
Minimal Elimination Ordering Inside a Given Chordal Graph

�

Elias Dahlhaus

Dept. of Computer Science and Dept. of Mathematics

University of Cologne, Cologne, Germany

e-mail: dahlhaus@suenner.informatik.uni-koeln.de

Keywords: Gauss elimination, sparse matrices, chordal graphs, nested dissection, mini-

mum degree heuristics.

Abstract

We consider the following problem, called Relative Minimal Elimination Ordering.

Given a graph G = (V;E) which is a subgraph of the chordal graph G

0

= (V;E

0

), compute

an inclusion minimal chordal graph G

00

= (V;E

00

), such that E � E

00

� E

0

. We show that

this can be done in O(nm) time. This extends the results of [2]. The algorithm is based

only on well known results on chordal graphs.

1 Introduction

One of the major problems in computational linear algebra is that of sparse Gauss elimination.

The problem is to �nd a pivoting, such that the number of zero entries of the original matrix

that become non zero entries in the elimination process is minimized. In case of symmetric

matrices, we would like to restrict pivoting along the diagonal. We consider the graph G

consisting of the vertex set f1; : : : ; ng where n is the number of rows or columns of the given

matrix and two verices i and j are joined by an edge if and only if the corresponding entry

of the matrix is a non-zero entry. When restrict pivoting along the diagonal, we create new

non-zero entries as follows. An entry a

ij

becomes a non-zero entry there is a k < i; j, such

that a

ki

and a

jk

are non-zero entries or have become non-zero entries. The graph theoretical

interpretation is that in increasing order, we select a vertex i and join all greater neighbors of

i (with a greater number than i) pairwise by an edge the edges that are added to the graph G

are called �ll-in edges. The problem of minimum �ll-in is to �nd a permutation of f1; : : : ; ng,

such that during the pivoting process, the number of non-zero entries is minimized. In terms

of graph theory, we are interested to get a numbering of the vertices of the given graph, such

that the �ll-in is minimized.

Unfortunately, this problemm is NP-complete [19]. One approach to relax the problem is

to �nd a numbering of the vertices, such that the corresponding �ll-in is minimal with respect

to the subset relation (Minimal Elimination Ordering (MEO)). This problem can be solved in

O(nm) time [15]. Unfortunately, a minimal �ll-in can have a size that is far from the size of

a �ll-in of minimum cardinality. This is shown by the following example.

�

A preliminary version appeared in WG 97 [6], partially supported by ESPRIT Long Term Research Project

Nr. 20244 (ALCOM-IT)

1

Figure 1: A graph with a small minimum �ll-in and a large minimal �ll-in

The vertex set of G consists of a vertex set V = X [fxg [fyg and an edge set fxvjv 2

Xg [fyvjv 2 Xg (see �gure 1).

Numbering x �rst and y last leeds to a �ll-in, such that all vertices in X are pairwise

adjacent. This �ll-in is also a minimal �ll-in (see �gure 2).

Numbering the vertices of X �rst and x and y last leeds to a �ll-in that consists only of

the edge xy (see �gure 3).

There are two practical polynomial time heuristics to get "good" elimination orderings,

the minimum degree heuristics (see for example [11]) and nested dissection heuristics (see for

example [1] or [11]).

Neither the minimum degree heuristics nor the nested dissection method computes nec-

essarily an elimination odering, such that the �ll-in is minimal with respect to the subset

relation.

The minimum degree heuristics repeatedly selects and numbers a vertex v with a minimum

number of unnumbered neighbors and the unnumbered neighbors of v are made pairwise

adjacent. We consider the graph G consisting of two vertex disjoint cliques C

1

and C

2

and

a vertex v that is adjacent to exactly one vertex of C

1

and one vertex of C

2

. The minimum

degree heuristics would select v �rst and create a �ll-in edge that joins the two neighbors of v.

On the other hand numbering the vertices of C

1

�rst, the vertices of C

2

second, and numbering

v last would leed to an empty set of �ll-in edges.

Note that �ll-in graphs are always chordal, i.e. every cycle of length greater than three has a

pair of non consecutive vertices that are joined by an edge (also called chord). Chordal graphs

are exactly those graphs having an ordering with no �ll-in edge (called perfect elimination

ordering). The problem of minimum �ll-in is therefore equivalent to �nd a smallest extension

of the edge set of the given graph that is chordal. The problem of a minimal elimination

ordering is equivalent to the problem to �nd a subset minimal extension of the edge set that

is chordal.

We are interested in the problem to combine one of the heuristics as mentioned above with

2

1

2

3 4 5 6
7

8 9

Figure 2: The large minimal �ll-in

1 2 3 4 5 6 7

8

9

Figure 3: The minimum �ll-in

3

1
fill-in edge of minimum degree heuristics

Figure 4: Minimum degree heuristics does not necessarily leed to a minimal �ll-in

minimal �ll in, i.e. we �rst apply one of the heuristics to get an odering < and afterwards we

further thin out the resulting chordal graph G

0

<

that consists of the edges of G and the �ll-in

edges of G and <, such that we get a minimal �ll in ordering <

0

with G

0

<

0

� G

0

<

.

