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ABSTRACT
Motivation:

The problem of finding remote homologues of a given
protein sequence via alignment methods is not fully
solved. In fact, the task seems to become more difficult
with more data. As the size of the database increases,
so does the noise level; the highest alignment scores
due to random similarities increase and can be higher
than the alignment score between true homologues.
Comparing two sequences with an arbitrary alignment
method yields a similarity value which may indicate an
evolutionary relationship between them. A threshold value
is usually chosen to distinguish between true homologue
relationships and random similarities. To compensate for
the higher probability of spurious hits in larger databases,
this threshold is increased. Increasing specificity however
leads to decreased sensitivity as a matter of principle.

Sensitivity can be recovered by utilizing refined pro-
tocols. A number of approaches to this challenge have
made use of the fact that proteins are often members of
some larger protein family. This can be exploited by using
position-specific substitution matrices or profiles, or by
making use of transitivity of homology. Transitivity refers to
the concept of concluding homology between proteins A
and C based on homology between A and a third protein
B and between B and C. It has been demonstrated
that transitivity can lead to substantial improvement in
recognition of remote homologues particularly in cases
where the alignment score of A and C is below the noise
level.

A natural limit to the use of transitivity is imposed by do-
mains. Domains, compact independent sub-units of pro-
teins, are often shared between otherwise distinct proteins,
and can cause substantial problems by incorrectly linking
otherwise unrelated proteins.

Results: We extend a graph-based clustering algorithm
which uses an asymmetric distance measure, scaling
similarity values based on the length of the protein

sequences compared. Additionally, the significance of
alignment scores is taken into account and used for a
filtering step in the algorithm. Post-processing, to merge
further clusters based on profile HMMs is proposed. SCOP
sequences and their super-family level classification are
used as a test set for a clustering computed with our
method for the joint data set containing both SCOP and
SWISS-PROT. Note, the joint data set includes all multi-
domain proteins, which contain the SCOP domains that
are a potential source of incorrect links. Our method
compares at high specificities very favorably with PSI-
Blast, which is probably the most widely-used tool for
finding remote homologues.

We demonstrate that using transitivity with as many
as twelve intermediate sequences is crucial to achieving
this level of performance. Moreover, from analysis of false
positives we conclude that our method seems to correctly
bound the degree of transitivity used. This analysis also
yields explicit guidance in choosing parameters.

The heuristics of the asymmetric distance measure used
neither solve the multi-domain problem from a theoretical
point of view, nor do they avoid all types of problems we
have observed in real data. Nevertheless, they do provide
a substantial improvement over existing approaches.
Availability: The complete software source is freely
available to all users under the GNU General Public
License (GPL) from http://www.bioinformatik.uni-koeln.de/
~proclust/download/

Contact: proclust@www.bioinformatik.uni-koeln.de,

schliep@zpr.uni-koeln.de

Supplementary Information: A web interface to the

software allowing to run query sequences against the set

of clusters is available at http://www.bioinformatik.uni-koeln.
de/~proclust

INTRODUCTION

The advances in experimentally determining or verifying
the three-dimensional structure of proteins do not keep up
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with the ever-increasing sequencing capacities. A standangroblem becomes more acute as the increase of the size
method for alleviating this problem is using homology of sequence databases (Spang & Vingron, 2001) leads to
between a target sequence of unknown structure and iacreased noise level; the twilight zone is ever increasing.
protein of known structure to predict the structure of the Proteins are often part of protein families. This kinship
target. Homology, the existence of a common ancestogan be used to find a related known structure, which is
can be detected by a pair-wise comparison if the sequendedden in the twilight zone, by using other, more closely
similarity is “significant” (Chothia & Lesk, 1986; Sander related family members d@atermediatesequences. This

