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We will present an algorithm, based on SA-techniques and a sam-

pling procedure, that colors a given random 3-colorable graph with

high probability in sublinear time. This result is the �rst theoreti-

cal justi�cation of many excellent experimental performance results of

Simulated Annealing [10, 17] applied to graph coloring problems.

1 Introduction

Johnson et al. [10] and Petford and Welsh [17] report on very good

practical results of Simulated Annealing for coloring random graphs. Com-

pared to deterministic algorithms such as described in [12] and [20], Simu-

lated Annealing �nds correct colorings faster on almost all random instances.

Taking these practical results as a starting point, we will consider the same

random model as in [17]. We assume a given set of n vertices partitioned into

three color classes, each pair of vertices of di�erent color being connected

with a certain probability p. Thus, the random graphs are 3-colorable. Due

to the simplicity of the representation, and due to the fact that in a sense the

3-colorability case is the most di�cult, we consider only this case. However,

most results seem to be extendible to the arbitrary k-colorability case.

There exist already some deterministic algorithms [3, 20, 12, 5] presented

by various authors which color a given random instance correctly with three

colors and with high probability. As usual, the term \with high probability"

means that the probability tends to 1 as the problem size tends to in�nity.

All deterministic algorithms mentioned so far show the characteristic that

�

Supported by DFG-grant (Schr 390/2-1)

Extended Version of [16].



the correct construction of the 3-coloring requires nearly equal sized color

classes (up to a factor of 1+o(1)). Moreover, this construction takes a num-

ber of steps, that is linear in the number of edges of a given random graph.

In the usual sense the time complexity is of course optimal, because the size

of the input is linear in the number of edges. Furthermore, a veri�cation of

the correctness of the coloring requires a number of steps that is at least as

large as the number of edges.

But the extremely good performance of Simulated Annealing on random

instances raises the question, wether it is possible to construct a correct

3-coloring of a given instance even faster. This means that we try to �nd a

correct coloring without looking at every edge. Aside from the theoretical

point of view, the answer of this question is of course only of practical value

for on-line applications, where the demand of a correct coloring must only

be ful�lled with high probability.

In the following section we will answer this question in the a�rmative.

We will describe an algorithm that uses SA-type techniques and a sampling

procedure to compute the cost function more e�ciently. This algorithm will

stop after a number of steps that is strictly less than the number of edges.

We will show that this algorithm produces with certainty a coloring of a

given random graph with equal sized color classes and that this coloring is

a correct one with high probability over all graphs and random steps.

Only two results are published by now concerned with the convergence of

Simulated Annealing in polynomial time. Jerrum and Sorkin [9] proved

the convergence to an optimal solution on certain random instances of the

Graph Bisection Problem in O(n

3

) steps, where n is the number of vertices.

Hajek and Sasaki [19] were engaged with the performance of Simulated

Annealing applied to the Maximum Matching Problem and showed Sim-

ulated Annealing to be in a near optimal state in polynomial time. But

these authors consider only the Metropolis process (Simulated Annealing at

a certain �xed temperature) and thus investigate the convergence of a ho-

mogeneous Markov chain. In the following, we will show the convergence of

Simulated Annealing with varying, time-dependent temperatures. Colorings

in sublinear time are also found by the algorithm introduced by Pr

�

mel and

Steger [18], however, they do not consider SA-type algorithms.

In order to improve the readability most proofs in this section are deferred

to Chapter 9.

2 Random Model

We consider a quite simple random model ensuring that every graph taken

from the induced probability space is 3-colorable with equal sized color
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classes. The model introduced here is commonly accepted and already used

by several authors [20, 17, 3] to analyze the performance of various coloring

algorithms.

We consider a given set V of n vertices and color n=3 of these vertices

red, n=3 of these vertices blue and n=3 of these vertices green (we assume

n to be a multiple of 3 to get equal sized color classes). Then we connect

vertices of di�erent color with constant probability p getting an edge set

E � V

2

(an edge is considered to be an unordered pair of vertices). In

order to simplify the representation of our analysis we assume p = 1=2.

However, the presented analysis in this chapter may be extended to some

lower problem-dependent probability p � 1=2, but this is not considered

further in the following.

After constructing the graph we forget the coloring. We call the induced

probability space G. The task is to color a given graph in G properly with

3 colors and high probability.

3 Idea of the Algorithm

The strategy to color a given G 2 G is to recover the coloring that has

been used to construct G. We take an arbitrary set A of n=3 vertices from

the set of all vertices. Then we try to increase the imbalance in A by local

exchanges. This implies that we try to increase the cardinality of the largest

color class in A. After a certain small number of SA-transition steps we can

guarantee a quite large imbalance. Then we use some hillclimbing steps

(i.e. Simulated Annealing at temperature 0). In order to compute the cost

function (i.e. the number of neighbors in A and V rA) more e�ciently we

look only at a certain smaller sample of vertices in the corresponding sets.

But, these samples are large enough to reect the imbalance situation of A

and V r A. After these hillclimbing steps we can be sure that there are

only vertices of two colors in A. Applying again SA-transitions followed by

hillclimbing steps we will see that A will only contain vertices of one color.

In order to 2-color V rA we apply a similar method as described above.

The main purpose of the following sections is to give a detailed description

of the algorithm and a rigorous proof of the following main theorem in this

chapter.

Theorem 1 There exists a randomized algorithm using only SA-type tran-

sitions that determines a correct 3-coloring of a given G 2 G in O(n

�

) steps

(� < 2) with high probability over all graphs and random steps, while check-

ing the correctness of the constructed coloring requires 
(n

2

) steps.
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Figure 1: The acceptance function a(x)

4 Simulated Annealing

4.1 Local Exchanges

Let a graph G 2 G be given. We partition the set of n vertices into a set

A containing n=3 vertices and a set containing 2=3n vertices. For technical

reasons we consider these partition as a permutation � with the �rst n=3

vertices belonging to A = A

�

. The set of con�gurations of the following

Simulated Annealing algorithm will therefore be the set of permutations �.

We choose an arbitrary state �

0

as a starting state. To explain the transition

steps let a state �

t

in step t be given.

We choose a vertex u uniformly at random from the set A

�

t

and a vertex

v uniformly at random from the set V r A

�

t

. The proposed move is the

change of the positions of u and v in �

t

.

The cost function �c of a proposed move considered here is the number

of neighbors of v in A

�

t

minus the number of neighbors of u in A

�

t

. Thus,

�c measures the change of the number of edges between the vertices in A

�

t

.

