
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 99.357

Level Planarity Testing in Linear Time

by

Michael J�unger, and Sebastian Leipert

1999

Partially supported by DFG-Grant Ju204/7-3, Forschungsschwer-

punkt \E�ziente Algorithmen f�ur diskrete Probleme und ihre An-

wendungen".

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

50969 K�oln

1991 Mathematics Subject Classi�cation: 05C85, 68R10, 90C35

Keywords: Level Planar Graph, Level Planar Embedding, Hierarchy, PQ-Tree

Level Planar Embedding in Linear Time

Extended Abstract

Michael J�unger

a

Sebastian Leipert

b

a

Institut f�ur Informatik, Universit�at zu K�oln, mjuenger@informatik.uni-koeln.de

b

Institut f�ur Informatik, Universit�at zu K�oln, leipert@informatik.uni-koeln.de,

Fax: +49 221 470 5317

Abstract

In a level directed acyclic graph G = (V;E) the vertex set V is partitioned into k � jV j levels

V

1

; V

2

; : : : ; V

k

such that for each edge (u; v) 2 E with u 2 V

i

and v 2 V

j

we have i < j.

The level planarity testing problem is to decide if G can be drawn in the plane such that for

each level V

i

, all v 2 V

i

are drawn on the line l

i

= f(x; k � i) j x 2 Rg, the edges are drawn

monotonically with respect to the vertical direction, and no edges intersect except at their

end vertices.

In order to draw a level planar graph without edge crossings, a level planar embedding

of the level graph has to be computed. Level planar embeddings are characterized by linear

orderings of the vertices in each V

i

(1 � i � k). We present an O(jV j) time algorithm for

embedding level planar graphs. This approach is based on a level planarity test by J�unger,

Leipert, and Mutzel [1998].

1 Introduction

A fundamental issue in Automatic Graph Drawing is to display hierarchical network structures

as they appear in software engineering, project management and database design. The network

is transformed into a directed acyclic graph that has to be drawn with edges that are strictly

monotone with respect to the vertical direction. Many applications imply a partition of the vertices

into levels that have to be visualized by placing the vertices belonging to the same level on a

horizontal line. The corresponding graphs are called level graphs. Using the PQ-tree data structure,

J�unger, Leipert, and Mutzel [1998] have given an algorithm that tests in linear time whether such

a graph is level planar, i.e. can be drawn without edge crossings.

In order to draw a level planar graph without edge crossings, a level planar embedding of the

level graph has to be computed. Level planar embeddings are characterized by linear orderings

of the vertices in each V

i

(1 � i � k). We present a linear time algorithm for embedding level

planar graphs. Our approach is based on the level planarity test and augments a level planar

graph G to an st-graph G

st

, a graph with a single sink and a single source, without destroying

the level planarity. Once the st-graph has been constructed, we compute a planar embedding of

the st-graph. This is done by applying the embedding algorithm of Chiba et al. [1985] for general

graphs, obeying the topological ordering of the vertices in the st-graph. Exploiting the embedding

of the st-graph G

st

, we are able to determine a level planar embedding of G.

This extended abstract is organized as follows. After summarizing the necessary preliminaries

in the next section, including a short introduction to the PQ-tree data structure and the level

planarity test presented by J�unger et al. [1998], we present in the third section the concept of

the linear time level planar embedding algorithm. The fourth section concentrates on some details

1

concerning the embedding algorithm. We close with some remarks on how to produce a level planar

drawing using the results of our algorithm.

2 Preliminaries

Let G = (V;E) be a directed acyclic graph. A leveling of G is a topological numbering lev : V ! Z

mapping the vertices of G to integers such that lev(v) � lev(u) + 1 for all (u; v) 2 E. G is called

a level graph if it has a leveling. If lev(v) = j, then v is a level-j vertex . Let V

j

= lev

�1

(j) denote

the set of level-j vertices. Each V

j

is a level of G. If G = (V;E) has a leveling with k being the

largest integer such that V

k

is not empty, G is said to be a k-level graph. For a k-level graph G, we

sometimes write G = (V

1

; V

2

; : : : ; V

k

;E). A level graph G = (V;E) is said to be proper if every

edge e 2 E connects only vertices belonging to consecutive levels. A hierarchy is a level graph such

that all sources belong to the �rst level V

1

.

