
An Integer Programming Approach

to Fuzzy Symmetry Detection ?

Christoph Buchheim and Michael J�unger

Universit�at zu K�oln, Institut f�ur Informatik,
Pohligstra�e 1, 50969 K�oln, Germany

fbuchheim,mjuengerg@informatik.uni-koeln.de

Abstract. The problem of exact symmetry detection in general graphs
has received much attention recently. In spite of its NP-hardness, two
di�erent algorithms have been presented that in general can solve this
problem quickly in practice [5, 2]. However, as most graphs do not admit
any exact symmetry at all, the much harder problem of fuzzy symmetry
detection arises: a minimal number of certain modi�cations of the graph
should be allowed in order to make it symmetric. We present a general
approach to this problem: we allow arbitrary edge deletions and edge
creations; every single modi�cation can be given an individual weight.
We apply integer programming techniques to solve this problem exactly
or heuristically and give runtime results for a �rst implementation.

1 Introduction

An important aim in Automatic Graph Drawing is the display of symmetric
structure inherent in a graph. Empirical studies show that symmetric drawings
of a graph are much easier to understand than asymmetric ones [14]. However,
two di�erent problems occur when trying to develop algorithms for symmetric
graph drawing: �rst, the symmetry detection problem is NP-hard for general
graphs [13]. Second, most graphs do not admit any exact symmetry at all; in
order to create nearly symmetric drawings, one has to de�ne some kind of re-
laxation of exact symmetry.

For the �rst problem, two di�erent algorithms with exponential runtime in
general but fast runtime in practice have been proposed recently. In [4], we
presented an approach based on integer programming techniques; see [5] and [3]
also. Later, Abelson et al. [2] devised an algorithm based on group-theoretic
methods, running even faster.

The second problem is motivated by the observation that nearly symmetric
drawings still help the user to understand the structure of a graph; see Fig. 1 for
some examples. Unfortunately, mostly negative results about this problem have
been published so far. In fact, detecting fuzzy symmetries is much harder than

? Partially supported by the Future and Emerging Technologies Programme of the
European Union under contract number IST-1999-14186 (ALCOM-FT).

detecting exact symmetries in general, as shown by Chen et al. [6]. In their ap-
proach, di�erent types of modi�cations of the graph are allowed in order to make
it symmetric, namely, to delete nodes, to delete edges, and to contract edges.
They consider the problem of �nding a minimum number of such operations
needed to obtain a graph admitting an axial or rotational symmetry. Among
other results, they show that some of the corresponding problems are NP-hard
even for trees. On the other hand, exact planar symmetry detection is possible
in linear time for planar graphs [9{12].

Fig. 1. Some nearly symmetric drawings

In this paper, we follow a similar approach: we allow a minimum number
of edge deletions and edge creations in order to obtain a graph that admits a
symmetric drawing. A more precise description of this problem, along with a
generalization, is given in Sect. 3. Before, we gather some de�nitions concerning
symmetries in Sect. 2. In Sect. 4, we present integer linear programs (ILPs)
modeling the fuzzy rotation and fuzzy reection problems. The corresponding
polytopes are investigated in Sect. 5. Finally, we roughly explain the framework
of a branch&cut-algorithm for fuzzy symmetry detection in Sect. 6. There we
also report runtime results for a �rst implementation of this algorithm. For more
details or any proof, the reader is referred to [3].

2 Preliminaries

For ease of exposition, we only consider simple undirected graphs in the following.
An automorphism of a graph G = (V;E) is a permutation � of V with (i; j) 2 E
if and only if (�(i); �(j)) 2 E for all i; j 2 V . The set of automorphisms of G
forms a group with respect to composition, denoted by Aut(G). The order of an
automorphism � is ord(�) = minfk 2 IN j �k = idV g, where idV denotes the
identity permutation of V . For a node i 2 V , the set orb�(i) = f�k(i) j k 2 INg is
the �-orbit of i. Finally, the �xed nodes are those in Fix(�) = fi 2 V j �(i) = ig.

A reection of G is an automorphism � 2 Aut(G) with �2 = idV , i.e.,
an automorphism of order one or two. For k 2 f1; : : : ; ng, a k-rotation of G
is an automorphism � 2 Aut(G) such that jorb�(i)j 2 f1; kg for all i 2 V

and jFix(�)j � 1 if k 6= 1. Each 2-rotation is a reection, but not vice versa; the
identity idV is both a reection and a 1-rotation.