The acceptance probability of a proposed move is

a(�c) =

8

<

:

1

2

�

�c

T

t

for �c 2 [�T

t

=2; T

t

=2];

0 for �c > T

t

=2;

1 for �c < �T

t

=2;

where T

t

2 Q is the temperature in step t. (We use rational temperatures

due to complexity reasons.) The graph is outlined in Figure 1. The sequence

(T

t

)

t2N

is the sequence of decreasing real numbers known as cooling schedule

of SA and will be speci�ed in the following. This implies the following: If

a proposed move decreases the number of edges between vertices in A

�

t

,

we accept it with a certain larger probability than a proposed move that

increases the number of edges. It is intuitively easy to see that the current

state �

t

will be a state with a quite low number of edges in A

�

t

provided

that the number of steps is high enough. This acceptance function is not

as common as minfexp

�

��c

T

t

�

; 1g, but due to its symmetry it simpli�es the

following analysis.
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4.2 Expected Transition Probabilities

The key value that we use to analyze the performance of our local exchanges

is the imbalance of a partition �. To explain this value let an arbitrary

partition � be given. A

�

is a set of n=3 vertices that are red, blue or

green (known from the construction, but invisible for the algorithm). Let

r = n=9 + i

r

be the number of red vertices, b = n=9 + i

b

be the number of

blue vertices and g = n=9+ i

g

be the number of green vertices in A

�

. Thus,

we get i

r

+ i

b

+ i

g

= 0. The imbalance i

�

of the permutation � is the value

of that i

�

which corresponds to the largest color class in A

�

. Therefore we

get i

�

= maxfi

r

; i

b

; i

g

g and 0 � i

�

� 2=9n (see Figure 2).

The reason to consider the imbalance is that we have projected the quite

complex coloring Markov chain on the natural numbers, a method analogous

to that suggested by Jerrum and Sorkin [9]. This process is not necessarily

Markovian any more, and this complicates the analysis, but the process can

be bounded by dominating Markov chains on the natural numbers which

are easy to analyze. First of all we try to get bounds for the expected value

of i

�

after one transition.

Proposition 1 Let a partition � of a graph G 2 G and a temperature T

t

>

n

1=2

be given. Let u = \up" be the random variable on the set of all graphs

that denotes the probability over all possible transitions to increase i

�

in

transition step t. d = \down" denotes the corresponding random variable

for a decrease of i

�

. Then we get

9c

1

; c

2

2 R

+

; k � 1=9

E(u) � k � c

1

i

�

n

and

E(d) � k + c

1

i

�

n

� c

2

min

�

i

�

T

t

; 1

�

;
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where E denotes the expectation over all graphs G 2 G.

Proof: See Chapter 9. 2

Assuming T

t

� n, this proposition states that the imbalance of the

current partition is more likely to be increased than to be decreased, and

this depends crucially on the size of the current imbalance. This is a positive

hint that it is possible to reach our target getting a partition with a quite

high value of the imbalance after a certain number of steps.

But so far, we know only some facts about the expected values of the

transition probabilities. In the following section we are interested in the

deviation of the current transition probabilities from the expected value.

4.3 Deviation

To measure the deviation from the expected values of u and d we need the

following de�nition

De�nition 2 A pair (G;�) of a graph G and a partition � is called �-

deviant, if either u = u(G;�) or d = d(G;�) di�ers from its expected value

(over all graphs) by more than �.

The following lemma is the �rst result we can get about �-deviation by

a direct application of the method of bounded di�erences.

Lemma 3 Let a partition � and an � > 0 be given. The probability over

all graphs G 2 G that a pair (G;�) is �-deviant is at most 2 exp(O(�

2

T

t

2

)).

Proof: See Chapter 9. 2

But it turns out that this lemma alone is, although necessary in the

following, not su�cient to get proper bounds of the deviation. These proper

bounds are necessary to ensure that the current transition probabilities do

not di�er too much from their expected values during a certain number of

subsequent steps. In the following we apply an idea of Jerrum and Sorkin

[9] to improve the bound of the lemma.

The key idea is to introduce a new quantity that is a suitable sum of

transition probabilities. We will see that we can get bounds for this aggre-

gated value allowing us to derive better bounds for the whole process than
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looking at the individual transition probabilites of every partition � as in

Lemma 3. For a given graph G let P (�; �

0

) be the generation and acceptance

probability for the transition from � to �

0

, and EP (�; �

0

) be the expected

value over all graphs. The crucial value considered here is the sum over all

partitions �

0

of the di�erence jP (�; �

0

)�EP (�; �

0

)j.

First of all we try to get an analogue of Lemma 3 for the new quantitiy.

Proposition 4 Let a temperature T

t

> 0 be given. With high probability

over all graphs and for all partitions � we get

X

�

0

jP (�; �

0

)�EP (�; �

0

)j = O

�
p

n

T

t

�

:

Proof: See Chapter 9. 2

With the help of the last proposition we can prove the main theorem of

this section that bounds the deviation of u and d. The proof idea goes back

to Jerrum and Sorkin [9], who solved randomized instances of the Graph

Bisection Problem via the Metropolis process.

Theorem 2 For any temperature 0 < T < poly(n) and any � > 0, the Sim-

ulated Annealing process at constant temperature T for t = �(�

2

T

3

=

p

n log

2

n)

steps encounters a �-deviant state with probability of at most

exp(�
(�

2

T

2

= log

2

n)):

Proof: See Chapter 9. 2

4.4 Random Walks

In this section we analyze the time dependent behavior of the imbalance of

the current partition during the Simulated Annealing process. We can por-

tray this value as a projection of a Markov process on the natural numbers.

This process depends on a hidden variable, namely the current partition.

Thus, it is not necessarily Markovian. But, with the help of the results

concerning the expected transition probability and the deviation we can

construct a process that is a lower bound of the process of the imbalance

values. This means that we can construct a new random walk with constant

transition probabilities being quite easy to analyze. Additionally, we can be
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sure that our process of interest ((i

�

t

)

t2N

) has got \on the average" larger

values than our random walk. The technique used to carry out this com-

parison is known as coupling and is made precise in the next proposition. A

similar version can be found in [9].

Proposition 5 Let (X

t

)

t2N

be a Markov chain with state space 
 and � :


 ! N be a projection on the natural numbers. Suppose (�

t

)

t2N

to be a

random walk on the natural numbers having �

t+1

2 f�

t

� 1; �

t

; �

t

+ 1g as

its only allowed transitions. Suppose further that it is a probabilistic lower

bound of the process �(X

t

)

t2N

in the following sense

�

0

� �(X

0

)

P (�

t+1

= s+ 1j�

t

= s) � P (�(X

t+1

) � s+ 1j�(X

t

) = s)

P (�

t+1

= s� 1j�

t

= s) � P (�(X

t+1

) = s� 1j�(X

t

) = s)

P (�(X

t+1

) < s� 1j�(X

t

) = s) = 0

for s 2 N arbitrary.