An drawing of G in the plane is a level drawing if the vertices of every V

j

, 1 � j � k, are placed on

a horizontal line l

j

= f(x; k�j) j x 2 Rg, and every edge (u; v) 2 E, u 2 V

i

, v 2 V

j

, 1 � i < j � k,

is drawn as a monotone curve between the lines l

i

and l

j

. A level drawing of G is called level planar

if no two edges cross except at common endpoints. A level graph is level planar if it has a level

planar drawing. A level graph G is obviously level planar if and only if all its components are level

planar.

A level drawing of G determines for every V

j

, 1 � j � k, a total order �

j

of the vertices of V

j

,

given by the left to right order of the vertices on l

j

. A level embedding consists of a permutation

of the vertices of V

j

for every j 2 f1; 2; : : : ; kg with respect to a level drawing. A level embedding

with respect to a level planar drawing is called level planar.

A PQ-tree is a data structure that represents the permutations of a �nite set U in which the

members of speci�ed subsets occur consecutively. This data structure has been introduced by

Booth and Lueker [1976] to solve the problem of testing for the consecutive ones property. A

PQ-tree contains three types of nodes: leaves, P -nodes, and Q-nodes. The leaves are in one to

one correspondence with the elements of U . The P - and Q-nodes are internal nodes. A P -node

is allowed to permute its children arbitrarily, while the order of the children of a Q-node is �xed

and may only be reversed. In subsequent �gures, P -nodes are drawn as circles while Q-nodes are

drawn as rectangles.

The set of leaves of a PQ-tree T read from left to right is denoted by frontier(T) and yields a

permutation on the elements of the set U . The frontier of a node X , denoted by frontier(X), is the

sequence of its descendant leaves. Given a PQ-tree T over the set U and given a subset S � U ,

Booth and Lueker [1976] developed a pattern matching algorithm called reduction and denoted

by REDUCE(T; S) that computes a PQ-tree T

0

representing all permutations of T in which the

elements of S form a consecutive sequence.

Let G

j

denote the subgraph of G induced by V

1

[V

2

[� � � [V

j

. The strategy of testing the level

planarity is to perform a top-down sweep, processing the levels in the order V

1

; V

2

; : : : ; V

k

and

computing for every level V

j

, and every component of G

k

the set of permutations of the vertices

of V

j

that appear in some level planar embedding of G

j

. Obviously, the graph G = G

k

is level

planar, if and only if the set of permutations for G

k

is not empty. This test implies for every

level planar component of G

j

that the set of its level planar embeddings can be represented by a

PQ-tree.

As long as di�erent components of G

j

are not adjacent to a common vertex on level j+1, standard

PQ-tree techniques using the function REDUCE are applied for constructing the PQ-tree of every

component. If two or more components are adjacent to a common vertex v on level j+1, they have

to be \merged" and a new PQ-tree has to be constructed from the two corresponding PQ-trees.

The merge operation is accomplished using certain information that is stored at the nodes of

the PQ-trees. For any subset S of the set of vertices in V

j

, 1 � j � k, that belongs to a

2

component R

j

i

(the i

th

component of G

j

), de�ne ML(S) to be the greatest d � j such that

V

d

; V

d+1

; : : : ; V

j

induces a subgraph in which all vertices of S occur in the same connected

component. The level ML(S) is said to be the meet level of S. For a Q-node Y in the corresponding

PQ-tree T (R

j

i

) with ordered children Y

1

; Y

2

; : : : ; Y

t

integers denoted by ML(Y

i

; Y

i+1

), 1 � i < t,

are maintained satisfying ML(Y

i

; Y

i+1

) = ML(frontier(Y

i

) [frontier(Y

i+1

)). For a P -node X a

single integer denoted by ML(X) that satis�es ML(X) = ML(frontier(X)).

Furthermore, de�ne LL(R

j

i

), the low indexed level, to be the smallest d such that R

j

i

contains a

vertex in V

d

and maintain this integer at the root of the corresponding PQ-tree. The height of a

component R

j

i

in the subgraph G

j

is j � LL(R

j

i

). The LL-value merely describes the size of the

component.

