
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 99.358

Parallel ABACUS { Introduction and Tutorial

by

Max B�ohm

1999

partially supported by DFG-Projekt Ju 204/4-2, Re 776/5-3

Universit�at zu K�oln

Institut f�ur Informatik

Pohligstr. 1

D-50969 K�oln

Parallel ABACUS { Introduction and Tutorial

Max B�ohm

June 16, 1999

1 Introduction

This document describes the current state of the parallel version of ABACUS (version 2.3 beta)

[4]. It should serve as an introduction to the design of the system as well as a tutorial for the

user. The tutorial section describes how to extend and run the ABACUS example application

in a parallel environment. For further information on the sequential ABACUS see [1, 2, 9]

The Parallel ABACUS performs a tree decomposition of the Branch&Cut tree. Each host of

the workstation cluster runs the sequential ABACUS code on a di�erent node of the tree. The

system is designed to run fully distributed, i.e. there is no master controlling the whole system.

Each host keeps state information of the system and decides by itself what to do next. This

eliminates the bottleneck which typically occurs in master/slave architectures.

The parallel version of ABACUS can be used mostly like a blackbox. A user needs to write

a few methods for serialization of his objects and replace the sequential ABACUS library by the

parallel ABACUS library.

The parallel ABACUS was designed to be easily extendable. It currently does not contain

features like parallel separation and distributed variable and constraint pools. These should be

added in a future version.

The complete source code is documented in [3].

2 Architecture

The architecture of the parallel ABACUS is shown in �gure 1. The system is designed work be

multithreaded. This means that di�erent components can run in parallel in di�erent threads.

If one thread blocks for a communication this does not a�ect the other threads. Standard com-

munication libraries like MPI or PVM often are not threadsafe. Therfore we used the Adaptive

Communication Environment (ACE) library [7] for communication and thread management.

ACE is an object oriented C++ library which is threadsafe, portable and open source. Among

the supported platforms are most Unix versions, Linux and Windows NT. ACE also supports

design patterns like Active Objects and others, see [5, 8].

The parallel ABACUS system consists of the following components.

2.1 ABACUS Kernel

The ABACUS kernel is running the Branch&Cut algorithm on each host. First a new subproblem

is selected for optimization. The user can choose between the strategies Local Best First, Global

Best First and Hybrid. Local Best First selects the subproblem with the best dual bound of

the local set of open subproblems. Global Best First requests some (possibly remote) host for

the subproblem with the global best dual bound like in a work stealing strategy. The Hybrid

1

Subproblem Server

optimize subproblem

Subproblem Server

optimize subproblem

Subproblem Server

optimize subproblem

SUB SUB

SUB

Open Subobproblems

dispatches notifications

Notification Server

Balancer

ABACUS Kernel

Master

or broadcast

notification

subproblem

notificatioin

receive

subproblem

receive

send

message

broadcast

request

receive

handles

- notifications

- termination

- min. dual bound

- # open subproblems

stores global state

Parallel Master

information per host

- request subproblem

 with dual bound x

- trigger termination check

- visualization info

- new primal bound

- new number of open subproblems

- termination check (phase I/II)

- new dual bound

Figure 1: Architecture of a host of the parallel system. Components marked at the left side run

within their own thread.

strategy selects the best subproblem of the local set if the di�erence of its dual bound and the

best known dual bound compared to the di�erence of the best known primal bound and the

best known dual bound is within some ratio given in percent.

While the cutting plane algorithm is running new dual bounds are broadcast asynchronously

as soon as they become known. When the system decides to branch on the subproblem the two

children are input in the local set of open subproblems and the information on the number of

open subproblems in the local set and the best local dual bound are broadcast.

2.2 Balancer

The balancer thread is currently very simple. It handles incoming requests for subproblems of

some given lower bound. If such a subproblem is locally available it is sent to the requesting

host. This is done in parallel to the optimization in process at that host. In a future version the

balancer should also perform some load balancing algorithm continuously in the background.

2.3 Noti�cation Server

The noti�cation server runs in a separate thread and listens for noti�cation messages or no-

ti�cation broadcasts from other processors. The messages are then dispatched to the various

handlers most of which are located in the class ABA PARMASTER.

2.4 Parallel Master

The parallel master contains handlers for several noti�cation messages and keeps global state

information of the system, namely the number of open subproblems at each host and the best

2

local dual bound of each host. The parallel master is also responsible for initialization, parameter

handling, and termination detection.