& Schneider, 1991; Rost, 1999). This allows to inferconcept is calledransitivity and refers to the following
structural or even functional similarity (Brennet al,  property of mathematical relations: A and B are related
1998; Pearson, 1997, 1995). as well asB and C, then A and C' are also related.
Transitivity, as it applies to the problem of finding remote
homologues, is depicted in Fig. 2; it has been examined in
a number of approaches (Abagyan & Batalov, 1997; Park
1 etal, 1997; Pearson, 1997; Gerstein, 1998; SalaaiaV,
1999; Arvestadet al, 2000; Boltenet al, 2001). They
establish that transitivity does work in this context, but
unfortunately only to a limited extent. Note, the relation
we are considering and which we are trying to detect
] through sequence similarity is structural homology, which
is not truly a transitive relation in the mathematical sense.
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Fig. 2. This partial evolutionary tree demonstrates the biological
1 mechanism which allows the use of transitivity. Proteifisand
C have diverged too far to establish homology based on their low
0 25 % 75 10 125 15 175 20 25 25 275 %0 similarity value of 20%. However, as the existence of an (unknown)
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Fig. 1. For pairs of domain ;equenclyes from SCOP 1.53 we shovfommon ancestor a8 andC' as well asA andC' can be established

histograms of alignment scores: the sequences are either membdjye to the reasonably high similarity values of 35% respectively.

from distinct SCOP super-families (top) or the same SCOP super40% of their sequences, proteihmight serve as the missing link.

family (bottom). Only pairs with sequence similarities of up to 30%

are s_hown. Note the extensive _overlap_; separating the two classes-l-here are a number of factors contributing to this
of pairs by alignment score is virtually impossible. There are eve

more true homologues with very low sequence similarity compareglmltatlons' On one hand we know from the theory of
with SCOP 1.37 (not shown). random graphs (Spencer, 2001) that large enough random

similarities will produce so-called super-clusters, very
large clusters connecting large parts of the sequence space.
It is well known that a large proportion of true homo- This can be dealt with by using more stringent criteria for
logues are hidden in the so-callegilight zone their se-  significance.
guence similarity is too low to separate them from pairs of Multi-domain proteins pose the more acute problem.
sequences with equal or even higher sequence similarithomains are compact, semi-independent structural units
due to chance, which is drastically apparent in Fig. 1. Thiof proteins, which often appear highly conserved in a
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number of multi-domain proteins; i.e., proteins containinglowering thresholds in a threshold graph and computing
two or more domains, see Fig. 3 for a schematic view. Thetrongly connected components at each threshold level.
edges in Fig. 3 represent significant sequence similarityPresence of ambiguous proteins, which potentially are
and, considered individually, are correct. However, amulti-domain proteins, results in cluster splitting.
symmetrisimilarity relation does not distinguish between Enright & Ouzounis (2000) employ a routine all against
two proteins being globally similar and one protein beingall BLAST search and subsequently ignore hits below a
similar to an individual domain of a multi-domain protein. specified E-value threshold, yielding (&, 1)-similarity
This leads to incorrect links via intermediate sequencematrix. They disregard all differences in similarity for
between distinct single-domain proteins (cf. protedn hits above the threshold. Extensive post-processing
and D in Fig. 3). An asymmetricsimilarity relation or  requiring additional Smith-Waterman is performed to
distance measure can be employed to distinguish betweasymmetrize the matrix and to deal with multi-domain
the two distinct flavors of similarity mentioned above. proteins, assuring that transitivity holds row-wise in the
Since obtaining domain annotation is neither possible isimilarity matrix. Subsequently, rows are clustered using
general nor computationally feasible, a simple heuristicsingle links. An evaluation of performance is provided by
(Bolten et al, 2001) was proposed which we extend ininspection of some examples.

this manuscript to deal with the aforementioned problems. Tatusov et al. (1997) build clusters of orthologous
groups (COG’s) starting with proteins from seven different

A L] | ] species. At first significant hits across species are detected
W(B’A)T lW(A’B) and so—calle_d “tri_angle re_Iationships”.used as seeds_for
clusters. An iterative merging process is performed, which
s [ [ | tries to account for the multi-domain problem in the
merging step. Novel protein sequences can be compared
W(C'B’HW(B'C) to the existing clusters to provide structure and function
c [ []  prediction.
Our method is designed to provide a clustering as an aid
w(D,C)HW(C'D) in finding remote homologues; the multi-domain problem
o [ is directly addressed although we do not pretend to fully

Fig. 3. This figure motivates our desire for an asymmetric distanceSOIVe it. However, the asymmetric distance employed

measure. Herel and D are proteins consisting of distinct domains results _m_ very high sensitivity while keepln_g error rates
depicted in the different shades of grdy.and C' are two multi- @t @ minimum, as the large-scale evaluation shows. In
domain proteins each containing both domains. I§ynmetric  the following sections, we give a detailed account on
distance measure is used, A, B) =w(B, A), thenanincorrect ~ the extensions to the graph-based clustering algorithm we
link from A to D is established as long as the edges are present ihave developed, describe the data sets used, present and
the threshold graph. In the asymmetric case the length-dependediiscuss our results with an emphasis on the extend of
scaling will result inw(A4, B) < w(B, A) and possibly removal of  transitivity used and problems with multi-domain proteins.
the edge(4, B) when going over to a threshold graph. Thus, the The evaluation process also providemlicit guidance for

links from B to A and fromC' to D will be lost and hencel and D choosing parameters. We conclude with an outlook on
will not longer be linked. further developments.

