
Minimizing Breaks by Maximizing Cuts∗

Matthias Elf ‡† Michael Jünger ‡ Giovanni Rinaldi ?

‡Institut für Informatik, Universität zu Köln, Cologne, Germany
?Istituto di Analisi dei Sistemi ed Informatica del CNR, Rome, Italy

Abstract

We propose to solve the break minimization problem in sports schedul-
ing by transforming it into a maximum cut problem in an undirected graph
and applying a branch-and-cut algorithm. Our approach outperforms pre-
vious approaches with constraint programming and integer programming
techniques.

Keywords: sports scheduling, maximum cut, break minimization

1 Introduction

During the Seminar “Constraint Programming and Integer Programming”,
Schloß Dagstuhl, Germany, 17–21 January 2000, the participants tried to iden-
tify problems for which a fruitful interaction/competition of constraint pro-
gramming techniques and integer/combinatorial optimization techniques ap-
pears challenging and is likely to enhance the interaction of both communi-
ties. One problem area the participants agreed upon consists of various feasi-
bility/optimization problems occuring in scheduling sports tournaments. The
break minimization problem for sports leagues was addressed by both commu-
nities during the workshop, in particular by Jean Charles Régin of the con-
straint programming community and by Michael Trick of the integer program-
ming/combinatorial optimization community.

In section 2, we will define the break minimization problem and give a
summary of current solution approaches. In section 3, we will show how the
problem can be transformed to a maximum cut problem in an undirected graph
with edge weights. In section 4, we will report on computational results on ran-
dom and real world instances. It will turn out that our approach is applicable
to problem instances of size beyond those that could be handled previously

∗Partially supported by the Future and Emerging Technologies Programme of the European
Union under contract number IST-1999-14186 (ALCOM-FT).

Work carried out as part of DONET (Discrete Optimization Network) TMR project no.
ERB FMRX-CT98-0202 of the European Union.

†Corresponding author:
Matthias Elf, Institut für Informatik, Pohligstraße 1, D-50969 Cologne, Germany
email: elf@informatik.uni-koeln.de

1

by constraint programming as well as integer programming/combinatorial opti-
mization techniques. In section 5, we will discuss our results and open questions
that we hope to resolve in the future.

2 Break Minimization

We deal with the situation where in a sports league consisting of an even number
n of teams each team plays each other team once in n − 1 consecutive weeks.
Such tournaments are called round robin tournaments. Each game is played
in one of the two opponents home towns, such that the following restrictions
apply to each feasible schedule:

[FS1] For each team, the teams played in weeks 1, . . . , n− 1 are a permutation
of all other teams.

[FS2] If in week w team i plays team j “at home” (“+”) then team j plays team
i in week w in i’s town, i.e. “away” (“−”).

We also consider feasible schedules without home-away assignments. These
are schedules satisfying [FS1] and [FS2] where the property of being a home or
away game has been omitted.

Figure 1 shows two possible schedules for a league of eight teams. The
rows show the game plan for each team, column 1 displays a team, columns
w ∈ {2, . . . , n} show the opponent in week w − 1, “+”, and “−”, respectively,
indicate if the game is at home or away.

In sports scheduling it is considered undesirable if any team plays two con-
secutive games either both at home or both away. Such a situation is called a
break. The schedule of Figure 1(a) imposes 8 breaks whereas the schedule in
Figure 1(b) imposes only 6 breaks.

Schreuder [10] has shown that, for an even number n of teams, it is always
possible to construct a schedule with n − 2 breaks and that this number is
minimum. He has given an efficient algorithm to compute such a schedule.
However, sport tournament schedules are subject to a number of requirements,
among them restrictions such as “geographically close teams should not play
at home during the same week”. Often these requirements are mandatory or
at least more important than having a minimum number of breaks. Therefore,
optimum (n−2)-break schedules become unfavorable. Different strategies have
been proposed to find schedules matching all requirements with a small number
of breaks. Some authors (like Schreuder [10]) propose to start with an optimal
schedule with n− 2 breaks and incorporate the additional requirements at the
cost of more breaks. Others (like Régin [8, 9] and Trick [11]) propose to consider
a schedule without home-away assignment that obeys the various (often not
formally describable) side conditions and compute a home-away assignment as
to minimize the number of breaks. It is the latter attitude we take here:

Break Minimization Problem: We are given a feasible tournament schedule
without home-away assignment and our task is to find a home-away assignment
that minimizes the number of breaks.