2.5 Subproblem Solver

The subproblem solver is a multithreaded server for optimizing subproblems in parallel on a

single SMP host with shared memory. This component is currently not in use but reserved for

a future version of the parallel ABACUS.

3 Unique Identi�cation of Objects

Each object gets a globally unique identi�cation when beeing created (implemented by the class

ABA ID). This identi�cation is composed of a host number where the object was �rst created

and a unique sequence number. The identi�cations of all objects local to a host are stored

in a local hash table (implemented by the class ABA IDMAP). When an object is sent over the

network, it can be easily determined, if a referenced object is already residing in the memory

of the destination host or not. This can be done by sending the IDs of the referenced objects

instead of pointers and looking up these IDs in the hash table at the destination host. In case

of a hit, a copy of the referenced object is available at the destination system and a pointer to

it is returned. Otherwise the referenced object is missing and has to be transferred over the

network. Using this strategy the number of objects (variables and constraints) which have to

be sent over the network is minimized.

4 Serialization of Objects

The user has to implement virtual member functions used by the framework for sending/receiveing

objects of the problem speci�c subclasses of ABA VARIABLE, ABA CONSTRAINT and ABA SUB. The

virtual member function pack(ABA MESSAGE&) is called by the framework when the data of an

object should be packed in a message which is then sent to another host. The class ABA MESSAGE

provides a number of member functions which can be used to pack basic datatypes and arrays,

see the header �le message.h for details. At the receiving host the system creates an object

from a message by using the message constructor MYCLASS::MYCLASS(ABA MESSAGE&). Addi-

tionally the user has to implement the virtual function classId() in problem speci�c subclasses

of ABA CONSTRAINT, ABA VARIABLE and ABA BRANCHRULE which returns a unique integer for that

class. This is used for the simulation of runtime type information. In the problem speci�c sub-

class of ABA MASTER the virtual functions unpackConVar(ABA MESSAGE&, int classId) and

unpackSub(ABA MESSAGE&) have to be implemented. It is recommended to enclose all parallel

extensions by #ifdef ABACUS_PARALLEL ... #endif. The sections below illustrate which code

has to be added to the simple TSP solver example of the ABACUS distribution [10].

4.1 Parallel extensions to edge.h and edge.cc

#define EDGE_CLASSID 0

class EDGE : public ABA_VARIABLE {

public:

#ifdef ABACUS_PARALLEL

EDGE(const ABA_MASTER *master, ABA_MESSAGE &msg);

3

virtual void pack(ABA_MESSAGE &msg) const;

virtual int classId() const { return EDGE_CLASSID; }

#endif

};

#ifdef ABACUS_PARALLEL

// The message constructor.

EDGE::EDGE(const ABA_MASTER *master, ABA_MESSAGE &msg)

:

ABA_VARIABLE(master, msg)

{

msg.unpack(tail_);

msg.unpack(head_);

}

// The function pack().

void EDGE::pack(ABA_MESSAGE &msg) const

{

ABA_VARIABLE::pack(msg);

msg.pack(tail_);

msg.pack(head_);

}

#endif

4.2 Parallel extensions to degree.h and degree.cc

#define DEGREE_CLASSID 1

class DEGREE : public ABA_CONSTRAINT {

public:

#ifdef ABACUS_PARALLEL

DEGREE(const ABA_MASTER *master, ABA_MESSAGE &msg);

virtual void pack(ABA_MESSAGE &msg) const;

virtual int classId() const { return DEGREE_CLASSID; }

#endif

};

#ifdef ABACUS_PARALLEL

// The message constructor.

DEGREE::DEGREE(const ABA_MASTER *master, ABA_MESSAGE &msg)

:

ABA_CONSTRAINT(master, msg)

{

msg.unpack(node_);

}

4

// The function pack().

void DEGREE::pack(ABA_MESSAGE &msg) const

{

ABA_CONSTRAINT::pack(msg);

msg.pack(node_);

}

#endif

4.3 Parallel extensions to subtour.h and subtour.cc

#define SUBTOUR_CLASSID 2

class SUBTOUR : public ABA_CONSTRAINT {

public:

#ifdef ABACUS_PARALLEL

SUBTOUR(const ABA_MASTER *master, ABA_MESSAGE &msg);

virtual void pack(ABA_MESSAGE &msg) const;

virtual int classId() const { return SUBTOUR_CLASSID; }

#endif

};

#ifdef ABACUS_PARALLEL

// The message constructor.

