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Abstract

In this thesis, I investigate central questions in behavioral
economics as well as law and economics. I examine well-studied
problems through a new methodological lens. The aim is to
generate new insights and thus point behavioral scientists
to novel analytical tools. To this end, I show how machine
learning may be used to build new theories by reducing
complexity in experimental economic data. Moreover, I use
natural language processing to show how supervised learning
can enable the scientific community to expand limited datasets.
I also investigate the normative impact of the use of such tools
in social science research or decision-making as well as their
deficiencies.
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INTRODUCTION

Human behavior is highly varied, even at the individual level. When small-group in-
teractions are taken into account, the variations in observed behavior become complex,
so much so that their analysis becomes difficult when only employing conventional
tools. Consequently, the discipline of behavioral economics turned to controlled field
experiments and lab experiments. Their use has been highly successful and a is a cor-
nerstone of modern behavioral economics. Experiments generate data about specific
behavioral phenomena in controlled environments. Thus, they enable researchers to
conduct straightforward analyses and to answer precise questions. However, experimental
methods are not without limitations. The question of external validity is often raised in
the literature (see, e.g., Levitt and List, 2007; Ariely and Norton, 2007; L. Pritchett and
Sandefur, 2014). The question, at its core, is how much insight one can gain about the
intricacies of human behavior when one (over)simplifies the real world to operationalize
the experiment while drawing on a relatively limited sample. At the same time, the rise
of mass social media has caused the amount and complexity of observable real-world
data to increase tremendously. Many behavioral scientists have sought to capitalize
on the availability of such data (see, e.g., Barberá and Rivero, 2015; Flekova et al.,
2016) or to expand the scale of their experiments online to approximate the real world
more closely, at least in terms of sample size (Horton et al., 2011). However, compared
to classic experimental data, the data that researchers are starting to examine now is
considerably more complex. That necessitates the adoption of novel analytical methods,
not least because the data is commonly textual in form, as is the case with social media.
As such, the discipline is being confronted by and willing to engage with these differ-
ent data types, such as text, whose treatment was fraught with difficulty in the past.
Moreover, not only for this new data and not only the analysis of open-form answers
entails difficult and tedious manual as well as analytical labor. That is also the case
when one seeks to detect patterns within games of punishments and contributions, it
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holds even for data generated by traditional lab experiments. Moreover, it often involves
coding rules. Those rules, too, were manually generated and therefore might introduce
subjectivity and possibly even experimenter bias. Hence, the discipline is at a crossroads
as such data precipitate departures from conventional statistical and econometric analysis.

The neighboring discipline of machine learning has developed an extensive arsenal
of tools to not only tackle complex and patterned data, but also tools allowing the
identification of patterns that previously escaped statistical analysis. Moreover, the cost
of deploying such tools and models, in terms of know-how and computation, has decreased
considerably (Narayanan et al., 2012). That is why Varian (2014) and S.-H. Chen et al.
(2017) have written on the advantages and prospects of such methods, which include
reducing the labor intensity of analysis and coding, combating the overspecification
problem, and reducing subjectivity in data partitioning and rule specification. Despite
their significant theoretical potential, these methods only see sporadic use (e.g., Gerlach
et al., 2018; Hausladen et al., 2020). This dissertation is an attempt to bridge the gap. I
focus on specific and challenging questions in the behavioral sciences while using new
tools that have seen little use in the extant literature. Since policy questions are always
latent in behavioral research (Congdon and Shankar, 2015), I also examine the normative
implications of using such models. In this way, I hope to not only answer questions on
human behavior but also to facilitate the re-examination of old problems and challenging
data in the discipline.

To do so, Chapter 1 focuses on the influence of language on decisions and beliefs
that pertain to risk and time. Moreover, I tackle the methodological issue of testing
their effects when a between-language design is not sufficient. In Chapter 2, I focus
on another central field of behavioral economics, behavioral types, by focusing on data
from multi-round interaction games, namely public-goods games (PGG). I apply machine
learning, in the form of clustering, to such data. The purpose of the exercise is to
structure the data and thus try to infer meaningful behavioral types that extend the
literature. For Chapter 3, I venture beyond experimental economics, and I study data
on judicial decisions. I map them onto an ideological scale, and, crucially, I present a
method for extending the limited hand-coded dataset through the use of natural language
processing (NLP).
In Chapter 4, I switch sides. Instead of using machine learning to analyze data, I analyze
an algorithm that is already in use, and I try to infer how its design affects prediction
outcomes and further analyze its normative implications. Finally, in Chapter 5, I focus
on the inputs to machine learning algorithms. The questions that I ask concern reliability
and stability, both in terms of patterns in the input data and the resultant predictions.
Both are central aspects of traditional econometric analysis and are thus relevant to
social scientists who wish to harness the power of pretrained machine learning algorithms.

Expanding the Toolbox The dissertation is intended to contribute to various fields of
the empirical behavioral sciences and traditional behavioral economics. However, as
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mentioned, I also seek to make a substantial methodological contribution to the field of
behavioral sciences. As machine learning tools have reshaped many research fields in
a manner that would have hitherto been inconceivable, it is not only natural but also
essential to expand social scientific methodology, especially in behavioral economics, in a
similar manner (Varian, 2014). I try to show how the application of different machine
learning methods yields new insights about old problems. Chapter 2 demonstrates the
application of unsupervised learning to data from one of the most researched games in
behavioral economics, the PGG. In Chapter 3, I leverage supervised learning to expand a
small database in a cost-effective manner, increasing its usefulness in research. In contrast,
Chapter 4 and Chapter 5 cover the flip-side and look at the normative implications of
the use of machine learning models. I also illustrate the limitations of their application
to the behavioral sciences. Consequently, this contribution lies at the intersection of
traditional behavioral and empirical social science and the technical field from which the
methods originate.
Therefore, this dissertation makes a dual contribution to the field. That contribution
is substantive, in that new insights are provided about challenging questions in the
behavioral sciences, and methodological, in that I attempt to expand the toolbox of
the discipline. My approach combines the traditional methods of behavioral economics
and the opportunities that emerge from the development of machine learning. It is
also my desire to show that the use of these new tools in the social sciences must be
considered carefully: they have troubling implications, both normatively and otherwise.
My dissertation is thus highly interdisciplinary, bridging as it does the gap between
machine learning research and the behavioral sciences.

Individual Contributions to the Literature Both text and language matter in traditional
behavioral economics. More often than not, however, language and culture are used
interchangeably to control for individuals’ characteristics in econometric analysis. In
Chapter 1, we focus on this issue and how to distinguish between culture and language
within a traditional behavioral setup. K. Chen (2013) was one of the first behavioral
economists to argue that language and, more specifically, its grammatical structure, may
influence decisions that pertain to the future, independently of cultural background. In
brief, his findings are that speakers of languages which require explicit grammatical
references to the future, such as English, save less than speakers of languages which
do not require the use of such markers. He formulates this as the “linguistic-savings
hypothesis”. The only deficiency of his findings is that he used observational data. Con-
sequently, claiming causality or even direction is difficult. The hypothesis is not without
experimental support (Sutter, Angerer, et al., 2015). The main challenge, however, is
this: how does one adequately test for the influence of variation in grammar while holding
culture constant?
Using bilingual subjects may sound appealing. It has been shown, though, that switching
languages may switch cultural mindsets (Li, 2017), that issue can, however, be circum-
vented. Not all languages are created equal. There are different language families. The
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languages that belong to them follow different rules. After careful consideration, we
conduct an experiment in German. In German, future events may be described in the
present as well as in the future tense. Consequently, we can deploy a simple between-
subject design with grammatical framing as the experimental manipulation. Moreover,
we differentiate between decisions and beliefs to test whether one may be affected while
the other remains constant. We also include an experimental task to extend our results
to the domain of risk, which is said to be interlinked with time in the literature. That
combination allows us to test most of the behavioral channels that are liable to be affected
by the treatment in a comprehensive manner.
We use the subject pool of the BonnEcon lab but conduct the experiment online using
oTree. For the latter, our motivation is twofold. First, we expect the effect to be small in
size, and we therefore seek a large number of subjects. Second, we favor an environment
that the subjects would find natural in order to not influence any outcomes. We find
that choices are not affected by grammatical framing in any way. This holds both for
decisions that pertain to time, such as discounting, and for decisions that pertain to
risk. As far as beliefs are concerned, we find some evidence of the existence of an effect.
However, when we controlling for individual characteristics and other secondary effects,
the results lose their significance. We also manage to disrupt the framing effect easily by
introducing pre-formulated beliefs. We therefore conclude that there is little evidence of
the existence of a behavioral channel that runs from grammatical framing to choices and
beliefs.

In the same vain, we go on to examine another core issue in behavioral economics.
Chapter 2 focuses on patterned heterogeneity that is present in multi-round interaction
games. In terms of economic games, we focus on PGGs. As noted earlier, these datasets
are challenging for traditional statistical analysis because the participants interact with
each other. Consequently, their choices are not independent, and assumptions that
are vital for common models, such as regressions, are violated. Moreover, while it is
generally assumed that there are behavioral programs and types, choices made by one
individual may also depend on the choices of other members of their group. Consequently,
the choices made by the same type may be completely different when the environment
changes.
An illustration might be helpful. In the PGG literature, there are five theorized behav-
ioral programs: altruists, conditional cooperators, far-sighted free-riders, hump-shaped
contributors, and short-sighted free-riders. Given those five types and a group size of
four, there are 35 possible combinations for three players. That means that a fourth
player would be exposed to 35 possible environments. If that player is sensitive to the
choices of the others, her choices may exhibit 35 different patterns despite her type
being constant. This example does not even account for random errors or other outside
influences, which may make the resultant patterns noisy. Moreover, analyzing such a
rich space demands an amount of data that traditional economic experiments cannot
generate, and the manual specification of the type space becomes somewhat difficult.
For these reasons, we employ a purely data-driven approach. We leverage unsupervised
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learning in the form of multivariate time-series clustering to partition the data and thus
the type space into manageable parts. This approach enables us to refrain from subjective
partitioning and eyeballing. Moreover, the number of partitions is not limited by what
we expected to find.
One might think that clustering algorithms identify all types directly upon the employ-
ment of this method. However, since the clustering algorithm is fed a combination of
observed individual choices as well as the observed average contributions of the other
group members, what the algorithm truly clusters is similar exhibited behaviors. Conse-
quently, we adopt a two-step procedure. In the first step, we simulate a large dataset that
contains all combinations, using the five previously theorized types. We derive two things
from that simulated dataset: a data-driven measure for selecting the number of expected
clusters, which relies on a combination of cluster validation indices and the variance of
the analyzed data and the specification of the cluster algorithm’s hyperparameters. As a
result, many of the clusters that we find when applying our measure to the simulated
dataset are mostly pure, that is, all individuals in a cluster are of the same type. At the
same time, some of the clusters are impure because certain groupings produce nearly
identical observed choices for different types. For example, a conditional cooperator
could be grouped with three free-riders. The conditional cooperator exhibits the same
contribution pattern as a hump-shaped player exposed to the same group, and the two
may be indistinguishable. We do not view this as a limitation—it shows that the main
goal of any data-driven approach is to find distinct pattern types. In the second step,
the researcher discusses and tests whether those patterns are generated by a specific
behavioral program.
We also validate our approach by using a dataset that consists of 16,474 observations of
PGGs from the literature. We show that the true type-space is far richer than theorized.
While we find the theorized types, we also isolate previously unexplained behaviors, such
as backward logic and strategic, qualified, and cognitive behavioral programs. Finally, we
identify two means of narrowing down the set of behavioral patterns found. One is the
classic experimental approach. The other is to continue with a machine learning tool by
employing symbolic regression to consolidate the clusters further. Our main contributions
are to two topics in the field. First, we show the limitations of the theorized type space in
PGGs and the means to expand it cost effectively and in an unbiased way. Second, we show
how data-driven approaches that rely on unsupervised machine learning may be used to
generate new and valuable insights on much-researched problems in behavioral economics.

Similarly, Chapter 3 leverages new machine learning methods in order to contribute
to a widely researched topic. The chapter focuses on empirical legal studies and the
impact of judicial ideology on adjudicative decision-making. Whether judges lean towards
liberalism or conservatism is of considerable interest not only to the legal community but
to society as a whole – optimal judicial decisions would be impartial and rest solely on the
law. However, there is ample research showing that ideological biases affect the outcomes
of adjudications, especially on higher courts (e.g., Jeffrey A Segal et al., 1995; Epstein,
Andrew D Martin, et al., 2007; Fischman and Law, 2009; Frank and Bix, 2017). As
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such, the aim to ascertain by how much decisions are influenced by such pre-formulated
leanings is of considerable interest to the behavioral sciences as well.
In that context, for the first part of the paper we replicate the findings of Landes and
Posner (2009), who connected decisions to the political party of the president who had
appointed the respective judges. We also expand the analysis by including multiple
robustness checks, such as aggregating the dependent variable on a higher level and
multiway error clustering. Most of the research on the topic, including that by Landes
and Posner (2009) relies on the Songer database (Songer, 1993). That database provides
hand-coded labels for approximately 20,000 U.S. appellate decisions. That dataset may
appear large, but the total number of U.S. appellate decisions exceeds 1 million at
present – less than 5% of all decisions have been coded. Moreover, the decisions in the
dataset are not drawn at random from all appellate courts. Instead, the dataset reflects
a stratified draw in which each court is represented with the same fraction of decisions.
The database is thus substantially limited, and hand-coding even a substantial fraction
of the remaining 95% of opinions is too costly to contemplate. In order to overcome this
limitation, we employ supervised learning and train a classifier to label the remaining
95% robustly. We achieve this by adopting a tf-idf weighted bag-of-words approach with
a calibrated ridge classifier. We then assess the quality and robustness of the classifier
by repeating the expanded analysis that is based on Landes and Posner (2009) research
with the labels that we have generated. We show that our initial replication holds
with the expanded dataset. Therefore, we provide empirical legal scholars with a valu-
able and cost-effective tool for expanding the amount of data that can be used in research.

In Chapter 4 we assess the predictions and the underlying drivers of an algorithm that
is already in use. In this way, we contribute not only to the field of empirical legal studies
but also to a wider normative debate in society. The algorithm in question is COMPAS,
which is developed and distributed by the private company Northpointe. The algorithm
is used in the judicial and penal system of several U.S. states. It is designed to generate
a risk score, which is a prediction of the likelihood that an apprehended individual will
recidivate. That score is then considered by judges in bail hearings, at sentencing, and
when setting probation. Such algorithms and scores are by some seen as a solution to
the aforementioned bias-problem present when using human judges (e.g., Danner et al.,
2015; Harris and Paul, 2017). However, we show that, here too, normative biases in the
form of design decisions may majorly influence the result of such scoring systems. And
despite the obvious impact of these scores on the lives of defendants, they are often not
entitled to information on its calculation. The U.S. courts have ruled that the internal
design of the COMPAS algorithm is the intellectual property of Northpointe and thus
protected. ProPublica was able to use the Freedom of Information Act to secure access
to scores that the COMPAS algorithm had generated as well as a substantial amount
of input variables for 5,759 individuals (Angwin et al., 2013). In the following years,
the dataset was used by many of those who wish to ascertain whether the algorithm is
racially biased (e.g., Angwin et al., 2013; Fass et al., 2008) or not (e.g., Brennan et al.,
2009; Flores et al., 2016).
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However, we argue that this debate, which circles on outcomes, obscures deeper issues.
That an outcome is biased in one direction or another might be a byproduct of design
choices that are more fundamental and perhaps even intentional. In order to substantiate
this argument, we first analyze the assumptions that could drive the design of the risk
score. The score itself takes values between 1 and 10, where 1 corresponds to “least likely
to recidivate” and 10 to “most likely to recidivate.” However, these scores are not the
output of the model. Instead, the raw output is normed, and individuals are placed into
deciles. We show that the predictions process and the process of constructing the bin
width of the deciles has a substantial impact on the recidivism risk scores that judges
observe. By superimposing a logistic transformation onto the raw scores, we also show
that even a high decile score of 9 would only correspond to a recidivism risk of 59.1%.
In the second step, we train a correction model on hypothetical judicial decisions. We
assume judges decide on the basis of a cutoff for the decile score. For that score and
every higher score, the judge decides in favor of jailing. For every score below that cutoff,
the judge decides against jailing and in favor of bail. In this way, we mimic the binary
outcomes that occur in the real world. We compare those outcomes to the ground truth,
that is, to whether the individuals in questions offended within the next two years. We
show that significant improvements can be made on the original COMPAS outcomes if
one aims to reduce the number of wrongly jailed suspects. That, however, comes at the
slight cost of failing to incarcerate some true recidivists, that is, at the cost of more false
negatives. We also show that our correction improves the situation of disproportionately
affected minorities, such as young individuals or blacks. We do not argue that our model
is better—our purpose is merely to show that a different outcome on the Pareto front
is achievable. Consequently, the outcomes that COMPAS produces may be driven by
intentional design choices, such as reducing the number of false negatives at the expense
of other errors. That minorities are adversely affected is most likely a byproduct of these
decisions. Therefore, we argue that the normative decisions that are buried in the design
of COMPAS ought to be made transparent. Otherwise, legislators and judges cannot
make decisions in accordance with their normative convictions.

Finally, Chapter 5, presents an evaluation of the impact of small variations in input on
the internal stability of an NLP model. On first impression, the issue may seem technical
and peripheral to the pursuits of behavioral and social scientists. However, the possibility
of using machine learning models, especially ones that can work with textual data, and
applying them to large online datasets scraped from platforms such as Twitter excites
considerable interest among social scientists and lawyers as well as law enforcement. On
one hand, for empiricists, these datasets were previously too large to work with and,
more crucially, often lacked essential information about personal characteristics. However,
NLP author profiling models can estimate missing characteristics, which may then be
used for further research. On the other hand, law enforcement officials apply tools of this
kind to gain information about anonymous online offenders. Likewise, decision-makers
cite results from NLP profiling tools during criminal proceedings and judicial proceedings.
Therefore, it is crucial to understand how robust these tools are to slight variations in
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the underlying dataset. However, little has been done in that regard so far (Neal et al.,
2017; Rocha et al., 2017).
To tackle that I conduct the following analysis: First, I construct a Support Vector
Machine (SVM) model, as suggested in the authorship analysis literature. It aims to
predict outcomes from textual features alone, with little contextual information about
topics or the domain of the data. I then conduct a controlled machine learning experiment
using a precompiled Twitter dataset. I construct sub-datasets that were identical in every
aspect except one, the variation in the number of authors that are present in the dataset.
I train the same model on each variation, and I try to predict two characteristics that are
central to the social sciences, gender and age. While I show that the performance of the
classifier remains stable and that it is comparable to what may be found in the literature,
I also show that there are specific authors for which the classifier makes systematic
errors. For these authors, the accuracy of the results falls short of the random-guess
threshold. The implication is that such individuals are systematically disadvantaged
when scrutinized by a system that analyzes their individual presence.
In the second step, I examine the internals of the classifier, specifically its weight matrix.
The weight matrix holds all the individual coefficients by which an input instance is
multiplied to generate the output. Thus, the weights correspond to the directed relevance
of individual input features. I analyze the stability of the relevance of the individual
features when the number of authors in the dataset changes. For this reason, I calculate
their relevance in terms of ranking before introducing the variation and compare it
to the new relevance when training the classifier on the modified dataset. I find that
overall predictive power remains within the margins identified in the literature, but the
predictions for the different sub-datasets are driven by completely different features, that
is, their relevance is not stable. When conducting these experiments, I test whether the
number of feature types or the length of input texts changes the results. It does not.
It follows from the foregoing that the classifier relies mainly on correlational patterns
to predict outcomes and that these patterns are not stable. There appears to be no
causal relationship between input and output. It is also troubling that small variations
impact the correlations in such a way. Real users would not always train the model.
The advantage of ML models lies in the possibility of using pretrained models to predict
missing information. However, since the underlying patterns in the data change and some
authors are systematically disadvantaged, such models must be applied cautiously. The
normative implications are considerable because it is unclear at what point the use-case
data becomes too far removed from the training data. As of yet, there are no accepted
measures for such, and models are not accompanied with explanations of the underlying
boundaries for training vs. use-case dataset. Consequently, the utility of such models
for social scientific research is affected. The discipline prides itself on econometric and
statistical rigor. However, the application of pretrained models without an assessment of
the similarity between the training data and the use-case data might invite undesirable
statistical distortions of experimental results and their subsequent evaluation.
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Varying Future Time References within the German Language

Abstract: We test the proposed impact of future-tense reference on economic decision-
making. To this end, we implement a within language framing experiment, varying
exclusively the grammatical reference of future events. We do so by leveraging the
grammatical structure of the German language, thereby avoiding the introduction of
potential confounds, present in cross-lingual studies. In our results, we find no supporting
evidence for a causal link between a language’s grammatical structure and the speaker’s
economic decision-making in the time discounting and risk domain. We find weak sup-
port for impacts on individuals’ believe formation. Our results hint at the fact that
a language or grammar dummy absorbs facets of culture not captured by a culture dummy.
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1.1 Introduction

Known as the ‘Sapir-Whorf Hypothesis’ among linguists (e.g., Regier and Kay, 2009),
research has long since conjectured that language-specific idiosyncrasies, like differences
in grammatical structures (e.g., Cook et al., 2006; Daniel L. Everett, 2005; Daniel L
Everett, 2012), distinct means to describe physical properties (e.g., colors Winawer et al.,
2007; Franklin et al., 2008), or non-physical occurrences like emotions (e.g., Lindquist
et al., 2006), can affect human behavior and perception.

Cook et al. (2006) show for bilingual English-speaking subjects from Japan scoring
highly on English tests, that they exhibit significant tendencies to classify material
objects more in line with US than with Japanese monolinguals. Winawer et al. (2007),
testing Russian and English native speakers for their color discrimination capabilities, find
Russian native speakers to be faster in differentiating colors close in spectrum compared
to English native speakers. They attribute the advantage of Russian native speakers
to the more diverse color nomenclature available in the Russian language compared
to English. Majid et al. (2004) find that frames of references in spatial tasks varied
cognitively with the linguistic differences of the respective native languages of children.

Investigating grammatical peculiarities of different languages, the seminal contribution
by K. Chen (2013) studies the impact of future-time reference (henceforth FTR) on
saving and health-oriented behavior. FTR classifies how strongly descriptions of future
and current events are grammatically segregated. Strong-FTR languages mandate the use
of specific grammatical indicators when talking about the future, contrary to weak-FTR
languages, where future events can be referenced using the present tense.1 Studying
World Bank savings data, K. Chen (2013) finds a strong relationship between weak-FTR
languages and higher rates of savings or lower rates of types of behavior detrimental to
health. He postulates that two channels may influence his results. Either weak-FTR
languages let future events appear more immediate (Linguistic-Savings Hypothesis) or
weak-FTR languages cause an imprecision of beliefs about the timing of a future event,
also making saving more attractive. However, given potential confounds in the underlying
non-experimental real world-data, K. Chen (2013) cautions from interpreting his results
as causal. He states that the direction of the linkage of language and behavior is unclear
and that language might be a reflection of “deeper differences” transported with the
language itself.

To test K. Chen’s 2013 language behavior relationship, Sutter, Angerer, et al. (2015)
implement a set of delayed gratification task experiments with German (weak-FTR)
and Italian (strong-FTR) native tongue school children in southern Switzerland. Sutter,
Angerer, et al. (2015) find that German native-tongue schoolchildren show a significant
inclination to delay gratification longer, concluding that strong-FTR languages indeed
induce higher impatience in their native speakers. Li (2017) uses bilingual (English-
Chinese) Hong Kong citizens to test the impact of Chinese and English framing on risk
and prosocial behavior. Li (2017) finds suggestive evidence that subjects change their

1Examples for strong-FTR languages are: English, Arabic, Italian, and Korean. Exemplary for weak-FTR
languages are German, Japanese, and Brazilian Portuguese.
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beliefs about the behavior of others if tasks are presented in language frames differing
in FTR. Additionally, Li (2017) finds a preference for ”Chinese lucky numbers” when
the experiment is framed in Chinese, indicating differing cultural mindsets caused by
a change in lingual frame. In our opinion, both results relate to “deeper differences”
cautioned by K. Chen (2013).2 Literal translations in different languages have been
shown to evoke diverging concepts and transmit particular supplementary information
in the respective language (Houser et al., 2004; Majid et al., 2004; Briley et al., 2005;
Luna et al., 2008; Van Nes et al., 2010).3 A recent study by Thompson et al. (2020),
investigating word meanings using semantic alignment across different languages, shows
low correlations in all investigated domains, supporting the idea of deviating concepts
contained in literal translations. Consequently, a clean identification strategy, aiming at
testing whether addressing a future event in the future or present tense impacts economic
decision-making, needs to avoid the confounds described above. Ideally the language is
kept constant across treatments to avoid the transmission of deviating concepts and or
varying cultural mindset. That is what J. Chen et al. (2019) try to test within the Chinese
language. To that end, they make use of the fact the Chinese language does not demand
a future-reference within every sentence. Instead, the reference may be omitted. However,
the drawback is that they do not necessarily test for the effect of the precision of beliefs
related to future references. Rather they test for the effect of awareness of future-reference,
moving one event closer to the present compared to another. Moreover, they only test for
choice tasks and do omit any possible interaction between risk and time (B. J. Andreoni
and Sprenger, 2012). We overcome these challenges by leveraging a grammatical feature
of the German language. The German language allows identical future events to be
referenced in the present and the future tense equally without becoming grammatically
false (Dahl, 2000; Dahl and Velupillai, 2005; K. Chen, 2013). According to K. Chen (2013),
German is classified as a weak-FTR language as it does not necessitate a grammatical
marker when referencing the future. However, the German language still incorporates
specific grammatical markers for the future tense. German offers different options to a
speaker for referencing future events while staying grammatically correct (Dahl, 2000;
Dahl and Velupillai, 2005). One option is to reference future events in the future tense,
which necessitates the use of a specific grammatical marker. The second option is to
reference future events in the present-tense in conjunction with at least one unspecific
temporal marker.4 The unspecific temporal marker, though not necessary, can equally
be integrated in the future reference by future tense. To illustrate Table 1.1 provides an

2While the discipline of linguistics does not know the term belief, it employs the term perception in a similar
fashion. Under that terminological umbrella, linguists cluster together those lingual effects affecting visual
perception (e.g., Athanasopoulos et al., 2010) as well as such effects affecting the abstract perceptions of concepts,
such as duration (e.g., Bylund and Athanasopoulos, 2017) or professional ideas (e.g., Monti-Belkaoui and
Belkaoui, 1983). For this reason, it is not unreasonable to draw the connection between the latter and what
economists define under the term beliefs.

3An example is the concept of "police". While in nations with low corruption and high trust in state authorities,
"police" is often connoted with the concept of "helper", this certainly is not the case for people living in states
where corruption is rife and the populace is violently suppressed by state authorities. While this is a very salient
example, the issue is still valid for smaller and less obvious conceptual differences.

4Unspecific temporal markers in this sense are words such as soon or afterwards.
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Table 1.1: Comparison of Future Time Reference Options in English and German

English German

Future I am going to buy groceries soon. Ich werde bald Lebensmittel einkaufen gehen.
Present Incorrect: I buy groceries soon. Ich gehe bald Lebensmittel einkaufen.

- Grammatical future time reference marker is shown in italic
- Unspecified temporal marker is underlined

example, comparing English and German language FTR properties. The sample sentence
shows that there is only one correct way to refer to a future event within the English
language. English necessitates a grammatical marker for future event referencing, in the
example ”going to”, and is classified as strong-FTR by K. Chen (2013). The German
language, like English, can express future events using a grammatical marker which shifts
the verb to a future tense form. In the following, we refer to this grammatical construct
as the future-tense future reference (henceforth FF). However, it is also possible the use
the verb in a present tense form if an unspecific temporal marker exists. In the example,
this temporal marker is ”soon” (German: ”bald”). We will refer to this grammatical
construct as the present-tense future reference (henceforth PF).5

This feature of the German language allows us to vary solely how future events are
grammatically referenced and permits us to investigate the impact of FTR on subjects’
economic decision-making, while avoiding the introduction of confounds contained in
multilingual experiments. Making use of this particularity of the German language, our
study tries to provide a clean identification strategy for the effect of future tense reference
on economic decision-making within a single language.

In order to investigate the effect of differing FTR on economic decision-making, we
implement a delayed-gratification and a risk-aversion task, varying German FF and PF
between subjects. To account for potential shifts in beliefs, we further implement a
number of vignettes to disentangle whether varying the grammatical frame for future
events influences subjects’ judgement of the likelihood and immediacy of future events.6
To our knowledge, we are the first to investigate the causal link between grammatical
variations in framing of future events and people’s risk and time preferences within a
single language.

Comparing subjects’ behavior in PF vs. FF framing in the German language, we
find little evidence for an impact on people’s risk aversion and time preferences. We find
weak support for an impact on people’s beliefs about the immediacy and probability
of events occurring in the future. The impact on beliefs, however, appears to be easily

5Note that the unspecified temporal marker is used in both sentences. While it is not required in an FF
grammatical structure, as the specific temporal marker indicates a future setting, it is required in a PF structure.
As it is required in a PF structure and allowed in an FF structure, we always included the unspecific temporal
marker in both framings during the experiment in order to vary only the grammatical tense of the verb.

6Framing something in the present tense might convey the event as being more likely and/or more immediate
to occur than a framing in grammatical future tense (K. Chen, 2013).
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overpowered by preconceived notions held by the subjects. Personal preferences for one
or the other grammatical structure do not seem to play a role in subjects’ choices.

The paper proceeds as follows. In the following Section 1.2 we outline our approach
as well as the experimental design of the study. The subsequent Section 1.3 presents our
findings. Section 1.4 summarizes the findings.

1.2 Experimental Design

We implement a between-subjects experimental design to elicit the effect of varying the
way future events are grammatically referenced in the German language on the time and
risk preferences of German native speakers. We also implement a number of vignettes to
investigate potential impact on the subjects’ believes about immediacy and likelihood
of an event occurring. To this end, we specifically designed the experimental texts to
include clean and unobtrusive grammatical variations allowing for a strong framing.

Additionally, we designed a task to elicit subjects’ preferences for a specific gram-
matical tense, which might mitigate the efficacy of the respective framing. Concluding
the experiment, subjects answered a socioeconomic survey. With the exception of the
task investigating subjects’ preferences for a grammatical tense and the socioeconomic
survey, every bit of text referencing future occurrences is framed in either PF or FF.
This includes task descriptions, vignettes, as well as introductory explanations about the
experimental session, behavioral rules, and matters of payment.

Time-Preferences – Choice List

The time-preferences elicitation task, henceforth called TimeGame, is a choice between
10 different payment schemes. 7 The implementation is mathematically equivalent to
the traditional choice list approach (e.g., Andersen et al., 2008). Each payment scheme
corresponds to a small interval of discount rates. Each scheme could be inspected by
subjects before selecting the preferred one. A selection could easily be changed until
final submission. Before submitting their choice, at which point no change would be
possible anymore, a popup window would ask subjects to confirm their choice. Payment
schemes beginning at a later date paid more money overall. The payment schemes are
constructed in such a way that they all pay a fixed amount of money once a week over
six consecutive weeks. The money is transferred to subjects’ bank accounts on the dates
corresponding to the chosen payment schemes. All payment schemes start at least one
week after the experiment ended to avoid any biases (Burks et al., 2012; Benhabib et al.,
2010) or confounds introduced by participating at a date later than a payoff scheme’s
start. We opted for a simple task because an online experiment only offers limited means
to explain an assignment (Dave et al., 2010).8,9

7See supplementary online materials for screenshots of the experiment
8Other tasks for eliciting time preferences were considered, e.g., a nested choice list based on Attema et al.

(2015), but deemed unsuitable for an online experiment during a trial runs due to complexity.
9section A.2 provides detailed calculations.
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Risk-Preferences – The BombGame

We elicited the risk aversion of individuals using a variation of the BombGame introduced
in Crosetto and Filippin (2013). During the selection stage of the BombGame, subjects
are presented with 100 numbered fields. 99 fields hold cash prices, each valued at € 0.20.
The remaining field contains a destructive option, represented by a bomb, which is placed
in the 10× 10 matrix at random. If selected, the bomb field nullifies all gains from the
other fields, leaving the subjects with a zero payoff from this task. 10 Subjects select as
many fields as they like, but are not informed of the selected fields’ content. The result
from this task is revealed on a later page in order to not affect the decision for the other
tasks. During the BombGame subjects construct their own preferred lottery. Therefore,
as the risk of selecting the bomb field increases with the absolute number of selected
fields, this task provides us with a good measure of a subject’s risk preferences.

The order of the risk-preference and time-preference elicitation tasks is randomized
on the subject level to control for possible order effects.

Belief Elicitation Vignettes

The belief elicitation vignettes consist of small paragraphs in the range of three to five
sentences. In total, eight vignettes are shown to subjects, consisting of four vignettes
concerning likelihood and four concerning immediacy of events.11 To the authors’
knowledge, no vignettes existed prior to this study to investigate this relationship.
Consequently, the vignettes are specifically designed for our experiment. They, too, were
tested in a small pilot study with non-incentivised subjects prior to implementation.

Immediacy

The first set of vignettes investigates whether varying FTR influences the perceived
immediacy of an event when no explicit information of a future date is provided. Subjects
choose the point in time they think reflects the average of what the other subjects
estimated to be the most likely time frame when the described event would occur. The
time frame could be chosen from ten predefined intervals, ranging from “within a week”
to “later than 6 months”. Payments depend on a subject’s answer either being adjacent
to the average prediction of all answers (€ 0.50) or guessing the exact average prediction
(€ 1.00).

Likelihood

To investigate the domain of risk, we elicit whether varying FTR influences to the
perceived likelihood of events. During a vignette, subjects are asked to guess the average
likelihood of an event occurring in the future as indicated by the other participants.
Input is possible either via a slider ranging between [0 : 100] or via direct numerical

10See screenshot in the supplementary online material.
11See section A.3 of the appendix for a complete overview of the vignettes in FF and PF framing.
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input. Manually moving the slider sets the numerical value. The slider button is initially
hidden until the slider bar is clicked at to prevent setting an anchor. The slider is also
color-coded (red for less likely and green for more likely) to improve usability during
the online experiment. 12 Subjects would receive a payment of € 0.50 if their answer
lies within five percent of the average of all subjects’ answers for this vignette, given the
same treatment. If subjects managed to guess the correct average, they would receive a
payment of € 1.00.

Fischbacher, Gächter, Bardsley, et al. (2010) show that such incentive schemes are
a reliable method for the elicitation of beliefs, while at the same time reducing the
possibilities for hedging. The likelihood and immediacy vignettes are presented to
subjects in blocks of the same type to avoid confusion about what needs to be assessed.
The order of the blocks and the order of the vignettes within each block are randomized
on the subject level.

As the experiment was conducted as an online study, we designed vignettes in such
a way that the content, while easy to understand and believable, had to be completely
fictional. This means no factual information about dates in regard to the content could
be found. However, while no factual content can be found online, depending on the topic
of the vignette, it may be possible either to find related information or come into the
experiment with a strong preconception about the topic. The latter could interfere with
an induced framing effect. At the same time, we can exploit such an effect to serve as
a boundary on the stability of a grammatical framing effect. Consequently, while we
had four vignettes in both categories, we opted to include one topic in each category
which would offer the possibility to invite additional information, outside preconceptions,
or predispositions. The immediacy vignettes contain a scenario incorporating the topic
of Bitcoin.13 The likelihood vignettes include a topic concerning the German city of
Buxtehude, which offers itself to preconceived notions.14 These are the vignettes labelled
(d) and (h), respectively.

Concerning the content and topic of the other vignettes, we could not deduce any
systematic outside influence, which means that only such information as provided in the
respective vignette is available to subjects. The likelihood vignettes covered topics ranging
from announcements of a German Federal authority and a multinational consulting firm
to a business forecast of a European airport. For the immediacy vignettes, topics touched
upon the Bonn EconLab, announcements concerning roadworks, and the scheduling
of a city council meeting regarding broadband internet. We chose the design of the
vignettes to include specific scenarios as the vignettes needed to be easily understood,

12See the supplementary online material section for screenshots of the experiment
13The topic was widely discussed at the time of the experiment, exhibiting a high prevalence in newspaper

articles and online blog posts.
14Buxtehude is a city in northern Germany which many southern Germans consider a proverbial place (Förste,

1995) ’where nobody wants to go or nothing ever happens, i.e., a faraway, place of no concern to anybodyt’.
Many are surprised when they learn of its real existence. The real city is located near Hamburg. A potential
origin of this peculiar association is that the city prominently featured in a children’s tale by Ottfried PreuSSler in
the early 1960s. The city would be a faraway place where a warlock would go using his broomstick (PreuSSler,
1962). The story has been continuously retold in popular media and the city features prominently in modern day
German children’s tales. (e.g., Watson et al., 1992; Bartos-Höppner, 2010; Michael, 2018).
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believable, and feature plausible occurrences as the plausibility of the content necessitates
a well-considered answer. In a small pilot, no evidence was found that subjects found the
content unbelievable or hard to grasp.

Paragraph Construction and Questionnaire

The paragraph construction task elicits subjects’ preferences for a tense used to express
future events in the German language. Preferences for a specific tense might impact the
efficacy of the respective treatment. To this end, subjects have to construct a paragraph
consisting of 5 sentences. For each sentence, two versions are provided to each subject;
one is in the present tense, while the other is in the future tense. A subject then has
to decide which combination of sentences she considers to feel most natural. Since this
task potentially draws the subjects’ attention to the linguistic aspect of the experiment,
the paragraph construction task is placed after all other tasks. As subjects select their
preferred tense for a specific sentence, a complete paragraph is generated and shown
to subjects, who can make changes to their choices before submission. The paragraph
contains a short news report about an urban redevelopment project and future plans for
the area. Just as in the vignettes, we chose a topic that was easy to grasp and could not
be related to any factual occurrences in a systematic way.

Finally, subjects filled in a survey. The survey includes self-reported measures for
risk aversion (Dohmen et al., 2011) and elements from the German SOEP (Wagner et al.,
2007), as well as questions on socioeconomic characteristics. 15

Implementation

The experiments were programmed and conducted as online experiments using the
experimental software oTree (Daniel L Chen et al., 2016). This was done to allow for a
larger number of participants to pick up on potential null-effects. In order to assess the
criteria under which our design is able to pick up on potential null-effects, we primarily
considered the paper by K. Chen (2013), as it is the most widely-citet in this domain.
The author finds that the odds of an individual saving within the year is twice as high
for wFTR speakers compared to sFTR speakers. That effect level remains, regardless of
the controls added. While such an effect may conventionally be seen as a strong effect,
we used the data available from K. Chen (2013) 16 to estimate the required number of
individuals. Consequently, in order to test for an effect size of the magnitude found in K.
Chen (2013) with a power in the 95% confidence interval, we require a minimum of 1,083
observations under our experimental design. We therefore opted for the implementation
as an online experiment, using subjects from the Bonn EconLab’s subject pool.17 Usage

15For a comprehensive list, see the supplementary online material.
16The data as well as the code may be downloaded from www.openicpsr.org. We adapted the code and used

the R packages pwr and effsize for the calculations.
17Online experiments were shown to yield reliable results when compared to traditional lab studies, despite

lower stakes (Paolacci et al., 2010; Amir, Rand, et al., 2012).

https://www.openicpsr.org/openicpsr/project/116114/version/V1/view
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of the experimental software oTree (Daniel L Chen et al., 2016) allowed us to design the
experiment to be accessible from a large variety of devices, especially mobile devices.

1,389 subjects participated during the online session and were assigned to one of
two treatments – Present Tense Future Reference (PF) or future tense Future Reference
(FF) framing – at random. 234 individuals were excluded from the analysis because
they either had not completed the experiment in full or had participated twice, in which
case only the observations from their first participation are included. Observations of
the remaining 1137 subjects are considered in our analyses. Of these subjects, 557 were
treated with the future and 580 with the present tense framing.

1.3 Results

Time Preference Elicitation Task and Risk-Aversion Task

Figure 1.1a presents the distribution of decisions in the time-preference elicitation task.
A χ̃2-test yields a p-valueTime = 0.674, leading us not to reject the null-hypothesis of
no significant difference in chosen payoff schemes between the two treatments. As the
large number of responses at the lower and upper limit could mask existing distributional
differences, we remove the observations in the lower and upper margins for a secondary
test. The distribution of the reduced dataset is shown in figure 1.1b. A χ̃2-test on the
reduced set yields a p-valueTimeNC = 0.525, showing no significant differences in payoff
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treatment. Presentation in absolute values.

Figure 1.1: Distribution of TimeGame Choices
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Figure 1.2: Number of Selected Fields in the BombGame

scheme selection between the two treatments. Results from Tobit regressions, presented
in section A.2 of the Appendix, support these results.

In the next step, we analyze the results of the risk-aversion elicitation task. Figure
1.2 displays the distributions of individually selected number of lottery fields in each
treatment. The visual representation suggests that choices in the risk-aversion task match
closely across treatments. This result is supported by a Mann-Whitney-Wilcoxon test
(U-test) which yields a p-valueBomb = 0.364. Given the observations in our sample, we
cannot reject the null-hypotheses for equality of distributions for the time preference
and risk preference elicitation task. The implemented future and present tense framing
does not appear to impact the economic choices to statistically significant degrees in
our chosen settings. Results from OLS and logit regressions, presented in Table A.4 and
Table A.6, support these results.

Belief Vignettes

In the following, we analyze the data obtained from the vignettes. We first focus
on the vignettes concerning the immediacy of events. To recap, we implement two
types of vignettes. ‘Immediacy vignettes’ elicit whether different grammatical framings
influence subjects’ beliefs about the immediacy of future events whose exact occurrence
is undetermined. ‘Likelihood vignettes’ investigate whether the grammatical framing
alters subjects’ beliefs on the likelihood of events occurring in the future. Vignette (d)
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Note: Distribution of subjects’ choices for immediacy vignettes. Light color represents FF, dark color represents PF

framing. Median of FF is depicted by the dashed, PF by the dotted lines. x-axis presents choices in absolute terms

for 557 (FF) and 580(PF) subjects.

Figure 1.3: Distribution of Choices in Immediacy Vignette

and (h) contain the aforementioned checks for the influence of preconceptions.

Immediacy

Figure 1.3 depicts the observed distributions of choices made in the four immediacy
vignettes. The immediacy vignettes (a) and (b) show significant differences ((a) p-value
< 0.01; (b) p-value = 0.038; χ2-test) in subjects’ choices about the perceived immediacy
of the described events. These results are in line with the idea that future events framed in
the present-tense are perceived as more immediate than future events framed in the future
tense. The third vignette (c) shows no significant differences in choices (p-value < 0.161;
χ2-test) but suffers from lower-bound truncation. Vignette (d), which we included in
the test for the influence of preconceptions, is not significant on any conventional level
(p-value = 0.545; χ2-test). Vignette (d) shows median choices for FF which are more
immediate than PF choices. That, however, goes against the idea of present tense framed
events being perceived as more immediate than future tense framed events. Results for
vignette (d) hint at the fact that the PF framing induced believe changes are not robust
when introducing additional preconceptions. To check the robustness of these results we
estimated ordered logit models, including order effects, the measured preference for a
specific tense and socioeconomic data collected during the survey, which support these
findings. See Table A.9 in the Appendix.

Likelihood Vignettes

The following section takes a look at the vignettes related to the domain of risk. While
the grammatical framing is not directly related to this domain, it may be influenced by
an indirect link (Andersen et al., 2008).

Figure 1.4 plots the observed likelihoods for the described events to occur in the future.
The plots for vignettes (e), (f), and (g) show a shift in the distributions towards higher
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Notes: Violin plots depict the distributions of likelihoods of the described events to occur in the future as assigned
by the subjects. Boxplots show the median and 25%, 75% quantiles, respectively. Median: e: FF=50, PF=51; f:
FF=70, PF=75; g: FF=70, PF=71; h FF=62, PF=63. Likelihoods could only be chosen using integer values.

Figure 1.4: Violin Boxplots for Likelihood Vignettes

likelihoods in the PF framing, i. e., future events framed in the present-tense are assigned
a higher likelihood of occuring in the future. These visual findings are accompanied by
shifts in the respective median value (Median: e: FF=50<PF=51; f: FF=70<PF=75;
g: FF=70<PF=71.5; h: FF=62<PF=63) and are significant on at least the 5 percent
level (p-value(e) = 0.022, p-value(f)=0.002, p-value(g)=0.033; U-test). For vignette (h),
we observe no such clear shift, a finding that is supported by the results of a U-test
(p-value(h) = 0.886). Results for vignette (h) similarily to the results for vignette (d),
indicate that, although grammatical tense framing impacts beliefs in intuitive ways, the
effect is not necessarily robust against additional preconceptions and might be overruled
by such. To check the robustness of these results, we estimated ordered logit models
for vignettes (e-h), including order effects, the measured preference for a specific tense
and socio-economic data collected during the survey. These estimates, although still
showing the expected direction of effects, turn out to be significantly weaker than the
U-test results. See Table A.12 in the Appendix. For the vignettes, except for (e), the
inclusion of additional variables renders the observed effects insignificant.

1.4 Summary

The seminal study by K. Chen (2013) shows that a person’s future-oriented savings
rates is lower, and future-oriented health behavior is less prevalent if a person’s native
tongue is classified as a strong-FTR language, i. e., it demands the use of a grammatical
future tense when describing future events. As word meanings and connotations are
not perfectly aligned across languages (Thompson et al., 2020), studying FTR across
languages can introduce confounds, making a clean identification of an FTR effect spurious.
To avoid such potential confounds, we implemented a within-language experiment with
German native speakers. The German language allows for referencing future events
in the grammatical present as well as the future tense, facilitating a within-language
investigation. We tested the impact of present-tense and future-tense framing in the
German language on behavior related to time and risk preferences in a medium-scale
online framing study. We included two sets of vignettes to investigate the influence of
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the present and future tense on subjects’ beliefs about the immediacy and likelihood of
future events. We further designed an exercise to elicit subjects’ preferences for a specific
tense to reference future events and supplemented the study with a socioeconomic survey.
Our within-language variation of future-time referencing (FTR) and experimental setting
allows for a clean identification of the impact of only varying the grammatical tense in
the German language on economic behavior and beliefs.

Our results show no significant effect on people’s behavior in the risk and time
preference elicitation tasks. However, we find evidence for influences of future and present
tense reference to future events on subjects’ beliefs. Nonetheless, the effects are weak
and can be counteracted when additional preconceptions are introduced.

Our experiment finds no evidence in support of the idea that altering the grammatical
future tense reference impacts economic decision-making in a meaningful way. Conse-
quently, when viewed in conjunction with the results of K. Chen (2013), our results
hint at a deeper but imperfect link between language and culture (and maybe even
subcultures). That difference is not necessarily captured in a simple culture dummy.
We therefore argue that future, cross-border research should take this into account by
relying on additional language and language-use information, as well as between language
alignment, in order to more cleanly control for culture effects when testing behavioural
channels.
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CHARTING THE TYPE SPACE

The Case of Linear Public-Good Experiments

Abstract: Behavior in economic games is not only noisy. One has reason to believe that
heterogeneity is patterned. A prominent application is the linear public good. It is widely
accepted that choices result from participants holding discernible types. Proposed types,
like free-riders or conditional cooperators, are intuitive. But the composition of the type
space is neither theoretically nor empirically settled. In this paper, we leverage machine
learning methods to chart the type space. We use a simulation to understand what can
be achieved with machine learning. We rely on these insights to find clusters in a large (N
= 12,414) set of experimental data points from public-good games. We discuss ways in
which these clusters could be rationalized. Finally, we offer two outlooks, one traditional
economic approach and another rooted in supervised learning, on how to go forward with
our results.
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2.1 Introduction

Standard theory predicts the tragedy of the commons. Everybody maximizes individual
profit, and exploits socially minded choices of others. If members of the community
interact repeatedly, but it is known when interaction will stop, the gloomy prediction
still holds. A robust experimental literature shows that, in the aggregate, results look
different. In a standard symmetric linear public good, average contributions typically
start considerably above zero, but tend to decline over time (J. O. Ledyard, 1995; Zelmer,
2003; Chaudhuri, 2011). A substantial theoretical literature rationalizes these results,
usually by introducing some form of social preference into the utility function (for an
excellent overview, see Fehr and K. Schmidt, 2002). While such extensions of motives
can generate a starting point above zero, it is more difficult for them to explain the
downward trend also. For this, one needs a reactive element. It has been prominently
introduced into the literature with the concept of conditional cooperation (Fischbacher,
Gächter, and Fehr, 2001). A conditional cooperator is willing to act unselfishly provided
she expects or knows that others will do so as well. In principle, the downward trend
could result from the fact that conditional cooperation is imperfect. While participants
would not be outright selfish, they would still try to outperform their peers, albeit only
slightly (Fischbacher, Gächter, Bardsley, et al., 2010). Engel and Rockenbach (2020)
have shown that this explanation is not supported by the data. Rather, the downward
trend results from bad experiences. If participants, in the previous period, have been
overly optimistic about the contributions of their peers, they adjust their beliefs and, in
turn, their contributions in the subsequent period. Critically, they overreact to negative
experiences.