2

1 : +2 −3 −4 +5 +6 −7 +8
2 : −1 +7 −5 +4 −3 −8 +6
3 : −7 +1 +8 −6 +2 +5 −4
4 : +5 −8 +1 −2 +7 −6 +3
5 : −4 −6 +2 −1 +8 −3 +7
6 : +8 +5 −7 +3 −1 +4 −2
7 : +3 −2 +6 −8 −4 +1 −5
8 : −6 +4 −3 +7 −5 +2 −1

(a)

1 : +8 +3 −5 +7 −2 +4 −6
2 : +7 −8 +4 −6 +1 −3 +5
3 : +6 −1 +8 +5 −7 +2 −4
4 : −5 +7 −2 −8 +6 −1 +3
5 : +4 −6 +1 −3 +8 +7 −2
6 : −3 +5 −7 +2 −4 −8 +1
7 : −2 −4 +6 −1 +3 −5 +8
8 : −1 +2 −3 +4 −5 +6 −7

(b)

Figure 1: Two feasible schedules for eight teams

The home-away assignments for the feasible schedules of Figure 1 are both
optimum solutions for the corresponding instances of the break minimization
problem.

Régin [8] formulated a constraint programming model with 0-1-variables
and was able to solve instances up to size 20. Trick [11] introduced an integer
programming formulation and was able to solve instances up to size 22.

The complexity status of the break minimization problem has not yet been
determined (to the best of our knowledge), we believe it is NP-hard (see sec-
tion 5).

3 From Minimizing Breaks to Maximizing Cuts

In this section we model the break minimization problem as the problem of
finding a maximum capacity cut in a specific graph. The modeling is as follows:
We are given a feasible schedule

1 : t11 t12 . . . t1,n−1

2 : t21 t22 . . . t2,n−1
...

...
...

. . .
...

n : tn1 tn2 . . . tn,n−1

3

without home-away assignment in which tij ∈ {1, 2, . . . , n} is the opponent of
team i in week j. Our task is to decide whether the teams tij play either at
home or away. The number of breaks in the resulting home-away assignment
must be minimum.

From the schedule above we construct an undirected graph G = (V, E). It
contains nodes v = (i, j) ∈ V for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n − 1}
that correspond exactly to the opponents tij in the schedule. For every possible
break, i.e., for each pair of opponents in consecutive weeks we introduce an
edge. More precisely, there is an edge in E between nodes (i, j) and (k, l) in V
if and only if i = k and 1 ≤ j = l − 1 ≤ n− 1. I.e., G = (V, E) is as follows:

(1, 1) (1, 2) · · · (1, n− 1)

(2, 1) (2, 2) · · · (2, n− 1)
...

...
. . .

...

(n, 1) (n, 2) · · · (n, n− 1)

Definition A cut C ⊆ E in a graph G = (V, E) is an edge set of the form
C = δ(V +), where V + ⊆ V and δ(V +) = {e ∈ E | v ∈ V +, w ∈ V \ V +}.
The cut partitions V into V = V + ∪ V − (V + ∩ V − = ∅), where V + and V −

are called the different shores of the cut. If the graph G is weighted with edge
weights u ∈ R

E then the weight of a cut C is defined as u(C) :=
∑

e∈C ue .

Any home-away assignment partitions the node set V of the model graph
G into two sets V + and V −, with nodes in V + for home games and nodes in
V − for away games. The sets V + and V − are the shores of the cut δ(V +)
that contains exactly the edges of G which correspond to non-breaks. All other
edges correspond to breaks. The number of breaks is |E|−|δ(V +)| which means
that we must maximize |δ(V +)| in order to minimize the number of breaks.

Conversely, any cut in the model graph G partitions the nodes into V =
V + ∪ V −. This partitioning defines a home-away assignment if and only if it
satisfies property [FS2], i.e., (i, j) ∈ V + if and only if (tij , j) ∈ V −.

Thus, we can solve the break minimization problem by finding a maximum
cardinality cut if we can disregard cuts not satisfying condition [FS2]. We
achieve this by weighting the edges of the model graph and adding additional
edges with large weight that force nodes (i, j) and (tij , j) to belong to different
shores of any cut. The model graph is modified in the following way.

We assign a capacity of 1 to all edges of G introduced so far. For all
n(n−1)

2 pairs of nodes (i, j) and (tij , j) we create an edge with a capacity of
M ≥ n(n−2)+1. Figure 2 shows the graph G resulting from this transformation
for the instance given in Figure 1(a).

