
COMBINATORIAL OPTIMIZATION AND INTEGER PROGRAMMING

Michael Jünger, Institut für Informatik, Universität zu Köln, Germany

Gerhard Reinelt, Institut für Informatik, Universität Heidelberg, Germany

Keywords
mixed integer program, combinatorial optimzation problem, linear program, NP-hard, polyhedra,
relaxation, branch-and-bound, cutting plane

Short contents list
1 Introduction
2 Modeling
2.1 Example Applications
2.2 Generic Models

3 Mathematical Foundations
3.1 Complexity
3.2 Polyhedra
3.3 Linear Programming
3.4 Relations between Problems
3.5 Relaxations
3.5.1 Combinatorial Relaxation
3.5.2 Linear Programming Relaxation
3.5.3 Lagrangean Relaxation

4 Algorithmic Approaches
4.1 Modeling Issues
4.2 Polynomial Algorithms
4.3 Branch-and-Bound
4.4 Cutting Planes
4.5 Column Generation
4.6 Primal Methods
4.7 Dynamic Programming
4.8 Heuristics

5 Software
Rererences

Glossary

R: set of real numbers
R

E: real vector space of dimensionjEj where the components are indexed by the elements ofE
2E: power set ofE
halfspace: fx 2 Rn j ax � a0g, for somea 6= 0
hyperplane: fx 2 Rn j ax = a0g, for somea 6= 0
conic hull ofX: cone(X) = fx j x =

Pm

i=1 �ix
i; xi 2 X;�i � 0; for somem > 0g

convex hull ofX: conv(X) = fx j x =
Pm

i=1 �ix
i; xi 2 X;�i � 0;

Pm

i=1 �i = 1;

1

for somem > 0g
polyhedron: fx 2 Rn j Ax � bg for A 2 Rm�n andb 2 Rm, or conv(X) + cone(Y),
for finite setsX andY
linear program (LP): maxfcx j Ax � bg, maxfcx j Ax = b; x � 0g
integer program (IP): maxfcx j Ax � b; x integerg
mixed integer program (MIP): maxfcx j Ax � b; xi integer fori 2 Ig, I � f1; 2; : : : ; ng
0-1 integer program (0-1-IP): maxfcx j Ax � b; x 2 f0; 1gng
combinatorial optimization problem: maxff(F) j F 2 Fg whereF � 2E for a finite setE

Summary

Solution techniques for combinatorial optimization and integer programming problems are core dis-
ciplines in operations research with contributions of mathematicians as well as computer scientists
and economists. This article surveys the state of the art in solving such problems to optimality.

1 Introduction

Combinatorial optimization and integer programming is concerned with finding optimum solutions
for optimization problems that involve yes/no decisions or determining optimum levels of discrete
quantities. Research in solution techniques and corresponding computer software originated in the
fifties and has been florishing especially in the last decade. Our overview of the current state of the
art is organized as follows.
In section 2 we introduce a few illuminating example problems and generalize to the generic models
that are the subject of this article. In section 3 we sketch the mathematical foundations of today’s
solution techniques, section 4 deals with the most important algorithmic approaches, and section 5
concludes our exposition with general remarks on the availability of these techniques as computer
software.

2 Modeling

2.1 Example Applications

Many of the most well-known operations research problems can be formulated as (mixed) integer
linear programs. Before generic (mixed) integer programming models as well as a generic combina-
torial optimization model are introduced, a few examples are considered.
In the assignment problem (AP), persons must be assigned to jobs, say,n persons ton jobs. If pij
denotes the level of proficiency personi posesses for jobj, the task is to find an assignment that
maximizes the total proficiency. Let the unknownxij be either 1 or 0 if personi is assigned to jobj
or not, respectively. Then the problem can be written as

max
nP
i=1

nP
j=1

pijxij

nP
i=1

xij = 1; for all j 2 f1; 2; : : : ; ng,

nP
j=1

xij = 1; for all i 2 f1; 2; : : : ; ng,

xij 2 f0; 1g; for all i; j 2 f1; 2; : : : ; ng:

(1)

The equations make sure that each person is assigned to exactly one job and each job to exactly one
person.

2

For a more compact formulation of the assignment problem (and some of the subsequent example
problems) it is convenient to introduceundirected graphsG = (V;E) with a finitenodesetV and
edgesetE � ffu; wg j u; w 2 V; u 6= wg. Two edges areadjacentif they share a common node.
The complete bipartite graphKn;n is the graphKn;n = (V;E) with node setV = U [W , where
jU j = n, jW j = n, U \W = ;, and edge setE = ffu; wg j u 2 U; w 2 Wg. LetRE denote the
real vector space of dimensionjEj where the components are indexed by the elements ofE. For a
setF � E its characteristic vectorxF 2 R

E is defined by settingxFe = 1, if e 2 F , andxFe = 0,
otherwise. An assignment then is a set ofn pairwise nonadjacent edges ofKn;n and thexij become
its characteristic vector.
For a graphG = (V;E) and a node setW � V let Æ(W) := ffu; wg 2 E j jfu; wg\W j = 1g denote
thecut induced byW , i.e. the edges with one endnode inW and the other inV nW , and letÆ(v)
be a shorthand forÆ(fvg). For an edge setF � E and variablesxe (e 2 E) let x(F) :=

P
e2F xe.

