
Angewandte Mathematik und

Informatik

Universit

�

at zu K

�

oln

Report No. 99.369

Level Planarity Testing in Linear Time

by

Michael J�unger, Sebastian Leipert and Petra Mutzel

1999

Partially supported by DFG-Grant Ju204/7-3,

Forschungsschwerpunkt \E�ziente Algorithmen f�ur

diskrete Probleme und ihre Anwendungen"

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

50969 K�oln

1991 Mathematics Subject Classi�cation: 05C85, 68R10, 90C35

Keywords: Level Planar Graph, Level Planarity Testing, Hierarchy, PQ-tress

Level Planarity Testing in Linear Time

Michael J�unger

a

Sebastian Leipert

b

Petra Mutzel

c

a

Institut f�ur Informatik, Universit�at zu K�oln, mjuenger@informatik.uni-koeln.de

b

Institut f�ur Informatik, Universit�at zu K�oln, leipert@informatik.uni-koeln.de

c

Max-Planck-Institut f�ur Informatik, Saarbr�ucken, mutzel@mpi-sb.mpg.de

Abstract

A level graphG = (V;E; �) is a directed acyclic graph with a mapping � : V !

f1; 2; : : : ; kg, k � 1, that partitions the vertex set V as V = V

1

[V

2

[� � �[V

k

,

V

j

= �

�1

(j), V

i

\ V

j

= ; for i 6= j, such that �(v) � �(u) + 1 for each edge

(u; v) 2 E. The level planarity testing problem is to decide if G can be drawn

in the plane such that for each level V

i

, all v 2 V

i

are drawn on the line

l

i

= f(x; k � i) j x 2 Rg, the edges are drawn monotone with respect to the

vertical direction, and no edges intersect except at their end vertices. If G has

a single source, the test can be performed inO(jV j) time by an algorithm of Di

Battista and Nardelli [1988] that uses the PQ-tree data structure introduced

by Booth and Lueker [1976]. PQ-trees have also been proposed by Heath and

Pemmaraju [1995, 1996] to test level planarity of level directed acyclic graphs

with several sources and sinks. It has been shown in J�unger, Leipert, and

Mutzel [1997] that this algorithm is not correct in the sense that it does not

state correctly level planarity of every level planar graph. In this paper, we

present a correct linear time level planarity testing algorithm that is based

on two main new techniques that replace the incorrect crucial parts of the

algorithm of Heath and Pemmaraju [1995, 1996].

1 Introduction

A fundamental issue in Automatic Graph Drawing is to display hierarchical network

structures as they appear in software engineering, project management and database

design. The network is transformed into a directed acyclic graph that has to be drawn

with edges that are strictly monotone with respect to the vertical direction. Most

applications imply a partition of the vertices into levels that have to be visualized by

placing the vertices belonging to the same level on a horizontal line. These graphs

are called level graphs. Using the PQ-tree data structure, Di Battista and Nardelli

1

[1988] have shown how to test if a level graph with a single source is level planar,

i.e. can be drawn without edge crossings.

PQ-trees have also been proposed by Heath and Pemmaraju [1995, 1996] to test

level planarity of level graphs with several sources and sinks. It has been shown in

J�unger, Leipert, and Mutzel [1997] that this algorithm is not correct in the sense

that it does not state correctly level planarity of every level planar graph. In this

paper, we present a correct linear time level planarity testing algorithm that is based

on two main new techniques that replace the incorrect crucial parts of the algorithm

of Heath and Pemmaraju [1995, 1996].

This paper is organized as follows. After summarizing the necessary preliminaries

in the next section, we give a short introduction to the PQ-tree data structure and

the level planarity test presented by Heath and Pemmaraju [1995, 1996] in the third

section. In Section 4 we summarize the incorrect crucial parts of this algorithm. A

correct linear time level planarity test is presented in the �fth section. The proofs

of correctness are presented in Section 6. We �nish this paper with some remarks

on the construction of a level planar embedding based on our algorithm.

2 Preliminaries

A level graph G = (V;E; �) is a directed acyclic graph with a mapping � : V !

f1; 2; : : : ; kg, k � 1, that partitions the vertex set V as V = V

1

[V

2

[� � � [V

k

,

V

j

= �

�1

(j), V

i

\ V

j

= ; for i 6= j, such that �(v) � �(u) + 1 for each edge

(u; v) 2 E. A vertex v 2 V

j

is called a level-j vertex and V

j

is called the j-th level

of G. For a level graph G = (V;E; �), we sometimes write G = (V

1

; V

2

; : : : ; V

k

;E).

A drawing of a level graph G in the plane is a level drawing if the vertices of every V

j

,

1 � j � k, are placed on a horizontal line l

j

= f(x; k � j) j x 2 Rg, and every edge

(u; v) 2 E, u 2 V

i

, v 2 V

j

, 1 � i < j � k, is drawn as a monotonically decreasing

curve between the lines l

i

and l

j

. A level drawing of G is called level planar if no

two edges cross except at common endpoints. A level graph is level planar if it has

a level planar drawing. A level graph G is obviously level planar if and only if all

its components are level planar. We therefore may assume in the following without

loss of generality that G is connected.

A level drawing of G determines for every V

j

, 1 � j � k, a total order �

j

of the

vertices of V

j

, given by the left to right order of the vertices on l

j

. A level embedding

consists of a permutation of the vertices of V

j

for every j 2 f1; 2; : : : ; kg with respect

to a level drawing. A level embedding with respect to a level planar drawing is called

level planar.

A level graph G = (V;E; �) is said to be proper if every edge e 2 E connects only

vertices belonging to consecutive levels. Figure 1 shows two proper level graphs. If

a level graph is not proper, it must have an edge e = (v; w) 2 E such that v 2 V

i

2

and w 2 V

j

with 1 � i < j � 1 � k� 1. Such an edge is called a long edge and it is

said to be traversing the levels l with i < l < j. Any nonproper level graph can be

transformed into a proper level graph by replacing every long edge by a path having

a dummy vertex for every traversed level. We therefore may assume that all level

graphs are proper.

2

1

5

4

3

(a) A level graph.

5

4

3

2

1

(b) A hierarchy.

Figure 1: Examples of proper level graphs. Sources are drawn black.

A level graph G may have sinks and sources placed on various levels of the graph.

A hierarchy is a level graph in which all sources belong to the �rst level V

1

of the

graph. If G is a hierarchy with more than one vertex in V

1

it is always possible to

add a new subset V

0

with exactly one vertex connected to every vertex of V

1

. Such

a transformation does not modify the planarity properties of the given hierarchy.

As a consequence, it is su�cient to consider hierarchies with jV

1

j = 1. Figure 1(b)

shows a hierarchy.

3 The Approach by Heath and Pemmaraju

This section gives a brief introduction to the level planarity test of Heath and Pem-

maraju [1995, 1996]. In order to test whether a level graph G = (V;E; �) is level

planar, it is su�cient to �nd an ordering�

j

of the vertices of every set V

j

, 1 � j < k,

such that for every pair of edges (u

1

; v

1

); (u

2

; v

2

) 2 E with u

1

; u

2

2 V

j

and u

1

�

j

u

2

,

we have v

1

�

j+1

v

2

. Let G

j

denote the subgraph of G induced by V

1

[V

2

[� � �[V

j

.

Unlike G, G

j

is not necessarily connected.

The basic idea of the level planarity testing algorithm presented by Heath and

Pemmaraju [1995, 1996] is to perform a top-down sweep, processing the levels in

the order V

1

; V

2

; : : : ; V

k

and computing for every level V

j

, 1 � j � k, a set of

3

permutations of the vertices of V

j

that appear in some level planar embedding of

G

j

. In case that the set of permutations of G

k

is not empty, the graph G = G

k

is

obviously level planar. A permutation induced by an ordering �

j

on the vertices

of V

j

is called a witness of G

j

if the permutation appears in some level planar

embedding of G

j

.

A PQ-tree is a data structure that represents the permutations of a �nite set U

in which the members of speci�ed subsets occur consecutively. This data structure

has been introduced by Booth and Lueker [1976] to solve the problem of testing for

the consecutive ones property (see, e.g., Fulkerson and Gross [1965]). A PQ-tree is

a rooted and ordered tree that contains three types of nodes: leaves, P -nodes, and

Q-nodes. The leaves are in one to one correspondence with the elements of U . The

P - and Q-nodes are internal nodes. In subsequent �gures, P -nodes are drawn as

circles while Q-nodes are drawn as rectangles.

The frontier of a PQ-tree T , denoted by frontier(T), is the sequence of all leaves of

T read from left to right, and the frontier of a node X, denoted by frontier(X), is the

sequence of its descendant leaves read from left to right. The frontier of a PQ-tree

is a permutation of the set U . We use the notion frontier(T) and frontier(X) also to

denote the set of elements in frontier(T) and frontier(X), respectively, its meaning

being evident by context. An equivalence transformation speci�es a legal reordering

of the nodes within a PQ-tree. The only legal equivalence transformations are

(i) any permutation of the children of a P -node, and

(ii) the reverse permutation of the children of a Q-node.

Two PQ-trees T and T

0

are equivalent if and only if their underlying trees are equal

and T can be transformed into T

0

by a sequence of equivalence transformations. The

equivalence of two PQ-trees is denoted T � T

0

. The set of consistent permutations of

a PQ-tree is the set of all frontiers that can be obtained by a sequence of equivalence

transformations and is denoted by

PERM(T) = ffrontier(T

0

) j T

0

� Tg :

Given a PQ-tree T over the set U and given a subset S � U , Booth and Lueker

[1976] developed a pattern matching algorithm called reduction and denoted by

REDUCE(T; S) that computes a PQ-tree T

0

representing all permutations of T in

which the elements of S form a consecutive sequence. A tree with no nodes at all

called empty tree is returned if the original tree could not be reduced for the speci�ed

set S.

If G

j

is a hierarchy, the set of permutations of the vertices of V

j

that appear in

some level planar embedding of G

j

can be represented by a PQ-tree T

j

according

to Di Battista and Nardelli [1988] by

4

� replacing every cut vertex by a P -node,

� replacing every biconnected component by a Q-node,

� replacing every vertex of V

j

by a leaf, and

� rooting T at the node corresponding to the biconnected component or cut

vertex that contains the source s.

In order to test whether the hierarchy G

j+1

is level planar, Di Battista and Nardelli

[1988] add for every edge (v

i

; w), w 2 V

j+1

, v

i

2 V

j

, i = 1; 2; : : : ; �, � � 1 a virtual

vertex w

v

i

labeled w and virtual edges (v

i

; w

v

i

) to the graph G

j

. The authors then

try to compute for every vertex w 2 V

j+1

a sequence of permutations of components

around cut vertices and swappings of maximal biconnected components such that

all virtual vertices labeled w form a consecutive sequence on the horizontal line l

j+1

.

If such a sequence can be found, it is obvious that the vertex w can be added to G

j

without destroying level planarity. The process of computing the prescribed sequence

can be e�ciently done using the PQ-tree T

j

, applying the function REDUCE to sets

of leaves corresponding to virtual vertices with the same label, yielding a linear time

algorithm. The algorithm of Di Battista and Nardelli [1988] makes use of the crucial

property that in a hierarchy G each G

j

is connected; a property that is not shared

by general level graphs.

In case that G

j

, 1 � j < k, consists of more than one connected component, Heath

and Pemmaraju suggest to use a PQ-tree for every component and formulate a set

of rules of how to merge the PQ-trees T

1

and T

2

associated with the components F

1

and F

2

, if F

1

and F

2

are both adjacent to some vertex v 2 V

j+1

.

