
Angewandte Mathematik und

Informatik

Universit

�

at zu K

�

oln

Report No. 355

Minimum Fill-in and Treewidth for Graphs Modularly

Decomposable into Chordal Graphs

by

Elias Dahlhaus

1999

A preliminary version appeared in WG98 [7], partially supported

by ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT)

Institut f�ur Informatik, Universit�at zu K�oln,

Pohligstrasse 1, 50969 K�oln, Germany





Abstract

We show that a minimum �ll-in ordering of a graph can be determined

in linear time if it can be modularly decomposed into chordal graphs. This

generalizes results of [2]. We show that the treewidth of these graphs can

be determined in O((n +m) log n) time.

1 Introduction

One of the major problems in computational linear algebra is that of sparse

Gauss elimination. The problem is to �nd a pivoting, such that the number of

zero entries of the original matrix that become non zero entries in the elimination

process is minimized. In case of symmetric matrices, we would like to restrict

pivoting along the diagonal. The problem translates to the following graph

theory problem [14].

Minimum Elimination Ordering: For an ordering < on the vertices, we

consider the �ll-in graph G

0

<

= (V;E

0

) of G = (V;E). G

0

<

contains �rst

the edges in E and secondly two vertices x and y form an edge in G

0

<

if

they have a common smaller neighbor in G

0

<

. The problem of Minimum

Elimination ordering is, given a graph G = (V;E), �nd an ordering <,

such that G

0

<

has a minimum number of �ll-in edges.

Note that this problem is NP-complete [16] in general. There is a polynomial

time solution for this problem for so called HHD-free graphs [4]. Moreover, for

distance hereditary graphs and for certain graph classes with few P4-s, there

are linear time solutions [3, 2]. Here we generalize the result of [2] and show

that a minimum �ll-in ordering can be determined in linear time if the graph

can be modularly decomposed into chordal graphs.

Another problem is to �nd an elimination scheme, such that the size of

"dense matrices" is as small as possible. This is related to the problem of

treewidth.

Treewidth: Find an ordering <, such that the maximum clique size of G

0

<

is

minimized.

Also the problem of minimum treewidth is NP-complete [1]. The problem

has a polynomial time solution for HHD-free graphs [4].

We will show that we can compute a minimum elimination ordering and the

treewidth for graphs that can be modularly decomposed into chordal graphs in

linear time or almost in linear time.

In section 2, we introduce the notation of the paper. Section 3 presents

a linear time algorithm for minimum �ll-in for graphs that can be modularly

decomposed into chordal graphs. Section 4 discusses the treewidth of graphs

that can be modularly decomposed into chordal graphs.

1



2 Notation

A graph G = (V;E) consists of a vertex set V and an edge set E. Multiple

edges and loops are not allowed. The edge joining x and y is denoted by xy.

We say that x is a neighbor of y i� xy 2 E. The set of neighbors of x is

denoted by N(x) and is called the neighborhood. Analogously, for a set X of

vertices, N(X) is the set of neighbors of some vertex in X that are not in X

and N [X ] is the set of neighbors of vertices in X together with the vertices in

X .

Trees are always directed to the root. The notion of the parent, child, an-

cestor, and descendent are de�ned as usual.

A subgraph of (V;E) is a graph (V

0

; E

0

) such that V

0

� V , E

0

� E. The

graph G[X ] is the subgraph induced by X consisting of all vertices in X and all

edges xy 2 E with x; y 2 E.

We denote by n the number of vertices and by m the number of edges of G.

A graph is called chordal i� each cycle of length greater than three has a

chord, i.e. an edge that joins two nonconsecutive vertices of the cycle. Note that

chordal graphs are exactly those graphs having a perfect elimination ordering

<, i.e. for each vertex v the neighbors w > v induce a complete subgraph, i.e.

they are pairwise joined by an edge [9].

Note that in any chordal graph, the number of maximal cliques is bounded

by n and the number of pairs (x; c) such that x is in the clique c is bounded by

n+m.

The �ll-in of a graph G = (V;E) and an ordering < is the smallest edge set

E

0

, such that E � E

0

and < is a perfect elimination ordering of G

<

:= (V;E

0

).