Furthermore, fora; b 2 R
n, let ab :=

Pn

i=1 aibi denote the inner product ofa and b. Then the
assignment problem can equivalently be written as

max px

x(Æ(v)) = 1; for all v 2 V ,

xe 2 f0; 1g; for all e 2 E.
(2)

The relatedperfect matching problem (PMP)arises if one wants to find an optimum pairing of an
even number2n of items where each pairing ofi andj induces a profitpij. E.g., assigning students
to double rooms in a dormitory is such a task where there is no bipartition like in the assignment
problem. In graph theoretic terms, the problem is to determinen pairwise nonadjacent edges in a
complete graphK2n = (V;E) wherejV j = 2n andE = ffu; wg j u; w 2 V; u 6= wg, with edge
weightspij. It can be modeled just like (1) with an underlying complete graphK2n instead of a
complete bipartite graphKn;n.
A traveling salesman, starting in his home city, must visit each of additionaln� 1 cities exactly once
and return to his home. Ifdij denotes the distance between townsi andj (wheredij = dji), one of his
problems, thetraveling salesman problem (TSP), consists of choosing a tour of minimum distance
traveled.
The problem can be modeled on a complete graph with edges of corresponding to the direct connec-
tions between two cities weighted according to the distances. Variablesxij 2 f0; 1g are introduced
with the interpretation thatxij = 1 if the salesman uses the edge betweeni and j andxij = 0
otherwise. Using the notationE(W) = ffi; jg j i 2 W; j 2 Wg the task can then be formulated as

min dx

x(Æ(v)) = 2; for all v 2 V ,

x(E(W)) � jW j � 1; for all W � V , 3 � jW j � n� 2,

xe 2 f0; 1g; for all e 2 E.

(3)

The equations, called thedegree constraints, express that in a tour, each city is touched by two direct
connections, i.e. each node of the graph is incident with exactly two tour edges. The inequalities,
calledconnectivity constraints, make sure that each nonempty subset of cities other than the whole
setV is entered and left, thus excluding short cycles.
Let N = f1; 2; : : : ; ng be a set of potential fire station locations andM = f1; 2; : : : ; mg a set of
communities to be protected. Forj 2 N let Mj � M denote the set of communities that can be
reached from locationj in less than 10 minutes, andcj denote the cost of building a fire station at
locationj. The task to decide which stations to build at least possible cost such that all communities
are protected can be formulated as aset covering problem (SCP).

3

Let B = (bij) 2 R
m�n be the matrix whose columns are the characteristic vectors of the setsMj,

j = 1; 2; : : : ; n, i.e.,bij 2 f0; 1g andbij = 1 if and only if communityi can be protected by station
j. If 1 denotes the vector of all 1’s, then one has to solve the following problem.

min cx

Bx � 1

x 2 f0; 1gn:

(4)

This type of problem belongs to the broad class of location problems.
For the classicalfacility location problem (FLP), the input consists again of a setN = f1; 2; : : : ; ng
of potential facilities and a setM = f1; 2; : : : ; mg of clients with demands of a certain good supplied
from the facilities. Facilityj 2 N , if built at costcj, has a capacity ofuj, the demand of clienti 2M
is bi, and it costshij to satisfy a unit ofi’s demand from facilityj. If xj 2 f0; 1g encodes the decision
of whether or not facilityj is opened and the continuous variableyij the quantity ofi’s demand that
is satisfied from facilityj, then the problem is the following.

min
P
j2N

cjxj +
P
i2M

P
j2N

hijyij

P
j2N

yij = bi; for all i 2M;

P
i2M

yij � ujxj � 0; for all j 2 N;

yij � 0; for all i 2M; j 2 N;

xj 2 f0; 1g; for all j 2 N .

(5)

The equations guarantee that all demands are satisfied and the inequalities ensure that only opened
facilities are used and their capacities are not exceeded.
A picture frame consists of two horizontal and two vertical parts. A picture frame manufacturer needs
to cutm frame parts of lengthsa1; a2; : : : ; am from base rods of lengthL. For producing the parts he
wishes to determine a cutting strategy that minimizes the number of used base rods. DefiningM and
N as above, one can use analogous techniques as in (5) to formulate the problem. Letn � m be an
upper bound on the number of required base rods, then the so-calledcutting stock problem (CSP)is
the following.

min
P
j2N

xj

P
j2N

yij = 1; for all i 2M;

P
i2M

aiyij � Lxj � 0; for all j 2 N;

yij 2 f0; 1g; for all i 2M; j 2 N;

xj 2 f0; 1g; for all j 2 N .

(6)

In any feasible solutionxj = 1 if and only if base rodj is used andyij = 1 if and only if parti is cut
from base rodj.
Two further basic problems are of interest in combinatorial optimization. Like the examples above,
they can be formulated in terms of maximizing or minimizing a linear objective function subject to
linear constraints and integrality conditions, yet such a description is of less interest here.
A (v1; vk)-path in G = (V;E) is a set of edgesffv1; v2g; fv2; v3g; : : : ; fvk�1; vkgg with distinct
nodesv1; v2; : : : ; vk 2 V . A graph isconnectedif either jV j = 1 or for each pair of distinct nodes
u; w 2 V there exists a(u; w)-path inG. A cyclearises if all nodes are distinct exceptv1 = vk.

4

Both problems are formulated for an undirected graphG with edge weights. In theminimum span-
ning tree problem (MSTP), the objective is to find aspanning tree, i.e., a connected subgraph with no
cycles (i.e., withn� 1 edges) of minimum total weight. In the(u; w)-shortest path problem (ShPP),
two verticesu; w 2 V are given and the objective is to determine a(u; w)-path inG of minimum
total weight.

2.2 Generic Models

A linear mixed integer optimization problem (MIP)is defined by a matrixA 2 R
m�n, vectorsb 2

R
m, c 2 Rn, and a subsetI � f1; 2; : : : ; ng, and is formulated as follows.
max cx

Ax � b

xi integer, for alli 2 I.
(7)