During a First Reduction Phase Heath and Pemmaraju [1995, 1996] reduce the

leaves of T

1

and T

2

corresponding to the vertex v, called the pertinent leaves. After

successfully performing the reduction, the consecutive sequence of pertinent leaves

is replaced by a single pertinent representative in both T

1

and T

2

. Going up one of

the trees T

i

, i 2 f1; 2g, from its pertinent representative, an appropriate position

is searched, allowing the tree T

j

, j 6= i, to be placed into T

i

. After successfully

performing this step the resulting tree T

0

has two pertinent leaves corresponding to

the vertex v, which again are reduced and replaced by a single representative. If any

of the steps fails, Heath and Pemmaraju state that the graph G is not level planar.

Merging two PQ-trees T

1

and T

2

corresponds to merging the two components F

1

and F

2

and is accomplished using certain information that is stored at the nodes

of the PQ-trees. For any subset S of the set of vertices in V

j

, 1 � j � m, that

belongs to a component F , de�ne ML(S) to be the greatest d � j such that

V

d

; V

d+1

; : : : ; V

j

induces a subgraph in which all vertices of S occur in the same

connected component. The level ML(S) is said to be the meet level of S. For a

Q-node Y in the corresponding PQ-tree T

F

with ordered children Y

1

; Y

2

; : : : ; Y

t

in-

tegers denoted by ML(Y

i

; Y

i+1

), 1 � i < t, are maintained satisfying ML(Y

i

; Y

i+1

) =

5

ML(frontier(Y

i

)[frontier(Y

i+1

)). For a P -nodeX a single integer denoted by ML(X)

that satis�es ML(X) = ML(frontier(X)) is maintained. Furthermore, de�ne LL(F),

the low indexed level, to be the smallest d such that F contains a vertex in V

d

and

maintain this integer at the root of the corresponding PQ-tree. The height of a

component F in the subgraph G

j

is j � LL(F). The LL-value merely describes the

size of the component.

Figure 2 shows an example of a graph G

5

with two components. The LL-value of the

left component 2 is 1 and the LL-value of the right component is 2. Figure 3 shows

the PQ-trees corresponding to the graph G

5

together with the ML-values that are

stored at the nodes. The maintenance of the ML-values during the pattern matching

algorithm REDUCE is straightforward.

v

8

v

7

v

6

v

5

v

4

v

3

v

2

v

1

5

4

3

2

1

Figure 2: A G

5

with two components.

v

4

v

3

1

v

8

v

1

v

2

v

5

v

7

v

6

4

3 3 3

3

Figure 3: PQ-trees corresponding to G

5

shown in Fig. 2.

Using these LL- and ML-values, Heath and Pemmaraju [1995, 1996] describe a set

of rules how to connect two PQ-trees and claim that the pertinent leaves of the new

tree T

0

are reducible if and only if the corresponding component F

0

is level planar.

Proposition 3.1 (Heath and Pemmaraju [1995, 1996]). Suppose that X is

the least common ancestor of a pair of leaves v and w in a PQ-tree. If X is a

6

P -node, then

ML(fv; wg) = ML(X) :

Proposition 3.2 (Heath and Pemmaraju [1995, 1996]). Suppose that X is

the least common ancestor of a pair of leaves v and w in a PQ-tree. Suppose further

that X is a Q-node with ordered children X

1

; X

2

; : : : ; X

t

such that v 2 frontier(X

p

)

and w 2 frontier(X

q

), where 1 � p < q � t. Then

ML(fv; wg) = minfML(X

i

; X

i+1

) j p � i < qg :

The next proposition of Heath and Pemmaraju [1996] formally states the fact that

as we follow a path in a PQ-tree from a leaf to the root, the encountered ML-values

are non increasing.

Proposition 3.3 (Heath and Pemmaraju [1995, 1996]). Suppose that node

X is the parent of an internal node Y in a PQ-tree. De�ne x as follows:

x =

�

ML(X) if X is a P -node;

maxfML(Y; Z) j Z is a child of X adjacent to Y g if X is a Q-node.

De�ne y as follows:

y =

8

<

:

ML(Y) if Y is a P -node;

minfML(Y

i

; Y

i+1

) j 1 � i < tg if Y is a Q-node with ordered

children Y

1

; Y

2

; : : : ; Y

t

:

Then x � y holds.

A detailed description of the merge operations of Heath and Pemmaraju [1995, 1996]

is now given. Let G = (V;E; �) be a k-level graph and F

1

and F

2

be two components

of G

j

, 1 � j < k, both being adjacent to the same vertex v 2 V

j+1

. Let T

1

and

T

2

be the PQ-trees of F

1

and F

2

, both representing all level planar embeddings of

their corresponding components after the application of the �rst merge phase for the

level j+1. Identifying the vertices labeled v of the components F

1

and F

2

constructs

a new component F . For this new component F a new PQ-tree T is needed that

represents all level planar embeddings of F . Heath and Pemmaraju now formulate

a set of rules of how to construct the PQ-tree T using the two existing ones T

1

and

T

2

.

Without loss of generality, we may assume that LL(T

1

) � LL(T

2

). Thus component

F

2

is the smaller component and an embedding of F

1

has to be found such that F

2

can be nested within the embedding of F

1

. This corresponds to adding the root of

T

2

as a child to a node of the PQ-tree T

1

constructing a new PQ-tree T

0

. In order

to �nd an appropriate location to insert T

2

into T

1

, we start with the leaf labeled v

in T

1

and proceed upwards in T

1

until a node X

0

and its parent X are encountered

satisfying one of the following �ve conditions.

7

Merge Condition A The node X is a P -node with ML(X) < LL(T

2

). Attach T

2

as child of X in T

1

.

Merge Condition B The node X is a Q-node with ordered children

X

1

; X

2

; : : : ; X

t

, X

0

= X

1

, and ML(X

1

; X

2

) < LL(T

2

). Replace X

0

in T

1

by a Q-

node Y having two children, X

0

and the root of T

2

. The case where X

0

= X

t

and

ML(X

t�1

; X

t

) < LL(T

2

) is symmetric.

Although the ML-value of X

0

and T

2

is 0 (since they are not connected), we set

for technical purposes ML(X

0

; T

2

) := ML(X

0

; X

2

). This is legal, since the two leaves

labeled v in the frontier of X

0

and T

2

are reduced after applying the merge operation

and replaced by a single representative which removes the value ML(X

0

; T

2

) from

the tree. We will see later, how we bene�t from this value.

Merge Condition C The node X is a Q-node with ordered children

X

1

; X

2

; : : : ; X

t

, X

0

= X

i

, 1 < i < t, and ML(X

i�1

; X

i

) < LL(T

2

) and

ML(X

i

; X

i+1

) < LL(T

2

). Replace X

0

by a Q-node Y with two children, X

0

and the root of T

2

, and set (for technical purposes again) ML(X

0

; T

2

) :=

maxfML(X

i�1

; X

0

);ML(X

0

; X

i+1

)g.

Merge Condition D The node X is a Q-node with ordered children

X

1

; X

2

; : : : ; X

t

, X

0

= X

i

, 1 < i < t, and

ML(X

i�1

; X

i

) < LL(T

2

) � ML(X

i

; X

i+1

) :

Attach the root of T

2

as child of X between X

i�1

and X

0

, and set (for technical

purposes) ML(X

i�1

; T

2

) := ML(X

i�1

; X

0

) and ML(T

2

; X

0

) := ML(X

i�1

; X

0

).

In case that

ML(X

i

; X

i+1

) < LL(T

2

) � ML(X

i�1

; X

i

) ;

attach the root of T

2

as child of X between X

0

and X

i+1

and set the ML-values

correspondingly.

Merge Condition E The node X

0

is the root of T

1

. Reconstruct T

1

by inserting

a Q-node Y as new root of T

1

with two children X

0

and the root of T

2

and set

ML(X

0

; T

2

) := 0.

The merge operations for the conditions B and C both take care of the fact that

the subgraph corresponding to T

2

can be embedded on either side of the subgraph

corresponding to X

0

with respect to the subgraph X. By construction, Heath and

Pemmaraju [1996] make the following observations on the merge rules A, B, : : : , E.

8

Observation 3.4 (Heath and Pemmaraju [1996]). Let �

1

2 PERM(T

1

) be a

permutation of the leaves of T

1

, such that frontier(X

0

) is adjacent to a leaf labeled

w, and ML(frontier(X

0

) [fwg) < LL(T

2

). For any �

2

2 PERM(T

2

), there exists a

permutation � 2 PERM(T

0

) with T

0

being the new PQ-tree that is consistent with

�

1

and �

2

and in which the frontier(T

2

) occurs immediately after frontier(X

0

) and

immediately before w.

Observation 3.5 (Heath and Pemmaraju [1996]). Let �

1

2 PERM(T

1

) be a

permutation such that the leaves of frontier(X

0

) appear at the end of �

1

. Let �

2

2

PERM(T

2

) be an arbitrary permutation of the leaves of T

2

. Then there exists a

permutation � 2 PERM(T

0

) that is consistent with �

1

and �

2

and in which the

leaves in frontier(T

2

) occur immediately after frontier(X

0

).

4 On the Incorrectness on the Approach of Heath

and Pemmaraju

In J�unger, Leipert, and Mutzel [1997] we have shown that the order of merging

the components is important for testing a level graph. Within the second merge

phase, components are merged in an arbitrary order. We show that choosing an

arbitrary order may result in PQ-trees that are not reducible with respect to a

vertex v (although the graph is level planar). Consider four di�erent components

F

1

; F

2

; F

3

; F

4

and their corresponding PQ-trees T

1

; T

2

; T

3

; T

4

each having a pertinent

leaf corresponding to some level-(j + 1) vertex v. For simplicity we assume that for

every component the leaf labeled v appears in all permutations at one end of the

PQ-tree. Assume further that the smallest common ancestor of a leaf labeled v and

any other leaf adjacent to it is a Q-node. Figure 4 shows such a component F

i

and its

corresponding PQ-tree T

i

. The number l

i

= ML(fw

i

p

i

; vg) is the ML-value between

the pertinent leaf labeled v and the frontier of its left neighbor.

�
�
�
�

��
��
��
��

��

��

������
��
��
��

LL(F

i

)

j

j � 1

v

l

i

l

i

w

i

1

w

i

p

i

w

i

1

w

i

p

i

v

Figure 4: Component F

i

and its corresponding PQ-tree T

i

.

Assuming that the condition

LL(F

1

) � l

1

< LL(F

2

) � l

2

< LL(F

3

) � l

3

< LL(F

4

) � l

4

9

on the ML- and LL-values of the components holds, it is possible to merge all four

components into one component such that the pertinent leaves form a consecutive

sequence. Figure 5 shows the four components, indicating how the components can

be merged constructing a level planar embedding.

��
��
��
��
������ ���

�
�
�

��
��
��
��

��������������������
��
��
��

w

1

1

w

2

1

w

3

1

w

4

1

F

4

F

3

F

2

F

1

v v v vw

1

p

1

w

2

p

2

w

3

p

3

w

4

p

4

Figure 5: Possible level planar arrangement of the components

F

1

; F

2

; F

3

; F

4

.

��
��
��
��
��������

��
��
��
��
������ ��

��
��
��
������ ������

w

1

1

l

1

v

0

w

3

1

w

4

1

l

2

vw

2

1

w

3

p

3

w

2

p

2

w

1

p

1

w

4

p

4

l

3

l

4

Figure 6: PQ-tree T

000

whose pertinent leaves labeled v are not reducible.