Note that G

<

is chordal. The problem to get a minimum �ll-in or a minimum

elimination ordering is to get an ordering <, such that the �ll-in is minimum.

The treewidth of G = (V;E) is the minimum maximum clique size of a

chordal graph G

0

= (V;E

0

) with E � E

0

.

By a module of a graph G = (V;E), we de�ne a subset V

0

of the vertex

set V such that all vertices in V

0

have the same neighbors outside V

0

. We

do not compute all modules but those modules X which do not overlap with

other modules, i.e. there is no module Y that has a nonempty intersection with

X and neither X � Y nor Y � X . We call such modules also overlap free.

Note that the overlap-free modules of any graph form a tree with respect to set

inclusion, i.e. two overlap free modules are disjoint or comparable with respect

to set inclusion. The notions of parent and child modules can be de�ned in

an obvious way. The parent P (X) of an overlap-free module X is the unique

smallest overlap free module that is a proper superset of X . Y is a child module

of X if and only if Y is an inclusion maximal proper overlap free submodule of

X . The system of overlap-free modules is also called the modular decomposition

of the graph G.

Note that a modular decomposition can be determined in linear time [12, 6,

8].

2



Let G be a graph with modules V

1

; : : : ; V

k

. Then G=(V

1

; : : : ; V

k

) is the graph

we obtain from G by shrinking each V

i

to one vertex. Let X be a module with

child modules Y

1

; : : : ; Y

k

. G

X

= G[X ]=(Y

1

; : : : ; Y

k

) is the graph we get from

G[X ] by shrinking each child module of Y

j

of X to one vertex.

We call a graph modularly decomposable into chordal graphs or shortly mod-

ulated chordal if for all overlap-free modules X of G, G

X

is chordal.

3 Minimum Fill-in of a Graph with a Modular

Decomposition into Chordal Graphs

We follow the ideas of [2]. The key lemma is the following.

Lemma 1 Let V

0

be a module of G and let N(V

0

) be the set of neighbors of V

0

that do not belong to V

0

. Then in any �ll-in E

0

of G, V

0

is complete or N(V

0

)

is complete.

Proof: Assume V

0

and N(V

0

) are both not complete in E

0

, i.e. there are

u; v 2 V

0

and u

0

; v

0

2 N(V

0

) that are not joint by an edge in E

0

. Then they

form a cycle of length four in G and also in E

0

.

Q.E.D.

Corollary 1 Suppose V

1

and V

2

are disjoint modules of G and all vertices in

V

1

are adjacent with all vertices in V

2

. Then in any �ll-in E

0

of G, V

1

or V

2

is

a complete set.

We immediately get the following.

Corollary 2 Let V

1

; : : : ; V

k

be the child modules of G. Then for any �ll-in E

0

,

the set of V

i

that are not complete in E

0

form an independent set in

G=(V

1

; : : : ; V

k

):

Now we assume that V

1

; : : : ; V

k

are the child modules of G and

G

0

= G=(V

1

; : : : ; V

k

)

is a chordal graph.

To get a minimum �ll-in, we �rst recursively compute a minimum �ll-in

E

0

i

, for all V

i

. Then we select an independent set V

0

of vertices of G

0

as those

modules V

i

that are not made complete. The neighborhoods of the modules

in V

0

are made complete. The modules corresponding to vertices of G

0

not

belonging to V

0

are made complete. The number of resulting �ll-in edges has

to be minimized.

The following result proves that the resulting graph is a chordal graph and

is easy to check.

3



Lemma 2 1. Let G be a chordal graph and v be a vertex of G. Then the

graph that comes up by replacing v by a complete set V

1

with the same

neighbors outside V

1

as v is a chordal graph.

2. Let G be a chordal graph and v be a vertex of G. Then the graph G

0

that

comes up by making the neighborhood of v complete is a chordal graph.

3. Let G be a chordal graph and v be a simplicial vertex (i.e. the neighborhood

is complete) of G. Then the graph that comes up by replacing v by a module

that is a chordal graph is chordal.

