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Abstract

Since opening a new flight connection or closing an existing flight has a great impact on
the revenues of an airline, the generation of the flight schedule is one of the fundamental
problems in airline planning processes.

In this paper we concentrate on a special case of the problem. In contrast to airlines
operating on regular schedules, the market for charter airlines is well-known and the schedule
is allowed to change completely from period to period. Thus, precise adjustments to the
demands of the market have a great potential for minimizing operating costs.

We propose a combined Branch-and-Cut approach to solve the airline schedule generation
problem. To tighten the linear relaxation bound, we add cutting planes which adjust the
number of aircraft and the spill of passengers to the demand on each itinerary.

For real-world problems from a large European charter airline we obtain solutions within
a very few percent of optimality with running times in the order of minutes on a customary
personal computer for most of the data sets.

Key Words: Capacitated network design; Dantzig-Wolfe decomposition;
set partitioning, set packing; Branch-and-Cut



1 Introduction

Planning aircraft and crews is a very complex task. Thus, it is a current practice at airlines’
planning departments to break up the resource planning into a number of stages which are then
solved in a sequential manner. In the first stage, information on the market are collected and
analyzed. The result of the market analysis is a demand estimation which is based on origin-
destination pairs. The timetable is constructed in the next step. In this schedule generation step,
the airline decides which direct flights should be offered in the new schedule. Also, the optimization
of departure times is done, and operational constraints like fleet sizes are considered, too. Next,
the aircraft type to use on each operated flight will be determined (fleet assignment). Determing
aircraft routes (rotations) is the objective of the tail assignment. Using these aircraft rotations,
pairings (duties) for yet unpersonalized crew members (cockpit and cabin crew) are determined in
the crew pairing. Personalized monthly schedules are then constructed using the crew pairings in
the crew rostering. Finally, very close to the day-of-operation some changes to the flight schedule
may become necessary (day-of-operation changes).

Since the schedule generation problem (SGP) must be solved early in the airlines’ overall
planning process, its solution quality has a great influence on all subsequent steps. Most airlines,
however, seem to construct their schedules manually. As this task is very complex and time
consuming, it is common practice to only locally change the last schedule to adopt it to the new
requirements. This also implies that the new schedule may inherit properties that are unnecessary
and costly.

In this paper we address a special case of the schedule generation problem for the airline
industry which arises particularly in charter business. In contrast to regularly operating carriers,
charter airlines have more freedom to change their schedule from period to period. Furthermore,
as in our case, there often are close business links to one or more tour operators who sell flights
or even complete vacation packages (flight, hotel, rental car, etc.) to their customers. Then large
contingents of the seats are booked before the schedule generation process is terminated, which, in
addition to the data about customer behavior in the past, gives a very accurate knowledge about
the market.

Our solution approach incorporates the most important operational constraints in the planning
phase, like block times, minimum ground times, and curfews. Thus, our model combines schedule
generation and fleet (or even tail) assignment.

2 Related Work

Network design problems have been intensively studied. Especially for problems arising in the
telecommunications industry and in the context of freight transportation, numerous successful
algorithms have been developed. Solution strategies include techniques based on linear program-
ming, Lagrangean relaxation and Bender’s decomposition, commonly used in combination with
branch-and-bound (cf., e.g. Magnanti et al. [17], [18], Holmberg and Hellstrand [13], Holmberg
and Yuan [14], Balakrishnan et al. [2], Sridhar and Park [26], Lamar et al. [15] and Chang and
Gavish [6]). For additional references and applications see, for example, the comprehensive survey
by Magnanti and Wong [19], the overview by Minoux [20], and the recent review by Crainic and
Laporte [8].

In contrast to that, the published literature on network design problems for airlines is scant.
Actually, we are aware of no reference treating the schedule generation problem.

Daskin and Panayotopoulos [10] present an integer program that assigns aircraft to routes in a
single-hub-and-spoke network. The routes are predefined sequences of flight legs originating and
terminating at the hub. They propose a Lagrangean relaxation of the problem and combine it
with heuristics for converting the Lagrangean solutions into pimal feasible solutions. Barnhart and
Schneur [4] describe the express shipment service design problem. Aircraft routes and schedules
to pick up and deliver shipments have to be designed. A single hub is involved in the problem.
Based on implicit column generation, a multi-label shortest path algorithm on an appropriately



structured network is employed to determine new aircraft routes. Biidenbender et al. [5] present
a problem similar to the one discussed here. In the context of letter mail transportation, the
direct flight network design problem is introduced formally, and results for a practical application
are given. The problem is solved using a two-phase heuristic. Rexing et al. [23] make changes
to a given flight schedule by assigning time windows to each flight. After discretizing these time
windows, the model is allowed to select departure times. Direct and iterative solution approaches
are proposed.

3 The Mathematical Model

Roughly, an instance of the schedule generation problem (SGP) is the following: given a fleet and
a set of origin-destination pairs (OD-pairs) with associated passenger demands, find rotations for
all aircraft of the fleet such that the total profit is maximized. The next section gives a more
detailed description of the problem with all its side constraints.

3.1 Problem description

The fleet consists of two sets K = K U Kpare of aircraft, where Ky, is the fleet owned by
the airline and Ky, is a set of planes that may be rented from other carriers. The planes in
Ky are available throughout the whole planning period, and those in Ky, are only available
within specified time intervals. If utilized, these planes have to be picked up and delivered at
certain airports. The rental and the (re-)positioning costs have to be provided. Each fleet consists
of types of aircraft with individual characteristics as block times, minimum ground times, seat
capacities and cost coefficients. Since our example sets contain only short and medium haul flights
(up to 5 hours of block time), we do not consider aircraft ranges.

The set A of all airports can be partitioned into two sets of home airports H and those abroad
A. In our case we have 18 airports in the home country and approximately 40 airports abroad.
Planes follow a rotation, that is in the morning, they leave an airport in H and have to return to
such an airport in the night again. Each airport has specified opening hours, and for each flight
a block time is given. In addition, aircraft rotations have to comply with a number of regulations
which will be described in Section 3.2.2.

Due to the nature of the charter business, customers always book a trip starting and ending
at H with a stay at their destination airport in A of one up to several weeks. This results in
symmetrical demands for the OD-pairs from H to A and the corresponding return OD-pair, if one
assumes, as common in the charter planning process, an even distribution of the itineraries over
the season.

On the way to their destination, passengers may have to change planes or to endure a short stop-
over. However, they seem to tolerate at most one intermediate stop. We assume that passengers
can switch to another aircraft if the time between landing and departure is at least a given
minimum connect time. Thus, passenger itineraries include either an intermediate stop in H or
an intermediate stop in A, maybe in combination with an aircraft switch, but not both.

The objective function is made up of several components. On the income side there are revenues
for each passenger transported on an OD-pair. In contrast to regularly operating airlines, we do
not have to distinguish different classes. On the cost side there are fix costs for every assignment of
an aircraft to a flight leg, hire charges for rented aircraft, costs for repositioning aircraft, costs for
each transported passenger (service, handling charges etc.), and penalties for passengers rejected
due to capacity bottlenecks.