The vertex v

0

denotes the single representative of the the leaves labeled

v corresponding to the components F

1

, F

3

and F

4

.

Consider the following merge operations on the components F

1

; F

2

; F

3

; F

4

and their

corresponding PQ-trees:

1. merge F

1

and F

4

into a component F

0

,

2. merge F

0

and F

3

into a component F

00

,

3. merge F

00

and F

2

into a component F

000

.

10

The resulting PQ-tree T

000

corresponding to F

000

is shown in Figure 6. The pertinent

leaves labeled v do not form a consecutive sequence in any permissible permutation

of the PQ-tree T

000

. Hence the algorithm presented by Heath and Pemmaraju [1995,

1996] states nonlevel planarity for certain level planar graphs.

Furthermore, components of G

j

that have just one level-j vertex are not treated

properly. In fact, they may be inserted at wrong positions in other PQ-trees. This

is due to the fact that during the �rst merge phase the algorithm reduces for every

PQ-tree all leaves with the same label and replaces them by a single representative.

Clearly, this replacement corresponds to the construction of new interior faces in the

corresponding subgraph. However, PQ-trees are not designed to carry information

about interior faces, hence the information about the \space" within these interior

faces gets lost. It is easy to see that situations may occur where components being

adjacent to just one level-j vertex have to be embedded within one of these interior

faces. The approach of Heath and Pemmaraju [1995, 1996] does not detect this fact,

which is another reason that it may incorrectly state the non level planarity of a

level planar graph.

Heath and Pemmaraju [1995, 1996] claim that their algorithm can be implemented

using only O(jV j) time. This is true for the merge and reduce operations. However,

considering two PQ-trees T

1

, T

2

both having a leaf labeled v and a leaf labeled w,

Heath and Pemmaraju [1996] suggest to merge the trees T

1

and T

2

at the leaves

labeled v constructing a new PQ-tree T and then reduce T with respect to the

leaves labeled v as well as with respect to the leaves labeled w. It is not clear how

the update operations that are necessary for detecting both pairs of leaves can be

done in O(jV j) time, Heath and Pemmaraju [1995, 1996] do not discuss this matter.

We will combine two new strategies to eliminate the problems we encountered in

the algorithm of Heath and Pemmaraju [1995, 1996].

5 A Linear Time Level Planarity Test

In this section we discuss how to construct a correct algorithm LEVEL-

PLANARITY-TEST that tests a level graph G = (V

1

; V

2

; : : : ; V

k

;E) for level pla-

narity. Before we describe our algorithm, called LEVEL-PLANARITY-TEST, let us

recall some old and introduce some new terminology. Since G

j

is not necessarily con-

nected, let m

j

denote the number of components of G

j

and let F

j

i

, i = 1; 2; : : : ; m

j

,

denote the components of G

j

. Figure 7 shows a G

4

with m

4

= 2 components F

4

1

and

F

4

2

. The set of vertices in F

j

i

is denoted by V (F

j

i

).

Let H

j

i

be the graph arising from F

j

i

as follows: For each edge e = (u; v), where

u is a vertex in F

j

i

and v 2 V

j+1

we introduce a virtual vertex with label v and

a virtual edge that connects u and this virtual vertex. Thus there may be several

virtual vertices with the same label, adjacent to di�erent components of G

j

and each

11

with exactly one entering edge. The form H

j

i

is called the extended form of F

j

i

and

the set of virtual vertices of H

j

i

is denoted by frontier(H

j

i

). Figure 8 shows possible

extended forms H

4

1

and H

4

2

of the example in Fig. 7. The virtual vertices on level 5

are denoted by their labels. The frontier of H

4

1

consists of one virtual vertex labeled

u, two vertices labeled v, and two vertices labeled w.

F

4

2

F

4

1

4

3

2

1

Figure 7: A G

4

with m

2

= 2 components F

4

1

and F

4

2

.

H

4

2

H

4

1

xx vuvvww

5

4

3

2

1

Figure 8: Two possible extended forms H

4

1

and H

4

2

of Fig. 7.

The set of virtual vertices of H

j

i

that are labeled v 2 V

j+1

is denoted by S

v

i

. Figure

9 shows the sets S

w

1

, S

v

1

, and S

u

1

, the set of virtual vertices labeled w,v and u of H

4

1

,

respectively. The set S

x

1

is empty.

The graph that is created from an extended formH

j

i

by identifying all virtual vertices

with the same label to a single vertex is called reduced extended form and denoted

by R

j

i

. Figure 10 shows the reduced extended forms R

4

1

and R

4

2

of H

4

1

and H

4

2

. In

R

4

1

the vertices labeled w have been identi�ed and the vertices labeled v have been

12

1

vw uw

5

4

3

2

v

|{z}

S

u

1

| {z }

S

v

1

| {z }

S

w

1

Figure 9: Sets S

w

1

, S

v

1

, and S

u

1

of H

4

1

.

identi�ed. In order to identify the two vertices labeled x in R

4

2

, it was necessary

to permute the left most vertex labeled x and v. Both forms R

4

1

and R

4

2

now have

exactly one vertex labeled v.

R

4

2

R

4

1

xvw uv

5

4

3

2

1

Figure 10: Reduced extended forms R

4

1

and R

4

2

of H

4

1

and H

4

2

.

The set of virtual vertices of R

j

i

is denoted by frontier(R

j

i

). If S

v

i

of H

j

i

is not empty,

we denote the vertex with label v of R

j

i

(i.e., the vertex that arose from identifying

all virtual vertices of S

v

i

) by v

i

and update S

v

i

= fv

i

g. The graph arising from the

identi�cation of two virtual vertices v

i

and v

l

(labeled v) of two reduced extended

forms R

j

i

and R

j

l

is denoted R

j

i

[

v

R

j

l

. We call R

j

i

[

v

R

j

l

a merged reduced form. The

vertex arising from the identi�cation of v

i

and v

l

is denoted by v

fi;lg

(and labeled by

13

v of course). If LL(R

j

i

) � LL(R

j

l

) we say R

j

l

is v-merged into R

j

i

. The form that is

created by v-merging R

j

l

into R

j

i

and identifying all virtual vertices with the same

label w 6= v is again a reduced extended form and denoted by R

j

i

(thus renaming

R

j

i

[

v

R

j

l

with the name of the \higher" form). Figure 11 shows the resulting merged

reduced extended form R

4

1

[

v

R

4

2

after R

4

2

(the smaller form) has been v-merged into

R

4

1

(the higher form). Since R

4

1

is the higher form, R

4

1

[

v

R

4

2

is renamed into R

4

1

.

v uxw

5

4

3

2

1

Figure 11: A Merged reduced extended form R

4

1

[

v

R

4

2

after R

4

2

has been

v-merged into R

4

1

. The former vertices of R

4

2

are drawn shaded.

As will be shown later in this paper, we omit scanning for leaves with the same

label after we have v-merged several reduced extended forms. This is done in order

to achieve linear running time. However, this strategy results in improper reduced

extended forms, possibly having several virtual vertices with the same label. These

forms are called partially reduced extended forms.

If some reduced extended form has been v-merged into R

j

i

, the form R

j

i

is called

v-connected , otherwise R

j

i

is called v-unconnected. Thus, R

4

1

shown in Fig. 10 is

v-unconnected, R

4

1

shown in Fig. 11 is v-connected.

A reduced extended formR

j

i

that is v-unconnected for all v 2 V

j+1

is called primary .

A reduced extended form R

j

i

that is v-connected for at least one v 2 V

j+1

is called

secondary . Again, R

4

1

shown in Fig. 10 is primary, R

4

1

shown in Fig. 11 is secondary.

Let R

j

i

be a reduced extended form such that S

v

i

6= ; for some v 2 V

j+1

and S

w

i

= ;

for all w 2 V

j+1

� fvg, then R

j

i

is called v-singular. Figure 12 shows a v-singular

form.

Let T (G

j

) be the set of level planar embeddings of all components of G

j

. We will

show that in case that G

j

is level planar, the set of permutations of level-j vertices

in level planar embeddings of each component F

j

i

of G

j

can be described by a PQ-

tree T (F

j

i

). Clearly this is true, if every F

j

i

is a hierarchy (Di Battista and Nardelli

[1988]). Hence it remains to be shown that it is also possible to maintain a PQ-

14

5

4

3

2

1

v

Figure 12: A v-singular form.

tree for every component F

j

i

that is not a hierarchy. As has been shown in Booth

and Lueker [1976], it is straightforward to construct from T (F

j

i

) a PQ-tree T (H

j

i

)

associated with H

j

i

. Thus the leaves of T (H

j

i

) correspond to the virtual vertices of

H

j

i

and we label the leaves of T (H

j

i

) as their counterparts in H

j

i

. By construction,

T (G

j

) is a set of PQ-trees. Considering a function CHECK-LEVEL that computes

for every level j, j = 2; 3; : : : ; k the set T (G

j

) of level planar embeddings of the

components G

j

, the algorithm LEVEL-PLANARITY-TEST can be formulated as

follows.

Bool LEVEL-PLANARITY-TEST(G = (V

1

; V

2

; : : : ; V

k

;E))

begin

Initialize T (G

1

);

for j := 1 to k � 1 do

T (G

j+1

) = CHECK-LEVEL(T (G

j

); V

j+1

);

if T (G

j+1

) = ; then

return \false";

return \true";

end.

We introduce two new strategies that lead to a correct algorithm as well as new tech-

niques for obtaining linear running time. One strategy is to sort all PQ-trees with a

leaf labeled v in their frontier according to their LL-values and merge them accord-

ing to this ordering. We show that the new PQ-tree constructed by the application

of this ordering represents all possible level planar embeddings of the corresponding

new component. Our second strategy for a correct treatment of v-singular compo-

nents consists of keeping at every single representative the size of the largest interior

face that has been constructed by identifying the corresponding virtual vertices.

When merging a PQ-tree of a v-singular component into another PQ-tree with

lower LL-value, this information is checked �rst. When merging two non singular

15

components, this information has to be updated when introducing a new single rep-

resentative. Here we have to take into account that merging two components results

into something that we call a cavity. Considering the intersection C of the half space

fx 2 R

2

j x

2

� k � j � 1g and the outer face of a level planar drawing of the

current extended forms, a v-cavity C

v

is de�ned to be a region of C such that v is

adjacent to the region. Obviously v can be adjacent to several such regions. More-

over, these regions are not unique, since they depend on the current embedding.

This is no drawback, since we only need to maintain a lower bound on the size of

the largest v-cavity which can be easily implemented using the PQ-trees and the

LL- and ML-values of Heath and Pemmaraju [1995, 1996]. Figure 13 shows such

a v-cavity. The arrow on the right side of the �gure determines the height of the

cavity. A v-singular form can only be level planar embedded within this cavity, if it

is smaller than the height of the cavity. We de�ne LL(C

v

) to be the low indexed level

of a v-cavity C

v

as ML(fw 2 V

j+1

j w is on the boundary of C

v

g). The height of a

v-cavity C

v

is j + 1 � LL(C

v

). The following lemma reveals how to obtain a lower

bound on the height of the largest v-cavity in every level planar embedding of two

forms that have been v-merged. If two PQ-trees have been merged at their leaves

labeled v, the LL-value of a v-cavity is obviously smaller or equal to the ML-value

stored at the root of the pertinent subtree. Notice that we here make use of the

ML-values that have been \technically" set during the merge operations.

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

C

v-cavity

v-cavity

v

height

Figure 13: A v-cavity.

