
Subgraph Induced Planar Connectivity Augmentation

(Extended Abstract)

Carsten Gutwenger� Michael J�ungery Sebastian Leipertz Petra Mutzelx

Merijam Percan{ Ren�e Weiskircherk

Abstract

Given a planar graph G = (V;E) and a vertex set W � V , the subgraph induced planar connectivity
augmentation problem asks for a minimum cardinality set F of additional edges with end vertices in W
such that G0 = (V;E[F) is planar and the subgraph of G0 induced byW is connected. The problem arises
in automatic graph drawing in the context of c-planarity testing of clustered graphs. We describe a linear
time algorithm based on SPQR-trees that tests if a subgraph induced planar connectivity augmentation
exists and, if so, constructs an minimum cardinality augmenting edge set.

1 Introduction

For an undirected graph G = (V;E), W � V , and EW = f(v1; v2) 2 E : fv1; v2g � Wg let GW = (W;EW)
be the subgraph of G induced by W . If G is planar, a subgraph induced planar connectivity augmentation
for W is a set F of additional edges with end vertices in W such that the graph G0 = (V;E [F) is planar
and the graph G0

W
is connected.

We present a linear time algorithm based on the SPQR data structure that tests if a subgraph induced
planar connectivity augmentation exists and, if so, constructs a minimum cardinality augmenting edge set.
The diÆculty of the subgraph induced planar connectivity augmentation problem arises from the fact that
the computation of an appropriate planar embedding is part of the problem. Once the embedding is �xed,
the decision becomes trivial.

The subgraph induced planar connectivity augmentation problem arises in the context of c-planarity
testing of clustered graphs. A clustered graph is an undirected graph together with a nested family of
vertex subsets whose members are called clusters. c-planarity is a natural extension of graph planarity for
clustered graphs and plays an important role in automatic graph drawing. While the complexity status of
the general problem is unknown, c-planarity can be tested in linear time if the graph is c-connected, i.e.,
all cluster induced subgraphs are connected [Dah98, CEF95]. In approaching the general case, it appears
natural to augment the clustered graph by additional edges in order to achieve c-connectivity without loosing
c-planarity.

The results presented in this paper are the basis for a �rst step towards this goal. Namely, the algorithm
presented here leads to a linear time algorithm that tests \almost" c-connected cluster graphs, i.e., cluster
graphs in which at most one cluster is disconnected, for c-planarity [GJL+02a].

In general, connectivity augmentation problems consist of adding a set of edges in order to satisfy certain
connectivity constraints such as k-connectivity or k-edge-connectivity. The �rst results on this area are due
to Lovasz [Lov79]. Since then, augmentation results for many di�erent connectivity properties have been

�c a e s a r - center of advanced european studies and research, Friedensplatz 16, 53111 Bonn, Germany, gutwenger@caesar.de
yInstitut f�ur Informatik, University of Cologne, Pohligstra�e 1, 50969 K�oln, Germany, mjuenger@informatik.uni-koeln.de
zc a e s a r - center of advanced european studies and research, Friedensplatz 16, 53111 Bonn, Germany, leipert@caesar.de
xTechnische Universit�at Wien E186, Favoritenstra�e 9{11, 1040 Wien, Austria, mutzel@ads.tuwien.ac.at
{Institut f�ur Informatik, University of Cologne, Pohligstra�e 1, 50969 K�oln, Germany, percan@informatik.uni-koeln.de
kTechnische Universit�at Wien E186, Favoritenstra�e 9{11, 1040 Wien, Austria, weiskircher@ads.tuwien.ac.at

1

proved. For more information on connectivity augmentation problems see the surveys, e.g., by Frank [Fra92]
and Khuller [Khu97].

Planar connectivity augmentation problems have been introduced by Kant and Bodlaender [KB91]. They
have shown that the problem of augmenting a planar graph to a planar biconnected graph with the mini-
mum number of edges is NP-hard. Moreover, they have given a 2-approximation algorithm for the planar
biconnectivity augmentation problem. Fialko and Mutzel [FM98] have given a 5

3
-approximation algorithm.