Proof: We always can assume that G has a perfect elimination ordering <.

When we replcace v by consecutive pairwise adjacent vertices v

1

; : : : ; v

k

, i.e.

v

1

< v

2

< : : : < v

k

, w < v i� w < v

1

, and v < w i� v

k

< w, for each vertex

w 6= v of G, < remains a perfect elimination ordering. This proves the �rst

statement of the lemma.

The second part is proved as follows. We show that < remains a perfect

elimination ordering. Let w < w

1

; w

2

and ww

�

2 E or w and w

�

are both

neighbors of v. It has to be shown that w

1

w

2

2 E or that w

1

and w

2

are both

neighbors of v. If w is not a neighbor of v then w

1

w

2

2 E. If w is a neighbor

of v and v � w then ww

1

2 E and ww

2

2 E, because they are neighbors of w

or greater neighbors of v (and therefore adjacent to the greater neighbor w of

v). Therefore also w

1

w

2

2 E. Finally let w < v be a neighbor of v. If w

1

or w

2

is a neighbor of w then it is also a neighbor of v (v and w

1

or w

2

arte greater

neighbors of w). In any case, w

1

and w

2

belong to the neighborhood of v.

The third part is proved as follows. We always have a perfect elimination

ordering < of G that starts with the simplicial vertex v. Let M be another

chordal graph with a perfect elimination ordering <

0

. When we replace v by M

as a module then the concatenation of <

0

and < restricted to G� v is a perfect

elimination ordering.

Q.E.D.

To get the right independent set V

0

, we proceed as follows. For each module

V

i

, let f

i

be the number of �ll-in edges one gets if V

i

is made complete, i.e. the

number of non edges in V

i

, and let g

i

be the number of �ll-in edges one gets if

V

i

is not made complete, i.e. the number of �ll-in edges of a minimum �ll-in of

G[V

i

] plus the number of non edges in the neighborhood of V

i

that join vertices

that appear in di�erent V

j

.

Lemma 3 The number of �ll-in edges that are created by making exactly the

modules in V

0

not complete (and making the remaining modules complete) is

�

V

i

2V

0

g

i

+�

V

i

62V

0

f

i

:

Proof: Note that V

0

is an independent set in G

0

= G=(V

1

; : : : ; V

k

) and that

�ll-in edges might be created by two modules V

i

and V

j

only in case that they

4



are common non edges of the neighborhoods of V

i

and V

j

. This can only be

the case if V

i

and V

j

belong to V

0

. Now V

i

and V

j

are not joint by an edge in

G

0

. Since G

0

is a chordal graph, all vertices in the joint neighborhood of V

i

and

V

j

are pairwise joint by an edge (otherwise G

0

had a chordless cycle of length

four. Therefore no �ll-in edge V

p

V

q

is created by two V

i

's in V

0

. This proves

the lemma.

Q.E.D.

To get the size of a minimum �ll-in of G, one has to compute a maximum

weighted independent set of G

0

= G=(V

1

; : : : ; V

k

), where the weight of V

i

is

f

i

� g

i

.

A. Frank [10] stated an algorithm to determine a maximum weighted inde-

pendent set in a chordal graph. He proved that the algorithm has a polynomial

time bound. The algorithm has in fact a linear time bound.

Lemma 4 [10] We can determine a maximum weighted independent set in a

chordal graph G

0

in linear time.

If the numbers of vertices of V

i

and edges of V

i

are known, one gets f

i

immediately. To get the number of edges of V

i

, one �rst determines, for each

edge e of G, the smallest overlap-free module X

e

that contains e (by determining

the least common ancestor). Then we determine the number ed(X) of e with

X

e

= X , for each overlap-free module X . To get the number of edges of any

overlap-free module, we recursively add the number of edges in each child module

of X and ed(X).

To get g

i

, one has to compute the number of non edges in the neighborhood

of V

i

that are not in the same V

j

. We have the number of non edges of the

neighborhood of V

i

if we have the number of edges in the neighborhood of V

i

that are not in the same V

j

. We consider the chordal graph G=(V

1

; : : : ; V

k

) and

weight each edge V

i

V

j

by jV

i

jjV

j

j.