This is where the present project starts. If the population were homogeneous and
completely consisted of conditional cooperators, there could not be a downward trend.
The source of the trend, and hence the need for at least some form of institutional
intervention to sustain cooperation, must be heterogeneity. Even if many individuals are
in principle good-natured and happy to cooperate in good times, their willingness to
do so is fragile. If they experience exploitation, they react. While the claim is intuitive
that populations are heterogeneous, understanding the character of this heterogeneity is
inherently difficult. One needs estimates about the utility functions of group members:
is an individual outright selfish? Is she so strongly motivated by the common good that
she does not care about the choices of others? Or does she react? If so, what does she
react to? And how strongly? There could also be mixed types: individuals free-ride or
cooperate for that matter, unconditionally, as long as a certain threshold is not crossed.
Reaction functions might have an exploratory component: while an individual is in
principle of a certain type, she occasionally tests the waters by contributing more or less
than suggested by her ordinary reaction function. Reaction functions could be non-linear.
Conditional cooperators might, for instance, be happy to tolerate an occasional bad
experience (maybe attributing it to others having made a mistake), but they might lose
faith and react very strongly if bad experiences repeat. There might be individuals who
try to educate their groups by showing them what could happen if others do not stop



2.1. INTRODUCTION 27

misbehaving. For that purpose, they might once contribute nothing and go back to high
contributions in the following period. Reaction functions may also depend on the effects
of occasional exploitation. In the standard setting (group size 4, marginal per capita
rate .4) three loyal members still make a small profit if they continue to cooperate (and
accept that the free-rider gains a windfall profit).

All these behavioral programs resonate with data from public good experiments. But
these are only ex-post rationalizations. Moreover, not every dataset could be reasonably
explained with all of these behavioral programs. Before the field can move forward, and
better targeted interventions can be designed, one needs a much deeper understanding of
behavioral heterogeneity. Ultimately, it would be highly desirable to define formally, and
experimentally test, these reaction functions. But a necessary first step is exploratory:
which reaction functions exist, and how prevalent are they? Charting the type space
is the aim of the present project. We start from the assumption that the theoretical
possibilities for the composition of the type space are at best partly understood. We
further note that reactions may not only differ in kind, but also in degree, which is why
parameters must be estimated. This is why we revert to machine learning. We use a
reasonably large dataset of earlier linear public-good games to find types, and discuss
reaction functions that would rationalize the reaction patterns.

In principle, choice data are well suited for our endeavor. The choices of others in
previous periods are the only information to which participants can react in an anonymous
linear public good. For each individual, we can check whether and, if so, in which ways
they have reacted to past choices of the remaining members of their group. We can
represent the development of their choices over time as a time series. We can use the
rich set of methods developed in the machine learning community for clustering the
time series of choices, giving the algorithm the possibility to use the average choices of
the remaining group members in the previous period as an input. From these clusters,
we can extract what machine-learners call a prototype.

This approach, however, presupposes that reaction functions can indeed be inferred
from choices. Arguably, this will depend on at least two features of the data: the precision
with which an individual participant has reacted to experiences, and the character of these
experiences. The former depends on the noise rate. Potentially, individuals have a certain
reaction function, but they do not act upon it at all times. The latter depends on group
composition, and on initial choices. To illustrate: in a group of three straightforward
free-riders, a conditional cooperator can be expected quickly to make choices that are
indistinguishable from the choices of native free-riders. Discriminating between the
choices of conditional cooperators and of free-riders will be the more difficult the lower
the initial contribution of a conditional cooperator is. It should be equally difficult to
discriminate between conditional cooperators and genuinely cooperative participants if a
single conditional cooperator is surrounded by a group of native cooperators.

Before using machine learning for clustering participants in real data, we therefore
investigate with simulated data the framework conditions under which potentially powerful
algorithms can find types. In simulations, we can systematically vary the composition of
the type space, the definition of individual types, and the noise rate. This first step yields
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one important insight: machine learning methods find patterns. If the choice program
of an individual is reactive, one and the same choice pattern may result from different
reaction functions, depending on the choices the remaining group members have made
in the previous period. Consequently, there is no one-to-one mapping between patterns
and types. This must be reflected in the design of the clustering algorithm. We show
that interpretation becomes much easier if one estimates a number of patterns that is
considerably bigger than the expected number of types and hence reaction functions.

Simulation also helps us with two further tasks. We can estimate the richness of the
data that is required for making the exercise meaningful. And we can check in which
ways fine-tuning the algorithm improves estimation.

As explained above, we do not take it for granted that the type space has already
been understood completely. A major motive for our project is the possibility that there
are further types that have not been theorized. Yet, for our simulations, we need to
build in types that have already been conceptualized. In the simulations, we work with
groups consisting of different fractions of the following five types: The first are altruists,
whom we define as participants who do not react to experiences, and who start with
relatively high contributions. Such participants may exhibit variance, and all the more
so the higher the noise rate. But they show no trend.
The corresponding type at the lower end is total free-riders. They in principle do not
make contributions to the public project, but may occasionally deviate from this program.
Pure conditional cooperators start with relatively high contributions, but adjust them to
experiences.
Following Fischbacher, Gächter, and Fehr (2001), we allow for hump-shaped contributions:
up to a value near half the endowment they increase contributions in reaction to good
experiences, but they exhibit a perverse reaction to even better experiences.
Following Engel and Rockenbach (2020), we finally implement farsighted free-riders. For
some initial periods, “they feed the cow” by making substantial contributions, but then
start “milking” it by reducing their contributions below average contributions in the
previous period.

The remainder of this paper is organized as follows: In Section 2.2, we situate our
endeavor in the literature. A small number of types have already been theorized. We
use these types to simulate data in section 2.3. We use this dataset for two purposes:
In Section 2.4, we show why a naive approach cannot work: once one allows for choice
functions (of at least some types) to be reactive, there is no one-to-one mapping between
types and what one can observe in the data, i.e., choice patterns and their corresponding
experience patterns. In Section 2.5, we use theory and an extended grid search to find the
best algorithmic configuration for clustering this kind of data. This prepares the main
Section 2.6, where we apply the method to a sizeable set of experimental data. It turns
out that empirical choice/experience patterns are much richer and quite different from
the patterns resulting if one exclusively assumes types that have already been theorized.
Section 2.8 concludes with discussion.
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2.2 Literature

It has often been noted that choices in public good experiments are not homogeneous
(see only Fischbacher, Gächter, and Fehr, 2001; Fischbacher, Gächter, Bardsley, et al.,
2010). But the literature has only relatively recently begun to define the type space
more precisely. Amin et al. (2018) use theory derived from Fischbacher, Gächter, and
Fehr (2001) to classify 72 participants from a new experiment into 7 types, and then use
simulation to find out which fraction of which type is required to sustain cooperation in a
linear public good. Lucas et al. (2012) show with simulation that cooperation is hard to
sustain in a linear public good if the group consists of heterogeneous types (which they
take from Fischbacher, Gächter, Bardsley, et al. (2010)). Arifovic and J. Ledyard (2012)
develop a model that combines social preferences with learning. In the framework of
this model, conditional cooperation is not a type, but develops endogenously. They use
data from, among others, Isaac and Walker (1988) and J. Andreoni (1995) to calibrate
their model, and argue that it has a good fit. We have a different goal. On the one
hand, we do not expect individual choices to be merely noisy. We consider the possibility
that heterogeneity is patterned. On other hand, we do not assume that the behavioral
forces that drive this heterogeneity are already fully understood. Rather, we wish to find
patterns that are hard to reconcile with extant theoretical concepts. The purpose of our
exercise is hypothesis generation. Testing these hypotheses would require a series of new
experiments. That is beyond the scope of the present paper.

Engel (2020) also uses machine learning to organize the type space for experimental
data, demonstrating the approach with data from Fischbacher, Gächter, Bardsley, et al.
(2010). Yet, he has a different research question. He wants to compare the performance
of a finite mixture model (which estimates the type space and choices conditional on type
simultaneously) with a two-step approach. First, he estimates the type space from the
data, and then estimates choices conditional on type in a mixed-effects model. That model
interacts the types estimated in the first step with the effect of experimental manipulations.
He also uses a different approach for estimating types, using the coefficients of local (per
participant) regressions as inputs for a classification and regression tree.

A third group of contributions is more remote. Game theory usually starts with
a complete definition of the game which includes the strategies available. Yet, when
they are exposed to one of the games of life, individuals often do not know that much.
They must learn what game they are playing and what strategies are available. This
task is even harder if they cannot exclude that the population they play with with is
heterogeneous. However, games can be too complex for solving them analytically. Then
solutions must be found computationally. Ficici et al. (2012) make the game tractable by
first compressing a large number of agents into a manageable number of clusters, and
then solve the simplified game analytically.

Closest in spirit are Bapna et al. (2004) and Y. Lu et al. (2016). Both papers aim
at classifying bidding strategies in online auctions (Bapna et al., 2004) and in flower
auctions (Y. Lu et al., 2016), using machine learning methods. Vorobeychik et al. (2007)
use machine learning methods to find the strategy space of infinite games . Mao et al.
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(2017) use experimental data from a prisoner’s dilemma to specify a classic learning
model that helps them to divide players of a prisoners’ dilemma game into two distinct
behavioral types. The main difference to us is that we look at a different, more complex
game (a dilemma), to which prior results are not easily transferred. Moreover, we use
experimental data and exploit the power of algorithms for the classification of time-series
data.

2.3 Data-Generating Process

Linear Public-Good Games. While we believe our method to be applicable more generally
for finding patterned heterogeneity in repeated, interactive experiments, our specific
object of investigation is a linear public good. The game is defined by the following profit
function,

πi t = e− ci t +µ
K
∑

k=1

ckt (2.1)

,where π is profit of individual i in period t. Every period, the individual receives
an endowment e. She can keep the endowment or make a contribution c to the public
project of the group. Marginal per-capita rate 0< µ < 1 creates the dilemma. As µ < 1,
each individual is best off keeping the entire endowment for herself. Yet, as Kµ > 1, the
group is best off if all members contribute their complete endowments. Most frequently,
e = 20,µ= .4, G = 4 have been chosen (J. O. Ledyard, 1995; Zelmer, 2003; Chaudhuri,
2011). Then, three loyal group members still make a small profit. This serves as a buffer
against the rapid decline of contributions.

Simulated Type Space In their seminal paper, Fischbacher, Gächter, and Fehr (2001)
argue that (in their one-shot version of this game) there are three types: free-riders,
conditional cooperators, and “hump-shaped” players. In his reanalysis of Fischbacher,
Gächter, Bardsley, et al. (2010), Engel (2020) further finds a small, but discernible
fraction of altruists. In their reanalysis of Fischbacher, Gächter, Bardsley, et al. (2010),
Engel and Rockenbach (2020) use a combination of belief and choice data to distinguish a
fifth group, which they call far-sighted free-riders. In our simulations, we allow for these
five types. We focus on a partner design. Groups stay together for the full duration of
the game. We always allow for an individual random effect ηi and residual error σi t ⊥ ηi,
which we both define to be normally distributed with mean 0 and standard deviation .3
(∼N (0, .3)). We thus implement the type space as defined in Table 2.1, where c−i,t−1 is
the average contribution of the remaining group members in the previous period p− 1.

We have groups of size G = 4, and we allow for t = 5 types. Participants choose
their contributions to the public good simultaneously, which is why their order does not
matter. We consider the possibility that types are present more than once in a group.
Hence, we have a problem of unordered sampling with replacement. This gives us a total
type space of
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Table 2.1: Simulated Type Space

type p = 1 p > 1
Short-sighted free-rider 0 0

Far-sighted free-rider 10
c−i,t−1 if t < τ
0 if t ≥ τ

Conditional cooperator 10 c−i,t−1

Hump-shaped 5
c−i,t−1 if c−i,t−1 ≤ 10
−c−i,t−1 if c−i,t−1 > 10

Altruist 20 20

N =
�

t + G − 1
G

�

=
(5+ 4− 1)!
(5− 1)!4!

= 70 (2.2)

different group combinations. In our simulations, we include each of these 70 combi-
nations of types 4 times. As three of the five types (conditional cooperators, far-sighted
free-riders, hump-shaped players) are reactive, we give the classification algorithm access
to the exact same experiences that participants make in this design, i.e, the mean con-
tribution of the remaining group members in the previous period. Hence the object of
clustering is a two-dimensional time series consisting of the own contributions over time,
as well as the lagged past experiences in terms of average contributions within the group
over time. We run the simulations for different number of periods p ∈ 10,15, 20,25, 30.
The results do not differ with the number of periods P.

2.4 The Naive Approach

Confusion Matrix. Simulation is routinely employed to test the performance of an
estimator. One generates a dataset where one knows ground truth and checks whether a
proposed estimator reconstructs the simulated parameters reasonably well. If an alter-
native estimator outperforms a competing estimator, one adopts the better-performing
method. Simulation gives the researcher confidence in the use of an estimator with data
where she does not know ground truth.

When applied to our estimation problem, the seemingly straightforward criterion
for choosing an estimator would be the frequency of identifying the simulated types.
Assessed with this criterion, the results reported in Table 2.2 are sobering.1 Each of the
5 types is present exactly 224 times in the dataset. Yet, the size of the clusters ranges
from 92 to 400. All clusters except the third are fairly impure: participants from different
simulated types are put into the same cluster. Even knowing ground truth, it is hard to
match clusters with types. Cells are highlighted in green if at least the most frequent
type per cluster and the most frequent cluster per type coincide. In the example dataset,

1For consistency, we use the same algorithmic configuration that we develop in Section 2.5 and that later
apply to the experimental data in Section 2.6.
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this only holds for the two non-reactive types: altruists and short-sighted free-riders. But
even the purity of these two clusters is low. In cluster 5, 33% are actually conditional
cooperators. In cluster 1, only 35% are indeed short-sighted free-riders. The remaining
65% consist of 27% hump-shaped types, 22% far-sighted (and hence partly reactive)
free-riders, and 17% conditional cooperators. For all reactive types, one needs secondary
(hump-shaped types, yellow cell) or tertiary (far-sighted free-riders: red cell) criteria for
matching clusters with types. For cluster 3, no unique type can be found (as altruists
are even more prominent in cluster 5). This is why one cannot even match the highest
frequency in the cluster with the highest frequency in a type if one no longer considers
clusters and types that have already been matched in an earlier round of matching.

Table 2.2: Confusion Matrix

cluster 1 2 3 4 5 Total
Altruist 92 132 224
Conditional cooperator 68 92 64 224
Far-sighted free-rider 86 74 64 224
Hump-shaped 106 94 24 224
Short-sighted free-rider 140 68 16 224
Total 400 328 92 104 196 1120

Clusters Are Patterns, Not Types. Figure 2.1 shows why the attempt fails to validate 5
clusters by comparing them with 5 simulated types. The algorithm does a reasonably
good job at clustering the data. But it clusters patterns of observed contributions,
combined with patterns of observed experiences in past rounds (henceforth experiences).
There is no one-to-one mapping of 5 patterns to 5 types.

Cluster 3 is the only pure cluster. It is defined by contributions being high, irre-
spectively of experiences. These altruists do even accept outright exploitation. The
remaining altruists are in cluster 5. By definition, their own contributions are also at the
top. But now experiences are more favorable. This is why the algorithm lumps altruists
together with conditional cooperators. As they are reactive, in a substantial number of
instances within this cluster, contributions drop in the middle of the time series. The
kink, of course, results from the presence of far-sighted free-riders who start cashing
in. Many of the far-sighted free-riders are put into cluster 4. They are together with
hump-shaped players and short-sighted free riders, who both make low contributions
throughout the game. Apparently, the decisive feature for putting a participant into
this cluster is not her own contributions, but the contrast between low contributions (at
least for some part of the time series) and considerably more favorable experiences. By
the same token, clusters 1 and 2 are distinguished. In both clusters, contributions are
rather low. However, in cluster 1, experiences are low as well, while they are discernibly
higher than contributions in cluster 2. It is even more instructive to consider which
types are put into which clusters, (Figure 2.1b) in the Appendix. Altruists, conditional
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Figure 2.1: Clusters versus Types

cooperators and far-sighted free-riders are split into clearly distinct subgroups. In the
case of altruists, the critical feature is experiences. If experiences are good, they are
in cluster 5. Otherwise, they are in cluster 3. For conditional cooperators, the match
between the level of their own contributions and experiences is decisive. If both are high,
they end up in cluster 5. If both are low, they end up in cluster 1. If both are in the
intermediate range, they are put into cluster 2. The same logic applies to far-sighted
free-riders. They are in cluster 2 with intermediate and in cluster 1 with low contributions
and experiences. Yet, if both contributions and experiences start high, they are not put
in cluster 5, but in cluster 4. In principle, this is also the logic for hump-shaped players.
If contributions and experiences are low, they are assigned to cluster 1. If contributions
and experiences are intermediate, they are assigned to cluster 2. The only difference
results from perverse reactions if experiences are too good, so that participants react
by reducing their own contributions. These participants are put into cluster 4. Finally,
by design short-sighted players cannot be distinguished by their own contributions. In
the same way as hump-shaped players, they are distributed across clusters 4, 2, and 1,
depending on the level of contributions by the remaining group members.
Hence, upon closer scrutiny, there is no problem with the performance of the algorithm.
It just does not do what one might have naively expected. The object of classification
is not types, but time series. Three of the types that we have simulated are reactive
themselves. Unless the environment exclusively consists of short-sighted free-riders or
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altruists (which only holds for 2 of 70 simulated group compositions), individuals with a
consistent reaction function respond to a variety of environments. If we impose 5 clusters,
the algorithm must distribute pairs of experiences and choices across these clusters as
best it can.

If one allows for types to be reactive, one cannot directly infer reaction functions from
the data. Precisely because types are allowed to be reactive, one and the same reaction
function may lead to distinctly different choice patterns. Actually just considering choice
patterns would be misleading as well. One would miss the possibility that, in certain
environments, multiple types exhibit very similar behavior. In Figure 2.1a, the point is
most forcefully illustrated by the biggest cluster, cluster 1. Since overall cooperativeness
is low in these groups, the choices of conditional cooperators, hump-shaped players,
far-sighted free-riders, and short-sighted free-riders look very similar.

One needs an indirect strategy if one wants to infer potentially reactive types from
the data. The proximate object of discovery cannot be types. It must be two-dimensional
patterns, i.e, combinations of the development of experiences over time with the develop-
ment of choices over time. The data can only inform the researcher about the distinct
characteristics of these patterns. As the next step in the research process, she must
attempt to rationalize these patterns. That point is best illustrated by Figure 2.2. Here,
we see the result of expanding the number of clusters. Immediately, the algorithm is able
to find “pure” clusters. That becomes even more prevalent when comparing it to the
clustering result in Figure 2.1.

In Section 2.5, we discuss alternative approaches for this task and define our preferred
algorithmic configuration. In Section 2.6, we apply this approach to the experimental
data.
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2.5 Method

Clustering time-series data. Repeated experiments produce time-series data. It is
meaningful to relate the choices of an individual at a given point in time to the choices
this individual has made at an earlier point in time, and which she will make at a later
point in time. From the development of choices over time, one can infer the program
this individual has followed. In principle, one could capture the dependence of choices
over time with the help of parameters of an appropriate transformation, and then cluster
individuals with classic algorithms for static data (Liao, 2005); this is how Engel (2020)
proceeds, using the coefficients of linear local (per participant) regressions as input for
the classifier. This straightforward approach may well be sufficient for many practical
applications. Yet, the approach requires that the local regressions adequately capture
the characteristics of an individual’s choice program. As in this project we want to find
the best way to characterize these programs, we prefer a classifier that remains open
to unexpected features of the individual time series. This is why we work with the raw
time series, and we use algorithms that have been specifically developed for time-series
data (for overviews, see Liao, 2005; Sardá-Espinosa, 2017).

Multivariate Clustering. Actually, many standard experiments are not only repeated.
They are also interactive and produce panel data. In an interactive experiment, the
program of an individual participant may react to the experiences she has made with the
choices of others. This may hold for a cognitive reason: the individual learns from others;
or for a motivational reason: the individual wants to react to the choices of others. In
principle, the reactive component of the individual choice program could be captured
by regressing individual choices on the experiences resulting from the choices made by
other group members. Yet, this approach assumes that the reaction to experiences stays
consistent over time. We are, obviously, open to this possibility, but do not want to
impose it by the design of our estimation. This is why, instead, we provide the algorithm
with the exact information that participants receive in the experiment. It consists of the
average choice of the remaining group members in the previous period. The algorithm
thus simultaneously receives two time series: the development of the choices over time
that each participant has made; and the corresponding development of the average choices
made by the remaining group members in the respective previous period.

Choice of the Clustering Algorithm Several methods have been developed for clustering
(raw) multivariate time series, and they all come with multiple degrees of freedom (for
overviews, again see Liao, 2005; Sardá-Espinosa, 2017). For our purposes, we need
a clustering algorithm that is able to deal with multivariate data. In principle, this
algorithm could be either hierarchical or partitional. In general, hierarchical approaches
are preferable if one has reason to believe that the type space exhibits a discernible
structure. This is not the case with our data, which is why we use a partitional algorithm
(Hastie et al., 2009, chapter 13).
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Cluster Evaluation. The number of clusters k is a free parameter. In order to select the
best k, one has to use cluster validation indices. As our clustering problem is unsupervised,
we have to rely on internal cluster validation indices. The following validation indices are
well-established in the literature:

• Silhouette index (Sil)2

• Dunn index (D)

• COP index (COP)

• Davies-Bouldin index (DB)

• Modified Davies-Bouldin index (DBstar)

• Calinski-Harabasz index (CH)

• Score Function (SF)

These CVIs differ in the emphasis they put on cluster cohesion over cluster separation;
whether they combine parameters by way of summation or division; whether or not they
rely on normalization (for details, see Arbelaitz et al., 2013). As we have no strong
conceptual reasons to prefer one CVI over the other, we employ all methods and aggregate
over the outcomes.3

For simplicity, in the literature one picks either on or two CVIS without any specific
criteria as to why, or else the choice is often made by majority vote. The former would
seem arbitrary, yet, for several of the choices that we have to make, the majority vote
is inconclusive. We therefore proceed the following way: for each choice parameter in
question, we rank the scores of each CVI. For each outcome, we calculate the sum over
all 7 ranks. We choose the parameter that receives the highest sum of ranks.

Selection of the Optimal Range for K. Section 2.4 makes it clear that we have to expect
more patterns than types, and hence should estimate a number of clusters that is larger
than 5. But which is the optimal number? As we know the data-generating process, for
the simulated data we can derive the maximum from theory. In the dataset, we have
5 types who interact in groups of 4. From (2.2) we know that this leads to 70 distinct
group compositions. One might think that the number of environments that a player
may face is smaller, as there are only 3 others in the group. Yet, others are themselves
potentially reactive. Then, the choices the individual in question has made in the past
have shaped the experiences others have made in previous periods, to which they have
reacted in turn. Hence, theoretically, there are 5 types · 70 environments = 350 different
patterns. Imposing so many clusters would almost surely lead to overfitting. To strike a

2Letters refer to the code in R package dtwclust.
3As the clustering algorithm has a random starting point, we repeat the comparison with 15 different starting

points and use the mean index per CVI. Three of these indices (COP, DB, and DBstar) are to be minimized. For
comparability, we invert the scores of these CVIs.
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balance between overfitting and underfitting, we proceed in two steps: In the first step,
for a given dataset, we only consider any k for which the within-cluster variation ssw is
25%≤ ssw≤ 10% of the respective maximum and minimum. In Figure 2.3, we apply this
method to the simulated data. As one sees, the range for k is within a sensible margin:
considerably greater than 5, but much smaller than the upper bound of 350.
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Figure 2.3: Simulated Data: Acceptable Range for k

Within the range thus defined, we then select the optimal k, using the cvi-ranking
method introduced above.

Distance Measure. We further have to define the distance measure. For the clustering of
time series, traditional measures like Euclidean distance are inappropriate, as they would
overly depend on local differences. The most popular alternative is Dynamic Time Warp-
ing (DTW). It can capture similarity even if one time series is slightly shifted or has
a slightly different shape (Berndt and Clifford, 1994). Yet, DTW is computationally
costly. The procedure may occasionally even lead to pathological matches. Both concerns
motivate the imposition of constraints. They limit the area that can be reached by the
algorithm. We consider the GAK and the “soft DTW” (sDTW) constraints (Cuturi,
2011; Cuturi and Blondel, 2017).

Centroid. We finally consider two methods for defining the centroid of the respective
cluster. With Partition Around Medoids (PAM), the centroid always is an existing
time series, while DTW Barycenter averaging (DBA) constructs a synthetic centroid,
which makes the method more robust (Petitjean et al., 2011).

Parameter Search. For finding the best specifications in distance measure, smoothing
parameter γ when distance is sDTW as well as centroid function, we generate a grid of
4,608 simulated datasets. We allow for individual specific error η ∈ {0.6,0.7,0.8,0.9},
residual error σ ∈ {0.6,0.7,0.8,0.9}, sample size N ∈ {1,2,3,4,5,6} · 70, i.e, the full set
of possible type combinations, and the window within which dynamic time warping
is executed w ∈ {1,2,3}. For each point in the grid, we run the clustering algorithm
one time for each possible variation of parameters, i.e, 9 times.4 The best-performing
variation for each grid point is then selected according to the rank-sum method outlined
in the previous section.

4For a detailed description of all variations, please see section B.1
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We have the following results: sDTW is always the preferred distance measure. Which
smoothing parameter γ is optimal depends on the number of clusters k, as well as the
size of the dataset N . For larger numbers of clusters, i.e, k ≥ 35 and a larger dataset,
lower smoothing in the range 0.007≤ γ≤ 0.085 is preferred. For k < 35 and a smaller
dataset, a smoothing of γ = 0.01 is preferred. For the majority of all cases, the preferred
centroid function is DBA, irrespective of the remaining parameters. Consequently, we
use these parameters for the partitional algorithm.

2.6 Experimental Data

Section 2.4 has demonstrated in which ways, in a linear public good, a pair of two
time series is related to the reaction function of a participant. The development of choices
over time must be seen in the light of the development of experiences this participant
has made. As we have explained, there is no one-to-one mapping between this two-
dimensional times series and the reaction function, and hence the participant’s type. Yet,
we have shown in which indirect ways the type can be inferred. As we expect the type
space to be limited, we use clustering (of two-dimensional time-series data) to organize
the evidence. This gives us a methodology for the ultimate purpose of writing this paper:
we want to infer from clustering real, experimental data whether the true type space
differs from, or is richer than, the five types that have already been established and
theorized.

Table 2.3: Information on Experimental Studies Included

Study Periods Endowment Group Size MPCR Subjects

Diederich et al. (2016) 7 40 10 0.3 360
Diederich et al. (2016) 7 40 40 0.3 200
Diederich et al. (2016) 7 40 100 0.3 500
Diederich et al. (2016) 7 1,000 10 0.3 50
Engel, Kube, et al. (2021) 10 20 4 0.4 96
Nikiforakis and Normann (2008) 10 20 4 0.5 24
Engel and Rockenbach (2020) 20 20 3 0.4 30
Kosfeld et al. (2009) 20 20 4 0.4 40
Kosfeld et al. (2009) 20 20 4 0.6 176

Data. Table 2.3 defines the dataset. We only use data from linear public-good games
without any experimental intervention, i.e, data from voluntary contribution mechanisms.
We have a total of 12,414 observations from 1,476 participants. Figure B.2 visually
represents the dataset. On average, all experiments featured in the dataset exhibit the
characteristic negative time trend. Yet, there is considerable variance. The level of
cooperativeness is differently high. The decay in cooperation is differently steep. In one
experiment, contributions are even almost stable over time. We see this variance as an
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advantage. It gives us more scope for finding unknown reaction functions, in particular
due to variance in the experiences participants have made.

Table 2.3 shows that the experimental studies exhibit unique characteristics. Simul-
taneously clustering the complete dataset would obscure these differences. The most
critical parameters seem to be the number of rounds played, and the size of the group.
Technically, the difference in the number of rounds could be normalized by way of linear
interpolation. Yet, as we show in Figure B.3a and Figure B.3b, interpolation introduces
artificial noise into time series that, otherwise, appear quite regular. To avoid such arte-
facts, we separately cluster the data for subsets defined by the length of the interaction
and the size of the group.

Results. Figure 2.4, Figure 2.5, and Figure 2.6 display the resulting clusters by subset.
Each cluster’s prototype is highlighted in bold. The individual time series in the respective
cluster are represented by thin grey lines. This also informs how many pairs of time series
are in the respective cluster. Comparing Figure 2.4, Figure 2.5, and Figure 2.6, a
first result is patent: the prototypes differ profoundly between the three subsets. The
typespace is not only richer than extant behavioral theory; it is also conditional on the
context defined by the respective experimental protocol. The most striking difference
likely results from the size of the group. While groups had size 3 or 4 in the remaining
experiments, in the experiments with t = 7, the groups had size N = 10, 40, or 100.
Regression to the mean is the likely reason why experiences in all clusters with length 7
are nearly flat, and close to the middle of the range. By contrast, with t = 10 and t = 20,
experiences exhibit much greater variance, both within and across clusters.

Short Panel, Large Group. We start interpretation with Figure 2.4, t = 7. For our
purposes, the high degree of homogeneity in experiences is fortunate. We effectively see
reaction patterns while holding constant that participants experience fairly homogeneous
mean contributions of others. These experiences are mildly favorable: the level of
contributions is in the middle of the range; they do not change much over time.

We only find few clusters with approximately unconditional choices. In cluster 1
and 2, choices are close to the top, while experiences are much lower. We can explain
this pattern with unconditional altruism. In cluster 3 and 4, we find unconditional,
short-sighted free-riders. Participants of this type always contribute 0, or (in cluster 4)
close to it.

In contrast, strict conditional cooperators should precisely match the experiences
they have made (provided they expect others to behave in the same way in the next
period as in the present period). Cluster 5 can be rationalized this way. As experiences
are so consistently close to the midpoint, there is no room for the behavior theorized as
“hump-shaped”. The only other previously theorized type that can be traced in the data
is farsighted free-riders. This type invests in cooperation in early periods, and exploits
others in later periods. This holds for clusters 6 to 10.

The remaining 26 clusters are hard or even impossible to rationalize with the behavioral
programs hitherto discussed in the literature. Clusters 11-17 could be interpreted as
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Figure 2.4: Cluster by Experimental Subsets, t = 7

qualified versions of known types. In clusters 11–13, contributions are substantially above
experiences, but not at the top. This could be the behavior of an altruist who is, however,
not willing to be completely blind to the choices of others. Clusters 14 and 15 are the
mirror image at the low end. Contributions are not immediately and not completely
at zero, but always below experiences. Finally, clusters 16 and 17 are imperfect cases
of conditional cooperation. In cluster 16, contributions are consistently slightly above
experiences, while they are consistently slightly below experiences in cluster 17.

Another potential behavioral program is of a cognitive nature. Participants are
surprised by experiences and adjust their choices to the behavioral environment. This
explanation is most intuitive in early periods, and provided the participant aligns her own
choices with experiences. Clusters 18 and 19 closely fit this explanation. The participant
had been either overly optimistic or overly pessimistic about the level of contributions.
The remaining clusters with pronounced changes in the initial periods (clusters 19, 20, 21,
22, 23) require a more involved behavioral program. A consistent interpretation would
be exploration. Exploration is reasonable if the participant in question not only has a
reactive choice program herself, but considers the possibility that others have reactive
programs as well. In that case,s she needs to test the waters and find out what is going
to happen if she changes her own moves. The participant deliberately risks falling below
the attainable period income as an investment into more profitable moves in the future.
This explanation is particularly plausible for changes in early periods.

A participant who engages in (potentially) costly exploration can be said to act
strategically. But in this interpretation the strategy is confined to making a better-
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informed decision herself in future periods. The choice patterns in clusters 24–30 suggest
a more encompassing strategic motive. The participant in question not only aims at
optimizing her own future choices. She intends to induce other group members to behave
in a way she considers more appropriate. In cluster 24, the participant seems to try
leading by example. In clusters 25–27, the participant also, at least in some periods,
contributes more than the group average. This could be motivated by the aim of signaling
good intentions and the possibility of a brighter future to the group. In cluster 28, the
participant might want to combine a warning what could happen if others don’t follow
suit with a positive signal later on. In clusters 29 and 30, only negative signals can be
found.

In the final group of six clusters, participants increase contributions in the final or
the penultimate period. We thus find an inverse endgame effect. As the game has a
defined end, such choices cannot be motivated strategically. Participants must have
deontological motives. If they had contributed less than average in earlier periods, a
consistent interpretation is repent, leading to (at least partial) compensation. In cluster
36, the opposite interpretation as punishment invites itself. In the remaining clusters
33–35, contributions had been at or even slightly above the group average. At some
point, contributions go down, but they go up again. This pattern would be consistent
with an expression of discontent.
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Figure 2.5: Cluster by Experimental Subsets, t = 10

Short Panel, Small Group. 10 periods are just three more than 7; yet, the patterns in
the clusters for t = 10 – displayed in Figure 2.5 – look very different from the ones for
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t = 7.5 The obvious source of the difference is in the experiences participants are making.
While in bigger groups regression to the mean conceals variance in the types of other
group members, this variance may play itself out in the groups of 4, from which these
data are taken. In many clusters we also observe the downward trend that has often
been reported in the literature on public goods (see, e.g, clusters 3, 7, 8, and 17).

In this set of experiments, we find choice patterns consistent with unconditional
altruism (cluster 1) and unconditional free-riding (cluster 2). But there are only very few
observations in these two clusters. Again, not many clusters are such that contributions
track experiences (clusters 3 and 4), which is what would be expected from a textbook
conditional cooperator. A somewhat larger number of clusters is consistent with far-
sighted free-riding, i.e, making reasonably high contributions in early periods, in the
interest of cashing in at a later point (clusters 5, 6, 7, 8, and 9).

A further set of clusters are at best qualified versions of the previously theorized
types. In clusters 10–13, in most periods contributions are at the top. But unconditional
altruists would neither need a period to go to the top (had the participant initially been
concerned about the degree of exploitation?), nor go down in the final period. Likewise,
in clusters 14 and 15, contributions are low or even zero in most periods, but not in the
beginning. Have these been far-sighted free-riders who do not consider investment in the
corporation spirit worthwhile, given what they experience in the first period? Finally, in
clusters 16 and 17, choices grosso modo track experiences, but at a lower level. Are these
conditional cooperators intending to outperform the group at least slightly?

In clusters 18–20, we observe stark changes in early periods, either downwards (cluster
18), upwards (cluster 20), or both (cluster 19). These choice patterns could be motivated
by exploration.

While exploration is also a possible interpretation in clusters 21–23, these patterns
could also be motivated by the intention to educate the group, and hence to improve the
outcome for all.

Finally in clusters 24–29, we see upward moves in the final or the penultimate periods,
i.e, an inverse endgame effect. As explained with t = 7, one needs deontological motives to
rationalize such choice patterns. In all clusters, at least for some periods, the participant
had contributed less than the average in the previous period, and might feel moral urge
to give back to the group, at least partially.

Long Panel, Small Group. The final set of observations is displayed by Figure 2.6 and
comes from experiments with t = 20 and N = 3 or N = 4. Hence, in these experiments,
participants stay together for a long time and therefore have many opportunities for
learning from each other, and for attempting to influence each other. Both learning
and influencing is meaningful, as there are only few interaction partners. The average
contribution is a reasonable proxy for the composition of the type space. As Figure 2.6

5The total number of observations with t = 10 is much smaller than with t = 7. If we keep the upper limit of
k at the level derived from the theoretical number of type combinations, we get too many clusters with very few
observations. We therefore adjust the upper limit to N/4= 30. With the help of the rank sum over all internal
CVIs, we end up with the meaningful number of 29 clusters, depicted in Figure 2.5.



44 CHAPTER 2. CHARTING THE TYPE SPACE

contribution experience

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17

2 4 6 8 101214161820 2 4 6 8 101214161820

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

period

co
nt

rib
ut

io
n

contribution experience

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

2 4 6 8 101214161820 2 4 6 8 101214161820
period

contribution experience

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

2 4 6 8 101214161820 2 4 6 8 101214161820
period

Group
backward−logic

cognitive

conditional

qualified

strategic

unconditional

Figure 2.6: Cluster by Experimental Subsets, t = 20

shows, the different institutional setting again matters profoundly. In this context,
experiences exhibit considerable variance. Choices quite often track experiences fairly
closely.

Using the same set of cognitive and motivational effects as with t = 7 and t = 10,
we can organize the type space. Yet, it is composed very differently. We do find a very
small number of arguably unconditional altruists (clusters 1 and 2) and unconditional
free riders (cluster 3). We also find clusters in which participants track the generally high
(clusters 4–8) or low contributions of the remaining group members (clusters 9–11). The
fact that there is at least some variance in experiences mirrored in variance in choices
demonstrates that these participants are not qualified unconditional types, but react to
what they observe.

The most characteristic difference between t = 7 and also t = 10, on the one hand,
and t = 20, on the other, is the zig-zag pattern of both experiences and choices in many
of the clusters. Apparently the longer time horizon has not helped, but hurt. Multiple
opportunities for observing each other have made it difficult for many groups to get in
sync. They have oscillated between low and high contributions, although there is no point
in taking turns in a linear public good, which is a cooperation and not a coordination
problem.

In clusters 12–17 choices and experiences match so closely that behavior fits classic
conditional cooperation. By contrast, in clusters 18–22 it is the participant who triggers
the download trend of the group, which suggests that these participants are far-sighted
free-riders.
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In clusters 23–25, choices slightly deviate from experiences, but no straightforward
alternative interpretation invites itself. This is why we have classified these clusters as
instances of qualified conditional cooperation.

With t = 20, we do not find many clusters where choices can be rationalized by a
merely cognitive effect. In clusters 26–28, participants might have been too optimistic
initially. In cluster 29, they might initially have been too pessimistic. Cluster 30 is the
only cluster that suggests exploration in the first two periods.

In the bulk of not only clusters, but also data, participants seem to aim at inducing a
higher contribution level in their groups. They either periodically go up, if not to the top.
Or they signal that others should not take their benevolence for granted, by temporarily
reducing contributions, frequently to 0 (clusters 31–47).

Finally, once again we observe five clusters with an inverse endgame effect (clusters
48–53). In cluster 50, contributions had clearly been below experiences for many periods.
In this cluster, compensating the other group members for anti-social behavior is a
consistent explanation. This explanation might also matter in clusters 52–53. By
contrast, choices in clusters 48 and 49 look more like an expressive act, showing others
how much more favorable outcomes might have been, had they been less selfish.

2.7 Rationalization

Section 2.6 has shown pronounced heterogeneity. It is beyond the scope of the present
paper to theorize all the many patterns that we observe. The fact that we find discernible
clusters gives us confidence that these patterns are meaningful. In the previous section,
we have offered plausible interpretations. But these interpretations are, of course,
only hypotheses. New experiments will be needed to isolate potential cognitive and
motivational channels. In this section, by way of illustration, we zero in on one striking
difference: with short panels and large groups (Figure 2.4) and with slightly longer panels
and small groups (Figure 2.5), individual and group patterns are much smoother than
with longer panels and small groups (Figure 2.6): in the data from games repeated for
20 announced periods, we find a lot more zig-zagging. Obviously, the longer shadow of
the future has a strong behavioral effect. In this section we discuss an explanation for
the observed sudden, drastic changes in behavior.

In a linear public good, payoff is given by (2.1). In the stage game, a participant
maximizes profit by complete free-riding, i.e, by setting ci = 0. As the linear public
good is a prisoner’s dilemma, ci > 0 is dominated. If a selfish player assumes that
all other group members are selfish as well, i.e, when assuming common knowledge of
rationality, ci,t = 0,∀t is the best response. This is the well-known unraveling prediction.
As participant i expects all other participants j to choose c j,t=T = 0 in the final period T ,
there is no scope for investing in cooperation in early rounds.

In their seminal paper, Kreps et al. (1982) have shown that this result breaks
down when allowing for behavioral uncertainty. They show this for the belief that the
counterpart (in a 2x2 prisoner’s dilemma with discrete {cooperate, defect} action space)
might either play tit for tat, or might be a conditional cooperator. Yet, in their model,
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a longer shadow of the future is unequivocally beneficial. If T is large enough, in early
rounds a rational player never defects. She would reveal that she is actually selfish.
At best, her counterpart plays tit for tat, and punishes her for her deviation from the
cooperative path of the group. If her counterpart is selfish as well, they end up in the
the {defect, defect} equilibrium for all future rounds. We, by contrast, find the opposite.
With a longer shadow of the future, there are more deviations. We also find upward
deviations, not only downward ones. We thus need a different model to rationalize this
observation.

In the initial step, we only allow for genuinely cooperative players. For this type
ui(ci < c̄ j)< ui(ci = c̄ j), where ci is the contribution of player i to the public good, and c̄ j
is the average contribution of the remaining group members to the public good. We work
with this average as, in the experiments from which we have data, participants did not
get feedback about individual contributions of the remaining members of their groups.

In principle, such a group is able to sustain cooperation. Yet, no player wants to
be the sucker: ui(ci = c̄ j) > ui(ci > c̄ j). When choosing how much to contribute in
period t, participants do not know how much the remaining group members are going to
contribute. They must work with the expectation E(c̄ j,t). In later periods, they have a
signal: E(c̄ j,t)≈ c̄ j,t−1. But in the initial period, they must work with their home-grown
beliefs. Cooperation may fail. Not because other group members are genuinely selfish,
but because at least some of them have been too skeptical initially.

Against this backdrop, it can be rationalized that a player sets ci,t > c̄ j,t−1: she uses
this to signal her type. The signal is credible, as a player who is not willing to sustain
cooperation has no reason to do that. The signal can be interpreted as an investment.
The participant accepts to be temporarily exploited, in the interest of lifting the entire
group to a higher contribution level. Such an investment is the more profitable the longer
the shadow of the future is. This explains why such choices are more frequent in games
with a larger number of periods.

The fact that c̄ j,t=1 < e, where e is the endowment, and hence the maximum contri-
bution, may have more than one reason. Either all other group members were indeed
conditionally cooperative, but too skeptical; or at least one of them was actually (short-
sightedly) selfish. If the participant has invested in signaling her cooperative type in
period t = 2, she must wait another period to learn. If c̄ j,t=3 = e, the group has coor-
dinated at the maximum. In this logic, participant i not only sets ci,t=2 = e, but also
ci,t=3 = e. She thus gives the other group members a chance to adapt to the cooperation
signal she has sent in t = 2, and only reverts to ci < e in period t = 4 if c̄ j,t=3 has proven
that her strategy did not work out, as the group is actually not cooperative.

While this strategy is consistent, it puts a high burden on the group member who
attempts to trigger the virtuous cycle. If she was too optimistic about the composition
of the type space, she has to accept exploitation for two consecutive periods. Now her
strategy is motivated by the possibility that an all-cooperative group is stuck in a bad
equilibrium. The fact that she signals her cooperative type in t = 2 can be interpreted as
the contribution to a second-order public good Yamagishi (1986) and Heckathorn (1989):
one of the cooperative players must accept temporary exploitation for signaling her type.
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This interpretation provides scope for an alternative strategy. The group member who
has made the initial move, in t = 2, expects other group members to follow suit in t = 3.
Hence, her strategy would be

• ci,t=2 = e

• ci,t=3 = c̄ j,t=1

• cit>3 = e|c̄ j,t=3 = e; c̄ j,t=1 otherwise.

Hence, this group member expects to be compensated in t = 3 by the remaining
group members for her initial cooperative move, by them tolerating that she reduces her
contribution to the original contribution level in the group, or even to 0. If cooperative
participants use this strategy, we should see one of two patterns. In groups that are
actually non-cooperative, we should see jumps to the maximum lasting one period which
have no consequences at the group level. In groups that are actually cooperative, we
should see such one-period-jumps to the maximum, followed by a jump downwards,
followed by coordination at a high level. Hence we should observe zig-zagging.

The same strategy also works if the cooperative group member who takes the initiative
is less optimistic about the composition of the type space. She may be open to the
possibility that one or more of the remaining group members are actually selfish, but
willing to sustain cooperation, as they expect the long-term profit from this strategy to
be higher than early defection. Such players mimic genuinely cooperative players.

The player who takes the initiative may also be willing to tolerate partial defection.
This is particularly plausible in the canonical design of the game, with 4 group members
and MPCR = .4. Then 3 group members who cooperate fully still have a slightly higher
payoff than from defection (24, rather than 20). Tolerating partial defection is also easier
in the design of the game investigated in this paper, as participants only get feedback at
the group level. They can therefore not see whether c̄ j < e is due to one player defecting,
or all other players contributing less than the maximum, but the same amount.

Yet, if either possibility is taken into account, observing c̄ j,t > c̄ j,t−1 is less informative.
Per se, genuinely cooperative players have no reason to revert to lower contributions
in later rounds. By contrast a player who only mimics a cooperative type will start
defecting once the expected payoff from defecting before others outweighs the gains
from cooperation for future rounds. If other genuinely cooperative players are concerned
about this possibility, they may themselves reduce contributions, as they lose faith in the
willingness of others to cooperate. This concern looms even larger if cooperative gains
are below maximum, as then gains from continuing to cooperate are smaller.

Taking these possibilities into account, we can also rationalize upward jumps in later
rounds. By the same logic as in t = 2, a (genuinely or strategically) cooperative type
wants to stabilize cooperation, by sending this cooperative signal. Again, the longer
the time horizon, the more this strategy is profitable. And again, such a cooperative
player may expect to be compensated in the subsequent period, by others tolerating her
one-period defection. That is another way zig-zagging can be rationalized.
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Once we allow for the belief that groups are heterogeneous, in the defined sense, we
can also rationalize temporary downward jumps. This is straightforward if a player only
mimics a cooperative type: she tests the waters. If others react, she knows that they are
vigilant, so that (early) defection does not pay. Yet, a temporary downward jump can
also be rational for a genuinely cooperative player who is skeptical about the motives of
other cooperators. If they react by reducing their contributions, she knows that their
cooperation is not genuine, and she can react by reverting to low contributions herself.

2.8 Discussion

The linear public good is one of the workhorses of behavioral economics. Hundreds of
experiments have been run with this paradigm. The design is appealing as, in a stylized
way, it captures what arguably is the essence of many conflicts of life, running from the
degradation of the environment over the instability of a cartel to the precarious nature
of any constraining institutional framework. The design implements a multi-person,
multi-period prisoners’ dilemma with a known end. If one assumes that actors exclusively
maximize individual profit, the repeated game has a unique solution. In the final period,
all group members will contribute nothing to the common project. Through unraveling,
this is also the prediction for any earlier period.

The first experiments undertaken with this design have already refuted this prediction.
On average, contributions start at some higher level, but decay over time. Per se,
social preferences can rationalize positive contributions, but they do not predict the
decay. Interestingly, per se the prominent concept of conditional cooperation cannot
predict the decay either. If all group members are perfect conditional cooperators, and
expect all others to follow the same behavioral program, any level of cooperation can
be sustained, depending on initial beliefs. Fischbacher, Gächter, Bardsley, et al. (2010)
propose a consistent explanation: the decay could result from conditional cooperation
being imperfect. Participants would be willing to let themselves be guided by the level
of cooperativeness in their group. But they would always try to undercut slightly. Yet,
in their reanalysis of Fischbacher’s and Gächter’s data, Engel and Rockenbach (2020)
have shown that true conditional cooperation is actually near-perfect. The decay results
from heterogeneity. By the combination of choice data with belief data, they show
that the decay results from the presence of short- and far-sighted free-riders. This is
where the present project starts. It uses machine learning methods to cast light on this
heterogeneity and chart the type space.

The paper makes a methodological and a substantive contribution. On the methodol-
ogy side, it shows in which ways clustering can be used to infer the composition of the
type space. On the substantive side, it shows that extant theories about behavioral types
can only explain a very narrow fraction of the data.

Repeated experiments generate time-series data. In principle, the large family of algo-
rithms for clustering time-series data are therefore appropriate. However, contributions
could not exhibit a downward trend, unless at least some participants hold a choice pro-
gram that is reactive. If we were to deprive the algorithm of the experiences participants
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make, it would lump together choice patterns that are generated by completely different
behavioral programs. This is why we use multivariate clustering and feed the algorithm
with pairs of experiences and choices.

One might naively think that the algorithm will find as many clusters as there are
distinct behavioral programs. With simulation, we show why this approach must fail.
We simulate all combinations of five behavioral programs that have been theorized in the
literature: altruists, conditional cooperators, far-sighted free-riders, hump-shaped con-
tributors, and short-sighted free-riders. For investigating these five behavioral programs,
we need many more clusters. Moreover, we also show that we do not need the theoretical
maximum of 350 clusters; this would make the approach next to unusable for real data,
as one would need a huge amount of data for that many clusters to be credible. We use
internal cluster validation indices to find the appropriate trade-off between underusing
and overusing the evidence.

We apply this methodology to a large dataset consisting of 12,414 observations.
Results clearly show that the true type space is much richer than thus far assumed by
the literature. Only a few of the clusters that we find in the experimental data can be
rationalized with any of the five theoretical behavioral programs that we have used to
simulate data. Obviously, the type space is considerably richer than typically assumed in
the behavioral literature.

The main limitation of our approach is its exploratory nature. We alert the research
community that the behavioral programs participants employ in an experiment, seem-
ingly as simple as the linear public good, are very likely much richer, and much more
heterogeneous, than typically assumed when designing and analyzing these experiments.
This can obviously only be a first step. In the next step, frequent choice programs must
be rationalized. In conclusion, we sketch two approaches that could productively prove
complementary.