Polyhedral investigations of this problem have been conducted, e.g., in [Mut95] and [SJ97].
To our knowledge, this is the �rst time that subgraph induced planar connectivity augmentation is

investigated. It is a generalization of planar connectivity augmentation. The subgraph induced connectivity
augmentation problem is a special case of a certain connectivity augmentation problem considered, e.g., by
Stoer [Sto92] in the context of network survivability.

This paper is organized as follows. Section 3 describes the easy case in which the embedding of the given
graph is �xed, e.g., when the graph is triconnected. The most interesting case is the treatment of biconnected
graphs in Section 4 with the help of the SPQR-tree data structure and the resullts of the previous section.
Finally, Section 5 is concerned with the non-biconnected case in which we construct the block-cut tree of G
and use the algorithm for biconnected graphs for each block along with a planarity testing step. The proofs
omitted in this extended abstract will be given in the full version [GJL+02b].

2 Preliminaries

SPQR-trees have been suggested by Di Battista and Tamassia [BT96]. They represent a decomposition of
a planar biconnected graph according to its split pairs (pairs of vertices whose removal splits the graph or
vertices connected by an edge). The construction of the SPQR-tree works recursively. At every node v of
the tree, we split the graph into the split components of the split pair associated with that node. The �rst
split pair of the decomposition is an edge of the graph and is called the reference edge of the SPQR-tree.
We add an edge to each of them to make sure that they are biconnected and continue by computing their
SPQR-tree and making the resulting trees the subtrees of the node used for the splitting. Every node of the
SPQR-tree has two associated graphs:

� The skeleton of the node associated with a split pair p is a simpli�ed version of the whole graph where
some split-components are replaced by single edges.

� The pertinent graph of a node v is the subgraph of the original graph that is represented by the subtree
rooted at v.

The two vertices of the split pair that are associated with a node v are called the poles of v. There are four
di�erent node types in an SPQR-tree (S-,P -,Q- and R-nodes) that di�er in the number and structure of the
split components of the split pair associated with the node. The Q-nodes form the leaves of the tree, and
their is one Q-node for each edge in the graph. The skeleton of a Q-node consists of the poles connected
by two edges. The skeletons of S-nodes are cycles, while the skeletons of R-nodes are triconnected graphs.
P -node skeletons consist of the poles connected by at least three edges. Figure 1 shows examples for skeletons
of S-, P - and R-nodes.

Skeletons of adjacent nodes in the SPQR-tree share a pair of vertices. In each of the two skeletons, one
edge connecting the two vertices is associated with a corresponding edge in the other skeleton. These two
edges are called twin edges. The edge in a skeleton that has a twin edge in the parent node is called the
virtual edge of the skeleton.

De�nition 1 (Expansion Graph). Let e = (u; v) be an edge in a skeleton S of a node � of the SPQR-tree
T of G. Since e is an edge in a skeleton, the vertices u and v are a split-pair of G. Then we de�ne the
expansion graph of e as follows:

1. If � is the Q-node for edge e0 in G, then the expansion graph G(e) of e is de�ned as follows: if e is
the virtual edge of � then we de�ne G(e) as G(e) = (V; (E � fe0g) [feg). Otherwise, we de�ne G(e)
as G(e) = (fu; vg; fe; e0g). Therefore the expansion graph is either isomorphic to G or to S.

2

B1

B2

B3

v1v1

v2 v2

ss

tt

e1

e2

e3

(a) Case S-node

C1 C2 C3

ss

t t

e1 e2 e3 e4

(b) Case P -node

U1 U2

U3

U4 U5

ss

tt

e1 e2

e3

e4 e5

(c) Case R-node

Figure 1: The structure of biconnected graphs and the skeleton of the root of the corresponding SPQR-tree.

2. If � is an R-node or S-node, then the expansion graph of e is the union of all the split components of
the split pair fu; vg in G that contain no vertices of S except u and v together with edge e.