In general, we consider the following problem.

Relative Minimal Elimination Ordering: Given a graph G = (V;E) and an ordering <,

�nd another ordering <

0

, such that the �ll-in of <

0

is minimal with respect to the subset

relation and a subset of the �ll-in of <.

Blair, Heggernes, and Telle [2] were the �rst dealing with this problem and the run time of

their algorithm is O(f(m+ f)), where m is the number of original edges and f is the number

of �ll-in edges, i.e. additional edges of G

<

nG.

Here we present an algorithm with a time bound of O(nm) that is at least better in theory.

In section 2, we introduce the notation and basic results that are necessary for the paper.

In section 3, we describe the basic strategy of the algorithm consisting of a "tree splitting"

procedure as a preprocessing procedure to the RTL-algorithm and an improved Rose-Tarjan-

Lueker algorithm (improved RTL-algorithmm). In section 4 introduce and show the correctness

of the tree splitting procedure. In section 5 we show the correctness of an improved version of

the RTL-algorithm.

2 Notation

A graph G = (V;E) consists of a vertex set V and an edge set E. Multiple edges and loops

are not allowed. The edge joining x and y is denoted by xy.

We say that x is a neighbor of y i� xy 2 E. The set of neighbors of x is denoted by N(x)

and is called the neighborhood. The set of neighbors of x and x is denoted by N [x] and is

4

called the closed neighborhood of x.

Trees are always directed to the root. The notion of the parent, child, ancestor, and

descendent are de�ned as usual.

A subgraph of (V;E) is a graph (V

0

; E

0

) such that V

0

� V , E

0

� E.

We denote by n the number of vertices and by m the number of edges of G.

A graph is called chordal i� each cycle of length greater than three has a chord, i.e. an edge

that joins two nonconsecutive vertices of the cycle. Note that chordal graphs are exactly those

graphs having a perfect elimination ordering <, i.e. for each vertex v the neighbors w > v

induce a complete subgraph, i.e. they are pairwise joined by an edge [9].

Moreover, chordal graphs G = (V;E) are exactly the intersection graphs of subtrees of a

tree [10, 3], i.e. there is a tree T and a collection of subtrees T

v

, v 2 V , such that vw 2 E if

and only if T

v

and T

w

share a node. We call (T; T

v

)

v2V

also a tree representation of G. Let

c

t

:= fvjt 2 T

v

g. Note that all vertices in c

t

are pairwise adjacent. Note that one always

can �nd a tree representation (T; T

v

)

v2V

of G, such that the sets c

t

are exactly the maximal

cliques of the chordal graph G [10, 3]. In this case, T is also called a clique tree of G. A clique

tree can always be determined in linear time [18].

Note that in any chordal graph, the number of maximal cliques is bounded by n and the

number of pairs (x; c) such that x is in the clique c is bounded by m.

3 The Basic Algorithmic Idea

We �rst compute the �ll-in E

0

of G and <. Then we compute a clique tree T of G

0

<

:=

(V;E [E

0

).

Note that the edges of T correspond to the cuts of G

0

<

. We consider for each edge st of

T the set c

st

of T

v

passing the edge st, i.e. c

st

:= c

s

\ c

t

. c

st

separates G

0

<

into at least two

connected components (i.e. G

0

<

� c

st

has at least two connected components) and there are

at least two connected components C

1

and C

2

of G

0

<

� c

st

, such that all vertices of c

st

have a

neighbor in C

1

and a neighbor in C

2

(c

st

is a cut). Note that cuts of G

0

<

are not necessarily

cuts of G. But in a minimal elimination ordering, all cuts of G

0

<

are also cuts of G [13]. We

continue as follows.

1. We split the cuts of G

0

<

into cuts of G. We get a new tree representation (T

1

; T

v

)

v2V

and

a chordal graph G

1

that is a subgraph of G

0

<

and contains G as a subgraph. All cuts of

G

1

are cuts of G. (T

1

; T

v

)

v2V

is also called a quasi-minimal tree representation of G.

Theorem 1 Suppose (T

1

; T

v

)

v2V

is a quasi minimal tree representation of G

1

= (V;E

1

).

Then all edges uv, such that T

u

and T

v

share an edge of T

1

, appear in each G

0

<

0

= (V;E

00

),

such that <

0

is a minimal elimination ordering and E

00

� E

1

.

Proof: Suppose T

u

and T

v

share an edge st of T

1

. Let C

1

and C

2

be connected components

of G[V n c

st

], such that all vertices of c

st

have a neighbor in C

1

and a neighbor in C � 2.