Using these LL- and ML-values, Heath and Pemmaraju [1995] have developed operations for merg-

ing PQ-trees. These merge operations have been modi�ed and adapted into a larger framework

by J�unger et al. [1998] to develop an O(jV j) time algorithm for testing level planarity of not

necessarily proper level graphs.

3 Concept of the Algorithm

One can easily obtain the following naive embedding algorithm for level planar graphs. Choose

any total order on V

k

that is consistent with the set of permutations of V

k

that appear in a level

planar embedding of G

k

= G. Choose then any total order on V

k�1

that is consistent with the

set of permutations of V

k�1

that appear in a level planar embedding of G

k�1

and that, together

with the chosen order of V

k

implies a level planar embedding on the subgraph of G induced by

V

k�1

[V

k

. Extend this construction one level at a time until a level planar embedding of G results.

However, to perform this algorithm, it is necessary to keep trace of the set of PQ-trees of every

level l, 1 � l � k. Besides, an appropriate total order of the vertices of V

j

, 1 � j < k, can only be

detected by reducing subsets of the leaves of G

j

, where the subsets are induced by the adjacency

lists of the vertices of V

j+1

. More precisely, for every pair of consecutive edges e

1

= (v

1

; w),

e

2

= (v

2

; w), v

1

; v

2

2 V

j

, in the adjacency list of a vertex w 2 V

j+1

, we have to reduce the set of

leaves corresponding to the vertices v

1

, v

2

in T (G

j

). This immediately yields an
(n

2

) algorithm

for nonproper level graphs, with
(n

2

) dummy vertices for long edges, since we are forced to

consider for every long edge its exact position on the level that is traversed by the long edge.

Instead, we proceed as follows: Let G = (V;E) be a level planar graph with leveling lev

G

:

V ! f1; 2; : : : ; kg. We augment G to a planar directed acyclic st-graph G

st

= (V

st

; E

st

) where

V

st

= V]fs; tg and E � E

st

such that every source in G has exactly one incoming edge in E

st

nE,

every sink in G has exactly one outgoing edge in E

st

nE, lev

G

st

(s) = 0, lev

G

st

(t) = k + 1 and for

all v 2 V we have lev

G

st

(v) = lev

G

(v). This process, in which two vertices and O(jV j) edges are

added to G, is the nontrivial part of the algorithm that will be explained in section 4.

We compute a topological sorting, i.e., an onto function ts

G

st

: V ! f0; 1; : : : ; jV j+1g. The function

ts

G

st

is comparable with lev

G

st

in the sense that for every v; w 2 V

st

we have ts

G

st

(v) � ts

G

st

(w)

if and only if lev

G

st

(v) � lev

G

st

(w). Obviously ts

G

st

is an st-numbering of G

st

. Using this st-

numbering, we can obtain a planar embedding E

st

of G

st

with the edge (s; t) on the boundary of

the outer face by applying the algorithm of Chiba et al. [1985].

From the planar embedding we obtain a level planar embedding of G

st

by applying a function

\CONSTRUCT-LEVEL-EMBED" that uses a depth �rst search procedure starting at vertex t

and proceeding from every visited vertex w to the unvisited neighbor that appears �rst in the

clockwise ordering of the adjacency list of w in E

st

. Initially, all levels are empty. When a vertex

w is visited, it is appended to the right of the vertices assigned to level lev

G

st

(w). The restriction

of the resulting level orderings to the levels 1 to k yields a level planar embedding of G.

It is clear that the described algorithm runs in O(jV j) time if the nontrivial part, namely the

construction of G

st

can be achieved in O(jV j) time. After adding the vertices s and t we augment

3

G to a hierarchy by adding an outgoing edge to every sink of G without destroying level planarity

using a function AUGMENT, processing the graph top to bottom. Using the same function AUG-

MENT again, we process the graph bottom to top and augment G

st

to an st-graph by adding the

edge (s; t) and an incoming edge to every source of G without destroying the level planarity. Thus

our level planar embedding algorithm can be sketched as follows.