The first approach capitalizes on methods originating in physics. In physics (Udrescu
and Tegmark, 2020), same as in industry (Francone et al., 1999; Castillo et al., 2002),
problems are often too complex to start the analysis from first principles. Rather, one
begins with the data and searches for succinct ways of rationalizing them. The approach is
known as symbolic regression. Its main advantage is flexibility. Different from maximum
likelihood, one need not impose functional form. Given (weaker) constraints on depth, a
set of pre-defined functions from which the procedure may choose, as well as operators,
symbolic regression aims to find the best combination of these inputs and the data,
resulting in a functional form with the least error to the original values. Technically,
symbolic regression is a supervised technique.6

In the spirit of a proof of concept, in Figure 2.7 we show the resulting rationaliza-
tions for three selected clusters (from experiments with t = 20). As can be seen, the
approximation works well. But the functional form that happens to fit the data not only
differs widely across clusters; this could be necessary for defining the character of the
heterogeneity. The functional form does not lend itself easily to interpretations either. If

6We make use of the R-package gramEvol (Noorian et al., 2016) which uses genetic programming (Kotanchek
et al., 2003) to traverse the space of possible solutions efficiently.
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the collective endeavor of charting the type space progresses, one might be able to add
meaningful explanations. But it might also turn out that symbolic regression is only
good at prediction, not at explanation.
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Figure 2.7: Exemplary Results Symbolic Regression

The alternative approach is more in the spirit of behavioral economics. In this
perspective, one would read the evidence presented in this paper as a challenge for
the development, and subsequent experimental testing, of more appropriate behavioral
theory. One would aim at replacing the “asif” models from symbolic regression with
process models. The interpretations proposed in section 2.6 offer building blocks for this
enterprise. We conclude by explicating the ones that we deem most promising.

Unless a participant has an unconditional behavioral program, in the initial period
she must work with beliefs about the behavioral programs that other group members are
implementing. Participants might conceptually be allowed to condition their own program
on the direction and the amount by which these beliefs turn out to be false. Additionally,
participants might conceptually be allowed to invest in exploring the behavioral programs
of the rest of their groups.

On the motivational side, one may enrich the concept of conditional cooperation.
Participants would not blindly copy the experiences they are making. They would rather
consider the possibility to influence the choices of other group members in future periods
by their own choices in the present period. This could be theorized as costly signaling of
type, including the intention to enforce a normative conviction in the future.

Besides such a forward-looking, strategic perspective, there might also be backward-
looking motives. Participants might want to express their discontent and frustration,
even if this reduces their own prospect for a higher profit. Or, conversely, they might
want to reward others for unselfish acts. They might also, relatedly, repent their own
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past behavior, and aim at partial reparation.
Sometimes, the next step forward in a line of research is not the final answer, but the

right question. With the present project, we aim at demonstrating that heterogeneity
in dynamic games, and in the linear public good in particular, is a promising frontier.
This investigation is urgent if one hopes to learn from experimental data about the
behavioral determinants of social dilemmas, in the interest of designing more powerful
interventions.
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3.1 Introduction

In the United States, judges wield significant power due to the common law system
(Dainow, 1966). The extent of U.S. judges’ influence is a motivation for the extensive
research into the determinants of judicial decision-making. In particular, there is a large
literature on how opinions are affected by the ideology of the respective judge (e.g.,
Jeffrey A. Segal and Cover, 1989; Andrew D. Martin and Quinn, 2002; Andrew D. Martin,
Quinn, and Epstein, 2004).

A leading paper in this literature is Landes and Posner (2009). This paper looks at
how the party affiliation of U.S. Circuit Court judges affects the political ideology of their
votes (conservative or liberal) on the court. While judges are nominally non-partisan,
party affiliation can be proxied by the party of the appointing president or the party
share in the Senate at the time of appointment. Landes and Posner (2009) show that
judge party affiliation is statistically related to the ideological direction of votes. For
their empirical analysis, they draw upon the Songer database of U.S. Circuit Courts,1
which provides rich metadata, e.g., the political ideology of votes for each judge in each
case. The classification of votes by ideological direction was a labor-intensive exercise
which has led to frequent use in the empirical legal studies and political science literature
(Ginn et al., 2015; Reid and Randazzo, 2016; Landes and Posner, 2009, e.g.).

Notwithstanding its broad use in the literature, the Songer database has some
limitations. First, the political ideology classification has been assigned by human
coders, which could be error-prone. These errors add noise to regressions and complicate
replicability. In particular, as noted by Landes and Posner (2009), the political positions
of conservative/liberal are not constant over time. Therefore, data coded in the past may
not be categorized correctly, and Songer Project ideology labels for older Circuit Court
opinions may be systematically incorrect.

Another problem with the database is the sampling approach. First, the database
is only available for 1925-2002, so empirical analysis of vote ideology is only possible
for that time period. Second, only a small set of cases was labeled (just 5 percent of
the cases for those years). Finally, the authors used stratified sampling to get labels
for similar numbers of opinions across courts and time. Therefore, the dataset is not
representative of the full distribution of circuit court cases.

The goal of this paper is to address these shortcomings using machine learning and
natural language processing techniques. The idea is to treat a machine to code the
ideological direction of the votes. Within the set of labeled case, we can check how well
the algorithm replicates human labels.

The classifier would provide a number of benefits. As soon as the classifier is trained,
predictions even for an extremely large sample cost very little relative to hand-labeling
(which require a human to read an opinion). We could potentially take the classifier to
cases before 1925 and after 2002. Within the 1925-2002 period, we could classify the
other 95 percent of unlabeled cases. Besides producing new labels, it could be used to
audit and check existing labels for probable errors.

1The original, as well as the extended versions, are available at songerproject.org.

http://songerproject.org/us-courts-of-appeals-databases.html
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In this paper, we produce such a model. For the sake of interpretability, we focus on
linear models. The model which worked best in our setting is a Ridge Classifier. Our
model is trained on the complete opinion text in combination with the circuit, year as
well as case type data. After optimization it achieves a cross-validated accuracy of 61.5%
on the three label input and 66.5% on the two label subset. The final calibrated classifier
working on the tow-label subset achieves the same accuracy score while increasing its
precision as well its recall on the test set to 71.1% and 72.4% respectively.

With a validated dataset in hand, we use it to undertake an extended replication
of Landes and Posner (2009). First, we do our best to replicate the original paper and,
despite some problems in replicating the original dataset, we could replicate significance as
well as the direction of the most important coefficients. We extend the results and probe
their robustness using multi-way clustering, grouping, and additional covariates. Finally,
we show that the results partially hold when using our machine-predicted ideological
labels as the outcome.

This paper contributes to the emerging literature applying data science techniques to
empirical legal research questions. We review some of that literature in Section 2. After
that, in section 3 we describe the supervised learning task to predict ideological labels
in circuit court decisions. Next, section 4 reports the results of our replication study.
section 5 concludes.

3.2 Literature

This research sits at the intersection of two fields. On one side, our paper is related
to the research on judge ideology, which is focused on the positioning judges, mostly
for the U.S. Supreme Court (e.g. Giles et al., 2001; Epstein and Jeffrey A. Segal, 2005;
Epstein, Andrew D. Martin, et al., 2012; Johnson et al., 2011; Kassow et al., 2012;
Andrew D. Martin and Quinn, 2001; Masood and Songer, 2013; Ginn et al., 2015; Sturm
and C. H. Pritchett, 2006; Randazzo et al., 2010; Reid and Randazzo, 2016).

In general, the judge ideology literature has taken two main approaches. The first
approach is to hand-coded cases by ideological direction. These include the Spaeth
database for the Supreme Court and the Songer database for the Circuit Courts (Epstein,
Andrew D. Martin, et al., 2012; Sturm and C. H. Pritchett, 2006; Andrew D. Martin and
Quinn, 2001; Epstein and Jeffrey A. Segal, 2005; Giles et al., 2001, e.g.). The second
approach is to use a latent factor model based on the voting behavior, to estimate a
latent dimension for ideology based on judge agreement. This approach can identify
median judges and the relative judge positioning on a scale over time (Andrew D. Martin
and Quinn, 2002).

The advantage of the first approach is that the scale is interpretable, exists on the
case level, and relies on expert judgment. However, it is costly and there are errors in
coding. The advantage of the second approach is that it is cheap to compute for all
judges, but it is not directly interpretable and does not exist at the case level. It also
requires that judges vote in panels.
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Our approach is something of a compromise, as we can form predictions for all cases
and judges cheaply. It requires at least some hand-coding, but then can be applied
to all cases. Methodologically, it is different because it uses the directly interpretable
ideological labels of the hand-coded database. It does not assume a latent factor model,
like Andrew D. Martin and Quinn (2002). It also does not rely on contrasting votes of
judges in a panel. This is relevant in our context because the large majority of decisions
on the Appellate Courts do not have dissents. Voting behavior is not necessary, only
some hand labels and the the original opinion text.

The second literature to which we contribute is that on using texts as data for social
science research. In particular, to produce measures of ideology or partisanship. In
law, an old study in this vein is Jeffrey A. Segal and Cover (1989), who use texts from
newspaper editorials as a proxy for the ideology of newly appointed Supreme Court judges.
More recently, popular methods in political science for scoring ideology in text include
Wordscores (Laver et al., 2003), Wordfish (Slapin and Proksch, 2008), and Wordshoal
(Lauderdale and Herzog, 2016). These tools use statistical differences in word frequencies
by topic. They are most useful for text corpora for which differences in ideology come
through in different words. As opinions of (lower) judicial courts are constrained in
their (permitted) wording opinion texts may only satisfy that criterion in a very limited
fashion.

In the legal domain, our paper is most closely related to literature predicting case
type (Undavia et al., 2018; Sulea et al., 2017; Boella et al., 2011) as well as that concerned
with political dimensions in judicial texts (see for example Ash and Daniel L. Chen, 2018;
Ash, Daniel L. Chen, and W. Lu, 2018). The three papers closest to ours, in goal as well
as methodological approach, are by Lauderdale and Clark (2014), Aletras et al. (2016),
and Cao et al. (2018). In Lauderdale and Clark (2014), the authors use an LDA model to
estimate how different issues at stake in cases are related to Supreme Court judges’ voting
behaviour. The paper by Aletras et al. (2016) looks at decision direction of the European
Court of Human Rights (ECHR) in regard to the violation of specific articles. The third
paper, Cao et al. (2018) separates opinion texts into ideological and fact-driven parts and
look at how well these different paragraphs predict case directionality. However, none of
the approaches in those three papers are viable for our goal or dataset. Lauderdale and
Clark (2014) use the underlying text but their focus on votes means that the approach
is not applicable. In the case of Aletras et al. (2016), in a modeling perspective the
approach is similar. However, their results rely on very clean data resulting in very
homogeneous directionality criterion. As a consequence, it is more than a simple question
of transferring their results. Last, the paper by Cao et al. (2018) does look at ideological
directionality. The focus on paragraphs, however, means that an additional labeling
effort is needed while we seek to minimize the costs of classification.

To recap, our paper contributes in the technical literature to the understand how
to best implement a machine learning approach in the domain of judicial opinions. We
aim to decrease labeling cost and increase scalability and reproduciblity compared to the
hand-labeling approach while at the same time improving explainability relative to the
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latent modeling approach.

3.3 Supervised Classification

This section focuses on the classification algorithm which can reliably predict the political
ideology of Circuit Court judges’ written opinions. After training the algorithm on
existing ideology labels, it can predict labels for unseen opinions.

The beginning of this section provides information about the data necessary for
classification. What follows is a detailed description of how the classifier is trained.
Finally, the classification performance is evaluated.

Data

Broadly speaking, a supervised machine learning classifier maps an input to output. This
section enumerates the datasets used for the inputs and outputs in our context. For our
classification problem, we use the hand-coded ideology labels for these cases, provided by
the Songer Project (Songer, 1993), as output. As input, we use the U.S. Circuit Court
judges’ written opinions.

Songer Data on Decision Direction

The output or label of our classifier is the ideological direction of the opinion. As the
number of Circuit Court judges’ opinions was comprised of over 300 thousand at the time
of the database’s inception, the Songer Project has annotated political ideology labels
for only a small sample of opinions. These equal less than 2.6% of the total published
opinions available. The cases were decided between 1925 and 2002 and the database
contains a total of 20,355 cases. Overall, four directionality codes are available: “liberal”,
“conservative”, “mixed” and “not ascertained”. While “mixed” refers to the opinion of the
case being of unclear directionality, “not ascertained” signals that the coders were unable
to assign a label according to the codebook’s instructions. Please note, that directionality
is defined for each particular case type, with “conservative” and “liberal” being exactly
opposite outcomes. Figure 3.1a shows the distribution of labels for the complete data-set.
The categories “conservative” and “liberal” dominate, whereas the other two categories
are underrepresented.

The Songer coders assigned the directionality of a case according to specific rules
within case type. The case type of an opinion identifies the nature of the conflict between
the litigants. Over 220 case type categories are organized into eight major categories:
criminal, civil rights, First Amendment, due process, privacy, labor relations, economic
activity and regulation, as well as miscellaneous. Figure 3.1b shows the distribution of
the eight major categories for our data-set. “Civil rights” and “economic activity and
regulation” are the two case types most frequent in the data.

Landes and Posner (2009) mention in their paper that they applied substantial
corrections to the raw Songer data, but those are not laid out in sufficient detail to
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Figure 3.1: Summary Statistics

reproduce. We approached the authors with the request to provide us with their version
of the data-set. Unfortunately, they were not able to provide it yet.

Judicial Opinion Corpus

We matched the Songer data-set with the Lexis data-set, containing the full opinion text.
With this approach, we could match 20,052 opinion texts to the 20,355 entries that the
Songer database is comprised of. Regarding the non-matchable cases, there is no clear
pattern visible as these cases span nearly the complete time period as well as nearly all
circuits. The distribution across time and circuits does not reveal any peculiarities either.

In terms of the matching itself, we subsetted the data according to the different
circuits. That was only done for speed, as matching is a linear searching process which
has to be repeated for each query. The actual matching was then done on either federal
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reporter citation or docket number. First, we tried to match via the normalized Lexis
id, i.e. the Federal Reporter citation, if the opinion spanned more than one page in
the Federal Reporter (to avoid confusion with other opinions). If such a match was not
possible, we matched via the circuit court and the docket number. The reason why we
preferred the federal reporter citation over the docket number is that the Songer database
uses only encoded docket numbers. While they should be systematically, encoding errors
often result in decoding being little more than guess work. In the case of the federal
reporter citation, errors were less prone.

Figure 3.1c shows the distribution of opinions’ word counts in our dataset. The
shortest opinion consists of one word, the longest of 69,320 words. The average opinion
consists of 2,809 words. As we use data from Lexis, each opinion had a specific structure.
We extracted the text and split it into parts when encountering more than a single
newline character. Special characters such as ”newline”-characters and roman numbers
were removed.

If a potential heading was found within the text, we excluded it. The reason being
that such a heading would potentially include biasing information such as judge names.
It is especially important to exclude those, as the model could focus on judge names
as a proxy for the directionality as most cases were decided without dissent. This is an
issue in our empirical context because we would like to use the predicted data to analyze
judge characteristics. Including the judges in the prediction would induce mechanical
correlation.

In a second step, we applied regular expressions trying to capture the part of the
opinion in which judges might dissent from the majority. Including a dissenting part
which by its nature goes against the directionality of the majority in the input would not
only add noise but may also lead the classifier to average over the different directions,
leading to an overall worse performance. If we found a dissent, we split off the relevant
paragraph and saved it as an extra entry in the database, marking it as dissent. We
excluded those entries and did not use them as input.

Model

This section describes how we deploy a supervised learning approach to predict the
ideological direction of decisions from the association opinion text.

Our approach, outlined by Figure 3.2, is quite uncommon in the literature of classifying
a legal text’s ideology. More traditional approaches, mainly used for ideology detection in
political speeches, include word scores, word fish, or word shoal models. These approaches
are either dictionary-based or require a reference text to which all other instances are
compared. Our approach, by contrast, does not require one reference text to be selected
and deploys more sophisticated selection mechanisms than naive word counts.

One characteristic of machine learning approaches is their exploratory nature. We,
too, test multiple combinations of data-subsets, feature sets, models, and evaluation
methods to find the best performing one. The instances to test are either selected by
theoretical considerations, such as choosing only judicial quotations as predictive features;
Or they are chosen based on popularity, such as choosing support vector machines because
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they are known for their excellent performance on a broad range of NLP classification
tasks.

All calculations were performed on the Max Planck Computing and Data Facility’s
high-performance cluster Draco, using one node of the type Broadwell with up to 40 CPUs
and 256GB memory. Moreover, each step relying on randomness was initialized with a
pseudo-random seed for replicability. Our code most heavily draws upon functionalities
provided by the python package sci-kit learn (Fabian Pedregosa et al., 2011).
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Figure 3.2: Construction of the methodological approach

Subset of Data. In order to see how different categories or a differing number of labels
affects a prediction, we constructed different subsets of the data for analysis. The four
subsets constructed from the original data and used for this analysis are listed in the first
column of Figure 3.2. A naive approach predicts political ideology labels regardless of
case type. However, the naive approach ignores the fact that directionality in the Songer
data is assigned dependent on case type according to explicit rules differing for each case
type. Subsetting the data by case type factors in this aspect of the coding scheme.

However, as Figure 3.1b shows, the dataset is heavily imbalanced in favor of the
case types “economic activity” and “criminal”. As the remaining case types are only
marginally represented, we restrict the subset two these two case types, as only for them
enough labeled observations are available to train the classifier.

Moreover, not only case type but also the labels are imbalanced. As Figure 3.1a
shows, there is only a limited amount of observations available for the political ideology
labels “not ascertained” and “mixed”. We therefore derive two additional subsets. The
subset “two labels‘” only includes the labels “conservative” and “liberal” as those two
are not only the most frequent ones, but also those we are most interested in. Especially,
if the remaining two labels (“not ascertained” and “mixed”) are either considered to be
noise or to be wrongly classified, this subset should improve the classifier’s performance.
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In particular, the exclusion of the label “not ascertained” is likely to not be problematic
in any case: The number of cases labeled such are relatively few when compared to the
other three labels. Moreover, the codebook shows that this label may be used in any
case where it was not possible to assign one of the other three labels. This may either be
due to the fact that the case truly fits into no other category or merely due to a lack
in inter-coder agreement. However, past results show that such a sparsely represented,
miscellaneous category decreases classification performance. For this reason, the final
subset excludes this category altogether.

Input. We experimented with four different representations of the input. The most
straightforward approach is to feed the complete pre-processed opinion text into the
model. After screening a sample of randomly drawn opinions and cross-referencing them
according to the labeling instructions from the codebook, we identified two additional
representations.

First, we separately extracted the citations from the cases. The topic as well as
the political directionality of a case might be captured already by citations. Citation
networks, for example used by the Supreme Court Mapping Project, are one example
using this reasoning (Chandler, 2005; Ash, Daniel L. Chen, and W. Lu, 2018).2

Second, we extracted quotations from the text to serve as input. Many quotations
immediately preceded citations. It is in the nature of a quotation that it represents the
most relevant aspects to a matter at hand. As judges quote legal concepts from statutes
and precedents relevant to the matter discussed, quotations, in turn, may be associated
with either a “conservative” or a “liberal” leaning of the opinion.

The advantage of the whole opinion text as input is that no information is lost. Its
downside, however, is that it may include more noise than only citations or quotations.

Text Pre-Processing. For any data subset, the raw text needs to be pre-processed.
We applied the prevalent practice of removing capitalization, punctuation as well as
stopwords. Furthermore, we reduced the words to their word stem, base or root form
(stemming).

Feature Engineering. The pre-processed text was tokenized, and the tokens were then
used to form lists of n-grams (phrases) up to length three. N-grams extract information
from text through local word order (Suen, 1979; Sidorov et al., 2014). In the next step,
these tokens were mapped to a numerical representation. We computed counts and
frequencies over n-grams. The second specification is to weight the counts (tf) by inverse
document frequency (idf), which up-weights relatively rare words that could be more
informative of topic or ideology.

Apart from converting opinion texts to vectors, we included the year the case was
decided, the circuit at which the case was heard as well as the case type as assigned by the
authors of the Songer database to the feature set, as well. Via grid-search, we established

2see SCOTUS Mapper Library by the University of Baltimore.

http://law.ubalt.libguides.com/c.php?g=518239&p=3544015
http://law.ubalt.edu/faculty/scotus-mapping/index.cfm
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which input and pre-processing combinations worked best, especially regarding single
words versus n-grams.

Model. After vectorization, the next step is the actual classification of the text input,3
listed in the second last column of Figure 3.2. In general, the classifiers may be grouped
into two families, with the first being statistical methods. The advantages of this family
are high explainability, that it is being well-researched, and well understood (Ribeiro
et al., 2016a). The second family is that of deep learning algorithms, mostly comprised
of some form of neuronal network architecture. In common NLP tasks, these algorithms
outperform traditional algorithms (Kim, 2014; Vaswani et al., 2017). However, a downside
to these models is that feature introspection, as well as explainability, is difficult. While
there are attempts to develop methods for feature introspection, such as Shrestha et al.
(2017) or Ribeiro et al. (2016a), results so far are preliminary. Consequently, we focus on
well-researched statistical classifiers, maximizing the explainability of the results. The
classifier, we deploy are a passive aggressive classifier (Crammer et al., 2006), a logistic
regression (M. Schmidt et al., 2017), a ridge classifier (Rifkin and Lippert, 2007), as well
as a support vector machine with stochastic gradient descent (SGD) learning (Zhang,
2004). All models are trained on a stratified train-test split with respect to case type.

Model Evaluation. For model evaluation, we use standard performance metrics for
machine learning, namely accuracy, precision, recall and f1-score (last column of Fig-
ure 3.2).4 The f1-score is the harmonic mean of precision and recall. As compared to
accuracy for example, it is more stable with respect to unbalanced data-sets like ours.
Furthermore, in the context of this paper we consider precision as more important as
recall, because our dataset contains much less liberal than conservative cases. Thereby,
we consider it as more important to actually find theses few liberals and risk to classify
some conservatives as liberal.

As all performance measures are 5-fold-cross-validated, the scores reported are
weighted averages. As the label space per category is heavily imbalanced in the validation
set, accuracy has to be interpreted with care, and therefore the best performing classifier is
selected by referring to the weighted f1-score. In our case, an additional model evaluation
is the use of the predictions in the replication analysis below.

Evaluation of Results

In the following, we provide in-depth analysis across the different classification models
introduced by Figure 3.2.

3The classifiers are implemented with the python package sci-kit learn and fall into the category of supervised
learning.

4While in traditional statistics measures such as the p-value are more prevalent, that measure is not appropriate
in machine learning because we are trying to form accurate test-set predictions rather than to test for treatment
effects. Moreover, the features in machine learning are often very highly correlated, so the estimated coefficients
for them are difficult to tease apart.
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Performance Metrics. Appendix C.3 depicts the performance metrics f1-score, accuracy,
precision and recall for all models tested. Figure C.1 shows that the scores depend more
heavily on the subset-input-combination than on the specific classifier used.

Based on this observation, we select four models to analyze and compare in detail.
Figure 3.3 depicts the model for each of the four subsets tested which reaches the highest
f1-score. We report the accuracy, precision, recall, and f1-score respectively (coded by
color, see legend). Each of the four groups of bars refers to a different subset of the data,
for which we explored different modeling approaches. The top row looks only at the
liberal and conservative votes, dropping the “other” category. Second, we classify the full
dataset with all three categories. Third, we limit the dataset to criminal cases. In the
bottom row, we limit the dataset to economic cases.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Subset: Casetype "economic"
Input: opiniontext (Classf.:PA)

Subset: Casetype "criminal"
Input: opiniontext (Classf.:Ridge)

Subset: Complete dataset
Input: opiniontext (Classf.:Ridge)

Subset: Lib./Conv. only
Input: opiniontext (Classf.:SGD)

Be
st

 C
om

bi
na

tio
n 

of
 S

ub
se

t a
nd

 In
pu

t

accuracy
precision
recall
f1score

Figure 3.3: Best performing combinations by subset

On the y-axis, we indicate a feature that all four models have in common: they perform
best on the input opiniontext, rather than on citations or quotations. While additional
calibration and tweaking of the model parameters would improve the performance of
the classifier using either citations or quotations as input, the result is consistently
outperformed when using the complete opiniontext as input. This observation contrasts
with the idea that citations or quotations would summarize the information in a meaningful
way. However, instead of subtracting what was assumed to be noise, it seems that
these input variations subtract important information. As mentioned, the four subsets
differ with respect to the subset of cases. Comparing the subsets concerning label, we
differentiate between two or three label classification. The subset displayed at the top of
Figure 3.3 takes two labels into account. A random guess, assuming a uniform distribution
of labels, should yield an accuracy of approximately 0.5. The model reaches an accuracy
of 67.04%, lying clearly above this threshold.

The second group of statistics are from the three-labels model. How much performance
do we gain when predicting two instead of three labels? The two models at the top of
Figure 3.3 show – only these two take all case types into account – an increase in accuracy
from 62.00% to 67.04%. We believe that this increase in performance may offset the loss
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of information by excluding the “mixed/other” label as less than 1/7 of all cases fall into
this category. This opinion is shared by other authors, as well: Most studies drawing
upon the Songer/Auburn database exclude the “mixed/other” cases. However, for the
sake of thoroughness we undertake the calibration presented in the following section for
both the two and three label subset.

In the third and fourth groups of performance metrics, we show the three-label model
but subset on case type. Interestingly, performance depends strongly on the case type. As
mentioned in subsection 3.3, directionality is defined within case type while the number
and quality of rules are quite distinct. Additionally, as Figure 3.1 shows, case type is
heavily imbalanced in favor of economic rather than criminal. These two facts help to
explain why the subset criminal only reaches an accuracy of 55.80% and by contrast, why
the subset economic achieves an accuracy of 77.10%. However, in order to increase general-
izability, we instead opt to focus on classifiers trained on data containing all case types as
some results from e.g. the case type “economic” may carry over to the case type “criminal”.

Probability Calibration. In the following, we analyze our classifiers’ calibration: Predict-
ing a judicial opinion to either be conservative or liberal, we not only want to know the
label but how confident the classifier is in assigning one particular label versus the other.
In order to boost calibration, the classifiers were re-calibrated using either a sigmoid or
an isotonic calibration function. The sigmoid function rests on a parametric approach
based on Platt (1999)’s sigmoid model. The non-parametric isotonic variant is based on
an isotonic regression.
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Figure 3.4: Drift-plots showing the Change of Predicted Probabilities after Calibration

Figure 3.4 depicts the Ridge and SGD classifier respectively. For both classifiers,
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the calibration methods were applied for visualization purposes.5 The three corners
of Figure 3.4 correspond to the three classes: conservative, liberal, and mixed/other.
Arrows point from the probability vectors predicted by an uncalibrated classifier to
the probability vectors predicted by the same classifier after calibration. For clarity of
presentation, only each fiftieth data point from the test set is depicted.

Figure 3.4 shows that calibration results in both classifiers shifting from under-
confident to over-confident predictions. This can can be seen as the mass of predicted
points moves away from the center of (1

3 , 1
3 , 1

3) towards the edges. This means that the
classifier is likely to categorize similar cases very differently as the predicted label is
further away from the decision boundary for all cases. On the other hand, it also means
that the classifier gets more confident about cases which are hard to classify – that is,
the position of which is properly close to the decision boundary. We accept this change
however, as the absolute accuracy as well as the f1-score increases, although there may
be additional error for boundary cases.

While the two classifiers do not majorly differ in their confidence, they do differ in
the error rate of assigning the label “liberal” to liberal cases. If one looks at the blue
arrows, which depict cases for which the true label is “liberal”, one can see that for the
Ridge classifier (left panel) the mass of the blue arrows falls into the simplex spanned by
the corner points (1

2 , 1
2 , 0), (1

2 , 0, 1
2),(1, 0, 0). Every arrow point found within this simplex

is classified as “liberal”. Consequently, as the mass of blue arrows falls into that area, the
majority of them is categorized correctly. In contrast, for the SGD classifier (right panel)
a lower amount of the blue arrows falls into that area, meaning that the misclassification
rate for “liberal” is higher. This means the precision for liberal is lower for SGD compared
to the Ridge classifier. On the other hand, the inverse is true for the recall. As the
original dataset features fewer liberal cases than conservative, on balance we might prefer
to mis-classify conservative cases as liberal instead of liberal ones as conservative. At
this point, this speaks in favour of the Ridge classifier vs. the SGD classifier.

When looking at the “mixed/other” cases, we can see that the Ridge classifier classifies
the majority of them correctly. However, that seems to come at the expense of mis-
classifying a disproportionally high amount of liberal cases. For the reasons stated above,
we consequently exclude the “mixed/other” label to gain performance in predicting only
the labels “conservative” and “liberal”.

Figure 3.5a provides another visualization to assess how well the probabilistic pre-
dictions of different classifiers are calibrated: It displays reliability curves which show
the correct proportion of conservative cases (vertical axis) against the bins of predicted
probabilities that a case is conservative (horizontal axis). The closer the reliability curve
is to the 45-degree line, the better is the classification model’s performance in terms of
reproducing the original distribution. The Ridge classifier with isotonic calibration, as
well as the SGD classifier with sigmoid calibration are highlighted in shades of blue.

5Probability calibration was performed on data not used for model fitting. To this end, the training set
consisting of 80% of the Songer data was cut in thirds and the model was then trained with 3-fold cross-validation.
During this, 2/3 of the data were used for training and 1/3 was used for calibration. For each classifier, the
calibration algorithm yielding the best results was chosen.
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Figure 3.5: Reliability curves and Distribution Diagram

Consider the Ridge classifier: For all cases which it predicts to be conservative with a
20% probability, about 40% are actually conservative. In other words, it underestimates
conservativeness. However, for cases close to the hyperplane (0.5 probability for either
directionality), the classifier approximates the directionality distribution very well.6
Finally, at around 70% likelihood, the classifier begins to overestimate the number of
conservative cases.

Alongside Figure 3.5a, Figure 3.5b shows that despite calibrating the classifiers, a
significant part of the predicted directionality’s mass lies close to the decision boundary
of 0.5. This, in turn, means that the classifiers have to be relatively precise close to the
decision boundary and be able to shift away mass from the decision boundary. Figure 3.5b

6This is an important aspect as the Ridge classifier is similar to a support vector machine in that it uses the
instances closest to the hyperplane for the separation of the data points.
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shows that the two classifiers most successful in this are the ridge classifier, calibrated
with the isotonic algorithm, and the SGD support vector machine, calibrated with the
sigmoid algorithm.

Heatmaps. In the previous paragraph, we conclude that a two label classifier for all case
types will be the basis for predicting political ideology labels. In terms of performance
metrics, the SGD classifier reaches the highest f1-score. However, the decision for the
final model should not just take the f1-score but rather the types of errors that the
classifier makes into account, as well. Therefore, Figure 3.6 plots normalized7 confusion
matrices for those two models deploying the best f1-score: The Ridge as well as the SGD
classifier.
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Figure 3.6: Confusion Matrices for the classifiers SGD and Ridge

As mentioned in subsection 3.3, we consider it as crucial to correctly predict as many
liberal cases as possible, even if some conservative cases are wrongly predicted as liberal.
Figure 3.6b shows that as far as liberal cases are concerned, the SGD classifier predicts
697 cases correctly as liberal but almost as many cases (686) wrongly as conservative.
The Ridge classifier displayed by Figure 3.6a, by contrast, predicts 805 liberal cases
correctly as liberal and only 578 liberal cases wrongly as conservative.

Best classifier. Based on performance metrics, heat-maps, and calibration results, we
can select the classifier most suited for the task set out in this paper. The f1-score –
our preferred performance metric – peaks for the Ridge-Classifier, calibrated with an
isotonic function as well as for the SGD-classifier, calibrated with a sigmoid function.
The second performance metric we consider as critical is precision, for which the Ridge
classifier shows better results than SGD. In the same vein, the reliability curves show
that Ridge is closer to the 45-degree line than SGD, which makes the former preferable.
The only aspect where the SGD support vector machine slightly outperforms the Ridge

7normalized heat is calculated by dividing each value by the row mean
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classifier is in terms of mass, as shown in Figure 3.5b. However, overall, the difference in
this regard is negligible. Given this reasoning, we chose the Ridge-classifier calibrated
with the isotonic algorithm as model to perform out of sample predictions.8

Analysis

This section analyzes and interprets the predictions of the best two-label classifier. We
look at predictions over time and by judge. We also interpret the model by examining
predictive features.

Prediction of the Time Series in Decision Direction. Landes and Posner (2009) point
out that the accuracy of the original Songer data is susceptible to the year in which a
judge decided a case. Coders had more trouble coding older cases as compared to newer
ones. We would like to see if this is reflected in differential performance of our classifier
over time.
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Figure 3.7: Fraction of conservative and liberal cases, each calculated for actual as well as
predicted case directionality, plotted by year

Figure 3.7 shows the fraction of conservative and liberal cases by year for all circuits.9
We include out-of-sample data which is made up of scraped lexis data without the cases

8The final specifications of the classifier are as follows: We preprocess the text by excluding all stop words as
well as punctuation. Following that, a lemmatizer is applied. This input transformed into bigrams and then fed
to a tfi-vectorizer. That vectorizer calculates the distance based on the “l2"-norm. It also makes uses the three
additional features of year, circuit and case type. The regularization strength parameter α for the Ridge classifier
is 2.0

9The cases categorized as “mixed” or “other” are excluded.



3.3. SUPERVISED CLASSIFICATION 69

already within the Songer dataset. The original scraped dataset holds more than 1 million
cases. As our classifier uses the year of the case, the circuit, and the case type as laid
out by Songer10 these features have to be available for all out-of-sample cases, as well.
Especially the last one constrains the lexis dataset because case type was only available
for cases of the years 1930 and later. Consequently, Figure 3.7 shows out-of-sample
predictions only for those years.11

Figure 3.7 shows that for the in-sample predictions on the test set of the Songer data
(20% hold-out data), the predictions closely approximate the original labels. This is also
reflected in the high correlation of 0.73 (α < 1%). Especially for the years 1950 to 1980,
the classifier performs very well. The out-of-sample predictions for that time period
approximate the trend observed in the Songer data. Only for the years of 1980 on-wards,
the out-of-sample data (red line) is predicted to be considerably more conservative.

This spread may be caused amongst others by the classification error. Another reason
could be the sampling process used by Songer and his team to construct the database.12

To test this presumption, we plot a subset of the lexis data constructed according to
Songer’s rules (”Songer-distributed out-of-sample”, the orange line). Indeed, we find
that the orange and red lines diverge after 1980, with the orange line being closer to the
original Songer data. This illustrates that indeed the sampling process heavily influences
the distribution of decision directionality: As soon as the total amount of cases increases
by a significant amount, a spread appears.13 As the absolute number of court cases
increased over time (Casper and Posner, 1974), at least for cases after 1980 the Songer
data may not be a good sample for the full set of cases. Consequently, the difference in
out-of-sample predictions as compared to Songer predictions may simply stem from the
fact that there is a structural shift in conservativeness (either in variation or trend) from
1980 onward which is not represented by the Songer sample.

Directed Votes per Judge. Next we zoom in on particular judges. We look at performance
for the ten judges who cast most of the votes in the Songer dataset, analyzing performance
in civil and criminal cases separately. Those judges who did not hear both civil and
criminal cases were excluded. The horizontal axis of Figure 3.8 indicates the true
proportion of conservative votes, while the vertical axis indicates the predicted proportion
of conservative votes. Each point indicates these statistics for a single judge. If a judge’s
predicted behavior is the same as the truth, then his/her data point would lie on the
dotted 45-degree line. Figure 3.8 shows that for civil cases, predicted and actual fractions

10We matched the lexis case types to the one laid out in the Songer database. However, the match is non-
bijective. In order to get a reasonable good match, the subcategory case types of both, the Lexis data base as
well as the Songer data base were used. This match is surjective with the Lexis subcategory case types as a base
set. Then the matched Songer sub categories are aggregated to a Songer top category. Except for very few cases
(< 1000), this aggregation is unequivocal.

11If one is willing to forgo the performance gain introduced by the case type feature (about 2.5% points in the
current configuration), one can predict directionality for all lexis cases.

12For the original Songer database, at maximum 30 cases per year per circuit were sampled from all available
cases after 1961. Before 1961, only 15 cases per year per circuit were selected.

13Where for the year 1945 only slightly more than 100 cases per year per circuit were coded with a usable
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Figure 3.8: Fraction of Directed Votes per Judge - Comparison Actual Votes and Predicted
Votes

are quite close. A χ2 test shows that the distribution of predicted fractions is not
statistically different from the distribution of actual fractions (pχ2

> 0.1). For case type
criminal, however, the distributions of true and predicted fractions across judges are
statistically different. The reason for this might be that the majority of criminal cases is
labeled as conservative. Consequently, as the classifier uses the case type as feature it
can increase performance on criminal cases by labeling it as conservative. In other words,
the classifier tends to overpredict the number of conservative cases in criminal law.

Feature Inspection. To further understand the two-label classifier, we investigate the
features that are most important in driving our predictions. For this purpose, let
f eature be a feature, value be a value it could take, and label one of the ideo-
logical directions (conservative or liberal). We ranked the informativeness of each
feature by the highest value of P( f eature = value|label = conservative) divided by
P( f eature = value|label = l i beral). Note that these are equivalent to coefficients from

case type in the out-of-sample dataset, for the year 2000 there are more than 2000 per year per circuit.
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a Naive Bayes Classifier. The coefficients of the different features are represented by
their standardized moments, meaning that normalization was performed by dividing
through the standard deviation. This means that each coefficient is on the same scale and
therefore comparable. The hyperplane separating “conservative” from “liberal” lies at 0,
meaning a hypothetical case for which all the decision results would be zero falls into
neither category. The higher the coefficient of a feature, the further away does a single
feature move the case instance from the hyperplane when the feature is present within the
case. Table 3.1 lists the most informative features used by our best performing classifier.
Please note that the most informative features for the label “liberal” are constructed
such that they are least informative for the label “conservative”. The features are either
opinion-text phrases, quotation phrases, or citations.

Table 3.1 shows that the coefficients differ vastly in absolute size across the three
different input variations. This corroborates the results of the metric scores. Especially
for citation as input, the range of the coefficients’ values is very narrow, with −7.49
being the minimum and 10.16 being the maximum. Consequently, many features loading
clearly on either the “liberal” or the “conservative” side are needed in order to have the
case fall into a category. By contrast, the range of the coefficients’ values for opiniontext
is much wider, with a minimum of −57.67 and a maximum of 189.96. A case including
the words ”reverse remand” for example would be classified immediately as liberal. In
essence, this means that features for the opiniontext or quotations as input are more
informative than for the citations. The first column of Table 3.1a and Table 3.1b have
the most predictive quotations. Quotations loading heavily on the label “conservative”
are ”knowingly” or ”unique circumstances”. The court quotes these phrases, i.e. they are
singled out as relevant to the case at hand. Both phrases indicate a possible conviction.
As the code book by the authors of the Songer database very often label a conviction as
“conservative”, this seems to be in line with the data provided. On the other side, the
quotations for “liberal” are not as easily interpreted.

The second column of Table 3.1a displays those citations loading on the label “con-
servative”. For the most heavily conservative citation, Humphrey v. Moore, the court
limited the power of unions from infringing too far on employees of a company not part
of the union. In Dandridge v. Williams, the court found that the state has some right to
interpret how it puts into practice federal welfare laws. In consequence, Maryland was
found not to be in violation of the anti-discrimination act. Another conservative example
would be United States v. Robinson, in which the court strengthened the police powers for
searches during lawful arrests under the fourth amendment. In comparison, in the second
column of Table 3.1b features citations which the classifier finds to be indicative of a lib-
eral case. The most indicative citation would be United States v. Taylor, a case in which
the bar for conviction on charges of conspiracy was raised. Coppedge v. United States
dealt with the fact that the sentenced petitioner had not received the plenary review of
his conviction to which he is entitled and all his appeals against his conviction against this
ground were dismissed. The Supreme Court reversed the decision to dismiss his appeal
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and generally strengthened defendants rights in this regard. In the same vein, Green v.
United States reversed the sentencing of the defendant under the Fifth Amendment as
he was put in jeopardy twice for the same offense. Consequently, while absolute size of
the coefficients for citations hint at only a limited quality for the overall classification
into either “liberal” or “conservative”, the cases as such seem to fall into the right domain.

The last column shows the predictive phrases from the full opinion text. Features
such as ”judgment affirm” or ”plaintiff appeal” are predictive of the conservative label.
In line with those but not shown here are the features ”affirm judgment” and ”appeal
dismiss” on place 11 and 14 respectively. This is in line with labeling rules as set out
by the Songer team for criminal cases, where the coding rules state that affirming the
decision against an appellant is to be coded as conservative. Conversely, within the most
predictive features for “liberal” one can find ”reverse remand”, ”remand proceeding”, or
”reverse cased”, reflecting that predictive features seem to be driven by criminal cases.

Table 3.1: Best Predictive Features

(a) Best Predictive Features for Label “conservative”

quotations (Ridge) citation (Ridge) opiniontext (Ridge)
coef feature coef feature coef feature

1 -17.13 knowingly -7.49 Humphrey_v_Moore -57.67 motion new
2 -13.18 John_Doe -7.43 Dandridge_v_Williams -53.71 plaintiff argue
3 -11.97 unique_circumstances -6.59 SEC_v_Chenery_Corp -51.91 prior art
4 -11.47 X -6.42 Co_v_Zenith_Radio_Corp -50.86 appellant claim
5 -11.40 No -6.19 Dalehite_v_United_States -50.78 grant motion
6 -11.03 minor -6.06 Brady_v_Maryland -49.45 plaintiff appellant
7 -10.85 search -5.60 United_States_v_Robinson -48.85 plaintiff contend
8 -10.63 attractive_nuisance -5.55 Mal_v_Riddell -45.70 fiduciary duty
9 -10.09 may -5.38 Port_Gardner_Investment_Co_v_U -45.62 plaintiff appeal
10 -10.04 overhead -5.25 Olim_v_Wakinekona -44.01 judgment affirm

(b) Best Predictive Features for Label “liberal”

quotations (Ridge) citation (Ridge) opiniontext (Ridge)
coef feature coef feature coef feature

1 19.98 that_where_the_State_has_provided_an_opportuni... 10.16 Yes_v_United_States 189.96 reverse remand
2 19.86 Motion_for_Judgment 9.18 United_States_v_Taylor 133.90 remand proceeding
3 19.57 fairer_to_those_adversely_affected_by_a_bond_f... 9.11 ...Inc_v_Commissioner 103.28 case remand
4 19.16 take_care 9.09 Townsend_v_Sain 98.70 remand district
5 18.30 urge_that_the_indictment_charged_the_maintenan... 8.88 United_States_v_Young 89.69 government argue
6 17.32 good_faith 8.43 Dennis_v_United_States 85.99 remand new
7 17.30 anything_of_value 8.21 Coppedge_v_United_States 84.05 proceeding consistent
8 16.76 crack a_little_bit_of_time_to_research_on_the_... 8.15 ...Inc__v_United_States 75.33 consiStatent opinion
9 16.76 a_little_bit_of_time_to_research_on_the_backgr... 8.00 Green_v_United_States 74.29 new trial
10 15.49 clear_and_convincing 7.97 Brown_v_Board 60.13 reverse case
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3.4 Replication and Robustness Checks

This section focuses on the replication aspect of Landes and Posner (2009). For comparison,
all tables and figures that Landes and Posner (2009) produce with data of Circuit Courts
are listed in Table C.1, section C.1. The most relevant tables for our purposes are Tables
11 and 13, as numbered in the original paper.

Summary Statistics. This paragraph compares our summary statistics listed in Ta-
ble 3.2b to those by Landes and Posner (2009, p.803) listed in Table 3.2a. As can be
seen, the statistics differ. We count a total of 56,602 cases; Landes and Posner (2009)
count 55,041 cases. Furthermore, we count more opinions classified as “conservative” or
“other” than Landes and Posner (2009) do.

One possible explanation for these diverging results is, that not all of corrections that
Landes and Posner (2009) applied in the original paper were described in sufficient detail
to reproduce. We were able to apply the corrections concerning political ideology (Landes
and Posner, 2009, pp.830-831) but we were unable to apply judge-related corrections.
Landes and Posner (2009) briefly mention judge-related corrections and refer to a website
for a detailed description. This website however, is no longer available online.

Table 3.2: Court of Appeals Votes by Subject Matter and Ideology for 538 Court of Appeals
Judges Only: 1925 - 2002

Crim Civ Rts First Due Proc Priv Labor Econ Misc Total

Conservative 6823 2721 566 461 117 1351 9361 525 21925
Liberal 1876 1766 477 201 67 1922 9884 559 16752
Mixed 635 460 89 51 13 420 1775 22 3465
Other 5321 210 102 79 3 179 6047 958 12899
Total 14655 5157 1234 792 200 3872 27067 2064 55041

(a) Original by Landes and Posner, 2009

Crim Civ Rts First Due Proc Priv Labor Econ Misc Total

Conservative 7217 2647 397 412 83 1397 11084 478 23715
Liberal 1911 1755 379 176 38 0 10375 596 15230
Mixed 613 473 86 48 9 423 1689 31 3372
Other 5652 212 40 24 3 2232 5177 945 14285
Total 15393 5087 902 660 133 4052 28325 2050 56602

(b) Replication

Regression. Next, we replicate the primary regression analysis of circuit court judges
in Landes and Posner (2009), focusing only on the essential part of their analysis. For
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Table 13, we replicate the regressions focusing on the fraction of conservative votes and
only taking the period from 1925 to 2002 into account.14

Regarding the baseline regression, Landes and Posner (2009) specify their regression
model as follows:

F rConi j = β0 + β1X i +w (3.1)

where F rConi j denotes the fraction of conservative votes, calculated as votes per judge
over the sample period. X i encompasses several judge characteristics such as the party
of the appointing president, share of Republican senators at the time of nomination,
year of appointment, gender, race15, prior experience as a district judge, as well as judge
circuit fixed effects16 According to Landes and Posner (2009, p.810), their regressions are
weighted either by the judge’s total votes in civil cases or the total votes in criminal cases.
Furthermore, Landes and Posner (2009) do not specify how they compute their standard
errors, but we assume that they use heteroskedasticity-robust standard errors (treating
each judge as an observation) and therefore use errors of that type for the replication.

Civil Cases

In Table 3.3, we provide our first replication table, dealing with civil cases only. Column
(1) corresponds to Landes and Posner (2009) Table 13 column (6).17 As in the original
paper, we report the t-statistics, rather than standard errors or p-values, for all coefficients
in parentheses. Landes and Posner (2009) do not specify how they computed standard
errors for their regression Table 13, but we inferred that they used heteroskedasticity-
robust errors.

The main research interest of Landes and Posner (2009) was whether judges follow
their party affiliation in their decisions. They find a significant influence of being ap-
pointed by a Republican president (RepPres) on the fraction of conservative votes for
civil cases (Table 3.3, column 1). Our result for civil cases (Table 3.3, column 2), is
quite similar when compared to Landes and Posner’s; in our data, being appointed by a
Republican is associated with a positive and significant effect of voting conservatively in
civil cases. The evidence for a relationship between party and ideology actually appears
to be stronger in our replication than implied by the original study.

Apart from deploying heteroskedasticity-robust errors, we propose a model specifica-
tion with multi-way clustering (non-nested) as recommended by Cameron et al. (2006).
Based on the advice from Abadie (2018), we add two-way clustering by circuit and year.

14In turn, this means that we do not display results for the fraction of liberal votes, as displayed in columns
(2) and (4) of Landes and Posner (2009) Table 13, nor do we report results for the period of 1960 to 2002 as
reported in Table 14.