To summarize, the schedule generation problem is the problem to determine aircraft rotations
observing operational constraints and fleet sizes, and to route passengers taking seat capacities
into account, such that the combined aircraft and passenger costs are minimized, i.e. that the
overall gain is maximized. Determing the aircraft routes is sufficient, but departure and arrival
times are introduced as much as necessary to model the situation where passengers are allowed to
switch aircraft.



We denote the classical flights, i.e. from take off to touch down and including information on
departure times, by flights. To stress this we sometimes use the terminology of a direct flight. A
via flight consists of two compatible successive direct flights fi » with dest(f;) = orig(f2), either
in H or A. When we describe coefficient reduction techniques and cutting planes below, we will
make use of the concept of aggregated flights. Here, “synonymous” direct flights in our model are
aggregated to a single (direct) flight. In this case it is possible that several aircraft serve such a
single flight. Essentially, we can aggregate flights if the corresponding OD-pair “o — d” is not
involved in any via flight.

3.2 Schedule Generation Model

We model SGP as a capacitated network design problem with additional constraints (see Section 2,
especially Magnanti and Wong [19], and Minoux [20]). Compared to the general model, however,
we have to observe some additional constraints: we can only introduce an arc if it is part of a
feasible “virtual” route of an aircraft starting and ending in 7. Moreover, the passenger flow
between two nodes can only traverse at most two flight arcs.

We remark that SGP or rather its corresponding decision problem is strongly NP-complete.
This can be seen by using 3-PARTITION, which is known to be strongly NP-complete (see Garey
and Johnson [12]). A proof can be found in Noltemeier [21].

3.2.1 Assumptions

Based on the problem description in Section 3.1 we make the following assumptions. Extensions
of this model will be discussed in Section 7 where some of these assumptions will be dropped.

A1 (Associated home bases)
Each aircraft has an associated home base in H where it is parked over night. The selection
of home bases can be considered as a part of the optimization and is done with respect to
given airport capacity constraints.

A2 (Symmetric demands)
The demands are symmetric for each OD-pair, i.e. dem(o — d) = dem(d — o) for each day
of the week. This assumption is motivated by the fact that vacations are usually booked for
a multiple of a week, i.e. the departure and arrival day of the week are identical for each
passenger.

A3 (Symmetric capacities)
In resemblance to Assumption A2, the daily aircraft rotations must provide symmetric
capacities, i.e. cap(o = d) = cap(d — o) for each rotation. Thus, in this model the travelers
will be transported back to their home airport one or several weeks later using the same
aircraft rotation.

A4 (Via flights)
Aircraft rotations can contain two symmetric via flights (i.e., a pair of corresponding via
flights) in the home country or one via flight abroad, but not both. Observe that this
assumption is stronger than the restrictions on passenger itineraries as described above.

A5 (Passenger itineraries)
Passenger itineraries consist of at most two flight legs, i.e. doing a stop-over with or without
switching to another aircraft is allowed only once.

Remark: By Assumptions A2 and A3 we do not have to consider both OD-pairs “o — d” and
“d — o”.



3.2.2 Aircraft Rotations
Feasible aircraft rotations must meet several requirements, including
e airport opening hours,

e carliest departure times and latest arrival times at the airports, if opening hours are not
vacation-friendly (for example, very early in the morning),

e curfews (for example, by noise restrictions), and

e minimum ground times depending on departure and arrival airports of contained flights (for
example for loading/unloading, refueling, and catering).

Flight durations and costs for each subfleet and for each flight are given, as well as aircraft
utilization costs and the rentals for aircraft. Passenger dependent costs (as landing fees) are
modeled on passenger itineraries (see the next section for details).
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Figure 1: Tllustration of aircraft rotations; with via flights in ‘H

Figure 1 gives an example for aircraft rotations. There are three home airports (H01, H02, and
H03) and two airports abroad involved. The airports’ time lines are displayed by horizontal lines.
The (adjusted) airport opening hours are marked by left braces. Two rotation excerpts are shown,
both with via flights in the home country. Rotation p!, i.e. the first rotation (lower index) for first
aircraft (upper index) starts at HOl with a flight to HO2, then continuing to A02. Analogously,
p3 serves flights H03-H02 and H02-A01. As mentioned in Section 3.1, only the routes have to be
determined. Obviously, the possibility of a passenger to get a connecting flight is determined by
the exact departure and arrival times. The use of time windows in our approach is described in
Section 3.2.3.

Daily aircraft rotations follow a fixed pattern. The sequence of airports in the home country
and abroad is fixed. In our special case, the sequence is Hy, Hy, A, A3, Hy, A5, Hg, A7, Hg, Hy,
where H; € H and A; € A, i.e an aircraft rotation is made up of a sequence of compatible flights
fo, .-, fs, with dest(f;) = orig(fj+1), j = 0,...,7. This structure will be used in the “layered”
column generation network, which will be described in Section 4.1 (see Figure 3). The assumptions
imply that not all possible sequences of compatible flights are feasible. For example, assumption
A1 and the minimum block time for flights imply that we have an upper bound on the length
of daily aircraft rotations. Thus, some of these flights may be empty, i.e., the aircraft will stay
on the ground. The flights fy, f1, f7, fs, are used to model via flights in the home country and f»
represents via flights abroad.

Aircraft rotations and passenger itineraries will be linked very closely. The revenue per pas-
senger for the itinerary is known, as well as passenger dependent costs on aircraft (for example,
service charges and landing fees). Thus, an objective coefficient combining both terms can be
easily calculated.



3.2.3 Linking Aircraft Rotations and Passenger Itineraries

Considering again the example from Figure 1, Figure 2 shows six feasible passenger itineraries
ij,j7 =1,...,6. Observe, that itineraries are linked with rotations. To improve the efficiency of our
approach an aggregated version will be used in our implementation.
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Figure 2: Tllustration of link between aircraft rotations and passenger itineraries

As motivated before, departure and arrival times are important information for realistic aircraft
switches. Since we are only interested in the sequence while considering all operational constraints
we provide as much connecting points as possible. To describe our approach, we have to consider
the two cases where via flights in the origin country or via flights abroad occur.

In the first case this is realized by “compressing” the middle part of the rotation, i.e. the flights
f1 to fr7, and placing this part on the middle of the day. Thus, the flights fy and fg are done as
soon or late as possible, respectively.

In the latter case where via flights abroad are involved, we use the analog practice to create
time windows between f; and fo, and f» and fs.

3.3 Notation and Problem Parameters

Sets:

A: the set of all airports, indexed by a. Indices a~ and at are used for start and end airports.
K: the set of all aircraft, indexed by k.

QF: the set of all feasible aircraft rotations for aircraft k on day d, indexed by p.

M: the set of all OD-pairs (“markets”), indexed by m.

I'": the set of all passenger itineraries for OD-pair m on day d, indexed by ¢.

F': the set of all flights, indexed by (f,d) or just f, d day.

Decision variables:

0’;: = 1, if rotation p flown by aircraft k is in the solution, otherwise = 0.

Ya’“d: slack /surplus variables to model the position of aircraft k on airport a and day d, especially
used for rental aircraft.

x;: number of passengers taken on itinerary 4.
s': the passenger spill on the OD-pair m on day d.