A number of related approaches have used the concepit GORITHM
of transitivity for large scale analysis of protein sequencesthe gigorithm is an extension of the graph-based clus-
Systers (Krause & Vingron, 1998) uses an iteratedeing proposed in Boltert al. (2001), which we will
BLAST or FASTA search for computing clusters. The gymmarize very briefly in the following. An introduction

iteration proceeds by picking the protein most distantly;, graph-based clustering can be found in Jain & Dubes
related to the query subject to some consistency 3”91988).

termination conditions. Clusters computed for all proteins
are subsequently merged and processed further. Potentsl Compute a complete undirected gragh where
multi-domain problems are not explicitly dealt with inthis ~ vertices are identified with protein sequences and
approach. each edge represents a Smith-Waterman local align-
Protomap (Yoneet al, 1999) also uses a graph-based ment (Smith & Waterman, 1981) of the two incident
approach where edges represent sequence comparisonssequenced” and ), weighted with the raw Smith-
and the corresponding edge weights result from a scoring Waterman score, denoted by r@#¥ (). Note, an
scheme combining BLAST, FASTA and Smith-Waterman  arbitrary distance measure can be used as the weight
E-values. A hierarchy of clusters is obtained by iteratively  instead of the Smith-Waterman score.




e Replace each undirected edde’, @} with two  Post-processing: Merging clusters
directed edgeg P, @) and (Q,P) modifying the  As was noted before (Bolteet al, 2001), the clustering

weights such that procedure seems to be rather conservative and likely to
raw( P, Q) * 100 produce clusters which partition SCOP super-families. It
w(P,Q) = W was a natural extension to investigate whether a criterion

9’

could be found to merge those clusters without introducing

and similarly for w(Q, P). Dividing by the self- false positives. Give_n the high quality of the clusters, we
similarity raw(P, P) corrects for amino-acid com- Propose to use Profile-HMMs for that task. The protocol
position and, as the self-similarity is proportional Providing the greatest gain was the following:

to the number of amino-acids d?, scales the sim-
ilarity value by the length ofP. Hence,w(P, Q)
andw(Q, P) will generally be distinct; the distance
measure we defined between protein sequences & A multiple alignment was built for each set of se-
asymmetricThe resulting graph is denoted bY;. quences with the ClustalW (Thompsen al., 1994)
software version 1.7 using the default parameters.

Clusters containing at least twenty sequences were
selected.

e Proceed to the threshold gragh(7) by removing all

edges of weight— i.e., a similarity percentage values \\ith the HMMER package (Eddy, 1998), version
of— less tharr. 2.1.1 from http://hmmer.wustl.edu/, profiles were
built with the hmmbuild and hmmcalibrate programs.

e Compute all strongly connected components (SCCs) i
Again, default parameters were used.

(Sedgewick, 1990) iri7;(7). The strongly connected
components, maximal sets of vertices such that diy
rected paths exists frof? to () and from() to P for

all verticesP, () in a SCC, are output as the resulting
clusters.

For each such cluster profile all sequences not con-
tained in the cluster were scored using the profile and
the E-value was recorded.