3. If � is a P -node, then there are at least three split components of the pair fu; vg in G. In the construction
of T , all edges ei of S except the virtual edge are associated with a subgraph Gi of G. Thus we de�ne
the expansion graph of each ei as the graph Gi together with edge e. The expansion graph of the virtual
edge is de�ned as the split component of fu; vg that contains the reference edge of T (the edge of G
that is used to start the decomposition) together with edge e.

1

2 3

4

5

6

R-node

P-node

Q-node

S-node

1

3

4

1

4

1

4

2

5

1

6

4

Figure 2: A graph G and its SPQR-tree (the Q-nodes of the R- and S-node are omitted).

All leaves of the SPQR-tree are Q-nodes and all inner nodes S-, P - or R-nodes. When we see the SPQR-
tree as an unrooted tree, then it is unique for every biconnected planar graph. Another important property
of these trees is that their size (including the skeletons) is linear in the size of the original graph and that
they can be constructed in linear time [BT96] [GM01]. As described in [BT96] [GM01], SPQR-trees can be
used to represent the set of all combinatorial embeddings of a biconnected planar graph. Every combinatorial
embedding of the original graph de�nes a unique combinatorial embedding for each skeleton of a node in
the SPQR-tree. Conversely, when we de�ne an embedding for each skeleton of a node in the SPQR-tree,
we de�ne a unique embedding for the original graph. The skeleton of S- and Q-nodes are simple cycles, so
they have only one embedding. But the skeletons of R-and Q-nodes have at least two di�erent embeddings.
Therefore, the embeddings of the R- and P -nodes determine the embedding of the graph and we call these
nodes the decision nodes of the SPQR-tree.

3 An Easy Case: Fixed Embedding

We consider the case that the planar graph G is given with a �xed embedding. In the following, we call
the vertices belonging to W blue vertices. Our task is to insert edges so that the induced subgraph GW is

3

connected and G is still planar after edge insertion.
Our algorithm looks at each face f in G that has at least two non-adjacent blue vertices on its boundary.

We start at an arbitrary blue vertex v on the boundary of f and introduce a new edge through f that connects
it to the next blue vertex on the boundary. Thus we step through the blue vertices on the boundary of f ,
connecting each to his successor on the boundary until we come back to v. We call the resulting graph G0.
Note that we only introduced a linear number of edges in this step and that G0 is planar. Another important
property of G0 is that G0

W
is connected if and only if there is a planar augmentation for W in G.

Then we compute the graph G00 by deleting all vertices from G0 that are not blue. All edges introduced
in the �rst step receive value 1 and all others value 0. We can �nd a minimum spanning tree in G00 in
linear time because there are only two di�erent weights on the edges. One way to do this is to use Prim's
Algorithm where we use two lists instead of the priority queue. The algorithm may now determine that G00

is not connected. Then we know that there is no planar augmentation for G. Otherwise, the edges of weight
1 in the minimum spanning tree are our solution. Thus, we can solve the problem in linear time.

4 The Algorithm for the Biconnected Case

In this section we suggest an algorithm in the case that the given graph G is biconnected. Firts, we
compute the SPQR-tree T of G. In Section 4.1, we present a recursive algorithm for coloring all edges in
all skeletons of the SPQR-tree. This coloring stores information about the position of the blue vertices in
each skeleton of the SPQR-tree by assigning three di�erent colors to the edges. The coloring enables us
to test if an augmentation is possible by examining the colors in each skeleton. This testing algorithm is
explained in Section 4.2. If an augmentation is possible, we compute an embedding of the graph that allows
an augmentation (see Section 4.3). Then we can apply the algorithm of the previous section to this �xed
embedding in order to compute the list of edges we have to solve the augmentation problem (see Algorithm 1
for an overview of the algorithm for biconnected graphs).

Algorithm 1: The algorithm BiconnectedAugmenter computes a planar connectivity augmentation for
a planar biconnected graph G and a subset W of the vertices, if it exists

Input: A biconnected planar graph G and a subset W of its vertices

Result: true if and only if there is a planar augmentation for W ; in the positive case an embedding
� and the minimum cardinality augmenting edge set will be returned.