Then there exist a coupling (Y

t

)

t2N

of (�

t

)

t2N

and a coupling (Z

t

)

t2N

of (�(X

t

))

t2N

(i.e. Y

t

(Z

t

) has the same distribution as �

t

(�(X

t

))) with

Y

t

� Z

t

for all t 2 N.

Proof: See Chapter 9. 2

Now, we are able to analyze the stochastic process i

�

t

. Let 0 <  � 1=100

be �xed. We choose a temperature T

0

= dn

2=3�

e and keep it �xed during

the �rst r steps (r will be de�ned in the following). By de�ning � = n

�1=3

we can conclude with the help of Proposition 2 that the imbalance process

i

�

t

does not reach a partition with a larger deviation than � with high

probability during the �rst dn

5=6�4

e steps. In the following we concentrate

on this case. We de�ne a random walk (lb

b

t

)

t2N

on the natural numbers,

starting at 0, that plays the role of the lower bound of i

�

t

at the beginning

in the interval [0; n

1=3

]

lb

b

0

= 0,

lb

b

t+1

2 flb

b

t

; lb

b

t

+ 1; lb

b

t

� 1g,

P (lb

b

t+1

= n

1=3

+ 1jlb

b

t

= n

1=3

) = P (lb

b

t+1

= �1jlb

b

t

= 0) = 0

and

P (lb

b

t+1

= s+ 1jlb

b

t

= s) = k � 2� for s 2 f0; : : : ; n

1=3

� 1g;

P (lb

b

t+1

= s� 1jlb

b

t

= s) = k + 2� for s 2 f1; : : : ; n

1=3

g

8



with k chosen as in Proposition 1. Using Proposition 1 and the facts that

i

�

� 0 and only a deviation of � is allowed, we can see that lb

b

t

and the

process i

�

t

are correlated in the same way as �

t

and �(X

t

) in Proposition

5. Thus, lb

b

t

is in fact a probabilistic lower bound of i

�

t

in the sense of

Proposition 5.

Now, we analyze the time being necessary for the process lb

b

t

to reach

n

1=3

. It is a random walk with one elastic barrier 0 and can be analyzed

quite easily with standard Markov chain theory.

Lemma 6 Let � > 0 be given. The random walk lb

b

t

will hit n

1=3

with high

probability within O(n

2=3+�

) steps.

Proof: See Chapter 9. 2

According to Proposition 5 we obtain - with the help of the above de-

scribed identi�cation of lb

b

t

with �

t

and i

�

t

with �(X

t

) - that there exist

couplings Y

t

and Z

t

of lb

b

t

and i

�

t

with Y

t

� Z

t

for all t 2 N. Since Y

t

has

the same distribution as lb

b

t

, we can derive the same result as in Lemma 6

for Y

t

. Therefore, we can be sure that Z

t

has hit a state s � n

1=3

with high

probability within O(n

2=3+�

) steps. Due to the fact that Z

t

and i

�

t

have got

the same distribution, we get

Lemma 7 The process i

�

t

will hit a state s � n

1=3

with high probability

within O(n

2=3+�

) steps.

In the following we consider the behavior of the process i

�

t

on the interval

[n

1=3

; n

1=2+

]. Again, we construct a random walk on the natural numbers

playing the role of a lower bound for i

�

t

. Strictly speaking, it is a series of

random walks lb

j

t

, j 2 f0; : : : ; b

1

6

cg, each being a lower bound for i

�

t

on

[

n

1=3+j

2

; n

1=3+(j+1)

]. Let

lb

j

0

= n

1=3+j

,

lb

j

t+1

2 flb

j

t

; lb

j

t

+ 1; lb

j

t

� 1g,

P (lb

j

t+1

= n

1=3+(j+1)

+ 1jlb

j

t

= n

1=3+(j+1)

)

= P (lb

j

t+1

= n

1=3+j

=2 + 1jlb

j

t

= n

1=3+j

=2)

= 0

and
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P (lb

j

t+1

= s+ 1jlb

j

t

= s) = k ��(n

�1=3

) for

s 2 fn

1=3+j

=2; : : : ; n

1=3+(j+1)

� 1g;

P (lb

j

t+1

= s� 1jlb

j

t

= s) = k ��(n

�1=3+(j+1)

) for

s 2 fn

1=3+j

=2 + 1; : : : ; n

1=3+(j+1)

g:

Due to Proposition 1 and the allowed deviation of � = n

�1=3

the pro-

cesses lb

j

t

and i

�

t

are also in the same correlation as �

t

and �(X

t

). Using

Proposition 5 it is again su�cient to analyze lb

j

t

.

Lemma 8 Let j 2 f0; : : : ; b

1

6

cg; � > 0 be given. The process lb

j

t

starting

at n

1=3+j

will hit n

1=3+(j+1)

earlier than

n

1=3+j

2

with high probability and

within O(n

2=3+�

) steps.

Proof: See Chapter 9. 2

Since  was �xed, and lb

j

t

and i

�

t

are correlated in a way allowing us

to apply Proposition 5, we get with the same coupling argument described

above the following corollary.

Corollary 9 Let � > 0 be given. The process i

�

t

will hit n

1=2+

with high

probability within O(n

2=3+�

) steps.

After ln

2=3+�

steps with a suitable constant l 2 N we stop the process (a

rigorous computation with exact factors instead of the O=
-notation yields,

that l = 9 is su�cient). Carrying out a similar analysis to that above with

a random walk on [

n

1=2+

2

; n

3=4

] that starts at n

1=2+

, we get a random walk

on the natural numbers that is a lower bound of i

�

t

. It reaches n

3=4

earlier

than

n

1=2+

2

with high probability. Because reaching n

3=4

would take at least

n

3=4

steps, we could derive that after stopping, our process i

�

t

is in a state

somewhere between

n

1=2+

2

and n

3=4

.

Now we lower the temperature T

t

. The new temperature will be T

t

=

dn

1=2+

e for t 2 f9dn

2=3+�

e; : : :g and  > 0 �xed. Setting � = n

�1=8

we

can derive with Proposition 2 that no �-deviant state will occur in the next

n

3=4+3

steps with high probability.

To analyze the imbalance process in the interval [n

1=2+

=4; n

3=4

] we de�ne

the lower bound process lb

e

t

10



lb

e

0

= n

1=2+

=2,

lb

e

t+1

2 flb

e

t

; lb

e

t

+ 1; lb

e

t

� 1g,

P (lb

e

t+1

= n

3=4

+1jlb

e

t

= n

3=4

) = P (lb

e

t+1

= n

1=2+

=4�1jlb

e

t

= n

1=2+

=4) = 0

and

P (lb

e

t+1

= s+ 1jlb

e

t

= s) = k

1

for s 2 fn

1=2+

=4; : : : ; n

3=4

� 1g;

P (lb

e

t+1

= s� 1jlb

e

t

= s) = k

2

for s 2 fn

1=2+

=4 + 1; : : : ; n

3=4

g

with constants k

1

< k

2

suitably chosen according to Proposition 1.