Lemma 5.1. Let R

j

1

and R

j

2

be two nonsingular partially reduced extended forms

of G

j

of a level planar graph G with S

v

1

6= ; and S

v

2

6= ;. Let T

1

and T

2

be their

corresponding PQ-trees with LL(T

1

) � LL(T

2

), representing all level planar embed-

dings of R

j

1

, and R

j

2

, respectively. Let T be the PQ-tree constructed by v-merging

T

2

into T

1

. Let X be the root of the pertinent subtree in T . If X is a P -node let

h = ML(X), and if X is a Q-node let Y and Z be the (only) pertinent children of

X and let h = ML(Y; Z). Let C

v

be the largest v-cavity in an arbitrary level planar

embedding of R

j

1

[

v

R

j

2

. Then the following holds.

LL(C

v

) � h:

16

Proof. By construction of the merge operation we have that h < LL(T

2

) holds.

Since R

j

2

can be embedded level planar in R

j

1

, there must exist in every level planar

embedding at least one v-cavity C

v

such that LL(C

v

) � h.

As we have mentioned, merging two PQ-trees at leaves labeled v may result in a

PQ-tree T with several leaves labeled w 6= v. Linearity of the algorithm is achieved

by not applying the strategy of reducing the leaves labeled w, since it is not clear

if the detection of these leaves reveals linear running time. We reduce these leaves

labeled w only when considering their PQ-tree T for a merge operation at w. Thus

we �rst reduce all leaves labeled w in every tree and then merge these trees at w.

We show that the modi�ed algorithm works correctly.

When merging PQ-trees at leaves labeled v, update operations have to be applied

to the leaves of the new tree, since the leaves must know the PQ-tree that they

belong to. To avoid the usage of Fast-Union-Find-Set operations which sum up to

O(jV j�(jV j; jV j)) operations, we apply the following strategy. Leaves are updated

only when they are involved in a reduce or merge operation. In order to update the

leaves, we traverse all nodes from the considered leaf to its root. Let U be a set

of PQ-trees with leaves labeled v in their frontier. We show that if this strategy

is applied for all leaves except for the leaves in the PQ-tree with the lowest LL-

value in U , the number of operations is proportional to the number of operations

needed to reduce all these leaves. We do not need to know the PQ-tree with the

lowest LL-value in U . It is easy to see that this tree is implicitly de�ned. Hence

we can avoid for every merge operation the traversal of the tree corresponding to

the highest component. Thus the total number of operations needed to perform

the updates is proportional to the number of operations needed in all calls of the

function REDUCE, where Booth and Lueker [1976] proved that the total number

of operations in all calls of REDUCE for planar graphs is in O(jV j).

The procedure CHECK-LEVEL is divided into two phases. The First Reduction

Phase constructs the PQ-trees corresponding to the reduced extended forms of G

j

.

Every PQ-tree T (F

j

i

) that represents all level planar embeddings of some component

F

j

i

is transformed into a PQ-tree T (H

j

i

) representing all level planar embeddings of

the extended formH

j

i

. We continue to reduce in every PQ-tree T (H

j

i

) all leaves with

the same label, thereby constructing a new PQ-tree, representing all level planar

embeddings of H

j

i

, where leaves with the same label occupy consecutive positions.

If one of the reductions fails, G cannot be level planar. Leaves with the same label

v are replaced by a single representative v

i

. Such a single representative v

i

gets the

same label v, storing either a value PML(v

i

) = ML(R) if the root R of the pertinent

subtree is a P -node or a value QML(v

i

) = minfML(x; y) j x; y consecutive children

of R, x pertinent or y pertinentg, if the root R is a Q-node. The default value of

QML(v

i

) and PML(v

i

) is set to k+1. These values store the height of the largest new

interior face that is constructed by merging the vertices labeled v and are needed to

handle singular components correctly.

17

PQ-trees of di�erent components are merged in the Second Reduction Phase using

a function INSERT, if the components are adjacent to the same vertex v on level

j + 1. Given the set of leaves labeled v, we �rst determine their corresponding

PQ-trees. If some leaves labeled v are in the frontier of the same PQ-tree, we

reduce them and replace them by a single representative. The PQ-trees are then

merged pairwise in the order of their sizes. We show that using this ordering a

PQ-tree T (F) is constructed that represents all possible level planar embeddings

of the merged components. If there is more than one v-singular reduced extended

form, v 2 V

j+1

, we only need to merge the largest one of these forms. If it is

possible to embed this form level planar, all other v-singular forms obviously can

be embedded level planar as well. Even though v may not be the only common

vertex in the merged components, we do not reduce leaves with label w 6= v in the

PQ-tree in order to obtain a linear time algorithm. If one of the reduce or merge

operations fails while applied in this phase, the graph G is not level planar. The

PML- and QML-values are updated by using a function UPDATE. The function

REPLACE removes all leaves with a common label v after these leaves have been

reduced (and therefore are consecutive in all permissible permutations) and replaces

them by a single representative (see also Booth and Lueker [1976]). Finally we

add for every source of V

j+1

its corresponding PQ-tree. Thus the set of PQ-trees

constructed by the function CHECK-LEVEL represents all level planar embeddings

of every component of G

j+1

. The following code fragment contains operations that

perform on the graph G. They are kept in the code for documentation purposes.

Any implementation would of course rely only on the manipulation of the PQ-trees.

Once the Second Reduction Phase is complete, the function CHECK-LEVEL �nishes

with some �nal updates.

T (G

j+1

) CHECK-LEVEL(T (G

j

); V

j+1

)

begin

First Reduction Phase

for every component F

j

i

in G

j

and its corresponding PQ-tree T (F

j

i

) do

construct H

j

i

;

construct T (H

j

i

) (from the PQ-tree obtained in the previous iteration);

for v = 1 to jV

j+1

j do

for every extended form H

j

i

do

if S

v

i

6= ; then

if REDUCE(T (H

j

i

); S

v

i

) = ; then return ;;

else

let v

i

be a single representative of S

v

i

;

UPDATE(S

v

i

,v

i

);

REPLACE(S

v

i

,v

i

);

for every extended form H

j

i

do

T (R

j

i

) := T (H

j

i

);

18

Second Reduction Phase

for v = 1 to jV

j+1

j do

for every leaf labeled v do

�nd the corresponding PQ-tree;

for every found PQ-tree T (R

j

i

) do

if S

v

i

� 2 then

if REDUCE(T (R

j

i

),S

v

i

) = ; then return ;;

else

let ~v be a single representative of S

v

i

;

UPDATE(S

v

i

,~v);

REPLACE(S

v

i

,~v);

reorder indices such that S

v

1

; S

v

2

; : : : ; S

v

p

6= ;, and S

v

p+1

; S

v

p+2

; : : : ; S

v

m

j

= ;;

let q be the number of v-singular reduced extended forms;

eliminate all v-singular R

j

i

except for the one with the lowest LL-value;

renumber the remaining R

j

i

from 1 to p� q + 1;

p := p� q + 1;

sort the R

j

i

, such that LL(R

j

1

) � LL(R

j

2

) � LL(R

j

3

) � � � � � LL(R

j

p

);

(�) for i = 2 to p do

T (R

j

1

) := INSERT(T (R

j

1

); T (R

j

i

); v);

R

j

1

:= R

j

1

[

v

R

j

i

;

if REDUCE(T (R

j

1

); S

v

1

) = ; then return ;;

else

let ~v be a single representative of S

v

1

;

UPDATE(S

v

1

,~v);

REPLACE(S

v

1

,~v);

Final Updates

update the pointers of the leaves to their PQ-trees;

add for every source a corresponding PQ-tree to T (G

j

);

return T (G

j+1

);

end.

We now describe the function INSERT for merging the PQ-trees corresponding to

two components. All �ve rules presented by Heath and Pemmaraju can be adapted,

but contrary to their algorithm, we have to deal with the fact that a PQ-tree may

correspond to a singular component. The merge operation is encapsulated within the

function MERGE. Merging two PQ-trees is handled by the method INSERT. Let

LL(T

large

) and LL(T

small

) be two PQ-trees such that S

v

large

6= ; and S

v

small

6= ;, and

LL(T

large

) � LL(T

small

). Assume further that S

v

large

and S

v

small

have been reduced and

replaced by a single representative v

large

and v

small

, respectively, and that S

v

large

=

fv

large

g and S

v

small

= fv

small

g, respectively. INSERT returns a new PQ-tree T

merge

.

The method does not reduce the pertinent sequence, nor does it replace pertinent

leaves by a single leaf. Observe that in case frontier(T

small

) = S

v

small

, we do not really

19

add T

small

to T

large

if the component corresponding to T

small

can be embedded in an

interior face or a v-cavity of the component corresponding to T

large

.

T

merge

INSERT(T

large

; T

small

; v)

begin

if frontier(T

small

) 6= S

v

small

then

T

large

:= MERGE(T

large

,T

small

,v);

else if PML(v

large

) 6= k + 1 then

if PML(v

large

) < LL(T

small

) then

do nothing;

else

T

large

:= MERGE(T

large

,T

small

,v);

else if QML(v

large

) 6= k + 1 then

if QML(v

large

) < LL(T

small

) then

do nothing;

else

T

large

:= MERGE(T

large

,T

small

,v);

return the new PQ-tree T

large

;

end.

The method UPDATE is a straightforward implementation of �nding a lower bound

on the height of a cavity that could possibly embed singular components.

void UPDATE(S

v

i

,v

0

)

begin

PML

min

:= minfPML(~v) j ~v 2 S

v

i

g;

QML

min

:= minfQML(~v) j ~v 2 S

v

i

g;

let X be the root of the pertinent subtree.

if X is a P -node then

PML

X

:= ML(X);

else

QML

X

:= min

�

ML(Y; Z)

�

�

�

�

Y; Z consecutive children of X;

Y and Z pertinent

�

;

if minfPML

min

;PML

X

g < minfQML

min

;QML

X

g then

PML(v

0

) := minfPML

min

;PML

X

g;

QML(v

0

) := k + 1;

else

QML(v

0

) := minfQML

min

;QML

X

g;

PML(v

0

) := k + 1;

end.

20

6 Proof of Correctness

In this section we prove the correctness of the level planarity test. The strategy is

to apply an inductive argument. Since a subgraph of G that is induced by a source

and its outgoing edges is a trivial hierarchy, we have according to Di Battista and

Nardelli [1988] that for such a subgraph there exists a PQ-tree that represents the

set of level planar embeddings. We need to show that throughout every iteration the

PQ-trees are correctly maintained and the set of permissible permutations always

represents exactly the set of level planar embeddings of the corresponding form.

In Lemma 6.1, the �rst reduction phase is proven to be correct. Proving the correct-

ness of the second reduction phase is more involved. We show in Lemmas 6.3 and

6.4 that merging a set of PQ-trees at their leaves labeled v is performed correctly

if the functions INSERT and REDUCE are applied as described in the Section 5.

Since some of these PQ-trees may have several leaves labeled v in their frontier due

to earlier w-merge operations on vertices labeled w 6= v, we show Lemma 6.2 that

the reduction of the leaves labeled v is performed correctly.

We start with a lemma on the correctness of the �rst reduction phase. Let us assume

that we are given a k-level planar graph G, an extended form H

j

i

, 1 � j < k, of

G, and a PQ-tree T

i

that represents all level planar embeddings of H

j

i

. To prove

the correctness of the �rst phase we show that there exists a PQ-tree

~

T

i

equivalent

to T

i

, such that all leaves with a common label appear consecutively in the frontier

of

~

T

i

. If such a PQ-tree exists, we are obviously able to reduce for every v 2 V

j+1

the PQ-tree T

i

with respect to the leaves labeled v and to replace these leaves

by a single representative. It is easy to see that this new PQ-tree represents level

planar embeddings of the reduced extended form R

j

i

and it remains to show that

the PQ-tree represents exactly all level planar embeddings of R

j

i

.