The task is either to find an optimum solution of this problem or to prove that no solution exists or
that the objective function is unbounded over the feasible set. IfI = ;, the problem is alinear opti-
mization problem (LP), and ifI = f1; 2; : : : ; ng the problem becomes thelinear integer optimization
problem (IP). Special cases of the MIP arise if “integer” is replaced byf0; 1g, and are called0-1-
MIP and0-1-IP, respectively. Notice that it makes no difference if the objective function is to be
minimized or maximized, since by replacingc by�c one problem type can be converted to the other.
All problem formulations in the previous subsection as well as many others are examples of these
generic models. The set covering model (4) and the cutting stock model (6) are 0-1-IP’s, while the
facility location problem (5) is a 0-1-MIP.
The assignment problem, the perfect matching problem, and the traveling salesman problem (as well
as the minimum spanning tree problem and the(u; w)-shortest path problem) are examples of the
following genericcombinatorial optimization problem (COP). Given a collectionF � 2E on some
finite ground setE and an objective functionf : F �! R, the task is to determine a subsetF � 2 F
that maximizes (or minimizes)f onF , i.e.,f(F �) � f(F) (or f(F �) � f(F)) for all F 2 F . In the
above example problems,E is the edge set of some undirected graph andF consists of those edge
subsets that induce subgraphs that are assignments, matchings, and tours, respectively. The example
problems also exhibit a special feature which they share with many other combinatorial optimization
problems, namely,f is defined on the elements of the ground setE and is extended to2E via the
linear functionf(F) =

P
e2F f(e). A combinatorial optimization problem is characterized by the

triple (E;F ; f).

3 Mathematical Foundations

A particular feature of combinatorial and (mixed) integer programing problems is their “discrete
nature” caused by the fact that all or many of the variables are only allowed to take integer values.
Therefore the set of feasible solutions is not connected, but consists of separate sets or possibly of dis-
crete points only. The main consequence is that the powerful methods from continuous optimization
cannot be applied. (As will become clear later they can, however, be utilized to some extent.) This
section reviews basic mathematical facts necessary for developing effective algorithms for solving
combinatorial and integer problems to (proven) optimality.

3.1 Complexity

Complexity theory is concerned with the difficulty of problems, i.e. with the question of how fast
a solution algorithm for a problem can be. Here an algorithm is assessed by giving the asymptotic

5

increase of its worst-case running time depending on the size of the given problem instance. An
algorithm is said to have(worst-case) running timeO(p) with a functionp if its running time is at
mostp(s) for any problem of sizes, where the size of a problem instance can more or less be taken
as the size of its representation on a digital computer. For the minimum spanning tree problem one
can easily find solution algorithms with running timeO(n2), i.e., where the execution time grows
only quadratically with the number of nodes. For the traveling salesman problem, however, nobody
succeeded so far in developing an algorithm whose running time is less than exponential in the
number of nodes. This substantial difference between the difficulty of problems has been exactly
defined using methods from computational complexity theory. For the purposes of this article it is
sufficient to know that there is the rigorously defined concept ofNP-hard optimization problems
which have an inherent difficulty that makes it very likely that for such problems no algorithms with
polynomial running times exist. Though the proof or disproof of this conjecture belongs to the great
unsolved problems in computer science, it is a well-accepted working hypothesis that there is no
polynomial algorithm for solving an NP-hard optimization problem to optimality. For a thorough
discussion of the complexity of algorithms see:Complexitiy Theory.
The general integer and mixed-integer problem is NP-hard and so are most of the combinatorial
optimization problems that are practically relevant. Interestingly, already theknapsack problem
maxfcx j ax � b; x 2 f0; 1gg, i.e. the optimization of linear function over one inequality con-
straint in binary variables, is NP-hard.
This article deals with techniques that can effectively be applied to solving NP-hard problems in
practice. These methods are not polynomial, but have been used with great success.
It should be noticed that it is not the number of feasible solutions that makes a problem difficult.
For a minimum spanning tree problem onn nodes there arenn�2 possible solutions (in a complete
graph) and for the assignment problem forn persons andn jobs there aren! feasible solutions, but
both problems are easily solved in polynomial time.

3.2 Polyhedra

Polyhedra are of central importance in the following, and some concepts have to be reviewed (for a
complete discussion see:Polyhedral Theory).
For� 2 R

n, � 6= 0, and�0 2 R the setfx 2 R
n j �x = �0g is calledhyperplanewith associated

halfspacefx 2 R
n j �x � �0g. A polyhedronP is defined as the intersection of finitely many

halfspaces or equivalently as the solution set of a finite system of linear inequalities. More precisely,
P is a polyhedron if there exists a matrixA 2 R

m�n and a vectorb 2 R
m such thatP = fx 2

R
n j Ax � bg. Such a description of a polyhedron by means of linear inequalities is calledouter

description. Notice that some inequalities may actually be equations. By describingP asP = fx 2
R

n j Ax � b; Bx = dg it is emphasized that equations are present.
ForX = fx1; x2; : : : ; xng and�i 2 R, i 2 f1; 2; : : : ; ng, the linear combinationx =

Pn

i=1
�ix

i is
called aconic combinationof the elements ofX if �i � 0 for all i 2 f1; 2; : : : ; ng and, if in additionPn

i=1 �i = 1, the vectorx is called aconvex combinationof the elements ofX. We denote the set of
all conic and convex combinations of the elements ofX by cone(X) andconv(X), respectively.
According to classical results in polyhedral theory it is possible to describe polyhedra in an alternative
way. Namely,P is a polyhedron if and only if there exist finite setsX andY such thatP is the sum of
the convex hull ofX and the conic hull ofY , i.e.,P = fz j z = x+y for somex 2 conv(X) andy 2
cone(Y)g. This type of description is calledinner description.
A polytopeis a bounded polyhedron, i.e.,P is a polytope if and only if it is a polyhedron and if there
exist boundsl; u such thatl � x � u for all x 2 P . In particular,P is a polytope if and only if it is
equal to the convex hull of a finite set.