Carrying out an analysis in the same way as in the proof of Corollary 9

and proving as described after Corollary 9 that the process will stay above

n

3=4

we get the main result of this section.

Proposition 10 Let ; � > 0 be su�ciently small constants. Running the

Simulated Annealing process for 9n

2=3+�

steps with temperature T = n

2=3�

and 16n

3=4+�

steps with temperature T = n

1=2+

yields a partition � with an

imbalance value i

�

of at least n

3=4

.

5 Hillclimbing

Assuming a given graph G and a partition � with imbalance i

�

� n

3=4

, we

will de�ne in this chapter certain hillclimbing steps (i.e. Simulated Anneal-

ing at temperature 0) in order to remove one color class in A

�

. Roughly

speaking we will compare the number of neighbors of a randomly chosen

vertex in A

�

and V rA

�

. To save time during the computation of the cost

function of one move (i.e. the number of neighbors) it is not necessary to

look at the complete sets. We choose only a sample in A

�

and V r A

�

of

size n

3=4��

(� > 0 su�ciently small) uniformly at random.

In the following we will see that the imbalance situation will be reected

in the samples. Intuitively it is clear that a vertex having the same color

as the minimum color class in A

�

will tend to have more neighbors in the

sample in A

�

than in the sample in V rA

�

.

This idea is made precise in the following. First we consider the case of

choosing a sample of size n

3=4��

uniformly at random from A

�

.

Lemma 11 Let 0 < � < 1=24 and a partition � with imbalance i

�

� n

3=4

be given. The number of vertices of a distinct color � in a sample of n

3=4��

vertices chosen uniformly at random in A

�

di�ers only within a range of

� = O(n

1=2�2�

) from the expected number

n

3=4��

�

n=9 + i

�

n=3

�

11



Aπ

V

g

r

b

S

πA

Figure 3: The sample S

of the corresponding independent Bernoulli trials with high probability over

all chosen samples.

Proof: See Chapter 9. 2

Using Lemma 11 we can derive that after the local exchanges in the last

chapter our sampling process yields a reliable smaller copy of our partition

with high probability.

Again, let a graph G and a partition with imbalance n

3=4

be given. Fur-

thermore, we assume a given reliable sample S with error bound � as in

Lemma 11. Thus, we have the situation as in Figure 3.

Let v be a vertex of the largest color class in our sample, which we assume

to be red. The expected number of neighbors over all graphs in S is

1=2(S

g

+ S

b

) � 1=2n

3=4��

�

n=9 + i

g

+ n=9 + i

b

n=3

�

+�

� 1=3n

3=4��

� 3=2n

1=2��

+�

� 1=3n

3=4��

� 4=3n

1=2��

with S

b

and S

g

being the number of green and blue vertices in S. Assuming

green to be the least frequent color in the partition we get the following

bound for the expected number of neighbors of a green vertex in S

1=2(S

b

+ S

r

) � 1=2n

3=4��

�

n=9 + i

b

+ n=9 + i

r

n=3

�

��

� 1=3n

3=4��

+ 3=2n

�1=4��

(i

b

+ i

r

)��

� 1=3n

3=4��

+ 3=4n

1=2��

��

� 1=3n

3=4��

+ 1=2n

1=2��

12



with S

r

being the number of red vertices in S.

Now we consider the case of choosing a sample of size n

3=4��

uniformly

at random in V rA

�

. One can show analogously:

The number of neighbors of a red vertex in this sample is at least

1=3n

3=4��

+ 1=2n

1=2��

:

with high probability. As an upper bound for the number of neighbors

of a green vertex we get:

1=3n

3=4��

� 1=2n

1=2��

:

In the following we will describe the hillclimbing steps:

1. Take one of the sets fA

�

; V rA

�

g as starting set B

2. Choose a vertex v uniformly at random in B

3. Choose a sample of size n

3=4��

uniformly at random in A

�

and V rA

�

4. Compare the number of neighbors in both samples

5. If the number of neighbors in the sample in B is greater than the

number of neighbors in the other sample, we move v from B to the

complement, take B as this complement and go to 2.

else go to 2.

Obviously we can be sure that our sizes of the sets remain constant (up

to +/-1).

With the analysis at the beginning of this chapter we can see that a red

vertex will readily move to or stay at the smaller set. In contrast to that,

a green vertex will readily move to or stay at the bigger set. Moreover it is

easy to see that the bias towards these directions will be reinforced during

the process so that the above described behavior will continue during the

hillclimbing process. After O(n log n) steps every vertex is visited at least

once with high probability. This implies that there are only vertices of two

colors left in the smaller set.

13



6 Simulated Annealing again

After the hillclimbing steps we start our initial SA-algorithm (see Chapter

4) again. To analyze this process we will introduce a new value i

2

�

similar to

our initial imbalance, but this time suitable for the two color case. Let red

and blue be the two colors in A

�

and r = n=6 + i

r

and b = n=6 + i

b

be the

corresponding cardinalities. Thus we get i

r

+i

b

= 0. The imbalance i

2

�

is the

value of that i

�

which corresponds to the largest color class in A

�

. Therefore

we get i

2

�

= maxfi

r

; i

b

g and 0 � i

�

� 1=6n. We are again interested in the

number of steps necessary to ensure that i

2

�

� n

3=4

with high probability

over all graphs and transition steps.

We consider the case i

2

�

< n

7=8

�rst. Let green denote the color of

those vertices that are not n the smaller set. With the help of Cherno�

bounds it can be easily seen that the number of neighbors in the smaller

set A

�

is 
(n) with high probability. Because the absolute value of the

cost di�erence �c will be greater than T=2 for our choices of temperatures

T

t

2 fn

2=3�

; n

1=2+

g, this implies the following:

A transition with a chosen green vertex in V rA

�

will not be accepted.

Therefore we can be sure that in this case no green vertex will move to A

�

.

Choosing k random pairs of vertices (u; v) with u 2 A

�

and v 2 V rA

�

we have to ensure that among these pairs there are enough pairs with no

green vertices involved. The reason for this is of course that these transitions

will not help us to improve the imbalance in A

�

. But the number of pairs

(u; v) with a green vertex v is Bernoulli distributed with probability 1=2.

Using Cherno� bounds one can easily see that there will be at least k=4

pairs with no green vertices involved.