Data and parameters:



N: the length of the planning period in days, 1 < d < N.
ck: cost for using aircraft k on rotation p.

¢t costs (i.e., —profit) per passenger flown on itinerary .

cap®: seat capacity of aircraft k.

nk: = 1, if aircraft k is available on day d, otherwise = 0.

rk . sk, € {~1,0,1}, lower and upper bounds on the supplementary variables Y},

dem[': the demand for the OD-pair m on day d.

)(']ip: the multiple of the aircraft capacity cap® provided in rotation p for the flight f, maybe 0.

dfp,0pit = 1, if aircraft rotation p or passenger itinerary i contains the flight f, respectively,
otherwise = 0.

dip: = 1, if the passenger itinerary i and the aircraft rotation p are sharing a flight, otherwise = 0.

orig(i), dest(i), orig(p), dest(p), orig(f), dest(f): origin and destination of passenger itinerary 7, air-
craft rotation p, and flight f, respectively.

3.4 Path-based Mixed Integer Programming Formulation

(SGM =) Minimize Z Z Z kol + Z Z CiT; (1)
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The objective function (1) minimizes the total cost, which is the sum of aircraft utilization
costs and costs on passenger itineraries. The link between provided aircraft capacities and trans-
ported passengers on itineraries is done by constraint set (2). Aircraft availability is ensured by
constraints (3). Constraint sets (4) and (5) define classical flow conservation constraints for the
aircraft rotations. For modeling complex situations where aircraft are only available partially, the
slack and surplus variables Ya’“d are introduced. Lower and upper bounds on these supplementary
variables are enforced by constraints (6). The relationship between the number of transported pas-
sengers for an OD-pair and the corresponding spill is given by (7). Constraints (8) impose binary
values for the path variables. Finally, passenger and spill variables are ensured to be non-negative
by constraint sets (9) and (10).

3.5 Overview of the Algorithm

Depending on the number of possible aircraft rotations, we propose to use a branch-and-cut or a
branch-and-cut-and-price algorithm to solve the problem.

In the given instances, there is only a moderate number of number of feasible rotations when
using aggregation. Thus working on the explicit integer linear program is possible. For larger
instances, column generation will become necessary. The linear relaxation of SGM, i.e. (1) — (10)
provides only a weak relaxation. We will develop cutting planes valid throughout the branch-and-
bound tree to tighten the relaxation.

4 Column Generation Subproblems

For large schedule generation instances, i.e. for instances with a large number of airports in H
and A, and many OD-pairs with positive demands, the number of feasible aircraft rotations can
become very large and thus can not be handled explicitely anymore. Also, relaxing all or some of
Assumptions A1, A3, and A4 drastically increases the number of aircraft rotations. In this case
we propose to apply a branch-and-price technique utilizing constrained shortest path problems
for generating new rotations dynamically, and thus to solve the problem. We refer the reader,
beside many other references, to Lasdon [16] for a detailed introduction, and to Barnhart et al. [3]
and Desaulniers et al. [11] for recent articles on modeling and solving problems using branch-
and-price. For the given instances and when observing all assumptions, the number of aircraft
rotations is of moderate size, and thus we work on the explicitely enumerated set of all rotations
in our computational study.

In Section 4.1 we describe the aircraft rotation subproblem, while Section 4.2 discusses the
passenger itinerary subproblem.

4.1 Aircraft Rotation Subproblem

Let (0, ) be the solution vector of the current restricted master problem (RMP), and let («, 3,7, €)
be its associated dual solution vector. Then, the reduced cost Ezlﬁ of an aircraft rotation p € QF for

aircraft k on day d, starting and ending at airport a~,a™ € A, respectively, is

ch=ch+ Z cap®xh, o t.a) — Bra — Veda— + Vrdat (11)
(f.d)eF
using the convention 70— = Vine- for the period wraparound. Observe, that SGM (i.e. (1) -

(10)) and (11) allow different airports a~ # at for departure in the morning and arrival in the
night, and thus is more general. We will discuss this as a possible extension in Section 7. For each
aircraft and each licensed home base a single network is defined. Nodes represent airport-layer
pairs according to the aircraft rotation pattern. Furthermore, source and sink nodes are added
and associated with the home base. Two different arc types are used. Arcs adjacent to the source
or the sink node are utilization arcs. They are used to keep track of the number of utilized aircraft.



Arcs connecting airport-layer nodes represent flight activities. Basic restrictions such as aircraft
ranges and curfews can be considered directly in the network, because only admissible flight arcs
are inserted.

The aircraft rotation subproblem now is the problem of finding an aircraft rotation that satisfies
all operational constraints, and prices out to have negative reduced cost. This problem can be
cast as the problem of finding shortest paths in the network defined above. There is a one-to-one
correspondance between feasible paths in the network and admissible aircraft rotations. Further,
the reduced cost components in (11) can be transfered to the arcs of the network, such that the
paths cost equals the reduced cost. To comply with the station opening hours and aircraft rotation
pattern, the networks can be solved by utilizing a resource-constrained shortest path algorithm.
For example, each arc in the network uses up an amount of the resource “time” (e.g., flying,
ground and waiting time). The comsumption of this resource is checked at each node in the
network. Time intervals represent the associated airport opening hours. Beside other possibilities,
this network can be used to enumerate all admissible paths. They can be stored in column pools,
and reduced costs can be calculated using (11). Figure 3 illustrates this network structure. An

Figure 3: Network structure for the aircraft rotation subproblem, home base HO1

excerpt for a network for an aircraft with home base HO1 is shown. A rotation serving a via
flight between home airports HO1 and HO02 (see layers 0 and 1, and 8 and 9), and serving flights
H02-A01-HO02 to airport AO1 abroad is shown by solid lines. This rotation omits nodes in layers
three to seven. Other flights in the network are indicated by dashed lines. Between layers there
is not necessarily a complete bipartite graph. For example, airport-layer nodes HO1 in layers 0
and 1 are not connected, because this only represents staying on the ground, and some arcs may
missing caused by curfews. A special arc for not utilizing the aircraft is also shown and connects
the source node with the sink node.

4.2 Passenger Itinerary Subproblem

Again, let (o, 3,7,¢€) be the current dual solution vector. The reduced cost ¢ of an passenger
itinerary i € I')* for OD-pair m on day d is

Z §fia(f7d) — €md- (12)

(f,d)eF

The number of passenger itineraries is small, because only one aircraft switch is allowed by
Assumption A5. Thus, we propose to explicitly enumerate all itineraries, and compute their
reduced costs directly, when necessary.



5 Obtaining Integer Solutions

Solving the linear relaxation of the formulation as stated in Section 3.4 directly leads to high frac-
tionality in the aircraft rotation variables 0’;. In this section, we will identify the set of constraints
of SGM causing the fractionality and being responsible for the weak linear relaxation. We propose
coefficient reduction and cutting planes to tighten the linear relaxation bound. Further, we will
discuss a depth-first heuristic and branching strategies for obtaining integer solutions.