Lemma The shores of a maximum weighted cut of the model graph G define a
home-away assignment with the minimum number of n(n− 2) + n(n−1)

2 M −∆
breaks, where ∆ is the weight of the cut.

Proof. Because each cut corresponding to a home-away assignment respects
condition [FS2] it contains all edges with weight M . Therefore, its weight is at
least n(n−1)

2 M and the maximum capacity cut has at least its weight. Due to

4

3 2

2

1

7

5

4

8

3

6 4

2 6

7

6 2

18

81

7

3 4

5

5 6 7 8

834 6

45

367

26

2

3 7

1

5

24

14

1

81

3

8

5

5 7

Figure 2: Result of the big-M transformation. Bold edges have weight M , thin
edges have weight 1

the choice of M ≥ n(n − 2) + 1 every cut with weight at least n(n−1)
2 M must

contain all edges with weight M and therefore respects [FS2]. It follows that all
cuts corresponding to home away assignments have larger capacity than those
that do not define a home-away assignment. In particular, the maximum cut
defines a home-away assignment.

Suppose that a cut in G respects [FS2] and has value ∆. Then it contains
∆ − n(n−1)

2 M many edges with weight 1. Those edges define non-breaks in
the corresponding home-away assignment. Therefore, finding the maximum
capacity cut in G results in a cut defining a home-away assignment with the
maximum number of ∆− n(n−1)

2 M non-breaks. This is a home-away assignment
with the minimum number of n(n− 2) + n(n−1)

2 M −∆ breaks.
2

From the theoretical point of view the previous lemma tells us that we
can apply a maximum cut solver to our model graph in order to solve the
break minimization problem. From the computational point of view we can
do much better, because we can transform the model graph into an equivalent
maximum cut instance without big-M edges and with only half of the nodes of
the original graph. The transformation uses the following result of Barahona
and Mahjoub [2].

Definition Let G = (V, E) be a graph and v ∈ V a node of G. The set of
edges star(v) := {(v, u) ∈ E | u ∈ V } incident to v is called the star of v.

Theorem (Barahona/Mahjoub [2]) Let G = (V, E) be a graph with edge
capacities u ∈ R

E and let V + and V − be the shores of a maximum capacity cut.
If we take a node v ∈ V + and change the signs of the capacities of all edges in
star(v) then V + \ {v} and V − ∪ {v} are the shores of a maximum capacity cut
in G with the new capacities.

We transform our model graph as follows. Take an arbitrary big-M edge
eM ∈ E and switch the signs of the weights of the edges in the star of one of

5

8

5

7

3

4

2

6

1

6

3

4

5

2

8

1

8

4

7

2

3

1

6

4

1

7

6

3

8

2

5

1

5

6

2

4

8

7

1

4

5

3

7

87

5

6

7

8

3

2

543

1

2

6

thin edges have capacity 1, fat edges have capacity −1

Figure 3: Result of the transformation

its end nodes. After this operation the graph contains one edge with capacity
−M , some edges with capacity M , and n(n−1) edges with capacity either 1 or
−1. Due to the choice of the value M a maximum cut in the transformed graph
does not contain eM . By reversing the switching operation we get a maximum
cut of the original graph from a maximum cut in the transformed graph. Since
a maximum cut in the transformed graph does not contain eM we can contract
eM , i.e., identify its end nodes as one node and delete the edge eM . This results
in a graph with n(n− 1)− 1 nodes, n(n− 2) edges of capacity either −1 or 1,
and n(n−1)

2 − 1 edges with capacity M .
The transformation described above can repeatedly be applied n(n−1)

2 times
to the big-M edges in the resulting graphs until there are no big-M edges. We
obtain a maximum cut instance with n(n−1)

2 nodes and n(n − 2) edges with
capacities either 1 or −1. The result for our example is shown in Figure 3, in
which we have (arbitrarily) chosen to switch the cut of the lower indexed vertex
each time.

The same graph is displayed in Figure 4 along with a cut of maximum
capacity 22 that is indicated by white and grey node colors.

By backward transformation, this cut corresponds to the home-away assign-
ment displayed in Figure 1(b) with 8 breaks, which proves our claim in section 1
that 8 breaks is minimum for this instance.

4 Computational Results

For the computation of maximum capacity cuts we have used an implementation
of the algorithm described in [3] that was reimplemented by Martin Diehl using
the ABACUS software [6], version 2.3 using CPLEX 6.5 as an LP-Solver. The

6

5

8

3

6

6

2

1

7

3

5

4

8

5 6

6

4

8

2

7

1

3 4

1

5

2 2

3

7

7

8 8 6 7

4

1

5 6

1

3

2

7

4 3

5 4

1

5

2

8

7 8

1

6

2

4

3

capacity 1, not in the cut

capacity 1, in the cut

capacity -1, not in the cut

capacity -1, in the cut

Figure 4: A cut of maximum capacity 22

same implementation was used successfully in, e.g., [4] for computing ground
states of Ising spin glasses.

