k

provided in rotation p for the 
ight f , maybe 0.

Æ

fp

; Æ

fi

: = 1, if air
raft rotation p or passenger itinerary i 
ontains the 
ight f , respe
tively,

otherwise = 0.

Æ

ip

: = 1, if the passenger itinerary i and the air
raft rotation p are sharing a 
ight, otherwise = 0.

orig(i); dest(i); orig(p); dest(p); orig(f); dest(f): origin and destination of passenger itinerary i, air-


raft rotation p, and 
ight f , respe
tively.

3.4 Path-based Mixed Integer Programming Formulation

(SGM =) Minimize

X

1�d�N

0

�

X

k2K

X

p2


k

d




k

p

�

k

p

+

X

m2M

X

i2I

m

d




i

x

i

1

A

(1)

subje
t to

X

m2M

X

i2I

m

d

Æ

fi

x

i

�

X

k2K


ap

k

X

p2


k

d

�

k

fp

�

k

p

8 (f; d) 2 F (�

(f;d)

) (2)

X

p2


k

d

nf0g

�

k

p

� n

k

d

8 k 2 K; 8 1 � d � N (�

kd

) (3)

X

p2


k

d+1

orig(p)=a

�

k

p

�

X

p2


k

d

dest(p)=a

�

k

p

� Y

k

ad

= 0 8 k 2 K; 8 a 2 A;

8 1 � d � d+ 1 � N

(


kda

) (4)

X

p2


k

1

orig(p)=a

�

k

p

�

X

p2


k

N

dest(p)=a

�

k

p

� Y

k

aN

= 0 8 k 2 K; 8 a 2 A (


kNa

) (5)

r

k

ad

� Y

k

ad

� s

k

ad

8 k 2 K; 8 a 2 A;

8 1 � d � N

(6)

X

i2I

m

d

x

i

+ s

m

d

= dem

m

d

8 m 2M; 8 1 � d � N (�

md

) (7)

�

k

p

binary 8 k 2 K; 8 p 2 


k

(8)

x

i

� 0 8 m 2M; 8 i 2 I

m

(9)

s

m

d

� 0 8 m 2M; 8 1 � d � N (10)
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The obje
tive fun
tion (1) minimizes the total 
ost, whi
h is the sum of air
raft utilization


osts and 
osts on passenger itineraries. The link between provided air
raft 
apa
ities and trans-

ported passengers on itineraries is done by 
onstraint set (2). Air
raft availability is ensured by


onstraints (3). Constraint sets (4) and (5) de�ne 
lassi
al 
ow 
onservation 
onstraints for the

air
raft rotations. For modeling 
omplex situations where air
raft are only available partially, the

sla
k and surplus variables Y

k

ad

are introdu
ed. Lower and upper bounds on these supplementary

variables are enfor
ed by 
onstraints (6). The relationship between the number of transported pas-

sengers for an OD-pair and the 
orresponding spill is given by (7). Constraints (8) impose binary

values for the path variables. Finally, passenger and spill variables are ensured to be non-negative

by 
onstraint sets (9) and (10).

3.5 Overview of the Algorithm

Depending on the number of possible air
raft rotations, we propose to use a bran
h-and-
ut or a

bran
h-and-
ut-and-pri
e algorithm to solve the problem.

In the given instan
es, there is only a moderate number of number of feasible rotations when

using aggregation. Thus working on the expli
it integer linear program is possible. For larger

instan
es, 
olumn generation will be
ome ne
essary. The linear relaxation of SGM, i.e. (1) { (10)

provides only a weak relaxation. We will develop 
utting planes valid throughout the bran
h-and-

bound tree to tighten the relaxation.

4 Column Generation Subproblems

For large s
hedule generation instan
es, i.e. for instan
es with a large number of airports in H

and A, and many OD-pairs with positive demands, the number of feasible air
raft rotations 
an

be
ome very large and thus 
an not be handled expli
itely anymore. Also, relaxing all or some of

Assumptions A1, A3, and A4 drasti
ally in
reases the number of air
raft rotations. In this 
ase

we propose to apply a bran
h-and-pri
e te
hnique utilizing 
onstrained shortest path problems

for generating new rotations dynami
ally, and thus to solve the problem. We refer the reader,

beside many other referen
es, to Lasdon [16℄ for a detailed introdu
tion, and to Barnhart et al. [3℄

and Desaulniers et al. [11℄ for re
ent arti
les on modeling and solving problems using bran
h-

and-pri
e. For the given instan
es and when observing all assumptions, the number of air
raft

rotations is of moderate size, and thus we work on the expli
itely enumerated set of all rotations

in our 
omputational study.

In Se
tion 4.1 we des
ribe the air
raft rotation subproblem, while Se
tion 4.2 dis
usses the

passenger itinerary subproblem.

4.1 Air
raft Rotation Subproblem

Let (�; x) be the solution ve
tor of the 
urrent restri
ted master problem (RMP), and let (�; �; 
; �)

be its asso
iated dual solution ve
tor. Then, the redu
ed 
ost �


k

p

of an air
raft rotation p 2 


k

d

for

air
raft k on day d, starting and ending at airport a

�

; a

+

2 A, respe
tively, is

�


k

p

= 


k

p

+

X

(f;d)2F


ap

k

�

k

fp

�

(f;d)

� �

kd

� 


kda

�
+ 


kda

+
; (11)

using the 
onvention 


k0a

�
= 


kNa

�
for the period wraparound. Observe, that SGM (i.e. (1) -

(10)) and (11) allow di�erent airports a

�

6= a

+

for departure in the morning and arrival in the

night, and thus is more general. We will dis
uss this as a possible extension in Se
tion 7. For ea
h

air
raft and ea
h li
ensed home base a single network is de�ned. Nodes represent airport-layer

pairs a

ording to the air
raft rotation pattern. Furthermore, sour
e and sink nodes are added

and asso
iated with the home base. Two di�erent ar
 types are used. Ar
s adja
ent to the sour
e

or the sink node are utilization ar
s. They are used to keep tra
k of the number of utilized air
raft.

8



Ar
s 
onne
ting airport-layer nodes represent 
ight a
tivities. Basi
 restri
tions su
h as air
raft

ranges and 
urfews 
an be 
onsidered dire
tly in the network, be
ause only admissible 
ight ar
s

are inserted.