Since the subtrees T

x

; x 2 C

1

and T

y

; y 2 C

2

are separated by the edge st of T

1

, there is

no edge xy 2 E

1

and therefore no edge xy 2 E

00

, such that x 2 C

1

and y 2 C

2

. Consider

any path p

1

from u to v with inner vertices in C

1

and any path p

2

from v to u with inner

vertices in C

2

in the original graph G. The concatenation of p

1

and p

2

forms a cycle in

5

G

0

<

0

of length � 4. Assume there is no edge uv 2 E

00

. Then consider any chordless path

p

0

1

and p

0

2

in G

0

<

0

from u to v and v to u respectively, such that their vertices are in p

1

and p

2

respectively. Then the concatenation of p

0

1

and p

0

2

forms a cycle in G

0

<

0

of length

at least four. Therefore in G

0

<

0

, it must contain a chord in E

00

. Since p

0

1

and p

0

2

are

chordless, one incident vertex must be in p

0

1

and therefore in C

1

, and the other incident

vertex must be in p

0

2

and therefore in C

2

. This is a contradiction to the fact that there

is no edge xy 2 E

00

with x 2 C

1

and y 2 C

2

. 2

2. Note that vertices v and w that have not only a clique but even a cut in common are

joined by an edge in any minimal �ll-in of G that is a subset of G

1

. We add those pairs

of vertices to the edge set of G. We could determine a minimal �ll-in of each clique of G

1

separately using the algorithm of [15]. This would leed to an O(n

3

) time algorithm. We

also can consider the clique tree of G

1

and we can determine a post order enumeration of

the clique set of G

1

. We partition the vertex set of G into levels where a vertex v is put

into level L

i

if the root clique of v (i.e. the root of T

v

in T

0

) has the number i. We will

see that we can apply the algorithm of [15] globally to determine a minimal elimination

ordering with a �ll-in that is a subset of G

1

.

The complexity of the �rst step is known.

Lemma 1 [15] The �ll-in of an ordering < of the vertex set of G can be determined in O(n

2

)

time.

As a consequence, also a clique tree T of G

0

<

can be determined in O(n

2

) time.

We therefore may assume that a clique tree T of G

0

<

is given. Due to the construction of

[18] of a clique tree, we may assume that if the root of T

x

is a proper descendent of the root

of T

y

then x < y. We also may assume that if t is the parent of s in T then there is a T

v

that

passes s and that has t as its root.

Moreover, we may observe the following.

Lemma 2 For each node t of T , the set C

t

consisting of all vertices x, such that the root of

T

x

is t or a descendent of t is connected in G.

Proof: Otherwise we could get a tree representation consisting of two copies T

1

and T

2

of t and its descendents. The root of T

1

and T

2

have the same parent. The trees T

x

beeing

in the �rst connected component of C

t

are made subtrees of T

1

, and the remaining T

x

are

made subtrees of T

2

. The chordal graph G

1

represented by this tree representation is a proper

subgraph of G

0

<

but still contains G as a subgraph. Moreover also in G

1

all greater neighbors

of any vertex are pairwise adjacent (with respect to the same ordering <). The reason is that

also in the tree representation of G

1

, if the root of T

x

is a descendent of the root of T

y

then

x < y. Therefore G

0

<

cannot be the �ll-in of G and < (i.e. the smallest extension of G to a

chordal graph that has < as a perfect elimination ordering). This is a contradiction. 2

Recall that C

t

is the set of vertices x, such that the root of T

x

is t or a descendent of t and

that c

st

is the set of vertices x, such that T

x

passes the edge st.

Lemma 3 Let s be a node of the clique tree T and t be its parent in T . Then c

st

is the set of

neighbors of C

s

in G that do not belong to C

s

.

6

Proof: Note that all neighbors x of C

s

in G are also neighbors of C

s

in G

0

<

. Therefore for

all neighbors x of C

s

, T

x

contains at least one node of T that is s or a descendent of s. If

moreover x 62 C

t

then the root of T

x

is not in a descendent of s or s. Therefore T

x

contains s

or a descendent of s and non descendents of s and therefore s and its parent t.

Vice versa suppose that x is not a neighbor of C

s

inG. If T

x

would contain s or a descendent

of s then we only have to delete all nodes u of T

x

from T

x

that are s or descendents of s. T

x

remains a tree. The chordal graph represented by the new tree representation is a subgraph

of G

0

<

and < remains a perfect elimination ordering. That means T

x

cannot contain s or a

descendent of s. Therefore T

x

cannot pass the edge st of T .

2

4 The Tree Splitting Procedure

We start with the initial tree representation (T

0

; T

0

v

)

v2V

of G

0

:= G

0

<

.