Now assume that there exist an injective node placement p:V ! IR2 and an
isometry ': IR2 ! IR2 of the Euclidean plane with the following properties: for
each i 2 V there exists a node i0 2 V with '(p(i)) = p(i0), and for i; j 2 V we
have (i; j) 2 E if and only if (i0; j0) 2 E; for straight-line drawings of simple
graphs, this means nodes are mapped to nodes and edges are mapped to edges.
Then p and ' induce an automorphism � of G by setting �(i) = i0. Any auto-
morphism induced like this is called a geometric automorphism or a symmetry
of G. An automorphism of a graph G is a symmetry if and only if it is a rotation
or a reection [8]. Obviously, the symmetries displayed by a single placement p
form a subgroup of Aut(G), but the set of all symmetries of G is not closed un-
der composition. Observe that this de�nition of a symmetry, following the one
given in [8], allows degenerate drawings: nodes may be located on non-incident
edges and edges may overlap. In fact, in the case of a reection, the subgraph
induced by the �xed nodes may be arbitrarily large, so that degeneracies may
be unavoidable. However, all nodes must have di�erent positions.

3 The Fuzzy Symmetry Detection Problem

The general idea of our approach to fuzzy symmetry detection is to allow to
change the adjacency of every pair of nodes in G. More precisely, we allow
to create an edge between each pair of non-adjacent nodes and to delete the
edge between each pair of adjacent nodes. Creating or deleting an edge between
two nodes i and j of G involves a penalty of wij 2 IR. The aim is to �nd a
graph G0 = (V;E0) such that G0 is symmetric and such that the total penalty for
transformingG into G0 is minimal. In other words, let E4E0 = (EnE0)[(E0nE)
denote the symmetric di�erence between E and E0. Then our objective is to
minimize the total penalty X

(i;j)2E4E0

wij

over all graphs G0 = (V;E0) that admit any non-trivial symmetry. We call this
problem the weighted fuzzy symmetry detection problem.

Observe that we do not require positive weights. However, allowing negative
weights does not increase the power of the approach, since all negative weights
can be replaced by their absolute values after changing the adjacency of the
corresponding edges in G. The presence of zero weights means that the adjacency
of the corresponding node pairs does not matter at all. By using large enough
weights, we can also forbid certain modi�cations absolutely.

The weighted fuzzy symmetry detection problem is NP-hard, even if all
weights are one. This follows from the NP-hardness of the exact symmetry detec-
tion problem. In practice, fuzzy symmetry detection is much harder than exact
symmetry detection|at least for our solution methods.

Finally notice that we could also allow node deletions in our approach. For
simplicity, however, we restrict ourselves to edge modi�cations here.

4 An Integer Linear Programming Model

In order to describe fuzzy symmetries by integer linear programs, we split up
the problem in the following way: we �x an integer k 2 f2; : : : ; ng and consider
the problem of �nding a graph G0 that admits a symmetry of order k and that
di�ers minimally from G. By applying this approach to all feasible orders one
after another, we can solve the original problem.

Hence we set up a separate fuzzy rotation ILP for each k � 3 such that k
divides either n or n � 1 and a fuzzy reection ILP for k = 2. All these pro-
grams are based on the fuzzy automorphism ILP that uses two di�erent types of
variables to model fuzzy automorphisms.

The mapping variables are used to specify a permutation � of V : we de�ne
a real n� n-matrix M(�) by

M(�)ij =

�
1 if �(i) = j
0 otherwise,

yielding a monomorphism M of the group Sn of permutations of V into the
general linear group GLn(IR). The matrices in M(Sn) are called permutation
matrices and can be characterized as the set of n � n-matrices X = (xij)
with xij 2 f0; 1g and

X
j2V

xij = 1 for all i 2 V and
X
i2V

xij = 1 for all j 2 V : (1)

In other words, for the desired ILP, we can use a binary mapping variable xij for
each pair (i; j) 2 V 2 and add the constraints (1). A value of one for the mapping
variable xij is interpreted as mapping node i to node j.

For technical reasons, we replace the permutation constraints (1) by the
weaker constraintsX

j2V

xij � 1 for all i 2 V and
X
i2V

xij � 1 for all j 2 V : (2)

Thus the permutation corresponding to the mapping variables may be partially
or totally unde�ned. However, by adding a large value to all objective function
coeÆcients of mapping variables, every optimal solution will still correspond to
a well-de�ned rotation or reection.