ClustersC' and D were merged, if, using the profile
for clusterC, the average E-value of sequences from
D was below some threshotd

This algorithm and the results presented in (BoIten'
et al, 2001) raised a number of questions and opened
several possible avenues for improving the performance.
To avoid over-fitting and to concentrate on the highesbomplexity and Running Time
performance pay-off extensions, we chose to restric
ourselves to graph pruning based on score significanc
and a Profile-HMM based post-processing step presentestf
in the following. Other extensions were implementedO
and evaluated, and either matched or, in combinatio
insignificantly exceeded the performance presented in thi
paper (not shown).

he dominating term is the computation of the pair-wise
quence comparisons, which is quadratic in the number
sequences. However, it only has to be performed once,
it is trivial to distribute to a large cluster of CPU’s, and
édditions or changes to the computed data set can be made
incrementally. The resulting graplis and G, are large

but can be easily dealt with in real-time. The computation
Filtering by Score Significance of the SCC’s is linear in the number of vertices plus

Preliminary analysis (not shown) suggested that espdl® number of edges (Sedgewick, 1990). The clustering

cially for short sequences an improvement in performanc S we_II as subsequent filtering operations on the graphs
might be gained by pruning the graph further based o enefit greatly from the fact that the threshold graphs
the statistical significance of the score. We employed th&«(7) are typically very sparse. We observed an average
standard extremal value distribution (Karlin & Altschul, VE"t€x degree of 17.6. .

1990) to estimate maximal scores observable with the FOr the data set ALL (see below for details) the

Smith-Waterman algorithm for random sequences (WateroMith-Waterman computations needed 70 CPU days, the

man & Vingron, 1994) of given lengths. The parametersCIU_Ste”ng needs about 30 seconds. For the cluster merging
of the extremal value distributiony = 0.04469 and  USing HMMs about 21 CPU days were needed.

p = 0.971029, were estimated by computing alignments

of random sequences using our Smith-Waterman impleUVlPl—E'V'E'\”—Aﬂo'\I AND EVALUATION

mentation with the parameters listed below. The pruningrhe method has been implemented in a C++ software
consisted of removing edgdd’, ()) from the graphG ~ which has been published under the GNU General Public
if the significance of the score(P, ) was below the License (GPL). It has been developed and tested on a
chosen significance thresholg. Various values fort, = Compag ES40 running Tru64 Unix V5.1, using Compaq’s
were tested. cxx compiler, version 6.20. In addition, it has been tested




and used on various Sun Ultra computers (Ultra 5 uppeed up computations the CD-HI (Cluster Database
to Sun Enterprise 10000), running Solaris 7 and earlieat High Identity) software (Liet al, 2001) was used
versions, using the GNU g++ compiler version 2.9x andio remove redundant sequences at the 80% or higher
above. sequence identity level. A cutoff at this high identity level
In the Smith-Waterman algorithm (our own im- is unlikely to influence the results and greatly facilitates
plementation is included in software), the following re-computations should they become necessary.
parameters (Bolteat al., 2001) were used: an integerized
version of the BLOSUMB80 substitution matrix, gap open-
ing penalty90 (aboutl.5 times the average a.a. identity
score), and gap extension penally The substitution

ALL: This dataset was created by merging SCOP and
SPROT.

_ _ Evaluating Performance
matrix was chosen based on experiments of one of the

authors (Schneckener, 1998). Guidance for (:hoosinéxe evaluated the validity of our hypothesis, that the asym-
the gap penalties was provided by experimentation witn€tfic sequence length-dependent distance measure im-
single-link clustering on a subset of SCOP; cf. (BoltenP"0VesS recognition of remote homologues while avoiding

et al, 2001). The choice of gap penalties proved not to bd@!S€ Positives due to problems with multi-domain pro-
critical (not shown). teins, by using SCOP as test set. The annotation given

by the SCOP super-family classification of a (domain) se-
Data sets guence was taken as the “truth” to which we compared the
We used the following datasets, which are availablec!UStering we computed. Note, the clustering for the ana!y—
from  http://www.bioinformatik.uni-koeln.deproclust/ siswas perfo_rmed on the combined data set ALL contain-
download/ for easier reference. ing the domain sequences from SCOP as well as V|r_tually
all non-redundant SWISS-PROT sequences. In particular,
Table 1. Descriptive statistics of the datasets used. ALL included thecompletesequences which contain the
domain sequences from SCOP. A failure of the method
would be clearly detectable by incorrectly joining pairs of
sequences from distinct SCOP super-families by virtue of
SCOP SPROT  ALL a multi-domain SWISS-PROT sequence containing them
both.