15Race is a dummy for Black = 1, 0 else
16The judge specific data was acquired from the Auburn database by Gary Zuk, Deborah J. Barrow and Gerard

Gryski on http://www.songerproject.org and then matched to the Songer data by a judge identifier code.
17These are the columns with the "uncorrected" data. We only compare uncorrected data as Table 3.2 showed

that we were not able to replicate even summary statistics for the corrected version.

songerproject.org/attributes.html
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Table 3.3: Regression Analysis of Court of Appeals Votes: 1925-2002, Civil Cases

Dep. Variable: Fraction of Conservative Votes
true data predicted data

Landes (2009) replicated multi.clus vote multi.clus.pred vote.pred

(1) (2) (3) (4) (5) (6)

RepPres 0.035∗∗∗ 0.069∗ 0.069∗∗∗ 0.092∗∗∗ 0.032∗∗ 0.031
(3.860) (2.125) (4.136) (3.821) (2.942) (1.417)

SenRep 0.072 −0.017 −0.017 0.095 0.004 0.219
(1.710) (−0.090) (−0.347) (0.647) (1.677)

YrAppt 0.0003 0.001 0.001 0.0003 0.001 0.001
(0.790) (0.665) (1.237) (0.202) (0.796) (0.431)

Gender −0.006 0.015 0.015 −0.026 −0.0004 −0.058
(0.260) (0.344) (0.318) (−0.681) (−0.011) (−1.384)

Black −0.028 −0.105 −0.105 0.007 −0.125 −0.001
(1.180) (−1.505) (0.124) (−0.023)

DistrictCourt 0.002 −0.004 −0.004 −0.002 −0.002 −0.0005
(0.330) (−1.455) (−1.183) (−1.712) (−0.345) (−0.417)

FracEcon −0.090 −0.230 −0.230∗∗ 0.355∗∗ −0.249 0.451∗∗∗

(1.640) (−1.506) (−2.690) (2.774) (−1.918) (3.531)

FracMisc −0.049 1.345∗ 1.345∗ −0.920 1.464∗∗∗ −0.324
(0.350) (2.442) (2.107) (−1.842) (6.118) (−0.673)

circuit FE yes yes no no no no
circuit-year FE no no yes yes yes yes
Observations 535 498 498 4169 498 4169
R2 0.240 0.119 0.119 0.047 0.123 0.066

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Linear regression with heteroscedasticity robust standard errors.
Variables: RepPres: Party of the appointing president, conservative or liberal (omitted category);

SenRep: Share of republican senators at the point of election; Gender: sex of the judge, male or
female (omitted category). Black: dummy for the race of the judge ;DistrictCourt: Years spent as
a district judge; FracEcon: Fraction of economic votes; FracMisc: Fraction of miscellaneous votes;
Circuit Variables: all regressions include 11 dummy circuit variables - circuits 1 to 11 with the D.C.
court the omitted circuit variable.
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This allows for correlation in the error term across judges within court over time, as
well as across courts in the same year. Clustering leaves coefficients unchanged, and a
comparison of columns (2) and (3) reveals that t-statistics only differ slightly as a result
of the two-way clustering.18

While Landes and Posner (2009) grouped the data on judge-level, we additionally run
the empirical analysis with data at the vote level. This specification allows us to control
for case characteristics with circuit-year fixed effects. For informing on the effect of party
affiliation on ideology, this is econometrically an important step. The underlying reason
is that the number of Republican-appointed judges and the proportion of conservatively
decided cases could be correlated over time due to unobserved confounding factors. We
also binarize the dependent variable. It equals one for conservative decisions and zero for
liberal decisions. The cases with belonging to the “mixed/undetermined” category are
dropped. The vote level regression model includes circuit-year fixed effects, as well as
clustered standard errors by judge and year. This specification successfully replicates
the significant positive effect of a conservative appointing president (RepPres) on the
fraction of conservative votes.

Model specifications (5) and (6) are estimated not only with hand-labeled but also
with predicted data. The predictions on which estimation results of columns (5) and (6)
are based, were generated with a calibrated Ridge classifier. These re-estimations serve
as an alternative way to assess the performance of the classifier. The rationale behind
this procedure is that generating labels is not the end-goal, but using these labels in an
empirical model is. Therefore, even if the classifier cannot predict political ideology with
an accuracy of 100 percent, its performance can be viewed as appropriate if the results
of the empirical model do not change drastically when estimated with the classifier’s
predictions. As far as column (5) is concerned, using predicted instead of hand-labeled
data does not change the results for coefficients RepPres. Estimating the vote level fixed
effects model with predicted labels instead of hand-labeled (column 6) results in estimates
for RepPres that are no longer statistically significant.

Criminal Cases

In Table 3.4, we provide our second replication table; it shows criminal cases only. Landes
and Posner (2009) found a positive and significant influence of being appointed by a
Republican president (RepPres) on the fraction of conservative votes. Our result for
criminal cases is quite similar to Landes and Posner’s, our coefficient being slightly larger.
Furthermore, for criminal cases, Landes-Posner found a negative effect of appointment
year. However, we do not find such an effect. They also report a negative impact of being
black (Black) on crime conservatism, which we replicate. Applying the two-way clustering
changes the t-statistics only slightly and thus leads to no change in significance-levels

18We provide regression results with errors clustered on the year of appointment, Circuit Court, and the party
of appointing president in Table 3.3, column (3).
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Table 3.4: Regression Analysis of Court of Appeals Votes: 1925-2002, Criminal Cases

Dep. Variable: Fraction of Conservative Votes
true data predicted data

Landes (2009) replicated multi.clus vote multi.clus.pred vote.pred

(1) (2) (3) (4) (5) (6)

RepPres 0.056∗∗ 0.077∗∗∗ 0.077∗∗∗ 0.051∗∗ 0.038 0.005
(4.220) (3.634) (3.811) (3.022) (1.734) (0.829)

SenRep −0.076 −0.151 −0.151 0.010 −0.020 0.078∗∗

(1.090) (−1.399) (0.141) (−0.542) (2.844)

YrAppt −0.001∗∗∗ −0.00001 −0.00001 −0.0003 0.001∗∗ −0.001∗∗

(3.390) (−0.023) (−0.032) (−0.601) (2.876) (−2.709)

Gender −0.014 −0.019 −0.019 0.010 −0.023∗ −0.012
(0.710) (−0.740) (−0.876) (0.545) (−2.219) (−1.750)

Black −0.057∗ −0.091∗ −0.091 −0.081∗∗ −0.020 −0.027
(2.060) (−1.814) (−1.047) (−2.717) (−0.257) (−1.697)

DistrictCourt 0.001 −0.001 −0.001 0.0003 −0.001 0.001
(0.140) (−0.817) (−0.390) (0.360) (−0.346) (1.917)

circuit FE yes yes no no no no
circuit-year FE no no yes yes yes yes
Observations 523 498 498 13543 498 13543
R2 0.240 0.084 0.084 0.019 0.052 0.014

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.
Linear regression with heteroscedasticity robust standard errors.
Variables: RepPres: Party of the appointing president, conservative or liberal (omitted category);

SenRep: Share of republican senators at the point of election; Gender: sex of the judge, male or
female (omitted category). Black: dummy for the race of the judge ;DistrictCourt: Years spent as
a district judge; FracEcon: Fraction of economic votes; FracMisc: Fraction of miscellaneous votes;
Circuit Variables: all regressions include 11 dummy circuit variables - circuits 1 to 11 with the D.C.
court the omitted circuit variable.
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for the coefficient (RepPres). However, the coefficient for (Black) loses its significance
upon application of the method. The fixed-effects multi-way clustering model on vote
level data replicates the significant and positive effect of the party of the appointing
president (RepPres) as well as of being black (Black) on the fraction of conservative
votes. However, the multi-way error component model using predicted data could not
reproduce the significance of the coefficient RepPres. Instead, being male turned to
have a significant negative impact on criminal conservatism. Moreover, the fixed effects
multi-way clustering model on vote level with predicted data could neither reproduce the
significance for coefficient RepPres nor Black.

Extreme Bounds Analysis

The extreme bounds analysis (EBA) is a sensitivity test that examines how robustly
the dependent variable of a regression model is associated with a variety of possible
determinants (Hlavac, 2016). We estimate an EBA, including all possible combinations
of independent variables that Landes and Posner (2009) specified. To limit the influence
of coefficient estimates with high multicollinearity, we follow the recommendations by
Hlavac (2016) and specify the maximum acceptable variance inflation factor to be 7.
Next, we increase the weights of those regression models that better fit the data – that is,
by its likelihood ratio index according to McFadden (1973). Figure 3.9 shows histograms
for each of the independent variables included in the model. The green curve displayed
in each histogram is a density curve which approximates the coefficients’ distribution
with a normal distribution.

A positive coefficient indicates that holding all else equal, a higher value of the
examined variable is associated with a higher fraction of conservative votes. On the other
hand, if most of the area of the histogram’s bins lies to the left of zero, higher values
of the corresponding variable are associated with a lower fraction of conservative votes.
For the civil cases, Figure 3.9a suggests that when the appointing president (RepPres)
is Republican (rather than Democrat), when the judge was appointed in later years
(YrAppt), as well as when the specific judge participated in a higher fraction of miscella-
neous votes (FracMisc), a judge’s fraction of conservative votes increases. Furthermore,
circuits 1 and 7 are consistently associated with a higher fraction of conservative votes.
Being black (Black), having served more years as a district judge (DistrictCourt), as
well as an increasing fraction of economic votes (FracEcon), are associated with a lower
fraction of conservative votes. Furthermore, circuits 3, 9, and 10 have a lower fraction
of conservative votes. To conclude the visual inspection as well as the interpretation of
the statistics, found in section C.5, the EBA for civil cases suggests that the variables
RepPres, FracMisc and circuit 1 are very strongly associated with the dependent variable.

For criminal cases, Figure 3.9b shows that being appointed by a Republican (rather
than Democrat) president (RepPres) is consistently associated with a higher fraction of
conservative votes for all regression models estimated. Furthermore, circuits 1, 5, 7, 8, 9,
10, and 11 are associated with a higher fraction of conservative votes. By contrast, being
black (Black) as well as having served more years as a district court judge (DistrictCourt)
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Figure 3.9: Histograms Extreme Bounds Analysis, for Civil and Criminal Cases
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decrease the fraction of conservative votes. Furthermore, circuits 2 and 3 are associated
with a lower fraction of conservative votes. The outlined findings, in conjunction with
those laid out in Appendix C.5, EBA results for criminal cases suggest that the variables
Pres, Black as well as circuit 8 and 10 are robustly associated with the fraction of
conservative votes.

3.5 Conclusion and Outlook

This paper had two main goals. First, we aimed to replicate the analysis on Circuit
Courts proposed by Landes and Posner (2009), and to add multiple robustness checks
to assess the validity of the regression model initially specified. Second, we showed
an approach for extending the dataset used in the original study via machine learning,
especially in regards to the input used for any future algorithm. As far as the replication
of the empirical analysis of Landes and Posner (2009) is concerned, we were able to
reproduce the most critical findings. When we include additional robustness checks, we
found – corresponding to the initial results by Landes and Posner (2009) – that the
party of the appointing president and being black significantly influences the fraction
of conservative votes. Furthermore, the result for party affiliation is actually stronger
compared to what was proposed in the original article, as in our analysis it extends to
both, civil and criminal cases.

What explains our different results? We paid particular attention to the code gener-
ating the fraction of conservative votes. As multiple reshaping and grouping operations
as well as joining of different datasets were necessary in order to obtain this variable, its
calculation is not exactly trivial. We imagine that a small mistake in the original code
by Landes and Posner (2009), such as an inner instead of an outer join, could change
the outcome in the fraction of votes to a significant degree. In turn, its association with
the dependent variable may also change. Therefore, we were unable to replicate the
exact summary statistics of the dataset Landes and Posner (2009) used as they did not
provide their code for replication nor did they sufficiently specify their corrections in
the original paper. That, in particular, may affect the differences. In order to extend
the dataset, we experimented with different classifying algorithms, where the best one
was a passive-aggressive classifier for economic cases, reaching an f1-score of 74.49%.
In order to assess the validity of the classification, we compared the regression results
obtained by using predicted data to those obtained by using only hand-labeled data.
Coefficients found to be significant with the replication as well as with the robustness
checks were not replicated with the predicted data, suggesting that 1) the classifier still
needs improvement, or 2) researchers should be careful with using predictions as data in
downstream empirical analysis. Future research should, therefore, take into account that
the distribution of the Songer data in regards to cases per circuit per year does not mirror
the distribution of the universe, and as such it may skew the predictions of any classifier.
Oversampling is only an imperfect correction for this issue, as is the inclusion of the
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circuit or year as a feature. Otherwise, the consistency of results may not be guaranteed.

One aspect that we neglected thus far is that predictions cannot be directly plugged
into a regression without correcting for the classification error. Fong and Tyler (2018)
proposed one approach to do so. However, Fong and Tyler (2018) describe a case in
which one or more independent variables are predicted. In our case, however, we predict
the dependent variable. Therefore, we propose to develop a correction approach in order
to prevent forward propagation of the prediction error used within a dependent variable
which at this point may be of the main reason for failure. Furthermore, the distributions
of the enlarged dataset and that one of the original data are significantly distinct. Overall,
the classifier was trained on roughly 0.5 percent of data instances when compared to
the number of labels that were predicted. As soon as such a considerable dissemblance
is present, non-random draws or the lack of stratification is very problematic. Lack of
stratification is the case with the original Songer database, i.e. Songer (1993) does not
keep the original distribution of cases per circuit as they focused on preserving other
aspects such as the presence of all circuits in each year.

Taking the above into account, our results provide a concise groundwork for future
research in this area. First, in order to establish a ground truth that goes beyond mere
statistical significance and also looks at distributional aspects more than just regression
results are needed. Here, we suggest that taken our results multiway error component
modeling as well as an extreme bounds analysis should be used on any prior results before
trying to take them as a baseline for any extension of the Songer database. Secondly, in
regards to machine learning, we show quite clearly that any input which does not include
the complete opinion text in some form cannot result in a good overall performance.
That is important as it shows that other aspects which are otherwise very useful in the
domain of law, such as citations for citation networks, do not contain enough information
for this specific task. This holds despite the fact that when using citations as input, the
classifier uses many citations to which it assigns the correct ideology label if one were
to label them by hand. However, when taken as an aggregation, neither citations nor
quotations are distinctive enough. Moreover, while the Songer database features four
labels, our results show that the error the classifier makes on the “mixed” label is nearly
equally split between “conservative” and “liberal”. As the “other” label is negligible in
terms of occurrence, we can, therefore, conclude that training a classifier only on the
two labels “conservative” and “liberal” does not introduce any systematic. Due to the
increase in performance, such a setup should consequently be preferred. Lastly, looking
at the regression results, it may be that text alone is not enough. Future research should
therefore also think about taking meta-information, such as the circuit court it was
heard at, into account. Moreover, looking at the literature of the median judge (e.g.
Andrew D. Martin, Quinn, and Epstein, 2004) it may also be important with which
other judges a judge sits on a panel. This may be another important aspect, a machine
learning classifier may have to take into account.
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We hope that our work acts as a baseline on which future work can build on. The
obvious next step is to scale back on the interpretability of the model in favor of
sophistication: Specifically, we propose a modified doc2vec model in combination with
an attention mechanism. Furthermore, future work could stack multiple classification
algorithms tailored more closely to the rules of the coding book that the Songer database
provides. Another exciting avenue for future work is to compare in-depth the differences,
advantages, and disadvantages of various methodological approaches. A particular
exciting comparison is a Bayesian framework, as proposed by Andrew D. Martin and
Quinn, 2002, compared to machine learning approaches, as suggested by this paper. Apart
from methodological extensions, a more content-related one is particularly interesting:
Most of the literature is targeted towards high ranking courts, such that the Supreme
Court or Circuit Courts. This lack of attention towards lower courts might stem from the
fact that the universe of cases to code is vast. Consequently, not even a partially coded
dataset, as far as political ideology labels are concerned, is available for lower courts. A
classifier trained on Circuit Courts’ opinions could predict the label for opinions of lower
courts and, by that, help to close this particular gap in the literature.
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CODE IS LAW

How COMPAS Affects the Way the Judiciary Deals with the
Risk of Recidivism

Abstract: In the US, many judges receive a prediction of defendants’ recidivism risk
generated by the COMPAS algorithm. If judges implement the prediction, they delegate
a normative decision to proprietary software. Thus far, the debate around COMPAS
has focused on (racial, age, and other) discrimination. Using the ProPublica dataset
containing defendants’ features and the associated COMPAS predictions, we show that
the normative concern grounds even deeper. At face value, it predicts which defendants
would need to be detained in order to reduce the risk of them committing new crimes
before they are brought to justice. Those predictions favor imprisonment over release,
hence COMPAS is biased against the defendant. By deciding on such a trade-off, the
software provider assumes a role that democratic constitutions reserve for Parliament.
Further, we not only show that this bias can be removed, our proposed correction also
increases the total model accuracy, and attenuates the anti-black and anti-young bias
inherent in the prediction. However, it also slightly increases the risk of a false negative
decision. Thus, we show that design decisions regarding the specifications of the algorithm
as well as the presentation of its output may be the actual drivers of the aforementioned
biases. Based on these insights, we argue that the normative decisions hidden in the
design of the algorithm must be made transparent, and that legislators and judges must
be enabled to adapt the algorithm to their normative convictions.
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4.1 Introduction

Judges have the power to make potentially life-altering decisions affecting any individual.
They do not only engage sovereign powers, but they also authoritatively remove uncer-
tainty. The need for such authoritative intervention is patent if the law itself is to react
to uncertainty. Hence, there are legal rules that condition interventions on a prediction.
However, by definition predictions always include a certain likelihood to be erroneous, as
may be illustrated by the the prominent choice between bail and jail. The fact that a
person has been apprehended for purportedly committing crime is a predictive, behavioral
signal and in general, persons with a criminal history are more likely to commit crimes
than those without (Sampson and J. H. Laub, 1992). Yet, the constitutional presumption
of innocence forces the law to strike a balance between incapacitation in reaction to the
signal, and curtailing the freedom of a person who might not have recidivated while
waiting for trial.

For a computer scientist, this is a familiar choice: the incidence of false negative pre-
dictions can usually only be reduced when increasing the risk of false positive predictions,
and vice versa. This is a normative decision and for the concrete case, life, limb and
property of innocent victims are at stake if false positive decisions are minimized. If false
negative decisions are minimized, innocent defendants risk loosing their jobs, families,
and being put on a criminal career (Hagan and Dinovitzer, 1999; Western, Kling, et al.,
2001; Western, Lopoo, et al., 2004).

The legal system cannot avoid making this choice. It notably also makes a choice
if it seeks to maximize accuracy, meaning it minimizes the sum of false positive and
false negative decisions. The strategy for how that sum is to be minimized, for example
by prioritizing one error over the other, is not automatically defined. Hence the policy
question cannot be whether this choice is made, but how. It would be simple if this
decision could be logically derived from first principles. However, most societies do not
feel comfortable with putting a price tag on life, limb, or fear, nor is there an agreed cost
for wrongful conviction or suspicion (Brooks and Simpson, 2012). Hence, even if one were
to agree on a utilitarian norm there would be disagreement about parameters. Moreover,
it can by no means be taken for granted that the well-being of victims and potentially
innocent defendants should be traded against each other. It is so, as from a deontological
perspective, the freedom of a person from intrusion on her physical well-being should
deserve absolute protection, as should the freedom of a person from unjustified sovereign
intervention.

As the normatively correct decision cannot be found by deduction, decision-making
power becomes critical. In a democracy, the natural institution for this kind of value
judgment is the parliament. Possibly, the constitution wants to convey at least some of
this authority to the judiciary. As a matter of fact, this happens in the frequent situation
of statutory provisions leaving room for interpretation. By contrast, for obvious reasons
corporations are no first-order rulemaking bodies: they lack democratic legitimacy. For
pragmatic reasons, legal orders make exceptions. Private ordering is, for instance, frequent
in the formulation of technical standards. But at the least, such secondary rulemaking
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bodies are exposed to scrutiny by institutions with direct democratic legitimacy, like
Parliament or regulatory agencies controlled by government.

In 1999, scholars working at the intersection of law and computer science alerted the
public to an emergent phenomenon: code is law (Lessig, 1999). Originally, however, the
attention was on technical substitutes for traditional private ordering, like the design of a
negotiation platform. In this paper we argue, and empirically demonstrate, that normative
decisions at the core of constitutionally protected freedoms are now buried in code. This
is alarming as these decisions are not at all transparent. To this end, we look at the at
the “Correctional Offender Management Profiling for Alternative Sanctions” (COMPAS)
system. At face value, COMPAS provides judges just with computer-generated advice on
different aspects of a defendant, such as risk of recidivism or the risk of failing to appear
to scheduled court hearings. For our purposes, we focus on the risk of recidivism.
The company, Northpointe, immunizes itself from criticism by insisting that its software
only assess the risk of recidivism (general or violent) but does not automatically decide
on what is to happen to the defendant. At the surface, it is left to the individual judge
what to do with this advice. Yet, unless judges plainly disregard the machine generated
prediction, it has the potential to influence their decisions (Grgić-Hlača, Engel, et al.,
2019). This potential for influence is normatively highly problematic, as we show that the
output of the COMPAS system is influenced by (normative) considerations in the design.
We find that COMPAS strongly privileges victims over defendants and this decision may
even be in line with the preferences of the majority of the legislator in at least some of
the US states. Critically, however, these legislative bodies themselves have never made
this decision, the public has never gotten a chance to discuss the choice – it is hidden in
the design of the algorithm.

As COMPAS is used in an area of high relevance for individuals, it was met with
considerable criticism. In particular, the public debate has focused on hidden discrim-
ination, by race (Angwin et al., 2013; Fass et al., 2008; Flores et al., 2016; Dieterich
et al., 2016; Chouldechova, 2017; Agarwal et al., 2020), or by age (Rudin, 2019; Jackson
and Mendoza, 2020; Rudin et al., 2020). It has been pointed out that the accuracy
of COMPAS predictions is as low as 68% (Grgić-Hlača, Zafar, et al., 2018; Beriain,
2018). Moreover, critics oppose the proprietary nature of the tool (Freeman et al., 2016;
Carlson, 2017; Beriain, 2018; Nishi, 2019), with the ensuing potential for conflicts of
interest (Freeman et al., 2016) and the lack of transparency (Rudin, 2019). Moreover,
COMPAS predictions are no better, in terms of accuracy, false positives (FP) and false
negatives (FN), than untrained human laypersons (Dressel and Farid, 2018), at least
under comparable circumstances (Jung et al., 2020).

While the concerns raised in the literature are normative, the debate itself has
obscured an even deeper normative issue: COMPAS influences judges to the detriment
of defendants. In our analysis, we not only show that this bias is pronounced, we also
present a technically relatively easy procedure for removing this bias. In line with our
earlier call for democratic legitimacy, we do not argue that this corrected version of the
algorithm is preferable. However, we want to show that a correction is possible leading
to a comparable outcome for which other subgroups profit. Through that we want to
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emphasize the importance of discussing the implications for the conflicting normative
goals, before legislators allow the use of COMPAS in court. And, if a legislator approves
of the bias against defendants, the bias should at the least be made transparent. Hence,
that trade-off has to be at the core of a debate about the constitutional limitations which
at present lies beyond the scope of this paper.

4.2 Method

There already is a mature literature using the so-called ProPublica COMAPAS dataset
(Angwin et al., 2013) for their research (e.g., Angwin et al., 2013; Fass et al., 2008;
Flores et al., 2016; Dieterich et al., 2016; Chouldechova, 2017; Agarwal et al., 2020).
ProPublica is an NGO interested in promoting fairness and transparency when the state
interacts with individuals. For that reason, they made use of the freedom-of-information
act to compile a static, dataset of COMPAS scores and the characteristics of individuals
to whom these scores correspond. However, the dataset provided by ProPublica is
closed-source as well, meaning that one cannot infer how they arrive at their variables
from the raw data. Moreover, ProPublica also do not provide the code necessary for that
transformation. Consequently, we opted to work with their raw data and make use of
the code by Rudin et al. (2020) to transform the raw data to the COMPAS dataset. We
outline the the dataset used as well as the design of the correction model in the following.

Data

Our data consists of 5,759 observations from defendants who have been tried in a single
county, namely Boward County, Florida. Relying on freedom of information legislation,
this data has been collected by ProPublica (Angwin et al., 2013). Further features which
are used by the COMPAS algorithm but not available in the original ProPublica dataset,
have been added by (Rudin, 2019). Consequently, we know for each defendant priors
such as whether she has been incarcerated or released on bail; whether she has been
charged for any other crime during two years after release,1 as well as 32 more directly
observable characteristics, mostly demographic and concerning the defendant’s criminal
history.2 We do not have access to the remaining features COMPAS uses which are
answers to questionnaires on the privatethe screening process (Northpointe, 2015). In
terms of distribution, little more than a third (2079) of the defendants in the sample
recidivated, in terms of race 2939 individuals are black, 1934 white, and the remaining
886 are of a different race.

Judges are informed about the recidivism risk of a defendant with the help of decile
scores calculated by the COMPAS software. These scores result from partitioning the data

1Except if the new charge was a traffic ticket or a minor municipal ordinance violation, failure to appear in
court, or a later charge with a crime that had occurred before the COMPAS screening (Larson, Jeff and Mattu,
Surya and Kirchner, Lauren and Angwin, Julia, n.d.). For defendants who have been in jail, the time until
recidivism is measured from the day of release from prison onward. This imbalance is inherent in the data.

2The information about the features is summarized in Table D.1, Table D.2, Table D.3, and Table D.4 in the
Appendix.
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into 10 equally sized bins, conditional on the fraction of the population that COMPAS has
used for normalization. By the definition used to construct the norm groups, COMPAS
predictions may be stratified by a combination of the following: gender, prison, jail,
parole, and probation (Northpointe, 2015, p.11). However, we do not know how the decile
scores in our dataset were normed, i.e., what norm groups were applied. As may be seen
in Figure 4.1, the underlying raw scores are not exclusive to one decile but rather over-
lapping at the boundaries – sometimes even the boundaries of two consecutive deciles (as
it is the case for decile 3,4, and 5). As such, it is fair to assume that the underlying norm
groups are indeed different ones for different subgroups. Moreover, the interpretation of
these deciles is then very difficult when two individuals whose score was normed against
different groups should be compared. To prevent this additional step from biasing results,
we work with raw scores. In order to gain COMPAS decile scores, we apply the COMPAS
uniform bracketing to the raw scores in the dataset. In other words, the norm group
is the complete training dataset. The deciles themselves are constructed as outlined in
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Figure 4.1: Original mapping of raw scores
onto decile scores vs. constructed mapping.
The constructed mapping is for one norm
group and the binning used is the uniform
binning.

Decile Score Raw Score Upper Bound Risk Upper
Bound

1 −1.92 12.8
2 −1.5 18.2
3 −1.2 23.1
4 −0.93 28.3
5 −0.69 33.4
6 −0.47 38.5
7 −0.23 44.3
8 0.02 50.5
9 0.37 59.1
10 1.69 84.4

Table 4.1: Raw score and risk cutoffs
per decile for data preprocessing. Risk
is calculated as the sigmoid transfor-
mation of the raw score. The binning
used is the uniform binning

the practitioner’s guide (Northpointe, 2015), i.e., as 10 brackets, each one capturing one
tenth of all individuals. For the final processing, we take the uppermost raw score of each
decile (see Table 1) as the threshold for the bin and then resort all individuals in such
way that each individual is in the correct bracket. While that means that the bins are
not perfectly uniform in distribution, the effect is negligible in terms of impact on the data.

As the left hand panel of Figure 4.2 shows, the raw scores are approximately normally
distributed, with a mean and mode around -1. However, the raw scores are not easy
to interpret. Moreover, the decile scores are also not easy to interpret in a way that
is useful for the direct inference of the predicted likelihood of recidivism. The only
information we are able to find is a note in the practitioner’s guide that the COMPAS
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risk scales are a “method of estimating the likelihood of re-offending” (Northpointe,
2015, p. 29). Thus, we apply the common sigmoid3 transformation on the risk scores
(Niculescu-Mizil and Caruana, 2005); this enables us to interpret the scores as a likelihood.
In the right-hand panel of Figure 4.2, we superimpose such a sigmoid transformation.
These scores, indicated in orange, can be interpreted as the predicted probability of
recidivism. Hence, for the average defendant in the dataset the predicted (raw) recidivism
risk is substantially below 50 %. These are also the estimated risk probabilities used
in Figure 4.4. While this assumption is only an approximation, it is notable that our
results hold even under the unfavourable assumption that the COMPAS raw scores are
very closely related to the real risk of recidivism.
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Figure 4.2: Distribution of recidivism scores in the dataset.

The figure shows the distribution of the raw scores within the dataset, as well as how normally distributed raw
scores with the same bounds (location = mean of raw scores, scale = 0.9) would compare. Figure b shows the
distribution after applying a sigmoid transformation to gain probabilities

When performing our correction, we randomly split the data 75/25 into a remainder
set and a test set respectively. The test set therefore holds 1440 samples. Then we
split the remainder set again 75/25 into the actual training set (3239 samples) and the
validation set (1080 samples). We train the classifier on the training set, select model
parameters based on validation set error, and report the results on the test set, which is
left untouched until the final analysis.

3The sigmoid transformation is equivalent to the logistic transformation commonly used to generate proba-
bilities as regression output. It transforms a range of numbers such that the transformed data lies between 0 and
1.
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Model

The models for each threshold, to predict errors in the COMPAS predictions, were
specified as four-layer neural networks, each layer consisting of 28 neurons using a ReLU
activation function. As input, we normalize the features contained in the dataset between
-1 and 1. Additionally, the network receives information p about whether the instance
would be considered a positive prediction or negative one in terms of recidivism, dependent
on the COMPAS decile score d and the threshold t for which the network is trained.
Hence, p is defined as follows:

p(d, t) =

¨

0 d < t

1 otherwise

Our model M is trained to predict the errors of COMPAS. In order to construct
these errors, we use the ground truth information g on whether an individual recidivated
within the last two years, with g = 1 if that is true and g = 0 otherwise. Consequently,
the COMPAS errors e are defined as follows:

e(p, g) =

¨

0 p(d, t) = g

1 otherwise

Finally, our ex-post correction model is specified on the input features x , with x being
a feature from Table D.1, Table D.2, Table D.3, and Table D.4 excluding the features
pertaining to race. As our target, we try to predict the individuals for which the COMPAS
assessment would be erroneous. That means, given a threshold t, we try to predict e:

ê = M(x , p) (4.1)

The loss function we use is the mean squared error loss MSE(e−ê). The model optimization
is done over 250 epochs with a batch size of 500, using the Adam optimizer with a standard
learning rate of 10−3. We optimized the number of epochs as well as the number of the
neuron in the hidden layers making use of the validation set. However, results vary only
minimally before and after optimization.4

4.3 Results

Anti-defendant bias from low accuracy

At its face, COMPAS leaves potentially contentious normative choices to its judicial users.
The user manual stresses that it is for the user to define, which recidivism prediction to
consider problematic, and to react, for instance by denying release on bail (Northpointe,
2015, p.5). The manual also explains that the scores are relative to the group of the

4We started with a network having two layers and as many hidden neurons as we have input variables (30).
The final network has four layers and 28 hidden neurons.
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population to which the defendant belongs (Northpointe, 2015, p.11). These so-called
norm groups differ by gender, and whether defendants in the training data have been in
prison or on parole; in jail; or on probation (Northpointe, 2015, p.11). Compared with
these norm groups, a defendant with a score 1-4 is considered low risk, 5-7 medium risk,
and 8-10 high risk (Northpointe, 2015, p.8).
Yet, COMPAS is actually pronouncedly normative, to the detriment of defendants. For
the individuals in our data, we know the ground truth. Thus, comparing it to the
COMPAS score, we can identify the complete confusion matrix for a given t. We thus
know who has been correctly and who has been incorrectly classified for any chosen
threshold of the COMPAS decile scores. The left panel of Figure 4.3 shows, on the
testset drawn from the ProPublica data which is comprised of 1440 samples, how strongly
this assessment is biased. Effectively, with the score which the judge uses as threshold,
she not only decides about the acceptable recidivism risk. She also decides how often
the prediction is wrong, to the detriment of society at large, or to the detriment of
the defendant. If the judge decides to intervene whenever the score is equal or above 4
(medium risk in COMPAS’ classification), 577 (40.1%) defendants are wrongly classified
as high risk, while only 73 (5.1%) are wrongly classified as low risk. By contrast, if the
judge draws the line at 7 (high risk in COMPAS’ classification), the incidence of false
positives (239 or 16.6%) and of false negatives (275 or 19.1%) is almost balanced. And if
the judge aims to be as accurate as possible, the threshold at 9 would be desired.
Importantly, the anti-defendant bias inherent in choosing a low threshold is not communi-
cated to judges. The user manual exclusively focuses on recidivism risk. The judge is led
to believe that risk aversion regarding the community is all that is at stake. Yet, as the
left panel of Figure 4.3 shows, at a threshold of 4, there are even more false positives than
true positives (TP): more than half of the defendants put into jail have not recidivated in
the two years after the assessment. About a third of all the defendants are unnecessarily
incarcerated.
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Figure 4.3: Bias against defendants. Left panel: COMPAS, right panel: with ex post correction.
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Removing the bias

One may wonder whether the anti-defendant bias is mechanical: does the frequency of
false positive choices (defendants unnecessarily incarcerated) not automatically increase
if the legislator, or the judge for that matter, is more concerned about innocent victims?
Even then, it might still be important to inform judges about the effect. They should be
aware that they are exchanging an abuse of sovereign powers against greater safety in
the community. However, this trade-off is seemingly inherent in the uncertainty about
the recidivism risk of individual defendants.
The right panel of Figure 4.3 shows that this is not quite true. On the x-axis, we
depict the chosen decile threshold from which onward a judge considers a defendant
for jail. On the y-axis, we show the absolute of number of individuals affected for the
different groups, i.e., false positives, true positives, false negatives, and true negatives
(TN). We see that the bias can largely be removed using the ex-post correction model
specified in subsection 4.2. At the same time, we still leave it to the judiciary to fix
the threshold, and hence the acceptable estimated risk of recidivism. In this ex-post
corrected version of the COMPAS outcome, all lines are nearly flat. Our correction not
only makes predictions more accurate, it also makes the decision for a threshold and
the incidence of materially wrong decisions orthogonal. Society may leave it to judges
(or the legislature, for that matter) to define the preferred balance between protecting
victims and protecting innocent defendants. This choice no longer affects the expected
frequency of wrongful judicial decisions. That in itself is, again, a normative decision -
we prioritize accuracy over preserving an implicit error-rate, seen as acceptable by the
judge. Now, mostly irrespective of the cutoff, more than 2/3 of all decisions are correct.
This is undoubtedly a desirable property. Of the 926 defendants who have actually
not recidivated, on average 761, i.e. 82.18%, are released, which is desirable. However,
of the 514 defendants who have recidivated, on average only about 201 (39.11%) are
incarcerated. Considerably more than half of them are released. The judiciary may deem
this risk too high. We do therefore not argue that the corrected version is superior. But
we show: even when only exploiting the relatively small sample published by ProPublica,
the normative trade off between protecting innocent defendants and protecting innocent
victims cannot only be made visible, the incidence of wrongful incarcerations can even be
minimized. If the judiciary decides not to do so, that in itself is a valid choice. However,
that decision, in turn, should be made transparent. Moreover, it should be politically
discussed and justified and potentially weighted.
COMPAS does not only hide the anti-defendant bias resulting from the way it handles
accuracy computation. A further normative decision is concealed in the way how
COMPAS partitions the data, as the output of the COMPAS model is not directly given
to the judges. Rather, some post-processing is applied before. As such, in the following
we look on that post-processing.
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Anti-defendant bias from partitioning the data

The COMPAS model itself does not output the decile scores we have looked at so far and
which judges see. Instead, the model outputs raw scores for each defendant. Those scores
correspond to a predicted risk of recidivism on an unknown metric scale. Then, the data
is split into 10 bins. The average risk score increases from bin to bin, however, the data
is not binned by the risk score itself. Rather, in each bin there are equally many data
points (Northpointe, 2015). COMPAS explicitly leaves it to the user to decide either for
an extended supervision or for an incarceration and only states that each bin can be
translated into the percentage of individuals of the comparison group who are more or
less dangerous compared to the defendant. That means, for a defendant with a decile
score of 4, 60% of people in the norm group are more dangerous. However, COMPAS
decile scores could only be translated into predicted probabilities of recidivism if these
scores were uniformly distributed across the probability space, i.e. between 0% and 100%
predicted risk. The reason obviously is that the distribution across deciles is uniform,
thus only if the distribution of individuals across the “risk of recidivism”-range is uniform
as well does the risk increase linearly across deciles. That important fact, however, is –
to our knowledge – not mentioned at any point in the practitioner’s guide (Northpointe,
2015) nor explicitly stated to the judges. Hence, the user does not have any information
about the distribution of the risk scores in the norm group, and subsequently, she is
unable to asses whether an increase of the decile score by 1 corresponds to an increase in
predicted risk by 10%, of more, or of less.

As Figure 4.4 shows, the reality is very far from such an increase of 10% and does
not even correspond to the same increase for each decile. As the blue bars show, the
actual distribution is heavily skewed to the right: there are many more observations with
a low risk of recividism. Actually, if the judiciary adopts the “medium risk” threshold
often proposed at COMPAS decile 4, the maximum estimated recidivism risk is not 40
%, but 28.3 %: of the most risk prone defendants at this borderline, only about 1 out of
4 is expected to recidivate during the next two years. COMPAS decile scores are heavily
biased, again to the detriment of defendants.5 In the field guide, Northpointe singels out
COMPAS deciles as corresponding to the “x%” most dangerous defendants (Northpointe,
2015). This might be what the legislator aims for. But the legislator should be aware that
this definition of the threshold, if falsely interpreted as probability thresholds, creates an
additional bias to the detriment of defendants who very likely would not have recidivated
when released. This normative decision, too, should not be concealed. For transparency,
COMPAS should offer alternatives for the decile binning strategy. After the effect has
been made transparent, it is for the legislator to defend its choice.

5The bias is even stronger if one were to partition the COMPAS raw scores into 10 bins of equal width. One
sees this in Figure 4.4: For all predicted probabilities of recidivism below 70%, the red line (raw scores) is above
the orange line (probabilities).
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Figure 4.4: Alternative definition of cutoffs.

The figure shows an alternative for partitioning the data: for the decile boundaries calculation, first the predicted
COMPAS raw score for recidivism is transformed by a logistic/sigmoid function. Then the 0-1 scale is split into
10 evenly spaced bins and the defendants are sorted into them using the transformed raw score. Blue bars show
the frequency of observations, in the respective bin, in the COMPAS data. The orange line stands for the average
sigmoid-transformed, risk raw scores of all observations in this bin. The red line stands for the average COMPAS
raw score for all observations in this bin.

Racial bias revisited

Triggered by ProPublica’s findings, the normative debate has been focused on racial
discrimination (Angwin et al., 2013; Fass et al., 2008; Flores et al., 2016; Dieterich et al.,
2016; Chouldechova, 2017; Agarwal et al., 2020). Figure 4.5 casts new light on this
finding as it show how the rate of the false-positives and false-negatives differs for changes
in cutoffs. We show that for the original COMPAS predictions as well as the ex-post
corrections when applying our model. It shows that the races are not symmetrically
affected by the risk of being unnecessarily incarcerated (left panel) or by the chance to
be released on bail without justification (right panel). Irrespective of the cutoff, black
defendants are substantially more exposed to false positive rulings, and white defendants
are substantially more likely to benefit from false negative rulings. The ex-post correction
introduced above is also effective conditional on race (the dashed lines are in parallel).
Despite the fact that the correction is tuned towards accuracy and does not directly
interact with race, the racial bias is clearly reduced after the correction.

Age bias revisited

In recent years, academic attention has shifted from race to age (Rudin, 2019; Jackson
and Mendoza, 2020; Rudin et al., 2020), chiefly because it has been recognized how both
variables are correlated. Black defendants have an average age of 29.53, whereas white
defendants are 35.15 years old on average. Hence, black defendants are much younger on
average.

For lower decile scores, and therefore especially for the thresholds 4 and 7 popular
in the literature, compared to COMPAS, the correction model reduces the maximum
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Figure 4.5: Racial bias in false positives vs. false negatives.

The figure shows the rate of defendants incarcerated although they do not recidivate two years after release (left
panel) and the rate of defendants released on bail who have recidivated during the next two years (right panel).
Dotted lines: results when using COMPAS predictions, conditional on threshold chosen by the user (x-axis).
Dashed lines: results when adding the accuracy correction introduced above. Red: black defendants, blue: white
defendants. Other races are excluded.
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Figure 4.6: Age bias in false positives vs. false negatives.

The figure shows the rate of defendants incarcerated although they do not recidivate two years after release (left
panel) and the rate of defendants released on bail who have recidivated during the next two years (right panel).
Dotted lines: results when using COMPAS predictions, conditional on threshold chosen by the user (x-axis).
Dashed lines: results when adding the accuracy correction introduced above. Green: ≤ 21, red: (21, 30], blue:
(30,40], orange: > 40.
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difference of error rates between groups. As shown in Figure 4.6, the strong bias against
young defendants actually results from a much higher risk of false positive decisions (the
younger the defendant, the higher the dotted line on the left panel). This corresponds
to a considerably lower chance for younger defendants of being released on bail without
justification (the younger the defendant, the lower the dotted line on the right panel).

For the race variables, the accuracy correction introduced above, partially corrects the
bias (dashed lines in Figure 4.5). For the age bias presented in Figure 4.6, the correction
model can directly make use of the bias variable. Thus the correctional effect is even
stronger. After correction, defendants between 21 and 30 years are disfavored, both in
terms of a relatively higher false positive rate, and of a relatively lower false negative
rate. Still all age brackets benefit unless the decile score threshold is set at 8. Moreover,
the bias against the different sub-groups shown resulting from the choice of the decile
score threshold is neutralized (also conditional on age, the dashed lines are flat). As the
model does not get information on race as input but age (same as COMPAS), we assume
that the race bias generated by the model is a side effect of an explicit age bias. Thus,
when the latter is corrected the former also undergoes a partial correction.

4.4 Discussion

Naturally, it is not preferable that human employees add up hundreds of numbers;
computers are just better at this task. In the field of medicine, for example, many doctors
have embraced evidence based medicine (Sackett et al., 1996); at least for some diagnostic
tasks, dedicated software outperforms human experts. It does not seem far-fetched to
draw the analogy to judicial decision making, and to call for evidence based adjudication
(Manski et al., 2020). The more the law wants the decision to rest on a prediction, the
more it seems appealing to muster the ever increasing capacity of algorithms, paired
with the growing richness of datasets, to make good predictions. In this paper, we do
not argue against computerized decision aids in the court room. But the law does not
only care about performance. The fact that, on average, in a given domain, one decision
maker (the machine) is better than another (the human judge) does not automatically
imply that this decision maker should decide. Ultimately, the law does not care about
population effects; it cares about individual cases. Now in many contexts, the law must
live with imperfection. Facts that are relevant for the decision of the case remain unclear
or are contested. The risk of materially wrong decisions is insurmountable.
Traditionally, the law contains this risk procedurally. The most important safeguard
is the personality of the judge. She is obliged to weigh the pros and cons as best she
can, and to be responsible in person for the outcome. To the extent that concerns can
be generalized, the legislator takes a stand, based on open political debate. The rule of
law and democratic legitimacy make the residual imperfection tolerable. In this paper
we show that these safeguards risk being blunted by algorithmic design. The popular
COMPAS software does not only perform poorly at the very task for which it is has been
designed; this has been pointed out before. The software also implicitly assumes the role
of a sovereign that, in a democratic country, should be with the courts and the legislator.
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It pronouncedly privileges potential victims over potentially innocent defendants. More
importantly: this normative decision is concealed. The judge is led to believe that she
just decides about the acceptable recidivism risk, while she actually also decides about
the risk of unnecessarily incarcerating a defendant, and about racial and age bias.
Noticing the hidden normative dimension of the algorithm is not an argument against
algorithmic decision aids in the court room. However, it is only due to ProPublica’s
efforts that COMPAS predictions can be compared to ground truth. And with this
analysis, we are the first to show the hidden bias inherent in the design of the COMPAS
software. Legislators and (constitutional) courts should only clear the use of prediction
software in the courtroom if such normative decisions have been made transparent. The
algorithm should be tested against ground truth. Following our approach, corrections
should be developed. It would then be for democratically legitimate authorities to make
the inevitable normative decisions. Our study had to live with the available data. The
ProPublica dataset is only a sample, for one jurisdiction. We also did not have access
to the complete feature set that COMPAS uses for prediction. Hence our correction
algorithm cannot exploit the full richness of the data, but as it performs very well
regardless, this does not seem to be an important limitation. As we have shown, code
is law. If code is used in the court room, proper safeguards for the rule of law and
democracy must be developed.
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SYSTEMATIC ERRORS AND THE STABILITY OF

FEATURE-RELEVANCE

An Assessment for the Social Scientists

Abstract: Machine learning sees ever-wider use, especially in the social sciences as
well as law. Here, Natural Language Processing (NLP) finds many use-cases as it enables
the processing of large-scale online text data. However, often the focus only lies on a
model’s performance and not on its transparency. That lack of transparency is especially
troubling as the users of those models may often not be its designers. As such, they have
no way to assess whether there are systematic errors or whether the performance hinges
on unknown, possibly unstable factors. Here, we offer an in-depth analysis of the effect
small variations in the input have on systematic errors and feature-stability. Our aim is
to enable social scientists and practitioners using the technology to assess whether they
may invite either normative or unwanted systematic errors into their results when using
current technologies.

JEL Codes: C71, H41
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5.1 Introduction

In traditional studies within the social sciences, characteristics such as age or gender
are key traits as they have proven to be central to understanding and modeling human
behavior (e.g., Lahey et al., 2000; Gneezy and Rustichini, 2004; Charness and Gneezy,
2012; Booth and Nolen, 2012; Sutter and Glätzle-Rützler, 2014; Bian et al., 2017). While
traditionally studies within the field focused on lab experiments as well as questionnaires,
large-scale datasets have, until recently, been of limited availability. Especially when
it comes to text data, the analysis often proved resource-intensive and the results are
difficult to assess. However, in general, that data is a wealth of information, even more
so since the amount of text data generated by individuals increased massively with
the advent of services such as Facebook or Twitter (InternetLiveStats, 2019). With
such large amounts of data, new methods in machine learning and natural language
processing (NLP) gained great popularity, especially within the social sciences. In order
to mine that treasure trove, researchers increasingly turn to the application of NLP to
answer prevailing questions in the social sciences (e.g., Bail, 2016; Pavlick et al., 2016;
Costa-jussà, 2019; Burley et al., 2020). The technology as such is, depending on the
algorithms, comparatively simple to use in terms of know-how when one considers the
textual features for identification as well as the difficulty of setting up and training the
respective algorithms (Narayanan et al., 2012). By reducing the entrance cost in such a
way, this technology certainly has great potential. Here, the section of authorship analysis
is becoming an area of special relevance to the social scientists. The reason is simply
that, while a large amount of text data is available, characteristics of the individual,
such as age and gender, but also their identity, often are not. The main goal of that
particular area is therefore to profile characteristics such as age and gender, but also
political orientation or even the author’s identity from texts written by the individual.
As such, while studies within the social sciences, in making use of that new type of data,
continue to include these characteristics due to their proven relevance in past research
(e.g. Bail, 2016; Colleoni et al., 2014), authorship analysis is used to compensate for the
lack of ground truth. That is often done by using a layered approach, first inferring the
missing characteristics with a trained classifier, and then in turn using that as input
to their research approach (Barberá and Rivero, 2015; Huang et al., 2020). Moreover,
these characteristics are not only important as an input for further research, but also as
identifying information. In the adjacent field where NLP and behavioral sciences intersect,
the law community is making use of such analysis for the targeting and researching of
incriminating online behavior, e.g., hate speech (Djuric et al., 2015; Z. Laub, 2019; Zufall
et al., 2020). The practical application of authorship analysis also becomes relevant when
pursuing offenses. Often, online users do not use their real names, and finding out their
identities becomes difficult either because it is not available or because the companies
having access to the information are not willing to share it (Stuttgarter Nachrichten,
2017). Consequently, often during such an investigation, forensic authorship analysis
is employed to gain additional information on the potential offender. Due to the high
volume of data, these processes become increasingly automated and as such the research
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field of automated forensic authorship analysis is well established (Rocha et al., 2017).

However, while state-of-the-art methods regularly manage to achieve a high accuracy
for authorship analysis (Rocha et al., 2017), some call the field’s scientific character into
question (Chaski, 2001). This is due to the fact that current research of automated
authorship analysis mostly focuses on correct predictions, using a wide set of features
which often varies between different papers (Rocha et al., 2017). The focus seems to lie on
achieving the best results, showing the viability of automated authorship analysis often to
the detriment of rigorous explainability and transparency (Chaski, 2012). This not only
generally concerns research employing such models but, when used by law enforcement, it
is also directly related to the admissibility of findings from automated authorship analysis
in the courts, as transparency and rigor might not satisfy the demands before the law
(Chaski, 2012). As such, this topic is very much of normative interest. Explainability
and transparency are the central aspects when a decision made by some model affects
individuals. Within the field of law, as outlined above, that may affect the individual
directly as she comes under suspicion when identified by the machine. In social sciences,
they may be more indirectly affected. One way would be when predicted labels on a
datasset are used for further analysis. The result from such an analysis may inform policy
decisions. However, the error will propagate. As the underlying labels assigned by the
machine were systematically faulty, the policy design will be as well. On the one hand, it
is therefore paramount that, when exposed to such machine-informed decisions and label
assignments, there are no systematic patterns of errors. On the other hand, the features
driving the prediction result should be more than just expressions of spurious correlations,
which are present in one dataset and absent in the next. Consequently, the technology
is in need of further assessment before being used even more widely than is already the case.

Besides understanding the algorithm, such an explainability would require two things:
One concerns the topic independence, which means that the features predictive of an
author should not depend on the content of the text (Narayanan et al., 2012). The
second aspect is rarely mentioned. Most models are trained at one point in time, on one
particular text corpus related to one domain. Using the trained model at a later point
in time, however, assumes that in the meantime there was no shift in the underlying
features used or shifts in the set used by a particular author. If one looks at age, for
example, it may be that older people are currently using more grammatically correct
language in the online environment compared to younger people (Flekova et al., 2016).
Naturally, that is merely a snapshot of the current environment. It does not imply that
the next generation features the same pattern, and consequently, any model trained on
the old pattern might inadvertently misclassify when confronted with the new pattern.
For that reason, it is necessary to assess the stability of individual features used by the
classifier, when the underlying data and thus the patterns change slightly. There are only
very few forays seeking to address such problems, for example as Azarbonyad et al. (2015)
do with their temporal weighting of features. As stylometry is rooted in the humanities
and thus the social sciences (Neal et al., 2017), it is surprising that not more efforts have
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been made so far to see whether some author characteristics result in some stable topic-
and domain-independent features and feature relevance.