6

The dimensiondimP of a polyhedronP � R
n can be computed as follows. LetBx = d be a

system of equations such that every equation that is satisfied by all points inP is either contained in
this system or is a linear combination of equations ofBx = d. ThendimP = n � rankB, where
rankB is the linear rank of the matrixB. A polyhedronP � R

n is said to befull dimensionalif
dimP = n. Therefore, ifP is full dimensional, then there does not exist an equationax = a0, a 6= 0
with P � fx j ax = a0g.
An inequalityax � a0, a 6= 0, is said to bevalid for a polyhedronP if P � fx j ax � a0g. If
ax � a0 is a valid inequality forP then the setF = P \ fx j ax = a0g is a faceof P (which may
be the empty face). IfF 6= P thenF is called aproper face. Each face is itself a polyhedron. If
jF j = 1 then the elementv 2 F is called avertexof P . Vertices have the property that they cannot
be represented as convex combinations of other elements of the polyhedron. IfP is a polytope, then
P = conv(V) whereV is the set of vertices ofP . If F is a maximal nonempty proper face thenF is
called afacetof P . A faceF is a facet ofP if and only if dimF = dimP � 1. If F is a facet defined
by ax � a0 then this inequality is calledfacet definingfor P .
For a given polyhedronP , one is interested in itsminimal linear descriptionP = fx j Ax � b; Bx =
dg. In such a description no equation fromBx = d is implied by other equations of this system and
the inequality systemAx � b contains exactly one defining inequality for every facet ofP . This fact
substantiates the interest in finding facet-defining inequalities for polyhedra. They are the strongest
ones since they are necessary and cannot be replaced by other inequalities.

3.3 Linear Programming

Linear programming will turn out to be a basic tool in discrete optimization. It deals with the maxi-
mization (or minimization) of a linear function over a polytope given by an outer description. Linear
programming problems are usually given in the formmaxfcx j Ax � bg or maxfcx j Ax = b; x �
0g. Both formulations are equivalent, for illustrating certain facts one formulation can be preferrable
to the other.
A linear program can be considered an easy problem. From a theoretical point of view there are
polynomial time algorithms (ellipsoid method, interior point methods) for its solution. A subtle
difference between ellipsoid and interior point methods has to be emphasized here. Interior point
methods can solve the problem in time polynomial in the size of the constraint system. The running
time of the ellipsoid method, however, does not depend on the number of constraints. It is already
polynomial if one can check in polynomial time if a givenx satisfies all constraints and produce a
violated inequality in the case that it does not. This allows the ellipsoid method to optimize (in a
certain sense) linear programs with an exponential number of constraints. For a complete treatment
of the subject and in particular of the complexity issues given here very imprecisely seeLinear
Programming.
But also from a practical point of view there are effective algorithms (simplex algorithms, interior
point algorithms) which are able to solve very large problem instances with several ten-thousands of
constraints and millions of variables.
Let the linear program be given asmaxfcx j Ax = b; x � 0g. The vertices of the underlying
polyhedron are associated with so-calledbasesof A. Let x be a feasible solution, i.e. a solution that
satisfiesAx = b, x � 0. Thenx is a vertex if and only ifx can be partitioned intox = (xB; xN)
such that the submatrixAB of A corresponding to the indices inB has full row rank,xB = A�1

B b and
xN = 0.
If the linear program is not infeasible or unbounded, then there is an optimum vertex solution and,
due to duality theory, there is a short proof of optimality which can be easily checked. Namely, let
x� be a feasible vertex with associated basisB. If the reduced costscN � cBA

�1

B AN are nonpositive

7

thenx� maximizes the objective functioncx overfx j Ax = b; x � 0g. It is possible that several
bases are associated with the same vertex, so althoughx� might be optimal, for the chosen basis the
reduced costs could have positive entries. Such degeneracy problems will be ignored throughout this
article. But they have to be addressed in practical computations.

3.4 Relations Between Problems

There is a close connection between linear, (mixed) integer and combinatorial optimization problems.
On the one hand, an integer programming problem can be considered as a combinatorial problem
where the underlying combinatorial properties are specified by linear equations and inequalities. On
the other hand, as has been done in section 2, for a combinatorial problem it is usually easy to find
an integer programming formulation.
Of interest for practical computations is a link to linear programming that can be established as
follows. With a combinatorial optimization problem(E;F ; f) one can associate the polytopePF =
convfxF j F 2 Fg; wherexF denotes the characteristic vector ofF 2 F . PF is the convex hull of
the characteristic vectors of feasible sets. Because the characteristic vectors are 0-1-vectors, they are
exactly the vertices of the polytopePF , and the combinatorial optimization problem can be solved as
the linear optimization problemmaxfx j x 2 PFg. However, to this end we need an outer description
PF = fx j Ax � bg.
For solving a general IP or MIPmaxfcx j Ax � b, xi integer for alli 2 Ig as a linear program the
availability of the linear description of the associated polyhedronconvfx j Ax � b, xi integer for all
i 2 Ig is required.
The difference between linear and integer programming formulations is usually substantial. Consider
for example the traveling salesman problem on 10 cities. The integer programming formulation with
subtour elimination constraints consists of 10 equations and 582 inequalities. The formulation of an
equivalent linear program needs 10 equations and 51043900866 inequalities, and none of them is
superfluous!
Therefore it is not a general valid approach to generate a linear programming formulation for a given
integer or combinatorial optimization problem. There are finite algorithms (e.g., Fourier-Motzkin-
algorithm, see:Computational Linear Algebra) to convert an inner description to an outer description,
but in general the outer description is simply too large to be listed explicitly and the running time of
the algorithm is exponential.
On the other hand, there are IPs that are easily solved. If one replaces the constraintsxij 2 f0; 1g in
the IP formulation of the assignment problem byxij � 0 then one obtains immediately an LP formu-
lation because all vertices of the associated polytope are 0-1 vertices and correspond exactly to the
possible assignments. This is, however, not true for the perfect matching problem. The canonical LP
relaxation defines a polytope which has non-integral vertices. An exponential number of additional
inequalitiesx(E(W)) � jW j � 1 for setsW � V with odd cardinality is needed. They are called
thematching inequalities.
Given a class of inequalitiesI, theseparation problemfor I consists of deciding whether a given
z 2 R

n satisfies all inequalities inI and if not, find at least one inequalityax � a0 in I such that
az > a0, i.e. that is violated byz. In our context a (more general) theorem holds which states that an
optimization problem can be solved in polynomial time if and only if the separation problem for its
constraint defining inequalities can be solved in polynomial time.
Since the separation problem for the matching inequalities can be solved in polynomial time, one can
also solve the perfect matching problem in polynomial time. The appropriate algorithm, however, is
a combinatorial one.