The instances were created by computing optimal ((n−2)-breaks schedules)
by Schreuder’s procedure and permuting the columns randomly. For each size,
we created five random schedules and applied the branch-and-cut algorithm.
The results displayed in Table 1 were obtained on a 296MHz Sun Ultra SPARC
machine. Times are given in CPU seconds where 0.0 means that the execution
time was below the system’s accuracy for process times.

We also solved one real world instance, namely the Bundesliga 1999/2000
(first national German soccer league) instance. There are 18 teams and we found
that the schedule is already optimal at 16 breaks. The Bundesliga is played in
two rounds. Each round is a round-robin tournament. For our experiments we
took the first round. The second round contains the same schedule where the
properties of playing at home or away are switched.

5 Discussion

We do not have access to the instances used in the computational studies by
Régin and Trick, however, it seems that Trick’s approach is slightly ahead in
solving 22 teams instances in about 1 hour on a 266 MHz machine (see [11]).
Apparently, our approach is able to handle larger instances easily. Trick [12]
reports that our random instances feature many more breaks than those he
used in his computations. Additionally, he reports that our instances are much

7

size time in CPU seconds number of breaks
n minimum average maximum minimum average maximum
4 0.0 0.0 0.0 2 2.0 2
6 0.0 0.0 0.0 4 4.0 4
8 0.0 0.0 0.0 8 8.0 8

10 0.0 0.0 0.0 10 12.2 12
12 0.1 0.1 0.1 14 16.8 18
14 0.1 0.3 0.5 18 23.6 26
16 0.4 1.0 2.8 28 31.2 32
18 2.8 6.1 19.0 36 40.8 44
20 1.1 8.7 18.5 44 51.2 54
22 6.8 36.7 94.0 58 61.2 64
24 23.5 72.8 140.6 68 72.4 74
26 22.9 339.0 1215.9 80 85.2 90

Table 1: Computational Results

harder to solve using his approach. We also recognized an increase of running
time if the number of breaks is large.

There remain three open questions we would like to answer in the future:

1. What is the complexity of the break minimization problem? (We conjec-
ture it is NP -hard.)

2. When we give (n− 2)-break instances to our algorithm, the answer n− 2
is produced very quickly. We would like to establish why this is the
case. (We conjecture this is because the corresponding maximum cut
instances feature graphs that are not contractible to K5, a class of graphs
for which Barahona [1] showed that the maximum cut problem is solvable
in polynomial time.)

3. What is a random schedule? Is our approach to the random instance
generation justified?

Acknowledgement

We would like to thank Michael Trick for teaching us the break minimization
problem and sharing his insights with us.

References

[1] F. Barahona (1983), The max-cut problem on graphs not contractible to
K5, Operations Research Letters 2, 107–111.

[2] F. Barahona and A. R. Mahjoub (1986), On the cut polytope, Mathematical
Programming 36, 157–173.

8

[3] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt (1988), An applica-
tion of combinatorial optimization to statistical physics and circuit layout
design, Operations Research 36, 493–513.

[4] C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Ri-
naldi (1986), Exact ground states of 2-dimensional ±J Ising spin glasses,
Journal of Statistical Physics 84, 1363–1371.

[5] M. Henz (1999), Scheduling a major college basketball conference–revisited,
Technical Note, School of Computing, National University of Singapore.

[6] M. Jünger and S. Thienel (2000), The ABACUS System for Branch and
Cut and Price Algorithms in Integer Programming and Combinatorial Op-
timization, Software Practice and Experience 30, 1325–1352, 2000.

[7] G. L. Nemhauser and M. A. Trick (1998), Scheduling a major college bas-
ketball conference, Operations Research 46, 1–8.

[8] J.-C. Régin (1998) Minimization of the number of breaks in sports schedul-
ing problems using constraint programming, Talk presented at DIMACS
Workshop on Constraint Programming and Large Scale Discrete Optimiza-
tion, Sep. 14–19, 1998.

[9] J.-C. Régin (2000), Modelling with constraint programming, Talk presented
at Dagstuhl Seminar on Constraint Programming and Integer Program-
ming, Jan. 17–21, 2000.

[10] J. A. M. Schreuder (1992) Combinatorial aspects of construction of compe-
tition Dutch Professional Football Leagues, Discrete Applied Mathematics
35, 301–312.

[11] M. A. Trick (2000) A schedule-then-break approach to sports timetabling,
Proceedings of the third PATAT Conference 2000, Lecture Notes in Com-
puter Science 2079, 242–253, Springer, 2000

[12] M. A. Trick (2000) Personal communication, 2000

9