SUBTOUR::SUBTOUR(const ABA_MASTER *master, ABA_MESSAGE &msg)

:

ABA_CONSTRAINT(master, msg),

nodes_(master, msg),

marked_(0)

{ }

// The function |pack()|.

void SUBTOUR::pack(ABA_MESSAGE &msg) const

{

ABA_CONSTRAINT::pack(msg);

nodes_.pack(msg);

}

#endif

4.4 Parallel extensions to tspmaster.h and tspmaster.cc

class TSPMASTER : public ABA_MASTER {

public:

#ifdef ABACUS_PARALLEL

ABA_CONVAR* unpackConVar(ABA_MESSAGE &msg, int classId) const;

ABA_SUB* unpackSub(ABA_MESSAGE &msg);

5

#endif

};

#ifdef ABACUS_PARALLEL

#include "abacus/parmaster.h"

#include "subtour.h"

// The virtual function unpackConVar() constructs and unpacks an

// object of some subclass of ABA_CONVAR from a Message. The function is

// called when an object of some subclass of ABA_CONSTRAINT

// or ABA_VARIABLE has to be recreated at the receiving processor.

// The unpackConVar() function of the base class has to be called,

// if the class identification does not belong to a user defined subclass.

//

// Return:

// A Pointer to a newly constructed object of the subclass of

// ABA_CONVAR specified by classId.

//

// Arguments:

// msg The message from which the ABA_CONVAR is unpacked.

// classId The class identification of the subclass of ABA_CONVAR

// which should be unpacked.

//

ABA_CONVAR* TSPMASTER::unpackConVar(ABA_MESSAGE &msg, int classId) const

{

switch (classId) {

case EDGE_CLASSID:

return new EDGE(this, msg);

case DEGREE_CLASSID:

return new DEGREE(this, msg);

case SUBTOUR_CLASSID:

return new SUBTOUR(this, msg);

}

return ABA_MASTER::unpackConVar(msg, classId);

}

// The virtual function unpackSub() constructs and unpacks an object

// of the user defined subclass of ABA_SUB from a message.

//

// Return:

// A Pointer to a newly constructed object of the user defined subclass of

// ABA_SUB.

//

// Arguments:

// msg The message from which the ABA_SUB is unpacked.

//

ABA_SUB* TSPMASTER::unpackSub(ABA_MESSAGE &msg)

6

{

return new TSPSUB(this, msg);

}

#endif

4.5 Parallel extensions to tspmaster.h and tspmaster.cc

class TSPSUB : public ABA_SUB {

public:

#ifdef ABACUS_PARALLEL

TSPSUB(ABA_MASTER *master, ABA_MESSAGE &msg);

#endif

#ifdef ABACUS_PARALLEL

// The message constructor creates the subproblem from an ABA_MESSAGE by

// calling the message constructor of the base class.

//

// Arguments

// msg The ABA_MESSAGE object from which the subproblem is

// initialized.

//

TSPSUB::TSPSUB(ABA_MASTER *master, ABA_MESSAGE &msg)

:

ABA_SUB(master, msg)

{ }

#endif

5 Parallel Execution

The application has to be compiled with the preprocessor ag ABACUS PARALLEL beeing de�ned.

In addition to the parallel ABACUS library the ACE library [7] has to be linked to the executable.

In the �le .abacus a number of parameters speci�c to the parallel version exist. They are

listed below

#

THE NUMBER OF HOSTS

#

ParallelHostCount 3

#

THE HOSTNAMES

#

These parameters have the form "ParallelHostname_%d" where

%d = 0 ... ParallelHostCount-1

7

#

The paralell ABACUS executable has to be started on each host.

This can be done by using the "start" script which parses this

file to determine the hostnames.

#

The hostnames must be different from each other!

#

ParallelHostname_0 rubens

ParallelHostname_1 frueh

ParallelHostname_2 sion

#

BEST FIRST SEARCH TOLERANCE

#

this parameter controls the strategy for selecting the next subproblem to

be processed by the Branch&Bound algorithm. Candidates for the next

subproblem to be selected are the subproblem with the best bound of the

local list of open subproblems and the subproblem with global best bound.

#

The parameter ParallelBestFirstTolerance specifies the accepted

tolerance of the dual bound of the best subproblem in the local list

with respect to the intervall [global best dual bound, best primal bound]

in percent.

#

ParallelBestFirstTolerance = 0 means GLOBAL BEST FIRST

ParallelBestFirstTolerance = 100 means LOCAL BEST FIRST

#

values inbetween can be used to reduce communication while nearly

maintaining a global best first order.