Calculate the SPQR-tree T of G;
Make an arbitrary node r which is not a Q-node the root of T ;
MarkEdgesPhase1(r;W);
MarkEdgesPhase2(r;W);
BiconnectivityFeasibilityCheck(T);
Embedding � = CalculateEmbedding;
return FixedEmbeddingAugmenter(�;W);

4.1 The Coloring Algorithm

Again we call a vertex blue, if it is contained in W and black otherwise. We assign one of two colors to each
edge in each skeleton: blue or black. We call an edge in a skeleton blue, if its expansion graph contains blue
vertices and black otherwise.

Additionally, we assign the attribute permeable to some blue edges. Intuitively, an edge is permeable if we
can construct a path connecting only blue vertices through its expansion graph. Let G(e) be the expansion
graph of edge e in skeleton S. In any planar embedding G(e), there are exactly two faces that have e on
their boundary. This follows from the fact that in a planar biconnected graph, every edge is on the boundary
of exactly two faces in every embedding. We call the edge e in S permeable with respect to W , if there is
an embedding � of G(e) and a list of at least two faces L = (f1; : : : ; fk) in � that satis�es the following
properties:

4

1. The two faces f1 and fk are the two faces with e on their boundary.

2. For any two faces fi; fi+1 with 1 � i < k, there is a blue vertex on the boundary between fi and fi+1.

We call a skeleton S of a node v of T permeable if the pertinent graph of v and the virtual edge of S
have the two properties stated above. So S is permeable if the twin edge of its virtual edge is permeable.

We develop an algorithm that marks each edge in every skeleton of the SPQR-tree T of G with the
colors black or blue and assign the attribute permeable depending on the expansion graph of the edge. The
algorithms works recursively. We assume that T is rooted at node r.

First we mark all the edges of the skeletons of the children of r recursively black or blue and assign the
permeable attribute by treating them as the roots of subtrees. Each edge in the skeleton S of r except the
reference edge corresponds to a child of r. Let e be such an edge in S, v the corresponding child of r and S 0

the skeleton of v. If S 0 contains a blue edge or vertex, we mark e blue and otherwise black. The permeability
of e depends on the type of v:

Q-node: We mark e permeable if S 0 contains a blue vertex.

S-node: If the skeleton S 0 contains a blue vertex or a permeable edge, we mark e permeable.

P -node: If the S 0 contains only permeable edges or a blue vertex, we mark e permeable.

R-node: We consider a graph H where the vertices are the faces of S 0 and there is an edge between two vertices
if there is a permeable edge or a blue vertex on the boundary of the two faces. Let s and t be the two
faces left and right of the virtual edge of S 0. If there is a path in H connecting s and t, we mark e

permeable (see Figure 3).

�
�
�

�
�
�

�
�
�

�
�
���

��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

st

Figure 3: A permeable R-node: permeable edges are represented by dotted lines, the virtual edge of the
skeleton by a dashed line

After executing this algorithm, which we call MarkEdgesPhase1, all edges of the skeleton of the root node
r are marked, because we have seen all the blue vertices of the graph. All other skeletons except the skeleton
of r contain one edge that is not yet marked: the virtual edge of the skeleton.

The algorithm MarkEdgesPhase2 works top down by traversing T from the root to the leaves. The edges
of the skeleton of the root r of T are already marked in the �rst step, therefore we can proceed to the children
and mark the virtual edges of its children. Let v be a node in T where the skeleton S 0 of the parent node
is already completely marked. We mark the virtual edge e in the skeleton S of v blue if there is a blue edge
or vertex in the skeleton of the parent. The permeability of e again depends on the type of the skeleton in
exactly the same way as in the algorithm MarkEdgesPhase1. Note that the case Q-node is irrelevant here
because the Q-nodes form the leaves of the tree.

The two algorithms MarkEdgesPhase1 and MarkEdgesPhase2 can both be implemented in linear time
because the size of the SPQR-tree of a planar biconnected graph including all skeletons is linear in the size
of the graph [BT96].