8

3.5 Relaxations

A relaxationof a problem is obtained if some of the defining constraints are omitted. This way the set
of feasible solutions is augmented. If the objective function is now minimized (maximized) over this
enlarged set, then its optimum value gives a lower (upper) bound on the optimum objective function
value for the true problem. Such bounds are useful for developing algorithmic approaches and also
for giving quality guarantees for a given feasible solution. It is clear that two properties of relaxations
are desired: optimization over the augmented set of solutions should be easy, but on the other hand
the augmented set should be “close” to the original feasible set in order to obtain good bounds.
There are three basic types of relaxations.

3.5.1 Combinatorial Relaxation

A combinatorial optimization problem(E 0;F 0; f 0) is a relaxation of the problem(E;F ; f), if there
is an injective function' : E ! E 0 such that'(F) 2 F 0 andf(F) = f 0('(F)) for all F 2 F . In
most casesE � E 0 and' is just the identity.
Consider for example the traveling salesman problem onn nodes. It is defined by two types of
constraints: the degree constraints requiring that every node is incident to exactly two edges and the
connectivity constraints requiring that the set of selected edges is connected.
If the connectivity constraints are dropped, then one obtains the2-Matching Relaxation. The set
of feasible solutions now not only contains tours but also collections of short tours. Optimum 2-
matchings can be computed in time polynomial in the number of nodes.
The elimination of all degree constraints except for one node, say node 1, defines the1-Tree Relax-
ation. A feasible solution now consists of a spanning tree on the nodesf2; 3; : : : ; ng plus two edges
incident to node 1. An optimal 1-tree can be computed in polynomial time.
There are usually several possibilities to come up with combinatorial relaxations. The usefulness of
different relaxations can sometimes be compared theoretically, stating that one relaxation is always
tighter than another one, but in general it depends on the problem instance.

3.5.2 Linear Programming Relaxation

Linear programming relaxations for integer programming problems are obtained in a canonical way if
the integrality requirement is dropped for the integer variables and just replaced by bound constraints.
These relaxations are of particular interest since they can be optimized with standard algorithmic
tools like simplex algorithms or interior point methods.
The canonical LP relaxation of an integer program is widely used. Its strength depends on the in-
equalities of the IP formulation. The choice of an inappropriate IP model can have very negative
effects on the solvability of a problem. Consider as an example the facility location problem (5)
wherebi = 1 for all i 2M anduj = m for all j 2 N . If one builds an algorithm on the canonical LP
relaxation, only very small problem instances will be solved. It is advisable to replace the constraintsP

i2M yij �mxj � 0; j 2 N , by the disaggregated system

yij � xj � 0; i 2M; j 2 N: (8)

From an IP point of view both models are equivalent because they both formulate the problem cor-
rectly, but the canonical LP relaxation of the latter model is much better. This is due to the fact that
the inequalitiesyij � xi � 0 define facets of the convex hull of the feasible solution whereas the
aggregated inequalities

Pn

i=1 yij � nxi � 0 only define faces of lower dimension and hence lead to
a weaker relaxation. Similar observations apply to the general FLP.

9

3.5.3 Lagrangean Relaxation

A further approach for obtaining bounds on the optimal objective function value of an integer linear
program is the method ofLagrangean relaxation. Let an integer linear programming problem (P) be
given asminfcx j Ax � b; Bx = d; x � 0; x integerg.
For any� the integer linear programming problem

L(�) := min cx+ (Bx� d)�

Ax � b

x � 0; x integer

(9)

provides a lower bound for the optimum of (P) since every feasible solution for (P) is also feasible for
the new problem with the same objective function value. The vector� is called vector ofLagrangean
multipliers. The best such lower bound is then given by solving the so-calledLagrangean dual
problemmaxfL(�) j �g, i.e., by finding the (unconstrained) maximum of the functionL.
The functionL is piecewise linear and concave (and hence nondifferentiable). Suitable methods for
maximizingL are subgradient or bundle algorithms (for details seeNondifferentiable Optimization).
Clearly, the quality of the bound provided by the Lagrangean dual depends on the choice of the
constraint setBx = d to be relaxed. The bound is usually better if less constraints are relaxed. On
the other hand the resulting new integer program has to be easy since it must be solved many times
when maximizingL. It is directly seen that also inequalities can be relaxed taking into account that
the corresponding Lagrangean multipliers have to be restricted in sign.
The combinatorial 1-tree relaxation given above can be improved using Lagrangean relaxation. The
following is the IP formulation of the TSP based on subtour elimination constraints where the degree
constraints are partitioned into two parts and where one redundant equation, stating that exactlyn
edges are to be selected, is added.

min cx

x(Æ(v)) = 2; for all v 2 V n f1g,

x(Æ(1)) = 2

x(E) = n

x(E(W)) � jW j � 1; for all W � V , 3 � jW j � n� 2

xe 2 f0; 1g; for all e 2 E.

(10)

If the degree constraints for all nodes except for node 1 are relaxed, then the following Lagrange prob-
lem is obtained in whichBx = 2 denotes the system of degree constraints for the nodes2; 3; : : : ; n.

min cx + (Bx� 2)�

x(Æ(1)) = 2

x(E) = n

x(E(W)) � jW j � 1; for all W � V , 3 � jW j � n� 2

xe 2 f0; 1g; for all e 2 E.

(11)

The feasible solutions of this IP are exactly the 1-trees (which is guaranteed by the previously re-
dundant equation). For given�, the problem can be solved easily by a combinatorial algorithm. The
simple combinatorial 1-tree relaxation corresponds to setting� = 0. Using Lagrangean relaxation,
much better 1-tree bounds can be computed. Notice that by eliminating the degree constraint for
node 1 and by replacingxe 2 f0; 1g by 0 � xe � 1 for all e 2 E one obtains an LP formulation

10

of the minimum spanning tree problem. It has a number of constraints exponential inn, but can be
solved in polynomial time (inn) because the separation problem is solvable in polynomial time.
The Lagrange bound is at least as good as the bound obtained from the canonical LP relaxation. But
usually it is harder to compute it.