Lemma 6.1. Let G = (V;E; �) be a level planar graph with k > 1 levels. Let F

j

i

,

i 2 f1; 2; : : : ; m

j

g, be an arbitrary component of G

j

, 1 � j < k, and let H

j

i

be its

extended form and R

j

i

be its reduced extended form. If T

i

is a PQ-tree representing

all level-planar embeddings of H

j

i

, the PQ-tree T

0

i

constructed from T

i

by reducing

every set S

v

i

and replacing it by a single representative v

i

witnesses all level planar

embeddings of R

j

i

.

Proof. Although the results of the lemma should be clear by the previous discussions,

we give the proof in full detail. We �rst show that there exists a PQ-tree

~

T

i

that is

equivalent to T

i

, such that for all v 2 V

j+1

, the leaves corresponding to S

v

i

occupy

consecutive positions in the frontier of

~

T

i

.

Consider an arbitrary level planar embedding E(R

j

i

) of the reduced extended form

R

j

i

and let � be the witness of E(R

j

i

). The level-j neighbors w 2 V (F

j

i

)

j

of v 2 V

j+1

in F

j

i

form a consecutive sequence on level j in E(R

j

i

) (except for possible sinks).

Every edge e = (w; v), w 2 V (F

j

i

)

j

, v 2 V

j+1

corresponds to a virtual vertex of S

v

i

.

21

Therefore, we get a level planar embedding of E(H

j

i

) of H

j

i

by replacing every edge

e by a virtual edge with an incident virtual vertex labeled v in E(R

j

i

). See Fig. 14

for an illustration. Let �

0

be a witness to E(H

j

i

). By construction, all virtual vertices

labeled v form a consecutive sequence in �

0

for every v 2 V

j+1

. Since E(H

j

i

) is a level

planar embedding of H

j

i

, its witness �

0

must be in PERM(T

i

). Thus there exists a

PQ-tree

~

T

i

equivalent to T

i

with frontier(

~

T

i

) = �

0

.

w

2

w

1

v

w

q

w

2

w

1

v vv

w

q

Figure 14: Illustration of the proof of Lemma 6.1. For every edge (w

i

; v)

w

i

2 V (F

j

i

)

j

, i = 1; 2; : : : ; q, a virtual edge with a virtual vertex labeled

v is introduced.

The existence of the PQ-tree

~

T

i

that is equivalent to T

i

guarantees that the reduction

of T

i

with respect to S

v

i

for every v 2 V

j+1

is successful. These reductions construct

a PQ-tree

~

T

0

i

with PERM(

~

T

0

i

) � PERM(T

i

). Furthermore we have �

0

2 PERM(

~

T

0

i

)

and we may assume that �

0

= frontier(

~

T

0

i

).

Replacing in

~

T

0

i

all leaves with a common label by a single representative, we obtain

a PQ-tree T

0

i

, where we have by construction for the witness � of E(R

j

i

) that � 2

PERM(T

0

i

). Thus T

0

i

represents all level planar embeddings of R

j

i

.

Consider a set of partially reduced extended forms that contain vertices labeled v

in their frontier. Before the PQ-trees corresponding to these forms can be merged,

we have to ensure that there exists at most one leaf labeled v in the frontier of each

PQ-tree. However, some of these PQ-trees may have more than one leaf labeled v

in their frontier, due to previous merge operations on leaves labeled w 6= v. Thus

before showing the correctness of the merge operation, we �rst show that reducing

in a PQ-tree all leaves with the same label v constructs a PQ-tree that represents

all level planar embeddings of the corresponding partially reduced extended form

with the virtual vertices labeled v identi�ed.

Lemma 6.2. Let G = (V;E; �), be a level graph with k > 1 levels. Let v 2 V

j+1

,

1 � j < k. Let R

j

i

be a level planar partially reduced extended form with S

v

i

6= ; and

with jS

w

i

j � 1 for all w = 1; 2; : : : ; v � 1. Let T (R

j

i

) be the corresponding PQ-tree,

representing all level planar embeddings of R

j

i

.

Let F be the subgraph constructed from R

j

i

by identifying all virtual vertices labeled v

to a single vertex v. Let T (F) be the PQ-tree constructed as described in the second

merge phase of CHECK-LEVEL, by reducing in T (R

j

i

) all leaves labeled v. Then

22

PERM(T (F)) is exactly the set of permutations of level-(j + 1) vertices that appear

in level planar embeddings of F .

Proof. We �rst show that T (F) represents level planar embeddings of F . Applying

the function REDUCE to the PQ-tree T (R

j

i

) with respect to the leaves labeled v,

creates either a PQ-tree

~

T (R

j

i

) such that the vertices labeled v occupy consecutive

positions or an empty PQ-tree. If

~

T (R

j

i

) is not the empty PQ-tree, we have that

PERM(

~

T (R

j

i

)) � PERM(T (R

j

i

)) represents all level planar embeddings of R

j

i

such

that all leaves labeled v form a consecutive subsequence. Replacing these leaves

by a single representative constructs a PQ-tree T (F) that represents level planar

embeddings of F .

We now prove that for any E

j

F

a PQ-tree equivalent to T (F) exists that represents

exactly the permutation of the level-(j + 1) vertices of E

j

F

. The idea is to transform

the level planar embedding E

j

F

into a level planar embedding of R

j

i

giving us valid

information on the PQ-tree. The transformation replaces in E

j

F

the vertex v by a

sequence of virtual vertices. We associate every virtual vertex of v with a primary

reduced extended form R

j

l

, l 6= j, that has been w-merged, w 2 f1; 2; : : : ; v � 1g,

into R

j

i

in an earlier iteration of the second reduction phase if this reduced extended

form was adjacent to w. However, in order to perform this transformation, we �rst

need to show that the incoming edges of w that are associated with R

j

l

, l 6= j, appear

consecutively around w in E

j

F

.

Let q be the number of level-(j + 1) vertices of F . Let � = [w

1

; w

2

; : : : ; w

q

] be a

witness of the embedding E

j

F

. F is either primary or it has been constructed by

merging reduced extended forms at vertices w 2 f1; 2; : : : ; v � 1g. Hence the set of

incoming edges of v can be partitioned into p � 1 sets of incoming edges belonging

to the primary reduced extended forms that have been w-merged to create R

j

i

. Let

R

j

1

; R

j

2

; : : : ; R

j

p

be these primary reduced extended forms.

We �rst show that for every l = 1; 2; : : : ; p, the incoming edges of v that belong to

a reduced extended form R

j

l

, l 2 f1; 2; : : : ; pg, appear consecutively in the clockwise

order of incoming edges of v in the embedding E

j

F

. To show this, we assume �rst

that only primary reduced extended forms are w-merged into R

j

i

.

Let R

j

�

and R

j

�

, �; � 2 f1; 2; : : : ; pg, � 6= �, be two primary reduced extended forms

such that R

j

�

and R

j

�

have been w

�

-merged and w

�

-merged into R

j

i

, respectively,

where w

�

; w

�

2 f1; 2; : : : ; v � 1g. Let y

1

; y

2

; : : : ; y

c

, c � 1 be the set of level-j neigh-

bors of v in R

j

�

and let z

1

; z

2

; : : : ; z

d

, d � 2, be the set of level-j neighbors of v in

R

j

�

. Assume that in the clockwise order of neighbors of v in the level planar embed-

ding of E

j

F

a vertex y

l

2 fy

1

; y

2

; : : : ; y

c

g appears between the vertices z

a

and z

b

with

z

a

; z

b

2 fz

1

; z

2

; : : : ; z

d

g, z

a

6= z

b

. Since R

j

�

is connected and v-unconnected (since it is

primary), there exists a path P

�

in R

j

�

connecting the vertices z

a

and z

b

neither using

v nor w

�

. Since R

j

�

is connected, there exists a path P

�

in R

j

�

connecting the vertices

y

l

and w

�

not using v. Both paths cross each other but have no vertex in common,

23

a contradiction to the level planar embedding E

j

F

. See Fig. 15 for illustration.

In case that primary reduced forms are w-merged, w < v, before they are merged

into R

j

i

(and thus secondary reduced extended forms are w-merged into R

j

i

), similar

reasoning holds.

z

a

y

l

z

b

v

P

�

P

�

w

�

Figure 15: Illustration of the proof of Lemma 6.2. If in E

j

F

the sequence

of incoming edges of v belonging to R

j

�

is separated by some edge (y

l

; v)

with y

l

=2 V (R

j

�

), two vertex disjoint paths exist that cross each other.

We construct from E

j

F

an embedding E

0

. Introduce for every reduced extended form

R

j

�

, � 2 f1; 2; : : : ; m

j

g, that has been w-merged into F a vertex v

�

if S

v

�

6= ;. Replace

v by a sequence of virtual vertices v

�

, such that v

�

is adjacent to the same vertices

as v in R

j

�

. Label each vertex v

�

with v. See for an illustration the example shown

in Fig. 16.

z }| {

2 R

j

1

2 R

j

2

2 R

j

3

z }| { z }| {

v

3

v

2

v

1

v

Figure 16: Illustration of the proof of Lemma 6.2. For the forms R

j

1

, R

j

2

,

and R

j

3

we introduce virtual vertices v

1

, v

2

, and v

3

. We replace v by the

sequence of virtual vertices, not reordering the incoming edges of v.

Since the incoming edges of v that correspond to a reduced extended form R

j

�

appear

consecutively around v, the so constructed embedding E

0

is obviously level planar.

Furthermore the graph corresponding to E

0

is identical to R

j

i

, and we have by as-

sumption that the witness �

0

of E

0

is in PERM(T (R

j

i

)). Since the witness � arises

from �

0

by identifying all (consecutive) leaves labeled v, we have by construction

that � 2 PERM(T (F)).

24

The next lemma shows a more technical result that is needed for proving the correct-

ness of the second reduction phase. Let R

j

i

and R

j

l

be two partially reduced extended

forms and let T

i

and T

l

be their corresponding PQ-trees where LL(T

i

) � LL(T

l

).

When merging the PQ-trees T

i

and T

l

at leaves labeled v, we insert the PQ-tree

T

l

into the PQ-tree T

i

. After applying any of the merge operations of Heath and

Pemmaraju [1996], the tree T

l

is completely contained as a subtree of T

i

. While the

frontier of T

i

has changed (by inserting T

l

as a subtree) the frontier of T

l

has not

changed at all. Hence, all leaves in frontier(T

l

), including the leaf labeled v, form a

consecutive sequence in the new PQ-tree T

i

.

This implies that if we want to use these merge operations for PQ-trees, the level-

(j+1) vertices of R

j

l

must form a consecutive sequence on level j+1 in every level pla-

nar embedding of R

j

i

[

v

R

j

l

. However, this is not the case in general. Consider the ex-

ample shown in Fig. 17 showing four partially reduced extended forms R

j

1

; R

j

2

; R

j

3

; R

j

4

that have been v-merged. The forms are constructed similarly to the components

F

1

; F

2

; F

3

; F

4

that are shown in the counterexample of Fig. 5 on page 10. If we �rst

v-merge R

j

4

into R

j

1

and then v-merge R

j

3

into R

j

1

and then v-merge R

j

2

into R

j

1

we

know already from Section 4 that the PQ-tree constructed by this sequence of merge

operations is not reducible (see Fig. 6 on Page 10). In fact, there exist level planar

embeddings of R

j

1

[

v

R

j

2

[

v

R

j

3

[

v

R

j

4

such that the virtual vertices of R

j

2

do not

form a consecutive sequence on level j + 1. Such an embedding is shown in Fig. 17

where the virtual vertices w

2

1

; w

2

2

; : : : ; w

2

q

2

of R

j

2

and the vertex v are separated by

the virtual vertices w

3

1

; w

3

2

; : : : ; w

3

q

3

of R

j

3

.