5

Algorithm 2: Algorithm MarkEdgesPhase1 that marks all edges in the skeletons except the virtual
edges.

Input: An node v in T and the set W of vertices

Result: All edges in S(v) except the virtual are marked.

Let L be the set of children of v;
foreach v0 2 L do

MarkEdgesPhase1(v0;W);
Let e be the edge that S(v0) shares with S(v);
if S(v0) contains a blue or permeable edge or a vertex of W then

Mark e blue
else

Mark e black;

switch type of node v0 do
case P -node

if All edges in S(v0) except e are permeable or one of the vertices in S(v0) belongs to W
then

Mark e as permeable

case S-node
if S(v0) contains a vertex of W or an edge marked permeable then

Mark e permeable

case R-node
Let e be the edge shared by S(v0) and S(v);
if findPath(e; v0) returns true then

Mark e as permeable

if v is a Q-node then
Let e be the non-virtual edge of S(v);
if S(v) contains a vertex of W then

Mark e permeable;

else
Mark e black;

6

Algorithm 3: Algorithm MarkEdgesPhase2 marks all the virtual edges of the skeletons in the subtree
rooted at v if all the edges in the skeleton of v are marked.

Input: A node v in the SPQR-tree T where all edges are marked

Result: All edges in the subtree rooted at v are marked

Let S be the skeleton of v;
if v is a Q-node then

Let v1 and v2 be the two vertices in S;
Let e be the virtual edge in the child of v;
if fv1; v2g \W 6= ; then

Mark e permeable;

else
Mark e black;

else
Let L be the list of edges in S whose twin edge is contained in a skeleton of a child of v;
if S does not contain a blue or permeable edge or a vertex of W then

Mark all the twin edges of the edges in L black;

else
Mark all the twin edges of the edges in L blue;
switch type of v do

case S-node
if S contains a vertex of W or an edge marked permeable then

Mark every twin edge of the edges in L permeable;

case P -node
if All edges in S are marked permeable then

Mark all twin edges of the edges in L permeable

case R-node
foreach edge e in L do

Let v0 be the child of v that contains e;
if findPath(e; v0) returns true then

Mark e in S(v0) as permeable;

forall the children w of v do
MarkEdgesPhase2(w;W);

7

Algorithm 4: Algorithm findPath checks if the expansion graph of the twin edge of an edge in an
R-node skeleton is permeable.

Input: An edge e and an R-node v in T with the property that e is contained in the skeleton S of v
and all edges in S are marked

Result: \true" if the expansion graph of the twin edge of e is permeable

Compute an arbitrary embedding � of S;
Compute the dual graph D of S with respect to �;
foreach edge e0 of D do

if the primal edge of e0 is permeable then
Set the cost of e0 to zero;

else
Set the cost of e0 to one;

Set the cost of the dual edge of e to one;
Let v1 and v2 be the two vertices in D that correspond to the two faces in � with e on their boundary;
Compute the shortest path p from v1 to v2 in D;
if the cost of p is zero then

return \true";

else
return \false";

Lemma 1. Let G be a planar biconnected graph and W a subset of its vertices. Let e be an edge in the
skeleton S of the node v in the SPQR-tree T of G and G(e) the expansion graph of e. After applying the
coloring algorithms MarkEdgesPhase1 and MarkEdgesPhase2, the following statements are true:

1. The edge e is colored blue if and only if G(e) contains a vertex of W .

2. The edge e is marked permeable if and only if it is permeable.

4.2 Checking Feasibility

The goal of this step is to use the coloring of the edges in the skeletons of the SPQR-tree to determine, if
a planar connectivity augmentation of G for the subset W of vertices is possible and to compute the list of
necessary edges. First we present a lemma that holds for series-parallel biconnected planar graphs. These
are the biconnected planar graphs whose SPQR-tree does not contain an R-node.

Theorem 1. Let G be a biconnected series-parallel planar graph and W a subset of its vertices. There exists
a planar connectivity augmentation for W in G if and only if all P -nodes of the SPQR-tree of G contain at
the most two edges that are blue but not permeable.