Lemma 5 For a chordal graph G

0

with vertex weights w(v), for each vertex v

and edge weights w(e) = w(vw) = w(v)w(w), for each edge e = vw of G

0

, we

can compute, for all vertices v of G

0

simultaneously, the sum of edge weights in

the neighborhood of v in G

0

in linear time.

Proof: We assume that a perfect elimination ordering of G

0

is known. Let

h(v) be the sum of edge weights of edges that join neighbors x and y of v that

are greater than v. Since greater neighbors of v are pairwise adjacent,

h(v) = �

x;y>v;xv;yv2E;x 6=y

w(x)w(y):

This can be replaced by

h(v) = ((�

xv2E;x>v

w(x))

2

� �

xv2E

w(x)

2

)=2:

Therefore all h(v) can be determined in linear time.

5



Next we have to consider neighbors x and y, such that at least one of x or

y is smaller than v. Without loss of generality, x < y and x < v. Note that if y

is a neighbor of x then y is a neighbor of v.

Let w

0

(x) be the sum of edge weights w(xy) with xy 2 E and x < y. Note

that all w

0

(x) can be determined simultaneously in linear time.

The sum of all edge weights in the neighborhood of v is determined by

s(v) := h(v) + �

x<v;xv2E

(w

0

(x)� w(xv)):

Q.E.D.

Corollary 3 g

i

, i = 1; : : : ; k can be determined in linear time.

Proof: By previous lemma, we know the sum s(V

i

) of weights w(V

p

; V

q

) =

jV

p

jjV

q

j of neighbors V

p

and V

q

of V

i

, such that V

p

and V

q

are adjacent in

G

0

= G=(V

1

; : : : ; V

k

). Let N(V

i

) be the neighborhood of V

i

in G

0

. Then the sum

of jV

p

jjV

q

j, p 6= q, V

p

; V

q

2 N(V

i

) is

t

i

= ((�

V

q

2N(V

i

)

jV

q

j)

2

� �

V

q

2N(V

i

)

jV

q

j

2

)=2:

t

i

can be determined in linear time and g

i

= h

i

+ t

i

� s(V

i

) where h

i

is the size

of a minimum �ll-in of G[V

i

]. Therefore g

i

can be determined in linear time.

Q.E.D.

Theorem 1 The size of a minimum �ll-in of a modulated chordal graph can be

determined in linear time.

Proof: One determines the sizes of the minimum �ll-ins of all overlap-free

modules X recursively. Note that one recursion step can be done in linear time

with respect to the size of G

X

. Therefore the overall time is linear with respect

to the the size of the whole graph G.

Q.E.D.

It remains to get a minimum �ll-in ordering i.e. a perfect elimination order-

ing of the �ll-in. Note that we did not compute the edges of the �ll-in graph

explicitly. We follow the proof of Lemma 2. We may assume that for all modules

of G, a perfect elimination ordering is known.

We proceed again recursively.

1. We assume that we know minimum �ll-in orderings <

i

of G[V

i

] and we

know the set V

0

of those V

i

that are not made complete in a minimum

�ll-in of G. We also assume that a perfect elimination ordering <

0

of

G

0

= G=(V

1

; : : : ; V

k

) is known.

2. We �rst concatenate the orderings <

i

, such that V

i

2 V

0

and get an

ordering <

0

1

of the vertices of V that appear in some V

i

2 V

0

. Then we

concatenate the orderings<

i

with V

i

62 V

0

, such that <

i

appears before <

j

if V

i

<

0

V

j

in the perfect elimination ordering of G

0

. We get an ordering

<

0

2

.

6



3. The �nal elimination ordering < of the �ll-in graph is the concatenation

of <

0

1

�rst and <

0

2

second.

Lemma 6 The ordering < as constructed above is a perfect elimination oprder-

ing of the minimum �ll-in graph.

Proof: This follows from the proof of lemma 2.