The second type of variables is used to model all graphs G0 with node set V .
We use a binary edge variable yij for each pair of nodes i; j 2 V that is set to
one if and only if the nodes i and j are adjacent in G0.

The connection between the two types of variables is established as follows:
we want the permutation � of V given by the mapping variables to be an au-
tomorphism of the graph G0 given by the edge variables. In other words, if two
nodes i and j are adjacent in G0, then the same must be true for �(i) and �(j),
and vice versa. This can be translated into

xi1j1 + xi2j2 � 2� yi1i2 � yj1j2 for all i1; i2; j1; j2 2 V : (3)

Indeed, these constraints are trivial if the left hand side is at most one. If the
left hand side is two, then �(i1) = j1 and �(i2) = j2. In this case, the right hand
sides make sure that yi1i2 = yj1j2 , i.e., either both pairs (i1; i2) and (j1; j2) are
adjacent or both are non-adjacent in G0.

In summary, fuzzy automorphisms correspond to the solutions of

xij 2 f0; 1g for all i; j 2 V
yij = yji 2 f0; 1g for all i; j 2 V; i 6= jP
j2V xij � 1 for all i 2 VP
i2V xij � 1 for all j 2 V

xi1j1 + xi2j2 � 2� yi1i2 � yj1j2 for all i1; i2; j1; j2 2 V; i1 6= i2; j1 6= j2 :

(4)

Next, we are going to restrict the ILP (4) to rotations of order k � 3. The
�rst condition for � to be a k-rotation is jorb�(i)j 2 f1; kg for all i 2 V . All other
orbit lengths are forbidden. In order to set up linear constraints to enforce this
property of �, we de�ne a forbidden orbit of G as a circular list C = (i1; : : : ; ip)
of pairwise distinct nodes in V with k 6= p � 2. Let jCj = p and

x(C) =

p�1X
t=1

xitit+1 + xipi1 :

Then the condition jorb�(i)j 2 f1; kg for all i 2 V is equivalent to

x(C) � jCj � 1 for all forbidden orbits C : (5)

Indeed, the constraint (5) implies that for every forbidden orbit C at least one
variable in x(C) is zero, so that C is not an orbit of �. To this point, we have
ensured that all orbits of � have length k or 1. Any k-rotation has to meet the
additional condition jFix(�)j � 1. We can express this by

X
i2V

xii � 1 ; (6)

as the sum on the left hand side equals the number of �xed nodes. Combining
the constraints (4), (5), and (6), an ILP describing fuzzy k-rotations of G is

xij 2 f0; 1g for all i; j 2 V
yij = yji 2 f0; 1g for all i; j 2 V; i 6= jP
j2V xij � 1 for all i 2 VP
i2V xij � 1 for all j 2 V

xi1j1 + xi2j2 � 2� yi1i2 � yj1j2 for all i1; i2; j1; j2 2 V; i1 6= i2; j1 6= j2
x(C) � jCj � 1 for all forbidden orbits CP

i2V xii � 1 :

(7)

Fuzzy reections of G are easier to model than k-rotations: instead of using
the forbidden orbit constraints, we just have to ensure that the automorphism �
to be represented satis�es �2 = idV , i.e., that in our model we have

xij = xji for all i; j 2 V : (8)

In other words, we only need a single mapping variable for each pair of nodes.
Hence an ILP modeling fuzzy reections is given by

xij = xji 2 f0; 1g for all i; j 2 V
yij = yji 2 f0; 1g for all i; j 2 V; i 6= jP
j2V xij � 1 for all i 2 VP
i2V xij � 1 for all j 2 V

xi1j1 + xi2j2 � 2� yi1i2 � yj1j2 for all i1; i2; j1; j2 2 V; i1 6= i2; j1 6= j2 :

(9)

Observe that both (7) and (9) do not depend on the structure of G; they
are determined by the number of nodes of G. The information about edges
of G is stored in the objective function: we minimize the total weight of the
modi�cations that are necessary to get from G to G0, i.e., we minimizeX

(i;j)2V 2nE

wijyij +
X

(i;j)2E

wij(1� yij) :

Independently, we can assign arbitrary weights to the mapping variables. In the
case k = 2, �xed nodes should be punished, since otherwise the graph G together
with idV forms an optimal solution of (9). However, the penalty for �xed nodes
has to be attuned to the penalties for edge deletion or creation in this case.