Therefore, the central aspect of our approach is helping to answer that question about
the stability. We assess the stability in terms of predictions and in terms of feature
relevance. We think that such a stability analysis would aid immensely in assessing the
rigor of predictions, therefore making them safer to use in the legal context. Moreover, it
would also help us to better establish the boundaries of transferability and stability of
models and their predictions, which is needed when predictions of such models are used
as input for further research. This contribution is therefore interdisciplinary in nature,
as it tries to address an issue affecting multiple fields. While the lack of contributions
has already been pointed out Rocha et al. (2017), only recently, have there been any
notable forays. In general, there has been an effort to make model predictions more
explainable (Ribeiro et al., 2016b; Samek et al., 2019). A systematic approach , however,
looking at changes when features are systematically varied, is still limited. The study by
Koppel et al. (2011) looks at authorship analysis “in the wild” and systemically varies
the number of authors as well as the number of features to assess and quantify gains
and losses in performance. However, the authors do not focus on feature types and do
not extend their study towards analyzing the changes in within the model. Recently,
Boenninghoff et al. (2019) showed a method to make a complex model based on a neuronal
net explainable. Their approach is limited to their specific model and does not analyze
either what the decisive features correspond to, i.e., how much context they encode. In
that vein, Sanchez-Perez et al. (2017) is closer to our approach. They also seek to limit
topic dependency and focus on feature types. However, their goal is to find a good subset
of n-grams for their feature set with high predictive power. The paper closest to ours is
the one by Sage et al. (2020). Their analysis is focused on different feature types and the
influence of varying n-gram lengths. They systematically vary both in order to find the
impact on performance. However, they do not extend their analysis to different input
sets and also focus on longer news articles instead of the more common data of microblog
texts. Moreover, we also extend that analysis into the domain of stability, assessing
whether there are shifts in feature relevance.

5.2 Experimental Design and Data

In order to conduct our stability analysis, we conduct an experiment as used in the field
of machine learning by introducing controlled variations to an underlying, given dataset.
To that end, we use a fixed setup of machine learning (ML) models and test their internal
stability, when they are exposed to these controlled variations.

Synopsis. The dataset used for the experiment is the PAN @CLEF 2019 Celebrity
Profiling (PAN2019) dataset.1 As our goal is to assess the performance and the stability

1The dataset may be downloaded from the website of the PAN challenge: PAN Challenge 2019.

https://bit.ly/2Yk9so9
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of relevance in regards to single features, we try to directly reduce variation present
within the authors as much as possible. Therefore, we focus only on authors from one
category, namely those dubbed “creator”. As suggested in the guidelines of the original
PAN challenge, we change the age from a numerical variable to their categorical one
consisting of five age brackets. As a prediction target, we select “age” and “gender”,
two commonly used characteristics in the social sciences. Moreover, in order to exclude
further any variation introduced by an imbalanced dataset, we undersample the data in
such a way that the genders as well as the age groups are balanced. For the comparison
in the author dimension, we create four subsets consisting of 50, 150, 500, and 1000
authors, respectively. The upper limit of 1000 authors reflects the maximum number of
authors for whom it is still possible to balance the dataset. Furthermore, we repeat the
experiment three times for different minimum lenghts per training instance, as the text
lengths were shown to impact classifier performance; in doing this, we hold the model
setup constant (Custódio and Paraboni, 2021). The minimum lengths are 100, 250, and
500 characters, respectively. In order to achieve these minimum lengths, tweets from the
same author were concatenated. As feature types we use the following ones, sorted in
ascending order in terms of encoded context information: DIST, CHAR, ASIS, POS,
TAG, DEP, LEMMA, WORD, NUM. For all types, we apply the n-gram ranges found to
be useful by prior research (Custódio and Paraboni, 2021). The evaluation is conducted
using the 500-score as the performance measure. To assess the stability of features, we
use Spearman’s Rho for rank order correlation. All evaluations were done on a separate
hold-out dataset, the test set. That data was not used during training at any point. In
the following paragraphs, we outline our design choices in detail.

Data

While the literature for authorship analysis is abundant and only increased during recent
years, there are no easily identified commonly used datasets across a wide range of studies.
Comparison between studies is therefore difficult. This is well illustrated by Neal et al.
(2017) who list 13 datasets used more than once and a multitude of others used less
frequently. However, for Twitter, they list only two. This means that most studies on
authorship analysis additionally suffer from at least one of two limitations. Either they
focus on authorship analysis while using traditional, longer texts, such as articles or blog
posts, or they make use of custom datasets (Neal et al., 2017). The latter are sometimes
described as a great challenge in the field of authorship analysis, making replication as
all well verification of results difficult (Halvani et al., 2016). The former implies that
past studies not focusing on online short text messages are looking at a fundamentally
different research problem compared to Twitter texts. At the same time, most automated
authorship analysis research acknowledges the fact that use cases for these tools will
consist of attributing micro-blog texts to an author (see, for example, Narayanan et al.,
2012; Rocha et al., 2017; Spitters et al., 2016). Consequently, the dataset used is from
that platform, as its prevalence makes it especially relevant. Moreover, it reflects the
text data, in style and characteristics commonly found for chat messages. Especially in
terms of length, it is also similar to text data generated during studies and experiments
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within the social sciences.

Table 5.1: Statistics of the Dataset

Avg instance length Avg tweet length Avg no. tweets
per instance

Target age gender age gender age gender
No. of Characters No. of Authors No. chars No. chars No. chars No. chars

100

50 160.30 162.94 109.58 111.92 1.46 1.46
150 160.52 162.37 107.38 112.94 1.49 1.44
500 160.78 161.63 109.21 111.86 1.47 1.44
1000 160.07 160.99 109.28 111.84 1.46 1.44

250

50 313.16 315.73 109.05 112.02 2.87 2.82
150 313.25 315.58 107.43 112.84 2.92 2.80
500 313.26 314.66 109.09 111.67 2.87 2.82
1000 313.30 314.34 109.18 111.84 2.87 2.81

500

50 565.60 568.76 109.12 111.87 5.18 5.08
150 565.89 568.71 107.48 112.84 5.27 5.04
500 566.13 567.54 109.15 111.70 5.19 5.08
1000 566.10 567.38 109.17 111.85 5.19 5.07

Most studies focusing on short-text online media such as Twitter use different datasets.
This is due to the fact that the user agreement for the API of this particular platform does
not generally give permission to publish a scraped dataset online (Theophilo et al., 2019).
At this point in time, we know of three public datasets: Twisty (Verhoeven et al., 2016),
ISOT (Brocardo et al., 2015), and PAN (Stamatatos et al., 2015), a yearly challenge
tackling different aspects of authorship analysis. The Twisty dataset includes a multitude
of languages, making it unusable for this task as it was shown that language has major
impact on the results (Halvani et al., 2016). Another problem mentioned before concerns
the high number of troll profiles, as well as potential alias accounts (Varol et al., 2017)
in an arbitrarily captured dataset. This is sometimes referred to as the ground truth
problem (Narayanan et al., 2012). As the research question is focused on characteristics
of individual people, this is particularly problematic. For this reason, the ISOT dataset,
too, is unusable, as neither the issue of troll profiles nor the problem of double accounts
for a single user can be addressed.

To overcome this, a special version of the PAN dataset focusing on profiling celebrities
(PAN, 2019) is used. For this dataset it can at least be established that the accounts
relate to a real, individual human. Naturally, there may be new limitations, e.g., it may
not be guaranteed that celebrities always write their own posts. However, Twitter is
more and more considered to be a medium offering the possibility of interacting directly
with followers by circumventing the filter, interpretation, and comments of traditional
media (thus enabling ”authenticity”) (J.-H. Schmidt, 2014). Consequently, the problem
of other people messaging instead of the celebrities themselves is considered minor by the
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authors of the dataset when compared to the problem of having unknown fake profiles.

Feature Engineering

In order to use text input for machine learning models, the text has to be transformed
into a numerical representation. The chosen representation we call feature type here.
Within one feature type, there may be many features. For an example of two words, each
may be mapped to a number, so there would be two features.
For automated authorship analysis, one may in principle choose from or combine a
wide range of possible features for prediction. The natural approach would be to use
word-based features. However, this comes with the limitation that rather than finding
features predictive of a certain gender or age, it is more likely that the topic is a latent
variable driving the result. As our goal is to control most of the information from outside
the feature itself, e.g., topic or other context, the selection has to be more nuanced. This
brings us to character-based features. Character n-grams, are based on concatenating
characters; in the form of 1-grams they equal uni-grams, i.e., single characters. They
are maybe one of the most commonly used feature sets within the literature (Rocha
et al., 2017). Spitters et al. (2016) find in their exhaustive review of the literature that
most studies employ them in one form or another. This is due to the fact that such
character n-grams were shown in multiple studies to perform robustly (Kešelj et al., 2003;
Stamatatos, 2009; Peng et al., 2003). Some authors like Forstall and Scheirer (2010)
link this performance to the fact that n-grams are very closely related to pronunciation.
Moreover, due to the fact that the n-gram length may be reduced, many outside influences
which introduce context in terms of topics, text type, and even language as a whole
may be removed. For example, the cross-domain analysis by Stamatatos (2013) shows
that, compared to traditional word-based features, character n-grams outperform them
in terms of cross-domain stability. N-grams were also shown to capture many different
features such as punctuation or spelling mistakes. Regarding the length of n-grams,
it must be noted that for English, those with a length of three and above are shown
to capture content again partially, thus becoming topic-dependent (Narayanan et al.,
2012; Spitters et al., 2016). Therefore, not only is the type of feature important when
controlling for the relevance of topic and content but also the n-grams themselves are
crucial. As such, we have a layered approach, controlling for the feature type, while also
varying the n-grams employed within one feature type. In the following, we construct a
hierarchy ranging from the type of features mostly removed from content to the ones
which partially capture content. In between, we can place those features which are still
related to style and structure, but which necessitate a certain amount of text. In terms
of the actual feature types as well as range of the n-grams, this study mainly follows
Custódio and Paraboni (2021) with the numerical features taken from Huang et al. (2020).
It gives us the following types as input in ascending order, when compared on their
context-dependency.
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Text Distortion. Symbols within text are usually disregarded for the standard approaches
of text-based models. However, past research has shown that these features serve as
valuable information in the context of authorship analysis (Stamatatos, 2017). For this
feature type, all a-z characters are mapped to “*”, which only leaves punctuation and
other markers. We call this type of feature DIST and apply n-grams ∈ [2,5]

Character. Character n-grams were shown to capture many idiosyncrasies present in
text, while yielding a stable performance (Stamatatos, 2013). Moreover, the amount of
context present in the n-grams can easily be adjusted by their range (Rocha et al., 2017).
Thus, we include them in the range of [2,5], referring to them as CHAR.

Unprocessed Text. In essence, this feature type is a combination of text distortion
and character n-grams. As input, the unprocessed text, including all special characters
and punctuation, is transformed into n-grams. The n-gram range is also [2,5]. This
feature type we refer to as ASIS.

Part-of-Speech. Part-of-Speech tags capture linguistic style patters and general infor-
mation such as grammatical classes, e.g. “noun” or “verb”. We tag the text by employing
the SpaCy2 tagger. This feature type is called POS and the n-gram range is [1,3].

Language-specific morphological features. Within a language, one is also able to find
more fine-grained features related to morphology. Such features concern, for example,
the gender of a word, tenses and others. To extract these, the tags generated by SpaCy
on its TAG level are used. Following this, we call this feature type TAG and employ the
n-gram range [1,3].

Syntactic Dependencies. This type of feature captures structural information, e.g., the
use of the passive over the active voice. The dependencies are generated using SpaCy’s
dependency parser. We refer to it as DEP and the n-gram range is [1,3] as well.

Lemma. Lemmas are essentially word-like features, although the words are reduced to
a common, lowercase form. For example, ”I’m” would be converted to ”i” and ”am”,
while ”played” and ”playing” would both be mapped onto ”play”. In such a way, words
are captured but not their transformations. We call this feature LEMMA and include it
with [1,2]-grams.

Words. This feature type is created by forming the n-grams directly from the words
without any preprocessing besides lowercasing, and removing all characters that are not
within the A-Z range. Again, we employ [1,2]-grams, the feature type is called WORD.

2https://spacy.io



5.2. EXPERIMENTAL DESIGN AND DATA 105

Numerical Features. Huang et al. (2020) additionally suggest numerical features de-
scribing the content and the form of the tweet. The feature type NUM is thus comprised
of the following attributes: average tweet length, number of URLs, number of dates and
times, number of emoticons, number of emojis, as well as polarity and subjectivity.

Preprocessing, Models, and Targets. For the preprocessing, we apply the specific ones
outlined above to each feature type. In general, emojis and emoticons were always
counted as one singular feature and marked by an < EMOJ I > or < EMOT ICON >
token in the beginning and end. Furthermore, we replaced the unicode string by the
textual description using the package demoji.3 For all text-based features, we apply count
vectorization and tf-idf scaling. The individual features were kept when they appeared in
more than 1% of the samples. For the feature type NUM, we apply scaling and centering.
For the model, there is the option of linear and non-linear models. While neuronal nets
and transfer-learning models gain huge popularity, for our case of authorship analysis, it
turns out that simple linear models regularly outperform the more complex ones (Rocha
et al., 2017; Custódio and Paraboni, 2021). Moreover, as we also address the social
sciences as well as the law community, interpretability and transparency are key aspects.
Thus, we focus here on well-researched models which also enable a mathematically global
interpretation, as well as attribution of outcome to individual features of the input. While
there is a wide range of models employed, the most common ones are a SVM, a logistic
classifier, and Naive Bayes Classifiers (Rocha et al., 2017). We test all three of them
and use the overall best-performing one for the evaluation. For the SVM, the analysis
is limited to a linear kernel as only this type enables us to interpret the weight matrix
directly in terms of feature relevance. As target, we selected two author characteristics
of high relevance for the social sciences, namely age and gender.

Experimental Setup

In order to assess how different combinations of feature types impact the outcome, we
use three different approaches to feed them into a classifier.

1. Baseline: Here, the model gets only one feature type (although with varying n-gram
ranges). Thus, it enables us to compare the performance of individual feature types
against one another.

2. Cumulated: For this approach, we feed the classifier combinations of feature types
such that we combine them in an ascending order in terms of context-content.

3. Stacked: Here, too, we use different feature types as input. However, we first make
predictions using individual feature types (as in the baseline setup) and then apply
a second classifier, a logistic one, on top, using the predictions as input to predict
the target again. That, in essence, is an ensemble approach (Dietterich, 2000) and
a variation of the successful DynAA model by Custódio and Paraboni (2021).

3https://pypi.org/project/demoji/

https://pypi.org/project/demoji/
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To assess the stability in performance as well as relevance, we compare the different
feature types we introduce a small, controlled variation on the input data. In order to
simulate (possible) shifting variations in the patterns of feature use, we vary the number of
authors within the dataset. To that end, we construct four subsets from our dataset. Each
subset is comprised of a different number of authors (50, 150, 500, 1000). Furthermore,
the sets are constructed in such a way that all authors present in the smaller set are also
present in all the larger ones. That means the 50 authors from the smallest set are part of
all three larger sets as well. We chose that approach in order to increase the number, and
thus the potential variation, while at the same time keeping prior information. Moreover,
the authors are balanced in gender as well as in age. That is necessary so that the model
has no advantage by focusing on one class to the detriment of others. That gives us a
cleaner result when analyzing the impact of the individual feature types as well as n-grams.

We conduct the whole experiment three times, varying the input length of the indi-
vidual text instances each time. As previous research has shown that text length greatly
influences the outcome (Custódio and Paraboni, 2021), we construct input instances
of different minimum lengths. We do so by concatenating different tweets by the same
author together until the minimum length is reached. No n-grams are constructed in such
a way that they would contain information from two different tweets. Naturally, when
we increase the minimum length, the number of individual training instances declines, as
more tweets are needed to form one training instance. As minimum lengths we use 150,
250, and 500 characters. The summary statistics for the dataset may be found in Table 5.1.

In order to have no spillover of information between evaluation and training, we split
the dataset into two subsets, training and testing. All training was done on the training
dataset, while all evaluations shown here are done on the hold-out test set. For the
stacked approach, we split the test again, this time into a validation and test set. Here,
the first layer of the model is trained with the training set, which is the same for all
classifiers. The second layer is then trained on the validation set. Finally the evaluations
are conducted on the hold-out test set. Due to this setup, all classifiers are trained on
exactly the same first-layer input in order to increase comparability.

Evaluation Measures

We seek to answer the question of stability in predictions as well as stability on the level
of features. For the former, we test the predictive power of the classifier for both targets
on different inputs and sets varying in the number of authors. Our analysis compares
different feature types and their performance against each other. Their difference lies
in what they capture, especially in terms of the amount of context. We also analyze by
how much their inclusion improves the model’s performance. As the evaluation metric of
choice, we use the macro F1-score. The score is an equally weighted mean of precision4

4TruePosi t ives ∗ (Predic tedPosi t ives)−1.
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and recall5. Moreover, on a balanced dataset, the score is nearly equal to the accuracy.
The score is bounded between 0 and 1, with 1 being the optimum.
Furthermore, we analyze the performance on the author level. That helps us to test
whether the models make systematic errors for specific authors. Such is indeed of impor-
tance, as it tells us something about how patterns, found to be predictive for specific
target categories, may systematically disadvantage some individuals compared to others.
For that part of the analysis, we look at author level accuracy as well as the stability in
classifications patterns. For the latter, we evaluate confusion matrices. The results for
that analysis may be found in Section 5.3.

The second, central aspect in this study is that of stability on the feature level. The
question we try to answer here is by which degree stays the relevance assigned to single
features constant, when the classifier input-set used for training is slightly changed. The
change introduced here is the increase in the number of authors. What we want to assess
is by how much the relevance of individual features shifts when such a change occurs.
We developed the following approach: First, we extract the weight matrix of the two
relevant models. When all input features are scaled to the same range as well as centered,
the matrix contains the information about the relative relevance of each feature when
predicting the outcome. As we are using linear models, these weights are global, i.e., the
relevance assigned to a feature is the same no matter which individual instance is assessed.

To assess the potential shift in relevance, we rank the individual features in terms of
weights assigned. In a second step, we then calculate Spearman’s ρ in order to assess by
how much the relevance placed on individual input features shifts when introducing a
small variation in the underlying data. The reason why this works is because the ranking
of a feature directly reflects the weight the classifier places on it. Within our linear
models, this is a direct mapping from its relevance to the prediction result. Thus, when
this coefficient is 1, the distribution of relevance across features is completely identical;
if it were -1, it would be completely inverse. Consequently, we say the stability is high
for values going towards 1, while values close to 0 imply that there is no recognizable
relationship, and thus very high instability. Moreover, we selected an ordinal measure, as
it allows for more latitude. While the absolute values of the coefficients might change
(and indeed have to when more features are included), their ordering may still be constant.
Consequently, their relevance when compared to each other can still be stable. That
means that any stability found here is to be considered the upper bound.

However, when increasing the number of authors, the underlying feature set might
also increase and thus the two matrices do not have the same dimensionality anymore.
To tackle that problem, we follow two approaches: The first is to expand the smaller
matrix by adding columns of∞ for the missing features. This ensures, that these will
always be assigned the highest possible rank in the smaller matrix (the rankings are
sorted in ascending order during comparison). We call this the extended Spearman

5TruePosi t ives ∗ Posi t ives−1.
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correlation and it enables us to assess the absolute feature relevance ranking. The second
option is to assess only the features present in both matrices, and therefore to reduce
the dimensionality of the larger one. This ensures that we assess relative relevance, but
ignore that additional features might have great influence on the outcome. That we
refer to as the reduced Spearman correlation. The result for the analysis of the feature
relevance and its stability may be found in Section 5.4.

5.3 Stability of Predictions

The results were computed on HPC system, making use of 72 cores with 256GB of RAM.6
Of our classifiers, the SVM outperformed the logistic classifier as well as the Naive Bayes
Classifier as a first-layer model. Thus, for all results a SVM was used as the first-layer
model. For the stacked model, a logistic classifier was used for the second layer to stay
close to the setup by Custódio and Paraboni (2021). Overall, per target, the result of the
experimental setup is comprised of 1200 SVMs as well stacked models, i.e., 2400 models
in total for both targets. To enable a concise analysis, we opted to showcase the results
for the text set for which individual inputs have a length of 500 characters. The results
for the other text sets may be found in the Appendix.

Aggregate Overview for Feature-Stability

First, we will look at the aggregated results for our experiments. In Figure 5.1, we
see the F1-scores for the classifiers trained on the dataset with a minimum character
length of 500 per instance. As in previous results, the score declines markedly in the
number of authors. However, especially the models trained either with different feature
types as input (labeled ”cumulated”) or those trained similarly to the DynAA model
by Custódio and Paraboni (2021) (labeled ”stacked”) perform consistently. Moreover,
overall the results are in line with previous top-performing results on the PAN2019
dataset (Wiegmann et al., 2019). The baseline models trained on feature sets consisting
of singular types have a high variance in performance. That is not surprising, when
we look at individual models, each trained on one type of features. As can be seen in
Table 5.2 and Table 5.3, the performance is on the upper end for the feature types such as
CHAR with an F1CHAR−5

50 up to 0.88/0.82 and on the lower end for feature types such as
NUM with an F1NU M

50 of 0.59/0.29 for the targets gender/age. Consequently, the feature
types used, as well as their combinations, not only have a great impact on the outcome,
but some features do encode little or next to no information for our classification task.
Hence, we exclude those from our further analysis. The same findings apply to the
models trained on instances with a minimum length of 100 characters and 250 characters
respectively (Figure E.1 and Figure E.3 in the Appendix). Having comparable results
in terms of accuracy and F1-score to what is found in the literature for this dataset
serves as a basis for our following evaluation. A high performance lends credence to

6MPCDF HPC System "Raven".

https://docs.mpcdf.mpg.de/doc/computing/raven-user-guide.html
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(a) Results for target gender.
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(b) Results for target age.

Notes: The figure shows boxplots for the F1-score of all models estimated for a given combination of feature types used and
way of input, i.e., baseline, cumulated, or stacked.

Figure 5.1: F1-score input instance length of 500 characters.

the assumption that our classifier is indeed working well and extracting the relevant
information from the input data. In reverse, we may therefore assume that the features
used are indeed those holding the relevant information for the respective task. Thus, our
approach of extracting the feature relevance via the associated weights is sensible.
Figure 5.2 shows the results for the extended distortion calculated via Spearman’s Rho.
The comparison is always done between two models, varying in the amount of authors
the respective model is trained on. In the comparison, model 1 is trained on the lower
number of authors (e.g., 50) whereas model 2 is trained on the next-highest number of
authors (e.g., 150). Overall, we thus have 3 comparisons in the number of authors.
For target gender, on average, and irrespective of the model, we find only little correlation
when increasing the number of authors from 50 to 150 (0.05< ρ < 0.20). For the others,
when increasing the number of authors, correlation goes down to a maximum of 0.05. At
the same time, we show that the performance in terms of f1-score remains relatively stable.
This implies that the stability in performance comes at the expense of the stability in
feature relevance. When increasing the number of authors, different features are therefore
predictive in terms of the target. These findings do not generally imply that the previous
features lose their relevance. They do however mean that, when ordering all features
in terms of the associated relevance, the ordering changes fundamentally. That fact is
reflected in Spearman’s Rho. Regardless by how much we increase the number of authors,
on average the correlation lies between 5% and 15% for all models. That is interesting,
as the number of features additionally available when increasing the number of authors
is never above 30%. Thus, it cannot be that mainly those additional features are the
ones being used for predictions, as the correlation coefficient would then still be higher
than what we find. Rather, it seems to be the case that the model weighs the previous
and new features in such a way that the new ordering imposed differs completely from



110 CHAPTER 5. SYSTEMATIC ERRORS AND STABILITY

the previous one.
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(a) Results for target gender.

50|150 150|500 500|1000
No. of Authors

0.05

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e 

Sp
ea

rm
an

's 
Rh

o 
(e

xt
.)

Feature Types & Model
(all, baseline)
(all, cumulated)
(all, stacked)
(DIST-CHAR-WORD-LEMMA, cumulated)
(DIST-CHAR-WORD-LEMMA, stacked)

(b) Results for target age.

Notes: The figure shows the boxplots for the extended ρ of all models estimated for a given combination of feature types used
and way of input, i.e., baseline, cumulated, or stacked.

Figure 5.2: Extended Spearman correlation input instance length of 500 characters.

Similar results are found for the target age. However, here the decline in correlation is
even more unidirectional when increasing the number of authors (an increase in authors
yields a decline in correlation).

The only outlier to these results is the baseline model trained on individual feature
types. While on average the correlation is the same as for the models on combinations of
feature types, the outliers show a very high positive correlation (up to ρNU M

150|50 : 0.42, see
Table 5.3). While that may look like it stands in opposition to the other results, their low
predictive power helps to explain this phenomenon. Table 5.3 shows that the F1-score
for the prediction of age is only at F1NU M

150 : 0.25 with the random guess benchmark being
0.2. Thus, while the feature relevance remains stable for some features, their predictive
power is negligible. Thus, the relevance assigned to these features may simply be random
noise without any signal. As such, when looking at the average feature stability over all
feature type sets, the conclusion is that the features are, on average, not stable and the
distortion of relevance when increasing the number of authors in a dataset is already
high for a low number of authors (from 50 to 150). These findings hold regardless of the
character length of the input text, as Figure E.2 and Figure E.4 in the Appendix show.

Author-Level Analysis

For the author-level analysis, we look at the results gained by feeding the classifier the full
set of feature types in a cumulated way. That choice assures that our results are predicted
making use of the full information. Furthermore, cumulating the input yields the best
results overall (compare section E.2). In that way, the analysis is done using the best
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possible set. However, the findings hold for any of the feature-type approach combinations.

Figure 5.3a shows the error at the author level when predicting gender. We see, that
overall we have very few authors for which the accuracy is lower than the random-guess
accuracy (0.5), i.e, for which our prediction error is higher than 0.5. We see that the
relative number of authors for which the classifier performs below the random-guess
threshold stays stable, when compared to the number of authors in the set. Consequently,
the relative overall-classification performance at the author level stays stable, even when
increasing the the number of authors in the set. However, there is a small but stable
proportion of authors for which the classifier is systematically unable to predict the target
correctly. When looking at the distribution of the errors across genders, we find that a
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(a) Author-level errors for target gender.
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(b) Author-level errors for target age.

Notes: The figure shows the results when using the full feature set as cumulated input. Each author is a unique instance on the
x-axis. The proportion per author is then shown as the y-value. The authors are sorted by their appearance in the respective
subsets (i.e., 50, 150, 500, 1000) and according to the proportion of errors within those subsets. The result per author shows
the result over all subsets.

Figure 5.3: Author-level results for the full feature set with an input instance length of 500
characters.

higher number of those authors for whom our classifier makes systematic errors seems
to be female. On the high level, we find that the performance remains relatively stable
when we increase the number of authors as depicted in Figure 5.4a. However, as soon as
we reach the two upper-most brackets of authors, we see that the result for male authors
remains relatively stable, while the outcome for female authors declines markedly from
accFemale

150 : 0.82 to accFemale
1000 : 0.69. For the same sets, the mostly stable accuracy for

males declines only from accMale
150 : 0.83 to accMale

1000 : 0.80. Looking closer, we can see that
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that drop for females corresponds to an increase in the number of authors from 150 to 500.
The implication is thus that we add female authors who are systematically difficult to
classify. Bringing this together with our observations from before, we include only those
authors in Figure 5.4b for whom the classifier performs worse than the random-guess
threshold. Here, we find some support for our previous assumption. When looking at
the errors we make for female authors, we see that, starting from 500 authors onward,
the number of those below the random-guess threshold jumps up.

While that seems to point to the fact that apparently female authors are difficult to
classify, the true reason may be slightly more nuanced. When looking at the male authors
in Figure 5.4b, we see that, while obviously low in absolute numbers, the pattern is
inverse for the datsets comprised of 50 and 150 authors. The underlying driver, however,
does not seem to be the gender per se, but rather the lack of stability in regards to
feature importance. Per design, we limited the amount of features for each feature
type to those appearing at least in 1% of all training instances. Hence, the number of
features for word-based feature types increases only sublinearly relative to the number of
authors. Thus, the amount of author-individual fitting the classifier is able to achieve
declines. Indeed, that is the very essence of reducing overfitting. However, as shown
in Figure 5.2a, the stability of feature importance is low. Taken together, that simply
means that systematic patterns within a limited number of features for authors of the
same gender decline when the number of authors increases, i.e., the patterns seem to be
merely correlational – they start to break down or become unstable and more complex.
The underlying reason is that additional authors introduce new features, while using the
old features in a different way. As the classifier is only able to estimate one weight per
feature and the number of additional features is limited, the ability to represent all the
necessary information declines.

For the target age, we also find only comparatively few authors with an average
accuracy below the random-guess threshold of 0.2 (see Figure 5.3b). When comparing it
to the results of the target gender, it becomes clear that the number of those below the
threshold jumps up significantly when the number of authors increases from 150 to 500.
Moreover, it seems to be the case that authors of the intermediate age brackets (1975
and 1985) seem to be more difficult to classify. Overall, the patterns seem to be less
pronounced when compared to the ones found for gender. Looking at the category-wise
analysis presented in Figure 5.5a, we find that, overall there are only few pronounced
patterns of confusion. As already suggested by Figure 5.3b, only the intermediate age
brackets have a systematic pattern. Especially for the datasets consisting of 500 and 100
authors, the confusion between the true age bracket 1985 and the youngest age bracket
1995 is pronounced. Here, only 38% of the instances are classified correctly as 1985, while
28% are confused as 1995. While here the interpretation might be that the distinction
between the youngest authors might be difficult, the results of 1975, the intermediate
category, make it more difficult. We see that the confusion with the category 1963 as well
as 1995 is of similar size. It might be that, instead of predicting only age, the classifier
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Notes: The figure shows confusion matrices for the results produced by using the full feature set as cumulated input on an input
instance length of 500 Characters. The matrix for the respective set of authors is calculated by looking at the respective set in
isolation.

Figure 5.4: Confusion matrices for target gender.

picks up on a proxy in the way people express themselves. While certainly dependent on
age in terms of punctuation for older authors (Flekova et al., 2016) as well as on stability
of language use in younger authors (De Jonge and Kemp, 2012), the way of expression
also depends on the groups to which we belong (Chan and Fyshe, 2018). Consequently,
some of those authors confused might simply be part of peer groups where the mode of
expression is reflective of younger age brackets. As a consequence, they get misclassified.
These relatively distinctive patterns for the oldest and youngest authors are also most
likely the reason why the prediction accuracy for those is markedly high, even for the set
with the highest number of authors.

When looking only at those authors below the random-guess threshold, as depicted in
Figure 5.5b, we find that there are only two age brackets for which we have a systematic
and pronounced confusion. For the set with 150 authors, this is the age bracket 1947,
which is most often confused with the two adjacent age brackets 1963 and 1975. For the
set with 1000 authors, the age bracket 1985 is mostly confused with belonging either to
the youngest or the oldest age bracket. As that bracket is also overall the most confused
one, it stands to reason that the variance in expression is the highest. Consequently,
there is no pronounced pattern in the features on which the classifier is able to pick up.
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Notes: The figure shows confusion matrices for the results produced by using the full feature set as cumulated input on an input
instance length of 500 Characters. The matrix for the respective set of authors is calculated by looking at the respective set in
isolation.

Figure 5.5: Confusion matrices for target age.

5.4 Robustness of Feature-Relevance

In order to assess how the aggregate results from the previous section hold, when looking
at individual feature types as well as different classifier approaches, this section presents
a more fine-grained insight. In this section, we focus on the input in terms of feature
types and n-grams. We analyze these aspects with a special look on the stability of the
feature relevance.

Baseline

First, we now take a look at the results in feature set 1, i.e., the results gained when
using each feature type individually to predict the target. Table 5.2 and Table 5.3 show
the experimental results for targets gender and age, respectively. Each row shows the
result for a feature type and the corresponding n-grams. The feature types themselves
are sorted in an ascending order such that feature types in lower rows capture more
context. The type CHAR (characters), for example, captures, in principle, less contextual
information (such as topic or structural information) compared to, for example, word-
based n-grams (Rocha et al., 2017). Naturally, when the n-gram window is increased,
e.g., for character-based features from 2 to 4, the character n-grams also start to capture
contextual information. Consequently, the n-gram combinations within the individual
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feature types are also sorted in an ascending fashion.

Table 5.2: F1-scores & stability of feature relevance for the prediction of gender on a minimal
input instance length of 500 characters using a feature-wise model on the individual feature
types

Target Gender
Min. No. of Characters 500
No. of Authors 50 150 500 1000

Score F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

Feature types N-gram ranges

DIST

2 0.6322 – 0.3481 0.0858 0.3680 0.1528 0.5403 0.2834
2-3 0.6477 – 0.3788 0.1535 0.4365 0.1350 0.5173 0.1451
2-3-4 0.6624 – 0.6056 0.1185 0.5462 0.0893 0.5432 0.0425
2-3-4-5 0.6789 – 0.6402 0.0904 0.5385 0.0491 0.4858 0.0457

CHAR

2 0.8080 – 0.7580 0.2757 0.6882 0.0903 0.6719 0.0932
2-3 0.8690 – 0.8151 0.1739 0.7638 0.0277 0.7260 0.0251
2-3-4 0.8702 – 0.8411 0.1328 0.7746 0.0174 0.7362 0.0364
2-3-4-5 0.8847 – 0.8094 0.0999 0.7756 0.0131 0.7411 0.0215

ASIS

2 0.8357 – 0.7995 0.2720 0.7184 0.0573 0.6916 0.0588
2-3 0.8868 – 0.8436 0.1492 0.7750 0.0155 0.7341 0.0213
2-3-4 0.9004 – 0.8662 0.1229 0.7885 0.0114 0.7493 0.0150
2-3-4-5 0.9040 – 0.8158 0.1025 0.7882 0.0207 0.7488 0.0153

POS
1 0.5907 – 0.5847 0.2456 0.5775 0.3123 0.5728 0.1982
1-2 0.6303 – 0.6403 0.0272 0.6061 -0.1515 0.5985 0.2639
1-2-3 0.6583 – 0.6579 -0.0449 0.6174 -0.0222 0.6127 0.0582

TAG
1 0.6402 – 0.5700 -0.0086 0.5892 -0.1640 0.5771 0.0043
1-2 0.6982 – 0.6704 0.1546 0.6265 0.0233 0.6140 0.1140
1-2-3 0.6980 – 0.6828 0.0514 0.6230 0.0017 0.6278 0.1243

DEP
1 0.6195 – 0.5997 0.0103 0.5652 -0.0425 0.5655 0.0244
1-2 0.6590 – 0.6277 0.1047 0.5963 -0.1028 0.5926 -0.0255
1-2-3 0.6704 – 0.6550 -0.0349 0.6008 0.0236 0.6060 0.0737

LEMMA
1 0.7786 – 0.7679 -0.0374 0.7096 0.0221 0.6869 0.0406
1-2 0.8007 – 0.7816 -0.0143 0.7144 0.0099 0.6925 0.0467

WORD
1 0.7588 – 0.7408 -0.0304 0.6940 0.0136 0.6782 0.0480
1-2 0.7653 – 0.7535 -0.0003 0.6981 0.0560 0.6836 0.0304

NUM 1 0.5912 – 0.5635 0.2500 0.5229 0.0833 0.4791 0.0667

Looking at results for the target gender, we first find that the most predictive feature
types are those most closely related to the words of the text, but not necessarily the
structure. That can be seen from the fact that structure-capturing feature types, such as
POS, TAG, and DEP, show low predictive power no matter what the number of authors
within the subset is. Moreover, CHAR-2-grams already perform well (F1CHAR−2

50 : 0.80)
on the small dataset comprised of 50 authors. However, when we increase the num-
ber of authors, the performance declines markedly (F1CHAR−2

1000 : 0.67), especially when
compared to CHAR-(2,5)-grams (F1CHAR−5

1000 : 0.741), which are close to the top perfor-
mance (F1ASIS−5

1000 : 0.748). The same pattern, although on a lower overall performance
level, is visible for the text distortion features DIST capturing punctuation and other
stylistic markers. For lower n-gram sizes, the performance is only negligibly above or
below the random guess threshold, while for higher n-grams the performance is higher
(F1DIST−5

50 : 0.67), but then decreases again in the number of authors. Consequently,
the results show that there seems little cause to think that there are patterns in the
style of authors related to gender. On the other side, CHAR-2-grams have a reliable
performance (0.67< F1CHAR−2 < 0.80); increasing the n-gram window only by 1 increases
performance even more. Consequently, it can be assumed that the there seems to be
a discernible pattern related to gender within the character combinations used. The
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underlying assumption would be that certain topics might be reflected by the use of
similar words or that certain synonyms are preferred by one group over the other. We
can compare this with the result for the WORD-grams. Here we see that, while we
the performance is high, it is still worse when compared to CHAR-(2,5)-grams. The
latter would also capture words up to five characters long. However, if that overlap is
the sole driver of performance, then WORD-grams should not be outperformed. As
such, we can conclude that there is a discernible pattern related to gender in low-context
CHAR-n-grams. In terms of the stability of the feature relevance, the results are sobering.
As in the aggregate before, the correlation tends towards zero when increasing the number
of authors. Besides that, in some cases the correlation even flips signs. That implies
features which were useful for predicting group A before are now either relevant for neither
group or relevant for predicting group B (see, for example, Table 5.2, ρPOS−2

500 : −0.15).
While mostly small, all correlation coefficients are significant at the 1%-level.
When looking at age, the results shown in Table 5.3 reflect the overall findings for gender.
Text distortion alone, such as punctuation reflected in the features of type DIST, does
hold some, but not the majority of the information relevant to the prediction of age.
That is evident from the stark decline towards random-guess accuracy, especially for
low-level n-grams.

Table 5.3: F1-scores & stability of feature relevance for the prediction of age on a minimal
input instance length of 500 characters using a feature-wise model on the individual feature
types

Target Age
Min. No. of Characters 500
No. of Authors 50 150 500 1000

Score F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

Feature types N-gram ranges

DIST

2 0.4797 – 0.2249 0.1872 0.2808 0.0083 0.2196 0.0192
2-3 0.4809 – 0.3711 0.1142 0.2633 0.0275 0.2736 0.0478
2-3-4 0.5294 – 0.4482 0.0268 0.2454 0.0502 0.2921 0.0099
2-3-4-5 0.5384 – 0.4088 0.0219 0.2401 0.0371 0.2823 0.0154

CHAR

2 0.7257 – 0.6250 0.2159 0.4761 0.0197 0.4033 0.0058
2-3 0.8024 – 0.7319 0.1388 0.5696 0.0014 0.5070 -0.0014
2-3-4 0.8274 – 0.7579 0.1140 0.5938 0.0124 0.5346 0.0123
2-3-4-5 0.8291 – 0.7492 0.0916 0.6114 0.0075 0.5407 0.0068

ASIS

2 0.7811 – 0.6776 0.2031 0.5142 0.0049 0.4426 -0.0024
2-3 0.8546 – 0.7646 0.1386 0.6048 0.0027 0.5346 0.0025
2-3-4 0.8687 – 0.7836 0.1080 0.6189 0.0032 0.5512 0.0069
2-3-4-5 0.8542 – 0.7890 0.0925 0.6174 0.0023 0.5523 0.0011

POS
1 0.3529 – 0.2723 0.1807 0.0964 0.1046 0.1010 0.1923
1-2 0.4794 – 0.3512 0.0762 0.2269 -0.0211 0.2283 0.0116
1-2-3 0.5248 – 0.4124 0.0611 0.2767 0.0236 0.2491 0.0455

TAG
1 0.3934 – 0.3244 0.0886 0.1338 0.0711 0.1690 -0.0680
1-2 0.5432 – 0.4479 0.0178 0.2755 -0.0109 0.2670 0.0441
1-2-3 0.5878 – 0.4859 0.0825 0.3811 0.0386 0.3110 0.0474

DEP
1 0.3560 – 0.2418 0.0971 0.1000 0.0466 0.2387 0.0411
1-2 0.5057 – 0.3820 0.0559 0.2523 0.0155 0.2358 -0.0100
1-2-3 0.5369 – 0.4029 0.0751 0.3292 -0.0095 0.2873 -0.0020

LEMMA
1 0.6668 – 0.5763 -0.0219 0.4091 0.0128 0.3339 0.0078
1-2 0.6920 – 0.5881 0.0010 0.4424 0.0085 0.3781 -0.0058

WORD
1 0.6282 – 0.5416 -0.0585 0.3867 0.0428 0.3439 0.0151
1-2 0.6437 – 0.5482 -0.0112 0.4053 0.0013 0.3294 0.0118

NUM 1 0.2995 – 0.2542 0.4267 0.2386 -0.0933 0.2194 0.3033

When combined with CHAR, then especially higher-order n-grams (which is reflected
in the feature type ASIS) hold the most information about an author’s age. That seems
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to be in line with findings linking age to a higher adherence to linguistic rules, even in an
online environment (De Jonge and Kemp, 2012; Hovy and Søgaard, 2015). However, the
content of the tweets also seems to set the age categories apart, as illustrated by the fact
that TAG alone has a relatively high predictive power even for the dataset comprised of
1000 authors (F1: 0.31). The same holds true for LEMMA, implying that age groups
are also set apart by the use of one set of words over another. Here again, the feature
stability is low, with a ρ ∈ [0,0.05].

Thus, we can conclude that, for singular feature sets, the model is able to extract
information from the features, especially those with higher context, as evident from the
increase in predictive performance when the n-gram range is increased. However, the
relevant information is not stable in the number of authors, which means that additional
authors introduce a wider variation, that needs to be separated differently than the
smaller range. As the number of characters is limited overall (and thus the number of
features in the lower n-gram range), that automatically implies that the content and
therefore the relevant features change. That seems to lead to an overall change in the
way individual features are predictive. Thus, the rank correlation is low.

Table 5.4: F1-scores & stability of feature relevance for the prediction of gender on a minimal
input instance length of 500 characters using a cumulated model on the reduced feature set
(DIST, CHAR, LEMMA, WORD)

Target Gender
Min. No. of Characters 500
No. of Authors 50 150 500 1000

Score F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

Feature types N-gram ranges

DIST_CHAR

2 0.8230 – 0.7868 0.0911 0.7058 0.0598 0.6769 0.0998
2-3 0.8802 – 0.8392 0.0903 0.7696 0.0331 0.7311 0.0178
2-3-4 0.8712 – 0.8494 0.0990 0.7852 0.0445 0.7392 0.0454
2-3-4-5 0.8951 – 0.8583 0.0829 0.7650 0.0455 0.7429 0.0461

DIST_CHAR_ASIS

2 0.8882 – 0.8623 0.0815 0.7441 0.0306 0.7494 0.0118
2-3 0.8850 – 0.8725 0.0931 0.8036 0.0462 0.7602 0.0295
2-3-4 0.8764 – 0.8733 0.0789 0.7641 0.0380 0.7675 0.0026
2-3-4-5 0.8942 – 0.8729 0.0829 0.7626 0.0459 0.7673 0.0281

DIST_CHAR_ASIS_LEMMA
1 0.8925 – 0.8697 0.0935 0.7765 0.0201 0.7706 0.0152
1-2 0.8779 – 0.8744 0.0829 0.7740 0.0428 0.7703 0.0084

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8797 – 0.8712 0.0632 0.8034 0.0388 0.7688 -0.0029
1-2 0.8943 – 0.8702 0.0526 0.7702 0.0268 0.7723 0.0094

Cumulated

The previous analysis has shown that some feature types, such as POS, TAG, DEP, and
NUM do hold little relevant information. We therefore constructed a subset of feature
types which excludes them. That subset includes the types ASIS, CHAR, LEMMA, and
WORD. Compared to the previous analysis, we now give the model the possibility to
include additional information, i.e., information stemming from different feature types, in
the model. As shown by the results in Table 5.4 and Table 5.5, the additional information
yields an overall increase in performance. How much additional information leads to
an improvement differs by target. For age, we find that including only little additional
contextual information already increases the outcome. However, when the contextual
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information becomes larger, e.g., by including LEMMA and WORD, the result does
not improve anymore. The result is consistent across a different number of authors.
Consequently, the information for age seems to be less reliant on contextual information
and content. Already single-word content and context as captured by CHAR-(2,5) and
ASIS-(2,5), is enough for a high prediction score. When we compare the outcome for
gender with the the results in Table 5.2, we see that using a cumulated input improves
the results overall. It is especially important to note that, when faced with a high
number of individual authors, increasing the context by using additional feature types
such as LEMMA or WORD in addition to high-level n-grams increases performance.
When taken together, our findings show that context and underlying data structure is
an important driver behind the predictions of a model, as shown by the fact that the
relevant features in terms of predictiveness change. At the same time, we show that
the weight placed on individual features (and thus individual inputs reflecting certain
contexts) is not stable. That is evident by the correlation scores across different author

Table 5.5: F1-scores & stability of feature relevance for the prediction of age on a minimal
input instance length of 500 characters using a cumulated model on the reduced feature set
(DIST, CHAR, LEMMA, WORD)

Target Age
Min. No. of Characters 500
No. of Authors 50 150 500 1000

Score F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

F1-score Avg.
Spearman’s ρ (ext.)

Feature types N-gram ranges

DIST_CHAR

2 0.7271 – 0.6349 0.1366 0.5123 0.0244 0.4434 0.0048
2-3 0.8214 – 0.7331 0.1364 0.5898 0.0286 0.5177 0.0117
2-3-4 0.8343 – 0.7627 0.1078 0.6114 0.0183 0.5390 0.0110
2-3-4-5 0.8250 – 0.7595 0.0934 0.6140 0.0179 0.5397 0.0084

DIST_CHAR_ASIS

2 0.8518 – 0.7727 0.0901 0.6150 0.0189 0.5515 0.0071
2-3 0.8726 – 0.7954 0.0815 0.6629 0.0157 0.5687 0.0102
2-3-4 0.8753 – 0.8014 0.0848 0.6610 0.0124 0.5553 0.0053
2-3-4-5 0.8671 – 0.8006 0.0831 0.6376 0.0198 0.5731 0.0067

DIST_CHAR_ASIS_LEMMA
1 0.8608 – 0.7966 0.0753 0.6478 0.0143 0.5717 0.0077
1-2 0.8615 – 0.7963 0.0736 0.6629 0.0197 0.5544 0.0028

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8515 – 0.7883 0.0680 0.6558 0.0044 0.5736 0.0056
1-2 0.8293 – 0.7727 0.0682 0.6652 0.0116 0.5758 0.0095

sets. The scores are ρNU M
150|50 : 0.42 at the highest for target gender and ρDEP−2

150|50 : −0.1 at
their lowest. Consequently, while the predictive accuracy is high, the model seems to
rely on correlational patterns which are not only not invariant, but also quite unstable
when the dataset is changed only slightly.7

5.5 Discussion

Overall, we find that the classifier makes systematic errors at the author level. For the
target gender, one group of authors (female) seems to be difficult to classify in general.
The underlying drivers seem to be that, for the shown dataset, the group as such has
a very heterogeneous pattern in the features. In other words, the second group (male)

7All analyses –stacked as well as cumulated – were also performed on the full number of feature types, as
well as the different numbers of authors and the different input instance lengths. The results may be found in the
section E.2.
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seems to be simpler to classify. That, however, may also be driven by the fact that the
context in which they are active is more homogeneous than for female authors. For age,
we find slightly more stable results, as most age brackets exhibit clear patterns that make
the individual age brackets distinguishable. In terms of stability, however, the results are
more mixed. While the features mainly driving the prediction are not context-reliant
per-se, increasing the available context does increase performance markedly. This is
especially evident from the fact that a wide n-gram window for character features yields
the greatest relative increase in performance, outperforming even those models for which
additional context information is made available by including additional feature types
known to capture context. That in itself is not directly surprising and not necessarily
cause for any concern. However, it is important to note that, for a low number of
authors, about 10% of the prediction performance stems from an increase in context
(e.g. for features CHAR and ASIS when predicting gender, see Table 5.2). When
looking at the dataset with the largest number of authors, additional information is also
what makes the model perform slightly better than the random-guess threshold and
pushes it into the performance ranges found within the literature for comparable data
(Wiegmann et al., 2019). Moreover, building a model on top of a composite of feature
types (or stacking it on top; see Table 5.4 and Table 5.5) is when we see additional
performance increases, especially for longer input texts. Thus, giving additional con-
text on top of non-context feature types yields a better decision boundary for the classifier.