4 Algorithmic Approaches

Since there is a wide range of applications of integer and combinatorial optimization in practice,
solving these problems is of prime concern. This article concentrates on the exact solution of prob-
lems to optimality. It is another interesting branch of research to study approximation algorithms
which try to find feasible solutions close to the optimum. Questions that arise here are the devel-
opment of algorithms where a quality guarantee to be achieved can be specified in advance, and the
comparison of problems with respect to approximability. A discussion of these topics can be found
in Approximation Algorithms.

4.1 Modeling Issues

When designing an algorithm for the solution of a problem, a very important aspect is to choose the
appropriate mathematical model for its formulation. Firstly this affects the set of methods than can
be used, but secondly it can be crucial for its solvability in practice.
The formulation of the cutting stock problem (6) of section 2 for example is not a suitable one. It
could be strengthened using disaggregation as described above, but still the canonical LP relaxation
will not be tight enough to be able so solve the problem with branch-and-bound type algorithms (see
below).
Surprisingly, a seemingly much inferior description has turned out to be much more useful in practical
computation. The vectorb 2 f0; 1gm represents a cutting pattern for a base roll if

Pm

i=1 aibi � L. Let
the columns of the matrixB 2 f0; 1gm�n represent all possible cutting patterns. Then the problem
could also be modeled as the 0-1-IP

min 1z

Bz = 1

z 2 f0; 1gn:

(12)

In any feasible solutionzj = 1 if and only if thej-th cutting pattern is used.
Whereas in the previous model (with or without disaggregation) there was only a polynomial number
of variables and constraints, both of orderO(n2), now there is a number of variables that is expo-
nential inm. However, this problem can be dealt with as will be outlined in section 4.5. Notice the
similarity of the new CSP formulation (12) with the SCP formulation (4). Because the CSP has now
been modeled using equations instead of inequalites one speaks of aset partitioning problem (SPP).

4.2 Polynomial Algorithms

Although the major part of practically relevant problems is NP-hard, there are several interesting
combinatorial problems that are computationally easy.
Sometimes, although integer problems, they can be formulated as linear programming problems that
can be solved in polynomial time. This is the case, for example, for the assignment problem as
shown above. Remember that there always exists an LP formulation, but not necessarily one that is
polynomially solvable in the size of the original problem. Once a suitable LP formulation is known,
special variants of LP algorithms can be developed.

11

On the other hand there are some polynomial algorithms that do not rely on LP theory but work
directly with the combinatorial structure.
Important combinatorial problems that are solvable in polynomial time are: spanning tree and ar-
borescence problems, shortest path problems, matching andb-matching problems, transportation and
network flow problems (see:Graph and Network Optimization).

4.3 Branch-and-Bound

There is a principle approach to attack a hard problem, namely, if the problem cannot be solved
directly, it is split into (hopefully easier) subproblems. These subproblems are then either solved
or split further until eventually very simple problems are generated. From the solution of all the
generated subproblems a solution of the original problem can then be constructed. This principle is
known asdivide-and-conquer. It can be realized in various ways, in the context of discrete optimiza-
tion and with the tools developed so far, the so-calledbranch-and-boundapproach is most suited.
Branch-and-bound (for a minimization problem) can be outlined as follows.

Branch-and-Bound Algorithm

1. Initialize the list of active subproblems with the original problem.

2. If the list of active subproblems is empty, STOP (the best feasible solution found so far is
optimal).

3. Otherwise, choose some subproblem from the list of active problems and “solve” it as follows:

(a) find an optimal solution for the subproblem, or

(b) prove that the subproblem has no feasible solution, or

(c) prove that there is no feasible solution for the subproblem that has smaller objective value
than the best feasible solution that is already known, or

(d) split the subproblem into further subproblems and add them to the list of active problems,
if none of the above is possible.

4. Go to step (2).

The splitting of problems into subproblems can be represented by the so-calledbranch-and-bound
tree, the root of which represents the original problem.
It is crucial for the efficiency of a branch-and-bound algorithm that the branch-and-bound tree does
not grow too large. Therefore subproblems have to be solved if possible by alternatives (a), (b) or (c)
of step 3. Alternative (a) rarely occurs, for (b) and (c) relaxations are important. Namely for (b), if a
relaxation of the subproblem is already infeasible, then also the subproblem itself is infeasible. To be
able to finish the subproblem in (c), good lower and upper bounds must be available. Upper bounds
are obtained by finding feasible solutions. These are either obtained by solving some subproblem
to optimality or usually by determining good feasible solutions using heuristics. Lower bounds can
be computed by using relaxations where in principle any type of relaxation discussed above can be
employed. It is clear that the tighter a relaxation the better the performance of the algorithm will
be. Without a suitable relaxation branch-and-bound would tend to completely enumerate the set of
feasible solutions and thus become infeasible.
The second component of this approach isbranchingwhich denotes the splitting of the current sub-
problem into a collection of new subproblems whose union of feasible solutions contains all feasible

12

solutions of the current subproblem. For 0-1-problems, the simplest branching rule consists of defin-
ing two new subproblems in one of which a chosen variable is required to have the value 1 in every
feasible solution and in the other one to have the value 0. Other branching strategies are possible.
There are also several heuristics for choosing the next subproblem to be considered.