5 The Fuzzy Symmetry Polytopes

The ILPs (7) and (9) only depend on the number n of nodes and the desired
order k, but not on the structure of G. Thus we may de�ne the fuzzy symmetry
polytope FSP(k; n) to be the polytope corresponding to (7), if k � 3, or the
polytope corresponding to (9), if k = 2. More precisely, these polytopes are
given as the convex hulls of the sets of solutions of these ILPs.

Theorem 1. The polytope FSP(k; n) is full-dimensional.

For designing the branch&cut-algorithm for fuzzy symmetry detection, it is
important to investigate the polyhedral structure of FSP(k; n). In particular, we
have to �nd valid inequalities that induce facets of FSP(k; n), i.e., maximal faces
of this polytope. Before starting to present classes of such inequalities, observe

Lemma 1. If a constraint H is valid or facet-inducing for FSP(k; n), then the
same is true after replacing each variable yij in H by 1� yij .

Lemma 2. If a constraint H is valid or facet-inducing for FSP(k; n), then the
same is true after replacing each variable xij in H by xji.

Both results follow from symmetry immediately. In the remainder of this sec-
tion, we will usually consider only one of the four constraints without explicitly
mentioning the other three.

Theorem 2. The trivial constraints xij � 0, yij � 0, and yij � 1 induce facets
of FSP(k; n). The same is true for the weak permutation constraints (2).

To obtain further results about the polytope FSP(k; n), we will treat rotations
and reections separately in the following subsections.

5.1 The Fuzzy Rotation Polytopes

Throughout this subsection we assume k � 3. In this case, we have

Theorem 3. The constraint (6) induces a facet of FSP(k; n).

We continue with a review of the forbidden cycle constraints (5). For this,
let C = (i1; : : : ; ip) be a circular list of pairwise distinct nodes with k 6= p � 2
again. If k does not divide p, we can improve (5) to

X
i;j2C; i6=j

xij � p� 1 : (10)

Indeed, the sum on the left hand side is at most p by (2). If it equals p for some
permutation �, then C is �xed under �, but no single node of C is �xed. Since k
does not divide p, some non-trivial orbit of � must have a length not equal to k,
so � is no k-rotation.

By the same reasoning, if k does not divide p � 1 either, we even have the
valid inequality X

i;j2C

xij � p� 1 : (11)

Observe that for k = n the constraint (11) is the subtour elimination constraint
for the cut de�ned by C.

Theorem 4. Let 2 � p � n � 1 and assume that k does not divide p. If k
divides p� 1, then (10) induces a facet of FSP(k; n). Otherwise, (11) induces a
facet of FSP(k; n).

Next, let W1 and W2 be any two subsets of V . Let i1; i2 2 V n (W1 [W2)
with i1 6= i2. Then we have the following valid inequality for FSP(k; n):

X
j12W1

xi1j1 +
X

j22W2

xi2j2 � 2� yi1i2 +
X

j12W1; j22W2

yj1j2 : (12)

Indeed, the left hand side is at most two by (2), while the right hand side is at
least one. If the left hand side equals two, we have xi1j1 = 1 for some j1 2 W1

and xi2j2 = 1 for some j2 2 W2. Thus yi1i2 = 1 implies yj1j2 = 1, so that the
right hand side is at least two.

Theorem 5. The constraint (12) induces a facet of FSP(k; n) if and only if

(a) jW1j 6= 0 and jW2j 6= 0,
(b) jW2 nW1j 6= 1 and jW1 nW2j 6= 1, and
(c) jW1 [W2j � 2.

In the special case W1 = W2 = fj1; j2g, the constraint (12) and its counterpart
according to Lemma 1 emerge as

xi1j1 + xi1j2 + xi2j1 + xi2j2 � 2� yi1i2 � yj1j2 :

These constraints improve (3); both induce facets of FSP(k; n) by Theorem 5.

Finally, let W � V and w 2 V nW . Let i1; i2 2 V n (W [fwg) with i1 6= i2.
Then X

j2W

(xi1j + xi2j) + 2xi1w + 2xi2w � 3� yi1i2 +
X
j2W

yjw (13)

is a valid inequality for FSP(k; n). Indeed, the left hand side is at most three
by (2), while the right hand side is at least two. If the left hand side is equal to
three, one of the nodes i1 or i2 is mapped to w, while the other one is mapped
to some j 2W . Hence yi1i2 = yjw, so that the right hand side is at least three.