These results at first seem like technical details. However, in practice they show
that the context the model is trained on and in (as simulated by varying the number of
authors) largely carries over into its predictive performance. That means models trained
within one context may not simply be used in another one. That is intuitive. What we
show here, however, is that even by staying within one group of individuals (creators)
and within one domain (Twitter), an increase in the number of possible targets changes
the relevant features, and it also significantly changes the information as well as the
context encoded within . That becomes evident from the fact that the stability in the
relevance of features simply does not exist. For social sciences, these findings are relevant
on two fronts. First, the models using the features presented here are indeed well-suited
to find a pattern connecting their use to the prediction target. However, that pattern
is unstable, changing with the number of authors or features available. Consequently,
it hints at the fact that these patterns are merely correlations exploited by the model.
Such correlations are difficult to rely upon, as their patterns – as shown by increasing the
number of authors – may change at any time. Thus, this calls for a careful assessment
of the validity when employing pre-trained models within the field, especially when the
prediction outcome is used as input for further models or for further analysis. In other
words, a change in behavior by individuals – either over time or by choice – will render
the learned context irrelevant. Thus, the environment during training must be carefully
compared to the one in which the model is used. In general, the findings thus paint a
bleak picture for the social sciences. Our results show that there are authors of certain
groups for which one has to expect above-average errors and systematic patterns of
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misclassification. Taken together with the apparent lack of stability in the predictiveness
of features when the dataset changes slightly means that, even when these patterns are
assessed during training, the researcher has little chance to assess how they will affect a
the result during the time of use. The differences between training data and test data
might be difficult to pinpoint. Thus, for cases where it is not clear by how much training
context and use-context differ, a social scientist should be very careful in simply adopting
pre-trained models as the size of the introduced error is unknown.

Another finding is of a normative nature and tied to the wider debate of transparency
and proportionality, and thus affects in particular the field of law. As law enforcement is
faced with the problem of combing through a large amount of online content, searching
and assessing such content by hand is untenable. Thus, already today algorithms are
employed by law enforcement. However, especially in such environments, it must be
clear how much of the findings by an algorithm is relies merely on correlations and
especially how stable these correlations are in different environments. That does not even
include the fact that there might be some groups of individuals for whom the classifier
makes systematic mistakes. Only then do law enforcement, the defendant, and also
the courts have the possibility to assess the validity of an result before acting upon
it. After all, how valid is a result identifying traits of a suspect when the features are
context-reliant to such a high degree that changing the use of some emojis or some words
would alter the result completely? How robust is a result, when the features driving
the result change with the number of authors an individual is compared to? What is
even more problematic in real-world terms is that the instances used for training and
those used for during actual application are separated from each other by time. Thus,
a real culprit could evade being identified simply because the context changes, while
innocents could be systematically misidentified as culprits. Thus, as the stability in
feature relevance is already lacking for the relatively small changes introduced here, we
should ask ourselves what requirements an algorithm should fulfill before it is being used
within the law enforcement context. Optimally, we would ask for causal relationships
between input and output. However, that might not be possible. The second-best would
then be to have transparency for the model and a some-what stable relationship be-
tween input and output. The former assures that users, i.e., the state, as well as affected
individuals are able to assess the inner workings of a model. That would enable an individ-
ual to judge whether the prediction pertaining to them might be part of a systematic error.

A reasonably stable relationship between input and output, i.e., a stable feature
relevance, guarantees that while there might be systematic errors, the affected groups stay
at least constant, although the dateset for the predictions may vary slightly compared to
the training dataset, e.g., by number of authors or point-in-time. The alternative would
be, of course, to specify a “half-life” before a model has to be re-trained and re-assessed.

As the findings of this study point towards such an unstable relationship, we argue that
the features used in tasks related to authorship profiling and authorship attribution need
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much more research. Moreover, models should be assessed with a measure for defining the
boundaries of their stability. The result of that measure has to be affixed to the model
so users may be able to infer its usability. Otherwise, establishing a scientifically valid
link – going beyond merely showing that the model yields good correlational predictions
on some datasets – might be impossible.
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A.1 Extensive Analysis

Table A.1: Wilcoxon rank sum test with continuity correction - Likelihood Vignette with the
Categories Present - Future

Data Likelihood Vignettes on Tense Framing
Federal Audit Office McKinsey Buxtehude Chopin

(1) (2) (3) (4)

W 148940 145120 160740 149800
p-value 0.023 0.003 0.89 0.034

Note: alternative hypothesis: true location shift is not equal to 0

Table A.2: χ̃2-test Immediacy Vignettes with the Categories Present - Future

Data Immediacy Vignettes on Tense Framing
BonnEconLab Halle/Saale Mansfeld Bitcoin

χ̃2-test 14.25 88.56 19.17 8.86
df 10 10 10 10
p-value 0.16 1.032 ∗ 10−16 0.038 0.54

Note: Alternative hypothesis: “Estimated point in time and ‘framing language’ are not independent.”

I
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A.2 Design of the Experimental Tasks

Time Preference Elicitation Task

Table A.3: Illustration of the Payment Schemes

Payment in week after experiment in €
Schedule 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 27.95 27.95 27.95 27.95 27.95 27.95

2 28.64 28.64 28.64 28.64 28.64 28.64

3 29.26 29.26 29.26 29.26 29.26 29.26

4 29.8 29.8 29.8 29.8 29.8 29.8

5 30.26 30.26 30.26 30.26 30.26 30.26

6 30.64 30.64 30.64 30.64 30.64 30.64

7 30.95 30.95 30.95 30.95 30.95 30.95

8 31.18 31.18 31.18 31.18 31.18 31.18

9 31.33 31.33 31.33 31.33 31.33 31.33

10 31.4 31.4 31.4 31.4 31.4 31.4

The purpose of the time elicitation task in experiment 1 is to classify subjects by
their personal discount rate. In this task, the effect of linguistic framing (tense) on time
preferences was analyzed. Hence, it was sought to design a task in such a way that
subjects could choose payment schedules. This choice should then automatically imply
different personal discount rates.
Assumptions and Constraints:

1. The range of relevant personal discount rates was thought to lie between 2.25% and
36.25%. Personal discount rates within this band seem to be the most common
in laboratory experiments for subject groups similar to the one participating in
experiment 1 and frequently-cited studies regarding time preferences supported
this assumption (Harrison et al., 2005). The range was then divided up into 10
intervals as a compromise between attempted fine-graininess and not wanting to
overwhelm participants of the experiment with a multitude of choices.

2. The discounting function of subjects can be modelled by a utility function that
is both increasing and concave. For this reason, the log-utility specification, i.e.,
u(x) = ln(x), was chosen. This utility specification is often used in applications
which require a specification.

3. For the final schedules, the midpoint of each interval was chosen to calculate the
weekly amounts.

4. The weekly amounts were calculated transforming the yearly discount rate into a
weekly one.

Payment Schedule:
Each schedule ran for six weeks and consisted of a weekly payment, the amount of which



A.2. DESIGN OF THE EXPERIMENTAL TASKS III

was fixed.1 Each schedule had a different starting date for the first payment. This
simulates different multiple-choice lists for which we only showed an optimal switching
point for one particular discounting factor. The payment schedules were designed as
follows:

1. Schedule 1: This is the schedule targeting the most impatient group of subjects,
i.e., subjects with a personal discount rate in the interval of (0.3625;0.3175).

2. Schedule 1 pays an amount S1 every week, starting 1 week after the experiment
and lasting six weeks in total.

3. The schedule targeting the second-most impatient group of subjects, i.e., those
with a personal discount rate in the interval of (0.3175; 0.2825), is called schedule
2 and so forth.

4. Schedule 2 pays an amount S2 every week, starting 2 weeks after the experiment
for six weeks in total.

5. Schedule 3 pays an amount S3 every week, starting 3 weeks after the experiment
and for six weeks in total and so forth.

For a graphical illustration of the payment schedules, please see the Table A.3.

Calculation of the Optimal Schedules for Subject Groups:
Each bracket of time preferences corresponds to a certain group of subjects. Thus, they
are identified by revealing their preferences through their choice of a payment schedule. It
is important that the payment schedules calculated are optimal for the different subject
groups, i.e., schedule 1 should be optimal for the most impatient subject group and so
forth. Schedule 10 is the optimal schedule for the most patient subjects and therefore
must yield the most money on a weekly basis, i.e., S10 = 31.4 Euro.
From the optimality conditions of payment schedules, it follows that:

u(schedule10|r ∈ (0.025;0.0475))≥ u(allotherschedules|r ∈ (0.025;0.0475)) (A.1)

,in particular

u(schedule10|r = 0.0475)≥ u(schedule9|r = 0.0475) (A.2)

The same optimality conditions also need to hold for subjects who are targeted by
schedule 9. Hence, the following needs to hold.

u(schedule9|r ∈ (0.0475;0.0825))≥ u(allotherschedules|r ∈ (0.0475;0.0825)) (A.3)

,in particular

u(schedule9|r = 0.0475)≥ u(schedule10|r = 0.0475) (A.4)

1If we amended the amounts on a weekly basis to factor in the additional change induced by a weekly
discount rate, the amounts would only change at the second, third, or even fourth decimal.
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and

u(schedule9|r = 0.0825)≥ u(schedule8|r = 0.0825) (A.5)

From the optimality of both schedule 10 and schedule 9 at r = 0.0475, it is possible to
deduce the following equality :

u(schedule10|r = 0.0475) = u(schedule9|r = 0.0475) (A.6)

Equation A.6 uniquely determines the payment for S9 as a function of the initial payment
of S10. The remaining values S8 as well as the others can the be calculated recursively,
i.e.:

u(schedule8|r ∈ (0.0825;0.1175))≥ u(allotherschedules|r ∈ (0.0825;0.1175)) (A.7)

,in particular

u(schedule8|r = 0.0825)≥ u(schedule9|r = 0.0825) (A.8)

and

u(schedule8|r = 0.1175)≥ u(schedule7|r = 0.1175) (A.9)

This determines S8 uniquely as a function of S9 (and therefore of S10). By iteration, this
procedure allows for the identification of all Sx∀x ∈ (1, 2, ..., 9) from the externally given
starting point S10.
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Table A.4: Ordered Logit Estimations for Time Preference Task (shortened)

(1) (2) (3) (4) (5) (6)

PF −0.023 0.065 −0.226 −0.214 −0.181 −0.065
(0.112) (0.162) (0.225) (0.228) (0.232) (0.234)

TRa 0.261 0.265 0.294 0.281 0.348∗

(0.160) (0.160) (0.162) (0.164) (0.166)

Present-Prefb −0.068 −0.073 −0.067 −0.045
(0.073) (0.073) (0.075) (0.075)

PF|TRa −0.180 −0.172 −0.181 −0.193 −0.303
(0.225) (0.226) (0.229) (0.231) (0.235)

PF|Present-Prefb 0.188 0.198 0.178 0.158
(0.103) (0.105) (0.107) (0.108)

Add. Controlsc: No No No Yes Yes Yes
Obs.: 1,137

Note: Ordered Logit estimation results. Standard errors in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

a Interaction effect between the blockwise order of time-preference and risk-preference task and PF framing.
Order Time→ Risk = Likelihood = 1.

b Number of sentences in the present tense ({0 . . . 5}) selected during paragraph construction task.

c Additional controls include: gender, alcohol consumption (beer/wine/spirits, smoking, sports per week,
marital status, avalable monthly income, language-related studies, pet owner).
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Table A.6: OLS Estimations for Risk Preference Task (shortened)

(1) (2) (3) (4) (5) (6)

PF 0.973 −0.337 −0.261 −0.666 −0.530 −0.454
(1.123) (1.627) (2.167) (2.158) (2.198) (2.173)

TRa −2.458 −2.438 −2.755 −2.929 −2.974
(1.608) (1.613) (1.600) (1.584) (1.552)

Present-Prefb −0.283 −0.188 −0.157 −0.259
(0.724) (0.719) (0.721) (0.719)

PF|TRa 2.646 2.611 3.282 3.472 3.335
(2.243) (2.248) (2.222) (2.231) (2.204)

PF|Present-Prefb 0.016 −0.057 −0.106 0.091
(0.996) (0.988) (1.001) (0.990)

Add. Controlsc: No No No Yes Yes Yes
Obs.: 1,137

Note: OLS. Standard errors in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

a Interaction effect between the block-wise order of time-preference and risk-preference task and PF framing.
Order Time→ Risk = Likelihood = 1.

b Number sentences in the present tense ({0 . . . 5}) selected during paragraph construction task.

c Additional controls include: gender, alcohol consumption (beer/wine/spirits, smoking, sports per week,
marital status, avalable monthly income, language-related studies, pet owner).
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A.3 Belief Vignettes

Immediacy Vignettes

Table A.8: Vignette Wording – Immediacy

PF FF English

(a)
Nachdem dort die Arbeiten bald fer-
tiggestellt sind, gibt die Stadtverwal-
tung in Halle an der Saale die StraSSe
am Steintor wieder frei und hebt
dann auch die Sperrung der Dessauer
StraSSe wieder auf. Wann endet die
Sperrung der Dessauer StraSSe?

Nachdem dort die Arbeiten bald fer-
tiggestellt sein werden, wird die
Stadtverwaltung in Halle an der
Saale die StraSSe am Steintor wieder
freigeben und wird dann auch die
Sperrung der Dessauer StraSSe wieder
aufheben. Wann wird die Sperrung
der Dessauer StraSSe enden?

After the work there will soon be com-
pleted, the city administration in Halle
an der Saale will reopen the street at
the Steintor and will then also lift the
closure of Dessauer StraSSe. When
will the closure of Dessauer StraSSe
end?

(b)
Im Landkreis Mansfeld-Südharz be-
ginnt bald der Ausbau von schnellem
Internet. Der Kreistag berät dazu
in der nächsten auSSerordentlichen
Sitzung, der Startschuss für die An-
schlussarbeiten erfolgt dann umge-
hend. Wann folgt der Startschuss
für die Anschlussarbeiten in Mansfeld-
Südharz?

Im Landkreis Mansfeld-Südharz wird
bald der Ausbau von schnellem Inter-
net beginnen. Der Kreistag wird dazu
in der nächsten auSSerordentlichen
Sitzung beraten, der Startschuss
für die Anschlussarbeiten wird dann
umgehend folgen. Wann wird der
Startschuss für die Anschlussarbeiten
in Mansfeld-Südharz folgen?

The expansion of high-speed Inter-
net will soon begin in the Mansfeld-
Südharz district. The district council
will discuss this at its next extraordi-
nary meeting, and the starting signal
for the connection work will then fol-
low immediately. When will the start-
ing signal for the connection work in
Mansfeld-Südharz follow?

(c)
Laborleiter Dr. Holger G. des Bon-
nEconLabs erwartet, dass bald alle
Teilnehmer des Labors die Stifte
zurückbringen, die sie bei Experi-
menten versehentlich mitgenommen
haben. Er macht demnächst einen
Aushang am schwarzen Brett des
Labors. Wann macht Laborleiter Dr.
Holger G. einen Aushang?

Laborleiter Dr. Holger G. des Bon-
nEconLabs erwartet, dass bald alle
Teilnehmer die Stifte zurückbringen
werden, die sie bei Experimenten
versehentlich mitgenommen haben.
Er wird demnächst einen Aushang am
schwarzen Brett des Labors machen.
Wann wird Laborleiter Dr. Holger G.
einen Aushang machen?

Lab manager Dr. Holger G. of Bon-
nEconLab expects that soon all partic-
ipants will return the pens they acci-
dentally took during experiments. He
will soon make a notice on the lab’s
bulletin board. When will lab manager
Dr. Holger G. make a notice?

(d)
Aufgrund des extremen Kurswachs-
tums berichtete das Handelsblatt kür-
zlich über Bitcoin. Experten prognos-
tizieren, dass ein Bitcoin innerhalb des
nächsten halben Jahres einen Wert
von 1100 Euro übersteigt. Wann
übersteigt ein Bitcoin den Wert von
1047 Euro?

Aufgrund des extremen Kurswachs-
tums berichtete das Handelsblatt kür-
zlich über Bitcoin. Experten prog-
nostizieren, dass ein Bitcoin inner-
halb des nächsten halben Jahres einen
Wert von 1100 Euro übersteigen wird.
Wann wird ein Bitcoin den Wert von
1047 Euro übersteigen?

Due to the extreme price growth, Han-
delsblatt recently reported on Bitcoin.
Experts predict that one Bitcoin will
exceed a value of 1100 euros within
the next six months. When will one
Bitcoin exceed the value of 1047 eu-
ros?

Notes: Wording of Immediacy Vignettes for the present-tense future reference (PF) and future-tense future
reference (FF) framing. Differences betweens frames in bold font.

Robustness checks support these findings. We estimate a set of ordered logit models
(OLM), adding a number of controls. The effect of the framing is captured by the variable
PF Framing, which is 1 if the subject observed the PF Framing, and zero otherwise. For
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Table A.9: Ordered Logit Estimations for Immediacy Vignettes (shortened)

(a) (b) (c) (d)

PF 0.713∗∗∗ 0.415∗ −0.254 −0.113
(0.208) (0.205) (0.220) (0.209)

ILa 0.022 0.332∗ 0.308 −0.323∗

(0.148) (0.150) (0.163) (0.155)

Present-Prefb 0.056 −0.006 −0.003 0.010
(0.068) (0.068) (0.074) (0.071)

PF|ILa 0.342 0.021 0.362 0.084
(0.211) (0.212) (0.226) (0.213)

PF|Present-Prefb 0.003 −0.046 0.033 0.059
(0.097) (0.096) (0.104) (0.098)

Add. Controlsc: Yes Yes Yes Yes
Obs.: 1,137

Note: Ordered Logit estimation results. Standard errors in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

a Interaction effect between the block-wise order of Immediacy and Likelihood Vignettes and PF framing.
Order Immediacy→ Risk = Likelihood = 1.

b Number of sentences in the present tense ({0 . . . 5}) selected during paragraph construction task.

c Additional controls include: gender, alcohol consumption (beer/wine/spirits, smoking, sports per week,
marital status, avalable monthly income, language-related studies, pet owner).

an overview, see Table A.9, which shows a reduced set of control variables. We depict the
controls for the order in which time and Likelihood Vignettes were shown to the subjects.
The elicited individual preferences for present tense, as measured by the paragraph-
construction task, are also shown. Both variables are included as interactions with the
respective framing as observed by each subject. Additionally, we include the responses
to survey questions eliciting risk aversion, taken from the SOEP (Wagner et al., 2007).
These are included to capture linkages between time and risk (Anderhub et al., 2001;
Andersen et al., 2008). Finally, a standard set of socio-economic and sociodemographic
controls is included. Table A.9 presents the estimation results. When including additional
controls, the results remain in line with the results of the non-parametric tests. While
we find some evidence for an effect of grammatical framing on time, this effect seems to
be spurious, highly context-dependent, and easily disrupted.

Likelihood Vignettes

In order to test these findings on their robustness, we estimated six OLS models for each
vignette, increasing the number of controls in each model subsequently, as had been done
for the OLM models. The truncated results can be seen in Table A.12. In the baseline
model, the results from the boxplots as well as the U-tests are validated. Similar to the
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XII APPENDIX A. APPENDIX – CHAPTER 1

Table A.11: Vignette Wording – Likelihood

PF FF English

(e)
Laut McKinsey geht in der westeuropäischen
Versicherungsbranche in den nächsten zehn
Jahren jeder vierte Arbeitsplatz verloren.
Besonders davon betroffen ist der Bereich
der Schadensabwicklung, wo jeder dritte Ar-
beitsplatz verloren geht. Bestätigt sich die
Prognose für den Bereich der Schadensab-
wicklung in den nächsten zehn Jahren?

Laut McKinsey wird in der westeuropäischen
Versicherungsbranche in den nächsten zehn
Jahren jeder vierte Arbeitsplatz verloren
gehen. Besonders davon betroffen wird der
Bereich der Schadensabwicklung sein, wo
jeder dritte Arbeitsplatz verloren gehen wird.
Wird sich die Prognose für den Bereich der
Schadensabwicklung in den nächsten zehn
Jahren bestätigen?

According to McKinsey, one in four jobs will
be lost in the Western European insurance
industry over the next ten years. This will
particularly affect the area of claims process-
ing, where one in three jobs will be lost. Will
the forecast for the claims handling sector
be confirmed in the next ten years?

(f)
Der Chopin-Flughafen in Warschau verze-
ichnete ein Wachstum des Passagieraufkom-
mens um 15% und beförderte im Kalender-
jahr 2016 12,8 Millionen Passagiere. Laut
Betreibergesellschaft sind die Zuwächse für
2017 stabil. Auch der Frachtverkehr nimmt
dann in vergleichbarem Umfang zu. Fertigt
der Flughafen 2017 bis zum Jahresende min-
destens 14,3 Millionen Passagiere ab?

Der Chopin-Flughafen in Warschau verze-
ichnete ein Wachstum des Passagieraufkom-
mens um 15% und beförderte im Kalender-
jahr 2016 12,8 Millionen Passagiere. Laut
Betreibergesellschaft werden die Zuwächse
für 2017 stabil sein. Auch der Frachtverkehr
wird dann in vergleichbarem Umfang
zunehmen. Wird der Flughafen 2017 bis
zum Jahresende mindestens 14,3 Millionen
Passagiere abfertigen?

Chopin Airport in Warsaw recorded 15%
growth in passenger traffic, carrying 12.8
million passengers in calendar year 2016.
According to the operating company, the in-
creases for 2017 will be stable. Cargo traffic
will then also increase at a comparable rate.
Will the airport handle at least 14.3 million
passengers by the end of the year in 2017?

(g)
Der Bundesrechnungshof veröffentlicht
kommende Woche einen Bericht darüber,
dass alle öffentlichen Körperschaften im
nächsten Jahr 5.500 neue Stellen benöti-
gen. Der Bericht stellt dar, dass sich den-
noch die Arbeit pro Kopf im öffentlichen Di-
enst erhöht und die Zahl der Krankmeldun-
gen dadurch ansteigt. Erhöht sich die Ar-
beitslast pro Kopf im öffentlichen Dienst im
kommenden Jahr?

Der Bundesrechnungshof wird kom-
mende Woche einen Bericht darüber
veröffentlichen, dass alle öffentlichen
Körperschaften im nächsten Jahr 5.500 neue
Stellen benötigen werden. Der Bericht
wird darstellen, dass sich dennoch die
Arbeit pro Kopf im öffentlichen Dienst
erhöhen wird und die Zahl der Krankmel-
dungen dadurch ansteigen wird. Wird
sich die Arbeitslast pro Kopf im öffentlichen
Dienst im kommenden Jahr erhöhen?

The federal General Accounting Office will
release a report next week showing that all
public entities will need 5,500 new positions
next year. The report will outline that despite
this, the workload per capita in the public
sector will increase and sick leave will rise as
a result. Will the workload per capita in the
public sector increase in the coming year?

(h)
In Buxtehude beginnt der Bau eines
neuen Fahrradweges im Stadtpark. Der
Förderverein Stadtpark Buxtehude e.V. berät
bei seiner nächsten Vollversammlung über
die zusätzliche Beschilderung. Sie beraten
dabei dann ebenfalls über das Aufstellen
zusätzlicher Hundekot-Beutelspendern. Fi-
nanziert der Förderverein das Aufstellen
zusätzlicher Hundekot-Beutelspender im
Buxtehuder Stadtpark?

In Buxtehude wird der Bau eines neuen
Fahrradweges im Stadtpark beginnen. Der
Förderverein Stadtpark Buxtehude e.V. wird
bei seiner nächsten Vollversammlung über
die zusätzliche Beschilderung beraten. Sie
werden dann ebenfalls über das Aufstellen
zusätzlicher Hundekot-Beutelspendern be-
raten. Wird der Förderverein das Auf-
stellen zusätzlicher Hundekot-Beutelspender
im Buxtehuder Stadtpark finanzieren?

In Buxtehude, the construction of a new bi-
cycle path in the city park will begin. The
support association “Stadtpark Buxtehude
e.V.” will discuss the additional signage at
its next plenary meeting. They will then
also discuss the placement of additional dog
waste bag dispensers. Will the support asso-
ciation finance the installation of additional
dog waste bag dispensers in Buxtehude City
Park?

Notes: Wording of Likelihood Vignettes for the present-tense future reference (PF) and future tense future
reference (FF) framing. Differences betweens frames in bold font.
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vignette ”Bitcoin” in the prior section, the vignette ”Buxtehude”, which again brings
with it a relatively strong outside predisposition, shows no significant framing effect for
all estimated models. This is seen as support for the assumption that any grammatical
framing effect, irrespectively of the domain targeted, is susceptible to preconceived
opinions or outside predispositions and additional information.

As before, the framing effects prove unstable when including additional control
variables. This can especially be seen for the case of the ”BonnEconLab” vignette, for
which the framing effect loses any significance when including the additional controls.

Table A.12: OLS Estimations for Likelihood Vignettes (shortened)

(e) (f) (g) (h)

PF 8.044∗∗ 1.100 2.531 −1.043
(2.704) (3.033) (2.990) (2.952)

ILa 4.847∗ −3.133∗ 4.844 −1.327
(1.908) (2.164) (2.183) (2.217)

Present-Prefb 0.717 0.629 0.401 −0.129
(0.868) (1.034) (1.034) (0.964)

PF|ILa −3.123 3.653 −3.387 2.963
(2.766) (3.167) (3.054) (3.098)

PF|Present-Prefb −1.809 −0.160 1.389 −0.626
(1.311) (1.503) (1.406) (1.365)

Add. Controlsc: Yes Yes Yes Yes
Obs.: 1,137

Note: OLS. Standard errors in parenthesis. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

a Interaction effect between the block-wise order of Immediacy and Likelihood Vignettes and PF framing.
Order Immediacy→ Risk = Likelihood = 1.

b Number of sentences in the present tense ({0 . . . 5}) selected during paragraph construction task.

c Additional controls include: gender, alcohol consumption (beer/wine/spirits, smoking, sports per week,
marital status, avalable monthly income, language-related studies, pet owner). are available from the
authors upon request.

Consequently, we do not find a stable effect on risk due to grammatical framing either.

A.4 Experimental Material

Due to the fact that Amazon mTurk only became available after we conducted our
experiment, we opted for using a lab subject pool in an online experiment. This brings
with it the advantage of having a reliable subject pool used to economic decision-making
and different experimental setups. Accordingly, we also complied with the strict lab rules
in all matters such as anonymity and average payoff requirements. The decision was
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made to structure the payments as a lottery which means only those subjects drawn
in the lottery were payed according to their choices made during the experiment. This
was made clear to subjects before they could design to apply for the experiment. While
it could potentially lead to subjects not taking the experiments seriously and result in
random decisions, we compensate for that by scaling the payments accordingly. Subjects
drawn in the lottery could earn between 120 Euro and 200 Euro instead of the 10 Euro
- 20 Euro for usual lab experiments. This kept the average payment per subject up to
usual lab standards.

Instructions

Below you find the set of instructions. As the experiment varied specific grammatical
properties of the instructions written in the German language we provide translations
upon request.
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Screenshots

Figure A.1: Risk Preferences Elicitation Task - BombGame
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Figure A.2: Time-Preferences Elicitation Task - Choice Menu
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Figure A.3: Belief Elicitation Task - Immediacy Vignette
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Figure A.4: Belief Elicitation Task - Likelihood Vignette
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Figure A.5: Paragraph Construction Task
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A.5 Survey

Table A.17: Survey Questions Targeting Risk Preferences

Question Answer Possibilities

How do you personally rate yourself: Are you generally
a risk-taking person, or do you try to avoid risk? (0: not
at all willing to take risks; 10 very willing to take risks)

0-10

How often per week do you drink beer? regularly, now and then, seldomly, never

How often per week do you drink wine? regularly, now and then, seldomly, never

How often per week do you drink spirits? regularly, now and then, seldomly, never

How often per week do you drink mixed alcoholic drinks? regularly, now and then, seldomly, never

Are you a smoker currently? yes, no

How many cigarettes do you smoke per day? 1-99

How often do you actively engage in sports, fitness or
gymnastics?

three or more times per week, one or two times per week,
at maximum once time every two weeks, never

To what extent do you pay attention to health-conscious
nutrition?

not at all, a little bit, strongly, very strongly
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Table A.18: Survey Questions Targeting Demographics and Personal Circumstances

Question Answer Possibilities

What is your sex? male, female, no disclosure

If applicable, please indicate your field of study or work
environment. In the case of a doctorate, please indicate
your doctoral field

This question does not apply to me, Business Admin-
istration, Biology, Chemistry, Computer Science, Law,
Geography, History, Linguistics, Mathematics, Pharamcy,
Physics, Political Sciences, Psychology, Theology, Sociol-
ogy or Eductational Sciences, Economics, Other (please
indicate)

Please enter the postal code of your hometown, i.e. the
place where you grew up.

numerical free text

Please enter your last average grade in mathematics here.
(Scale: 1.0-6.0)

1-6

How much money do you have at your free disposal each
month (after deduction of rent, insurance and food)?

less than 150, between 150 and under 200, between 200
and under 250, between 250 and under 300, between 300
and under 350, between 350 and under 400, "between
400 and under 450, between 450 and under 500, between
500 and under 550, between 550 and under 600, between
600 and under 650, 650 and more

Do your parents have an academic degree (university or
college)?

yes, no

Please state your marital status unmarried, married, widowed

Please state your parent’s marital status unmarried, married, widowed

Is German your mother tongue? yes, no

At what age did you first have intensive contact with
a foreign language? (e.g.: grew up bilingually, learned
through play in the kindergarden, elementary school class,
etc.)

0-age

Do you have a pet? yes, no

If yes, which kind of pet do you have? free text
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B.1 Data-Generating Process, Simulated Data, and Grid Search

For our grid search, we assumed the data-generating process of the standard public-good
game, as laid out in the main section of the paper.

Simulated Type Space In their seminal paper, Fischbacher, Gächter, and Fehr (2001)
argue that (in their one-shot version of this game) there are three types: free-riders,
conditional cooperators, and “hump-shaped” players. In his reanalysis of Fischbacher,
Gächter, Bardsley, et al. (2010), Engel (2020) further finds a small, but discernible
fraction of altruists. In their reanalysis of Fischbacher, Gächter, Bardsley, et al. (2010),
Engel and Rockenbach (2020) use a combination of belief and choice data to distinguish a
fifth group, which they call far-sighted free-riders. In our simulations, we allow for these
five types. We focus on a partner design. Groups stay together for the full duration of
the game. We always allow for an individual random effect ηi and residual error εi t ⊥ ηi,
which we both define to be normally distributed with mean 0 and standard deviation .3
(∼N (0, .3)). We thus implement the type space as defined in Table 2.1, where c−i,t−1 is
the average contribution of the remaining group members in the previous period.

We have two types that exhibit variance (between participants due to ηi, and within
participants due to εi t), but do not react to experiences: short-sighted free-riders and
altruists. The contributions of these types do not have a trend either. They are random
walks, albeit with diametrically opposed starting points. By contrast, the remaining
three types are reactive, which may, depending on the choices of the remaining group
members c−i,t−1, lead to a trend. We have (true) conditional cooperators start in the
middle of the action space. In early periods (t < τ = 5), far-sighted free-riders mimic
conditional cooperators, but from period τ on, they free-ride. Such participants “feed
the cow” for a while, only to “start milking” it then. Finally, we simulate hump-shaped

XXVII
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participants such that they start rather low, at 5, and have them behave like conditional
cooperators as long as the remaining group members, in the previous period, has on
average not contributed more than half of the endowment. If c−i,t−1 > 10, they exhibit a
perverse reaction. The more others have contributed, the less they contribute themselves.

We have groups of size K = 4, and we allow for n = 5 types. Participants choose
their contributions to the public good simultaneously, which is why their order does not
matter. We consider the possibility that types are present more than once in a group.
Hence, we have a problem of unordered sampling with replacement. This gives us a total
type space of

N =
�

n+ k− 1
k

�

=
(5+ 4− 1)!
(5− 1)!4!

= 70 (B.1)

different group combinations. In our simulations, we include each of these 70 combi-
nations of types N times. As three of the five types (conditional cooperators, far-sighted
free-riders, hump-shaped players) are reactive, we give the classification algorithm access
to the exact same experiences that participants make in this design, i.e, the mean con-
tribution of the remaining group members in the previous period. Hence, the object of
clustering is a two-dimensional time series.

• Profit is given by (2.1), with e = 20, K = 4, t = 10. We do, however, only use data
from periods 2 - 10 for analysis, as participants have not made any experiences in
the first period.

• Each of the five types is represented in equal proportions in the population from
which choices are drawn.

The following elements of the data-generating process as well as of the clustering
process are kept fixed for each point in the grid:

• Individual specific error η ∈ {0.6, 0.7, 0.8, 0.9} and residual error σ ∈ {0.6, 0.7, 0.8, 0.9}.

• Sample size n= 70 ∗ N |N ∈ {1,2, 3,4, 5,6}

• The number of clusters k ∈ {5,8, 10,15, 20,25,30, 35,40, 42,44, 46,48, 50,52, 54}

• The size of the window within which dynamic time-warping is executed, running
from w ∈ {1,2, 3}.

The grid search thus runs over 4η · 4σ · 6N · 3w · 3γ · 16k = 4608 variations. The following
parameters of the algorithm are varied:

• The distance used, i.e., DTW, sDTW, GAK

• The smoothing parameter γ ∈ {0.001,0.01,0.1}.

• The centroid function, i.e., either PAM or DBA
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Each point in the dataset point in the grid is thus clustered with ten variations in the
configuration of the clustering algorithm. In the simulated dataset, we have 1,120 pairs
of time series for experiences and individual choices. If it were necessary to estimate
350 clusters, there would be little more than 3 participants per cluster, on average. The
simulated dataset would be too small for the purpose. More disturbingly, it would be
very difficult to compile a set of experimental data that is big enough for the ultimate
goal of this study: to find out whether there are untheorized types.

In the interest of finding the appropriate number of clusters, and of better under-
standing the relationship between the degree of smoothing and the number of clusters
that best organize the data, we evaluate the simulated dataset.

35 clusters for 5 types A comparison between Figure 2.1b and Figure B.1 shows how
important it is to increase the number of clusters. The algorithm can still not perfectly
discriminate between the types that have generated experiences and choices. This in
particular holds for clusters 25—28. In these clusters, contributions and experiences
are similar. They start at a differently high level and gradually decay. This pattern
is generated by conditional cooperators, hump-shaped players, and (in cluster 25) also
far-sighted free-riders interacting with each other. If they are in a group that, otherwise,
is very cooperative, hump-shaped players and short-sighted free-riders generate a similar
pattern (cluster 23). Conditional cooperators and hump-shaped players look the same if
they are in a group dominated by far-sighted free-riders (cluster 13) or by short-sighted
free-riders (cluster 24). Altruists and conditional cooperators are lumped together if
the group quickly converges to full cooperation (cluster 9). However, even in all these
clusters, while types are not perfectly separated, patterns are very cleanly characterized.
The algorithm visibly does a very good job. Types are not distinguished because different
reaction functions generate choice patterns that are very similar, provided a participant
makes the experiences defined in the respective right panel.

For the remaining clusters, even types are identified (sometimes perfectly, sometimes
nearly). Yet, this degree of cleanliness is only achieved because the algorithm is allowed
to split one and the same type by the experiences they make. The need for a larger
number of clusters is evident with altruists. They have been simulated as non-reactive,
cooperative, but noisy. This is why choices look very similar in clusters 1—8. The
difference results from the experiences an altruist makes. In cluster 2, they are together
with a majority of conditional cooperators, but at least one far-sighted free-rider. As all
group members are, at least initially, conditionally cooperative, experiences improve in
early periods. However, once a free-rider starts cashing in, the conditional cooperators
follow suit, which explains the kink in the second part of the time series. In cluster
3, experiences are more extreme, as far-sighted free-riders have a bigger impact. In
cluster 4, experiences never reach the top. This pattern results if hump-shaped players or
short-sighted free-riders draw down the contribution level. In clusters 5—8, experiences
are flat as the influence of far-sighted free-riders is absent. The composition of the
remaining types determines the (nearly or perfectly) constant level of the contributions
made by the remaining group members.
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At the lower end, clusters 31—34 are also pure. The contributions of short-sighted
free-riders are at or near to 0 throughout. But the algorithm needs multiple clusters as
experiences differ. Yet, as 3 of the 5 types are themselves reactive, the experience patterns
look very different from the experiences that altruists are making. In the most favorable
cluster 31, the remaining members are sufficiently cooperative themselves to tolerate
exploitation by a single free-rider. By contrast, in clusters 32 and 33, the presence of the
free-rider induces cooperative types to reduce their contributions gradually. In cluster 34,
a small fraction of conditionally cooperative types is quickly deterred by the prevailing
degree of exploitation.

Interestingly, there are also pure clusters of reactive types. In clusters 10 and 11, all
players are conditional cooperators. In cluster 10, experiences are initially positive, but
deteriorate in the middle of the time series, due to the presence of short-sighted free-riders.
In cluster 11, there are no altruists, which is why experiences and contributions never
reach the top. But there are no free-riders either, which is why cooperation is stable at
an intermediate level.

The algorithm finds even more clusters in which all participants are themselves
far-sighted free-riders. There is always the kink in the middle of the series. Clusters
14—17 differ by the experiences these far-sighted free-riders are making. In clusters 15
and 17, these experiences are fairly stable, which must result from the fact that groups
are mostly exclusively composed of non-reactive types. In the remaining groups, at least
some group members react to the fact that the far-sighted free-rider reduces contributions,
by lowering contributions themselves.

In clusters 20—22, only hump-shaped players are to be found. The most characteristic
pattern is cluster 20. As long as experiences are very good, hump-shaped players reduce
their own contributions. But if far-sighted free-riders start exploiting, experiences fall
below the threshold, and hump-shaped players begin stabilizing cooperation. By contrast,
in clusters 21 and 22, the contributions of hump-shaped participants stay below the more
favorable level of experiences they are making.
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Figure B.1: Exemplary Partitioning of the Simulated Dataset into 35 Clusters for 5 Types



XXXII APPENDIX B. APPENDIX – CHAPTER 2

B.2 Details on the Experimental Datasets
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Figure B.2: Means of Participants’ Contributions by Study

Diederich et al. (2016) play a standard PGG, varying the group size. We include
only their treatment 1, which groups 10 individuals at a time. One specialty of their
design is long-term rounds, each of exactly 72 hours. Subjects could freely decide when
to participate and submit their decision via a device of their choice connected to the
internet.

Engel and Rockenbach (2020) add passive bystanders who are either just present, or
negative (positively) affected by the contributions active players make to a standard linear
public good, to find out why conditional cooperators overreact to negative experiences.
We use data from an additional baseline (not reported in the working paper) with no
bystanders.

Engel, Kube, et al. (2021) test, in a linear public good, whether selective information
about the choices that unrelated third parties have made in the otherwise identical
game can increase or decrease contributions. We use data from the baseline, with no
manipulation of first impressions.

Kosfeld et al. (2009) play an institution formation game followed by a PGG: Each
player decides whether she wants to participate in an organization. Subsequently, players
simultaneously determine the number of their contributions to the public good.

Nikiforakis and Normann (2008) deploy a standard PGG and add treatments with
punishment options. In our dataset, we only include their control treatment, the PGG
without punishment.
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(a) Interpolated, 10 periods

● ●

●

●
● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

●
● ● ●

●
●

●
●

● ●
●

● ●
● ● ● ● ● ● ●

● ● ●

●

●
● ●

●
●

●
●

● ● ● ●
● ● ●

● ●
●

●

●
● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ●
● ● ● ● ●

●

● ● ● ● ● ●●

● ●

●
●

●
●

●
● ● ● ●

●

● ●
●

● ●
● ●

●
● ● ●

●

●
● ● ●

●
● ● ● ●

● ●
●

● ● ●

●

●

●

●
● ●

●
●

● ●
● ●

● ● ● ● ● ● ● ●

●

●
●

●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●
● ●

●
● ● ●

●

● ● ●
●

● ● ● ●

●
●

●

●
● ●

● ● ●
● ●

●
●

● ●
●

●
● ● ●●

● ● ●
●

●

● ● ●
●

● ●
● ● ● ●

●

●
●

●

●

● ●

●

● ●

●
●

● ●

●
●

●

●
●

●
● ● ● ●

● ●

● ●

●

● ●
●

● ● ● ● ●
● ● ● ● ● ● ●

● ● ●

●

●
●

●

●

●
● ●

●

●

●

●

● ● ● ● ●● ● ● ● ● ●

● ●

●

●
● ●

●
● ● ● ● ● ● ●● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●

●

●
●

●

● ●

●
●

● ● ● ● ● ●
● ●

●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ●● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●

● ●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●● ● ●

●

●

● ● ●

●
●

● ● ● ● ● ●

●

● ●

●

● ●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●
●

●
● ●

●
●

● ●

●
●

● ●

●

● ● ● ●

●
●

●

● ● ● ● ● ● ● ●
● ●

●
●

●

● ● ● ●

●

● ●

●

●
●

●
● ● ● ●

●
●

●
●

●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●
●

●

●

● ● ●

●

● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ●

● ● ●

●

● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ●

●

●
●

●

● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ●

● ● ●

●

● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

● ●

●

●
●

●
●

● ● ●

● ●

● ● ●

●

● ●

● ●

● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ● ● ●

●

●

●
●

●

●

●
●

●

●

● ● ●

●

●

●

●

● ● ●

●

● ●
●

● ●

● ●

● ●
● ●

●

●

●

● ●

● ● ●

● ● ●

●

● ● ●

●

● ● ● ●

●

● ● ● ● ● ● ●

● ●

●
●

●

● ●
●

● ●
● ●

●

●

●

●

● ● ●

●

●
●

● ●

●

●
●

●
● ● ● ● ● ● ●

●

● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
●

●

● ● ● ●

●

●

●

●

●

●

● ●

●

●
● ●

●

● ● ●

●

●

●

●

●

● ●
●

●
●

● ●

●
●

●

●

●

●

● ●

● ● ● ● ●

● ● ●
● ● ● ●

●

● ●

●

● ● ●

●

● ● ● ●
●

● ●
● ●

●
●

●

●
●

●
●

●

● ● ●

●
● ●

●

●
●

● ●
●

● ●

●
● ●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ● ● ●

● ●

●
●

●
●

●
●

●
● ●

●

● ●
● ●

●
●

● ●

● ● ●

●

● ● ● ● ● ● ●
●

● ●

● ●
● ● ●

●

● ●

● ● ●

● ●
● ● ● ●

●

● ● ●
● ●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ●

●
●

● ●
● ●

●

● ●

●
●

● ● ● ● ● ●
●

● ●

● ●
● ●

●

●

●

● ● ● ● ●
● ●

● ● ●
● ●

●

●
●

●
●

● ● ●
● ●

● ●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ● ● ●

●

●

● ●

●

●
● ●

● ●
● ●

●

●

● ●
●

●

●

●

●

●
● ●

●

● ●
●

●
●

● ● ● ●
●

● ● ● ● ●

●

●

● ●
●

●

●

●

● ● ●
●

● ●

●
●

●

●

● ●

●
●

●

●

● ● ●

●

●

● ● ● ● ●

●

●

● ●
●

●● ● ●

●

● ● ●

●

●

● ● ● ● ●

●

●

● ●
●

●

●

● ●

●

● ● ●

●

●

● ● ● ● ●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

● ●
●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

● ● ●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

● ●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ● ● ● ●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

● ● ● ● ●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

● ● ●

●

●

●
●

●

●

● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

● ●
● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ●● ●

●

● ●
●

● ●

●
●

●
●

●
● ● ● ●

● ●
●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ●

●

● ● ● ●

●
●

●
●

● ●

●

●

● ●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

● ● ● ●

● ●

●
●

● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●
●

●

● ● ●

●

●

● ● ● ● ● ●● ● ● ● ●

●

● ● ●
● ● ●

●

●

● ● ● ● ● ●

● ● ●

●

●
●

●

●

●

● ● ●

●

●

● ● ● ● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

●

●

● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ●

●

●

●

●

● ●

●

●

●

●

● ● ●

● ●● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●
●

●

● ● ● ● ● ●
● ●

● ● ● ●
●

●

●

● ●
●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ●
● ● ●

● ●
● ● ● ●

●

● ● ● ●

● ●

● ● ●

● ●
● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

●
●

●

●

●

●
●

● ●
●

● ●

●

● ● ● ●

●

●

●

●

●

● ●

●
●

● ● ●
● ●

●

●

● ● ● ●● ●

● ●

●

●

●
●

● ● ● ● ● ●
●

● ● ● ● ●

● ● ● ● ●

●

●
●

●

●

● ●
●

●

● ● ● ● ● ●

● ●

●
●

●

●

●
● ●

● ●

●
●

●

● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

● ● ● ● ● ● ● ●

●

● ●
● ● ● ● ● ●

● ●
● ● ● ● ● ●

● ● ● ●
● ●

●

●

●
●

● ●

●

● ●

●

●

● ●
● ● ● ●

●

●

● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●
●

●
●

● ● ● ● ●
● ●

● ● ●

●

●

●

● ● ●

● ● ● ●
●

● ●
●

●

● ●

●

●

●

●

●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ●
●

● ●

●

● ● ● ● ● ● ●
●

●

●

●

●

●
●

●

● ●
●

●

● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

● ●
●

●

● ● ● ● ● ● ●

●

● ● ●
●

● ● ● ● ● ● ●
●

● ● ● ● ● ●

●

●
●

●
●

●

●

● ● ● ●

● ●

●
●

●

● ● ● ● ●

●

●

● ●

●

●

●

●

● ● ●
●

● ● ● ● ● ●

● ●● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ● ●

●

●

● ● ● ● ●

●

●

● ●
●

●●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

● ● ● ●

● ● ● ●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ● ●

● ● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

● ● ● ●

● ● ●

●
●

●
●

●

● ● ● ● ●

●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ●

●

●

●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

● ● ● ● ● ●
●

●
●

● ● ●

●

●
●

●
● ●

●

●

● ● ● ●
●

●
●

●

●
●

● ● ●

●

●

●

● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

●
●

● ● ●
●

●
●

● ●
●

●

●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ●

●

●
● ●

● ● ● ● ●
● ●

● ● ●
●

● ● ● ● ●

● ●

●

● ●

●
● ●

●
● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●
●

● ● ●

●
●

●

● ●

●

●

● ●

●

●

●

● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●
●

●

●

● ●

●

● ● ●

●

●

●
●

●
●

● ●

●

●

●
●

● ●

●

●

●
● ● ● ●

●

●

● ●
●

● ●
● ●

●

●

● ●

● ●

●

●

● ●

●

● ●

●

●

●

● ● ● ●

●
● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

● ● ● ● ● ●

●

● ● ● ●
●

●

●● ●

●

●

●

●

● ● ● ● ● ●

●

● ● ● ●
●

●

●● ●

●

●

● ●

● ●

●

● ● ●

●

● ● ● ● ● ● ●● ●

●
●

●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ●● ● ● ●

●

●

●

●

●
●

● ● ●

●

● ● ● ● ● ●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●● ● ●

●
●

●

● ●
●

●

●

●

● ● ● ●

●

●

● ●● ●

●

●

●

●

●

●

●

● ●

●

● ● ● ●

●

●

● ●● ● ●

● ●

●

●

●

●

● ●

●

● ● ● ●

●

●

● ●

●

●
● ●

●

●

●

●

●
●

●

●

● ● ● ● ●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ● ● ● ●
●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ● ●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