�� ��
��
��
��

���� ���������� �
�
�
�
������ �
�
�
�

��
��
��
��

w

1

1

w

2

1

w

3

1

v

R

j

1

R

j

2

R

j

3

R

j

4

w

4

1

w

4

q

4

w

3

q

3

w

1

q

1

w

2

q

2

Figure 17: A Level planar embedding of the components R

j

1

[

v

R

j

2

[

v

R

j

3

[

v

R

j

4

where the virtual vertices w

2

1

; w

2

2

; : : : ; w

2

q

2

are separated from v

by w

3

1

; w

3

2

; : : : ; w

3

q

3

.

If we want to use the merge operations, we have to guarantee that in all level planar

25

embeddings of two v-merged forms, the virtual vertices of the smaller form appear

consecutively on level j +1. As the counterexample shows, this does not necessarily

hold for every merge operation.

The following two lemmas show that if there are two or more partially reduced

extended forms that have to be v-merged, there exists an ordering such that pair-

wise v-merging the forms according to this ordering guarantees the following. When

v-merging two forms, the virtual vertices of the smaller form always form a con-

secutive sequence in all level planar embeddings of the merged form. The ordering

is obtained by sorting the forms according to their LL-values. We merge the two

partially reduced extended forms with lowest LL-value (that is, we merge the two

largest forms). This constructs a new form, say F , and we then start merging the

largest remaining form into F until all forms are merged into F .

Since the order of merging the forms is very important, we expand our terminology.

Let R

j

1

; R

j

2

; : : : ; R

j

p

, p � 2, be partially reduced extended forms of G

j

such that

S

v

i

6= ; for all i 2 f1; 2; : : : ; pg. Assume without loss of generality that

LL(R

j

1

) � LL(R

j

2

) � LL(R

j

3

) � � � � � LL(R

j

p

) :

Let F be the subgraph constructed by v-merging R

j

1

; R

j

2

; : : : ; R

j

p

. Thus, F equals

R

j

1

[

v

R

j

2

[

v

� � � [

v

R

j

p

. If for some vertex w 6= v the sets S

w

i

and S

w

l

of two extended

forms R

j

i

and R

j

l

, i 6= l, are not empty, the virtual vertices in these sets are not

identi�ed in F . Thus all virtual vertices with common label are kept separate except

for the virtual vertices labeled v.

Let R

j

f1;2;:::;ig

= R

j

1

[

v

R

j

2

[

v

� � � [

v

R

j

i

denote the form that is constructed by v-

merging R

j

1

; R

j

2

; : : : ; R

j

i

in this order. (In our previous terminology, which is more

useful to describe the algorithm, R

j

f1;2;:::;ig

is renamed into R

j

1

.) Obviously, we have

that R

j

f1;2;:::;pg

= F .

For a partially reduced extended form R

j

i

let S

v

i

denote the set of virtual vertices

of R

j

i

except for the vertices labeled v. Let S

v

f1;2;:::;ig

denote the set of virtual ver-

tices except for the vertices labeled v of R

j

f1;2;:::;ig

. Let �

f1;2;:::;ig

, i � p, denote a

witness to a level planar embedding of R

j

f1;2;:::;ig

. In the example of Fig. 17 we

have S

v

4

= fw

4

1

; w

4

2

; : : : ; w

4

q

4

g, and S

v

f1;2;3g

= fw

1

1

; w

1

2

; : : : ; w

1

q

1

g [fw

2

1

; w

2

2

; : : : ; w

2

q

2

g [

fw

3

1

; w

3

2

; : : : ; w

3

q

3

g. The witness of the shown level planar embedding is �

f1;2;3;4g

=

[w

1

1

; w

1

2

; : : : ; w

1

q

1

; w

2

1

; w

2

2

; : : : ; w

2

q

2

; w

3

1

; w

3

2

; : : : ; w

3

q

3

; v; w

4

1

; w

4

2

; : : : ; w

4

q

4

].

In order to prove that the virtual vertices of the smaller form R

j

i

(that is merged

into the larger form R

j

f1;2;:::;i�1g

) appear consecutively in any level planar embedding

of the new form R

j

f1;2;:::;ig

, we need to show that S

v

i

and the vertex v are consecutive.

The concept of the proof is to assume the opposite and then to �nd a path in R

j

i

and a path in R

j

f1;2;:::;i�1g

that cross each other in R

j

f1;2;:::;ig

.

26

Lemma 6.3. Let G = (V;E; �) be a level planar graph with k > 1 levels, and let

v 2 V

j+1

be an arbitrary vertex, where j < k. Let R

j

1

; R

j

2

; : : : ; R

j

p

, p � 2, be partially

reduced extended forms such

(i) S

v

i

6= ; for all i 2 f1; 2; : : : ; pg, and

(ii) LL(R

j

1

) � LL(R

j

2

) � LL(R

j

3

) � � � � � LL(R

j

p

):

Then the following holds. If �

f1;2;:::;ig

, i � p, is a witness to a level planar embedding

of R

j

f1;2;:::;ig

, then the vertices of S

v

i

form a consecutive sequence in �

f1;2;:::;ig

and the

vertex v appears next to S

v

i

in �

f1;2;:::;ig

.

Proof. Throughout the proof, we will consider R

j

1

; R

j

2

; : : : ; R

j

i

as well as R

f1;2;:::;i�1g

as subgraphs of R

f1;2;:::;ig

. Let �

f1;2;:::;ig

, 2 � i � p, be a witness of a level planar

embedding E

f1;2;:::;ig

of R

f1;2;:::;ig

. The lemma holds trivially, if S

v

f1;2;:::;i�1g

= ; or

S

v

i

= ;. Thus assume, there exists an x 2 S

v

f1;2;:::;i�1g

[fvg, such that x appears

between two vertices y

1

and y

2

of S

v

i

in �

f1;2;:::;ig

. By de�nition, R

j

i

is connected.

Furthermore, v is not a cut vertex in R

j

i

(otherwise R

j

i

would be v-connected).

Hence, there exists a path P in R

j

i

connecting y

1

and y

2

not containing v. Since

LL(R

j

f1;2;:::;i�1g

) � LL(R

j

i

) and R

j

f1;2;:::;i�1g

is connected, there exist a vertex z 2

R

j

f1;2;:::;i�1g

such that lev(z) � lev(w) for all w 2 P and a path

~

P in R

j

f1;2;:::;i�1g

connecting x and z (see Fig. 18). By construction the paths P and

~

P are disjoint

(since R

f1;2;:::;i�1g

and R

j

i

are identi�ed only in v), but cross each other,. Thus,

�

f1;2;:::;ig

cannot be a witness of a level planar embedding of R

j

f1;2;:::;ig

, which is a

contradiction.

y

2

xy

1

P

z

~

P

Figure 18: Illustration to the proof of Lemma 6.3. Path P connecting y

1

and y

2

in R

j

i

and path

~

P connecting x and z in R

j

f1;2;:::;i�1g

cross each

other in a level embedding of R

j

f1;2;:::;ig

if x 2 S

v

f1;2;:::;i�1g

[v appears

between y

1

; y

2

2 S

v

i

.

27

x vy

P

z

~

P

Figure 19: Illustration to the proof of Lemma 6.3. Path P connecting

y and v in R

j

i

and path

~

P connecting x and z in R

j

l

, l 2 f1; 2; : : : ; i �

1g, cross each other in a level embedding of R

j

f1;2;:::;ig

if x 2 S

v

f1;2;:::;i�1g

appears between y 2 S

v

i

and v.

Assume now that there exists an x 2 S

v

f1;2;:::;i�1g

, such that x appears between the

vertices of S

v

i

and v in �

f1;2;:::;ig

, and such that there is a vertex y 2 S

v

i

that appears

next to x. Since R

j

i

is connected, there exists a path P in R

j

i

connecting y and

v. By construction x 2 S

v

l

for some l 2 f1; 2; : : : ; i � 1g. (Reconsider that v is a

cut vertex in R

j

f1;2;:::;i�1g

and the cut components are exactly R

j

1

; R

j

2

; : : : ; R

j

i�1

.) But

LL(R

j

l

) � LL(R

j

i

) implies that there exist z 2 R

j

l

such that lev(z) � lev(w) for all

w 2 P . Since v is not a cut vertex in R

j

l

, there exists a path

~

P in R

j

l

connecting x

and z that does not contain v (see Fig. 19). Again, since R

j

f1;2;:::;i�1g

and R

j

i

have

only v in common, the paths P and

~

P are disjoint but cross each other, which is a

contradiction.

Using Lemma 6.3, we are able to show Lemma 6.4 which proves the correctness of

the merge operations during the second reduction phase. The lemma states that

every PQ-tree constructed by v-merging all reduced extended forms with a virtual

vertex labeled v according to their size represents exactly all level planar embeddings

of the new v-connected form.

Lemma 6.4. Let G = (V;E; �) be a level graph with k > 1 levels, and let v 2 V

j+1

.

Let R

j

1

; R

j

2

; : : : ; R

j

p

, p � 2, be level planar partially reduced extended forms such

(i) S

v

i

6= ; for all i 2 f1; 2; : : : ; pg,

(ii) jS

w

i

j � 1 for all w 2 f1; 2; : : : ; v � 1g, i 2 f1; 2; : : : ; pg, and

(iii) LL(R

j

1

) � LL(R

j

2

) � LL(R

j

3

) � � � � � LL(R

j

p

):

Suppose that the PQ-trees T (R

j

1

); T (R

j

2

); : : : ; T (R

j

p

) represent all level planar embed-

dings of R

j

1

; R

j

2

; : : : ; R

j

p

. Let T (R

j

f1;2;:::;pg

) be the PQ-tree constructed as described in

28

the second merge phase of CHECK-LEVEL. Then PERM(T (R

j

f1;2;:::;pg

)) is exactly

the set of permutations of level-(j+1) vertices that appear in level planar embeddings

of R

j

f1;2;:::;pg

.

Proof. We �rst show that if � 2 PERM(T (R

j

f1;2;:::;pg

)) is a permutation represented

by the PQ-tree T (R

j

f1;2;:::;pg

), then � is a witness to some level planar embedding

of R

j

f1;2;:::;pg

. This can be shown following an idea of Heath and Pemmaraju [1996].

The authors have shown in one of their lemmas the special case of two components

R

j

f1;2g

= R

j

1

[

v

R

j

2

. We adapt that proof to the more general case and consider

v-singular forms.

For all 2 � i � p let T (R

j

f1;2;:::;ig

) be the PQ-tree constructed in the i-th iteration

of the for-loop (�) in the second reduction phase. Now, let 2 � i � p be �xed and

assume (by induction) that T (R

j

f1;2;:::;i�1g

) represents (all) level planar embeddings

of R

j

f1;2;:::;i�1g

. We show that if �

f1;2;:::;ig

2 PERM(T (R

j

f1;2;:::;ig

)), then �

f1;2;:::;ig

is a

witness to a level planar embedding of R

j

f1;2;:::;ig

.