Theorem 6. The constraint (13) induces a facet of FSP(k; n) if and only
if jW j � 2.

5.2 The Fuzzy Reection Polytope

Next, we examine the polytope FSP(2; n) more closely. It is easy to see that for
all odd subsets C of V the blossom constraintX

i;j2C; i6=j

xij � jCj � 1 (14)

is valid for the fuzzy reection polytope. We have

Theorem 7. Let C be an odd subset of V with jCj � 3. Then the blossom
constraint (14) induces a facet of FSP(2; n).

The constraint (12) is valid for fuzzy reections as well. However, we can
improve it by adding xi1i2 to the left hand side: if xi1i2 = 1, all other variables
on the left hand side must be zero. Hence we get

xi1i2 +
X

j12W1

xi1j1 +
X

j22W2

xi2j2 � 2� yi1i2 +
X

j12W1; j22W2

yj1j2 : (15)

Theorem 8. The constraint (15) induces a facet of FSP(2; n) if and only if

(a) jW1j 6= 0 and jW2j 6= 0,
(b) jW2 nW1j 6= 1 and jW1 nW2j 6= 1, and
(c) jW1 [W2j � 2.

By Theorem 8, the constraint (3) is improved by the facet-inducing constraints

xi1i2 + xi1j1 + xi1j2 + xi2j1 + xi2j2 � 2� yi1i2 � yj1j2 :

Next, observe that (13) is true for fuzzy reections as well. Again, we can
improve this constraint to

2xi1i2 +
X
j2W

(xi1j + xi2j) + 2xi1w + 2xi2w � 3� yi1i2 +
X
j2W

yjw : (16)

Theorem 9. The constraint (16) induces a facet of FSP(2; n) if and only
if jW j � 2.

6 The Branch&Cut-Algorithm

In the following, we roughly describe our branch&cut-algorithm based on the
results of the previous sections. We restrict ourselves to separation and primal
heuristics; for other topics including the branching strategy and rules for setting
variables, see [3]. For branch&cut in general, see [4] or [3].

6.1 Separation

We start the branch& cut-algorithm with the relaxation of (7) or (9) composed of
all variables, the constraints (2), and, if k � 3, the constraint (6). The separation
problem consists of �nding inequalities that are valid for (7) or (9) but violated by
the optimal solution of the current LP-relaxation. If we can �nd such inequalities,
we add them to the relaxation and repeat the process.

We �rst try to separate constraints of type (12), if k � 3, or (15), if k = 2.
For this, we use a straightforward greedy heuristic: for �xed i1 and i2, we add
nodes to W1 or W2 as long as the di�erence between the left and the right hand
side of (12) or (15) can be increased (for the current LP-solution). If we end up
with any violated constraints, these are added to the LP-relaxation.

Otherwise, we start separating constraints of type (13), if k � 3, or (16),
if k = 2. It is easy to see that these constraints can be separated in polynomial
time: for a �xed combination of i1, i2, and w, we add a node j to W if and only
if the current LP-values of xi1j and xi2j add up to more than the one of yjw.

If we did not �nd any violated constraints of type (13) or (16), we separate the
di�erent kinds of orbit constraints: for k � 3, we search for violated constraints of
type (10) or (11), which can be done in polynomial time by submodular function
minimization. The same is true for the blossom constraints (14) for k = 2. If we
still did not �nd any violated constraints, we start branching.

6.2 Primal Heuristics

Primal heuristics exploit the optimal solution of the current LP-relaxation in
order to �nd feasible (but not necessarily optimal) solutions of the original ILP.
In our algorithm, we use two heuristics working in an opposite way.

The �rst one starts with determining a symmetry of the given order k of the
complete graph Kn that is close to the current (possibly fractional) values of the
mapping variables. For example, we can traverse the mapping variables xij in
descending order according to their value and let i be mapped to j if and only
if no other node has been mapped to j before and i has not been mapped to
any other node before. Once having �xed the node permutation, we can easily
determine optimal values for all edge variables.

The second heuristic �rst �xes the edges of G0 by rounding the values of all
edge variables. Then the mapping variables xij are again traversed in descending
order according to their value; the node i is mapped to j if and only if this
contradicts neither earlier mapping decisions nor the �xing of edges in G0. Even
if this strategy only yields a partially de�ned permutation of V , we can still use
its value as a bound on the optimal solution of the ILP.