#

ParallelBestFirstTolerance 0

#

THE DEBUG LEVEL

#

the debug level can be any combination (sum) of the following bitmasks

#

DEBUG_MESSAGE_CONVAR 1

DEBUG_MESSAGE_SUB 2

DEBUG_NOTIFICATION 4

DEBUG_BALANCER 8

DEBUG_TERMINATION 16

DEBUG_SOCKET 32

DEBUG_SEPARATE 64

DEBUG_SUBSERVER 128

8

ParallelDebugLevel 0

#

THE CONNECTION TIMEOUT

#

timeout for connecting to other hosts in seconds

#

ParallelConnectTimeout 30

#

THE PORT NUMBERS

#

unix port numbers to be used for socket communication

#

ParallelNotifyPort 23463

ParallelSubproblemPort 23464

ParallelBalancerPort 23465

At least the number of hosts and their names have to be de�ned. The executable of the

parallel application has to be started on each host listed in the parameter �le. This can be

done by using the start script which is contained in the distribution. The script assumes that

the rsh command works without beeing asked for a password. To start the application simply

prepend the string start to the command line, e.g.

start tsp bier127.tsp

All output appears in the same window. Alternatively the start script supports to open a

separate window for each host as well as starting the GNU debugger gdb on each host.

6 Online Tree Visialization

It is possible to generate an online tree visualization of the exploration of the Branch&Bound tree

by using the VBC tool [6]. The ABACUS output can be connected to the VBC tool via a \named

pipe" which can be created by the unix command mknod xxxx p. In .abacus set VbcLog=Pipe

and the new parameter VbcPipeName=xxxx. Then the VBC tool can be started with standard

input connected to the pipe by the command startVbcTool <xxxx &. Active subproblems

are painted red, open subproblems are painted blue. After a subproblem is processed its color

changes to a color identifying the host, on which the subproblem was processed.

7 Sample Tree Visualization Outputs

The following �gures show the Branch&Bound trees for the sequential ABACUS and the parallel

ABACUS with di�erent values of the Parameter ParallelBestFirstTolerance for the problem

instance bier127.tsp.

9

Figure 2: Branch&Bound tree generated by the sequential ABACUS, 63 nodes.

Figure 3: Parallel ABACUS, Global Best First Strategy, 71 nodes.

Figure 4: Parallel ABACUS, Hybrid Strategy (Tolerance=2%), 74 nodes.

Figure 5: Parallel ABACUS, Local Best First Strategy, 125 nodes.

10

References

[1] ABACUS 2.2 { Software Distribution. Universit�at zu K�oln, Universit�at Heidelberg, 1998.

http://www.informatik.uni-koeln.de/ls juenger/projects/abacus/distribution.html.

[2] ABACUS 2.2 { User's Guide and Reference Manual (HTML version). Uni-

versit�at zu K�oln, Universit�at Heidelberg, 1998. http://www.informatik.uni-

koeln.de/ls juenger/projects/abacus/distribution.html.

[3] M. B�ohm. Parallel ABACUS { Implementation. Technical Report 99.359, Institut f�ur

Informatik, Universit�at zu K�oln, 1999.

[4] M. B�ohm. Parallel ABACUS { Software Distribution, 1999. http://www.informatik.uni-

koeln.de/ls juenger/projects/abacus/parallel.html.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of reusable

Object{Oriented Software. Addison Wesley Longman, 1995.

[6] S. Leipert. The Tree Interface { Version 1.0 user manual. Technical Report

96.242, Institut f�ur Informatik, Universit�at zu K�oln, 1996. http://www.informatik.uni-

koeln.de/ls juenger/projects/vbctool.html.

[7] D. C. Schmidt. The ADAPTIVE Communication Environment (ACE).

http://www.cs.wustl.edu/~schmidt/ACE.html.

[8] D. C. Schmidt. Active Object, An object behavioral Pattern for Concurrent Programming.

In Greg Lavender, editor, Pattern Languages of Programming Design 2. Addison Wesley,

MIT Press, 1996.

[9] S. Thienel. ABACUS | A Branch{And{CUt System. PhD thesis, Universit�at zu K�oln,

1995. http://www.informatik.uni-koeln.de/ls juenger/publications/thienel/diss.html.

[10] S. Thienel. A simple TSP{solver: An ABACUS tutorial. Technical Report 96.245, Institut

f�ur Informatik, Universit�at zu K�oln, 1996.

11