1. Assume V

i

2 V

0

. Then the neighborhood of V

i

is made complete. <

0

remains a perfect elimination ordering of G

0

if we make the neighborhood

of V

i

complete. If we replace V

i

by the �ll-in graph of G[V

i

] then we can

take <

i

�rst and <

0

second and we have a perfect elimination ordering of

of the graph G

0

i

that comes up when we replace V

i

by the minimum �ll-in

graph of G[V

i

].

2. Since V

0

is independent in G

0

, we replace all V

i

2 V

0

by the minimum

�ll-in graph of G[V

i

] and the concatenation of the <

i

with V

i

2 V

0

�rst

and <

0

restricted to the V

i

62 V

0

second is a perfect elimination ordering

of the graph G

0

V

0

that comes up if we replace each V

i

by the minimum

�ll-in graph of G[V

i

].

3. We can replace each vertex V

i

of G

0

V

0

by complete set D

i

and the graph

remains chordal. In the perfect elimination ordering <

0

V

0

we may replace

V

i

by the consecutive enumeration of the vertices in D

i

, and we still have

a perfect elimination ordering. This is in particular true if we replace V

i

as a vertex of G

0

V

0

by the vertices of V

i

.

At the end we get the ordering as constructed above.

Q.E.D.

It remains to show that the ordering as constructed above can be determined

in linear time. We may assume that the perfect elimination orderings of the

modules are given by lists and not by enumerations. Then in each recursion

step, the minimum �ll-in ordering < can be determined from the orderings <

i

in O(n) time, where n is the number of V

i

. As a �nal result, we get the following.

Theorem 2 A minimum �ll-in ordering of a modulated chordal graph can be

determined in linear time.

4 Treewidth of Modulated Chordal Graphs

We will show the following.

Theorem 3 The treewidth of a modulated chordal graph can be determined in

O(n+m) logn time.

7



Proof: We proceed in a similar way as in the case of minimum �ll-in. We

recursively determine the treewidths of the maximal modules V

1

; : : : ; V

k

and

select an appropriate independent set I of G=(V

1

; : : : ; V

k

), such that the V

i

2 I

are exactly those modules that are not made complete. We may assume that a

perfect elimination ordering ofG=(V

1

; : : : ; V

k

) is known. We assume that just the

enumeration V

1

; : : : ; V

k

de�nes a perfect elimination ordering of G=(V

1

; : : : ; V

k

).

In any �ll-in G

0

of G, there are two kinds of cliques.

1. Cliques c that are unions of V

i

, i.e. there is a V

i

, such that c = V

i

[

S

V

j

>V

i

;V

i

V

j

2E

V

j

. Note that in this case, all V

j

in c are made complete.

2. Cliques c that are not unions of V

i

, i.e. there is a clique c

1

of G

0

[V

i

], such

that c = c

1

[N(V

i

).

We assume that we know the treewidth t

i

of G[V

i

]. Let s

1

i

:= t

i

+ jN(V

i

)j

and s

2

i

:= jV

i

j + �

V

j

>V

i

;V

i

V

j

2E

jV

j

j. s

1

i

is the maximum size of a clique that

intersects V

i

if V

i

is not made complete. s

2

i

is the size of V

i

together with its

greater neighborhood. For an independent set I of G=(V

1

; : : : ; V

k

), let J be the

set of V

i

62 I , such that all modules V

j

in the greater neighborhood of V

i

are not

in I . The each clique that is a union of V

j

is of the size s

2

i

, for some i 2 J and

each clique that is not the union of some V

j

is of the size s

1

i

, for some i 2 I .

The maximum clique size of the �ll-in G

I

associated with I is denoted by S

I

and can be determined as follows.

S

I

:= max(s

1

i

: V

i

2 I; s

2

i

: V

i

2 J):

The treewidth is therefore determined by

S := min

I

S

I

:

We again consider the elimination tree T with parent function Par where

Par(V

i

) is the next greater neighbor of V

i

in G=(V

1

; : : : ; V

k

). Let D

i

be the set

of descendents of V

i

including V

i

in T . For an independent set I

i

of D

i

, let J

i

be the set of V

j

62 I in D

i

, such that no greater neighbor of V

j

is in I . Then

S

i

I

i

:= max(s

1

j

jV

j

2 D

i

\ I

i

; s

2

j

jV

j

2 J

i

) and S

i

= min

I

i

S

i

I

i

.