6.3 Runtime Results

Our branch&cut-algorithm for fuzzy symmetry detection is not fully developed
yet. It is necessary and certainly possible to improve it signi�cantly by future
work. Nevertheless, we experimented with an implementation based on the poly-
hedral results obtained so far. In this evaluation, we searched for fuzzy reections
and fuzzy rotations of order n. The penalty for every modi�cation of the graph
was set to one. In the reection case, any �xed node also involved a penalty of
one, i.e., one edge modi�cation was allowed to prevent one �xed node.

For all evaluations, we used an AMD 1400 MHz Athlon processor. Runtime
results are given in CPU-seconds. Our implementation is based on ABACUS [1]
in combination with CPLEX [7]. We used random simple undirected graphs for
our experiments. Each pair of di�erent nodes is adjacent by a probability of 1=4.
Observe that random graphs are hard instances for fuzzy symmetry detection,
since in general a lot of modi�cations are necessary to make them symmetric.
For every number n of nodes, we tested 100 graphs in each evaluation.

Compared with our results for exact symmetry detection presented in [5],
runtimes for fuzzy symmetry detection are rather disappointing. The results
for reection detection are displayed in Table 1. We list average and maximal
runtime, number of subproblems, and number of LPs. Since we can use our
algorithm heuristically by stopping it at any time, we also list the CPU-time
needed to �nd an optimal solution|without knowing its optimality at this point.

Table 1. Results for fuzzy reection detection

runtime opttime #subprobs #LPs
n avg max avg max avg max avg max

8 0.04 0.32 0.00 0 4.0 25 13.2 79
9 0.13 1.58 0.01 1 8.8 57 28.9 201
10 0.53 3.15 0.04 2 20.7 95 68.8 317
11 2.01 14.46 0.43 5 48.4 263 160.9 894
12 11.92 75.08 1.86 49 167.5 931 567.8 3185

Table 1 shows that the runtime, the number of subproblems, and the number
of LPs increase sharply already for small graphs. However, the time needed to
�nd the optimal solution is much shorter than the total runtime, i.e., we know
the optimal solution much earlier than the fact that it is optimal. We conclude
that the primal heuristics used in our algorithm work well, whereas the cutting
planes and separation algorithms must be improved in order to get a practically
useful algorithm. In fact, a lot of violated cutting planes were usually found and
added without changing the objective value of the optimal LP-solution.

The results displayed in Table 1 are much more homogeneous than those for
exact symmetry detection; see [5]. This is even more evident if we split up the
results by the optimal objective function value, i.e., by the minimial number of
modi�cations and �xed nodes; see Table 2 for n = 12.

Table 2. Results for fuzzy reection detection, n = 12

% of runtime opttime #subprobs #LPs
obj insts avg max avg max avg max avg max

1 6 0.17 0.46 0.00 0 9.0 21 26.2 62
2 17 1.18 5.81 0.59 5 30.5 97 99.4 333
3 30 4.12 10.85 1.03 8 75.0 155 249.0 489
4 33 13.44 24.32 1.33 15 192.6 311 660.5 1031
5 13 40.72 60.22 7.77 49 511.0 791 1729.1 2526
6 1 75.08 75.08 0.00 0 931.0 931 3185.0 3185

The results displayed in Table 2 reveal a strong connection between the
hardness of an instance and its distance from being reectional symmetric. This
is good news, as the fuzzy symmetry detection algorithm is designed to draw
nearly symmetric graphs.

Now consider the case k = n. As shown in Table 3, average runtimes for fuzzy
rotation detection are even longer|by a factor of more than 25 for n = 12. For 15
instances, we could not even �nd a provably optimal solution within one hour
of CPU-time. One reason may be the larger number of mapping variables in the
fuzzy rotation ILP compared with the fuzzy reection ILP.

Table 3. Results for fuzzy n-rotation detection

runtime opttime #subprobs #LPs
n avg max avg max avg max avg max

8 0.10 1.56 0.00 0 12.1 135 28.6 299
9 1.67 45.07 0.03 2 87.8 1239 232.6 3775
10 6.93 133.58 0.46 7 165.7 2251 541.4 8044
11 23.34 414.23 2.25 56 568.0 9867 1707.9 29759
12 305.64 15.0% 35.60 711 2616.1 16785 8692.9 56342

To investigate the e�ect of the number of variables more closely, we �nally
evaluated a variant of the fuzzy reection detection algorithm: we only allowed to
delete edges but not to create them. In the corresponding ILP, we only needed an
edge variable for each adjacent node-pair in the original graph. By construction
of our test set, we could thus save about 3=4 of the edge variables. Table 4
shows that a smaller number of edge variables can decrease runtime signi�cantly.
Compared with the results given in Table 1, we observed an improvement of
average runtime by a factor of more than 14 for n = 12.