We compute a sequence (T

i

; T

i

v

)

v2V

of tree representations that represent chordal graphs

G

i

= (V;E

i

). G

i+1

is a subgraph of G

i

and contains G as a subgraph, and the �nal tree

representation (T

k

; T

k

v

)

v2V

is quasiminimal.

Let e

1

; : : : ; e

k

be an enumeration of the edges of T

0

, such that if e

i

is an ancestor edge of

e

j

then i < j. For example a postorder enumeration is such an enumeration. We call such

an enumeration a top down enumeration. Let e

i

= s

i

t

i

where t

i

is the parent of s

i

. During

the algorithm, for each edge f = st, let C

(s;t)

be a connected subset of G, such that all T

u

with u 2 C

(s;t)

appear on the s-side of st in T and all vertices w, such that T

w

pass st, are

in the neighborhood of C

(s;t

). Note that an edge satis�es the condition of quasi minimality if

C

(s;t)

and C

(t;s)

are de�ned. Initially, let C

(s

i

;t

i

)

:= C

s

i

, i.e. the set of vertices u such that T

u

appears only at the s

i

-side of e

i

. By construction of (T

0

; T

0

v

)

v2V

, all these sets are connected

in G.

Algorithmically we proceed as follows.

For i = 1; : : : ; k,

compute T

i

from T

i�1

, i.e.

1. compute the set C

i

of connected components of

G[fvjT

v

appears only on the t

i

-side of T

0

g];

2. for each c 2 C

i

, mark c as good if there is a v 2 c, such that t

i

2 T

i�1

v

;

3. for each good connected component c 2 C

i

, create a tree node t

c

and a tree

edge s

i

t

c

;

C

(s

i

;t

c

)

:= C

(s

i

;t

i

)

; C

(t

c

;s

i

)

:= c;

4. construct T

i

from T

i�1

as follows: for each edge t

i

u of T

i�1

, let d

u

be the

component c 2 C

i

that contains C

(u;t

i

)

;

if d

u

is a good component then

begin replace t

i

u by t

d

u

u;

7

C

(t

d

u

;u)

:= C

(t

i

;u)

if de�ned; C

(u;t

d

u

)

:= C

(u;t

i

)

; if t

i

u was an e

j

, j > i then e

j

is

updated by t

d

u

u, i.e. s

j

:= u and t

j

:= t

d

u

;

end

else

begin

replace t

i

u by s

i

u; C

(s

i

;u)

:= C

(t

i

;u)

if de�ned; C

(u;s

i

)

:= C

(u;t

i

)

; if ut

i

= e

j

, for some

j > i, then e

j

is updated to us

i

(s

j

= u; t

j

= s

i

);

end;

erase t

i

;

5. (updating T

v

) for v with t

i

2 T

i�1

v

, construct T

v

= T

i

v

from T

v

= T

i�1

v

as follows:

for any good component c 2 C

i

, add t

c

to T

v

if and only if v 2 c or v is a

neighbor of some vertex in c in G;

To prove the correctness, we have to show that the tree representation

(T

k

; T

k

v

)

v2V

is quasi minimal and that the edge set E

k

of G

k

contains E and is contained in

E

1

.

We say that an edge f of T

j

arises from e

i

if either

1. j = i and f is an edge s

i

t

c

, for some good component c of C

i

or

2. j > i and (f is also an edge of T

j�1

and arises from e

i

or there is an edge f

0

of T

j�1

that

arises from e

i

and is replaced by f in T

j

).

Note that in each T

i

, every edge is either some e

j

, j > i or arises from some e

j

, j � i. To

show that (T

k

; T

k

v

)

v2V

is quasi minimal, we show that for each j � i and each edge f = st

that arises from e

j

, C

(s;t)

and C

(t;s)

are both de�ned, each C

(s;t)

de�nes, for each i, an in G

connected subset of V that is adjacent to all vertices of p

f

= fvjT

i

v

passes fg.

By induction on i, we show

Lemma 4 For each i:

1. In (T

i

; T

i

v

)

v2V

, for all edges f = st arising from som e

j

, j � i, C

(s;t)

and C

(t;s)

are

de�ned.

2. For all edges ut of T

i

with t = s

j

, j � i or t = t

c

, c 2 C

j

, j � i, C

(u;t)

is de�ned.

3. For each edge ut

i+1

of T

i

, C

(u;t

i+1

)

is de�ned.

4. If C

(s;t)

is de�ned in (T

i

; T

i

v

)

v2V

then C

(s;t)

is an in G connected subset of V and

5. for all T

i

v

passing st, vw is an edge in G, for some w 2 C

(s;t)

6. T

i

v

is a tree, i.e. de�nes a connected subset of T

i

.

7. For j > i, if us

j

is an edge of T

i

and u 6= t

j

then C

(u;s

j

)

is de�ned.

8

Proof: We simultaneously prove all the statements by induction.