To get S, we determine the S

i

recursively. Let S

1

i

:= min

V

i

2I

i

S

i

I

i

and

S

2

i

:= min

V

i

6inI

i

S

i

I

i

. Then

S

1

i

= max(s

1

i

; (S

j

: V

j

2 D

i

; V

j

V

i

62 E; Par(V

j

)V

i

2 E))

and

S

2

i

= max(s

2

i

; (S

j

: Par(V

j

) = V

i

)):

Note that S

i

= min(S

1

i

; S

2

i

).

Obviously, the time bound is O(n

2

). But we also can get O(n +m) logn as

follows. We sort the children V

j

of each V

i

by the numbers S

j

as soon as we

8



know the S

j

, for all children V

j

of V

i

. This takes O(n +m) + O(n logn) time.

For each descendent V

j

of V

i

(i.e. V

j

< V

i

) that is a neighbor of V

i

, we now can

determine a child V

l

of V

j

that is not a neighbor of V

i

of maximum S

l

in the

order of the number of children of V

j

that are neighbors of V

i

. This gives a time

bound in the order of the number of neighbors of V

i

times a logarithmic factor.

The overall complexity of the algorithm is therefore O(n +m) logn.

Q.E.D.

Remark 1 The additional logarithmic factor comes from the fact that we have

to sort the children of any node of the elimination tree. It might be interesting

to improve the algorithm in such a way that we can circumvent sorting.

5 Introducing Modules of Bounded Size

We now consider the case that G can be modularly decomposed into prime

graphs that are chordal or of bounded size. To �nd a minimum �ll-in ordering

of G, we had to know the minimum �ll-in ordering of all maximal modules

V

i

of G. It was not essential that the modules V

i

themselves again induce

modulated chordal graphs. It only was essential that we can get the minimum

�ll-in orderings of the V

i

in linear time. It remains therefore to discuss the

case that G

0

= G=(V

1

; : : : ; V

k

) is a graph of bounded size. Let again V

0

be the

set of V

i

that do not induce a complete subgraph of the �ll-in. Then V

0

is an

independent set of G

0

. The proof is the same as the proof of lemma 1. The

vertices of V

i

and V

j

not in V

0

that have a common neighbor in V

0

must be

joined by �ll-in edges. Therefore given V

0

, we make all V

i

and V

j

adjacent, i.e.

having an edge between every vertex of V

i

and every vertex of V

j

, if they are

adjacent to a common V

k

2 V

0

. We call these edges V

0

-�llin edges. It remains

to determine a minimum �ll-in of the graph G

00

= G

00

V

0

that arises from G

0

�V

0

together with the V

0

-�ll-in edges, where each V

i

is replaced by a clique of size

jV

i

j. De�ne a set S of the vertices of G

0

to be a cut if G

00

� S has at least two

connected components, say C

1

and C

2

, such that all vertices of S are in the

neighborhood of C

1

and of C

2

. By a result of Parra and Sche�er [13], all cuts

of a minimum �ll-in (even of a �ll-in that is minimal with respect to the subset

relation) of G

00

are also cuts of G

00

and all �ll-in edges join two vertices that are

in a common cut of the minimum �ll-in. It is easy to observe that in all cuts S

of G

00

, either all vertices of any particular V

i

or none of its vertices belong to S.

Therefore either all vertices of V

i

and V

j

are pairwise joined by a �ll-in edge or

none of them. We again weight a �ll-in edge V

i

V

j

with w(V

i

; V

j

) = jV

i

jjV

j

j and

each V

i

with the number f

i

of its non edges and the minimum �ll-in size g

i

of the

minimum �ll-in of G[V

i

]. Knowing the sizes of the minimum �ll-ins of the V

i

's,

we can get the size of a minimum �ll-in of G in constant time. We only have

go through all possible V

0

and all �ll-ins of G

00

V

0

. We weight the V

i

2 V

0

with

g

i

, the vertices not in V

0

with f

i

, and the �ll-in edges with its weight w(V

i

; V

j

).