Using now temperature T = n

2=3�

for the �rst 4n

2=3�

steps and T =

n

1=2+

for the next 72n

3=4+�

steps one can prove with an analogous analysis

to that in Chapter 4 that the process will reach an imbalance of at least

n

3=4

. Taking care of the case of an initial imbalance of i

2

�

� n

7=8

we can

summarize as a result of our second SA-application:

Proposition 12 Let �;  be su�ciently small constants. Running the SA-

process for 4n

2=3��

with temperature T = n

2=3�

and 72n

3=4+�

steps with

temperature T = n

1=2+

yields a partition � with

� jfred vertices in A

�

gj � n=6 + n

3=4

� jfblue vertices in A

�

gj � n=6� n

3=4

� jfred vertices in A

�

gj � 100n

3=4

14



With the help of the last proposition we can be sure that after our second

application of the SA algorithm the largest color class in A

�

dominates the

other color classes heavily. Applying the hillclimbing algorithm (O(n log(n)

steps) again yields a set A

�

, that contains only vertices of one color class.

6.1 2-coloring

After separating one color as described in the last section we have to 2-

color the remaining 2=3n vertices. This is not very di�cult, since it is very

easy to �nd an O(n

2

) algorithm that colors the remaining vertices correctly.

But in order to get an overall performance that is strictly less than the

quadratic bound we have to be more careful. The obvious idea to get better

performance bounds is to apply the same idea as used in the last section to

separate the vertices of one color from the rest.

Starting with an arbitrary bisection of the remaining vertices, we try to

increase again the imbalance of an arbitrary chosen bisection with SA steps.

After carrying out a number of local exchanges we can separate the two

remaining color classes by applying the same hillclimbing steps as described

above.

Input: arbitrary chosen bisection � = (�

1

; �

2

) of the remaining 2=3n vertices,

�; �;  su�ciently small.

Output: 2-coloring of the remaining 2=3n vertices.

1. Execute 9n

2=3+�

steps of the SA local exchanges with temperature

T = n

2=3�

.

2. Execute 16n

3=4+�

steps of the SA local exchanges with temperature

T = n

1=2+

and obtain a partition of the vertices in two equally sized

sets V

1

and V

2

.

3. Apply 2n log(n) steps of the hillclimbing algorithm to the two sets of

vertices V

1

; V

2

.

Because the analysis of this part of the coloring is analogous to the anal-

ysis carried out in the last sections we omit the detailed proofs here.

7 Concluding remarks

We have proved that our algorithm using only SA-type techniques will con-

verge to a proper coloring in sublinear time with high probability. Although

15



the transition steps of our algorithm are quite simple one may wonder if

they can be simpli�ed further.

Petford and Welsh [17] suggested the following algorithm, taking the

same random model as used above. Choose an arbitrary coloring as starting

state. Then choose a vertex and a color uniformly at random. The cost

function is the number of wrong edges, i.e. edges between vertices of the

same color, that are forbidden in a proper coloring. They show by some ex-

perimental results that the algorithm works well in practice but a theoretical

ananlysis is still missing.

8 Probability Theory

Because estimates of sums of random variables are quite important in this

paper, we list a few in the following.

A very important special case a random variable f being Bernoulli dis-

tributed. This means 
 = f0; 1g and P (f = 1) = p with a certain probability

p and P (f = 0) = 1� p. In the following we call a sum of Bernoulli random

variables binomial (B(n; p)) distributed. One of the �rst published bounds

is due to Angluin and Valiant [2]:

Proposition 13 (Angluin and Valiant) If Y 2 B(n; p), then for all

�; 0 < � < 1

P (Y � (1� �)np) < e

��

2

np=2

and P (Y � (1 + �)np) < e

��

2

np=3

:

2

Sometimes a version of Chernoff is easier to apply

Proposition 14 (Chernoff) Let f

1

; : : : ; f

n

be a sequence of independent

Bernoulli trials with P (f

i

= 1) = p

i

and P (f

i

= 0) = 1 � p

i

. De�ne

Y =

P

f

i

, so that E(Y ) =

P

p

i

. Then for � 2 [0; 1]

P (jY �E(Y )j > �E(Y )) � 2 exp(�0:38�

2

E(Y )):

2

In addition to Proposition 14, a certain generalisation of the Chernoff

bounds known as the method of bounded di�erences is required in our anal-

ysis in this thesis. Here the f

i

need not to be Bernoulli distributed, but the

range of these values must be bounded in a certain way.
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Proposition 15 Let f

1

; : : : ; f

n

be independent random variables with f

k

taking values in a set A

k

for each k. Suppose that the (measurable) function

f :

Q

A

k

! R satis�es jf(x)�f(x

0

)j � c

k

, whenever the vectors x and x

0

dif-

fer only in the k-th coordinate. Let Y be the random variable f(f

1

; : : : ; f

n

).

Then for any t > 0

P (jY �E(Y )j � t) � 2 exp(�2t

2

=

X

c

2

k

):

2

Before we come to the analysis of random walks we have to state an

inequality concerning convex functions known as the inequality of Jensen.

Proposition 16 Let J � R be an interval, g : J ! R a convex function

and f : 
! J a random variable. Then

E(g(f)) � g(E(f))

Proof: See Feller [6]. 2

In the rest of this section we will be concerned with the analysis of random

walks on the natural numbers. This represents another important proof

technique used in this paper.

To give a formal framework we will de�ne a random walk (Y

t

)

t2N

on the

integers by

Y

0

= z

P (Y

t+1

= l + 1jY

t

= l) = p

P (Y

t+1

= l � 1jY

t

= l) = q

P (Y

t+1

= ljY

t

= l) = 1� p� q

with suitable constants p; q 2 [0; 1]; p + q � 1 and arbitrary z 2 Z.

A gambler could interprete this random walk as the amount of money

that he owns after the t'th stake. He starts with an initial capital z, and

in each step he can win a dollar with probability p and lose a dollar with

probability q.

17



First of all we will consider the following special case with 0 being a

reecting barrier. That means

P (Y

t

< 0) = 0

P (Y

t+1

= 1jY

t

= 0) = 1� P (Y

t+1

= 0jY

t

= 0).

Thus, the random walk cannot become negative, if z � 0. We are inter-

ested in the expected time to hit a certain �xed number a for the �rst time.

This value is the so called expected �rst hitting time D

z

, starting at z � a.

According to Feller [6] (pp. 344 ) the general solution for D

z

is

D

z

=

z

q � p

+A+B

�

q

p

�

z

with A and B being constants (depending on a), that must �t the boundary

conditions

D

a

= 0 and D

0

= 1 + pD

1

+ (1� p)D

0

:

Solving for A and B and substituting yields

D

0

= �

q

q � p

+

q

(q � p)

2

��

q

p

�

z

� 1

�

;

which is used frequently in the following chapter during the analysis of ran-

dom walks with one reecting barrier.