The air
raft rotation subproblem now is the problem of �nding an air
raft rotation that satis�es

all operational 
onstraints, and pri
es out to have negative redu
ed 
ost. This problem 
an be


ast as the problem of �nding shortest paths in the network de�ned above. There is a one-to-one


orrespondan
e between feasible paths in the network and admissible air
raft rotations. Further,

the redu
ed 
ost 
omponents in (11) 
an be transfered to the ar
s of the network, su
h that the

paths 
ost equals the redu
ed 
ost. To 
omply with the station opening hours and air
raft rotation

pattern, the networks 
an be solved by utilizing a resour
e-
onstrained shortest path algorithm.

For example, ea
h ar
 in the network uses up an amount of the resour
e \time" (e.g., 
ying,

ground and waiting time). The 
omsumption of this resour
e is 
he
ked at ea
h node in the

network. Time intervals represent the asso
iated airport opening hours. Beside other possibilities,

this network 
an be used to enumerate all admissible paths. They 
an be stored in 
olumn pools,

and redu
ed 
osts 
an be 
al
ulated using (11). Figure 3 illustrates this network stru
ture. An

H02

H03

H01H01H01 A01

H02source

H01

H03

H H A A210 3 H4

A03

A02 H02 sink

H8 H9

H02

H03

Figure 3: Network stru
ture for the air
raft rotation subproblem, home base H01

ex
erpt for a network for an air
raft with home base H01 is shown. A rotation serving a via


ight between home airports H01 and H02 (see layers 0 and 1, and 8 and 9), and serving 
ights

H02{A01{H02 to airport A01 abroad is shown by solid lines. This rotation omits nodes in layers

three to seven. Other 
ights in the network are indi
ated by dashed lines. Between layers there

is not ne
essarily a 
omplete bipartite graph. For example, airport-layer nodes H01 in layers 0

and 1 are not 
onne
ted, be
ause this only represents staying on the ground, and some ar
s may

missing 
aused by 
urfews. A spe
ial ar
 for not utilizing the air
raft is also shown and 
onne
ts

the sour
e node with the sink node.

4.2 Passenger Itinerary Subproblem

Again, let (�; �; 
; �) be the 
urrent dual solution ve
tor. The redu
ed 
ost �


i

of an passenger

itinerary i 2 I

m

d

for OD-pair m on day d is

�


i

= 


i

�

X

(f;d)2F

Æ

fi

�

(f;d)

� �

md

: (12)

The number of passenger itineraries is small, be
ause only one air
raft swit
h is allowed by

Assumption A5. Thus, we propose to expli
itly enumerate all itineraries, and 
ompute their

redu
ed 
osts dire
tly, when ne
essary.

9



5 Obtaining Integer Solutions

Solving the linear relaxation of the formulation as stated in Se
tion 3.4 dire
tly leads to high fra
-

tionality in the air
raft rotation variables �

k

p

. In this se
tion, we will identify the set of 
onstraints

of SGM 
ausing the fra
tionality and being responsible for the weak linear relaxation. We propose


oeÆ
ient redu
tion and 
utting planes to tighten the linear relaxation bound. Further, we will

dis
uss a depth-�rst heuristi
 and bran
hing strategies for obtaining integer solutions.

5.1 Causes of Fra
tionality

This fra
tionality is 
aused by 
onstraint set (2) of SGM,

X

m2M

X

i2I

m

d

Æ

fi

x

i

�

X

k2K


ap

k

X

p2


k

d

�

k

fp

�

k

p

8 (f; d) 2 F:

For the analysis, we take a look on a single OD-pair. We ignore the remainder of the involved

air
raft rotations, and the air
raft utilization and 
ow 
onservation 
onstraints, sin
e they only

play a minor role.

OD-pair Demand Rev./Pass.

H01{A01 144 DEM -360

H02{A01 174 DEM -365

H03{A01 162 DEM -380

Table 1: Demand data

Path Operating Rotations, providing a

Variable Costs 
apa
ity of 174 seats per 
ight

p

1

DEM 45,000 H01 A01 H01

p

2

DEM 47,000 H02 A01 H02

p

3

DEM 53,000 H03 A01 H03

p

4

DEM 77,000 H01 A01 H02 A01 H01

p

5

DEM 83,000 H01 A01 H03 A01 H01

p

6

DEM 85,000 H02 A01 H03 A01 H02

Table 2: Operating 
osts and rotations

Assume, there are three OD-pairs H01{A01, H02{A01, and H03{A01, and only one sub
eet

(the Airbus A320 with an 
apa
ity of 174 seats) involved in this problem. Via 
ights are not

allowed. Using the demand and revenue data of Table 1 and the air
raft rotations, operational


osts and 
apa
ities of Table 2, the optimal solution to the relaxed problem of SGM is a
hieved by

�

p

4

� 0:448, �

p

5

� 0:379, �

p

6

� 0:552 and all other path variables =0, with an obje
tive fun
tion

(
ost) value of DEM -64,013. The 
apa
ity provided is equal to the demand and all passengers

are transported. The optimal integral solution is a
hieved by �

p

1

= �

p

6

= 1 and all passengers

transported, with an obje
tive fun
tion value of DEM -46.910, thus giving an integrality gap of

�26.7%.

5.2 CoeÆ
ient Redu
tion

A method to tighten the linear relaxation bound and thus to improve the solution behavior is to

redu
e ea
h 
oeÆ
ient of the air
raft rotations in 
onstraint set (2) to be not greater than the

left hand side (LHS). Obviously, no integral solutions are 
ut o� by this pra
ti
e. Usually, the

10



Path Operating Rotation and

Variable Costs provided 
apa
ities (after prepro
essing)

p

1

DEM 45,000 H04 (144) A02 (144) H04

p

2

DEM 47,000 H05 (174) A02 (174) H05

p

3

DEM 53,000 H06 (162) A02 (162) H06

p

4

DEM 77,000 H04 (144) A02 (174) H05 (174) A02 (144) H04

p

5

DEM 83,000 H04 (144) A02 (162) H06 (162) A02 (144) H04

p

6

DEM 85,000 H05 (174) A02 (162) H06 (162) A02 (174) H05

Table 3: Operating 
osts, 
apa
ities, and rotations

demand of passengers using a 
ight is greater than ea
h air
raft 
apa
ity, parti
ularly if passenger

itineraries and via 
ights are involved. Using again the demand data of Table 1, the provided seat


apa
ities for the above example be
ome as summarized in Table 3. The optimal solution to the

relaxed problem is a
hieved by �

p

4

= 0:503067, �

p

5

= 0:496933, �

p

6

= 0:496933, with an obje
tive

fun
tion value of DEM -54,6891, and an integrality gap of �14.2%. Again, all passengers are

transported.