4.4 Cutting Plane Algorithms

Most of the successful branch-and-bound algorithms for solving discrete optimization problems em-
ploy LP relaxations. The difficulties that have to be overcome when using LP relaxations will be
addressed in this section.
The first problem is of general nature, namely how to solve an LP with a very large constraint set that
cannot be listed explicitly. The solution is to start with a small subset of the constraint set, solve the
LP to optimality, and check if the optimum solution satisfies the constraints that have not been taken
into account. If this is the case, then the computed solution is optimal for the complete problem.
Otherwise, there are constraints that are violated. One or some of them are added to the current
LP, the LP is reoptimized, and the process continues until all constraints are satisfied. So the core
problem that has to be solved here is the separation problem.
This approach is termedcutting plane approachdue to the fact that the constraints added to the cur-
rent LP “cut off” the current solution because it is infeasible for the original problem. It is important
that the approach does not require an explicit list of the constraints defining the original problem.
Required is “only” a method for identifying inequalities that are violated by the current solution.
The second main problem is to find strong relaxations approximating the polytopePF defined as the
convex hull of feasible solutions. In the case of combinatorial problems one can often find classes
of facet-defining inequalities. For general problems, not many results about the facial structure are
available, but there are methods for generating cutting planes.
A lot of effort for finding linear descriptions has been made for the traveling salesman polytopePTSP.
The degree equations yield a minimal equation system forPTSP and therefore its dimension isn(n�
1)=2 � n for complete graphs. The connectivity inequalities are facet-defining (with polynomially
solvable separation problem) and there are many more classes. One of them is the class ofcomb
inequalities. Let H, T1; : : : ; Ts be subsets of the node set withs � 3 odd, jTi \ Hj � 1 for k 2
f1; : : : ; sg, jTi nHj � 1 for k 2 f1; : : : ; sg andTi \ Tj = ; for i 6= j. Then the comb inequality

x(E(H)) +
sX

j=1

x(E(Tj)) � jHj+
s� 1

2
(13)

defines a facet ofPTSP. Of special interest among these inequalities are the2-matching inequalities
which arise if all setsTi have cardinality 2. Their corresponding separation problem can be solved in
polynomial time. Based on extensive investigations very powerful TSP codes using LP relaxations
and cutting planes have been implemented.
An example of general cuts for integer programs areGomory cuts. Consider the integer program
maxfcx j Ax = b; x � 0; x integerg. Let AB be an optimal basis of the canonical LP relaxation,
A = A�1

B AN andb = A�1

B b. If bi (the current value of thei-th basic variable) is not integral, then the
inequality

X

j2N

(baijc � aij)xj � bbic � bi (14)

is valid forPF , but is violated by the current LP optimum. Therefore this inequality, which is easily
derived, can serve as a solution of the separation problem and cuts off the current infeasible solution.

13

Cuts can also be derived from integral objective functions. Letc = cBA � cN . If cBxB (the current
objective function value) is not integral, then

X

j2N

(bcjc � cj)xj � bcBxBc � cBxB (15)

is a cutting plane. Cuts are added to the LP which is then reoptimized, and the process continues. Sur-
prisingly it can be shown that this procedure (with some technical enhancements) yields an optimum
integer solution in finitely many steps. There are also more general Gomory cuts and, in particular,
Gomory cuts for mixed integer problems as well. In cannot be expected to solve an integer program
with Gomory cuts alone, but they are very valuable for tightening relaxations and indispensable in
state-of-the-art software.
Knapsack cutsarise from the observation that every single row of an IP corresponds to a knapsack
problem. And inequalities defining faces or facets of the associated knapsack polytopes are at least
valid for the IP. So research has been invested in finding linear descriptions of knapsack polytopes
or intersections of them, and the resulting classes of inequalities are employed as cuts when solving
general IPs. There are further general cuts for integer programs like for exampledisjunctive cutsor
flow cover cuts.
At present, branch-and-bound algorithms based on LP relaxations that are solved with cutting planes
are the approach of choice for many combinatorial optimization problems as well as for general
(mixed) integer problems. The namebranch-and-cuthas been coined for this type of approach to
distinguish it from other branch-and-bound methods.

4.5 Column Generation

Section 4.1 introduced a set partitioning model for the cutting stock problem (12) with an exponential
number of variables, i.e., the constraint matrix has an exponential number of columns. If the problem
is only considered on a small subset of the columns, it has to be made sure that the variables associated
with the missing columns can be safely assumed to have value0. The simplex algorithm does not
only give a basic feasible solution, but also the reduced cost certificate for optimality. In this case
one obtains a quantityyi for each rowi such that

Pm

i=1 bijyi � 1 for all cutting patternsB�j =
(b1j; b2j; : : : ; bmj) that are present in the chosen subset. In order to determine if the same relation
holds for all missing cutting patterns as well, one can solve the followingknapsack problem (KSP)

max yb

ab � L

xi 2 f0; 1g; for all i 2 f1; 2; : : : ; mg

(16)

for which an effective pseudo-polynomial dynamic programming algorithm exists, as is pointed out
in section 4.7. If the maximum is at most 1, the partial solution is optimal for the complete prob-
lem, otherwise the optimum patternb1; b2; : : : ; bm found by the knapsack algorithm is appended as a
new column to the formulation. This approach is calledcolumn generation. The process of evalu-
ating the missing columns is calledpricing in linear programming terminology, and embedding the
method into an enumerative frame leads to abranch-and-price-algorithm. Cutting and pricing can
be combined (and they are for example combined in all published state-of-the-art algorithms for the
optimum solution of the traveling salesman problem) and this methodology is calledbranch-and-cut-
and-price.

14

4.6 Primal Methods

A test set of an integer program of the formmaxfcx j Ax � b; x integerg is a finite setT of vectors,
such that for every non-optimal, feasible pointx there exists a vectort 2 T such thatx+ t is feasible
andc(x + t) > cx. Such a vectort is called anaugmenting vectorfor x. If a test set is available,
a primal integer programming approachmay consist of computing a sequence of feasible integer
solutions with improving objective function value until an optimum is reached. In each iteration,
either an augmenting element of the test set has to be produced or it must be decided that there no
such vector exists (thus proving optimality). Notice the analogy to the cutting plane aproach, which
is a “dual” method.
Test sets for integer programs are special integral bases for the integer points in certain convex sets.
Such bases play an important role in several areas of mathematics such as algebra, number theory,
combinatorics, and geometry. However, they are huge and hard to compute in general. Today’s
algorithms for the computation of a test set are unsuitable for large problems, yet this line of research
has recently led to an algorithm that is sometimes capable of solving large-scale integer programs in
a reasonable period of time. The key issue is that this new algorithm uses the power of LP-duality in
combination with the theory of integral bases.
These recent developments make it likely that the primal approach will become a serious competitor
in the solution of hard (mixed) integer programs in the future.