For i = 0, statements 1 and 2 are trivially true, because e

j

, j � i do not exist. Statements

4, 6, and 7 are true, by construction of (T

0

; T

0

v

)

v2V

. Note that t

1

is the root of T

0

, and

therefore also statement 3 is true, for i = 0. , since statement 7 is true.

To show the inductive step, observe that whenever ut = ut

i

is replaced by ut

0

, C

(u;t)

is

always de�ned, since statement 3 is true for i�1, C

(u;t

0

)

= C

(u;t)

, and C

(t;u)

= C

(t

0

;u)

. Moreover,

observe that a new C

(t;u)

is created if and only if u = s

i

and t = t

c

, for some good component

c of C

i

. C

(t

c

;s

i

)

= c is an in G connected subset of V and for all T

i

v

passing t

c

s

i

, v is adjacent

to some vertex in c in G. Therefore statement 1 and statement 4 are true, for all i.

Statement 2 is true for t = s

j

, j < i and t = t

c

with c 2 C

j

, j < i, because it is true in

(T

i�1

; T

i�1

v

)

v2V

and t does not get new incident edges in T

i

. If t = s

i

then all edges incident

with s

i

in T

i

are either edges incident with s

i

in T

i�1

or edges us

i

= t

c

s

i

or replaced edges us

i

(i.e. ut

i

was an edge in T

i�1

). In either cases C

(u;s

i

)

is de�ned and therefore statement 2 is

true for s

i

. Suppose now that t = t

c

and c is a good component of C

i

. Incident edges in T

i

are

s

i

t

c

and edges ut

c

with ut

i

in T

i�1

. Statement 3 follows for u = s

i

from statement 1. For the

remaining u, statement 2 follows from the observation that whenever ut

i

is replaced by some

ut

0

then C

(u;t

0

)

remains de�ned.

Statement 7 is always preserved, because any s

j

, j > i is not a t

l

, l � i, because e

1

; : : : ; e

k

is a top down enumeration of the edges of T

0

, and therefore s

j

is not of the form t

c

and not

an s

l

, l � j and therefore up to replacements, s

j

has the same incident edges in T

i

as in T

i�1

.

To show statement 3, observe that t

i+1

is an s

j

, j � i or a t

c

, c 2 C

j

, j � i, because

e

1

; : : : ; e

k

is a top down enumeration of the edges of T

0

. Therefore statement 3 follows from

statement 2.

Next observe that, when we create (T

i

; T

i

v

)

v2V

and replace any edge ut

i

by ut then either

t = t

c

, for some good component c or t = s

i

. In the �rst case, exactly for those T

i�1

v

passing

ut

i

, T

i

v

contains u and t

c

. In the second case, no good component contains C

(u;t)

and therefore

no vertex of C

(u;t)

is adjacent to some vertex in a good component and therefore for no T

i�1

v

containing t

i

but not s

i

, v is adjacent to some vertex in C

(u;t)

. Since for all T

i�1

v passing

ut

i

, v is adjacent to some vertex of C

(u;t

i

)

, all these T

i�1

v

pass s

i

t

i

. In either cases T

i

v

passes

ut if and only if T

i�1

passes ut

i

. Therefore statement 5 is preserved by edge replacements.

Moreover observe that if T

i

v

passes s

i

t

c

then T

i�1

v

passes s

i

t

i

and therefore in the neighborhood

of C

(s

i

;tc)

= C

(s

i

;t

i

)

and statement 5 is preserved in any way.

It remains to show statement 6. Replacing ut

i

by us

i

takes place only in the case that the

subtrees passing ut

i

form a subset of the subtrees passing s

i

t

i

, and all subtrees T

i�1

v

remain

subtrees. Note that all subtrees T

i�1

v containing t

i

but not s

i

are in some good component

c. Since when ut

i

is replaced by ut

c

the set C

(u;t

i

)

is de�ned, for all T

i�1

v

passing ut

i

, v 2 c or

T

v

passes s

i

t

i

. The only isolated vertex of T

i�1

v

that might arise from such a replacement is

t

i

. But t

i

will be deleted, and T

i

v

is a tree again. 2

It remains to show

Lemma 5 Let E

i

be the set of edges of G

i

, i.e. vw 2 E

i

if and only if T

i

v

and T

i

w

share a

node of T . Then

1. E

i+1

� E

i

, for i = 0; : : : ; k � 1 and

2. E � E

i

, for i = 0; : : : ; k.

9

Proof: Note that t

i+1

is the only node that is in T

i

, but not in T

i+1

and the nodes t

c

arising

from t

i+1

are those that appear in T

i+1

but not in T

i

. The �rst statement follows immediately,

because in case that vw 2 E

i+1

then either T

v

and T

w

share in T

i+1

a node that is also in T

i

or they share a node t

c

and therefore the node t

i

of T

i

.