5.3 `Min-Cover' Inequalities

Lifted 
over inequalities were introdu
ed by Crowder et al. [9℄ and applied to pure binary programs.

Padberg et al. [22℄ and van Roy and Wolsey [27℄ extended these inequalities to generalized 
ow


over inequalities for mixed-binary programs. Our 
utting planes are related to the 
uts des
ribed

in these referen
es. We will 
ompare the results of our 
omputational experiments with results

obtained by the CPLEX mixed-integer program solver (see [1℄) and MINTO (see Savelsbergh and

Nemhauser [25℄) in Se
tion 6.2.4. In these solvers 
uts following the line of Crowder et al. are used.

To des
ribe the appli
ation of min-
over inequalities to the SGP, we temporarily assume, that

no via 
ights are involved in the planning pro
ess, i.e., no itineraries 
onsisting of two 
ights are

given and thus demands 
an only be satis�ed by dire
t 
ights. In the following we 
onsider a

spe
i�
 aggregated dire
t 
ight lo
ally, i.e. we ignore the remaining part of the rotations and the

air
raft utilization 
onstraints.

Now assume that 
oeÆ
ient redu
tion has already been performed and 
onsider a �xed ag-

gregated 
ight (f; d) 2 F with a demand of the 
orresponding OD-pair of dem. The passenger

itinerary and air
raft rotation linking 
onstraint (2) 
an be rewritten as follows. The LHS redu
es

to a single passenger variable, say x

i

. The right hand side (RHS) 
an be expanded by using the

a
tual provided 
apa
ity 
ap

k

f

(p) of ea
h air
raft rotation p, in
orporating the multiplier �

k

fp

and

the redu
ed 
oeÆ
ients. Thus,

x

i

�

X

k2K

X

p2


k

d


ap

k

f

(p) �

k

p

: (13)

Let 


1

< : : : < 


n

be the di�erent (non-zero) 
apa
ities 
ap

k

f

(p) in (13). Observe, that there

may be more di�erent 
apa
ities 


j

than air
raft 
apa
ities. The air
raft rotations 
an now be

partitioned a

ording to their 
apa
ities, i.e.




j

d

=

�

(p; k) j k 2 K; p 2 


k

d

; 
ap

k

f

(p) = 


j

	

for 1 � j � n. Introdu
e new variables y

j


ounting the number of air
raft serving (f; d), ea
h

providing a 
orresponding 
apa
ity of 


j

, i.e.

y

j

=

X

(p;k)2


j

d

�

k

p

(2 N):
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The variables y

j

are impli
itly integral. Further, we use the variable sp to denote the number of

passengers that are spilled on this 
ight. Obviously, the following 
over inequality must hold:




1

y

1

+ : : :+ 


n

y

n

� dem� sp: (14)

Let

X =

�

(y; sp) 2 N

n+1

j Inequality (14) holds for (y; sp)

	

be the set of all feasible integer 
on�gurations, and P = 
onv(X) the 
onvex hull of X . The lo
al

subproblems o

urring in SGM are of moderate size, sin
e the number of di�erent air
raft seat


apa
ities is limited. Thus, we 
an 
al
ulate all fa
ets of P in advan
e during a prepro
essing step.

The 
omputation of the fa
ets is performed using e.g. PORTA [7℄. The inequalities 
orresponding

to the fa
ets of P are valid for SGM (in absen
e of the negle
ted 
onstraints). Clearly, they are

valid for the 
omplete SGM, too, but not ne
essarily fa
et indu
ing anymore.

When via 
ights and passenger itineraries are involved, min-
over inequalities 
an be used,

too, although the situation be
omes more 
ompli
ated. In 
ontrast to the 
ase without via 
ights,

the variables y

j

; 1 � j � n 
orrespond to the number of air
raft with a 
ertain 
apa
ity 


j

serving

a dire
t 
ight or a follow-on. A follow-on is a sequen
e of two 
ompatible su

essive dire
t 
ights.

In our 
ase, we 
onsider follow-ons 
ompletely in H and follow-ons 
ompletely in A (i.e. the via


ights as des
ribed above), in addition to the dire
t 
ights. However, the number of allowed via


ights is small in our test instan
es, and the lo
al min-
over fa
ets 
an be 
al
ulated expli
itly,

see Se
tion 6.2.

Observe that for our 
omputational study all fa
ets to the (lo
al) min-
over polyhedron are


al
ulated expli
itly. The 
omputational e�ort for expli
itly 
omputing the fa
ets depends on the

demand dem, the number of di�erent air
raft seat 
apa
ities 


1

; : : : ; 


n

, and the number of allowed

via 
ights. If 
omputation time ex
eeds justi�able limits, \aggregated" 
apa
ities 
an be used. If,

for example, an air
raft rotation with a 
apa
ity of 


l

seats serves a dire
t 
ight twi
e, this 
an be

seen as an air
raft with seat 
apa
ity 


j

= 2


l

serving this dire
t 
ight on
e. This may in
rease

the number of di�erent 
apa
ities, but leads to deeper 
uts than expressing this as 2


l

. Thus, the

expanded version should be used whenever possible.

5.4 A Depth-First Heuristi


To obtain good feasible solutions qui
kly, we use a sear
h heuristi
. The heuristi
 �xes air
raft

rotations to 1 in a depth-�rst manner, and 
an be applied at every node of the bran
h-and-bound

tree. Obviously, every air
raft rotation solution taking air
raft utilization and 
ow 
onservation


onstraints into a

ount yields a feasible solution. Thus, we do not have to employ 
olumn

generation while applying the heuristi
.