5.1 Causes of Fractionality
This fractionality is caused by constraint set (2) of SGM,

o> dpwi <Y cap® Y xh by V(fd) EF.

meM eIy kEK peQk

For the analysis, we take a look on a single OD-pair. We ignore the remainder of the involved
aircraft rotations, and the aircraft utilization and flow conservation constraints, since they only
play a minor role.

OD-pair | Demand | Rev./Pass.

HO1-A01 144 DEM -360
H02-A01 174 DEM -365
H03-A01 162 DEM -380

Table 1: Demand data

Path Operating Rotations, providing a
Variable Costs capacity of 174 seats per flight

) DEM 45,000 | HOL A0l HO1L
P> DEM 47,000 | HO2 A0l HO02
s DEM 53,000 | HO3 A01 HO3
P4 DEM 77,000 | HO1 A0l HO02 A0l HO1L
s DEM 83,000 | HO1 A0l HO03 A0l HO1L
Do DEM 85,000 | HO2 A0l HO03 A0l HO02

Table 2: Operating costs and rotations

Assume, there are three OD-pairs HO1-A01, H02-A01, and H03-A01, and only one subfleet
(the Airbus A320 with an capacity of 174 seats) involved in this problem. Via flights are not
allowed. Using the demand and revenue data of Table 1 and the aircraft rotations, operational
costs and capacities of Table 2, the optimal solution to the relaxed problem of SGM is achieved by
0y, ~ 0.448, 6, ~ 0.379, 6,; ~ 0.552 and all other path variables =0, with an objective function
(cost) value of DEM -64,013. The capacity provided is equal to the demand and all passengers
are transported. The optimal integral solution is achieved by #,, = 6,, = 1 and all passengers
transported, with an objective function value of DEM -46.910, thus giving an integrality gap of
~26.7%.

5.2 Coefficient Reduction

A method to tighten the linear relaxation bound and thus to improve the solution behavior is to
reduce each coefficient of the aircraft rotations in constraint set (2) to be not greater than the
left hand side (LHS). Obviously, no integral solutions are cut off by this practice. Usually, the
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Path Operating Rotation and
Variable Costs provided capacities (after preprocessing)

P DEM 45,000 | HO4 (144) A02 (144) HO4

P DEM 47,000 | HO5 (174) A02 (174) HO5

s DEM 53,000 | HO6 (162) A02 (162) H06

4 DEM 77,000 | HO4 (144) A02 (174) HO5 (174) A02 (144) HO4
(144) (162)
(174) (162)

s DEM 83,000 | HO4 (144) A02 (162) HO6 (162) A02 (144) HO4
D6 DEM 85,000 | HO5 (174) A02 (162) HO6 (162) A02 (174) HO5

Table 3: Operating costs, capacities, and rotations

demand of passengers using a flight is greater than each aircraft capacity, particularly if passenger
itineraries and via flights are involved. Using again the demand data of Table 1, the provided seat
capacities for the above example become as summarized in Table 3. The optimal solution to the
relaxed problem is achieved by 6,, = 0.503067, 6,, = 0.496933, 8,, = 0.496933, with an objective
function value of DEM -54,6891, and an integrality gap of ~14.2%. Again, all passengers are
transported.

5.3 ‘Min-Cover’ Inequalities

Lifted cover inequalities were introduced by Crowder et al. [9] and applied to pure binary programs.
Padberg et al. [22] and van Roy and Wolsey [27] extended these inequalities to generalized flow
cover inequalities for mixed-binary programs. Our cutting planes are related to the cuts described
in these references. We will compare the results of our computational experiments with results
obtained by the CPLEX mixed-integer program solver (see [1]) and MINTO (see Savelsbergh and
Nembhauser [25]) in Section 6.2.4. In these solvers cuts following the line of Crowder et al. are used.

To describe the application of min-cover inequalities to the SGP, we temporarily assume, that
no via flights are involved in the planning process, i.e., no itineraries consisting of two flights are
given and thus demands can only be satisfied by direct flights. In the following we consider a
specific aggregated direct flight locally, i.e. we ignore the remaining part of the rotations and the
aircraft utilization constraints.

Now assume that coefficient reduction has already been performed and consider a fixed ag-
gregated flight (f,d) € F with a demand of the corresponding OD-pair of dem. The passenger
itinerary and aircraft rotation linking constraint (2) can be rewritten as follows. The LHS reduces
to a single passenger variable, say z;. The right hand side (RHS) can be expanded by using the
actual provided capacity W’JE (p) of each aircraft rotation p, incorporating the multiplier X’}p and
the reduced coefficients. Thus,

<Y Y canb) o (13)

kEK peQk

Let ¢; < ... < ¢, be the different (non-zero) capacities m’}(p) in (13). Observe, that there
may be more different capacities ¢; than aircraft capacities. The aircraft rotations can now be
partitioned according to their capacities, i.e.

Q= {(p,k) | k€ K, pe Qb @ph(p) =¢;}

for 1 < j < n. Introduce new variables y; counting the number of aircraft serving (f,d), each
providing a corresponding capacity of c;, i.e.

yi= > 0, (eN).

(p,k)EQY,

11



The variables y; are implicitly integral. Further, we use the variable sp to denote the number of
passengers that are spilled on this flight. Obviously, the following cover inequality must hold:

ciy1 + ...+ cpyn > dem — sp. (14)
Let
X = {(y, sp) € N**! | Inequality (14) holds for (y, sp)}

be the set of all feasible integer configurations, and P = conv(X) the convex hull of X. The local
subproblems occurring in SGM are of moderate size, since the number of different aircraft seat
capacities is limited. Thus, we can calculate all facets of P in advance during a preprocessing step.
The computation of the facets is performed using e.g. PORTA [7]. The inequalities corresponding
to the facets of P are valid for SGM (in absence of the neglected constraints). Clearly, they are
valid for the complete SGM, too, but not necessarily facet inducing anymore.

When via flights and passenger itineraries are involved, min-cover inequalities can be used,
too, although the situation becomes more complicated. In contrast to the case without via flights,
the variables y;,1 < 7 < n correspond to the number of aircraft with a certain capacity c; serving
a direct flight or a follow-on. A follow-on is a sequence of two compatible successive direct flights.
In our case, we consider follow-ons completely in H and follow-ons completely in A (i.e. the via
flights as described above), in addition to the direct flights. However, the number of allowed via
flights is small in our test instances, and the local min-cover facets can be calculated explicitly,
see Section 6.2.

Observe that for our computational study all facets to the (local) min-cover polyhedron are
calculated explicitly. The computational effort for explicitly computing the facets depends on the
demand dem, the number of different aircraft seat capacities ¢1, ... ,¢,, and the number of allowed
via flights. If computation time exceeds justifiable limits, “aggregated” capacities can be used. If,
for example, an aircraft rotation with a capacity of ¢; seats serves a direct flight twice, this can be
seen as an aircraft with seat capacity c; = 2¢; serving this direct flight once. This may increase
the number of different capacities, but leads to deeper cuts than expressing this as 2¢;. Thus, the
expanded version should be used whenever possible.

5.4 A Depth-First Heuristic

To obtain good feasible solutions quickly, we use a search heuristic. The heuristic fixes aircraft
rotations to 1 in a depth-first manner, and can be applied at every node of the branch-and-bound
tree. Obviously, every aircraft rotation solution taking aircraft utilization and flow conservation
constraints into account yields a feasible solution. Thus, we do not have to employ column
generation while applying the heuristic.