E

l

LEVEL-PLANAR-EMBED(G = (V

1

; V

2

; : : : ; V

k

;E))

begin

ignore all isolated vertices;

expand G to G

st

by adding V

0

= fsg and V

k+1

= ftg;

AUGMENT(G

st

);

if AUGMENT fails then

return E

l

= ;;

//G

st

is now a hierarchy;

orient the graph G

st

from the bottom to the top;

AUGMENT(G

st

);

//G

st

is now an st-graph;

orient the graph G

st

from the top to the bottom;

add edge (s; t);

compute a topological sorting of V

st

;

compute a planar embedding E

st

according to Chiba et al. [1985]

using the topological sorting as an st-numbering;

E

l

= CONSTRUCT-LEVEL-EMBED(E

st

; G

st

);

return E

l

;

end.

4 Augmentation

In order to add an outgoing edge for every sink of G without destroying level planarity, we need

to determine the position of a sink v 2 V

j

, j 2 f1; 2; : : : ; k � 1g, in the PQ-trees. This is done

by inserting an indicator as a leaf into the PQ-trees. The indicator is ignored throughout the

application of the level planarity test and will be removed either with the leaves corresponding to

the incoming edges of some vertex w 2 V

l

, l > j, or it can be found in the �nal PQ-tree.

We explain the idea of the approach by an example. Figure 1 shows a small part of a level

graph with a sink v 2 V

j

and the corresponding part of the PQ-tree. Since v is a sink, the leaf

corresponding to v will be removed from the PQ-tree before testing the graph G

j+1

for level

planarity. Instead of removing the leaf, the leaf is kept in the tree and we ignore its presence in

the PQ-tree from now on. Such a leaf that marks the position of a sink v in a PQ-tree is called a

sink indicator and denoted by si(v).

v

v

Figure 1: A sink v in a level graph G and the corresponding PQ-tree.

As shown in Fig. 2, the indicator of v may appear within the sequence of leaves corresponding to

incoming edges of a vertex w 2 V

l

. The indicator of v is interpreted as a leaf corresponding to

an edge e = (v; w) and G is augmented by e. Adding the edge e to G does not destroy the level

planarity and provides an outgoing edge for the sink v.

When replacing a leaf corresponding to a sink by a sink indicator, a P - or Q-node X may be

constructed in the PQ-tree such that frontier(X) consists only of sink indicators. The presence of

4

w wv

w

e

v

Figure 2: Adding an edge e = (v; w) without destroying level planarity.

such a node in the PQ-tree is ignored as well. A node of a PQ-tree is an ignored node if and only

if its frontier contains only sink indicators. By de�nition, a sink indicator is also an ignored node.

In order to achieve linear time for the level planar embedder, we must avoid searching for sink

indicators that can be considered for augmentation. Consequently, only the indicators si(v), v 2 V ,

that appear within the pertinent subtree of a PQ-tree with respect to a vertexw 2 V are considered

for augmentation. It is easy to see that the edges added this way do not destroy level planarity

(see Leipert [1998]).

However, not all sink indicators are considered for edge insertion. Some of the indicators remain

in the �nal PQ-tree that represents all possible permutations of vertices of V

k

in the level planar

embeddings of G. It is straightforward to see that if si(v) is a sink indicator of a vertex v 2 V

j

,

1 < j < k and if si(v) is in the �nal PQ-tree T , the edge e = (v; t) can be added without destroying

level planarity.

While the treatment of sink indicators during the application of the template matching algorithm

is rather easy in principle, this does not hold for merge operations. We consider one of the merge

operations and discuss necessary adaptions in order to treat the sink indicators correctly. For

manipulating sink indicators and ignored nodes correctly during the merge process, ML-values as

they have been introduced for nonignored nodes are introduced for ignored nodes as well.