➊ Fix one (or a few) air
raft rotation variable(s) �

k

p

with

ROUND THRESHOLD � �

k

p

< 1

to 1. ROUND THRESHOLD is a value near to 1, and gives the threshold for the variable

to be a 
andidate for rounding to 1. Usual values 
hosen are 0.85 or 0.95.

➋ Resolve the LP without employing 
olumn generation.

➌ Fix air
raft rotation variables �

k

p

with high (positive) redu
ed 
osts ex
eeding a given limit

to 0.

➍ If the 
urrent solution is integer, update the best feasible solution.

➎ If the 
urrent obje
tive fun
tion value is smaller than best known feasible solution, goto ➊.
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➏ Make a few ba
ktra
king steps using di�erent air
raft rotation variable(s) in ➊,

or: start a 
omplete new sear
h with ➊,

or: stop the heuristi
.

This heuristi
 
an be extended for weekly problems in a straightforward way. A weekly rotation

for an air
raft in K

full

has to be found and �xed. This rotation 
onsists of air
raft rotation

variables �

k

p

for every day of the week. Air
raft from K

part

are handled similar. The eÆ
ien
y of

this heuristi
 will be stated in Se
tion 6.2.

5.5 Bran
hing

We have applied di�erent bran
hing strategies in our 
omputational experiments to obtain integer

solutions. Although the standard bran
hing rule on variable di
hotomy makes the pri
ing problem

more 
ompli
ated, the empiri
al results are worth mentioning. Thus, besides more sophisti
ated

bran
hing rules it will be des
ribed here, too.

5.5.1 Variable Di
hotomy

The standard bran
hing rule for Mixed Integer Programming is not dire
tly appli
able if 
olumn

generation is used. In the 
ase that variables are set to 0, the pri
ing problem must in
orporate

these de
isions and not return to this variable again. This leads essentially to �nding the l+1-best

variable in the subproblem, if l variables are already set to 0. In addition, setting variables to 0

does not divide the sear
h spa
e in two equal-sized parts, whi
h is usually preferred. Nevertheless,

setting variables only to 1 is 
losely related to the depth-�rst heuristi
 (when working on a �xed

set of 
olumns) and yields good solutions.

5.5.2 Number of used Air
raft

If the number n

0

of air
raft used on day d in the 
urrent relaxation, i.e.

n

0

=

X

k2

�

K

X

p2


k

d

�

k

p

(15)

with

�

K = K, is fra
tional, bran
hes that require this number to be � bn

0


 and � dn

0

e 
an be


reated. This rule 
an be applied to subsets of K, too. For example, the set K of all air
raft 
an be

partitioned into sub
eet groups K = K

1

_

[ � � �

_

[K

l

, ea
h 
ontaining the same air
raft type. Thus,

the number of air
raft used of a given type (n

0

in (15) with K = K

i

for a sub
eet i) is required to

be � bn

0


 and � dn

0

e, respe
tively.

5.5.3 Number of Air
raft on Dire
t Flights

Consider an aggregated dire
t 
ight (f; d) on a �xed day d. This 
ight may be 
own by several

air
raft rotations involving several air
raft in the 
urrent relaxation. Obviously, the number of

air
raft serving this 
ights has to be integral. Thus, for a fra
tional value

r

0

=

X

k2K

X

p2


k

d

(f;d)2p

�

k

p

;

bran
hes for
ing the number to be � br

0


 and � dr

0

e may be 
reated. Analog to 5.5.2, this rule


an be applied to sub
eet groups, too.
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5.5.4 Number of Air
raft on Follow-Ons

Consider two 
ompatible su

essive dire
t 
ights (f

j

; d); dest(f

1

) = orig(f

2

); j = 1; 2. As intro-

du
ed in Se
tion 5.3, the 
ombination f

1

! f

2

is 
alled a follow-on. A Ryan/Foster-like bran
hing

rule (Ryan and Foster [24℄) on follow-ons is frequently used for routing and s
heduling type prob-

lems (see, for example Desaulniers et al. [11℄ and Barnhart et al. [28℄). In most formulations,

a task has to be 
overed exa
tly on
e. Thus, the 
ow on this follow-on is for
ed to be 0 or 1,

respe
tively.

In our formulation, several air
raft may serve dire
t 
ights and follow-ons. We propose an

extension of this rule appli
able to the SGP. If the number of air
raft r

0

serving a follow-on is

fra
tional with

r

0

=

X

k2K

X

p2


k

d

(f

1

!f

2

)2p

�

k

p

;

two bran
hes � br

0


 and � dr

0

e as des
ribed above are 
reated.

6 Computational Results

To prove the eÆ
ien
y of our approa
h, we provide experimental results on data sets re
eived

from a major 
harter airline. These instan
es des
ribe a typi
al summer week. There are 18 home

airports, and �40 destination airports. All of them are rea
hable by short and medium haul


ights.

We would like to remark, that for the results given in this paper perturbed data sets have been

used. The revenues given do not 
orrespond to revenues of the airline! Besides, it seems that the


harter airline used a di�erent obje
tive fun
tion and maybe some additional 
onstraints. Thus,

the improvements of our solutions 
ompared to the hand solutions provided by the 
harter airline

seem to be non realisti
.

All 
omputational results are obtained on a 
ustomary 333 MHz Pentium-II personal 
omputer

equipped with 256 MByte RAM. All run-times shown in the tables are in se
onds, and do not

in
lude the time for reading the input �les and preparing the initial data (su
h as kernel LP and

networks).

The BnP (Bran
h-&-Pri
e) library developed at ZAIK is used as a framework. The primal und

dual simplex algorithms of CPLEX [1℄ are used for solving all LP relaxations, and are 
alled as a

subroutine from BnP.

6.1 Data Sets

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Num. H airports 16 11 16 13 14 16 15

Num. A airports 9 10 11 11 11 15 12

Num. of OD-pairs 47 48 60 54 55 89 63

Sum of demands 10.011 10.071 12.220 10.768 14.707 19.601 18.124

Num. of AC types 6 7 7 7 6 11 9

Num. of AC 29 30 30 30 33 64 53

jK

full

j + jK

part

j 26+3 26+4 26+4 26+4 26+7 26+38 26+27

Table 4: Chara
teristi
s of \Summer 1998" data set (single days)

The 
hara
teristi
s of our test instan
es are presented in Table 4. The 
olumns show ea
h

day of a standard summer week (Summer 1998), named S98-Mo through S98-Su. The rows

Num. H airports and Num. A airports give the number of home airports and airports abroad,
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respe
tively. The next both rows indi
ate the demand stru
ture. The number of OD-pairs with

nonzero demand, and the overall sum of passengers are given. In the last blo
k, Num. of AC

types shows the number of di�erent sub
eets involved. Finally, Num. of AC gives the number

of available air
raft. The both 
omponents indi
ate the number of own air
raft (jK

full

j) and the

number of air
raft the 
ompany may rent from other 
arriers (jK

part

j).