For the further analysis we will refer to a (unordered)

Number of sequences 9.403 47.160 56.563

Average length 176 381 346 . .
Number of families 1.064 s s pair of sequences from the same SCOP super-family
Number of super-families 807 J/ J/ as true homologues, and to a pair of sequences in the
Number of folds _ 534 / / same computed cluster pgedictedhomologues. We will
Proteins per super-family uwr s / call a predicted true homologue paiue positive(TP),
Homologous pairs 608.578 / / . .
Non-homologous pairs 43504.925 % a true homologue which has been not predictaide

negative(FN), a true non-homologue pair predicted to be
homologuefalse positivgFP) and a true non-homologue
pair not predictedirue negative(TN). The following
derived quantities allow to summarize the performance:

1.53 from http://astral.stanford.edu/scopseq-1.53.htmPeNsitivityspecifies the proportion of homologue pairs

The domain sequences and classification were obdetected 4TP
tained from http://astral.stanford.edu/seq.cgi?get= sens = ——————
scopdom-seqres-all;ver=1.53. This file does not contain # TP+ #I'N

any sequences from SCOP classes 8-9. After removingndspecificitythe proportion of correct predictions among
all sequences with less than 40 a.a., the sequences wetee pairs predicted to be homologues

filtered for low complexity regions by using the software

seg (Wootton & Federhen, 1993) with parameters “12 spec — #TP .

1.8 2.0 -x". Sequences containing masked a.a. as well as #FP + #TP

duplicate sequences were removed.

SCOP: We used SCOP (Hubbaet al, 1999) version

A perfect method would haveens = spec = 1, which
SPROT: SWISS-PROT (Bairoch & Apweiler, 2000) re- implies that neither false positive nor false negative errors
lease 39 from ftp://ftp.ebi.ac.uk/pub/databases/swisspraire made.
was processed analogously to SCOP: short sequencedg-or comparison with PSI-Blast (Altschet al, 1997)
of less than 40 a.a. as well as sequences containinge used PSI-Blast version 2.1.2 from ftp://ncbi.nim.nih.
a.a. masked due to low complexity were removed. Tagyov/blast/executables with the following parameters “-h




E — Value -e E — Value -j 20 -M BLOSUMS80 -b

0 -F T". PSI-Blast isnot symmetric in the sense that it 100 . . .

does not necessarily find sequetitstarting from a query Clustering

. . PSI-BLAST ----—-
sequence), even if the reverse search, using sequence 9o | .
P as the query, does fin@. To compensate for that,
we considerearderedpairs of sequences from SCOP in 80 - i
the comparison. That is, for the two sequendeésand 20l |
@) we considered both paifd’, Q) and(Q, P), running
two separate PSI-Blast searches withand Q) as query 60 |- \\—

sequences. Given a query sequeRceve defined P, Q)

to be a homologue predicted by PSI-Blast)ifvas among
those sequences found and vice versa for queries pom
Since the SCOP classification is identical for bih Q)
and(Q, P) whereas predictions by PSI-Blast might differ, 30 b .
it can occur that( P, Q) and (Q, P) are different with
respect to their status of true/false positives respectively
negatives, when evaluating PSI-Blast.

This way of counting predictions is in favor of PSI-
Blast. It results in a higher sensitivity of PSI-Blast, as 0 R
the many cases where asymmetric, i.e. only one pair of 0o [0/0610 080 90 100
(P, Q) or (Q, P) was predicted, PSI-Blast search results P

. - ig. 4. This comparison with PSI-BLAST shows sensitivity versus
were observed (not shown) gave at least partial credit. Algyq ificity for both methods: the clustering has been computed on

50 |

Sensitivity [%]

searches were performed on the ALL dataset. the data set ALL, evaluation is done on the data set SCOP. As
already the partial curve indicates, a greater flexibility with respect
DISCUSSION to choosing an appropriate specificity vs. sensitivity tradeoff is

We chose parameters as to achieve maximal sensitivit§/°//ded by PSI-Blast.

at a specificity of 99%. This rate of 1% false positives

has been chosen in a number of publications (Park ) )

et al, 1997: Brenneret al, 1998: Parket al, 2000; Pairs of sequences which are connected via a number of
Enright & Ouzounis, 2000) as a reasonable COmpromisj@termediate sequences, pair-wise similarities vary over a
which substantially improves sensitivity compared withWide range with a large proportion of pairs having score

requiring perfect specificity. below the clustering threshotd(not shown).
Observe the rather “flat” shape of the sensitivity vs.
Table 2. Histogram of super-family sizes in SCOP vs. cluster sizes specificity curve in Fig. 4 and the sudden rise in sensitivity

and loss of specificity, once the threshold is lowered below

fNote to referees: we can make length- and distance- and score-histograms
Size Proportion of ~ Proportion per cluster available for download
super-families  of clusters