The second statement can be proved by induction on i. For i = 0, the statement is true,

by construction. Now suppose vw 2 E and T

v

and T

w

share a node in T

i

. If they share a node

6= t

i+1

then also in T

i+1

, T

v

and T

w

share a node. If T

v

and T

w

share only t

i+1

then at least

one of T

v

and T

w

does not contain s

i+1

. If they both do not contain s

i+1

then v and w are

in the same good component c and therefore T

v

and T

v

share t

c

in T

i+1

. If, for example T

v

contains s

i+1

and T

w

does not contain s

i+1

then w belongs to a good component of C

i+1

and

v is adjacent to some vertex (this is w) of the good component c, w belongs to. Therefore also

in this case, T

v

and T

w

share t

c

in T

i+1

. 2

The complexity of this algorithm can be checked as follows. We show that the algorithm

works, for each i, in O(n+m) time and therefore the overall time bound is O(nm).

The set C

i

can be computed in O(n + m) time, because connected components can be

computed in the same time bound.

The good components can be computed in O(n) time. We have a list L

i

of those vertices

v, such that t

i

2 T

i�1

v

. For all these vertices v, we mark the c 2 C

i

it belongs to as good if v

belongs to such a c.

The creation of t

c

, for each c, can be done in O(n) time.

The connected component c 2 C

i

that contains C

(u;t

i

)

can be computed, for all u in O(n)

time by picking a vertex x 2 C

(u;t

i

)

and determining the c 2 C

i

x belongs to. The edge

replacements can be done in the same time bound.

The update procedure for the T

v

's can be done in O(n+m) time. First one has to compute

in O(n) time the set of all T i� 1

v

passing s

i

t

i

, by initially labelling all vertices v with 0, then

labelling all vertices v with t

i

2 T

i�1

v

by 1 and then labelling all 1-labelled vertices v with

s

i

2 T

i�1

v

with 2. If T

v

= T

i�1

v

passes s

i

t

i

and vw 2 E then one has to check whether w is in

a good component (in one step), and if it is in a good component c then one has to add c to

T

v

. If T

v

does not contain s

i

but contains t

i

(i.e. is 1-labelled) then one has to determine the

good component c its belongs to and to add t

c

to T

v

.

4.1 An Example

We consider the vertex numbered graph as shown in �gure 5. The fat edges are the original

edges of the graph. The thin edges are the �ll-in edges. Also the clique tree of the �ll-in graph

is also shown. Each node of the clique tree is assigned with the vertices that are contained in

the corresponding clique. The edges of the clique tree are to down numbered from e1 to e5.

Starting with the split of e1, we get one good component c that contains exactly vertex with

the number 11. The neighbors of 11 are 8 and 9. This leeds to the following tree representation

as shown in �gure 6.

The chordal graph represented by this tree representation is shown in the same �gure.

Here we have exactly one good component and no bad component. In so far, the tree itself

does not change. Only the clique corresponding to the parent node of e1 changes.

Next we split e2 and we have two good components. The one consists of 8 and 11, the

other consists of the vertex with number 7. This leeds to a tree representation and a �ll-in as

10

1
2

3
4

5
6
7 8

9

10
11

8,9,10,11

6,7,8,9,10

2,5,93,4,10

1,3,4

4,5,6,10

e1

e2

e3
e4

e5

e6

5,6,9,10

Figure 5: A graph with �ll-in edges and the corresponding clique tree

1
2

3
4

5
6
7 8

9

10
11

6,7,8,9,10

2,5,93,4,10

1,3,4

4,5,6,10

8,9,11

e2

e3

e4

e5

e6

f

5,6,9,10

Figure 6: Splitting e1

11

1
2

3
4

5
6
7 8

9

10
11

2,5,93,4,10

1,3,4

4,5,6,10

e2

e3

e4

e5

e6

5,6,9,10

8,9,11

8,9,6 6,7,10

Figure 7: The second tree splitting step

shown in �gure 7.

It is left to the reader to verify that further steps of the tree splitting procedure do not

change the tree representation, i.e. we now have a quasi-minimal tree representation.

5 The Improved RTL-Algorithm

It remains to eliminate superuous edges that appear in only one maximal clique, i.e. edges

uv, such that T

u

and T

v

share only a node, but not an edge of T = T

k

. Here we apply a

variation of the algorithm of Rose, Tarjan, and Lueker [15], also called the RTL-algorithm.

The RTL-algorithm works as follows.

Initialize: We start with one list L

1

:= V ;

For i = n; : : : ; 1: 1. Select a vertex v

i

from the nonempty list L

j

of the largest index and

remove v

i

from L

j

;

2. for each j and each y 2 L

j

, let v

i

y be an edge in E

0

i� v

i

y 2 E or y and v

i

are

neighbors of a connected component C of G[

S

�<j

L

�

];

3. split each L

j

into a list of smaller index containing the non neighbors of v

i

with

respect to E

0

and a list of larger index containing the neighbors of v

i

with respect

to E

0

; renumber the new lists L

i

.