The 
omplete week S98-Week makes up one further instan
e. It 
onsists of 18 home airports,

38 abroad and of 266 OD-pairs. The sum of demands and the number of sub
eets and available

AC 
an be obtained by summing the 
hara
teristi
s of the involved days.

6.2 Results

The results had been 
arried out in various test series. De
isions that have to be done in
lude

whether via 
ights are involved (and if, where they are allowed) or not. Also, the distribution of

air
raft at the beginning of the planning horizon may be predetermined or 
onsidered as part of

the optimization. They intera
t with the airport 
apa
ities, sin
e only limited spa
e for parking

air
raft overnight is available. Further, they must observe the defaults of the airline. The airline

provided hand-made s
hedules to us and the air
raft distributions from these solution will be used.

The number of spilled passengers plays an important role, too. Although, usually the market data

give overbooked demands, the passenger spill should not ex
eed 
ertain limits. Thus, restri
ting

the spill on 
ertain OD-pairs or the overall spill, maybe in 
ombination with penalty 
osts, is

possible.

In this se
tion we give 
omputational results for di�erent s
enarios. We split the results into

four parts. Se
tions 6.2.1 and 6.2.2 deal with the SGP using a predetermined or free air
raft

distribution, respe
tively, but with no via 
ights allowed. Results for the weekly problem 
an

be found in se
tion 6.2.2, too. Se
tion 6.2.3 dis
usses the 
ase with via 
ights involved. In

Se
tion 6.2.4, we 
ompare the results a
hieved by our optimizer with the results obtained by

CPLEX (see [1℄) and MINTO (see Savelsbergh and Nemhauser [25℄).

6.2.1 Results without via 
ights, �xed distribution of AC

Table 5 summarizes the results for ea
h day of the \Summer 1998" instan
e. In this instan
es the

air
raft distribution was predetermined using the distribution in the given hand-solution. The �rst

blo
k of this table gives information on the solution of the bran
h-and-bound root node. The row

LB w/o 
uts shows the relaxation lower bound (LB) after solving SGM without any additional


uts. The number of 
utting plane iterations and inserted min-
over 
uts is given next. The LB

of the tightened relaxation is given in the next row. The bound improvement is shown in the row

Bound impr. and is 
al
ulated by

�

LB w/o 
uts � LB w/
uts

LB w/o 
uts

�

. The row CPU displays the used CPU

time in se
onds. The next blo
ks show information on the �rst and best feasible solutions found.

The CPU time was limited to 1 hour. B&B node gives the number of the bran
h-and-bound node

in whi
h this solution was found. Next, again information on the 
utting plane pro
ess are shown.

New 
uts were only generated for bran
h-and-bound nodes with depth � 3, and the numbers refer

to all nodes but the root node. Only su

essful runs of the separation routine, i.e. runs �nding

violated 
uts, were 
ounted in Cut iter.. For all instan
es the depth-�rst heuristi
 applied in the

root node yields a (�rst) feasible solution. Thus, there are no bran
h-and-bound and 
utting

plane information for the \First feas." blo
k. The obje
tive value and the gap (giving the quality

guarantee) are provided next. For a feasible solution with obje
tive value \Obj. feas." the latter

is 
al
ulated by

�

LB w/
uts � Obj. feas.

LB w/
uts

�

. Next, the a

umulated CPU time is shown. For a rough


omparison of our obtained solutions with the given hand-solutions, the number of (overall) spilled

passengers and the number of utilized air
raft are given. The last blo
k provides information on

the hand-solution. Although we do not allow via 
ights in these runs, the airline solution 
ontains

via 
ights, and its evaluation was elaborated in
orporating these via 
ights. A 
omparision of

our obtained solutions (without via 
ights) with the given hand-solution (
ontaining via 
ights)

shows, that our approa
h redu
es the number of used air
raft, but in
reases the number of spilled
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node

LB w/o 
uts -1,230,556 -1,186,034 -1,242,441 -1,381,389 -1,592,853 -2,178,304 -2,118,376

Cut iter. 4 4 2 5 7 11 9

Cuts inser. 38 29 27 45 75 144 130

LB w/
uts -1,146,974 -1.120.285 -1,165,879 -1,274,329 -1,505,859 -2,057,952 -2,003,195

Bound impr. 6.79% 5.54% 6.31% 7.75% 5.46% 5.53% 5.43%

CPU 4 5 15 7 27 94 139

First feas.

Obj. -1,117,702 -1,099,686 -1,163,920 -1,240,945 -1,482,556 -1,962,334 -1,904,021

Gap 2.55% 1.84% 0.17% 2.61% 1.55% 4.65% 4.95%

CPU 6 7 19 9 33 115 230

Spilled Pass. 1045 1,053 2,053 1,050 1,424 1,878 1,804

Num. used AC 22 23 23 24 28 49 39

Best feas.

B&B node 53 2 7 7 7 15 17

Cut iter. 2 2 2 0 1 1 0

Cuts inser. 3 2 3 0 1 4 0

Obj. -1,136,116 -1,119,281 -1,163,921 -1,273,197 -1,486,976 -2,051,895 -1,947,594

Gap 0.95% 0.09% 0.17% 0.09% 1.25% 0.29% 2.78%

CPU 123 11 59 34 407 487 2,168

Spilled Pass. 808 939 2,053 717 1,394 1,226 1,186

Num. used AC 22 23 23 24 28 52 40

Airl. Sol.