O Fix one (or a few) aircraft rotation variable(s) 6 with

ROUND_THRESHOLD < 6} < 1

to 1. ROUND_THRESHOLD is a value near to 1, and gives the threshold for the variable
to be a candidate for rounding to 1. Usual values chosen are 0.85 or 0.95.

O Resolve the LP without employing column generation.

O Fix aircraft rotation variables 0’; with high (positive) reduced costs exceeding a given limit
to 0.

O If the current solution is integer, update the best feasible solution.

O If the current objective function value is smaller than best known feasible solution, goto [I.
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0 Make a few backtracking steps using different aircraft rotation variable(s) in O,
or: start a complete new search with [,
or: stop the heuristic.

This heuristic can be extended for weekly problems in a straightforward way. A weekly rotation
for an aircraft in Kp, has to be found and fixed. This rotation consists of aircraft rotation
variables 9’; for every day of the week. Aircraft from K are handled similar. The efficiency of
this heuristic will be stated in Section 6.2.

5.5 Branching

We have applied different branching strategies in our computational experiments to obtain integer
solutions. Although the standard branching rule on variable dichotomy makes the pricing problem
more complicated, the empirical results are worth mentioning. Thus, besides more sophisticated
branching rules it will be described here, too.

5.5.1 Variable Dichotomy

The standard branching rule for Mixed Integer Programming is not directly applicable if column
generation is used. In the case that variables are set to 0, the pricing problem must incorporate
these decisions and not return to this variable again. This leads essentially to finding the [ 4+ 1-best
variable in the subproblem, if [ variables are already set to 0. In addition, setting variables to 0
does not divide the search space in two equal-sized parts, which is usually preferred. Nevertheless,
setting variables only to 1 is closely related to the depth-first heuristic (when working on a fixed
set of columns) and yields good solutions.

5.5.2 Number of used Aircraft
If the number n' of aircraft used on day d in the current relaxation, i.e.

W= 6 (15)

keK peQk

with K = K, is fractional, branches that require this number to be < |n/] and > [n'] can be
created. This rule can be applied to subsets of K, too. For example, the set K of all aircraft can be
partitioned into subfleet groups K = K;U---UK], each containing the same aircraft type. Thus,
the number of aircraft used of a given type (n' in (15) with K = K; for a subfleet ¢) is required to
be < |n'| and > [n'], respectively.

5.5.3 Number of Aircraft on Direct Flights

Consider an aggregated direct flight (f,d) on a fixed day d. This flight may be flown by several
aircraft rotations involving several aircraft in the current relaxation. Obviously, the number of
aircraft serving this flights has to be integral. Thus, for a fractional value

I k
=3 > 0
keK pGQZ

(f.d)ep

branches forcing the number to be < |r'| and > [r'] may be created. Analog to 5.5.2, this rule
can be applied to subfleet groups, too.
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5.5.4 Number of Aircraft on Follow-Ons

Consider two compatible successive direct flights (f;,d), dest(f1) = orig(f2), j = 1,2. As intro-
duced in Section 5.3, the combination f; — fs is called a follow-on. A Ryan/Foster-like branching
rule (Ryan and Foster [24]) on follow-ons is frequently used for routing and scheduling type prob-
lems (see, for example Desaulniers et al. [11] and Barnhart et al. [28]). In most formulations,
a task has to be covered exactly once. Thus, the flow on this follow-on is forced to be 0 or 1,
respectively.

In our formulation, several aircraft may serve direct flights and follow-ons. We propose an
extension of this rule applicable to the SGP. If the number of aircraft r’ serving a follow-on is
fractional with

=3 > o
ke K pGQI;
(fi—f2)€p

two branches < |7'] and > [r'] as described above are created.

6 Computational Results

To prove the efficiency of our approach, we provide experimental results on data sets received
from a major charter airline. These instances describe a typical summer week. There are 18 home
airports, and ~40 destination airports. All of them are reachable by short and medium haul
flights.

We would like to remark, that for the results given in this paper perturbed data sets have been
used. The revenues given do not correspond to revenues of the airline! Besides, it seems that the
charter airline used a different objective function and maybe some additional constraints. Thus,
the improvements of our solutions compared to the hand solutions provided by the charter airline
seem to be non realistic.

All computational results are obtained on a customary 333 MHz Pentium-II personal computer
equipped with 256 MByte RAM. All run-times shown in the tables are in seconds, and do not
include the time for reading the input files and preparing the initial data (such as kernel LP and
networks).

The BnP (Branch-&-Price) library developed at ZAIK is used as a framework. The primal und
dual simplex algorithms of CPLEX [1] are used for solving all LP relaxations, and are called as a
subroutine from BnP.

6.1 Data Sets

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su
Num. H airports 16 11 16 13 14 16 15
Num. A airports 9 10 11 11 11 15 12
Num. of OD-pairs 47 48 60 54 55 89 63
Sum of demands 10.011 10.071 12.220 10.768 14.707 19.601 18.124
Num. of AC types 6 7 7 7 6 11 9
Num. of AC 29 30 30 30 33 64 53

| Keun] + |Kpart| 26+3 26+4  26+4 26+4 26+7 26+38 26+27

Table 4: Characteristics of “Summer 1998” data set (single days)

The characteristics of our test instances are presented in Table 4. The columns show each
day of a standard summer week (Summer 1998), named S98-Mo through S98-Su. The rows
Num. H airports and Num. A airports give the number of home airports and airports abroad,
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respectively. The next both rows indicate the demand structure. The number of OD-pairs with
nonzero demand, and the overall sum of passengers are given. In the last block, Num. of AC
types shows the number of different subfleets involved. Finally, Num. of AC gives the number
of available aircraft. The both components indicate the number of own aircraft (|Kgu|) and the
number of aircraft the company may rent from other carriers (| Kpart|)-

The complete week S98-Week makes up one further instance. It consists of 18 home airports,
38 abroad and of 266 OD-pairs. The sum of demands and the number of subfleets and available
AC can be obtained by summing the characteristics of the involved days.

6.2 Results

The results had been carried out in various test series. Decisions that have to be done include
whether via flights are involved (and if, where they are allowed) or not. Also, the distribution of
aircraft at the beginning of the planning horizon may be predetermined or considered as part of
the optimization. They interact with the airport capacities, since only limited space for parking
aircraft overnight is available. Further, they must observe the defaults of the airline. The airline
provided hand-made schedules to us and the aircraft distributions from these solution will be used.
The number of spilled passengers plays an important role, too. Although, usually the market data
give overbooked demands, the passenger spill should not exceed certain limits. Thus, restricting
the spill on certain OD-pairs or the overall spill, maybe in combination with penalty costs, is
possible.

In this section we give computational results for different scenarios. We split the results into
four parts. Sections 6.2.1 and 6.2.2 deal with the SGP using a predetermined or free aircraft
distribution, respectively, but with no via flights allowed. Results for the weekly problem can
be found in section 6.2.2, too. Section 6.2.3 discusses the case with via flights involved. In
Section 6.2.4, we compare the results achieved by our optimizer with the results obtained by
CPLEX (see [1]) and MINTO (see Savelsbergh and Nemhauser [25]).