Note that in the last section, we have computed a tree representation, such that all vw such

that T

v

and T

v

have at least two nodes in common then they appear in any chordal extension

G

00

of G that is a subgraph of the chordal graph G

1

that is represented by the quasi-minimal

tree representation as computed in the last section.

We select a root r of the tree T representing G

1

. Let t

1

; : : : ; t

k

be an enumeration of the

nodes of T , such that if t

j

is the parent of t

i

then i < j. Such an ordering is called a bottom

up ordering. Such an ordering can be computed in linear time, for example by postorder.

Let L

i

be the list of vertices with root(T

v

) = t

i

. We apply the RTL-algorithm with the only

di�erence that we do not start with one list L

1

= V , but with the lists L

i

= fvjroot(T

v

) = t

i

g.

12

To verify the correctness of the improved RTL-algorithm, one shows that the algorithm

does the same as if we would apply the original RTL-algorithm to each graph G

t

= (V

t

; E

t

)

where V

t

consists of those v with t 2 T

v

and vw 2 E

t

if v and w are in V

t

and vw 2 E or

T

v

\ T

w

contains at least two nodes of T , i.e. there is an edge of T incident with t that is

passed by T

v

and T

w

.

Lemma 6 Suppose v is numbered, i.e. v becomes v

i

in the improved RTL-algorithm, w 2 L

j

is not yet numbered, and v; w 2 V

t

. Then vw becomes an edge in E

0

(i.e. v and w are adjacent

in G or are both adjacent to a common connected component of G[

S

j

0

<j

L

j

0

]) if and only if vw

is an edge in E

t

or v and w are adjacent to a common connected component of G

t

[

S

j

0

<j

L

j

0

].

Proof: Since w is not numbered, root(T

v

) is an ancestor of root(T

w

) (this includes also

equality). If t 6= root(T

w

) then vw 2 E

t

, because T

v

and T

w

share t and root(T

w

). Therefore

T

v

and T

w

pass the edge t parent(t) of T , and since (T; T

v

)

v2V

is a quasi minimal tree repre-

sentation, v and w are adjacent to a connected subset of vertices u, such that all root of T

u

are descendents of t, and therefore all these u are in L

j

0

, j

0

< j. Therefore vw becomes an

edge in E

0

.

Now assume that t = root(T

w

). First suppose there is a path p from v to w in G, such that

all inner vertices u are in L

j

0

, j

0

< j. Note that if u

1

u

2

2 E then T

u

1

and T

u

2

share a node of T .

Therefore the roots root(T

u

) of all inner vertices u of p are descendents of t (equality is possible.

let p

0

be a subpath of p, such that, for the end vertices v

0

; w

0

, root(T

v

0

) = root(T

w

0

) = t, and

for the inner vertices u, root(T

u

) is a proper ancestor of t. Then there is a child t

0

of t, such

that for all these u, T

u

is an ancestor of t

0

(equality is included). Therefore T

v

0

and T

w

0

share

the nodes t and t

0

and therefore v

0

w

0

2 E

t

. Replacing all these subpaths p

0

by edges in E

t

, we

get a path q from v to w in E

t

with all inner vertices in L

j

0

, j

0

< j.

No we assume there is a path q from v to w in E

t

, such that all inner vertices u are in L

j

0

,

j

0

< j. note that all these vertices u are in V

t

, and for all these u, root(T

u

) = t (not a proper

ancestor of t). Suppose v

0

and w

0

are consecutive vertices of q. Since v

0

w

0

2 E

t

either v

0

w

0

2 E

or there is another node t

0

that is contained in T

v

0

and T

w

0

. t

0

must be a descendent of t and

can be chosen as a child of t. Since (T; T

v

)

v2V

is quasi minimal, there is a connected subset of

u with root(T

u

) descendent of t

0

that is adjacent to v

0

and w

0

. Therefore there is a path from

v

0

to w

0

in G, say p

0

with inner vertices in L

j

0

, j

0

< j. Concatenating all these paths p

0

, we

get a path from v to w in G with inner vertices in L

j

0

, j

0

< j. 2

As a consequence, the improved RTL-algorithm computes, for each G

t

, a minimal elimina-

tion ordering. The �ll-in edges that are created by the improved RTL-algorithm are therefore

the edges vw, such that T

v

and T

w

share more than one node, and the �ll-in edges of the

graphs G

t

.

Corollary 1 The improved RTL-algorithm computes a minimal elimination ordering <

0

, such

that the �ll-in graph G

0

<

0

is a subset of the graph G

1

that is represented by the quasi-minimal

tree representation (T; T

v

)

v2V

and therefore a subset of the original �ll-in graph G

0

<

.

The complexity of the original RTL-algorithm and the improved RTL-algorithm are the

same. Therefore we get the following �nal result.