Spilled Pass. 553 445 852 617 631 709 598

Num. used AC 29 30 30 30 33 64 53

Table 5: Results for \Summer 1998" (�xed distribution of air
raft, w/o via 
ights)

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Fixed AC distribution

Constraints 197 200 224 212 213 320 257

Variables 3,898 2,665 11,257 5,883 7,340 17,231 13,401

Nonzero's 19,119 11,824 58,418 28,884 38,427 87,732 70,336

Cuts 644 2,094 4,836 1,151 3,030 3,254 6,376

Table 6: Statisti
s on \Summer 1998" data set (�xed distribution of air
raft, w/o via 
ights)
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passengers. The obje
tive value is improved by about 21% in average, but this improvement must

be handled very 
arefully as dis
ussed above.

The 
hara
teristi
s of the aggregated linear programs and the number of pre
al
ulated min-


over inequalities are shown in Table 6. For this 
omputational study, �xed 
osts for transporting

a passenger are independent of the used air
raft type. Using the more detailed 
ost 
omponents

will of 
ourse not in
uen
e the number of min-
over inequalities but the required times for solving

the linear programs. The size of the linear programs is moderate and no dynami
 
olumn gen-

eration is needed. Clearly, if more 
ights per rotation are allowed or more airports are involved

this number will in
rease signi�
antly. Min-
over 
uts are 
omputed and stored in a database

whenever a new \lo
al" problem o

urs. The running-time required to 
al
ulate all 
uts ne
essary

for the problems in this paper is less than 2 hours.

These results demonstrate that \mathemati
ally" 
onvin
ing solutions to the SGP 
ould be

obtained using the proposed model. The lower bounds were improved by 6.12% in average and the

average gap amounts to 0.80%. In these runs neither the passenger spill was bounded (global or

on OD-pairs) nor penalty 
osts for spilled passengers were applied. A drawba
k of these solutions

is the high number of spilled passengers. It ranges between 1; 16 and 2; 41 times the 
orresponding

spill in the given hand-solutions. The demands are usually made up of two or three di�erent


omponents, FIX, ProRata and I. The 
omponent FIX represents the largest part. In average,

this is more than 85%. It 
ontains espe
ially seats already sold to tour operators. In 
ontrast,

the 
omponents ProRata and I are sold dire
tly. Thus, spilling passengers from FIX should be

avoided. Table 7 summarizes the results for all days in
orporating limited and penalized spill. No

penalty 
osts apply for spilling passengers from ProRata and I but a linearization of a quadrati



ost fun
tion for spilling passenger from FIX is 
harged. The obje
tive value given does not re
e
t

the penalty 
ost and thus is 
omparable to our other results. These results are not a
hieved in a

single run but are the out
ome of an iterative and intera
tive pro
ess in whi
h penalty 
osts and

hard limits have been set and readjusted a (very) few times. In an industrial use of our system

the skills of s
heduler are still ne
essary, yet. The number of used air
raft in
reased 
ompared

to Table 5 but is still a redu
tion 
ompared to the airline hand solution. Also, renting air
raft is

usually due to a long term 
ontra
t and so it is not the most important aim to redu
e the number

of air
raft used. Further, the number of spilled passengers 
ould be de
reased 
ompared to both

our previous solution and the hand solutions.

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Solutions

Obj. -1,132,803 -1,083,427 -1,125,464 -1,271,571 -1,444,010 -1,881,585 -1,903,347

Gap 1.24% 3.29% 3.47% 0.22% 4.11% 8.57% 4.98%

Spilled Pass. 476 409 773 604 631 689 583

Num. used AC 23 25 26 25 31 54 42

Table 7: Results for \Summer 1998" (�xed distribution of air
raft, with bounded spill, w/o via


ights)

6.2.2 Results without via 
ights, free distribution of AC

Table 8 shows the results for a predetermined air
raft distribution for rented air
raft only, as

explained above. Own air
raft are allowed to reposition. For the two data sets \S98-Tu" and

\S98-We" the solution to the relaxation is feasible, too. For most of the data sets, the number of

spilled passenger is smaller 
ompared to the solution with �xed air
raft distribution. The lower

bounds were improved by 5.67% in average and the average gap amounts to 0.84%.

Table 9 summarizes the results for the 
omplete week instan
e \Summer 1998" without via


ights, where own air
raft are allowed to reposition. The �rst blo
k of this table gives information

on the solution of the bran
h-and-bound root node, the se
ond shows information on the �rst and
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node

LB w/o 
uts -1,332,149 -1,209,941 -1,286,956 -1,411,771 -1,653,388 -2,222,227 -2,155,338

Cut iter. 4 8 4 4 6 9 12

Cuts inser. 43 36 40 53 78 145 139

LB w/
uts -1,243,407 -1,149,911 -1,199,076 -1,305,578 -1,559,230 -2,109,345 -2,047,228

Bound impr. 6.66% 4.96% 6.83% 7.52% 5.69% 5.08% 5.02%

CPU 3 8 23 9 28 77 141

First feas.

Obj. -1,229,153 -1,149,910 -1,199,075 -1,245,924 -1,327,036 -2,030,912 -1,905,485

Gap 1.15% 0% 0% 4.56% 14.8% 3.72% 6.92%

CPU 4 9 27 12 31 177 183

Spilled Pass. 566 890 1,686 1,232 2,010 1,351 868

Num. used AC 23 24 23 22 28 48 41

Best feas.

B&B node 194 0 0 19 12 42 10

Cut iter. 0 0 0 0 1 1 0

Cuts inser. 0 0 0 0 14 1 0

Obj. -1,232,572 -1,149,910 -1,199,075 -1,302,818 -1,539,635 -2,079,489 -2,003,694

Gap 0.87% 0% 0% 0.21% 1.26 % 1.42% 2.13%

CPU 305 9 27 103 189 3,522 676

Spilled Pass. 534 890 1,686 761 841 1,157 887

Num. used AC 23 24 23 23 30 52 41

Table 8: Results for \Summer 1998" (free distribution of air
raft, w/o via 
ights)

best feasible solution found. The 
olumns Sp. Pass. and Num. AC give the number of spilled

passengers and the sum of the number of utilized air
raft, respe
tively.

LB w/o 
uts Cut iter. Cuts inser. LB w/
uts B. impr.