We select the G

00

V

0

with the smallest weight sum.

9



Theorem 4 The size of a minimum �ll-in of a graph whose prime modules are

chordal or of bounded size can be determined in linear time.

To get the minimum treewidth, we can proceed in the same way and get a

time bound of O(n+m) logn.

This generalizes a result of [2] that in "graphs with few P

4

-s, the size of a

minimum �ll-in and the minimum treewidth can be determined in linear time.

6 Conclusions

It might also be possible to extend the ideas also to HHD-free graphs. One

should mention that in HHD-free graphs, there is always a vertex, such that

the in the neighborhood, the connected components of the complement form

modules [11]. A polynomial time algorithm to get a minimum �ll-in for HHD-

free graphs is due to [4].

7 Acknowledgements

I am very grateful for fruitful discussions with Ton Kloks.

References

[1] Arnborg, S., D. G. Corneil and A. Proskurowski, Complexity of �nding

embeddings in a k-tree, SIAM J. Alg. Disc. Meth. 8, (1987), pp. 277{284.

[2] L. Babel, Triangulating Graphs with Few P

4

s, submitted.

[3] H.J. Broersma, E. Dahlhaus, T. Kloks, A Linear Time Algorithm for Min-

imum Fill In and Tree Width for Distance Hereditary Graphs , submitted.

[4] H.J. Broersma, E. Dahlhaus, T. Kloks, Algorithms for the Treewidth and

Minimum Fill-in of HHD-Free Graphs, WG 97, LLNCS 1335, pp. 109-117.

[5] P. Bunemann, A Characterization of Rigid Circuit Graphs, Discrete Math-

ematics 9 (1974), pp. 205-212.

[6] A. Cournier and M. Habib, A new linear algorithm for modular decom-

position, in CAAP '94: 19th International Colloquium, Lecture Notes in

Computer Science, Sophie Tison, ed., 1994, pp. 68-82.

[7] E. Dahlhaus, Minimum Fill-in and Treewidth for Graphs Modularly De-

composable into Chordal Graphs, WG98, LLNCS 1517, pp. 351-358.

10



[8] Elias Dahlhaus, Jens Gustedt, Ross McConnell, E�cient and Practical

Modular Decomposition, Eighth Annual ACM-SIAM Symposium on Dis-

crete Algorithms (1997), pp. 26-35.

[9] M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Math-

ematics 43 (1983), pp. 173-189.

[10] A. Frank, Some Polynomial Time Algorithms for Certain Graphs and Hy-

pergraphs, Proceedings of the 5th British Combinatorial Conference, Con-

gressus Numerantium XV, Untilitas Mathematicae, Winnipeg (1976), pp.

211-226.

[11] C.T. Ho�ang and N. Khouzam, On Brittle Graphs, Journal of Graph Theory

12 (1988), pp. 391-404.

[12] R. M. McConnell and J. P. Spinrad, Linear-time modular decomposition

and e�cient transitive orientation of undirected graphs, in Proceedings of

the �fth annual ACM-SIAM Symposium on Discrete Algorithms, D. D.

Sleator et al., eds., Society of Industrial and Applied Mathematics (SIAM),

1994, pp. 536{545.

[13] Parra, A., Sche�er, P., How to use minimal separators for its chordal trian-

gulation, Proceedings of the 20

th

International Symposium on Automata,

Languages and Programming (ICALP'95), Springer-Verlag Lecture Notes

in Computer Science 944, (1995), pp. 123{134.

[14] D. Rose, Triangulated Graphs and the Elimination Process, Journal of

Mathematical Analysis and Applications 32 (1970), pp. 597-609.

[15] R. Tarjan, M. Yannakakis, Simple Linear Time Algorithms to Test Chordal-

ity of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce

Acyclic Hypergraphs, SIAM Journal on Computing 13 (1984), pp. 566-

579.

Addendum: SIAM Journal on Computing 14 (1985), pp. 254-255.

[16] M. Yannakakis, Computing the Minimum Fill-in is NP-complete, SIAM

Journal on Algebraic and Discrete Methods 2 (1981), pp. 77-79.

11