Let R

j

1

and R

j

2

be two components of G

j

that are incident to a vertex w on level j + 1 and

let T

1

and T

2

be their corresponding PQ-trees. Without loss of generality, we may assume that

LL(T

1

) � LL(T

2

). Thus component R

j

2

is the smaller component and an embedding of R

j

1

must

be found such that R

j

2

can be nested within the embedding of R

j

1

. This corresponds to adding the

root of T

2

as a child to a node of the PQ-tree T

1

constructing a new PQ-tree T

0

. In order to �nd

an appropriate location to insert T

2

into T

1

, we start with the leaf labeled w (that corresponds

to the vertex w in R

j

1

) in T

1

and proceed upwards in T

1

until a node X

0

and its parent X are

encountered that satisfy certain conditions.

In this extended abstract, we consider only the most di�cult condition: Let X be a Q-node

with ordered children X

1

; X

2

; : : : ; X

�

, X

0

= X

�

, 1 < � < �, and ML(X

��1

; X

�

) < LL(T

2

) and

ML(X

�

; X

�+1

) < LL(T

2

). The node X

�

is replaced by a Q-node Y with two children, X

�

and the

root of T

2

.

Let I

1

; I

2

; : : : ; I

�

, � � 0, be the sequence of ignored nodes between X

��1

and X

�

in which X

��1

and I

1

are direct siblings, and X

�

and I

�

are direct siblings. Let J

1

; J

2

; : : : ; J

�

, � � 0, be the

sequence of ignored nodes between X

�

and X

�+1

in which X

�

and J

1

are direct siblings, and

X

�+1

and J

�

are direct siblings.

Let R

X

i

, i 2 f1; 2; : : : ; �g, denote the subgraph of R

1

corresponding to X

i

. As illustrated in Fig. 3,

5

there may exist a �, 1 � � � �, such that for every sink indicator

si(v) 2

�

[

i=�

frontier(I

i

) ; v 2

lev(w)�1

[

i=1

V

i

;

G has to be augmented by an edge e = (v; w) if R

2

is embedded between R

X

��1

and R

X

�

.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

X

��1

X

�+1

I

�

X

�

X

��1

X

�+1

I

1

I

�

I

��1

J

�

J

1

J

�

J

�+1

R

2

w w

Figure 3: Merging R

2

into R

1

and embedding it between R

X

��1

and R

X

�

forces G to

be augmented by the edges drawn as dotted lines.

Obviously, R

2

can also be embedded between R

X

�

and R

X

�+1

, and there may exist a �, 1 � � � �,

such that for every sink indicator

si(v) 2

�

[

i=1

frontier(J

i

) ; v 2

lev(w)�1

[

i=1

V

i

;

G has to be augmented by an edge e = (v; w).

However, it is not possible to decide which set of sink indicators has to be considered for edge

augmentation. Proceeding the level planarity test down the levels V

lev(w)+1

to V

k

may embed

the component R

2

on either of the two sides of R

X

�

. Since the side is unknown during the merge

operation, we have to keep the a�ected sink indicators in mind. Furthermore, we must devise a

method that allows the determination of the correct embedding during subsequent reductions.

The sequences I

�

; I

�+1

; : : : ; I

�

and J

1

; J

2

; : : : ; J

�

are called the reference sequences of R

2

and

denoted by rseq(R

2

). We refer to I

�

; I

�+1

; : : : ; I

�

as the left reference sequence of R

2

denoted by

rseq(R

2

)

left

, and to J

1

; J

2

; : : : ; J

�

as the right reference sequence denoted by rseq(R

2

)

right

. The

union

S

�

i=�

frontier(I

i

)[

S

�

i=1

frontier(J

i

) is called the reference set of R

2

and denoted by ref(R

2

).

The left and right reference set ref(R

2

)

left

and ref(R

2

)

right

, respectively, are de�ned analogously

to the left and right reference sequence.

In order to solve the decision problem in the described merge operation, we examine how R

2

is

�xed to either side of the vertex w 2 V in a level planar embedding of G. The following two

nontrivial lemmas (see Leipert [1998]) are based on two template replacement patterns Q2 and

Q3 as they are used in the template reduction of Booth and Lueker [1976]. Fig. 5 demonstrates

the functionality of the templates Q2 and Q3.

Lemma 4.1. The subgraph R

2

must be �xed in its embedding at one side of R

X

�

with respect to

R

X

if and only if the Q-node Y is removed from the tree T during the application of the template

matching algorithm using template Q2 or template Q3, and the parent of Y did not become a node

with Y as the only nonignored child.