Proof. The SPQR-tree of series-parallel graphs contains no R-node. P -nodes with at least three blue and not
permeable edges cannot be augmented (see Figure 4 showing a graph whose SPQR-tree contains a P -node
with three blue but not permeable edges) and therefore no planar connectivity augmentation exists.

If every P -node skeleton contains at most two edges that are blue but not permeable, we can always �nd
an embedding of the graph where we can connect the blue vertices. The embedding of G is determined by
the embedding of each P -node skeleton.

4.3 The Embedding Algorithm

Let S be a skeleton of a P -node. We call the embedding of S admissible if all blue edges are consecutive and
the blue edges that are not permeable (if they exist) are at the beginning and at the end of the sequence
(see Figure 5 for three examples of admissible orderings).

Our algorithm for �nding an augmentation or proving, that no augmentation exists, works in two phases:

8

Figure 4: A graph whose SPQR-tree contains a P -node with three blue edges that are not permeable (blue
vertices are represented by hollow circles)

Figure 5: Admissible embeddings of a P -node skeleton (permeable edges are dotted, blue edges that are not
permeable are dashed)

1. Using the colors and attributes of the edges in each skeleton, we �x an embedding for every P - and
R-node skeleton and thus determine an embedding for G.

2. We use the algorithm from Section 3 for �xed embeddings to determine if an augmentation is possible.

The embedding computed in the �rst step has the property that it allows an augmentation if and only if
there is an embedding of G that allows an augmentation.

We set the embedding for the skeletons of the R- and P -nodes recursively using the structure of the
SPQR-tree. We assume that the vertices in G are numbered and that all edges are directed from the vertex
with lower number to the vertex with higher number. The algorithm marks edges in the skeletons with a
new attribute that can have three di�erent values: left, right and nil. If the virtual edge (the edge whose
twin edge is in the parent of v) in a skeleton of node v is marked left, then the pertinent graph of v must
be embedded in such a way that there is a blue vertex on the boundary of the face left of the virtual edge.
If the edge is marked right, a blue vertex must be on the boundary of the face right of the virtual edge. If
the virtual edge is marked nil, there is no restriction on the embedding of the pertinent graph of v.

For each node v in the SPQR-tree, where the embedding of the parent node has already been �xed, we
perform two steps:

1. We determine an embedding using the attribute of the virtual edge and the colors and attributes of
the other edges.

2. We determine the attribute for the virtual edge in the skeleton of each child of v.

Only the skeletons of R- and P -nodes have more than one embedding, so the �rst step is only important
for these node types. First we consider the case that v is an R-node. In this case, its skeleton has two
embeddings. If the attribute on the virtual edge is nil, we can choose any of the two embeddings. Otherwise,
we choose an embedding where there is a blue edge or vertex on the face left (right) of the virtual edge if the
attribute was left (right). If none of the two embeddings has this property, no augmentation is possible.

9

If v is P -node, we can only choose among the admissible embeddings of the skeleton. Again, we choose an
embedding according to the attribute and if no suitable embedding exists, there can be no augmentation.

Now we have to determine the attribute for the virtual edge of each child of v. Let S be the skeleton of
v. For all edges in S that are either black or permeable, we pass nil to the corresponding child. Let L be
the set of edges in S that are blue but not permeable.

First we consider the case that v is an S-node. If the attribute of the virtual edge is nil, we pass nil
to every child that corresponds to an edge in L. Otherwise, the attribute on the virtual edge designates one
of the two faces of the S-node skeleton as the one that must have a blue vertex on the boundary. For each
edge e in L, we pass left to the corresponding child if this face is right of e and right otherwise.

To make the following descriptions more concise, we call a face preferred, if it has a permeable edge or a
blue vertex on its boundary. If v is a P -node, L contains at most two edges. For each of edge e in L, there
are three possible cases:

1. Exactly one of the faces with e on its boundary contains a blue edge. If this is the face on the right of
e, we pass left to the child corresponding to e and right otherwise.

2. One of the faces with e on its boundary is preferred and the other is not. If the preferred face is left
of e, we pass right to the child corresponding to e and left otherwise.