4.7 Dynamic Programming

Dynamic programming is a principle that is primarily used for the optimization of time discrete
processes, but can also be employed for general discrete optimization problems. Consider a process
that will run overT time periods. The process starts at time 0 in states0, proceeds to states1, then
to s2, etc. until it eventually reaches its final statesT . At the start of each time periodt a decision
xt has to be taken. The state of the process in periodt only depends onxt and on the previous state
st�1. It is determined by the evaluation of a function�(st�1; xt). Each period contributes the amount
gt to the objective function which also only depends onxt andst�1. Feasible decisions and states are
given by the setsXt andSt. Then the optimization problem can be formulated as

z� := max
TX

t=1

gt(st�1; xt)

st = �(st�1; xt); for all t 2 f1; 2; : : : ; Tg;

xt 2 Xt; for all t 2 f1; 2; : : : ; Tg;

st 2 St; for all t 2 f1; 2; : : : ; Tg.

(17)

For k = 1; 2; : : : ; T one can define the optimal completion of the process when started in statesk�1
by

zk(sk�1) := max
xk;:::;xT

TX

t=k

gt(st�1; xt)

st = �(st�1; xt); for all t 2 fk; k + 1; : : : ; Tg.

(18)

In particular, we havez� = z1(s0) for the given initial states0. The crucial observation for the design
of an algorithm is the validity of the following recursion

zk(sk�1) = max
xk

fgk(sk�1; xk) + zk+1(�(sk�1; xk))g (19)

15

for k = T; T � 1; : : : ; 1 (wherezT+1() = 0). Based on this recursion one has a simple scheme for
computing an optimum solution, provided that the set of possible states is not too large. Time as well
as storage complexity isO(jSj � jT j), wherejSj is the number of possible states.
Consider for example a dynamic programming approach for the knapsack problemmaxfcx j ax �
b; x 2 f0; 1gg with integer data. It can be considered as a process where in every time period
t = 1; 2; : : : ; n it has to be decided whether objectt is selected for the knapsack or not, the state of
the process being the remaining capacity of the knapsack. Using the notation above givess0 = b and
�t(st�1; xt) = st�1 � atxt. FurthermoreXt = f0; 1g, St = f0; 1; : : : ; bg, and simplygt(st�1; xt) =
ctxt since the contribution to the objective function does not depend on the state. Notice that the
running timeO(n � b) is not polynomial in the input size. However, ifb is not too big, then dynamic
programming is a reasonable approach to solve the problem. In particular, if the value ofb is bounded
by a polynomial inn, then the dynamic programming algorithm is a polynomial one.
But also if the state space is large, dynamic programming can be tuned to work. By using exact
dominance rulesor heuristics one can try to eliminate inferior states during the recursive calculation
(possibly at the expense of losing optimum solutions), see:Dynamic Programming.

4.8 Heuristics

Heuristics are not a topic of this article. Their importance has been claimed in the discussion of
branch-and-bound algorithms. Whereas for pure combinatorial optimization problems there is a wide
range of heuristic approaches (local search, genetic algorithms, tabu search, simulated annealing,
etc.) at hand (see:Global Optimization and Meta-Heuristcs), this is not the case for general integer
programming problems.
For finding good feasible solutions for general IPs, usually two principles are pursued. Firstly it is
tried to round an infeasible solution. The difficulty is that there are many rounding possibilities and,
moreover, none of them might lead to a feasible solution. Secondly it is tried to initially go deep
into the branch-and-bound tree without putting too much effort in solving good relaxations in order
to find a feasible solution early and, after that, giving priority to finding tight relaxations in order to
finish the algorithm. Both approaches still are in the state of experimentation and neither of them
can guarantee success. The area of developing heuristics for general integer problems is still an open
one.

5 Software

There has been a lot of recent progress in software design for solving mixed integer programming
problems and there is a number of very good software systems representing the scientific state-of-
the-art, most of them commercial. Whereas previously algorithms were mainly branch-and-bound
algorithms based on the canonical linear programming relaxation, current software uses sophisticated
cutting plane generation routines and is much more powerful, with the consequence that mixed inte-
ger models can now be used in many more situations than before. In addition, software systems have
aided the design of branch-and-cut-and-price algorithms for combinatorial optimization problems to
various degrees since they became popular in the early eighties. Many of them are free.

References

[1] Cook W., Cunningham W., Pulleyblank W., Schrijver, A. (1998) Combinatorial Optimization.
[This is a very good textbook on combinatorial optimization].

16

[2] Dell’Amico M., Maffiolo F., Martello S. (eds) (1997)Annotated Bibliographies in Combina-
torial Optimization. John Wiley & Sons. [This gives a good guide to references in discrete
optimization].

[3] Jünger M., Reinelt G., Thienel, S. (1995)Practical Problem Solving with Cutting Plane Al-
gorithms in Combinatorial Optimizationin: DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Vol. 20: Combinatorial Optimization, 111–152. [This describes
the techniques for implementing branch-and-cut algorithms]

[4] Padberg M. (1995)Linear Optimization and Extensions, volume 12 ofAlgorithms and Com-
binatorics. Springer. [This gives a complete discussion of linear programming and polyhedral
theory].

[5] Schrijver A. (1986) Theory of Linear and Integer Programming. John Wiley & Sons. [This
discusses the theoretical foundations of integer programming in depth].

[6] Nemhauser G.L., Wolsey L.A. (1988)Integer and Combinatorial Optimization. John Wiley &
Sons. [This treats theoretical as well as practical aspects of integer and combinatorial optimiza-
tion].

[7] Weismantel R. (1998)Test sets of integer programs, MMOR 47, 1–37. [This is a survey about
augmentation algorithms and test sets].

17