6

Lemma 4.2. The subgraph R

2

is not �xed to any side of R

X

�

with respect to R

X

if and only if

one of the following conditions applies during the application of the template matching algorithm.

(i) The Q-node Y gets ignored.

(ii) The Q-node Y is a nonignored node of the �nal PQ-tree.

(iii) The Q-node Y has only one nonignored child.

(iv) The parent of Y has only Y as a nonignored child.

Lemmas 4.1 and 4.2 reveal a solution for solving the problem of deciding whether or not R

2

is

�xed to one side of R

X

�

with respect to R

X

. A strategy is developed for detecting on which side

of R

X

�

the subgraph R

2

has to be embedded. One endmost child of Y can clearly be identi�ed

with the side where the root of T

2

has been placed, while the other endmost child of Y can be

identi�ed with the side were X

�

is. Every reversion of the Q-node Y corresponds to changing the

side were R

2

must be embedded and all we need to do is to detect the side of Y that belongs to R

2

,

when �nally removing Y from the tree by applying one of the templates Q2 or Q3. The strategy

is to mark the end of Y belonging to R

2

with a special ignored node. Such a special ignored node

is called a contact of R

2

and denoted by c(R

2

). During the merge operation, it is placed as an

endmost child of Y next to the root of T

2

. Thus the Q-node Y has now three children instead of

two. See Fig. 4 for an illustration.

Before gathering some observations about contacts, it is necessary to show that the involved

ignored nodes remain in the relative position of Y within the Q-node, and are therefore not moved

or removed.

Lemma 4.3. The ignored nodes of rseq(R

2

)

left

and rseq(R

2

)

right

stay siblings of Y until one of

the templates Q2 or Q3 is applied to Y and its parent.

A contact has some special attributes that are immediately clear and very useful for our approach.

In the following observations we again assume that Y and its parent have not been subject to

another merge operation.

Observation 4.4. Since the contact is an endmost child of a Q-node Y , it will remain an endmost

child of the same Q-node Y , unless the node Y is eliminated by applying one of the templates Q2

or Q3.

Observation 4.5. If the node Y is eliminated by applying one of the templates Q2 or Q3, the

contact c(R

2

) determines the side were R

2

must be embedded next to R

X

�

with respect to R

X

.

The contact is then a direct sibling to rseq(R

2

)

i

for some i 2 fleft ; rightg and ref(R

2

)

i

must be

considered for edge augmentation.

Observation 4.6. If one of the four cases mentioned in Lemma 4.2 applies to Y or its parent, R

2

can be embedded on any side R

X

�

with respect to R

X

and therefore either ref(R

2

)

left

or ref(R

2

)

right

must be considered for edge augmentation.

Besides placing c(R

2

) as an endmost child next to the root of T

2

, c(R

2

) is equipped with a set of

four pointers, denoting the beginning and the end of both the left and the right reference sequence

of R

2

. After performing a reduction by applying one of the templates Q2 or Q3 to the node Y ,

the contact is either a direct sibling of I

�

or a direct sibling of J

1

. In the �rst case, we scan the

sequence of ignored siblings starting at I

�

until the ignored node I

�

is detected. In the latter case,

the sequence of ignored siblings is scanned by starting at J

1

until the node J

�

is detected. Figure

5 illustrates this strategy for the latter case. By storing pointers of the ignored nodes I

�

; I

�

; J

1

; J

�

at c(R

2

), we are able to identify the reference set ref(R

2

).

For clarity, we omitted the concatenation of merge operations. However, straightforward methods

in the application of contacts are able to handle such concatenations (see Leipert [1998] for details).

7

��

����
����
����
����

����
����
����
����

��
��
��
��

T

1

T

2

w

X

�+1

I

�

J

1

I

�

X

��1

I

1

I

��1

J

�

J

�

J

�+1

w

X

�

(a) ML(X

��1

; X

�

) < LL(T

2

) and ML(X

�

;X

�+1

) < LL(T

2

).