6.2.1 Results without via flights, fixed distribution of AC

Table 5 summarizes the results for each day of the “Summer 1998” instance. In this instances the
aircraft distribution was predetermined using the distribution in the given hand-solution. The first
block of this table gives information on the solution of the branch-and-bound root node. The row
LB w/o cuts shows the relaxation lower bound (LB) after solving SGM without any additional
cuts. The number of cutting plane iterations and inserted min-cover cuts is given next. The LB
of the tightened relaxation is given in the next row. The bound improvement is shown in the row

Bound impr. and is calculated by (LB W/C'Lgls:/g :ﬁsw/wts). The row CPU displays the used CPU

time in seconds. The next blocks show information on the first and best feasible solutions found.
The CPU time was limited to 1 hour. B&B node gives the number of the branch-and-bound node
in which this solution was found. Next, again information on the cutting plane process are shown.
New cuts were only generated for branch-and-bound nodes with depth < 3, and the numbers refer
to all nodes but the root node. Only successful runs of the separation routine, i.e. runs finding
violated cuts, were counted in Cut iter.. For all instances the depth-first heuristic applied in the
root node yields a (first) feasible solution. Thus, there are no branch-and-bound and cutting
plane information for the “First feas.” block. The objective value and the gap (giving the quality
guarantee) are provided next. For a feasible solution with objective value “Obj. feas.” the latter

. LB — Obj. feas.
is calculated by ( w/ E‘]‘;SW /ngj £a8

comparison of our obtained solutions with the given hand-solutions, the number of (overall) spilled
passengers and the number of utilized aircraft are given. The last block provides information on
the hand-solution. Although we do not allow via flights in these runs, the airline solution contains
via flights, and its evaluation was elaborated incorporating these via flights. A comparision of
our obtained solutions (without via flights) with the given hand-solution (containing via flights)
shows, that our approach reduces the number of used aircraft, but increases the number of spilled

). Next, the accumulated CPU time is shown. For a rough
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node
LB w/o cuts -1,230,556 -1,186,034 -1,242,441 -1,381,389 -1,592,853 -2,178,304 -2,118,376
Cut iter. 4 4 2 5 7 11 9
Cuts inser. 38 29 27 45 75 144 130
LB w/cuts -1,146,974 -1.120.285 -1,165,879 -1,274,329 -1,505,859 -2,057,952 -2,003,195
Bound impr. 6.79% 5.54% 6.31% 7.75% 5.46% 5.53% 5.43%
CPU 4 5 15 7 27 94 139
First feas.
Obj. -1,117,702 -1,099,686 -1,163,920 -1,240,945 -1,482,556 -1,962,334 -1,904,021
Gap 2.55% 1.84% 0.17% 2.61% 1.55% 4.65% 4.95%
CPU 6 7 19 9 33 115 230
Spilled Pass. 1045 1,053 2,053 1,050 1,424 1,878 1,804
Num. used AC 22 23 23 24 28 49 39
Best feas.
B&B node 53 2 7 7 7 15 17
Cut iter. 2 2 2 0 1 1 0
Cuts inser. 3 2 3 0 1 4 0
Obj. -1,136,116 -1,119,281 -1,163,921 -1,273,197 -1,486,976 -2,051,895 -1,947,594
Gap 0.95% 0.09% 0.17% 0.09% 1.25% 0.29% 2.78%
CPU 123 11 59 34 407 487 2,168
Spilled Pass. 808 939 2,053 717 1,394 1,226 1,186
Num. used AC 22 23 23 24 28 52 40
Airl. Sol.
Spilled Pass. 553 445 852 617 631 709 598
Num. used AC 29 30 30 30 33 64 53

Table 5: Results for “Summer 1998” (fixed distribution of aircraft, w/o via flights)

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su
Fixed AC distribution
Constraints 197 200 224 212 213 320 257
Variables 3,898 2,665 11,257 5,883 7,340 17,231 13,401
Nonzero’s 19,119 11,824 58,418 28,884 38,427 87,732 70,336
Cuts 644 2,094 4836 1,151 3,030 3,264 6,376

Table 6: Statistics on “Summer 1998” data set (fixed distribution of aircraft, w/o via flights)

16



passengers. The objective value is improved by about 21% in average, but this improvement must
be handled very carefully as discussed above.

The characteristics of the aggregated linear programs and the number of precalculated min-
cover inequalities are shown in Table 6. For this computational study, fixed costs for transporting
a passenger are independent of the used aircraft type. Using the more detailed cost components
will of course not influence the number of min-cover inequalities but the required times for solving
the linear programs. The size of the linear programs is moderate and no dynamic column gen-
eration is needed. Clearly, if more flights per rotation are allowed or more airports are involved
this number will increase significantly. Min-cover cuts are computed and stored in a database
whenever a new “local” problem occurs. The running-time required to calculate all cuts necessary
for the problems in this paper is less than 2 hours.

These results demonstrate that “mathematically” convincing solutions to the SGP could be
obtained using the proposed model. The lower bounds were improved by 6.12% in average and the
average gap amounts to 0.80%. In these runs neither the passenger spill was bounded (global or
on OD-pairs) nor penalty costs for spilled passengers were applied. A drawback of these solutions
is the high number of spilled passengers. It ranges between 1,16 and 2,41 times the corresponding
spill in the given hand-solutions. The demands are usually made up of two or three different
components, FIX, ProRata and I. The component FIX represents the largest part. In average,
this is more than 85%. It contains especially seats already sold to tour operators. In contrast,
the components ProRata and I are sold directly. Thus, spilling passengers from FIX should be
avoided. Table 7 summarizes the results for all days incorporating limited and penalized spill. No
penalty costs apply for spilling passengers from ProRata and I but a linearization of a quadratic
cost function for spilling passenger from FIX is charged. The objective value given does not reflect
the penalty cost and thus is comparable to our other results. These results are not achieved in a
single run but are the outcome of an iterative and interactive process in which penalty costs and
hard limits have been set and readjusted a (very) few times. In an industrial use of our system
the skills of scheduler are still necessary, yet. The number of used aircraft increased compared
to Table 5 but is still a reduction compared to the airline hand solution. Also, renting aircraft is
usually due to a long term contract and so it is not the most important aim to reduce the number
of aircraft used. Further, the number of spilled passengers could be decreased compared to both
our previous solution and the hand solutions.

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su
Solutions
Obj. -1,132,803 -1,083,427 -1,125,464 -1,271,571 -1,444,010 -1,881,585 -1,903,347
Gap 1.24% 3.29% 3.47% 0.22% 4.11% 8.57% 4.98%
Spilled Pass. 476 409 773 604 631 689 583
Num. used AC 23 25 26 25 31 54 42

Table 7: Results for “Summer 1998” (fixed distribution of aircraft, with bounded spill, w/o via
flights)

6.2.2 Results without via flights, free distribution of AC

Table 8 shows the results for a predetermined aircraft distribution for rented aircraft only, as
explained above. Own aircraft are allowed to reposition. For the two data sets “S98-Tu” and
“S98-We” the solution to the relaxation is feasible, too. For most of the data sets, the number of
spilled passenger is smaller compared to the solution with fixed aircraft distribution. The lower
bounds were improved by 5.67% in average and the average gap amounts to 0.84%.