The next case that we want to consider is the following. There are no

elastic barriers any more, and we start our random walk at a certain number

z. Moreover, we are given two integral numbers a and b with a � z � b,

and we want to answer the question which of the two numbers the random

walk will touch �rst. Additionally, we want to calculate the expected time of

this process. According to Feller [6] the probability that the event Y

t

= a

occurs before Y

t

= b equals

�

q

p

�

z�a

�

�

q

p

�

b�a

1�

�

q

p

�

b�a

:

The expected time to hit either a or b is

�

z � a

q � p

+

b� a

q � p

2

6

4

1�

�

q

p

�

z�a

1�

�

q

p

�

b�a

3

7

5

:
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9 Proofs

Proof of Proposition 1:

Let i

�

= i

r

. This implies red to be the largest color class in our set A

�

. First

of all we want to determine the probability of a proposed move to increase

or decrease i

r

. Obviously, the probability to propose an i

r

-increasing and

i

b

-decreasing move is

9b(n=3 � r)

2n

2

:

Symmetrically we get for the probability to decrease i

r

and increase i

b

9r(n=3� b)

2n

2

;

and analogous values for the exchanges of red and green vertices.

Now we concentrate on the acceptance probabilities. Let an i

b

-increasing

and i

r

-decreasing move be given. This is a bad move that could possibly

decrease the imbalance i

�

. C

d

denotes the change of the cost function after

applying this move to the partition �. Therefore, C

d

is a random variable

on the set of all graphs G.

Thus, C

d

can be expressed as the sum and di�erence of n=3+ g indepen-

dent Bernoulli random variables B

p

, which correspond to the n=3 + g edges

a�ected by the i

b

-increasing and i

r

-decreasing move.

C

d

= gB

p

+ rB

p

� gB

p

� bB

p

= �gB

p

+ gB

p

� (n=9 + i

b

)B

p

+ (n=9 + i

r

)B

p

We have omitted the sum notation to avoid confusion about too many in-

dices. kB

p

denotes the sum of k independent Bernoulli trials with expecta-

tion p.

Now we de�ne a new, symmetrically distributed random variable C

0

that

we want to compare with C

d

. We take the �rst 2g terms in C

d

and de�ne

them as the �rst 2g terms in C

0

without changing any signs. Then we look

at the following 2=9n+ i

r

+ i

b

terms of C

d

. We de�ne the �rst b1=2(2=9n+

i

r

+ i

b

)c of these terms as the next b1=2(2=9n+ i

r

+ i

b

)c terms with negative

sign in C

0

and the rest of the terms as the last terms in C

0

, but with positive

sign. Thus we get

C

0

= �gB

p

+ gB

p

� b1=2(2=9n + i

r

+ i

b

)cB

p

+ d1=2(2=9n + i

r

+ i

b

)eB

p

and it follows that

C

0

� C

d

� (i

b

� i

r

)B

p

� 0:
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1

Figure 4: The acceptance function a(x)

A short calculation of the variance � of C

0

yields

�

2

(C

0

) = O(n) (1)

To estimate the expected di�erence between a(C

d

) and a(C

0

) we need the

following technical lemma.

Lemma 17 Let M = fG 2 GjjC

0

j � n

1=2+�

; C

d

�C

0

� 1=20(i

r

�i

b

)g. Then

P (M) = 
(1) for any � > 0 follows.

Proof: Using the Chebyche� inequality we get

P (jC

0

j � n

1=2+�

) � 1�

1

n

1=2+�

�(C

d

);

which tends to 1 for n ! 1. Furthermore, with the help of the inequality

of Angluin and Valiant we obtain

P (C

d

� C

0

� 1=20(i

r

� i

b

)) � 0; 55

for i

r

� i

b

� 4. (For i

r

� i

b

2 f0; 1; 2; 3g we get the claim by a direct calcu-

lation.) By combining the last two inequalities the Lemma 1 follows. 2

Applying the acceptance function a(x) (see Figure 4) we obtain

E(a(C

d

))�E(a(C

0

)) = E(a(C

d

)� a(C

0

))

=

Z

M

a(C

d

)� a(C

0

) +

Z

�

M

a(C

d

)� a(C

0

)

�

Z

M

a(C

d

)� a(C

0

); (2)

because C

0

� C

d

and a(x) is monotonously decreasing.
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Let a G 2M be given. A standard analysis argument yields

a(C

d

)� a(C

0

)

C

d

� C

0

= a

0

(�)

with � 2 [C

0

; C

d

], if C

d

� T

t

=2. Moreover we obtain

a(C

d

)� a(C

0

) � �1=4 (3)

for C

d

> T=2 and T

t

� 4n

1=2+�

.

Therefore

a(C

d

)� a(C

0

) = a

0

(�)(C

d

� C

0

) =

1

T

t

(C

0

� C

d

) �

1

20

i

b

� i

r

T

t

(4)

with C

d

� T

t

=2. With Inequalities (2), (3) and (4) we obtain

E(a(C

d

))�E(a(C

0

)) � �

1

20

min

�

i

r

� i

b

T

t

; 1

�

: (5)

This means that the acceptance probability of the bad move, which decreases

the number of red vertices and increases the number of blue vertices, is by


(minf

i

r

�i

b

T

t

; 1g) smaller than our reference value E(a(C

0

)).

Now, let an i

r

-increasing and i

b

-decreasing move be given. This is a

good move, because it increases our imbalance with certainty. C

i

denotes

the change of the cost function after applying this move to the partition �.

By an analogous argumentation we get a new random variable C

0

0

with the

same distribution as C

0

and therefore with the same expectation. It can be

easily seen that the following inequality is true

E(a(C

i

))�E(a(C

0

)) � 0:

Now we look at the proposal and acceptance probabilities. u denotes the

probability that the given partition � has got imbalance i

�

+ 1 after one

transition. Thus u is a random variable on the set of all graphs. d denotes

the corresponding probability that the given partition � has imbalance i

�

�1

after one step.