● ● ●

●
●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ●

●●

● ● ●

●

●

●

●

●
●

●

●

● ● ● ● ●
●

●

●

●

● ●

●

●

●

●

●
● ●

●

● ● ●

●

●

●
●

●

●● ●

●

●

● ● ●

●

●
● ●

● ● ●

●

●

●
●

●

●

●

●
● ●

● ●
●

●
● ● ● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●
● ●

● ●
● ●

●

● ●

●

●
●

●

●
●

●

● ● ●

●

●

●

●

● ●

●

●

● ● ●●

●
● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

● ●

● ● ●

● ●

● ● ●
●

● ●
●

●
●

●

● ●

●

●

●

●

●
●

●
●

● ●
●

● ●
●

●

● ● ● ● ● ● ● ●

● ●

● ●

●
●

●
● ●

●
●

● ● ●
●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●

●

● ● ● ● ● ● ● ● ●
●

● ● ● ● ●

●

● ● ●

●

●
●

● ●

●

●

●

●

●

● ● ● ● ● ●

●
● ●

● ●
● ● ● ●

●
●

● ●
●

●
●

● ● ● ●

●

●
●

●
●

●

● ●

●

●

●
●

● ● ●
●

● ● ● ●

● ●

●
● ●

●
●

● ●
● ●

●

●

● ● ●
●

● ● ●

● ● ●

●

● ●

●
●

●

● ● ●

●

● ● ●

●

● ● ●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

● ● ●

● ● ● ● ● ● ● ●

●

● ● ●
●

● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

● ● ●
● ●

●
●

●
● ● ● ● ● ● ● ●

●

●
●

●

● ● ●
●

●

●
●

● ● ● ● ● ● ● ●
●

● ●
●

●

● ●
● ●

●
● ●

● ● ● ● ● ●
● ●

●
●

●
●

●

●

●

● ● ● ●

●
●

●
● ●

●
● ● ●

●

● ● ● ●

●

●

●

● ●

●

●
●

● ●
● ● ● ●

●

● ● ● ● ●

●

●

●

● ●

●

●

● ● ● ● ●

●

●

●

● ● ● ● ●

●
●

●

●

●
●

●
● ●

●
●

●
●

● ●
● ● ● ● ●

●
●

●

● ●
● ● ● ● ●

● ●
● ● ● ● ●

● ● ●

● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ● ● ●
● ●

●
● ●

●
● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ●

● ●

● ● ●
● ● ● ● ● ●

●
● ● ●

●
●

● ●

●● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●
● ●

●

●
●

● ●
● ●

● ●
● ● ● ●

●
● ●

●

● ●

● ●
● ●

●

● ●
● ●

●
●

●

● ● ● ● ●

●
●

●
● ●

● ●
●

● ●
● ●

●
●

●

●
●

● ●
●

●
● ●

● ● ●
●

●

● ●
● ● ●

●
●

●
● ● ●

●

● ● ●

● ●

●

●

●
●

● ●
● ● ● ●

●
● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●
●

●

●
● ●

●

●
●

●

●
●

● ● ● ● ● ● ● ●

●

●

●
● ●

●

● ●
●

●

●

● ● ● ● ● ● ● ● ●

●

●

● ● ●
●

●

●
●

●
● ● ● ●

● ● ● ● ● ● ● ●
●

●

● ●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●●
●

● ● ●

●

● ●
●

●

● ● ● ● ● ● ● ● ●

●

●
●

●

●

● ●
●

●

● ●

● ● ● ● ● ● ●

● ●

●

●
●

● ●

●

●
●

●

●
●

● ●
●

● ● ●

●

● ● ●

●
● ●

●

● ● ●
●

●
● ● ●

●

● ● ●

● ● ●

●

● ●

●

●
● ●

●

● ●

●

●

●

●
●

●
●

●
●

● ●

●
●

●
●

●
● ●

● ● ● ●
● ●

● ●

●

● ● ● ●

●

●

●

● ● ● ●
● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ● ●
●

●

●
●

● ● ● ● ●

● ●

●

● ● ● ●

●

●
● ●

●
●

● ●

● ● ● ● ●
●

●

●

● ● ● ●

●

●

●
●

●

●

● ● ● ● ● ●

●

● ● ● ●
●

●

●

●

●
● ●

●

● ● ● ●

● ●

●

●

●

● ● ● ● ● ●

●
● ●

●

● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ●

●
● ●

●

● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ●

● ● ●

●

● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ●

●

● ●

●
●

●
●

● ● ● ● ● ●
● ●

●

●

● ●

●

● ● ●
● ●

●

●
● ● ● ● ●

● ●
●

●

● ●

● ●

●
●

●
● ● ●

●

● ●

●

●

● ● ● ● ●
● ● ● ●●

●
● ● ●

●

●
●

●

● ● ● ● ● ●
● ● ● ●

●

● ● ● ● ●

●

●
●

● ●

● ● ● ● ●
● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●
● ● ●

●
●

●

●

●

●

●
● ● ● ●

●

● ●

●

●

●
● ● ●

●
●

●

●

●

●

●
● ● ● ●

●

● ●

●

●

● ● ● ●

●

●

●
●

● ●

● ●
●

●

●
● ●

●

●
●

●
● ● ●

●

●

●

● ● ●

● ●

● ●
● ●

●
●

●

●
●

● ● ●

●
● ●

●

●
● ●

●

● ● ● ●
●

●
● ● ● ● ● ●

●

● ●
●

●
●

● ● ● ● ● ● ● ●

●

●

●
● ●

●

●

● ● ● ● ●
●

● ● ● ● ● ● ● ●

●

● ● ●

●

●

●
●

●
● ● ●

● ● ● ● ● ● ● ●

●

●

● ●

●

●

● ●
●

●

● ●

●

● ●
● ● ●

●

● ● ●

● ● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

● ●

● ●
●

● ●
●

● ●
● ● ● ● ● ● ●

● ●
● ●

●

●
● ● ●

●

● ● ●
●

●

●
●

● ●
●

●
●

●
●

●

●
●

●

●
● ●

● ●
● ●

●
●

●

● ●
● ●

●
●

●

● ●

●

●

●
●

●
●

● ●
● ● ●

●
●

● ●
●

● ●

● ●
●

●

●
●

●
●

● ● ● ●
●

●
●

● ●
●

● ●

● ● ●
● ●

●
● ● ● ● ● ●

●

● ●
● ● ● ● ●

● ●

●
● ●

● ● ● ● ● ●
●

●
● ● ● ● ● ●

●

● ●
● ●

● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ●

●

●

●

●

● ●
●

● ●
● ●

●
● ● ● ● ● ●

● ●

● ●
● ●

● ●

● ●

●
● ● ● ● ●

●

●
● ●

● ●

●

●

● ● ● ●
●

●
●

●
● ● ● ● ●

●
●

●

●
●

● ●
●

●

●

● ●

● ●

●
●

●

● ●

● ●

●

●
● ●

● ●

● ●

●
●

● ●
● ●

●
● ●

●
● ●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●
●

● ●

●
●

● ●
●

●

●
● ● ● ●

● ●
● ●

● ●

●

●

●

● ●
●

●

● ● ●

●

●

● ● ● ● ●

●

●

● ●
●

●

●
● ●

●

● ● ●

●

●

● ● ● ● ●

●

●

● ●
●

●

●
●

●

●

● ● ●

●

●

● ● ● ● ●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●

● ● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ●●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

● ●
●

● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

●
● ●

● ● ●

●

●

● ● ● ● ●

● ● ●

●
●

●

●

●

●

● ● ●

●

●

● ● ● ● ● ●

● ● ●

●

●
●

●

●

●

● ● ●

●

●

● ● ● ● ● ●

● ● ●
●

●

●

●

●
●

● ● ●

●

●

● ● ● ● ● ●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

● ●

● ●
●

●

●
●

● ●

●

●

●

●
●

●

●

● ● ● ●
● ●

●
● ●

● ●

● ●

●

●

●

●
●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●
● ●

● ● ● ● ● ●
● ● ● ● ●

● ● ●

●
● ● ● ●

●
● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

● ●
● ● ● ● ●

● ● ● ●
● ●

●

● ● ●

● ●

●
●

● ● ●
● ●

● ●
● ●

● ●

●

● ● ● ●

● ●

●
● ● ●

●

● ●

● ● ● ● ●

●
●

●

● ● ●

●
●

●
● ●

●
●

● ●
● ● ● ●

● ●

●

● ● ● ●

● ●

● ●

●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ●

● ● ● ●

●
●

●

●
●

●

●
●

●

●

● ● ● ● ● ●

● ● ● ●

● ●
●

● ● ●
●

●
●

●

●
● ● ● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ●

● ● ● ● ● ●

●

●
● ● ● ● ● ●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

●
●

●
● ●

●
●

● ● ● ● ● ●
●

●

● ●
●

●

●

●
●

● ●
●

●
●

● ● ● ● ● ● ● ● ● ●
●

● ●

●

●

●
●

●
●

●

● ● ● ● ● ●
●

●

● ● ●

●
●

●

●

● ●
● ● ● ● ● ● ●

● ● ●
●

●

●
●

●
●

●

●

● ● ● ●

● ● ●
●

●
●

● ●

● ●

● ●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

●
● ● ● ●

●

●

●

● ● ● ● ● ● ● ●

●
●

● ● ●
●

●
● ●

●

●

● ● ● ● ● ● ● ●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ●

●

●

●

●
●

● ● ●

●
●

●
●

●
●

●

●
● ● ●

● ●

●

●
●

●
●

●
●

● ●
●

● ●
●

● ● ●
●

●
●

●

●

●
● ●

● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ●● ●

● ●

●

● ●
●

● ● ● ● ● ●
●

● ● ●
●

●

●
●

● ●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
●

●

● ●

●

●

●

●
● ●

● ●

●

●
●

●
● ●

●
● ●

●

●
● ●

●

●

● ● ●

●
●

● ● ● ● ●

●

●

● ● ●

●

●
●

●

●

●

●
●

● ● ● ●

●

●
●

●

●

●
● ●

● ● ● ● ●
●

● ●
●

●
●

●
●

●
●

●

● ●

●

●

● ● ● ● ● ● ● ●

● ●

●

●

●
●

●
●

●
●

● ●

● ● ● ● ● ● ●

●
●

●

●

● ● ●
●

●
●

● ● ●

● ● ●

● ●

● ●

●
● ● ● ●

● ●

●
● ●

●

●

●●
● ● ●

●
●

● ● ● ● ● ●
●

●

●
● ● ●

●

●

●

● ● ●
● ● ● ● ● ● ● ●

● ●
●

●
●

●

●
●

●

● ● ●
● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●

● ●
●

● ●
● ● ●

● ● ● ●
●

●
●

● ● ●
●

●

● ● ● ● ●
● ● ●

● ● ● ● ●
●

● ●

●
● ● ●

● ● ● ●

●

●

● ●

● ●
● ●

● ● ●
● ● ● ●

●

● ● ● ● ● ●
●

● ●

● ●
●

● ●
● ●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●
●

● ●

●
● ●

● ●
● ●

●
● ● ● ●

● ●

●

● ●
●

●

●●

● ● ● ● ● ●
● ● ● ● ● ●

●
●

● ●
●

● ●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

● ●
●

● ●
●

●

● ● ● ●
●

●

● ●●

●

●

● ●
●

●

●

● ● ● ●

●
●

●

●

●

● ●

●

● ●

●
●

● ● ●

●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

● ● ● ●

● ●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

● ● ●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ●
●

● ● ●

●

● ● ● ● ●

●

● ●

● ●

●

●

● ●
●

● ● ●

●

● ● ● ●
●

●

●

●

●

●
●

●

●

● ●
●

● ● ●

●

● ● ● ●
●

●

●

● ●

●
●

●

●

●
● ● ● ● ●

● ●
●

●

● ●

● ●

● ● ● ●

●
●

●
●

●
●

●
●

●

●

●
● ● ● ●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ● ●

●

●
●

●

●

●

●

●
●

●

● ● ● ●
●

●

●

●
●

●

●
● ●

● ●

●

● ●

●

● ● ● ●
●

●

● ●
●

● ●

●
● ●

● ●

●
●

●

●

● ● ● ●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ● ● ● ●
●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

● ● ● ● ●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

● ● ●
●

● ●

●
● ●

● ●
●

● ●
● ●

●

● ● ● ● ● ● ● ●

●

●

●

●
● ●

● ●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

● ● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

● ●

●

●
●

●

● ●

●

●

● ● ● ● ● ●

●

●

●

●

●
● ●

●

●
●

●
●

● ● ●

●

●

●
●

●

●
●

● ●

● ● ●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●
●

● ● ●
● ● ● ● ● ● ● ● ●

●
●

● ●

●

●●
●

●
●

●
●

● ● ● ● ● ●
●

●

● ●
●

●
●

●

●
● ●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
● ●

● ● ● ● ●

●

●

●

●

● ●

●

● ●

●
●

●
● ●

●

● ● ● ●

●
●

●
●

●

●

●
● ●

● ● ● ● ● ● ●
● ● ● ●

●
● ●

●
●

●

●
● ●

●
●

● ● ●

●

● ● ● ●

● ●

●
●

●
●

●
●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ●

●
●

●
●

●
● ● ● ● ● ●

●

●
●

●
● ● ● ● ●

●
● ●

●
●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ●
●

● ●
●

●
● ● ● ● ● ●

●

●

●
●

● ●
●

●
●

● ● ● ● ●

●
●

● ●
● ●

●

● ●
● ●

●

● ●

●
●

●
●

●

●
●

●

●
● ● ●

● ● ●

●

●

●
●

●
●

●
● ● ● ●

●

●
●

●

● ●

● ●

●

●

●
●

●
●

●

● ●
●

●

● ● ●
●

●
● ●

●

●

●

●

● ●
●

●

● ● ● ● ●

●

●
●

● ● ● ●

● ● ● ●

● ● ●
●

●

●

● ●

● ●
●

●

● ●

●

●

● ● ● ● ● ● ●

●
●

●

●

●
● ●

● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ● ●

contribution experience

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

period

co
nt

rib
ut

io
n

study ● Kosfeld et al.(2009)

(b) Not Interpolated, 20 periods

Figure B.3: Separating Datasets by Periods is Crucial

Table B.1: Subsets by Period

Subset Periods Group Size Subjects

1 10 4, 3 482
2 20 4, 3 362
3 7 10, 40, 100 1210

B.3 Internal Cluster Validation Indices

In Figure B.4, all indices are normalized to the unit interval. Indices to be minimized are
recoded and reported as inverse.
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Figure B.4: Simulated Data: Internal Cluster Validation Indices

The dashed vertical line represents the pick based on the rankvote
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C.1 Replication

Table C.1: Overview of all Tables and Figures in Landes and Posner (2009) dealing with the
Circuit Courts

Analysis of Court of Appeals Voting: 1925 - 2002

Table 11
Court of Appeals Votes by Subject Matter and Ideology for 538
Court of Appeals Judges Only: 1925 - 2002

Figure 3 Total Votes by Year Appointed to the Court of Appeals

Table 12
Fraction of Mixed (M), Conservative (C) and Liberal (L) Votes for 538
U.S. Court of Appeals Judges by President at Time of Appointment: 1925 - 2002

Table 13
Regression Analysis of Court of Appeals Votes: 1925 - 2002
(t-statistics in parentheses)

Table 14 Regression Analysis of Court of Appeals Votes: 1960 - 2002 (t-statistics in parentheses)
Table 15 Circuit Effects on Ideology of Judges’ Votes

Table 16
Regression Analysis of Appellate Court Votes: Current Judges
(t-statistics in parentheses)

C.2 Data Pre-processing

We applied pre-processing tailored to our data. As we use data from Lexis, each opinion
had a specific structure. We extracted the text and split it into parts when encountering
more than a single newline character. Special characters such as ’newline’-characters and
roman numbers were removed.

XXXV
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If a potential heading was found within the text, we excluded it. The reason being
that such a heading would potentially include biasing information such as judge names.
It is especially important to exclude those, as the model could focus on judge names
as a proxy for the directionality as most cases were decided without dissent. This is an
issue in our empirical context because we would like to use the predicted data to analyze
judge characteristics. Including the judges in the prediction would induce mechanical
correlation.

In a second step, we applied regular expressions trying to capture the part of the
opinion in which judges might dissent from the majority. Including a dissenting part
which by its nature goes against the directionality of the majority in the input would not
only add noise but may also lead the classifier to average over the different directions,
leading to an overall worse performance. If we found a dissent, we split off the relevant
paragraph and saved it as an extra entry in the database, marking it as ’dissent’. We
excluded those entries and did not use them as input.
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C.3 All Classifier Input combinations

C.4 Judges

Tables C.2, C.3, C.4 and C.5 present yet another way how to assess the performance of
the best classifier. We predict the directionality of an opinion and use it to calculate
the fraction of conservative or liberal votes by a judge. We split the population of
judges by the party of the appointing president, resulting in four different specifications.
Overall, actual and predicted fractions of votes by the ten highest ranked judge by the
specification are pretty similar and reassures that our classifier performs sufficiently well
for our analysis.

Table C.2: 10 judges with highest fraction of conservative votes, appointed by conservative
presidents

Frac con sum name

0.89 48 Barksdale, Rhesa H.
0.85 69 Loken, James B.
0.84 65 Hansen, David R.
0.83 110 Easterbrook, Frank H.
0.82 28 O’Scannlain, Diaruid F.
0.82 61 Luttig, J. Michael
0.80 93 Edmondson, James L.
0.80 72 Magill, Frank J.
0.80 104 Boudin, Michael
0.80 45 DeMoss, Harold R., Jr.

Note: hand-labelled data

Frac con sum name

0.87 48 Barksdale, Rhesa H.
0.87 69 Loken, James B.
0.83 66 Arnold, Morris S.
0.82 109 Easterbrook, Frank H.
0.80 15 Lewis, Robert E.
0.80 65 Hansen, David R.
0.80 44 DeMoss, Harold R., Jr.
0.79 61 Jones, Edith H.
0.79 103 Boudin, Michael
0.78 97 Higginbotham, Patrick E.

Note: predicted data
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Figure C.1: Various performance metrics for all different combinations tested



XL APPENDIX C. APPENDIX – CHAPTER 3

Table C.3: 10 judges with highest fraction of liberal votes, appointed by conservative presidents

Frac lib sum name

0.71 11 Thomas, Clarence
0.63 44 Hitz, William
0.59 137 Gibbons, John J.
0.58 39 Waddill, Edmund, Jr.
0.58 46 Miller, William Ernest
0.58 73 Mansmann, Carol Los
0.58 43 Pratt, George C.
0.56 56 Roth, Jane R.
0.56 142 Northcutt, Elliott
0.56 107 Lively, Frederick P.

Note: hand-labelled data

Frac lib sum name

0.63 44 Hitz, William
0.62 11 Thomas, Clarence
0.57 119 Wilbur, Curtis D.
0.56 116 Van Orsdel, Josiah A.
0.56 70 Thompson, Joseph W.
0.56 46 Miller, William Ernest
0.56 55 Roth, Jane R.
0.56 142 Northcutt, Elliott
0.56 108 Lively, Frederick P.
0.55 43 Pratt, George C.

Note: predicted data

Table C.4: 10 judges with highest fraction of conservative votes, appointed by liberal presidents

Frac con sum name

0.89 45 Evans, Terence Thomas
0.84 38 Parker, Robert Manley
0.78 69 Williams, Jerre S.
0.76 83 Garza, Reynaldo
0.75 60 Anderson, Robert P.
0.74 27 King, Carolyn Dineen
0.74 78 Mehaffy, Pat
0.73 131 Miller, Wilbur K., Jr.
0.73 37 Murphy, Michael R.
0.73 11 Kravitch, Phyllis A.

Note: hand-labelled data

Frac con sum name

0.82 44 Evans, Terence Thomas
0.81 37 Parker, Robert Manley
0.80 20 Rutledge, Wiley Blount
0.78 27 King, Carolyn Dineen
0.76 82 Garza, Reynaldo
0.75 134 Breyer, Stephen G.
0.74 163 McMillian, Theodore
0.74 19 Cole, Ransey Guy, Jr.
0.74 68 Williams, Jerre S.
0.73 30 Stewart, Carl Edmond

Note: predicted data

C.5 Robustness Checks

Additionally to the histograms found in Figure 3.9, we go on to analyze the EBA’s
statistics on civil cases, displayed by Table C.6a.

For civil cases, we estimated 510 regression models. Figure 3.9a provides information
about the share of regression coefficients that are statistically significant as well as lower
(column 1) or greater (column 2) than zero. There was no coefficient significant for which
the size of at least 50 percent of estimated coefficients lies below zero. By contrast, there
were three coefficients found to be significant while having values larger than zero in at
least 50 percent of the estimated models. These were the fraction of republican senators at
the point of election (92 percent), the fraction of miscellaneous votes (64 percent) as well
as circuit 1 (100 percent). Consequently, Leamer (1985)’s EBA (column 3), defines circuit
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Table C.5: 10 judges with highest fraction of liberal votes, appointed by liberal presidents

Frac lib sum name

0.71 11 Faris, Charles
0.71 11 Thomas, Sidney Runyan
0.67 16 Hough, Charles M.
0.66 24 Russell, Robert L.
0.66 51 Haney, Bert E.
0.65 29 Ferguson, Warren J.
0.63 99 Higginbotham, Aloyisus Leon
0.63 14 Sarokin, Haddon Lee
0.63 22 Strum, Louie
0.62 24 Clark, William

Note: hand-labelled data

Frac lib sum name

0.66 24 Russell, Robert L.
0.63 14 Sarokin, Haddon Lee
0.63 22 Strum, Louie
0.62 27 O’Connell, John J.
0.62 24 Clark, William
0.61 16 Hough, Charles M.
0.61 98 Higginbotham, Aloyisus L.
0.60 150 Spottswood, Robin. W., III
0.60 51 Haney, Bert E.
0.57 31 Lucero, Carlos

Note: predicted data

1 as the only robust variable. Furthermore, Table C.6a includes results from Sala-i-Martin
(1997)’s EBA (columns 4 and 5). Figure 3.9a suggests that a normal distribution does
not sufficiently well approximate the regression coefficients’ distribution. For this reason,
we focus on Sala-i-Martin (1997) EBA results from a model that does make assumptions
about the coefficients’ distributions. As a rule of thumb, those variables for which more
than 90 percent of the regression coefficients’ cumulative distribution is located either
above or below zero, can be interpreted as being robustly connected with the dependent
variable (Hlavac, 2016). For the variables of being black (96 percent), the years of having
served as a district court judge (93 percent), as well as for the fraction of economic votes
(93 percent), more than 90 percent of the cumulative distributions lie below zero. By
contrast, for the variables of being appointed by a conservative president (99 percent),
the fraction of miscellaneous votes (98 percent) as well as for circuit 1 (100 percent),
more than 90 percent of the cumulative distributions lie above zero.

EBA statistics for criminal cases, displayed in Table C.6b, are interpreted below.
Overall, 127 regression models were estimated. Columns 1 and 2 of Table C.6b show the
fraction of the respective regression coefficients that are statistically significant and lower
or greater than zero at the same time. Only for the dummy variable Black, more than
88 percent of the values estimated were significant and smaller than zero. By contrast,
there were three coefficients, Pres (100 percent), circuit 8 (100 percent) and circuit 10
(100 percent) found to be significant and showing more than 50 percent of its values
larger than zero. Table C.6b summarizes results from Leamer (1985)’s EBA (column
3). This test concludes that three variables are found to be robustly connected with the
dependent variable, which are Pres as well as circuits 8 and 10. Furthermore, Table C.6b
includes results from Sala-i-Martin (1997)’s EBA (columns 4 and 5). As was the case with
civil cases, Figure 3.9b suggests that a normal distribution does not fit the coefficients’
distribution very well. For this reason, we focus on EBA results from a parameter-free
model. For Black (99 percent), more than 90 percent of the cumulative distributions lie
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Table C.6: Extreme Bounds Analysis

(a) civil cases

β sign &
< 0

β sign &
> 0

leamer
robust

cdf β <= 0
generic

cdf β > 0
generic

(Intercept) 0.25 0.50 FALSE 0.47 0.53
Pres 0.00 0.92 FALSE 0.01 0.99
SenRep 0.00 0.00 FALSE 0.30 0.70
YrAppt 0.00 0.50 FALSE 0.11 0.89
Gender 0.00 0.00 FALSE 0.33 0.67
Black 0.47 0.00 FALSE 0.96 0.04
DistrictCourt 0.01 0.00 FALSE 0.93 0.07
FracEcon 0.50 0.00 FALSE 0.95 0.05
FracMisc 0.00 0.64 FALSE 0.02 0.98
CircuitVariables1 0.00 1.00 TRUE 0.00 1.00
CircuitVariables2 0.00 0.00 FALSE 0.52 0.48
CircuitVariables3 0.00 0.00 FALSE 0.91 0.09
CircuitVariables4 0.00 0.00 FALSE 0.62 0.38
CircuitVariables5 0.00 0.00 FALSE 0.29 0.71
CircuitVariables6 0.00 0.00 FALSE 0.42 0.58
CircuitVariables7 0.00 0.00 FALSE 0.08 0.92
CircuitVariables8 0.00 0.00 FALSE 0.21 0.79
CircuitVariables9 0.00 0.00 FALSE 0.83 0.17
CircuitVariables10 0.00 0.00 FALSE 0.71 0.29
CircuitVariables11 0.00 0.00 FALSE 0.43 0.57

(b) criminal cases

β sign &
< 0

β sign &
> 0

leamer
robust

cdf β <= 0
generic

cdf β > 0
generic

(Intercept) 0.00 0.50 FALSE 0.14 0.86
Pres 0.00 1.00 TRUE 0.00 1.00
SenRep 0.00 0.00 FALSE 0.70 0.30
YrAppt 0.00 0.00 FALSE 0.44 0.56
Gender 0.00 0.00 FALSE 0.61 0.39
Black 0.88 0.00 FALSE 0.99 0.01
DistrictCourt 0.00 0.00 FALSE 0.78 0.22
CircuitVariables1 0.00 0.00 FALSE 0.06 0.94
CircuitVariables2 0.00 0.00 FALSE 0.60 0.40
CircuitVariables3 0.00 0.00 FALSE 0.71 0.29
CircuitVariables4 0.00 0.00 FALSE 0.46 0.54
CircuitVariables5 0.00 0.00 FALSE 0.25 0.75
CircuitVariables6 0.00 0.00 FALSE 0.49 0.51
CircuitVariables7 0.00 0.00 FALSE 0.07 0.93
CircuitVariables8 0.00 1.00 TRUE 0.01 0.99
CircuitVariables9 0.00 0.00 FALSE 0.33 0.67
CircuitVariables10 0.00 1.00 TRUE 0.01 0.99
CircuitVariables11 0.00 0.00 FALSE 0.14 0.86
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below zero. By contrast, for the variables of being appointed by a conservative president
(Pres) (100 percent), for circuit 1 (94 percent), circuit 7 (93 percent), circuit 8 (99
percent) and circuit 10 (99 percent) more than 90 percent of the cumulative distributions
lie above zero.
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D.1 Figures

As pointed out in the main text, we modify the COMPAS decile cutoffs slightly as they
are calculated against various norm groups - which are unknown to us. The overlap seen
in Figure 4.1 gives us evidence that that more than one norm group was used originally.
Moreover, it is not even clear whether all individuals’ decile scores in the dataset are
calculated against the same norm group. Consequently, we the COMPAS deciles used for
calculations in the main text are not the original COMPAS ones but the ones normed
against the training set. However, in order to show that the renorming impact does not
change our overall findings, we include Figure D.1. For the original COMPAS decile
scores, the false positives for a decile cutoff greater or equal 4 are 534 (modified: 577)
instances while the false negatives would be 93 (modified: 73). For a cutoff 7, the number
of false positives is 184 (modified: 202) and 305 false negatives (modified: 275)

In this section, we also include the results for the alternative cutoff-spacing shown
in Figure D.3 and Figure D.4. In total, we have 3 possible threshold spacings available.
First, the original one by COMPAS imposing a uniform distribution on over the decile
scores. Secondly, one that cuts the probability space uniformly, i.e. the upper bound for
each decile is +10% risk of recidivism compared to the preceding decile. The first decile
would then bin all individuals with an estimated risk of recidivism ∈ [0, 10)%. Finally, we
could do the same for uniform spacing for the estimated COMPAS raw scores. Figure D.2
shows, which values the upper boundaries of the individual deciles would correspond to.
To gain predicted risk of recidivism, we again made use of the sigmoid transformation of
the raw scores as input. To gain the deciles’ raw score boundaries needed to assign the
individuals their corresponding decile score, we used the inverse transformation.

XLV
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Figure D.1: Comparison COMPAS outcome vs. ex-post correction using the original decile
scores.

left panel: original with original COMPAS decile scores, right panel: with ex post correction on original COMPAS
decile scores.
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Figure D.2: Different possible spacings for cutoff.

Panel (a) shows the upper raw-score boundaries for each decile, when the respective spacings for the decile
generation are applied to the data. Panel (b) shows the same but for the the risk of recidivsim lying between 0-1
(after a sigmoid transformation). Hence they may be interpreted as predicted probability of recidivsim.
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Figure D.3: Outcome of COMPAS and ex-post correction when using when using linear raw
score cutoffs.

left panel: original based on COMPAS raw scores, right panel: with ex post correction.
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Figure D.4: Outcome of COMPAS and ex-post correction when using when using linear
probability cutoffs.

left panel: original based on COMPAS raw scores, right panel: with ex post correction.
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Figure D.5: Racial bias in false positives vs. false negatives when using linear raw score
cutoffs.

The figure shows the rate of defendants incarcerated although they do not recidivate two years after release
(left panel) and the rate of defendants released on bail who have recidivated during the next two years (right
panel).Dotted lines: results when using COMPAS predictions, conditional on cutoff chosen by the user (x-axis).
Dashed lines: results when adding the accuracy correction introduced above. Red: black defendants, blue: white
defendants. Other races are excluded.
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Figure D.6: Racial bias in false positives vs. false negatives when using linear probability
cutoffs.

The figure shows the rate of defendants incarcerated although they do not recidivate two years after release
(left panel) and the rate of defendants released on bail who have recidivated during the next two years (right
panel).Dotted lines: results when using COMPAS predictions, conditional on cutoff chosen by the user (x-axis).
Dashed lines: results when adding the accuracy correction introduced above. Red: black defendants, blue: white
defendants. Other races are excluded.
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Figure D.7: Age bias in false positives vs. false negatives when using linear raw score cutoffs.

The figure shows the rate of defendants incarcerated although they do not recidivate two years after release (left
panel) and the rate of defendants released on bail who have recidivated during the next two years (right panel).
Dotted lines: results when using COMPAS predictions, conditional on cutoff chosen by the user (x-axis). Dashed
lines: results when adding the accuracy correction introduced above. Green: ≤ 21, red: (21, 30], blue: (30, 40],
orange: > 40.
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Figure D.8: Age bias in false positives vs. false negatives when using linear probability cutoffs.

The figure shows the rate of defendants incarcerated although they do not recidivate two years after release (left
panel) and the rate of defendants released on bail who have recidivated during the next two years (right panel).
Dotted lines: results when using COMPAS predictions, conditional on cutoff chosen by the user (x-axis). Dashed
lines: results when adding the accuracy correction introduced above. Green: ≤ 21, red: (21, 30], blue: (30, 40],
orange: > 40.
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D.2 Tables

In order to conduct this analysis, we used two data sources. The first is the raw
dataset compiled by ProPublica (Angwin et al., 2013). However, ProPublica’s processed
dataset is often criticized. While they explain how they calculate individual variables,
the supplementary data needed for the calculations is not publicly available. For that
reason, Rudin et al. (2020) have gone to tremendous length, to recollect the necessary
supplementary data. They made that data available to us upon request. Moreover, they
publish the code for generating the final data on their github. Consequently, we used the
raw data by Angwin et al. (2013) and the supplementary data as well as the code by
Rudin et al. (2020). The latter we adapted slightly to fit our needs, e.g. we constructed
the “married”-variable and did not drop all variables from the input data as they did.
The exact build of our final dataset, before we applied any preprocessing to it, may be
found in Table D.1, Table D.2, Table D.3, Table D.4, and Table D.5

Table D.1: Overview over available input variables – “History of Violence”-subscale items

Feature Name Type Values Explanation

p_juv_fel_count Integer count Prior number of felonies committed by per-
son while the individual was still juvenile

p_felprop_violarrest Integer count Prior violent felony property offense arrests
p_murder_arrest Integer count Prior voluntary manslaughter/murder ar-

rests
p_felassault_arrest Integer count Prior felony assault offense arrests (exclud-

ing murder, sex, or domestic violence)
p_misdemassault_arrest Integer count Prior misdemeanor assault offense arrests

(excluding murder, sex, domestic violence)
p_famviol_arrest Integer count Prior family violence arrests
p_sex_arrest Integer count Prior misdemeanor assault offense arrests

(excluding murder, sex, domestic violence)
p_famviol_arrest Integer count Prior family violence arrests
p_weapons_arrest Integer count Prior weapons offense arrest History of Non-

compliance Subscale Items

https://github.com/beauCoker/age_of_unfairness
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Table D.2: Overview over available input variables – “History of Criminal Involvement”-
subscale items

Feature Name Type Values Explanation

p_charge Integer Count Prior number of charges
p_arrest Integer Count Prior number of arrests
p_jail30 Integer Count Prior number of times sentenced to jail 30

days or more
p_prison30 Integer Count Prior number of times sentenced to prison

30 days or more
p_prison Integer Count Prior number of times sentenced to prison
p_probation Integer Count Prior number of times sentenced to proba-

tion as an adult
is_misdem Integer [0,1] If all charges connected to the current of-

fenses are only misdemeanors = 1, other-
wise 0 (i.e. at least one charge is in regards
to a felony)

Table D.3: Overview over available input variables – “History of Noncompliance”-subscale
items

Feature Name Type Values Explanation

p_n_on_probation Integer Count Prior number of offenses while on probation
p_current_on_probation Boolean [0,1] Current offense committed while on proba-

tion
p_prob_revoke Integer Count Number of times probation terms were vio-

leted or probation was revoked
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Table D.4: Overview over available input variables – t’t’Characteristics”

Feature Name Type Values Explanation

uid String – Unique identifier; Concatination of id and
screening date

first_offense_date String – Date of first offense commited
current_offense_date String – Date of the current offense in question for

which COMPAS screening took place
offenses_within_30 Integer Count Count all offenses that occured up unitl 30

days prior to screening date
p_felony_count_person Integer count Prior number of felonies committed by per-

son
p_misdem_count_person Integer count Prior number of misdemeanours committed

by person
p_charge_violent Integer Count Number of charges against individual falling

under violent crimes/offenses
p_current_age Integer Age Age in years of the individual when commit-

ting the offense
p_age_first_offense Integer Age Age when committing the first offense

(static)
is_married Boolean [0,1] baseline is “single”
is_divorced Boolean [0,1] Baseline is “single”
is_widowed Boolean [0,1] Baseline is “single”
is_separated Boolean [0,1] Baseline is “single”
is_sig_other Boolean [0,1] Baseline is “single”
is_marit_unknown Boolean [0,1] Baseline is “single”
sex string [Female, Male] Gender
race_black Integer [0,1] Individual is black = 1 (baseline is

race_other)
race_white Integer [0,1] Individual is white = 1 (baseline is

race_other)
race_hispanic Integer [0,1] Individual is hispanic = 1 (baseline is

race_other)
race_asian Integer [0,1] Individual is asian = 1 (baseline is

race_other)
race_native Integer [0,1] Individual is native = 1 (baseline is

race_other)
crim_inv_arrest Integer Count “Criminal Involvement"-scale calculated

from features (using arrests) as outlined.
Scale is a simple sum of count-based-
features. Uses p_charge

crim_inv_charge Integer Count “Criminal Involvement"-scale calculated
from features (using charges) as outlined.
Scale is a simple sum of Count-based
features. Uses p_arrest

vio_hist Integer Count “History of Violence"-scale calculated from
features as outlined. Scale is simple sum of
count-based features

history_noncomp Integer Count “History of Noncompliance"-scale calculated
from features as outlined. Scale is simple
sum of count-based features
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Table D.5: Overview over target characteristics

Feature Name Type Values Explanation

Risk of Failure to Appear_score_text String low, medium, high Formed from decile score. Medium and high necessitate special
consideration for incarceration decision

Risk of Failure to Appear_decile_score Integer 1-10 Normed raw score. Normed by underlying data we do not have
but could approximate. The normalization is done within the
county and within age and gender as well as race groups.

Risk of Failure to Appear_raw_score Integer 11-48 COMPAS score Failure to appear
Risk of Recidivism_score_text String low, medium, high Formed from decile score. Medium and high necessitate special

consideration for incarceration decision
Risk of Recidivism_decile_score Integer 1-10 Normed raw score. Normed by underlying data we do not have

but could approximate. The normalization is done within the
county and within age and gender as well as race groups.

Risk of Recidivism_raw_score Double (-3) - (2.36) COMPAS score “Risk of Recidivism”
Risk of Violence_score_text String low, medium, high Formed from decile score. Medium and high necessitate special

consideration for incarceration decision
Risk of Violence_decile_score Integer 1-10 Normed raw score. Normed by underlying data we do not have

but could approximate. The normalization is done within the
county and within age and gender

as well as race groups. Risk of Violence_raw_score Double (-4.63) - (0.5) COMPAS score “Risk of Violence”
recid Integer [0,1] Individual is recidivist within two years after screening = 1
recid_violent Integer [0,1] Individual is violent recidivist within two years after screening

= 1
recid_proPub Integer [0,1] Individual is recidivist within two years after screening = 1 as

calculated by ProPublica
recid_violent_proPub Integer [0,1] Individual is violent recidivist within two years after screening

= 1 as calculated by ProPublica
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E.1 Figures

Aggregate Overview
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(b) Results for target age

Notes: The figure shows the boxplots for the extended ρ of all models estimated for a given combination of feature types used
and way of input, i.e., baseline, cumulated, or stacked.

Figure E.1: F1-Score for all feature type-sets for an input instance length of 100 characters.
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Notes: The figure shows the boxplots for the extended ρ of all models estimated for a given combination of feature types used
and way of input, i.e., baseline, cumulated, or stacked.

Figure E.2: Extended Spearman correlations for all feature type-sets for an input instance
length of 100 characters.
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Figure E.3: F1-Score for all feature type-sets for an input instance length of 250 characters
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Notes: The figure shows the boxplots for the extended ρ of all models estimated for a given combination of feature types used
and way of input, i.e., baseline, cumulated, or stacked.

Figure E.4: Extended Spearman correlation for all feature type sets for an input instance
length of 250 characters.
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Author-Level Analysis
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(b) Author-level errors for target age.

Notes: The figure shows the results when using the full feature set as cumulated input. Each author is a unique instance on the
x-axis. The proportion per author is then shown as the y-value. The authors are sorted by their appearance in the respective
subsets (i.e., 50, 150, 500, 1000) and according to the proportion of errors within those subsets. The result per author shows
the result over all subsets.

Figure E.5: Author-Level Results for the Full feature set with an input instance length of 100
characters.
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(b) Author-level errors for target age.

Notes: The figure shows the results when using the full feature set as cumulated input. Each author is a unique instance on the
x-axis. The proportion per author is then shown as the y-value. The authors are sorted by their appearance in the respective
subsets (i.e., 50, 150, 500, 1000) and according to the proportion of errors within those subsets. The result per author shows
the result over all subsets.

Figure E.6: Author-Level Results for the Full feature set in an input instance length of 100
characters.
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(b) Author-level errors for target age.

Notes: The figure shows the results when using the full feature set as cumulated input. Each author is a unique instance on the
x-axis. The proportion per author is then shown as the y-value. The authors are sorted by their appearance in the respective
subsets (i.e., 50, 150, 500, 1000) and according to the proportion of errors within those subsets. The result per author shows
the result over all subsets.

Figure E.7: Author-Level Results for the full feature set with an input instance length of 100
characters - ASIS-CHAR-LEMMA-WORD.
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(b) Author-level errors for target age.

Notes: The figure shows the results when using the full feature set as cumulated input. Each author is a unique instance on the
x-axis. The proportion per author is then shown as the y-value. The authors are sorted by their appearance in the respective
subsets (i.e., 50, 150, 500, 1000) and according to the proportion of errors within those subsets. The result per author shows
the result over all subsets.

Figure E.8: Author-Level Results for the full feature set in an input instance length of 100
characters - ASIS-CHAR-LEMMA-WORD.
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Notes: The figure shows confusion matrices for the results produced by using the full feature set as cumulated input on an input
instance length of 100 characters. The matrix for the respective set of authors is calculated by looking at the respective set in
isolation.

Figure E.9: Confusion matrices for target gender with an input instance length 100 characters
- all feature types.
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Notes: The figure shows confusion matrices for the results produced by using the full feature set as cumulated input on an input
instance length of 250 characters. The matrix for the respective set of authors is calculated by looking at the respective set in
isolation.

Figure E.10: Confusion matrices for target gender with an input instance length of 250
characters - all feature types.
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(b) Below random guess accuracy (matrix-wise normalization).

Notes: The figure shows confusion matrices for the results produced by using the full feature set as cumulated input on an input
instance length of 100 characters. The matrix for the respective set of authors is calculated by looking at the respective set in
isolation.

Figure E.11: Confusion matrices for target age with an input instance length 100 characters -
all feature types.
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Notes: The figure shows confusion matrices for the results produced by using the full feature set as cumulated input on an input
instance length of 250 characters. The matrix for the respective set of authors is calculated by looking at the respective set in
isolation.

Figure E.12: Confusion matrices for target age with an input instance length of 250 characters
- all feature types.
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Notes: The figure shows confusion matrices for the results produced by using using the teh feature types ASIS, CHAR, LEMMA,
WORD as cumulated input on an input instance length of 100 characters. The matrix for the respective set of authors is
calculated by looking at the respective set in isolation.

Figure E.13: Confusion matrices for target gender with an input instance length of 100
characters - ASIS-CHAR-LEMMA-WORD.
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(b) Below random guess accuracy (matrix-wise normalization).

Notes: The figure shows confusion matrices for the results produced by using the teh feature types ASIS, CHAR, LEMMA, WORD
as cumulated input on an input instance length of 250 characters. The matrix for the respective set of authors is calculated by
looking at the respective set in isolation.

Figure E.14: Confusion matrices for target gender with an input instance length of 250
characters - ASIS-CHAR-LEMMA-WORD.
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(b) Below random guess accuracy (matrix-wise normalization).

Notes: The figure shows confusion matrices for the results produced by using using the teh feature types ASIS, CHAR, LEMMA,
WORD as cumulated input on an input instance length of 100 characters. The matrix for the respective set of authors is
calculated by looking at the respective set in isolation.

Figure E.15: Confusion matrices for target age with an input instance length of 100 characters
- ASIS-CHAR-LEMMA-WORD.
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(b) Below random guess accuracy (matrix-wise normalization).

Notes: The figure shows confusion matrices for the results produced by using the teh feature types ASIS, CHAR, LEMMA, WORD
as cumulated input on an input instance length of 250 characters. The matrix for the respective set of authors is calculated by
looking at the respective set in isolation.

Figure E.16: Confusion matrices for target age with an input instance length of 250 characters
- ASIS-CHAR-LEMMA-WORD.
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E.2 Tables

Dataset Statistics

Table E.1: Statistics of the Dataset

avg_instance avg_tweet avg_tweet_per_instance
Target age gender age gender age gender

No. of Characters No. of Authors

100

50 159.94 162.93 109.21 111.71 1.46 1.46
150 160.56 162.01 107.39 112.88 1.50 1.44
500 160.83 161.64 109.30 111.84 1.47 1.45
1000 160.04 160.92 109.26 111.80 1.46 1.44

250

50 313.46 315.85 109.39 112.14 2.87 2.82
150 313.21 315.31 107.38 112.75 2.92 2.80
500 313.21 314.61 109.06 111.62 2.87 2.82
1000 313.33 314.29 109.23 111.81 2.87 2.81

500

50 565.52 568.76 108.88 112.09 5.19 5.07
150 565.67 568.60 107.37 112.89 5.27 5.04
500 566.35 567.42 109.17 111.80 5.19 5.08
1000 566.01 567.42 109.16 111.92 5.19 5.07

Table E.2: Statistics of the Dataset

avg_instance avg_tweet avg_tweet_per_instance
Target age gender age gender age gender

No. of Characters No. of Authors

100

50 161.16 163.39 110.30 112.38 1.46 1.45
150 160.11 162.66 107.11 112.99 1.49 1.44
500 160.73 161.51 109.04 111.86 1.47 1.44
1000 160.10 161.06 109.31 111.83 1.46 1.44

250

50 312.62 316.00 108.98 112.14 2.87 2.82
150 313.13 316.26 107.63 113.00 2.91 2.80
500 313.25 314.76 109.22 111.64 2.87 2.82
1000 313.29 314.28 109.07 111.87 2.87 2.81

500

50 565.07 568.36 109.31 110.78 5.17 5.13
150 566.11 568.92 107.51 112.82 5.27 5.04
500 565.73 567.60 109.05 111.69 5.19 5.08
1000 566.23 567.34 109.21 111.85 5.18 5.07
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Table E.3: Statistics of the Dataset

avg_instance avg_tweet avg_tweet_per_instance
Target age gender age gender age gender

No. of Characters No. of Authors

100

50 159.93 162.32 109.42 111.75 1.46 1.45
150 161.05 162.54 107.75 112.95 1.49 1.44
500 160.74 161.81 109.27 111.92 1.47 1.45
1000 160.09 161.03 109.28 111.96 1.47 1.44

250

50 313.19 315.01 108.30 111.55 2.89 2.82
150 313.55 315.26 107.24 112.85 2.92 2.79
500 313.39 314.64 108.98 111.86 2.88 2.81
1000 313.23 314.55 109.23 111.85 2.87 2.81

500

50 566.58 569.37 109.40 112.97 5.18 5.04
150 566.12 568.69 107.69 112.78 5.26 5.04
500 566.17 567.78 109.24 111.45 5.18 5.09
1000 566.14 567.36 109.12 111.69 5.19 5.08
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Baseline

Minimum of Characters: 100

Table E.4: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 100 characters using a feature-wise model on the individual feature types

Target Gender
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST

2 0.5886 0.5711 0.5455 0.4567 0.5639 0.5594 0.5387 0.4881
2-3 0.6071 0.5727 0.5992 0.5881 0.5358 0.4757 0.5549 0.5379
2-3-4 0.6354 0.6251 0.5693 0.5099 0.5521 0.5267 0.5496 0.5167
2-3-4-5 0.6451 0.6383 0.6076 0.5975 0.5714 0.5708 0.5554 0.5312

CHAR

2 0.7080 0.7080 0.6725 0.6724 0.6152 0.6152 0.6053 0.6047
2-3 0.7555 0.7555 0.7127 0.7127 0.6560 0.6560 0.6389 0.6380
2-3-4 0.7656 0.7656 0.7210 0.7210 0.6624 0.6624 0.6437 0.6423
2-3-4-5 0.7650 0.7649 0.7201 0.7199 0.6617 0.6617 0.6434 0.6420

ASIS

2 0.7362 0.7360 0.6989 0.6982 0.6331 0.6331 0.6212 0.6212
2-3 0.7683 0.7643 0.7351 0.7350 0.6662 0.6661 0.6475 0.6462
2-3-4 0.7799 0.7787 0.7403 0.7403 0.6711 0.6710 0.6526 0.6525
2-3-4-5 0.7883 0.7878 0.7403 0.7402 0.6706 0.6704 0.6523 0.6523

POS
1 0.5671 0.5450 0.5513 0.5313 0.5446 0.5425 0.5463 0.5451
1-2 0.5950 0.5867 0.5912 0.5912 0.5622 0.5621 0.5611 0.5584
1-2-3 0.6086 0.6028 0.6005 0.6003 0.5711 0.5711 0.5697 0.5682

TAG
1 0.5895 0.5714 0.5745 0.5740 0.5500 0.5496 0.5514 0.5498
1-2 0.6293 0.6291 0.6117 0.6112 0.5744 0.5743 0.5709 0.5700
1-2-3 0.6372 0.6343 0.6213 0.6213 0.5820 0.5820 0.5787 0.5779

DEP
1 0.5752 0.5612 0.5676 0.5672 0.5404 0.5389 0.5423 0.5413
1-2 0.5951 0.5926 0.5864 0.5738 0.5569 0.5528 0.5585 0.5553
1-2-3 0.6070 0.5987 0.6036 0.6025 0.5670 0.5670 0.5645 0.5615

LEMMA
1 0.6719 0.6653 0.6351 0.6273 0.5994 0.5968 0.5901 0.5843
1-2 0.6958 0.6957 0.6465 0.6463 0.6019 0.5985 0.5930 0.5860

WORD
1 0.6371 0.6258 0.6271 0.6270 0.5865 0.5834 0.5817 0.5760
1-2 0.6490 0.6485 0.6295 0.6295 0.5905 0.5901 0.5847 0.5809

NUM 1 0.5573 0.5551 0.5437 0.4778 0.5327 0.5300 0.5273 0.4637
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Table E.5: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 100 characters using a feature-wise model on the individual feature types

Target Gender
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.1683 0.2888 -0.0348 -0.0259 -0.0312 -0.0785
2-3 0.0446 0.0485 0.0274 0.0075 0.1002 0.0619
2-3-4 0.0159 0.0471 0.0272 0.0942 0.0405 -0.0265
2-3-4-5 -0.0486 -0.0061 -0.0090 -0.0183 0.0560 0.0661

CHAR

2 0.0011 0.0221 0.0639 0.0061 -0.0048 -0.0542
2-3 0.0047 -0.0198 -0.0146 -0.0051 0.0206 -0.0095
2-3-4 -0.0036 -0.0135 0.0033 -0.0017 0.0115 0.0061
2-3-4-5 0.0150 0.0178 0.0008 -0.0004 0.0053 0.0064

ASIS

2 0.0423 0.0470 0.0020 0.0311 -0.0260 0.0004
2-3 0.0282 -0.0056 0.0137 0.0174 0.0192 0.0201
2-3-4 0.0117 0.0059 -0.0096 -0.0011 -0.0056 0.0001
2-3-4-5 0.0034 0.0093 -0.0170 0.0070 -0.0004 -0.0125

POS
1 0.2719 0.2719 -0.0719 -0.0719 -0.2421 -0.2421
1-2 0.2268 0.2242 0.0524 0.0709 0.1519 0.1775
1-2-3 0.1066 0.0676 -0.1519 -0.1720 0.0127 0.0380

TAG
1 -0.0293 -0.0293 0.0516 0.0516 -0.0968 -0.0968
1-2 0.1570 0.1739 -0.1257 -0.1234 0.0425 0.0401
1-2-3 -0.0161 -0.0200 0.0004 0.0193 0.0080 0.0402

DEP
1 0.2392 0.2392 -0.0207 -0.0207 0.0386 0.0386
1-2 0.1057 0.1265 0.0345 0.0221 -0.0154 0.0064
1-2-3 0.0077 0.0151 -0.0730 -0.0300 0.0747 0.0976

LEMMA
1 0.0673 -0.0261 0.0038 0.0636 -0.0132 0.0167
1-2 0.0293 0.0076 -0.0149 0.0084 -0.0139 -0.0066

WORD
1 0.0276 0.0771 0.0105 0.0330 0.0067 0.0167
1-2 0.0128 -0.0301 -0.0266 0.0056 0.0721 0.0288

NUM 1 -0.1333 -0.1333 -0.0167 -0.0167 -0.4833 -0.4833
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Table E.6: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 100 characters using a feature-wise model on the individual feature types

Target Age
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST

2 0.3648 0.3249 0.2771 0.2136 0.2645 0.2207 0.2114 0.1008
2-3 0.3689 0.3502 0.3350 0.3266 0.2162 0.1061 0.2082 0.0899
2-3-4 0.4086 0.3943 0.3516 0.3444 0.2712 0.2120 0.2197 0.1133
2-3-4-5 0.4309 0.4286 0.3414 0.3188 0.3018 0.2560 0.2789 0.2226