1 22.7% 65.7%
2-5 37.8% 24.5% ol
6-10 16.0% 4.4% ool
11-20 11.0% 3.0% € |
21-50 8.3% 1.9% § o
51-100 3.0% 0.4% |
>100 1.2% 0.1% :

5
€ 2000 |
2

2000 [

1000 -

The clustering computed appears to have a tendency .. l I
o partition SCOP super-families. This can be deduced ig. 5. The histogram of scosreZ:?cl::y?rue positives in a clustering of
T;O.rl.r;jl g}g glggﬁp:ggg:glgnndoize gassggginr;gi)ﬂleﬁ:gr dsdzeetg;a_ta se_t ALL with threshola = 1:_’).1% shows a larger number of

e ’ Balrs with very low sequence similarity. Scores were taken from the
random similarities do not emerge. Roughly half of thecomplete directed grap®,.
resulting clusters are “non-trivial”. That is, they contain




Table 3. Results obtained for our clustering (top) as well as PSI-Blastdegree of transitivity inherently and correctly. Fig. 6 also
(bottom). Searches have been performed on the ALL dataset, the evaluatiqﬁdirectly demonstrates that clusters are inhomogeneous
on sequences from SCOP. The number of TN is 87,084,524 minus the . .

number of FP with respect to distances between members.

18000

" Shorter Patn
Longer Path =====--

16000

T 1—1tis #TP #FP #FN  sens. spec.

14000 |-

12000 -

16.3% 2.3107% 230,240 2,083 374,949 38.0% 99.1%
13.1% 8.310~7 364,458 3,096 240,731  60.2% 99.2%
13.1% 3.11077 363,545 3,028 241,644 60.1% 99.2%

10000 -

Protein Pairs

8000

6000

E-value #TP #FP #FN  sens. spec. ol
10+0 662,076 27,467 547,612 54.7%  96.0%
101 574,887 5934 635491 47.5%  99.0% ol . - o
1072 517,851 1,187 692,527 42.8%  99.8%
10—4 485,437 188 724,939  40.1% >99.9%
200000
Shorter Path
Longer Path ==-----
. . . ) . 180000 B
T = 4%, at which level spurious similarities due to
random similarities appear. This does not allow to improve | I
the recognition of homologues, even at the expense of 140000 |- 1

a lower specificity, by varying the threshold. In contrast
PSI-Blast can easily be re-run, after the initial profiles
have been generated, with a larger E-values threshold to
find a larger proportion of homologues, while sacrificing
specificity. 60000 -

40000 [

120000

100000

Protein Pairs

80000 [

Using Transitivity

We estimated the degree of transitivity used by computing

distances between true positive and false positive SCOP °5 s o pp p

sequences. In graphs a distance between two vertices is Length of Path

naturally given by the length — i.e., the number of edgedig- 6. Since Ga(7) is directed, andl'P as well asF'P are in

— of a shortest path connecting them. Note, in directed® same SCC, directed paths going in both directions exist by

graphs the distance from to Q is not necessarily equal definition. We show hlstqgrams of the shorter respe_ctlvely longer

to the distance fronf) to P; in a SCC paths fronP to ga;)th between false positives (top) and trug positives (bottom).

. . L . serve the abundance of the latter for distance 3-5 and the

@ and Vice versa e_X'St by definition. As Fig. 6 ShQWS’ existence of true positives at even larger distances up to a maximal

substantial proportion of true homologues have distancgisiance of 13.

two or larger, with a significant drop-off at distance five.

That is, one up to four intermediate sequences are needed

for about 50% of the super-family pairs. However, still a . . . . .

sizable proportion has larger distance up to a maximum op€/ing with multi-domain proteins

13. The evidence supporting the success of our method in
False positives are rare (note the different scale for theealing with multi-domain proteins (their abundance is

y-axis) and have an average distance of about 4.6, whictiepicted in Table 4) is indirect and relies on the presence

is substantially larger than the 2.1 we observe for the truef the multi-domain protein sequences from SWISS-

positives. However, there is a wide variation of distances?ROT in the ALL dataset. As we have demonstrated,

as well as a substantial overlap of the two histograms fointermediate sequences are used to a large extend to link

the two different classes of positives. Hence, true positiveSCOP domain sequences but nevertheless few of those

cannot be separated from false positives by their distancéinks are incorrect, as indicated by a specificity of 99.2%.