By combining the bounds of the proposal and the acceptance probabilities

we get a short calculation

E(u) �

9b(n=3 � r)

2n

2

E(a(C

0

)) +

9g(n=3 � r)

2n

2

E(a(C

0

))

=

�

2

9

�

2i

r

n

+

9i

2

r

2n

2

�

E(a(C

0

))
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and

E(d) �

9r(n=3� b)

2n

2

�

E(a(C

0

))�

1

20

min

�

i

r

� i

b

T

t

; 1

��

+

9r(n=3� g)

2n

2

�

E(a(C

0

))�

1

20

min

�

i

r

� i

g

T

t

; 1

��

=

�

2

9

+

5i

r

2n

+

9i

2

r

2n

2

�

E(a(C

0

))

�

9r

40n

2

�

(n=3� b)min

�

i

r

� i

b

T

t

; 1

�

+ (n=3� g)min

�

i

r

� i

g

T

t

; 1

��

:

Using i

r

= maxfi

b

; i

g

; i

r

g and i

b

+ i

g

+ i

r

= 0, we get 9c

1

; c

2

2 R

+

E(u) � 2=9E(a(C

0

))� c

1

i

r

n

and

E(d) � 2=9E(a(C

0

)) + c

1

i

r

n

� c

2

min

�

i

r

T

t

; 1

�

:

Because C

0

is symmetrically distributed, we obtain E(a(C

0

)) = 1=2 and the

proposition follows. 2

Proof of Lemma 3:

We use the method of bounded di�erences (Theorem 15) applied to the

set of indicator variables e

a;b

2 f0; 1g of edges (a; b) 2 E. Obviously, we

can depict the random variables u and d as a function of the variables e

a;b

.

Varying one e

a;b

while keeping all others �xed, the proposal probability of

a transition step (interchanging the positions of c and e) does not change.

The acceptance function changes only for at most 2n possible values of (c; e)

with fc; eg \ fa; bg 6= ;, because otherwise the edge (a; b) is not considered

when deciding about the acceptance of one move. The cost change is at most

one. A standard analysis argument yields that the change of the acceptance

function is bounded by the derivative at an intermediate point times the

change of the arguments. Thus, the change of the acceptance probability

is bounded by 1=T

t

. By de�ning c

a;b

= 9=nT

t

we get

P

c

2

a;b

� 81=T

2

t

, and

by applying the method of bounded di�erences (Theorem 15) the lemma

follows. 2
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Proof of Proposition 4:

The proof idea is again to bound the sum of di�erences of

X

�

0

jP (�; �

0

)�EP (�; �

0

)j

and its expected value using the method of bounded di�erences, and to

estimate the expected value.

Let C denote the cost change that we get by considering a possible tran-

sition from � to �

0

with � 6= �

0

. Jensen's inequality (see Proposition 16)

and the concavity of the square root yields

EjP (�; �

0

)�EP (�; �

0

)j = E

p

(P (�; �

0

)�EP (�; �

0

))

2

�

p

E(P (�; �

0

)�EP (�; �

0

))

2

=

9

2n

2

p

E(a(C)�E(a(C)))

2

Because y = E(x) maximizes E(x� y)

2

, we obtain

EjP (�; �

0

)�EP (�; �

0

)j �

9

2n

2

p

E(a(C)� a(E(C)))

2

�

9

2n

2

1

T

t

p

E(C �E(C))

2

=

9

2n

2

T

t

�(C):

In the last estimation we have used the fact that the di�erential quotient is

bounded by the derivative. Since �(C) = O(

p

n) (see the proof of Proposi-

tion 1), it follows that

E

X

�

0

jP (�; �

0

)�EP (�; �

0

)j =

X

�

0

EjP (�; �

0

)�EP (�; �

0

)j

� 2

X

� 6=�

0

EjP (�; �

0

)�EP (�; �

0

)j

= O

�
p

n

T

t

�

: (6)

Next we observe that we can depict

P

�

0

jP (�; �

0

)�EP (�; �

0

)j as a func-

tion of the indicator variables of the edges e

u;v

. Varying one indicator vari-

able the value of EP (�; �

0

) does not change, and P (�; �

0

) changes only

for the

2n

9

partitions �

0

, whose corresponding transition is a�ected by the

changed edge. The value of the change is bounded by at most

9

2n

2

T

t

for

� 6= �

0

. Therefore, P (�; �

0

) is changed by at most

1

nT

t

. It follows that
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a change of e

u;v

causes a change of

P

�

0

jP (�; �

0

) � EP (�; �

0

)j of at most

1

2nT

t

= c

u;v

. With

P

c

2

u;v

�

2

T

t

and the method of bounded di�erences

(Proposition 15) we get

P

 

j

X

�

0

jP (�; �

0

)�EP (�; �

0

)j �E

X

�

0

jP (�; �

0

)�EP (�; �

0

)jj >

c

p

n

T

t

!

� 2e

�c

2

n

(7)

for arbitrary c > 0. Combining the Inequalities (6) and (7) we get

P

 

X

�

0

jP (�; �

0

)�EP (�; �

0

)j � O

�
p

n

T

t

+

c

p

n

T

t

�

!

� 2e

�c

2

n

:

With Stirling's formula we obtain

�

n

n=3

�

= e

O(n)

;

and thus, by choosing a su�ciently large c, the proposition follows. 2

Proof of Theorem 2:

First of all we consider only the graphs G 2 G with

X

�

0

jP (�; �

0

)�EP (�; �

0

)j �

c

p

n

T

(8)

for a suitable constant c. According to Proposition 4 every graph has this

property with high probability for all partitions �.

The idea of this proof is to introduce a second process that should be-

have similarily as the current Simulated Annealing process, but without

knowledge of the graph G 2 G.

Let a current partition � be given. We divide the interval [0; 1] into

disjoint intervals of length EP (�; �

0

) (observe

P

�

0

EP (�; �

0

) = 1). The

transitions of the second process are de�ned as follows: Generate a number

uniformly at random in [0; 1]. If it is in the interval EP (�; �

0

), our partition

of the next step will be �

0

. In addition to that, a tape is given with points

of time j and moves m

j

. These moves are performed at time j instead of

the transitions, which are de�ned by the random numbers.
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Now we look at our basic process. Let a graph G 2 G be given. We try

to adapt the P (�; �

0

) intervals to the EP (�; �

0

) intervals beginning from left

to right. We superimpose each EP (�; �

0

) interval with the corresponding

P (�; �

0

) interval, matching up the left ends. If EP (�; �

0

) > P (�; �

0

), we

add the free space to a reserved space, which is used later. If EP (�; �

0

) <

P (�; �

0

), we put the missing part of the P (�; �

0

) interval on a stack. After

matching all intervals we empty our stack by �lling up the reserved space

from left to right. Because both values sum up to one, this procedure �lls

the [0; 1] interval completely. Obviously, we get a process that has the same

distribution as our basic SA-process by generating a random number in [0; 1]

and choosing a partition �

0

in case of hitting parts of the interval P (�; �

0

).

The next step is to compare the transition probabilities of the basic and

the second process. Beginning in the same initial state, the second process

chooses a di�erent partition in the next step, if and only if the chosen random

number hits the reserved space, which is due to Lemma 4 of size O(

p

n=T ).

Therefore we get

P (basic and second process choose a di�erent partition) = O(

p

n=T ):

Now we look at the probability of wrong moves (di�erent from the ba-

sic process) of the second process at t subsequent steps. This number of

wrong moves is stochastically dominated by B(t; O(

p

n=T )). Applying the

inequality of Angluin and Valiant (Theorem 13) we can deduce:

The probability for the number of wrong moves to be O(t

p

n=T ) is 1 �

exp(�
(t

p

n=T )).