Theorem 2 Relative Minimal Elimination Ordering can be solved in O(nm) time.

13

6 Conclusions

We developed a sequential algorithm to compute a minimal elimination ordering, such that

the �ll-in graph is inside a given greater chordal graph. The time bound is O(nm). A better

time bound is not to expect, because the minimal elimination ordering problem without the

restriction of a larger chordal graph has a time bound of O(nm). Using union �nd as in

�nding compact tree representations, the tree splitting procedure might be speeded up a little

bit. This is more a practical aspect. One does not get a lower time bound in the order.

Another aspect that might be discussed is the parallelization. The components of the tree

split procedure are O(n) computations of connected components and reorganization of the

tree. First can be parallelized very easily [16]. The parallelization of the second component

of the tree split procedure might be a topic for a masters or honors thesis. The improved

RTL-algorithm might be replaced by a variation of the algorithm of [8].

References

[1] A. Agrawal, P. Klein, R. Ravi, Cutting Down on Fill-in Using Nested Dissection, in Sparse

Matrix Computations: Graph Theory Issues and Algorithms, A. George, J. Gilbert, J.W.-

H. Liu ed., IMA Volumes in Mathematics and its Applications, Vol. 56, Springer Verlag,

1993, pp. 31-55.

[2] J. Blair, P. Heggernes, J.A. Telle, Making an Arbitrary Filled Graph Minimal by Remov-

ing Fill Edges, Algorithm Theory-SWAT96, R. Karlsson, A. Lingas ed., LLNCS 1097, pp.

173-184.

[3] P. Bunemann, A Characterization of Rigid Circuit Graphs, Discrete Mathematics 9

(1974), pp. 205-212.

[4] E. Dahlhaus, Fast parallel algorithm for the single link heuristics of hierarchical clustering,

Proceedings of the fourth IEEE Symposium on Parallel and Distributed Processing (1992),

pp. 184-186.

[5] E. Dahlhaus, E�cient Parallel Algorithms on Chordal Graphs with a Sparse Tree Rep-

resentation, Proceedings of the 27-th Annual Hawaii International Conference on System

Sciences, Vol. II (1994), pp. 150-158.

[6] E. Dahlhaus, Minimal Elimination Ordering inside a Given Chordal Graph, Graph-

Theoretic Concepts in Computer Science, LLNCS 1335 (1997), pp. 132-143.

[7] Elias Dahlhaus, Sequential and Parallel Algorithms on Compactly Represented Chordal

and Strongly Chordal Graphs, STACS 97, R. Reischuk, M. Morvan ed., LLNCS 1200

(1997), pp. 487-498.

[8] Elias Dahlhaus, Marek Karpinski, An E�cient Parallel Algorithm for the Minimal Elimi-

nation Ordering (MEO) of an Arbitrary Graph, Theoretical Computer Science 134 (1994),

pp. 493-528.

14

[9] M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Mathematics 43

(1983), pp. 173-189.

[10] F. Gavril, The Intersection Graphs of Subtrees in Trees Are Exactly the Chordal Graphs,

Journal of Combinatorial Theory Series B, vol. 16(1974), pp. 47-56.

[11] A. George, J.W.-H. Liu, Computer Solution of Large Sparse Positive De�nite Systems,

Prentice Hall Inc., Englewood Cli�s, NJ, 1981.

[12] J. Gilbert, H. Hafsteinsson, Parallel Solution of Sparse Linear Systems, SWAT 88 (1988),

LNCS 318, pp. 145-153.

[13] Parra, A., Sche�er, P., How to use minimal separators for its chordal triangulation,

Proceedings of the 20

th

International Symposium on Automata, Languages and Pro-

gramming (ICALP'95), Springer-Verlag Lecture Notes in Computer Science 944, (1995),

pp. 123{134.

[14] D. Rose, Triangulated Graphs and the Elimination Process, Journal of Mathematical

Analysis and Applications 32 (1970), pp. 597-609.

[15] D. Rose, R. Tarjan, G. Lueker, Algorithmic Aspects on Vertex Elimination on Graphs,

SIAM Journal on Computing 5 (1976), pp. 266-283.

[16] Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algo-

rithms 3 (1982), pp. 57-67.

[17] R. Tarjan, E�ciency of a Good but not Linear Set Union Algorithm, Journal of the ACM

22 (1975), pp. 215-225.

[18] R. Tarjan, M. Yannakakis, Simple Linear Time Algorithms to Test Chordality of Graphs,

Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM Jour-

nal on Computing 13 (1984), pp. 566-579.

Addendum: SIAM Journal on Computing 14 (1985), pp. 254-255.

[19] M. Yannakakis, Computing the Minimum Fill-in is NP-complete, SIAM Journal on Al-

gebraic and Discrete Methods 2 (1981), pp. 77-79.

15