3. The faces left and right of e are both preferred or both contain only black edges and vertices. In this
case, we pass nil to the child.

If v is an R-node, we also have to consider the faces left and right of each edge e in L. The same cases
as for P -nodes apply, but there is one additional case that can not occur in a P -node: Both faces left and
right of e are not preferred but both contain a blue edge except e (if this happens in a P -node, there can be
no augmentation). In this case, we pass nil to the corresponding child.

To start the process, we choose an arbitrary P - or R-node as the root of the SPQR-tree. If we choose an
R-node, we select one of the two embeddings of the skeleton at random. If we select a P -node, we choose
an arbitrary admissible embedding at random. Now we can compute the attributes we pass to the children
of the node as stated above and compute an embedding for each skeleton of the SPQR-tree by applying the
algorithm in depth �rst or breadth �rst sequence to all inner nodes of the tree.

This algorithm de�nes an embedding for each R- and P -node in the SPQR-tree and thus for the graph G.
Since we touch each skeleton only once and the operations we perform for each skeleton can be done in time
linear in the size of the skeleton, the embedding can be computed in linear time. The we apply the algorithm
from Section 3 to the �xed embedding. This algorithm either computes the list of edges that constitutes the
planar connectivity augmentation or it signals that no augmentation is possible for this embedding.

Theorem 2. Let � be the embedding of G determined by the above described algorithm. G has a planar
connectivity augmentation with respect to W if and only if there exists a planar connectivity augmentation
for G with respect to the embedding �.

This can be shown using structural induction over the SPQR-tree. We �rst show that the claim holds for
graphs whose SPQR-tree has only one inner node and then use induction to show that it holds for graphs
whose SPQR-tree has more than one inner node.

Theorem 3. Given a planar graph G = (V;E) and a subset of verticesW � V . The algorithm Biconnected-

Augmenter tests correctly if a subgraph induced planar connectivity augmentation exists and, if so, constructs
a minimum cardinality augmenting edge set. It runs in time O(jV j).

5 The Algorithm for the Connected Case

In the last section we have dealt with the problem of �nding an induced subgraph of W in a biconnected
graph. Hence we already know how to deal with the biconnected blocks of the graph G using the SPQR-
tree. To solve the connected case, we �rst build the BC-tree of G. This tree has two types of nodes: The
c-nodes correspond to cut-vertices of G and the b-nodes to biconnected components (blocks). There is an
edge connecting a c-node and a b-node, if the cut-vertex is contained in the block.

10

We say a b-node is blue if it contains blue vertices. It is not hard to see that we only have to deal with the
smallest subtree bc of the BC-tree of G that contains all blue blocks. We say a cut-vertex is red if it is in bc.
Note that the leaves of a BC-tree are blocks. First we observe that there can only be a planar connectivity
augmentation if there is an embedding of G where all red vertices which are contained in non-blue blocks
are on the boundary of the same face.

This can be seen as follows: If a blue block is connected to another blue block via a blue cut-vertex, we
can use this cut-vertex to connect blue vertices in all neighboring faces. If the cut-vertex is not blue, this is
not possible. Therefore, for every red cut-vertex in a blue block must be a blue vertex on the boundary of
the same face in every embedding that allows a planar connectivity augmentation.

Figure 6 shows a graph where we cannot place all red vertices into the same face and no augmentation
is possible. To test if we can embed the red vertices which are contained in a non-blue block into the same
face, we introduce a new dummy vertex and connect it to these red vertices. If the resulting graph is planar,
we know that we can put these red vertices into the same face. Otherwise, no augmentation is possible.

BC−tree of G

Figure 6: No augmentation is possible because the two red cut-vertices can not be placed inside the same
face (the blue vertices are represented by hollow circles and the red vertices by grey circles, the blue blocks
as hollow squares)

To �x an embedding for G, we �rst use the same algorithm we have developed for the biconnected case.
The only di�erence is that we treat each red vertex just like a blue vertex but do not give the label permeable
to edges whose expansion graph contains only red vertices. In this way, we compute an embedding for each
blue block. The embedding of blocks that are not blue is irrelevant. As described in the last section, we
compute a planar connectivity augmentation for each block. Note that we also insert edges that connect a
red vertex to a blue vertex.