Root node -11,254,926 12 620 -10,566,445 6.12%

B&B node Cut iter. Cuts inser. Obj. Gap Sp. Pass. Num. AC

First feas. { { { -10,015,498 5.21% 9,042 204

Best feas. 5 0 0 -10,355,282 2.00% 9,480 204

Table 9: Results for 
omplete week \Summer 1998" (free distribution of air
raft, w/o via 
ights)

A 
omparision of our best feasible (weekly) solution to the given hand-solution showed, that

we spill about 5075 passengers more than the airline, but redu
e the sum of used air
raft from

269 to 204 and in
rease the obje
tive value about 23%.

Remark, that the best feas. solution above a
hieves a better obje
tive value and redu
es the

number of spilled passengers 
ompared to the joined solution with �xed air
raft distribution (see

Table 5).

6.2.3 Results with via 
ights

Table 10 summarizes the results for the \Summer 1998" instan
e with via 
ights in
luded. The

air
raft distribution was predetermined using the distribution in the given hand-solution. The set

of 
onsidered via 
ights was restri
ted to a given (from the airline) set of allowed via 
ights.

The lower bounds were improved by 5.97% in average and the average gap amounts to 0.54%.

Sin
e the number of possible 
ights in
reases by in
luding via 
ights, the obje
tive value of the

relaxation of the SGM with additional via 
ights without any additional 
uts and the obje
tive

value of the tightened relaxation are better than the 
orresponding obje
tive values without via


ights (see Table 5). All but one feasible solutions in
lude via 
ights. This seems to happen
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node

LB w/o 
uts -1,275,794 -1,197,550 -1,274,681 -1,415,317 -1,627,163 -2,223,668 -2,133,967

Cut iter. 4 4 5 4 5 8 9

Cuts inser. 39 29 44 47 72 123 146

LB w/
uts -1,188,105 -1,129,078 -1,196,086 -1,314,771 -1,538,560 -2,102,624 -2,016,670

Bound impr. 6.88% 5.72% 6.17% 7.10% 5.45% 5.44% 5.50%

CPU 16 8 89 21 59 235 328

First feas.

Obj. -1,179,838 -1,129,078 -1,193,168 -1,314,247 -1,518,790 -2,010,409 -1,879,896

Gap 0.78% 0.00% 0.24% 0.00% 1.28% 4.39% 6.78%

CPU 30 8 89 21 59 285 352

Spilled Pass. 824 1,008 1,735 713 1,223 1,943 1,308

Num. used AC 23 23 23 22 29 48 39

Best feas.

B&B node 18 1 13 9 3 7 5

Cut iter. 1 0 8 3 3 2 4

Cuts inser. 1 0 15 11 5 5 12

Obj. -1,180,671 -1,129,078 -1,193,168 -1,314,247 -1,518,790 -2,080,883 -1,959,598

Gap 0.63% 0.00% 0.00% 0.00% 1.28% 1.03% 2.83%

CPU 57 8 480 107 132 1,156 807

Spilled Pass. 797 1,008 1,735 713 1,223 1,260 1,092

Num. used AC 23 23 23 22 29 51 42

Table 10: Results for \Summer 1998" (�xed distribution of air
raft, with via 
ights)

be
ause in general a via 
ight in
luding two OD-pairs with low demands is 
heaper than two

non-via 
ights in
luding one OD-pair ea
h.

6.2.4 Results obtained by MINTO and CPLEX

We 
ompared the lower bounds and feasible solutions obtained by our BnP-Optimizer with the

results by the MINTO mixed-integer solver (Savelsbergh and Nemhauser [25℄, Version 3.0a, whi
h

is 
alling CPLEX [1℄ as a subroutine for solving the LP relaxations) and the CPLEX mixed-integer

pa
kage, Version 6.0 (see [1℄).

The 
omputational results shown in the previous se
tions have been obtained by solving an ag-

gregated (mixed-integer) version working on sub
eet groups rather than solving the single (mixed-

binary) air
raft formulation. I.e., if there are two air
raft of the same sub
eet group serving the

same rotation, the 
orresponding variable will take the value two in 
ontrast to two single air
raft

rotation variables taking the value one. Instead of working on individual air
raft for this 
ompar-

ison we only 
onsider the 
ase where an air
raft rotation is allowed to be 
own at most on
e for

ea
h sub
eet group, whi
h is a restri
tion but yields a mixed-binary problem.

MINTO improved the lower bound in average by � 1% for the binary problem and � 0:02%

for the integer version of the problem. The average gap MINTO sees is 8.53% for the binary

problem, and 34.72% for the integer problem. No solutions for data sets \S98-Sa" and S98-Su"

were found at all. CPLEX did not su

eed in improving the bounds at all. The average gaps

amount to 21.11% and 20.62%. (See Appendix for details.) In 
ontrast to that, the BnP optimizer

improved the lower bounds by 6.11% and 6.12% for the binary and integer problems, respe
tively,

while average gaps amount to 0.93% and 0.80%.

7 Extensions

The basi
 assumption of our model is the even distribution of demands over the planning period,

whi
h is half a year in our 
ase. Usually, in 
harter business the 
ights or 
omplete va
ation
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pa
kages are booked for one up to several weeks. Assumption A2 stems from this fa
t and leads

to Assumptions A3 and A1. Weekly s
hedules repeated for a 
omplete season are not suÆ
ient

to model big 
hanges in the demand 
aused, for example, by the beginning and end of s
hool

va
ations. Our model 
an be extended by dropping the basi
 assumption and in
orporating more

detailed demand information. In this 
ase, demands are not symmetri
 anymore, i.e., Assumption

A2 is dropped. Changes to the model and algorithm are twofold. First, the �xed air
raft rotation

pattern has to be relaxed to in
lude a) more rotations but still respe
ts the via 
ight 
onstraint

(per rotation), or b) all rotations whi
h are operationally feasible. Se
ond, the return 
ight of

ea
h passenger must be ensured. I.e., if a passenger booked a 
ight to a destination abroad with

a return 
ight n weeks (or even days in the extended model) later, it must be ensured that she/he

will be transported ba
k home again that date. Clearly, this also requires to 
hoose a suÆ
iently

long planning horizon.

It would be interesting to analyze the e�e
ts of this less restri
ted model on a) the instan
es

with symmetri
 demands used in the previous se
tion, and b) in
luding big demand 
hanges.