��

����
����
����
����

����
����
����
����

���
���
���
���

w

T

1

c(R

2

)

T

2

J

1

J

�

J

�

J

�+1

w

X

�

I

�

I

�

I

1

I

��1

Y

(b) Contact c(R

2

) is added as a child to Y next to the root of T

2

.

Figure 4: Adding a contact during the merge operation C.

Theorem 4.7. The algorithm LEVEL-PLANAR-EMBED computes a level planar embedding of

a level planar graph G = (V;E) in O(jV j) time.

Proof. The correctness follows from the correctness of the function AUGMENT and the discussion

of section 3. The linear running time of AUGMENT follows from an amortized analysis based on

the linear running time of the level planar testing algorithm.

5 Remarks

Once a level graph has been level planar embedded, we want to visualize it by producing a level

planar drawing. This is very simple for proper graphs. Assign the vertices of every level integer

x-coordinates according to the permutation that has been computed by CONSTRUCT-LEVEL-

EMBED, and draw the edges as straight line segments. This produces a level planar drawing and,

after applying some readjustments, such a drawing can be aesthetically pleasing.

For level graphs that are not necessarily proper, this approach is not applicable. It would be

necessary to expand the level graph in horizontal direction for drawing the edges as straight line

segments. If many long edges exist in the graph, the area that is needed will be large, and the

drawings are unlikely to be aesthetically pleasing.

8

T

1

c(R

2

)

I

�

I

�

I

1

I

��1

J

1

J

�

J

�

J

�+1

Y

(a) Node Y with contact c(R

2

) before the application of template Q2 or Q3.

T

1

I

�

I

1

I

��1

I

�

J

1

J

�

J

�

J

�+1

c(R

2

)

(b) Contact c(R

2

) is adjacent to the ignored node J

1

after the application of template Q2 or

Q3. We chose ref(R

2

)

right

for augmentation.

Figure 5: Identi�cation of the reference set that has to be chosen for augmentation.

The dotted lines denote the pointers of c(R

2

) to I

�

; I

�

; J

1

; J

�

.

However, there is a nice and quick solution to this problem that uses some extra information that

is computed by our level planar embedding algorithm. Instead of drawing the graph G, we draw

the st-graph G

st

, and remove the vertices s and t as well as all edges in E

st

nE afterwards.

Suitable approaches for drawing an st-graph G

st

have been presented by Di Battista and Tamassia

[1988] and Di Battista, Tamassia, and Tollis [1992]. These algorithms construct a planar upward

polyline drawing of a planar st-graph according to a topological numbering of the vertices. The

vertices of the st-graph are assigned to grid coordinates and the edges are drawn as polygonal

chains. If we assign a topological numbering to the vertices according to their leveling, the al-

gorithm presented by Di Battista and Tamassia [1988] produces in O(jV j) time a level planar

polyline grid drawing of G

st

such that the number of edge bends is at most 6n � 12 and every

edge has at most two bends. This approach can be improved to produce in O(jV j) time a level

planar polyline grid drawing of G

st

such that the drawing of G

st

has O(jV j

2

) area, the number

of edge bends is at most (10n� 31)=3, and every edge has at most two bends. Thus once we have

augmented G to the st-graph G

st

, we can immediately produce a level planar drawing of G in

O(jV j) time.

References

K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph

planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13:335{379,

1976.

N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar graphs

9

using PQ-trees. Journal of Computer and System Sciences, 30:54{76, 1985.

G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. Theo-

retical Computer Science, 61:175{198, 1988.

G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibility representations of graphs.

Information Processing Letters, 41:1{7, 1992.

L. S. Heath and S. V. Pemmaraju. Recognizing leveled-planar dags in linear time. In F. J.

Brandenburg, editor, Proc. Graph Drawing '95, volume 1027 of Lecture Notes in Computer

Science, pages 300{311. Springer Verlag, 1995.

M. J�unger, S. Leipert, and P. Mutzel. Level planarity testing in linear time. In S. Whitesides,

editor, Graph Drawing '98, volume 1547 of Lecture Notes in Computer Science, pages 224{237.

Springer Verlag, 1998.

S. Leipert. Level Planarity Testing and Embedding in Linear Time. PhD thesis, Universit�at zu

K�oln, 1998.

10