We start traversing bc from the leaves which are blocks with only one cut vertex. Beginning from the
leaf B1, if the cut vertex of B1 is blue we only join the block B1 with the parent node of the cut vertex in
bc which is block B2 together in the way that we embed B1 in a face of B2 that contain the cut vertex and
another blue node. If the cut vertex is red we embed one edge between the red vertex and a blue vertex in
B1 in the outer face. Then we embed block B1 in a face of block B2 which contain also an edge between
the red vertex and a blue vertex. As there exists a planar connectivity augmentation in all blue blocks in bc
such an edge will exist. We proceed recursively until all blocks in bc are inserted. Note that the non-blue
blocks can be embedded arbitrarily.

Then we remove all the new edges where one end-vertex is a red vertex and use the algorithm from
Section 3 to compute a planar connectivity augmentation for the �xed embedding.

For non-connected graphs we apply the algorithm of the connected case to each connected component.
Then we transform the connected components so that they have at least one blue vertex on the outer face.
Finally we connect the blue vertices on the outer face.

References

[BT96] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Computing,
25(5):956{997, 1996.

11

[CEF95] R.-F. Cohen, P. Eades, and Q.-W. Feng. Planarity for clustered graphs. In P. Spirakis, editor,
Algorithms { ESA '95, Third Annual European Symposium, volume 979 of Lecture Notes in
Computer Science, pages 213{226. Springer-Verlag, 1995.

[Dah98] E. Dahlhaus. Linear time algorithm to recognize clustered planar graphs and its parallelization
(extended abstract). In C. L. Lucchesi, editor, LATIN '98, 3rd Latin American symposium on
theoretical informatics, Campinas, Brazil, April 20{24, 1998., volume 1380 of Lecture Notes in
Computer Science, pages 239{248, 1998.

[FM98] S. Fialko and P. Mutzel. A new approximation algorithm for the planar augmentation problem.
In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '98),
pages 260{269, San Francisco, California, 1998. ACM Press.

[Fra92] A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discrete Math-
ematics, 5(1):25{53, 1992.

[GJL+02a] C. Gutwenger, M. J�unger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher. On c-planarity
testing for non c-connected clustered graphs. Technical report, Institut f�ur Informatik, Univer-
sit�at zu K�oln, 2002. in preparation.

[GJL+02b] C. Gutwenger, M. J�unger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher. Subgraph
induced planar connectivity augmentation. Technical report, Institut f�ur Informatik, Universit�at
zu K�oln, 2002. in preparation.

[GM01] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In J. Marks, editor,
Graph Drawing (Proc. 2000), volume 1984 of Lecture Notes in Computer Science, pages 77{90.
Springer-Verlag, 2001.

[KB91] G. Kant and H. L. Bodlaender. Planar graph augmentation problems. In Proc. 2nd Workshop
Algorithms Data Struct., volume 519 of Lecture Notes in Computer Science, pages 286{298.
Springer-Verlag, 1991.

[Khu97] S. Khuller. Approximation Algorithms for Finding Highly Connected Subgraphs, pages 236{265.
Hochbaum, D.S. (ed.), PWS Publishing Company, Boston, 1997.

[Lov79] L. Lovasz. Combinatorial Problems and Exercises. North-Holland, 1979.

[Mut95] P. Mutzel. A polyhedral approach to planar augmentation and related problems. In P. Spirakis,
editor, Algorithms { ESA '95, Third Annual European Symposium, volume 979 of Lecture Notes
in Computer Science, pages 494{507. Springer-Verlag, 1995.

[SJ97] C. De Simone and M. J�unger. On the two-connected planar spanning subgraph polytope. Discrete
Applied Mathematics, 80(229):223{229, 1997.

[Sto92] M. Stoer. Design of Survivable Networks, volume 1531 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 1992.

12