8 Con
lusions

In this paper, we study a spe
i�
 airline s
hedule generation problem whi
h has not been presented

in the literature before. We present a network design model whi
h models the airline's 
urrent

pra
ti
e as a spe
ial 
ase. We give a path-based mixed-integer programming formulation and

present a solution approa
h that allows us to solve real world instan
es with nonlinear 
osts on

air
raft rotations and passenger itineraries. Empiri
ally good results 
on�rm the tight approxima-

tion of the polyhedron 
onv(SGP) (i. e., the 
onvex hull of all feasible solutions to SGP) by lo
al

min-
over inequalities. We demonstrate the eÆ
ien
y of our approa
h for real world instan
es of

a major 
harter airline. Our implementation solves most of the instan
es with an integrality gap

of a very few per
ent and running times in the order of minutes on a 
ustomary PC.
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Appendix

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Relaxation of (1) { (10)

Root node

LB -1,230,547 -1,186,034 -1,242,441 -1,381,218 -1,592,579 -2,178,288 -2,118,325

BnP-Optimizer

Root node

#min-
over 38 29 27 42 72 139 130

LB w/
uts -1,146,974 -1,120,285 -1,165,879 -1,274,329 -1,505,859 -2,057,953 -2,003,195

Bound impr. 6.79% 5.54% 6.31% 7.74% 5.44 % 5.52% 5.43%

Best feas.

+#min-
over 0 2 9 3 2 4 0

Obj. -1,134,839 -1,119,281 -1,163,921 -1,273,197 -1,484,201 -2,033,522 -1,953,032

CPU 35 8 76 46 31 704 438

Gap 1.06% 0.09% 0.17% 0.09% 1.44% 1.19% 2.50%

MINTO, Version 3.0a

Root node

#gen.-f
 84 61 89 74 112 191 152

LB w/
uts -1,212,309 -1,173,888 -1,237,928 -1,360,490 -1,576,406 -2,160,934 -2,099,787

Bound impr. 1.48% 1.02% 0.36% 1.50% 1.02% 0.80% 0.88%

Cmp. to BnP -5.70% -4.78% -6.18% -6.76% -4.68% -4.77% -4.60%

Best feas.

#gen.-f
 769 781 969 854 1,128 919 907

Obj. -1,135,283 -1,109,730 -1,126,033 -1,255,086 -1,434,582 -1,922,616 -1,896,551

B&B node 1,947 21,150 12,150 31,950 21,150 300 7,800

#nodes 131,206 114,691 17,434 46,319 24,437 2,501 8,612

CPU 175 1,505 5,819 4,997 6,534 1,577 7,015

Gap 6.35% 5.47% 9.04% 7.75% 9.00% 12.40% 9.68%

Cmp. to BnP 0.04% -0.94% -3.26% -1.42% -3.34% -5.77% -2.98%

CPLEX (MIP), Version 6.0

Best feas.

Obj. -1,015,095 -1,046,896 -892,065 -1,193,269 -1,262,574 -1,468,056 -1,567,351

B&B node 151,680 137,370 48,550 1 95,350 1,370 8,520

#nodes 349,751 393,441 66,092 135,291 102,245 8,078 19,670

CPU 1,791 1,373 2,926 17 3,730 691 1,768

Gap 17.51% 11.73% 28.20% 13.61% 20.72% 32.61% 23.38%

Cmp. to BnP -10.55% -6.47% -23.36% -6.28% -14.93% -27.81% -19.75%

Table 11: Comparison of BnP-Optimizer with MINTO and CPLEX, Part I

(Results for \Summer 1998" with �xed distribution of air
raft, w/o via 
ights, binary version);

(#gen.-f
.: number of generalized 
ow 
over 
uts inserted)
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Relaxation of (1) { (10)

Root node (int.)

LB -1,230,556 -1,186,034 -1,242,441 -1,381,389 -1,592,853 -2,178,304 -2,118,376

BnP-Optimizer

Root node (int.)

#min-
over 38 29 27 45 75 144 130

LB w/
uts -1,146,974 -1.120.285 -1,165,879 -1,274,329 -1,505,859 -2,057,952 -2,003,195

Bound impr. 6.79% 5.54% 6.31% 7.75% 5.46% 5.53% 5.43%

Best feas.

+#min-
over 3 2 3 0 1 4 0

Obj. -1,136,116 -1,119,281 -1,163,921 -1,273,197 -1,486,976 -2,051,895 -1,947,594

CPU 123 11 59 34 407 487 2,168

Gap 0.95% 0.09% 0.17% 0.09% 1.25% 0.29% 2.78%

MINTO, Version 3.0a

Root node

#gen.-f
 3 2 2 0 2 1 1

LB w/
uts -1,229,661 -1,185,565 -1,241,854 -1,381,389 -1,592,134 -2,178,275 -2,118,327

Bound impr. 0.07% 0.04% 0.04% 0% 0.05% � 0% � 0%

Cmp. to BnP -7.21% -5.92% -6.52% -8.40% -5.73% -5.85% -5.75%

Best feas.

#gen.-f
 106 86 17 45 37

Obj. -1,009,030 -1,068,683 732,477 731,477 679,769 n/a n/a

B&B node 75,100 100,300 14,300 90,900 7,200

#nodes 128,792 135,996 48,208 95,528 71,368

CPU 4,317 4,968 2,608 7,422 841

Gap 17.94% 9.86% 41.02% 47.05% 57.30%

Cmp. to BnP -11.19% -4.52% -37.07% -42.55% -54.29%

CPLEX (MIP), Version 6.0

Best feas.

Obj. 1,043,790 -1,075,741 -936,315 -1,114,229 -1,293,978 -1,520,586 -1,548,376

B&B node 61,320 8,050 81,180 76,630 24,430 5,510 6,470

#nodes 402,541 392,793 82,600 119,394 98,211 8,670 19,110

CPU 638 89 3,932 2,554 1,001 2,535 1,320

Gap 15.18% 9.30% 24.64% 19.34% 18.76% 30.19% 26.91%

Cmp. to BnP -8.13% -3.89% -19.56% -12.49% -12.98% -25.89% -20.50%

Table 12: Comparison of BnP-Optimizer with MINTO and CPLEX, Part II

(Results for \Summer 1998" with �xed distribution of air
raft, w/o via 
ights, integer version)
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