If high distances were an indicator for false positives, this We analyzed the false positive errors and observed the

would show an overuse of transitivity. The opposite seem#ollowing causes of errors. In general such errors are

true, errors are rather due to high sequence similarity byhe result of “unwanted” edges, e.g4, B) or (D, C)

chance which supports the claim that our method limits thén Fig. 3, not being removed when going over to the

20000 [




Table 4. The abundance of multi-domain proteins and the number ofp;57:5 [ Fxz ]

domains is tabulated for the 33,409 sequences from ALL for which >32%£ 7310%
information about the domain composition could be derived from Pfam 6.2 ]
(Batemaret al, 2000). P23344 | | 2o+

31.1% C 7 21.4%

PoOS44 i [ ]
26.8% 29.8%
No. of domains  No. of proteins 062270
1 25.738 o
5 4.902 P42689
3 1.261
4 580 dlirk__
5 261
6 181 P33497
7 137
>8 349 Fig. 8. A larger multi-domain problem in cluster # 1517: Clustering
of ALL, using a a threshold off = 21.3% and a significance
total 33.409 thresholdt, = 1 —3.1- 10" 7. There are no edges between P12715

and P33497 in the graph. Domain annotation obtained from Pfam
6.2 (Batemaret al,, 2000).

threshold graphG,(7). In the examples in Fig. 7 and _ .
Fig. 8, the length-dependent scaling heuristic we emplopimilarlength, sharing exactly one well conserved domain.
fails because the shared domains are too well conservé#esides incorrectly linking those two proteins, this can

for the length ratio of the proteins involved. also lead to incorrect links between distinct single-domain
proteins analogously to Fig. 3. These and other possible
1ml proble_ms appgqr.however to be rare as indicated by the
dimidal _ very high specificity of our method.
>32%£ j15.4%

MDH_ECOLI | [ eromes ] A
lG.O%ﬁ j>32% L 7

dmicee

|

Fig. 7. This multi-domain problem is present in cluster # 1779 for ﬁ j

data set ALL using a threshold of = 13.1% and a significance c [Ieea | Pom® i
threshold#, = 1 — 3.1 - 10~". MDH_ECOLI is a Malat- ()
Dehydrogenase frori. coli, dlmldalis the NAD(P)-binding N- D ‘ ‘ bomB ‘ ‘
terminal (PF00056) andlmlda2the C-terminal domain (PF02866)

of the Malat-Dehydrogenase fro®us scrofa The multi-domain ﬁ j

problem depicted in this picture disappears if the threshold is raised E l DomB ]

aboye15.4%, since the edge linking MDHECOLI to dlmldal _Fig. 9. This schematic picture shows a case where our simple
vanishes. There are further examples of these two domains causing ristic fails. Due to the “ladder” of proteins with just the right

groblemnsj at fgreshc()::zs alsdhighﬂs: _18'8%' Th_ere at;e no ((jaoflges increase in length, none of unwanted edges are removed when going
etweendlmldalanddimida2 Domain annotation obtained from g er tg the threshold graph. Such cases have been observed in the

Pfam 6.2 (Batemaet al, 2000). analysis of false positive appearing for lower threshotdgnot
shown).

There are also some systematic errors associated with
the heuristic. The most common one is caused by edges
from a single-domain protein to a multi-domain protein Merging Clusters
(cf. proteinsA and B respectively in Fig. 3 or Fig. 9) The use of profile HMMs to merge clusters with and
having weights above the thresheldince the differences assign singletons, or one-element clusters, to those large
in length are not large enough to have enough of a scalingnough to allow proper training of HMMs showed only
effect. Typically this will appear, see Fig. 9, as a “ladder”a very modest improvement of 3.3% in sensitivity with a
of proteins of increasing length. Each step of this ladder ismall loss of 0.14% in specificity, cf. Table 5.
a valid edge in itself. We also investigated the following graph theoretical ap-
Another problem is posed by multi-domain proteins ofproach. Compute the average number of edges connecting




Table 5.Changes in true positivef\ TP, and false positive&\FP, usingthe  ACKNOWLEDGMENTS
HMM-based cluster merging for varyirg-valueare shown. Our choice of
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sions.
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