A short calculation (application of Stirling's formula) yields

�

t

O(t

p

n=T )

�

= exp(O(t

p

n log t=T ))

as a bound for the number of possibilities to distribute O(t

p

n=T ) wrong

transitions in a set of t subsequent moves. Obviously, the basic process can

perform only O(n

2

) di�erent moves in each step. After �xing the O(t

p

n=T )

points of time of wrong moves, there are

(n

2

)

O(t

p

n=T )

= exp(O(t

p

n logn=T ))

possibilities for the basic process to act at these points. Therefore, the

number of di�erent tapes necessary to ensure that there exists a tape, which

can correct the second process (getting the same transitions of the basic and

the second process), is bounded by

exp(O(t

p

n log n=T )
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(we assume t = O(poly(n)).

Now, let a sequence of t uniformly at random generated numbers in

[0; 1] be given. We can be sure, that the second process, started with all

possible tapes described above, yields a set S of sequences of partitions,

which contains the sequence of partitions of the basic process. This set of

sequences contains exp(O(t

p

n logn=T ) states.

Applying Lemma 3 concerning the deviation we obtain that the proba-

bility over all graphs G for some partition in the above described set to be

�-deviant, is bounded by

exp(t

p

n logn=T �O(�

2

T

2

));

and the theorem follows by the choice of t. 2

Proof of Proposition 5:

Proof: First, we de�ne a new Markov chain (X

0

t

)

t2N

on the natural numbers.

Let 


k

= f! 2 
j�(!) = kg be a partition of the state space. We de�ne the

time inhomogeneous transition probabilities P

X

0

t

of (X

0

t

)

t2N

as follows

�(X

0

) = X

0

0

and P

X

0

t

(i; j) = P (X

t+1

2 


j

jX

t

2 


i

):

One gets easily by induction

P (X

t

2 


i

) = P (X

0

t

= i):

Thus, �(X

t

) and X

0

t

have the same distribution. Now we compare X

0

t

with

�

t

. Applying Theorem 5.8 of Lindvall [14] we can deduce

If two Markov kernels K

Y

and K

Z

exist on R with

K

Y

(x; [y;1)) � K

Z

(x

0

; [y;1))

for all x; x

0

; y 2 R with x � x

0

, then there exist two Markov chains Y and Z

governed by K

Y

and K

Z

with Y

t

� Z

t

for all t, if the starting distribution

of Y stochastically dominates the starting distribution of Z.

Identifying �

t

with the transition kernel

K

Y

t

(:; :) : N � 2

N

! [0; 1]

(x;A) 7! P (�

t

2 Aj�

t�1

= x)
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and X

0

t

with the transition kernel

K

Z

t

(:; :) : N � 2

N

! [0; 1]

(x;A) 7! P (X

0

t

2 AjX

0

t�1

= x);

by the dominance properties in the proposition it is easily seen that

K

Y

(x; [y;1)) � K

Z

(x

0

; [y;1))

is satis�ed for all x; x

0

; y 2 R with x � x

0

. Due to X

0

0

= �(X

0

) � �

0

the

stochastical dominance of the starting distribution is also ful�lled, and the

proposition follows. 2

Proof of Lemma 6:

According to Feller [6] we get for the expected �rst hitting time D

i

of

n

1=3

, starting lb

b

t

at an arbitrary i 2 f0; : : : ; n

1=3

g

D

i

=

i

2�

+A+B

�

k + 2�

k � 2�

�

i

with A;B 2 R that must �t the boundary conditions

D

0

= (k + 2�)D

1

+ (1� k + 2�)D

0

and D

n

1=3

= 0:

Solving for A and B yields

D

0

= �

n

1=3

4�

+

k + 2�

16�

2

"

�

k + 2�

k � 2�

�

n

1=3

� 1

#

= O(n

2=3

)

for the chosen parameter values � and r. Let t

f

be the random variable

denoting the �rst hitting time of n

1=3

of the process lb

b

t

.
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With the Markov inequality we get

P (t

f

> n

2=3+�

) �

E(t

f

)

n

2=3+�

=

D

0

n

2=3+�

= O(n

��

)

and the lemma follows. 2

Proof of Lemma 8:

According to Feller [6] we get the following upper bound for the proba-

bility that lb

j

t

reaches

n

1=3+j

2

earlier than n

1=3+(j+1)

, starting at n

1=3+j

(observe that lb

j

t

is a random walk without reecting barriers)

q

1

2

n

1=3+j

� q

n

1=3+(j+1)

�n

1=3+j

1� q

n

1=3+(j+1)

�n

1=3+j

= e

�n


(1)

for

q =

k ��(n

�1=3

)

k ��(n

�1=3+(j+1)

)

being the ratio of up- and downwards probabilities of lb

j

t

.

The expected time to hit one of the barriers

n

1=3+j

2

or n

1=3+(j+1)

can be

bounded with the help of an analogous argument as in Lemma 6 by O(n

2=3

).

Applying the Markov inequality yields the desired result. 2

Proof of Lemma 11:

The proof idea is to estimate the probability to choose a speci�c vertex in

the sampling process and to use the method of bounded di�erences to bound

the deviation from the expected values.

We note �rst that the size of the sample is less than the guaranteed

imbalance. This is important, because due to this fact we can compare our

actual sampling process with a sequence of independent Bernoulli trials. Let

again red be the most frequent color in the smaller set of the partition �,

and S

r

be the number of red vertices in the sample. Obviously,

p

u

r

=

n=9 + i

r

n=3� n

3=4��
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is an upper bound and

p

l

r

=

n=9 + i

r

� n

3=4��

n=3

a lower bound for the probability to choose a red vertex during the sampling

process. Thus, p

u

r

n

3=4��

is an upper bound and p

l

r

n

3=4��

is a lower bound

for the expected value E(S

r

). Following the same argument we get

8k 2 N P (S

r

� k) � P (B(n

3=4��

; p

u

r

) � k)

and

8k 2 N P (S

r

� k) � P (B(n

3=4��

; p

l

r

) � k):

Applying the method of bounded di�erences with � = n

5=12

and the

sample space of n

3=4��

events, we obtain:

P (jB(n

3=4��

; p

u

r

)� n

3=4��

p

u

r

j > �) � 2e

�2�

2

n

3=4��

� 2e

n

�1=6+�

:

We get for the di�erence of the expectations

n

3=4��

(p

u

r

� p

l

r

) � O(n

1=2�2�

);

and, by considering the bound � = n

5=12

� n

1=2��

, the result follows.

By an analogous argument we get the same result for the other colors. 2
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