Table 9 summarizes the results for the complete week instance “Summer 1998” without via
flights, where own aircraft are allowed to reposition. The first block of this table gives information
on the solution of the branch-and-bound root node, the second shows information on the first and
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node
LB w/o cuts -1,332,149 -1,209,941 -1,286,956 -1,411,771 -1,653,388 -2,222,227 -2,155,338
Cut iter. 4 8 4 4 6 9 12
Cuts inser. 43 36 40 53 78 145 139
LB w/cuts -1,243,407 -1,149,911 -1,199,076 -1,305,578 -1,559,230 -2,109,345 -2,047,228
Bound impr. 6.66% 4.96% 6.83% 7.52% 5.69% 5.08% 5.02%
CPU 3 8 23 9 28 77 141

First feas.
Obj. -1,229,153 -1,149,910 -1,199,075 -1,245,924 -1,327,036 -2,030,912 -1,905,485
Gap 1.15% 0% 0% 4.56% 14.8% 3.72% 6.92%
CPU 4 9 27 12 31 177 183
Spilled Pass. 566 890 1,686 1,232 2,010 1,351 868
Num. used AC 23 24 23 22 28 48 41

Best feas.
B&B node 194 0 0 19 12 42 10
Cut iter. 0 0 0 0 1 1 0
Cuts inser. 0 0 0 0 14 1 0
Obj. -1,232,572 -1,149,910 -1,199,075 -1,302,818 -1,539,635 -2,079,489 -2,003,694
Gap 0.87% 0% 0% 0.21% 1.26 % 1.42% 2.13%
CPU 305 9 27 103 189 3,522 676
Spilled Pass. 534 890 1,686 761 841 1,157 887
Num. used AC 23 24 23 23 30 52 41

Table 8: Results for “Summer 1998” (free distribution of aircraft, w/o via flights)

best feasible solution found. The columns Sp. Pass. and Num. AC give the number of spilled
passengers and the sum of the number of utilized aircraft, respectively.

LB w/o cuts Cut iter. Cutsinser. LB w/cuts B. impr.

Root node -11,254,926 12 620 -10,566,445 6.12%

B&B node Cut iter.  Cuts inser. Obj. Gap Sp. Pass. Num. AC
First feas. - - - -10,015,498 5.21% 9,042 204
Best feas. 5 0 0 -10,355,282 2.00% 9,480 204

Table 9: Results for complete week “Summer 1998” (free distribution of aircraft, w/o via flights)

A comparision of our best feasible (weekly) solution to the given hand-solution showed, that
we spill about 5075 passengers more than the airline, but reduce the sum of used aircraft from
269 to 204 and increase the objective value about 23%.

Remark, that the best feas. solution above achieves a better objective value and reduces the
number of spilled passengers compared to the joined solution with fixed aircraft distribution (see
Table 5).

6.2.3 Results with via flights

Table 10 summarizes the results for the “Summer 1998” instance with via flights included. The
aircraft distribution was predetermined using the distribution in the given hand-solution. The set
of considered via flights was restricted to a given (from the airline) set of allowed via flights.

The lower bounds were improved by 5.97% in average and the average gap amounts to 0.54%.
Since the number of possible flights increases by including via flights, the objective value of the
relaxation of the SGM with additional via flights without any additional cuts and the objective
value of the tightened relaxation are better than the corresponding objective values without via
flights (see Table 5). All but one feasible solutions include via flights. This seems to happen
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su

Root node
LB w/o cuts -1,275,794 -1,197,550 -1,274,681 -1,415,317 -1,627,163 -2,223,668 -2,133,967
Cut iter. 4 4 5 4 5 8 9
Cuts inser. 39 29 44 47 72 123 146
LB w/cuts -1,188,105 -1,129,078 -1,196,086 -1,314,771 -1,538,560 -2,102,624 -2,016,670
Bound impr. 6.88% 5.72% 6.17% 7.10% 5.45% 5.44% 5.50%
CPU 16 8 89 21 59 235 328

First feas.
Obj. -1,179,838 -1,129,078 -1,193,168 -1,314,247 -1,518,790 -2,010,409 -1,879,896
Gap 0.78% 0.00% 0.24% 0.00% 1.28% 4.39% 6.78%
CPU 30 8 89 21 59 285 352
Spilled Pass. 824 1,008 1,735 713 1,223 1,943 1,308
Num. used AC 23 23 23 22 29 48 39

Best feas.
B&B node 18 1 13 9 3 7 5
Cut iter. 1 0 8 3 3 2 4
Cuts inser. 1 0 15 11 5 5 12
Obj. -1,180,671 -1,129,078 -1,193,168 -1,314,247 -1,518,790 -2,080,883 -1,959,598
Gap 0.63% 0.00% 0.00% 0.00% 1.28% 1.03% 2.83%
CPU 57 8 480 107 132 1,156 807
Spilled Pass. 797 1,008 1,735 713 1,223 1,260 1,092
Num. used AC 23 23 23 22 29 51 42

Table 10: Results for “Summer 1998” (fixed distribution of aircraft, with via flights)

because in general a via flight including two OD-pairs with low demands is cheaper than two
non-via flights including one OD-pair each.

6.2.4 Results obtained by MINTO and CPLEX

We compared the lower bounds and feasible solutions obtained by our BnP-Optimizer with the
results by the MINTO mixed-integer solver (Savelsbergh and Nemhauser [25], Version 3.0a, which
is calling CPLEX [1] as a subroutine for solving the LP relaxations) and the CPLEX mixed-integer
package, Version 6.0 (see [1]).

The computational results shown in the previous sections have been obtained by solving an ag-
gregated (mixed-integer) version working on subfleet groups rather than solving the single (mixed-
binary) aircraft formulation. Le., if there are two aircraft of the same subfleet group serving the
same rotation, the corresponding variable will take the value two in contrast to two single aircraft
rotation variables taking the value one. Instead of working on individual aircraft for this compar-
ison we only consider the case where an aircraft rotation is allowed to be flown at most once for
each subfleet group, which is a restriction but yields a mixed-binary problem.

MINTO improved the lower bound in average by ~ 1% for the binary problem and ~ 0.02%
for the integer version of the problem. The average gap MINTO sees is 8.53% for the binary
problem, and 34.72% for the integer problem. No solutions for data sets “S98-Sa” and S98-Su”
were found at all. CPLEX did not succeed in improving the bounds at all. The average gaps
amount to 21.11% and 20.62%. (See Appendix for details.) In contrast to that, the BnP optimizer
improved the lower bounds by 6.11% and 6.12% for the binary and integer problems, respectively,
while average gaps amount to 0.93% and 0.80%.