In summary, if used as an exact algorithm, our branch& cut-method only
works for small graphs yet. Its performance is much better for nearly symmetric
graphs than for random graphs; restricting the set of allowed modi�cations also
helps. We are optimistic that the runtime can be improved signi�cantly by future
work. In fact, for exact symmetry detection, we were able to accelerate our
branch&cut-algorithm by a factor of up to 50 until now, compared with [4].

Table 4. Results for fuzzy reection detection, deleting edges only

runtime opttime #subprobs #LPs
n avg max avg max avg max avg max

8 0.02 0.14 0.00 0 3.1 15 9.0 38
9 0.05 0.24 0.00 0 5.9 29 17.5 59
10 0.10 0.35 0.00 0 8.6 33 24.0 70
11 0.35 1.53 0.05 1 16.7 53 48.7 156
12 0.84 4.39 0.06 2 28.8 111 85.0 327
13 4.68 20.13 1.23 11 85.5 273 260.3 846
14 8.19 26.94 1.22 8 122.7 371 380.1 1112
15 51.86 161.30 11.95 124 405.5 1149 1280.5 3623
16 79.16 219.41 10.05 107 554.9 1419 1791.2 4521

References

1. ABACUS { A Branch-And-CUt System. www.informatik.uni-koeln.de/abacus.
2. D. Abelson, S. Hong, and D. Taylor. A group-theoretic method for drawing graphs

symmetrically. In M. Goodrich and S. Kobourov, editors, Graph Drawing 2002,
volume 2528 of LNCS, pages 86{97. Springer-Verlag, 2002.

3. C. Buchheim. An Integer Programming Approach to Exact and Fuzzy Symmetry

Detection. PhD thesis, Institut f�ur Informatik, Universit�at zu K�oln, 2003. Available
at kups.ub.uni-koeln.de/volltexte/2003/918.

4. C. Buchheim and M. J�unger. Detecting symmetries by branch & cut. In P. Mutzel,
M. J�unger, and S. Leipert, editors, Graph Drawing 2001, volume 2265 of Lecture
Notes in Computer Science, pages 178{188. Springer-Verlag, 2002.

5. C. Buchheim and M. J�unger. Detecting symmetries by branch&cut. Mathematical

Programming, Series B, 98:369{384, 2003.
6. H.-L. Chen, H.-I. Lu, and H.-C. Yen. On maximum symmetric subgraphs. In

J. Marks, editor, Graph Drawing 2000, volume 1984 of LNCS, pages 372{383.
Springer-Verlag, 2001.

7. CPLEX 7.0. www.ilog.com/products/cplex.
8. P. Eades and X. Lin. Spring algorithms and symmetry. Theoretical Computer

Science, 240(2):379{405, 2000.
9. S. Hong and P. Eades. Drawing planar graphs symmetrically II: Biconnected

graphs. Technical Report CS-IVG-2001-01, University of Sydney, 2001.
10. S. Hong and P. Eades. Drawing planar graphs symmetrically III: Oneconnected

graphs. Technical Report CS-IVG-2001-02, University of Sydney, 2001.
11. S. Hong and P. Eades. Drawing planar graphs symmetrically IV: Disconnected

graphs. Technical Report CS-IVG-2001-03, University of Sydney, 2001.
12. S. Hong, B. McKay, and P. Eades. Symmetric drawings of triconnected planar

graphs. In SODA 2002, pages 356{365, 2002.
13. J. Manning. Computational complexity of geometric symmetry detection in graphs.

In N. Sherwani, E. de Doncker, and J. Kapenga, editors, First Great Lakes Com-

puter Science Conference, volume 507 of LNCS, pages 1{7. Springer-Verlag, 1991.
14. H. Purchase. Which aesthetic has the greatest e�ect on human understanding? In

G. Di Battista, editor, Graph Drawing '97, volume 1353 of LNCS, pages 248{261.
Springer-Verlag, 1998.