Let v

f1;2;:::;i�1g

be the virtual vertex labeled v in R

j

f1;2;:::;i�1g

, and let v

i

be the virtual

vertex labeled v in R

j

i

. Two cases may occur, depending on whether R

j

i

is v-singular

(S

v

i

= ;) or not (S

v

i

6= ;). We start with the nonsingular case.

1. S

v

i

6= ;.

The PQ-tree T (R

j

f1;2;:::;ig

) has been constructed by reducing the leaves corre-

sponding to v

f1;2;:::;i�1g

and v

i

in a PQ-tree

~

T (R

j

f1;2;:::;ig

), and replacing them

by the single representative v

f1;2;:::;ig

afterwards, where

~

T (R

j

f1;2;:::;ig

) was the re-

sult of the INSERT operation performed on T (R

j

f1;2;:::;i�1g

) and T (R

j

i

). Thus,

there exists a ~�

f1;2;:::;ig

2 PERM(

~

T (R

j

f1;2;:::;ig

)) such that �

f1;2;:::;ig

arises from

~�

f1;2;:::;ig

by identifying the two elements v

f1;2;:::;i�1g

and v

i

that appear next to

each other in ~�

f1;2;:::;ig

. Since S

v

i

6= ;, the function INSERT has called the func-

tion MERGE. The function MERGE has added the root of T (R

j

i

) as a sibling

to a node X

0

in T (R

j

f1;2;:::;i�1g

). The node X

0

and its parent X (in case X

0

was

not the root of T (R

j

f1;2;:::;i�1g

)) have been subject to the merge operation in

T (R

j

f1;2;:::;i�1g

). As a result of the merge operation, the leaves of frontier(T (R

j

i

))

occur consecutively in ~�

f1;2;:::;ig

, as do the leaves of frontier(X

0

). Without loss of

generality, we assume that the leaves of frontier(X

0

) are immediately followed

by the leaves of frontier(T (R

j

i

)) in ~�

f1;2;:::;ig

. Hence, the permutation ~�

f1;2;:::;ig

can be written as ~�

a

f1;2;:::;ig

~�

b

f1;2;:::;ig

~�

c

f1;2;:::;ig

with

~�

b

f1;2;:::;ig

2 PERM(T (R

j

i

))

and

~�

a

f1;2;:::;ig

~�

c

f1;2;:::;ig

2 PERM(T (R

j

f1;2;:::;i�1g

))

29

with v

f1;2;:::;i�1g

in ~�

a

f1;2;:::;ig

and v

i

in ~�

b

f1;2;:::;ig

appearing consecutively in

~�

f1;2;:::;ig

. By assumption, ~�

a

f1;2;:::;ig

~�

c

f1;2;:::;ig

is a witness to a level planar em-

bedding E

j

f1;2;:::;i�1g

of R

j

f1;2;:::;i�1g

and ~�

b

f1;2;:::;ig

is a witness to a level planar

embedding E

j

i

of R

j

i

. There are two cases that apply depending on whether

~�

c

f1;2;:::;ig

is empty or not

(a) ~�

c

f1;2;:::;ig

= ;. A level planar embedding of R

j

f1;2;:::;ig

can be con-

structed by simply placing R

j

i

next to R

j

f1;2;:::;i�1g

and then identifying

the vertices v

f1;2;:::;i�1g

and v

i

to a vertex v

f1;2;:::;ig

. Hence, �

f1;2;:::;ig

2

PERM(T (R

j

f1;2;:::;ig

)) is a witness to a level planar embedding of R

j

f1;2;:::;ig

.

(b) ~�

c

f1;2;:::;ig

6= ;. Let w be the �rst vertex in ~�

c

f1;2;:::;ig

and let Y be the

smallest common ancestor of w and v

f1;2;:::;i�1g

in T (R

j

f1;2;:::;i�1g

). Clearly,

w =2 frontier(X

0

). Thus, Y is an ancestor (not necessarily proper) of X

(X being the parent of X

0

before the merge operation). By construction

of the merge operation and by Observations 3.1, 3.2, and 3.3 we have

ML(fv

f1;2;:::;i�1g

; wg) < LL(T (R

j

i

)) :

Hence, the level planar embedding E

j

i

of R

j

i

can be nested inside the level

planar embedding E

j

f1;2;:::;i�1g

of R

j

f1;2;:::;i�1g

. Merging the virtual vertices

v

f1;2;:::;i�1g

and v

i

to a vertex v

f1;2;:::;ig

, a level planar embedding E

j

f1;2;:::;ig

of R

j

f1;2;:::;ig

is constructed in which the virtual vertices appear according

to �

f1;2;:::;ig

. Hence, �

f1;2;:::;ig

2 PERM(T (R

j

f1;2;:::;ig

)) is a witness to a level

planar embedding of R

j

f1;2;:::;ig

.

2. S

v

i

= ;.

There are two possible cases.

(a) The function MERGE was called by INSERT. This case is proven anal-

ogously to the case S

v

i

6= ;.

(b) The function INSERT did not call the function MERGE. Thus either one

of the following inequalities holds:

PML(v

f1;2;:::;i�1g

) < LL(T (R

j

i

)) ;

or

QML(v

f1;2;:::;i�1g

) < LL(T (R

j

i

)) :

It follows from Lemma 5.1 and by construction of the function UP-

DATE that there exists an interior face or a cavity in some embedding of

R

j

f1;2;:::;i�1g

that is large enough to level planar embed R

j

i

into it. Hence,

�

f1;2;:::;ig

is a witness to a level planar embedding of R

j

f1;2;:::;ig

.

30

Thus, one direction of the equivalence stated in the lemma is proved.

To prove the reverse direction, we show (by induction) that for a witness �

f1;2;:::;ig

,

2 � i � p, of any level planar embedding E

j

f1;2;:::;ig

of R

j

f1;2;:::;ig

the following holds:

�

f1;2;:::;ig

2 PERM(T (R

j

f1;2;:::;ig

)) :

1. S

v

i

6= ;.

The level-(j + 1) vertices in R

j

f1;2;:::;ig

can be partitioned into three sets:

S

v

f1;2;:::;i�1g

, the set of all level-j + 1 vertices of R

j

f1;2;:::;i�1g

except the ver-

tex v, S

v

i

, the set of all level-(j + 1) vertices of R

j

i

except the vertex v, and

the level-(j + 1) vertex v. According to Lemma 6.3, the vertices of S

v

i

ap-

pear consecutively in �

f1;2;:::;ig

, either immediately followed by or immediately

preceded by v. We may assume that the latter case applies. Let

~

R

j

f1;2;:::;ig

be

the graph that consists of R

j

f1;2;:::;i�1g

and R

j

i

, where the level-(j + 1) vertices

labeled v of the two components are not identi�ed and kept separate. Let

S

v

f1;2;:::;i�1g

:= fv

f1;2;:::;i�1g

g where v

f1;2;:::;i�1g

is the single representative of v

in R

j

f1;2;:::;i�1g

and S

v

i

:= fv

i

g where v

i

is the single representative of v in R

j

i

.

\Splitting" in �

f1;2;:::;ig

the vertex v into v

f1;2;:::;i�1g

and v

i

, we get a permutation

~�

f1;2;:::;ig

that witnesses a level planar embedding

~

E

j

f1;2;:::;ig

of

~

R

j

f1;2;:::;ig

.

The witness ~�

f1;2;:::;ig

can be written as ~�

a

f1;2;:::;ig

~�

b

f1;2;:::;ig

~�

c

f1;2;:::;ig

such that

~�

a

f1;2;:::;ig

~�

c

f1;2;:::;ig

is a witness of a level planar embedding E

j

f1;2;:::;i�1g

of

R

j

f1;2;:::;i�1g

and ~�

b

f1;2;:::;ig

is a witness of a level planar embedding E

j

i

of R

j

i

,

and such that (without loss of generality) ~�

a

f1;2;:::;ig

ends with S

v

f1;2;:::;i�1g

,

and ~�

b

f1;2;:::;ig

starts with S

v

i

. Since T (R

j

f1;2;:::;i�1g

) and T (R

j

i

) correspond to

R

j

f1;2;:::;i�1g

and R

j

i

, respectively, it follows by induction that ~�

a

f1;2;:::;ig

~�

c

f1;2;:::;ig

2

PERM(T (R

f1;2;:::;i�1g

)), and ~�

b

f1;2;:::;ig

2 PERM(T (R

j

i

)). We show that

~�

f1;2;:::;ig

2 PERM(

~

T (R

j

f1;2;:::;ig

)), where

~

T (R

j

f1;2;:::;ig

) is the PQ-tree that is

constructed by the function INSERT without reducing the PQ-tree with re-

spect to S

v

f1;2;:::;i�1g

[S

v

i

. There are two cases depending on whether ~�

c

f1;2;:::;ig

is empty or not.

(a) ~�

c

f1;2;:::;ig

6= ;. Suppose that the �rst vertex in ~�

c

f1;2;:::;ig

is w. Since accord-

ing to Lemma 6.3 the vertices of S

v

i

occur consecutively preceded by v

and since the embedding

~

E

j

f1;2;:::;ig

of

~

R

j

f1;2;:::;ig

is level planar the following

must hold:

ML(fS

v

f1;2;:::;i�1g

; wg) < LL(T (R

j

i

)) :

Let Y be the node in

~

T (R

j

f1;2;:::;i�1g

) that is the least common ancestor of

S

v

f1;2;:::;i�1g

and w. Then there exists a child Y

0

of Y such that S

v

f1;2;:::;i�1g

�

31

frontier(Y

0

). Since ML(frontier(Y

0

) [fwg) � ML(S

v

f1;2;:::;i�1g

[fwg), we

have according to Observation 3.4 that ~�

f1;2;:::;ig

2 PERM(

~

T (R

j

f1;2;:::;ig

)).

(b) ~�

c

f1;2;:::;ig

= ;. According to Observation 3.5 ~�

f1;2;:::;ig

2

PERM(

~

T (R

j

f1;2;:::;ig

)) holds.

It follows that ~�

f1;2;:::;ig

2 PERM(

~

T (R

j

f1;2;:::;ig

)) with S

v

f1;2;:::;i�1g

[S

v

i

appearing

consecutively in ~�

f1;2;:::;ig

. This implies that the PQ-tree

~

T (R

j

f1;2;:::;ig

) can be

reduced with respect to S

v

f1;2;:::;i�1g

[S

v

i

and therefore �

f1;2;:::;ig

is contained in

PERM(T (R

j

f1;2;:::;ig

)).

2. S

v

i

= ;.

There are two cases that may appear.

(a) The set of incoming edges of v in R

j

i

(corresponding to S

v

i

) separates

within the clockwise order of incoming edges of v in E

j

f1;2;:::;ig

the set of

incoming edges corresponding to S

v

f1;2;:::;i�1g

into two nonempty subsets.

The level-(j + 1) vertices in R

j

f1;2;:::;ig

can be partitioned into two sets:

S

v

f1;2;:::;i�1g

the set of all level-(j + 1) vertices of R

j

f1;2;:::;i�1g

except the

vertex v, and the level-(j + 1) vertex v. Let

~

R

j

f1;2;:::;ig

be the form that

contains the components R

j

f1;2;:::;i�1g

and R

j

i

where the incoming edges of

v corresponding to R

j

f1;2;:::;i�1g

are not identi�ed to v but kept separate.