7 Extensions

The basic assumption of our model is the even distribution of demands over the planning period,
which is half a year in our case. Usually, in charter business the flights or complete vacation
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packages are booked for one up to several weeks. Assumption A2 stems from this fact and leads
to Assumptions A3 and A1. Weekly schedules repeated for a complete season are not sufficient
to model big changes in the demand caused, for example, by the beginning and end of school
vacations. Our model can be extended by dropping the basic assumption and incorporating more
detailed demand information. In this case, demands are not symmetric anymore, i.e., Assumption
A2 is dropped. Changes to the model and algorithm are twofold. First, the fixed aircraft rotation
pattern has to be relaxed to include a) more rotations but still respects the via flight constraint
(per rotation), or b) all rotations which are operationally feasible. Second, the return flight of
each passenger must be ensured. ILe., if a passenger booked a flight to a destination abroad with
a return flight n weeks (or even days in the extended model) later, it must be ensured that she/he
will be transported back home again that date. Clearly, this also requires to choose a sufficiently
long planning horizon.

It would be interesting to analyze the effects of this less restricted model on a) the instances
with symmetric demands used in the previous section, and b) including big demand changes.

8 Conclusions

In this paper, we study a specific airline schedule generation problem which has not been presented
in the literature before. We present a network design model which models the airline’s current
practice as a special case. We give a path-based mixed-integer programming formulation and
present a solution approach that allows us to solve real world instances with nonlinear costs on
aircraft rotations and passenger itineraries. Empirically good results confirm the tight approxima-
tion of the polyhedron conv(SGP) (i. e., the convex hull of all feasible solutions to SGP) by local
min-cover inequalities. We demonstrate the efficiency of our approach for real world instances of
a major charter airline. Our implementation solves most of the instances with an integrality gap
of a very few percent and running times in the order of minutes on a customary PC.
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Appendix

Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa, S98-Su
Relaxation of (1) — (10)
Root node
LB -1,230,547 -1,186,034 -1,242,441 -1,381,218 -1,592,579 -2,178,288 -2,118,325
BnP-Optimizer
Root node
#min-cover 38 29 27 42 72 139 130
LB w/cuts -1,146,974 -1,120,285 -1,165,879 -1,274,329 -1,505,859 -2,057,953 -2,003,195
Bound impr. 6.79% 5.54% 6.31% 7.74% 5.44 % 5.52% 5.43%
Best feas.
+#min-cover 0 2 9 3 2 4 0
Obj. -1,134,839 -1,119,281 -1,163,921 -1,273,197 -1,484,201 -2,033,522 -1,953,032
CPU 35 8 76 46 31 704 438
Gap 1.06% 0.09% 0.17% 0.09% 1.44% 1.19% 2.50%
MINTO, Version 3.0a
Root node
#gen.-fc 84 61 89 74 112 191 152
LB w/cuts -1,212,309 -1,173,888 -1,237,928 -1,360,490 -1,576,406 -2,160,934 -2,099,787
Bound impr. 1.48% 1.02% 0.36% 1.50% 1.02% 0.80% 0.88%
Cmp. to BnP -5.70% -4.78% -6.18% -6.76% -4.68% -4.77% -4.60%
Best feas.
#gen.-fc 769 781 969 854 1,128 919 907
Obj. -1,135,283 -1,109,730 -1,126,033 -1,255,086 -1,434,582 -1,922,616 -1,896,551
B&B node 1,947 21,150 12,150 31,950 21,150 300 7,800
#nodes 131,206 114,691 17,434 46,319 24,437 2,501 8,612
CPU 175 1,505 5,819 4,997 6,534 1,577 7,015
Gap 6.35% 5.47% 9.04% 7.75% 9.00% 12.40% 9.68%

Cmp. to BnP 0.04%  -0.94%  -3.26%  -1.42%  -3.34%  -5.77%  -2.98%
CPLEX (MIP), Version 6.0

Best feas.

Obj. -1,015,095 -1,046,896 -892,065 -1,193,269 -1,262,574 -1,468,056 -1,567,351
B&B node 151,680 137,370 48,550 1 95,350 1,370 8,520
#nodes 349,751 393,441 66,092 135,291 102,245 8,078 19,670
CPU 1,791 1,373 2,926 17 3,730 691 1,768
Gap 17.51% 11.73% 28.20% 13.61% 20.72% 32.61% 23.38%

Cmp. to BnP -10.55% -6.47%  -23.36% -6.28%  -14.93%  -27.81%  -19.75%

Table 11: Comparison of BnP-Optimizer with MINTO and CPLEX, Part I
(Results for “Summer 1998” with fixed distribution of aircraft, w/o via flights, binary version);
(#gen.-fc.: number of generalized flow cover cuts inserted)
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Name S98-Mo S98-Tu S98-We S98-Th S98-Fr S98-Sa S98-Su
Relaxation of (1) — (10)
Root node (int.)
LB -1,230,556 -1,186,034 -1,242,441 -1,381,389 -1,592,853 -2,178,304 -2,118,376
BnP-Optimizer
Root node (int.)
#min-cover 38 29 27 45 75 144 130
LB w/cuts -1,146,974 -1.120.285 -1,165,879 -1,274,329 -1,505,859 -2,057,952 -2,003,195
Bound impr. 6.79% 5.54% 6.31% 7.75% 5.46% 5.53% 5.43%
Best feas.
+# min-cover 3 2 3 0 1 4 0
Obj. -1,136,116 -1,119,281 -1,163,921 -1,273,197 -1,486,976 -2,051,895 -1,947,594
CPU 123 11 59 34 407 487 2,168
Gap 0.95% 0.09% 0.17% 0.09% 1.25% 0.29% 2.78%
MINTO, Version 3.0a
Root node
#gen.-fc 3 2 2 0 2 1 1
LB w/cuts -1,229,661 -1,185,565 -1,241,854 -1,381,389 -1,592,134 -2,178,275 -2,118,327
Bound impr. 0.07% 0.04% 0.04% 0% 0.05% ~ 0% ~ 0%
Cmp. to BnP -7.21% -5.92% -6.52% -8.40% -5.73% -5.85% -5.75%
Best feas.
#gen.-fc 106 86 17 45 37
Obj. -1,009,030 -1,068,683 732,477 731,477 679,769 n/a n/a
B&B node 75,100 100,300 14,300 90,900 7,200
#nodes 128,792 135,996 48,208 95,528 71,368
CPU 4,317 4,968 2,608 7,422 841
Gap 17.94% 9.86% 41.02% 47.05% 57.30%
Cmp. to BnP -11.19% -4.52%  -37.07%  -42.55%  -54.29%
CPLEX (MIP), Version 6.0
Best feas.
Obj. 1,043,790 -1,075,741  -936,315 -1,114,229 -1,293,978 -1,520,586 -1,548,376
B&B node 61,320 8,050 81,180 76,630 24,430 5,510 6,470
#nodes 402,541 392,793 82,600 119,394 98,211 8,670 19,110
CPU 638 89 3,932 2,554 1,001 2,535 1,320
Gap 15.18% 9.30% 24.64% 19.34% 18.76% 30.19% 26.91%
Cmp. to BnP -8.13% -3.89%  -19.56%  -12.49%  -12.98%  -25.89%  -20.50%

Table 12: Comparison of BnP-Optimizer with MINTO and CPLEX, Part II
(Results for “Summer 1998” with fixed distribution of aircraft, w/o via flights, integer version)
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