Obviously,

~

R

j

f1;2;:::;ig

is level planar. Let

~

E

j

f1;2;:::;ig

be the level planar em-

bedding of

~

R

j

f1;2;:::;ig

that is induced by E

j

f1;2;:::;ig

. Let S

left

f1;2;:::;i�1g

be the set

of virtual vertices corresponding to the incoming edges of v in R

j

f1;2;:::;i�1g

on the left side of R

j

i

in

~

E

j

f1;2;:::;ig

. Let S

right

f1;2;:::;i�1g

be the set of virtual

vertices corresponding to the incoming edges of v in R

j

f1;2;:::;i�1g

on the

right side of R

j

i

in

~

E

j

f1;2;:::;ig

. See Fig. 20 for an illustration. Let S

v

i

:= fv

i

g,

where v

i

is the single representative of v in R

j

i

. Replacing in �

f1;2;:::;ig

the vertex v by the set of vertices S

left

f1;2;:::;i�1g

[S

v

i

[S

right

f1;2;:::;i�1g

we get a

permutation ~�

f1;2;:::;ig

that witnesses a level planar embedding

~

E

j

f1;2;:::;ig

of

~

R

j

f1;2;:::;ig

.

The witness ~�

f1;2;:::;ig

can be written as ~�

a

f1;2;:::;ig

~�

b

f1;2;:::;ig

~�

c

f1;2;:::;ig

where

~�

a

f1;2;:::;ig

ends with S

left

f1;2;:::;i�1g

, ~�

b

f1;2;:::;ig

= fv

i

g and, ~�

c

f1;2;:::;ig

starts

with S

right

f1;2;:::;i�1g

. Merging the set of vertices S

left

f1;2;:::;i�1g

and S

right

f1;2;:::;i�1g

the form R

j

f1;2;:::;i�1g

is constructed. By induction, a permutation

�

a

f1;2;:::;ig

�

c

f1;2;:::;ig

2 PERM(T (R

j

f1;2;:::;i�1g

)) is obtained by replacing in

32

v

S

left

f1;2;��� ;i�1g

|{z} |{z}

S

right

f1;2;��� ;i�1g

v

R

j

i

R

j

i

Figure 20: Illustration of the proof of Lemma 6.4. R

j

i

is a singular form.

The incoming edges of v are partitioned into sets S

left

f1;2;:::;i�1g

, S

right

f1;2;:::;i�1g

and the edges belonging to R

j

i

.

~�

a

f1;2;:::;ig

~�

c

f1;2;:::;ig

the sets S

left

f1;2;:::;i�1g

and S

right

f1;2;:::;i�1g

by the single rep-

resentative v

f1;2;:::;i�1g

. Since after replacing v

f1;2;:::;i�1g

by v

f1;2;:::;ig

we

have �

f1;2;:::;ig

= �

a

f1;2;:::;ig

�

c

f1;2;:::;ig

this implies that we need to show

T (R

j

f1;2;:::;ig

) = T (R

j

f1;2;:::;i�1g

).

Let v

0

f1;2;:::;i�1g

be the rightmost virtual vertex of S

left

f1;2;:::;i�1g

, and let

v

00

f1;2;:::;i�1g

be the leftmost virtual vertex of S

right

f1;2;:::;i�1g

. Since the em-

bedding of

~

R

j

f1;2;:::;ig

is level planar, the following inequality must hold.

ML(v

0

f1;2;:::;i�1g

; v

00

f1;2;:::;i�1g

) < LL(T (R

j

i

)) :

Two possible subcases apply.

i. R

j

i

is embedded into an interior face of R

j

f1;2;:::;i�1g

. Since v

f1;2;:::;i�1g

is a cut vertex in R

j

f1;2;:::;i�1g

, with the cut components being

R

j

1

; R

j

2

; : : : ; R

j

i�1

, the form R

j

i

is embedded into an interior face of

a form R

j

l

, l 2 f1; 2; : : : ; i� 1g. Thus the virtual vertices v

0

f1;2;:::;i�1g

,

and v

00

f1;2;:::;i�1g

correspond to edges of R

j

l

. Let X be the smallest

common ancestor of v

0

f1;2;:::;i�1g

and v

00

f1;2;:::;i�1g

in T (R

j

l

) before the

reduction with respect to the leaves labeled v. If X is a P -node we

have by proposition 3.3 for the PML-value of the single representative

v

l

of R

j

l

PML(v

l

) � ML(X) � ML(v

0

f1;2;:::;i�1g

; v

00

f1;2;:::;i�1g

) :

IfX is aQ-node, andX

0

andX

00

are the children ofX with v

0

f1;2;:::;i�1g

and v

00

f1;2;:::;i�1g

in their frontier, respectively, we have by proposition

33

3.3 for the QML-value of the single representative v

l

of R

j

l

QML(v

l

) � ML(X

0

; X

00

) � ML(v

0

f1;2;:::;i�1g

; v

00

f1;2;:::;i�1g

) :

By construction of the function UPDATE it follows that

minfQML(v

f1;2;:::;i�1g

);PML(v

f1;2;:::;i�1g

)g � PML(v

l

)

or

minfQML(v

f1;2;:::;i�1g

);PML(v

f1;2;:::;i�1g

)g � QML(v

l

) ;

and thus INSERT \does nothing".

ii. R

j

i

is embedded into a cavity of R

j

f1;2;:::;i�1g

. Thus i must be at least 3,

otherwise no v-cavity exists in R

j

f1;2;:::;i�1g

. By assumption, we have

LL(R

j

i�2

) � LL(R

j

i�1

) � LL(R

j

i

) :

Let X be the root of the pertinent subtree when v-merging R

j

i�1

into

R

j

f1;2;:::;i�2g

. If X is a P -node, we have by construction ML(X) <

LL(T (R

j

i�1

)). If X is a Q-node with pertinent adjacent children Y

and Z, we have by construction that ML(Y; Z) < LL(T (R

j

i�1

)). Let

h denote ML(X) or ML(Y; Z), respectively. Then we have by con-

struction of the function UPDATE that

minfQML(v

f1;2;:::;i�1g

);PML(v

f1;2;:::;i�1g

)g � h < LL(R

j

i�1

) � LL(R

j

i

):

Thus, again, INSERT \does nothing", and the tree T (R

j

f1;2;:::;i�1g

) is left

unchanged.

(b) Both sets of incoming edges of v corresponding to S

v

f1;2;:::;i�1g

and S

v

i

form

a consecutive sequence within the clockwise order of incoming edges of v

in E

j

f1;2;:::;ig

. The result follows analogously to the proof of the case S

v

i

6= ;,

with ~�

b

f1;2;:::;ig

= S

v

i

.

Theorem 6.5. The algorithm LEVEL-PLANARITY-TEST tests a given proper

level graph G = (V;E; �) for level planarity and can be implemented such that the

running time is in O(jV j).

Proof. The correctness follows immediately from Di Battista and Nardelli [1988] and

the Lemmas 6.1, 6.2 and 6.4 by an inductive argument.

The number of operations performed in all calls of the function REDUCE is ac-

cording to Booth and Lueker [1976] in O(jV j). The number of steps performed for

34

v-merging two PQ-trees is proportional to the number of steps that are performed

to reduce the pertinent leaves labeled v after a successful merge operation. Thus the

total number of operations performed in all calls of MERGE is as well in O(jV j).

The number of steps performed to identify the PQ-trees corresponding to pertinent

leaves labeled v is proportional to the number of steps performed in reducing these

leaves. Hence, the overall number of operations performed during the identi�cation

is bounded by O(jV j).

We now consider the update operations of the leaves that have to be performed after

all merge and reduce operations for a level have been completed. For every PQ-tree

we keep its leaves stored in a doubly linked list. Every time two PQ-trees are merged,

these lists are merged as well. This can be done without knowing the tree with the

lower LL-value. We simply connect the lists at the new single representative that has

to be introduced after the merge operation (followed by a reduction) is complete.

After �nishing all merge and reduce operations we scan for every remaining tree the

doubly linked list of its leaves, doing the necessary updates. The total cost of these

operations is in O(jEj) and due to the planarity in O(jV j).

7 Remarks

For simplicity, we restricted ourselves in this paper to the level planarity testing

of proper level graphs. Of course, every non proper level graph can be transformed

into a proper one by inserting dummy vertices. This strategy should not be applied

since the resulting number of vertices may be quadratic in the original number of

vertices. The following theorem shows that our level planarity test works on non

proper level graphs as well as on proper level graphs, having a linear running time

for both classes of level graphs.

Theorem 7.1. The algorithm LEVEL-PLANAR-TEST tests any, not necessarily

proper, level graph G = (V;E; �) for level planarity in O(jV j) time.

Proof. Consider a long edge e = (v; w), v 2 V

j

, w 2 V

l

, 1 � j < l � 1 � k �

1, traversing one or more levels. Thus inserting dummy vertices for e in order to

construct a proper hierarchy would result in a graph G

0

such that every dummy

vertex u

e

i

, i 2 fj + 1; j + 2; : : : ; l � 1g has exactly one incoming edge and one

outgoing edge. However, the reduction of a PQ-tree T with respect to a set S with

jSj = 1, replacing the set by a new set S

0

with jS

0

j = 1 is trivial and does not modify

the PQ-tree. Hence we do not need to consider the dummy vertices and therefore

do not introduce them at all. Therefore, with no change our linear time algorithm

correctly tests also nonproper level graphs for level planarity.

An embedding of a general level planar graph G = (V;E; �) can be computed in

linear time as follows:

35

1. Add an extra vertex t on an extra level k + 1 and compute a hierarchy by

adding an outgoing edge to every sink without destroying level planarity.

2. Add an extra vertex s on an extra level 0 and compute an st-graph by adding

the edge (s; t) and an incoming edge to every source without destroying the

level planarity.

3. Compute a planar embedding using the algorithm by Chiba et al. [1985].

4. Construct a level planar embedding from the planar embedding.

The di�cult part is to insert edges without destroying level planarity. We apply the

following strategy (see also Leipert [1998]). The idea is to determine the position of

a sink t 2 V

j

, j 2 f1; 2; : : : ; k � 1g by inserting an indicator as a leaf into the PQ-

trees. This indicator is ignored throughout the application of the level planarity test

and will be removed either with the leaves corresponding to the incoming edges of

some vertex v 2 V

l

, l 2 fj+1; j+2; : : : ; kg, or it can be found in the �nal PQ-tree.

However, this strategy is accompanied by a set of di�cult case distinctions that are

to be discussed in another paper. Nevertheless, the time needed to compute a level

planar embedding is bounded by O(jV j) since the number of extra edges is bounded

by the number of sinks and sources in G.

References

K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs,

and graph planarity using PQ-tree algorithms. Journal of Computer and System

Sciences, 13:335{379, 1976.

N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding

planar graphs using PQ-trees. Journal of Computer and System Sciences, 30:

54{76, 1985.

G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE Transactions

on Systems, Man, and Cybernetics, 18(6):1035{1046, 1988.

D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Paci�c

J. Mathematics, 15:835{855, 1965.

L. S. Heath and S. V. Pemmaraju. Recognizing leveled-planar dags in linear time.

In F. J. Brandenburg, editor, Proc. Graph Drawing '95, volume 1027 of Lecture

Notes in Computer Science, pages 300{311. Springer Verlag, 1995.

L. S. Heath and S. V. Pemmaraju. Stack and queue layouts of directed acyclic

graphs: Part II. Technical report, Department of Computer Science, Virginia

Polytechnic Institute & State University, july 1996.

36

M. J�unger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in Automatic Graph

Drawing. In G. Di Battista, editor, Graph Drawing '97, volume 1353 of Lecture

Notes in Computer Science, pages 193{204. Springer Verlag, 1997.

S. Leipert. Level Planarity Testing and Embedding in Linear Time. PhD thesis,

Universit�at zu K�oln, 1998.

37