CHAR

2 0.5608 0.5608 0.4483 0.4443 0.3500 0.3291 0.2982 0.2860
2-3 0.6430 0.6446 0.5326 0.5312 0.4334 0.4298 0.3819 0.3715
2-3-4 0.6637 0.6642 0.5473 0.5421 0.4485 0.4477 0.4163 0.4118
2-3-4-5 0.6649 0.6651 0.5529 0.5486 0.4474 0.4439 0.4124 0.4020

ASIS

2 0.6257 0.6254 0.4874 0.4846 0.3811 0.3769 0.3169 0.3009
2-3 0.7053 0.7051 0.5598 0.5574 0.4483 0.4453 0.3982 0.3974
2-3-4 0.7173 0.7172 0.5747 0.5714 0.4639 0.4618 0.4147 0.3992
2-3-4-5 0.6978 0.6987 0.5748 0.5724 0.4673 0.4648 0.4229 0.4183

POS
1 0.2464 0.1722 0.2145 0.1158 0.2197 0.1573 0.2041 0.1218
1-2 0.3575 0.3446 0.2257 0.1213 0.2553 0.2194 0.2176 0.1414
1-2-3 0.4003 0.3939 0.2650 0.2222 0.2674 0.2358 0.2331 0.1823

TAG
1 0.2639 0.1977 0.2155 0.1222 0.2349 0.1735 0.2121 0.1724
1-2 0.4195 0.4177 0.2970 0.2637 0.2743 0.2396 0.2299 0.1810
1-2-3 0.4483 0.4456 0.3425 0.3341 0.2540 0.2068 0.2437 0.1885

DEP
1 0.3002 0.2681 0.2408 0.2056 0.2166 0.1777 0.2151 0.1850
1-2 0.3638 0.3521 0.2843 0.2659 0.2329 0.1688 0.2283 0.1882
1-2-3 0.3957 0.3920 0.3082 0.2939 0.2669 0.2493 0.2419 0.2160

LEMMA
1 0.4560 0.4543 0.3269 0.3092 0.2559 0.2191 0.2504 0.2193
1-2 0.4872 0.4864 0.3484 0.3368 0.2939 0.2835 0.2367 0.1861

WORD
1 0.4193 0.4139 0.3010 0.2767 0.2441 0.2052 0.2244 0.1605
1-2 0.4274 0.4249 0.3169 0.3090 0.2569 0.2326 0.2386 0.1985

NUM 1 0.2694 0.2420 0.2263 0.1991 0.2260 0.1932 0.2111 0.2053
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Table E.7: Stability of feature relevance for the prediction of age on a minimal input instance
length of 100 characters using a feature-wise model on the individual feature types

Target Age
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0348 -0.0149 0.0099 0.0315 -0.0141 0.0174
2-3 -0.0051 -0.0070 -0.0063 -0.0108 0.0126 0.0458
2-3-4 -0.0033 0.0366 0.0245 -0.0002 0.0020 0.0207
2-3-4-5 0.0213 0.0143 -0.0097 -0.0042 -0.0200 -0.0321

CHAR

2 0.0052 0.0143 0.0144 -0.0001 0.0159 0.0310
2-3 0.0018 -0.0006 -0.0138 0.0003 -0.0044 0.0119
2-3-4 0.0129 -0.0036 0.0038 -0.0071 0.0016 0.0145
2-3-4-5 0.0123 0.0102 0.0071 0.0085 0.0051 0.0107

ASIS

2 0.0063 0.0106 -0.0010 -0.0015 0.0112 -0.0048
2-3 0.0066 0.0100 – -0.0011 -0.0002 0.0086
2-3-4 -0.0014 0.0033 0.0075 0.0063 0.0072 0.0010
2-3-4-5 0.0099 0.0034 0.0036 0.0036 0.0101 0.0097

POS
1 -0.0312 -0.0312 0.0375 0.0375 0.1063 0.1063
1-2 0.0078 0.0058 0.0881 0.0757 0.1056 0.0972
1-2-3 0.0443 0.0367 0.0603 0.0675 0.1082 0.1032

TAG
1 0.1134 0.1134 -0.0600 -0.0600 -0.0528 -0.0528
1-2 0.0647 0.0702 0.0694 0.0775 0.0347 0.0494
1-2-3 0.0339 0.0345 0.0370 0.0329 0.0003 0.0022

DEP
1 0.0666 0.0860 -0.0819 -0.0819 -0.0113 -0.0113
1-2 0.0529 -0.0187 0.0834 0.0891 0.0540 0.0571
1-2-3 -0.0014 -0.0147 0.0361 0.0407 0.0603 0.0692

LEMMA
1 0.0114 0.0114 -0.0066 0.0111 -0.0040 -0.0182
1-2 -0.0089 0.0103 0.0012 0.0139 -0.0251 -0.0304

WORD
1 0.0266 0.0294 0.0270 0.0137 0.0046 -0.0065
1-2 -0.0109 0.0096 0.0032 -0.0119 -0.0010 0.0006

NUM 1 -0.0467 -0.0467 -0.2500 -0.2500 -0.1267 -0.1267



LXXVIII APPENDIX E. APPENDIX – CHAPTER 5

Minimum of Characters: 250

Table E.8: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 250 characters using a feature-wise model on the individual feature types

Target Gender
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST

2 0.6002 0.5633 0.6026 0.6026 0.5649 0.5558 0.5543 0.5311
2-3 0.6261 0.6071 0.5801 0.5326 0.5771 0.5764 0.5541 0.5267
2-3-4 0.6586 0.6551 0.6147 0.5988 0.5624 0.5471 0.5583 0.5314
2-3-4-5 0.6711 0.6692 0.6203 0.6062 0.5733 0.5666 0.5675 0.5537

CHAR

2 0.7495 0.7480 0.7247 0.7242 0.6605 0.6603 0.6300 0.6218
2-3 0.8031 0.8020 0.7781 0.7781 0.7125 0.7122 0.6793 0.6774
2-3-4 0.8087 0.8077 0.7905 0.7903 0.7161 0.7137 0.6895 0.6880
2-3-4-5 0.8178 0.8178 0.7804 0.7797 0.7210 0.7201 0.6897 0.6886

ASIS

2 0.7844 0.7841 0.7561 0.7556 0.6812 0.6812 0.6587 0.6575
2-3 0.8256 0.8243 0.7964 0.7958 0.7249 0.7240 0.6905 0.6893
2-3-4 0.8397 0.8397 0.8076 0.8068 0.7327 0.7320 0.7004 0.6996
2-3-4-5 0.8383 0.8379 0.8106 0.8105 0.7335 0.7332 0.7013 0.7007

POS
1 0.5967 0.5923 0.5683 0.5643 0.5639 0.5639 0.5613 0.5609
1-2 0.6294 0.6226 0.6046 0.6020 0.5863 0.5840 0.5729 0.5623
1-2-3 0.6499 0.6486 0.6162 0.6081 0.6003 0.5997 0.5876 0.5823

TAG
1 0.6276 0.6267 0.5856 0.5853 0.5700 0.5648 0.5643 0.5643
1-2 0.6619 0.6619 0.6324 0.6306 0.6049 0.6039 0.5879 0.5829
1-2-3 0.6770 0.6769 0.6562 0.6546 0.6141 0.6139 0.6029 0.6020

DEP
1 0.5978 0.5962 0.5812 0.5811 0.5586 0.5557 0.5572 0.5572
1-2 0.6192 0.6125 0.6050 0.5998 0.5802 0.5800 0.5709 0.5642
1-2-3 0.6309 0.6297 0.6249 0.6211 0.5904 0.5875 0.5857 0.5849

LEMMA
1 0.7198 0.7179 0.7046 0.7038 0.6504 0.6479 0.6349 0.6324
1-2 0.7388 0.7385 0.7137 0.7136 0.6554 0.6554 0.6408 0.6385

WORD
1 0.6966 0.6961 0.6869 0.6869 0.6354 0.6352 0.6294 0.6292
1-2 0.7011 0.7000 0.6914 0.6912 0.6409 0.6396 0.6313 0.6298

NUM 1 0.5760 0.5527 0.5416 0.5414 0.5478 0.5145 0.5431 0.5431
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Table E.9: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 250 characters using a feature-wise model on the individual feature types

Target Gender
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0390 0.1945 0.0539 0.0938 0.2805 0.2587
2-3 0.1318 0.1969 0.0012 0.1452 0.1234 0.1113
2-3-4 0.0671 0.1703 0.0232 0.0109 0.1353 0.0908
2-3-4-5 0.0076 0.0844 0.0169 0.0175 0.0812 0.0675

CHAR

2 0.1271 -0.0684 0.0223 0.0369 0.0445 0.0490
2-3 0.0599 -0.0195 0.0212 0.0012 0.0459 0.0043
2-3-4 0.0587 -0.0164 0.0135 0.0124 0.0036 0.0127
2-3-4-5 0.0421 0.0059 0.0037 0.0049 0.0188 0.0229

ASIS

2 0.1042 0.0513 0.0164 0.0274 0.0377 0.0374
2-3 0.0581 0.0135 0.0202 0.0295 0.0128 -0.0127
2-3-4 0.0456 0.0216 0.0098 0.0092 0.0194 0.0276
2-3-4-5 0.0399 0.0271 0.0061 0.0113 0.0221 0.0118

POS
1 -0.0754 -0.0754 0.3930 0.3930 0.4070 0.4070
1-2 -0.2452 -0.1970 -0.0245 -0.0245 0.2085 0.2085
1-2-3 -0.0732 -0.1022 -0.0618 -0.0595 -0.0122 -0.0147

TAG
1 -0.0482 0.0273 0.2040 0.2040 0.0438 0.0438
1-2 0.0165 0.0799 -0.0851 -0.1044 -0.0175 -0.0084
1-2-3 0.0278 — -0.0074 0.0033 0.0023 -0.0284

DEP
1 -0.1435 -0.2558 -0.0789 -0.0943 0.2496 0.2496
1-2 0.0537 -0.0038 -0.0292 -0.0330 -0.0715 -0.0513
1-2-3 0.0377 -0.0120 -0.1215 -0.0453 0.0575 0.0265

LEMMA
1 -0.0620 -0.0509 0.0051 -0.0123 -0.0430 0.0474
1-2 -0.0081 0.0508 0.0033 0.0062 -0.0042 0.0166

WORD
1 -0.0846 -0.0162 0.0407 0.0240 0.0229 0.0253
1-2 -0.0132 0.0485 0.0153 0.0136 0.0064 -0.0079

NUM 1 0.6167 0.6167 0.1333 0.1333 -0.2333 -0.2333
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Table E.10: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 250 characters using a feature-wise model on the individual feature types

Target Age
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST

2 0.3910 0.3670 0.2839 0.2198 0.2414 0.1601 0.2796 0.2179
2-3 0.4489 0.4159 0.3855 0.3728 0.2272 0.1273 0.3201 0.3105
2-3-4 0.4944 0.4925 0.4022 0.3925 0.3426 0.3169 0.3057 0.2629
2-3-4-5 0.4819 0.4712 0.4192 0.4129 0.3373 0.3023 0.3209 0.2863

CHAR

2 0.6413 0.6425 0.5527 0.5512 0.4262 0.4188 0.3499 0.3432
2-3 0.7199 0.7226 0.6369 0.6363 0.5148 0.5104 0.4514 0.4513
2-3-4 0.7341 0.7347 0.6701 0.6691 0.5333 0.5311 0.4779 0.4728
2-3-4-5 0.7422 0.7438 0.6661 0.6656 0.5377 0.5391 0.4825 0.4777

ASIS

2 0.6750 0.6803 0.5870 0.5838 0.4627 0.4534 0.4018 0.3890
2-3 0.7761 0.7761 0.6804 0.6799 0.5450 0.5430 0.4757 0.4728
2-3-4 0.7803 0.7813 0.6948 0.6938 0.5562 0.5544 0.4863 0.4742
2-3-4-5 0.7962 0.7968 0.6916 0.6913 0.5535 0.5516 0.4938 0.4870

POS
1 0.3297 0.2573 0.2708 0.1954 0.2242 0.1283 0.2097 0.1190
1-2 0.3974 0.3730 0.2731 0.1993 0.2838 0.2495 0.2642 0.2162
1-2-3 0.4580 0.4464 0.3689 0.3583 0.3194 0.3139 0.2485 0.1735

TAG
1 0.3453 0.3081 0.2867 0.2571 0.2193 0.1308 0.2345 0.1638
1-2 0.5071 0.5035 0.3718 0.3570 0.2935 0.2649 0.2798 0.2444
1-2-3 0.5225 0.5192 0.3947 0.3762 0.3386 0.3307 0.3024 0.2927

DEP
1 0.3448 0.3216 0.2452 0.1760 0.2208 0.1383 0.2104 0.1335
1-2 0.4338 0.4237 0.3042 0.2536 0.2771 0.2313 0.2341 0.1972
1-2-3 0.4690 0.4677 0.3723 0.3681 0.3002 0.2653 0.2440 0.1781

LEMMA
1 0.5379 0.5390 0.4516 0.4475 0.3518 0.3446 0.3077 0.2764
1-2 0.5433 0.5426 0.4860 0.4843 0.3675 0.3609 0.3102 0.3018

WORD
1 0.4998 0.5014 0.4085 0.4068 0.3011 0.2568 0.2697 0.2543
1-2 0.5093 0.5080 0.4236 0.4178 0.3410 0.3344 0.3027 0.2893

NUM 1 0.2595 0.2423 0.2634 0.2383 0.2661 0.2353 0.2106 0.1918
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Table E.11: Stability of feature relevance for the prediction of age on a minimal input instance
length of 250 characters using a feature-wise model on the individual feature types

Target Age
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0416 0.1495 0.0072 0.0051 0.0153 0.0489
2-3 -0.0223 0.0252 -0.0132 0.0114 0.0086 -0.0058
2-3-4 0.0028 0.0019 0.0258 0.0180 0.0279 0.0153
2-3-4-5 0.0040 0.0345 0.0270 0.0137 -0.0079 -0.0130

CHAR

2 0.0865 0.0131 -0.0061 0.0224 -0.0068 0.0106
2-3 0.0681 0.0186 0.0013 – -0.0044 -0.0007
2-3-4 0.0614 0.0082 0.0056 0.0025 0.0104 0.0068
2-3-4-5 0.0544 0.0085 0.0076 0.0093 0.0013 -0.0022

ASIS

2 0.0697 -0.0046 0.0127 0.0164 -0.0052 -0.0028
2-3 0.0731 0.0092 -0.0003 0.0086 0.0048 -0.0017
2-3-4 0.0588 0.0016 0.0051 0.0058 0.0031 0.0043
2-3-4-5 0.0546 0.0129 0.0092 0.0109 0.0028 0.0018

POS
1 0.3351 0.3351 0.3225 0.3225 -0.0642 -0.0642
1-2 0.0164 0.0153 0.0506 0.0512 0.0775 0.0510
1-2-3 0.0483 0.0510 0.0544 0.0511 -0.0014 0.0060

TAG
1 -0.0185 0.0673 0.0453 0.0453 0.0256 0.0256
1-2 0.0452 0.0696 0.0474 0.0469 0.0464 0.0452
1-2-3 0.0400 0.0834 0.0099 0.0097 0.0017 0.0006

DEP
1 0.1238 0.0699 0.0320 0.0320 -0.0798 -0.0798
1-2 0.1172 0.0457 -0.0097 -0.0097 0.0150 0.0150
1-2-3 0.0376 0.0561 0.0511 0.0444 0.0211 0.0173

LEMMA
1 -0.0878 0.0197 0.0073 0.0009 -0.0049 0.0194
1-2 -0.0661 0.0356 0.0217 -0.0039 -0.0011 0.0040

WORD
1 -0.1184 0.0144 -0.0030 0.0417 -0.0089 -0.0003
1-2 -0.0686 0.0209 0.0142 0.0203 -0.0035 0.0018

NUM 1 0.2100 0.2100 0.0900 0.0900 0.2667 0.2667
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Minimum of Characters: 500

Table E.12: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 500 characters using a feature-wise model on the individual feature types

Target Gender
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST

2 0.6367 0.6322 0.5043 0.3481 0.5095 0.3680 0.5582 0.5403
2-3 0.6531 0.6477 0.5202 0.3788 0.5278 0.4365 0.5518 0.5173
2-3-4 0.6672 0.6624 0.6266 0.6056 0.5609 0.5462 0.5636 0.5432
2-3-4-5 0.6820 0.6789 0.6404 0.6402 0.5584 0.5385 0.5452 0.4858

CHAR

2 0.8080 0.8080 0.7590 0.7580 0.6901 0.6882 0.6720 0.6719
2-3 0.8694 0.8690 0.8164 0.8151 0.7641 0.7638 0.7265 0.7260
2-3-4 0.8713 0.8702 0.8413 0.8411 0.7751 0.7746 0.7369 0.7362
2-3-4-5 0.8848 0.8847 0.8122 0.8094 0.7759 0.7756 0.7412 0.7411

ASIS

2 0.8366 0.8357 0.7996 0.7995 0.7186 0.7184 0.6925 0.6916
2-3 0.8871 0.8868 0.8444 0.8436 0.7753 0.7750 0.7354 0.7341
2-3-4 0.9006 0.9004 0.8664 0.8662 0.7886 0.7885 0.7494 0.7493
2-3-4-5 0.9042 0.9040 0.8197 0.8158 0.7882 0.7882 0.7493 0.7488

POS
1 0.6032 0.5907 0.5864 0.5847 0.5776 0.5775 0.5730 0.5728
1-2 0.6413 0.6303 0.6404 0.6403 0.6062 0.6061 0.5988 0.5985
1-2-3 0.6597 0.6583 0.6587 0.6579 0.6189 0.6174 0.6128 0.6127

TAG
1 0.6410 0.6402 0.5930 0.5700 0.5893 0.5892 0.5772 0.5771
1-2 0.6990 0.6982 0.6710 0.6704 0.6274 0.6265 0.6140 0.6140
1-2-3 0.6987 0.6980 0.6830 0.6828 0.6299 0.6230 0.6279 0.6278

DEP
1 0.6219 0.6195 0.6017 0.5997 0.5691 0.5652 0.5678 0.5655
1-2 0.6590 0.6590 0.6322 0.6277 0.5976 0.5963 0.5935 0.5926
1-2-3 0.6705 0.6704 0.6566 0.6550 0.6053 0.6008 0.6066 0.6060

LEMMA
1 0.7788 0.7786 0.7680 0.7679 0.7096 0.7096 0.6876 0.6869
1-2 0.8008 0.8007 0.7816 0.7816 0.7145 0.7144 0.6935 0.6925

WORD
1 0.7591 0.7588 0.7434 0.7408 0.6942 0.6940 0.6785 0.6782
1-2 0.7653 0.7653 0.7535 0.7535 0.6983 0.6981 0.6837 0.6836

NUM 1 0.5950 0.5912 0.5635 0.5635 0.5542 0.5229 0.5332 0.4791
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Table E.13: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 500 characters using a feature-wise model on the individual feature types

Target Gender
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0858 0.1370 0.1528 0.2654 0.2834 0.2834
2-3 0.1535 0.1134 0.1350 0.1049 0.1451 0.1875
2-3-4 0.1185 -0.0050 0.0893 0.0610 0.0425 0.0354
2-3-4-5 0.0904 0.0550 0.0491 0.0644 0.0457 0.0703

CHAR

2 0.2757 0.0476 0.0903 0.1012 0.0932 0.0932
2-3 0.1739 0.0056 0.0277 0.0341 0.0251 0.0317
2-3-4 0.1328 0.0002 0.0174 0.0285 0.0364 0.0302
2-3-4-5 0.0999 -0.0035 0.0131 0.0221 0.0215 0.0244

ASIS

2 0.2720 0.0435 0.0573 0.0488 0.0588 0.0656
2-3 0.1492 0.0154 0.0155 0.0369 0.0213 0.0390
2-3-4 0.1229 -0.0056 0.0114 0.0142 0.0150 0.0139
2-3-4-5 0.1025 0.0215 0.0207 0.0084 0.0153 0.0196

POS
1 0.2456 0.2456 0.3123 0.3123 0.1982 0.1982
1-2 0.0272 0.0314 -0.1515 -0.1286 0.2639 0.2440
1-2-3 -0.0449 -0.0707 -0.0222 -0.0120 0.0582 0.0586

TAG
1 -0.0086 -0.0086 -0.1640 -0.1460 0.0043 0.0043
1-2 0.1546 0.1327 0.0233 -0.0280 0.1140 0.1091
1-2-3 0.0514 0.0577 0.0017 -0.0141 0.1243 0.1212

DEP
1 0.0103 -0.1889 -0.0425 -0.0425 0.0244 0.0244
1-2 0.1047 0.0867 -0.1028 -0.1028 -0.0255 -0.0422
1-2-3 -0.0349 -0.0498 0.0236 0.0366 0.0737 0.0692

LEMMA
1 -0.0374 -0.0415 0.0221 0.0459 0.0406 -0.0087
1-2 -0.0143 0.0461 0.0099 -0.0155 0.0467 -0.0293

WORD
1 -0.0304 0.0282 0.0136 -0.0115 0.0480 0.0523
1-2 -0.0003 0.0252 0.0560 0.0179 0.0304 -0.0080

NUM 1 0.2500 0.2500 0.0833 0.0833 0.0667 0.0667
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Table E.14: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 500 characters using a feature-wise model on the individual feature types

Target Age
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST

2 0.4831 0.4797 0.2924 0.2249 0.3224 0.2808 0.2819 0.2196
2-3 0.4969 0.4809 0.3987 0.3711 0.3089 0.2633 0.3029 0.2736
2-3-4 0.5338 0.5294 0.4561 0.4482 0.2905 0.2454 0.3208 0.2921
2-3-4-5 0.5427 0.5384 0.4385 0.4088 0.3021 0.2401 0.3217 0.2823

CHAR

2 0.7240 0.7257 0.6254 0.6250 0.4829 0.4761 0.4143 0.4033
2-3 0.8023 0.8024 0.7320 0.7319 0.5762 0.5696 0.5104 0.5070
2-3-4 0.8268 0.8274 0.7575 0.7579 0.6009 0.5938 0.5368 0.5346
2-3-4-5 0.8290 0.8291 0.7494 0.7492 0.6136 0.6114 0.5439 0.5407

ASIS

2 0.7801 0.7811 0.6779 0.6776 0.5188 0.5142 0.4515 0.4426
2-3 0.8540 0.8546 0.7651 0.7646 0.6086 0.6048 0.5371 0.5346
2-3-4 0.8682 0.8687 0.7843 0.7836 0.6253 0.6189 0.5559 0.5512
2-3-4-5 0.8544 0.8542 0.7893 0.7890 0.6236 0.6174 0.5572 0.5523

POS
1 0.3740 0.3529 0.2990 0.2723 0.2140 0.0964 0.2056 0.1010
1-2 0.4875 0.4794 0.3689 0.3512 0.2864 0.2269 0.2678 0.2283
1-2-3 0.5321 0.5248 0.4249 0.4124 0.3220 0.2767 0.2844 0.2491

TAG
1 0.4083 0.3934 0.3316 0.3244 0.2301 0.1338 0.2291 0.1690
1-2 0.5476 0.5432 0.4492 0.4479 0.3318 0.2755 0.2998 0.2670
1-2-3 0.5877 0.5878 0.4856 0.4859 0.3875 0.3811 0.3402 0.3110

DEP
1 0.3704 0.3560 0.2994 0.2418 0.2089 0.1000 0.2504 0.2387
1-2 0.5089 0.5057 0.3869 0.3820 0.3140 0.2523 0.2762 0.2358
1-2-3 0.5370 0.5369 0.4142 0.4029 0.3468 0.3292 0.3108 0.2873

LEMMA
1 0.6679 0.6668 0.5773 0.5763 0.4239 0.4091 0.3651 0.3339
1-2 0.6923 0.6920 0.5924 0.5881 0.4493 0.4424 0.3916 0.3781

WORD
1 0.6282 0.6282 0.5433 0.5416 0.3993 0.3867 0.3523 0.3439
1-2 0.6438 0.6437 0.5524 0.5482 0.4168 0.4053 0.3551 0.3294

NUM 1 0.3099 0.2995 0.2714 0.2542 0.2807 0.2386 0.2440 0.2194
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Table E.15: Stability of feature relevance for the prediction of age on a minimal input instance
length of 500 characters using a feature-wise model on the individual feature types

Target Age
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.1872 0.0727 0.0083 0.0109 0.0192 0.0501
2-3 0.1142 0.0359 0.0275 0.0294 0.0478 0.0012
2-3-4 0.0268 0.0157 0.0502 0.0416 0.0099 0.0147
2-3-4-5 0.0219 0.0064 0.0371 0.0096 0.0154 0.0220

CHAR

2 0.2159 0.0025 0.0197 0.0100 0.0058 -0.0009
2-3 0.1388 0.0013 0.0014 0.0022 -0.0014 0.0042
2-3-4 0.1140 0.0123 0.0124 0.0118 0.0123 0.0141
2-3-4-5 0.0916 0.0113 0.0075 0.0069 0.0068 0.0055

ASIS

2 0.2031 0.0121 0.0049 0.0141 -0.0024 0.0076
2-3 0.1386 0.0059 0.0027 -0.0003 0.0025 0.0066
2-3-4 0.1080 0.0070 0.0032 0.0008 0.0069 0.0038
2-3-4-5 0.0925 0.0066 0.0023 0.0045 0.0011 0.0056

POS
1 0.1807 0.1807 0.1046 0.1046 0.1923 0.1923
1-2 0.0762 0.0317 -0.0211 -0.0158 0.0116 0.0116
1-2-3 0.0611 0.0675 0.0236 0.0195 0.0455 0.0432

TAG
1 0.0886 0.0509 0.0711 0.0010 -0.0680 -0.0357
1-2 0.0178 -0.0089 -0.0109 -0.0351 0.0441 0.0250
1-2-3 0.0825 0.0528 0.0386 0.0268 0.0474 0.0551

DEP
1 0.0971 0.1030 0.0466 0.0466 0.0411 0.0411
1-2 0.0559 0.0636 0.0155 0.0068 -0.0100 -0.0088
1-2-3 0.0751 0.0724 -0.0095 -0.0003 -0.0020 0.0079

LEMMA
1 -0.0219 0.0181 0.0128 -0.0047 0.0078 0.0045
1-2 0.0010 -0.0082 0.0085 0.0027 -0.0058 0.0056

WORD
1 -0.0585 0.0064 0.0428 0.0232 0.0151 0.0098
1-2 -0.0112 -0.0047 0.0013 0.0081 0.0118 0.0092

NUM 1 0.4267 0.4267 -0.0933 -0.0933 0.3033 0.3033
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DIST, CHAR, ASIS, WORD, and LEMMA

Minimum of Characters: 100 & Cumulated

Table E.16: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 100 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Gender
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7343 0.7338 0.6967 0.6947 0.6284 0.6276 0.6089 0.5966
2-3 0.7746 0.7738 0.7331 0.7330 0.6647 0.6645 0.6387 0.6301
2-3-4 0.7882 0.7881 0.7379 0.7370 0.6712 0.6711 0.6412 0.6312
2-3-4-5 0.7836 0.7829 0.7354 0.7342 0.6710 0.6710 0.6409 0.6305

DIST_CHAR_ASIS

2 0.7905 0.7904 0.7453 0.7453 0.6775 0.6775 0.6452 0.6340
2-3 0.7973 0.7972 0.7537 0.7534 0.6835 0.6833 0.6645 0.6645
2-3-4 0.7913 0.7908 0.7478 0.7459 0.6849 0.6848 0.6660 0.6660
2-3-4-5 0.7980 0.7979 0.7461 0.7437 0.6844 0.6844 0.6658 0.6658

DIST_CHAR_ASIS_LEMMA
1 0.8014 0.8013 0.7550 0.7549 0.6868 0.6861 0.6688 0.6688
1-2 0.7999 0.7998 0.7541 0.7534 0.6882 0.6882 0.6689 0.6689

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8010 0.8007 0.7550 0.7548 0.6828 0.6801 0.6700 0.6694
1-2 0.8045 0.8044 0.7567 0.7566 0.6832 0.6803 0.6707 0.6702

Table E.17: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 100 characters using a cumulated model on the reduced feature set (DIST,
CHAR, LEMMA, WORD)

Target Gender
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.1683 0.2888 -0.0348 -0.0259 -0.0312 -0.0785
2-3 0.0446 0.0485 0.0274 0.0075 0.1002 0.0619
2-3-4 0.0159 0.0471 0.0272 0.0942 0.0405 -0.0265
2-3-4-5 -0.0486 -0.0061 -0.0090 -0.0183 0.0560 0.0661

DIST_CHAR

2 -0.0481 -0.0285 -0.0020 -0.0628 0.0686 0.0497
2-3 -0.0355 0.0028 0.0120 0.0464 0.0665 0.0553
2-3-4 -0.0022 0.0259 0.0037 0.0052 0.0198 0.0238
2-3-4-5 -0.0103 0.0157 0.0228 0.0138 0.0165 0.0021

DIST_CHAR_ASIS

2 -0.0215 0.0133 -0.0312 0.0060 0.0065 0.0232
2-3 -0.0055 -0.0018 0.0044 0.0263 -0.0050 0.0227
2-3-4 -0.0265 -0.0274 0.0009 -0.0053 0.0245 0.0168
2-3-4-5 -0.0284 -0.0212 -0.0118 -0.0198 -0.0143 -0.0140

DIST_CHAR_ASIS_LEMMA
1 -0.0142 -0.0172 0.0200 0.0075 0.0022 0.0267
1-2 0.0151 -0.0069 0.0094 -0.0110 0.0216 0.0211

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0075 0.0216 0.0092 -0.0109 -0.0022 0.0149
1-2 0.0111 0.0057 0.0093 -0.0034 0.0189 0.0100
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Table E.18: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 100 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.5983 0.5994 0.4887 0.4861 0.3739 0.3555 0.3088 0.2673
2-3 0.6907 0.6908 0.5595 0.5583 0.4424 0.4382 0.3888 0.3706
2-3-4 0.7031 0.7037 0.5749 0.5714 0.4523 0.4435 0.4023 0.3817
2-3-4-5 0.6804 0.6827 0.5378 0.5386 0.4624 0.4589 0.4017 0.3870

DIST_CHAR_ASIS

2 0.7161 0.7161 0.5828 0.5810 0.4677 0.4662 0.4223 0.4062
2-3 0.7275 0.7276 0.5944 0.5926 0.4759 0.4726 0.4336 0.4241
2-3-4 0.7270 0.7267 0.6014 0.6002 0.4744 0.4672 0.4309 0.4160
2-3-4-5 0.7292 0.7295 0.5952 0.5939 0.4788 0.4738 0.4320 0.4203

DIST_CHAR_ASIS_LEMMA
1 0.7056 0.7042 0.5915 0.5902 0.4850 0.4799 0.4372 0.4295
1-2 0.7213 0.7220 0.5950 0.5942 0.4838 0.4801 0.4377 0.4299

DIST_CHAR_ASIS_LEMMA_WORD
1 0.7261 0.7265 0.5994 0.5989 0.4845 0.4818 0.4329 0.4201
1-2 0.7218 0.7221 0.6055 0.6053 0.4842 0.4813 0.4356 0.4243

Table E.19: Stability of feature relevance for the prediction of age on a minimal input instance
length of 100 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0348 -0.0149 0.0099 0.0315 -0.0141 0.0174
2-3 -0.0051 -0.0070 -0.0063 -0.0108 0.0126 0.0458
2-3-4 -0.0033 0.0366 0.0245 -0.0002 0.0020 0.0207
2-3-4-5 0.0213 0.0143 -0.0097 -0.0042 -0.0200 -0.0321

DIST_CHAR

2 0.0013 -0.0092 0.0077 0.0500 0.0047 0.0328
2-3 0.0064 0.0009 -0.0084 -0.0053 0.0196 0.0099
2-3-4 -0.0009 0.0049 0.0101 0.0123 -0.0004 -0.0037
2-3-4-5 0.0157 0.0139 0.0107 -0.0099 0.0016 0.0008

DIST_CHAR_ASIS

2 0.0108 0.0058 -0.0019 0.0102 0.0090 0.0187
2-3 0.0089 0.0029 0.0068 0.0036 0.0053 0.0122
2-3-4 0.0119 0.0045 0.0045 0.0047 0.0087 0.0154
2-3-4-5 0.0074 0.0087 -0.0049 -0.0032 0.0018 0.0034

DIST_CHAR_ASIS_LEMMA
1 0.0026 0.0128 0.0053 0.0030 0.0128 0.0147
1-2 0.0072 0.0095 -0.0051 -0.0010 0.0127 0.0073

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0039 -0.0016 0.0130 0.0050 0.0054 0.0082
1-2 0.0071 0.0105 -0.0009 -0.0024 0.0037 0.0097
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Minimum of Characters: 250 & Cumulated

Table E.20: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 250 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Gender
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7844 0.7841 0.7495 0.7493 0.6736 0.6736 0.6514 0.6511
2-3 0.8249 0.8247 0.7771 0.7738 0.7219 0.7218 0.6916 0.6916
2-3-4 0.8310 0.8309 0.7884 0.7858 0.7306 0.7305 0.7001 0.7001
2-3-4-5 0.8316 0.8315 0.7943 0.7927 0.7283 0.7279 0.6995 0.6995

DIST_CHAR_ASIS

2 0.8434 0.8434 0.8019 0.8002 0.7419 0.7418 0.7084 0.7084
2-3 0.8423 0.8418 0.8120 0.8104 0.7475 0.7473 0.7166 0.7165
2-3-4 0.8499 0.8499 0.8260 0.8260 0.7497 0.7495 0.7176 0.7172
2-3-4-5 0.8479 0.8479 0.8243 0.8243 0.7485 0.7484 0.7173 0.7168

DIST_CHAR_ASIS_LEMMA
1 0.8477 0.8477 0.8238 0.8237 0.7350 0.7298 0.7221 0.7221
1-2 0.8508 0.8508 0.8174 0.8165 0.7362 0.7311 0.7228 0.7228

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8470 0.8470 0.8238 0.8237 0.7552 0.7552 0.7220 0.7218
1-2 0.8472 0.8471 0.8250 0.8250 0.7553 0.7553 0.7222 0.7218

Table E.21: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 250 characters using a cumulated model on the reduced feature set (DIST,
CHAR, LEMMA, WORD)

Target Gender
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0390 0.1945 0.0539 0.0938 0.2805 0.2587
2-3 0.1318 0.1969 0.0012 0.1452 0.1234 0.1113
2-3-4 0.0671 0.1703 0.0232 0.0109 0.1353 0.0908
2-3-4-5 0.0076 0.0844 0.0169 0.0175 0.0812 0.0675

DIST_CHAR

2 0.0017 0.0251 0.0348 0.0854 0.0363 0.0600
2-3 -0.0013 0.0141 -0.0077 0.0357 0.0245 0.0117
2-3-4 0.0015 0.0345 0.0257 0.0152 0.0389 0.0345
2-3-4-5 -0.0060 0.0096 0.0168 0.0283 0.0403 0.0370

DIST_CHAR_ASIS

2 0.0181 0.0458 0.0196 -0.0173 -0.0216 -0.0147
2-3 -0.0017 0.0099 0.0257 0.0034 0.0041 -0.0010
2-3-4 0.0151 -0.0199 0.0072 -0.0106 0.0263 0.0332
2-3-4-5 0.0060 0.0030 0.0127 -0.0121 0.0074 -0.0042

DIST_CHAR_ASIS_LEMMA
1 0.0061 0.0041 0.0156 0.0043 0.0136 0.0103
1-2 0.0062 -0.0082 0.0058 -0.0069 0.0152 0.0150

DIST_CHAR_ASIS_LEMMA_WORD
1 -0.0095 0.0059 0.0053 0.0094 0.0108 0.0203
1-2 -0.0079 -0.0089 0.0166 0.0134 0.0077 0.0049
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Table E.22: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 250 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.6772 0.6770 0.5772 0.5772 0.4543 0.4439 0.3928 0.3686
2-3 0.7627 0.7629 0.6684 0.6689 0.5239 0.5115 0.4643 0.4581
2-3-4 0.7534 0.7555 0.6707 0.6732 0.5471 0.5440 0.4860 0.4795
2-3-4-5 0.7380 0.7413 0.6847 0.6848 0.5454 0.5361 0.4927 0.4875

DIST_CHAR_ASIS

2 0.7749 0.7751 0.6993 0.6996 0.5607 0.5567 0.4827 0.4712
2-3 0.7918 0.7920 0.7083 0.7067 0.5742 0.5705 0.5002 0.4942
2-3-4 0.7981 0.7996 0.7140 0.7131 0.5773 0.5736 0.4982 0.4902
2-3-4-5 0.7928 0.7941 0.7059 0.7071 0.5862 0.5845 0.5049 0.5020

DIST_CHAR_ASIS_LEMMA
1 0.7737 0.7743 0.7069 0.7054 0.5857 0.5829 0.5066 0.5014
1-2 0.7867 0.7863 0.7075 0.7079 0.5782 0.5728 0.5060 0.4989

DIST_CHAR_ASIS_LEMMA_WORD
1 0.7774 0.7778 0.7030 0.7037 0.5803 0.5757 0.5056 0.4972
1-2 0.7911 0.7916 0.7070 0.7074 0.5862 0.5820 0.5082 0.5022

Table E.23: Stability of feature relevance for the prediction of age on a minimal input instance
length of 250 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0416 0.1495 0.0072 0.0051 0.0153 0.0489
2-3 -0.0223 0.0252 -0.0132 0.0114 0.0086 -0.0058
2-3-4 0.0028 0.0019 0.0258 0.0180 0.0279 0.0153
2-3-4-5 0.0040 0.0345 0.0270 0.0137 -0.0079 -0.0130

DIST_CHAR

2 0.0620 0.0267 0.0122 0.0015 0.0181 0.0090
2-3 0.0686 0.0548 0.0189 0.0225 0.0152 0.0079
2-3-4 0.0693 0.0148 0.0045 0.0058 0.0072 0.0068
2-3-4-5 0.0496 0.0082 0.0093 0.0005 -0.0054 -0.0113

DIST_CHAR_ASIS

2 0.0390 0.0173 0.0187 0.0134 0.0050 0.0077
2-3 0.0346 0.0165 0.0025 0.0088 0.0027 0.0066
2-3-4 0.0333 0.0131 0.0004 0.0048 0.0168 0.0067
2-3-4-5 0.0450 0.0078 -0.0004 0.0097 0.0206 -0.0040

DIST_CHAR_ASIS_LEMMA
1 0.0474 0.0163 0.0010 0.0054 0.0083 0.0038
1-2 0.0445 0.0153 0.0165 0.0143 0.0040 -0.0025

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0495 0.0140 0.0119 0.0137 0.0022 0.0153
1-2 0.0449 0.0180 0.0132 0.0067 0.0151 0.0067
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Minimum of Characters: 500 & Cumulated

Table E.24: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 500 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Gender
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.8231 0.8230 0.7868 0.7868 0.7062 0.7058 0.6795 0.6769
2-3 0.8802 0.8802 0.8396 0.8392 0.7698 0.7696 0.7313 0.7311
2-3-4 0.8727 0.8712 0.8498 0.8494 0.7852 0.7852 0.7407 0.7392
2-3-4-5 0.8953 0.8951 0.8583 0.8583 0.7679 0.7650 0.7433 0.7429

DIST_CHAR_ASIS

2 0.8887 0.8882 0.8623 0.8623 0.7521 0.7441 0.7511 0.7494
2-3 0.8861 0.8850 0.8725 0.8725 0.8036 0.8036 0.7612 0.7602
2-3-4 0.8779 0.8764 0.8734 0.8733 0.7700 0.7641 0.7676 0.7675
2-3-4-5 0.8947 0.8942 0.8730 0.8729 0.7688 0.7626 0.7674 0.7673

DIST_CHAR_ASIS_LEMMA
1 0.8930 0.8925 0.8697 0.8697 0.7805 0.7765 0.7707 0.7706
1-2 0.8782 0.8779 0.8744 0.8744 0.7785 0.7740 0.7708 0.7703

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8799 0.8797 0.8712 0.8712 0.8037 0.8034 0.7698 0.7688
1-2 0.8943 0.8943 0.8704 0.8702 0.7754 0.7702 0.7727 0.7723

Table E.25: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 500 characters using a cumulated model on the reduced feature set (DIST,
CHAR, LEMMA, WORD)

Target Gender
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0858 0.1370 0.1528 0.2654 0.2834 0.2834
2-3 0.1535 0.1134 0.1350 0.1049 0.1451 0.1875
2-3-4 0.1185 -0.0050 0.0893 0.0610 0.0425 0.0354
2-3-4-5 0.0904 0.0550 0.0491 0.0644 0.0457 0.0703

DIST_CHAR

2 0.0911 0.0265 0.0598 0.0466 0.0998 0.0889
2-3 0.0903 -0.0365 0.0331 0.0278 0.0178 0.0419
2-3-4 0.0990 0.0314 0.0445 0.0261 0.0454 0.0362
2-3-4-5 0.0829 -0.0121 0.0455 0.0365 0.0461 0.0232

DIST_CHAR_ASIS

2 0.0815 -0.0217 0.0306 0.0077 0.0118 0.0141
2-3 0.0931 0.0012 0.0462 0.0171 0.0295 0.0138
2-3-4 0.0789 -0.0137 0.0380 0.0166 0.0026 0.0088
2-3-4-5 0.0829 0.0014 0.0459 0.0050 0.0281 0.0243

DIST_CHAR_ASIS_LEMMA
1 0.0935 0.0170 0.0201 0.0087 0.0152 0.0141
1-2 0.0829 0.0101 0.0428 0.0172 0.0084 0.0070

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0632 0.0040 0.0388 0.0146 -0.0029 0.0213
1-2 0.0526 0.0023 0.0268 0.0127 0.0094 0.0274
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Table E.26: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 500 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7262 0.7271 0.6350 0.6349 0.5133 0.5123 0.4465 0.4434
2-3 0.8192 0.8214 0.7342 0.7331 0.5938 0.5898 0.5199 0.5177
2-3-4 0.8321 0.8343 0.7623 0.7627 0.6151 0.6114 0.5437 0.5390
2-3-4-5 0.8232 0.8250 0.7590 0.7595 0.6186 0.6140 0.5451 0.5397

DIST_CHAR_ASIS

2 0.8508 0.8518 0.7725 0.7727 0.6203 0.6150 0.5566 0.5515
2-3 0.8727 0.8726 0.7954 0.7954 0.6640 0.6629 0.5724 0.5687
2-3-4 0.8753 0.8753 0.8017 0.8014 0.6618 0.6610 0.5643 0.5553
2-3-4-5 0.8673 0.8671 0.8007 0.8006 0.6421 0.6376 0.5764 0.5731

DIST_CHAR_ASIS_LEMMA
1 0.8611 0.8608 0.7971 0.7966 0.6518 0.6478 0.5773 0.5717
1-2 0.8620 0.8615 0.7961 0.7963 0.6655 0.6629 0.5643 0.5544

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8517 0.8515 0.7885 0.7883 0.6585 0.6558 0.5771 0.5736
1-2 0.8290 0.8293 0.7736 0.7727 0.6653 0.6652 0.5798 0.5758

Table E.27: Stability of feature relevance for the prediction of age on a minimal input instance
length of 500 characters using a cumulated model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.1872 0.0727 0.0083 0.0109 0.0192 0.0501
2-3 0.1142 0.0359 0.0275 0.0294 0.0478 0.0012
2-3-4 0.0268 0.0157 0.0502 0.0416 0.0099 0.0147
2-3-4-5 0.0219 0.0064 0.0371 0.0096 0.0154 0.0220

DIST_CHAR

2 0.1366 0.0099 0.0244 0.0326 0.0048 0.0061
2-3 0.1364 0.0224 0.0286 0.0257 0.0117 0.0144
2-3-4 0.1078 0.0159 0.0183 0.0196 0.0110 -0.0038
2-3-4-5 0.0934 0.0227 0.0179 0.0167 0.0084 0.0023

DIST_CHAR_ASIS

2 0.0901 -0.0056 0.0189 0.0107 0.0071 0.0017
2-3 0.0815 0.0144 0.0157 0.0055 0.0102 0.0100
2-3-4 0.0848 0.0158 0.0124 0.0120 0.0053 0.0009
2-3-4-5 0.0831 0.0126 0.0198 0.0020 0.0067 0.0095

DIST_CHAR_ASIS_LEMMA
1 0.0753 0.0081 0.0143 0.0131 0.0077 0.0040
1-2 0.0736 0.0087 0.0197 0.0150 0.0028 0.0084

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0680 0.0152 0.0044 0.0052 0.0056 0.0053
1-2 0.0682 0.0210 0.0116 0.0111 0.0095 0.0098
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Minimum of Characters: 100 & Stacked

Table E.28: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 100 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Gender
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7223 0.7220 0.6879 0.6864 0.6232 0.6230 0.6142 0.6136
2-3 0.7658 0.7658 0.7159 0.7139 0.6594 0.6594 0.6426 0.6424
2-3-4 0.7776 0.7776 0.7259 0.7253 0.6655 0.6655 0.6478 0.6475
2-3-4-5 0.7732 0.7731 0.7249 0.7243 0.6638 0.6637 0.6477 0.6474

DIST_CHAR_ASIS

2 0.7761 0.7760 0.7217 0.7200 0.6657 0.6656 0.6487 0.6484
2-3 0.7881 0.7880 0.7314 0.7300 0.6694 0.6693 0.6518 0.6516
2-3-4 0.7914 0.7914 0.7361 0.7348 0.6723 0.6723 0.6543 0.6540
2-3-4-5 0.7890 0.7889 0.7338 0.7324 0.6708 0.6707 0.6540 0.6539

DIST_CHAR_ASIS_LEMMA
1 0.7898 0.7897 0.7342 0.7329 0.6707 0.6707 0.6537 0.6535
1-2 0.7913 0.7912 0.7349 0.7336 0.6702 0.6700 0.6537 0.6535

DIST_CHAR_ASIS_LEMMA_WORD
1 0.7909 0.7909 0.7360 0.7347 0.6726 0.6726 0.6550 0.6548
1-2 0.7906 0.7903 0.7357 0.7345 0.6722 0.6722 0.6549 0.6546

Table E.29: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 100 characters using a stacked model on the reduced feature set (DIST,
CHAR, LEMMA, WORD)

Target Gender
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 -0.0387 -0.0005 0.0055 -0.0134 0.0438 0.0420
2-3 -0.0308 -0.0107 -0.0109 -0.0139 0.0442 0.0409
2-3-4 -0.0293 -0.0093 -0.0037 -0.0112 0.0369 0.0404
2-3-4-5 -0.0168 0.0059 -0.0041 -0.0094 0.0306 0.0362

DIST_CHAR_ASIS

2 -0.0102 0.0104 -0.0034 -0.0049 0.0243 0.0322
2-3 -0.0078 0.0036 0.0263 -0.0042 -0.0069 0.0140
2-3-4 -0.0236 -0.0164 -0.0019 -0.0071 0.0207 0.0259
2-3-4-5 -0.0155 -0.0105 -0.0049 -0.0039 0.0203 0.0195

DIST_CHAR_ASIS_LEMMA
1 -0.0120 -0.0057 -0.0043 0.0013 0.0177 0.0192
1-2 -0.0053 0.0045 -0.0064 -0.0022 0.0154 0.0157

DIST_CHAR_ASIS_LEMMA_WORD
1 -0.0031 0.0093 -0.0053 0.0002 0.0149 0.0158
1-2 -0.0069 -0.0138 -0.0088 -0.0012 0.0225 0.0174
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Table E.30: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 100 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.5814 0.5806 0.4549 0.4544 0.2092 0.0892 0.2029 0.0707
2-3 0.6560 0.6565 0.5434 0.5426 0.4313 0.4281 0.2607 0.1626
2-3-4 0.6726 0.6728 0.5630 0.5621 0.4346 0.4147 0.3547 0.2988
2-3-4-5 0.6769 0.6773 0.5647 0.5638 0.4531 0.4464 0.3450 0.2828

DIST_CHAR_ASIS

2 0.6955 0.6954 0.5636 0.5627 0.4507 0.4473 0.3738 0.3267
2-3 0.7126 0.7128 0.5758 0.5750 0.4604 0.4584 0.3820 0.3378
2-3-4 0.7164 0.7163 0.5829 0.5822 0.4703 0.4649 0.3707 0.3001
2-3-4-5 0.7156 0.7156 0.5835 0.5828 0.4695 0.4638 0.3786 0.3584

DIST_CHAR_ASIS_LEMMA
1 0.7158 0.7158 0.5845 0.5839 0.4703 0.4644 0.3673 0.3416
1-2 0.7178 0.7177 0.5836 0.5829 0.4704 0.4645 0.3679 0.3422

DIST_CHAR_ASIS_LEMMA_WORD
1 0.7168 0.7167 0.5840 0.5832 0.4706 0.4645 0.3827 0.3481
1-2 0.7173 0.7172 0.5837 0.5830 0.4706 0.4646 0.3810 0.3449

Table E.31: Stability of feature relevance for the prediction of age on a minimal input instance
length of 100 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 -0.0261 -0.0180 -0.0041 0.0083 0.0156 0.0209
2-3 -0.0058 -0.0031 -0.0170 -0.0032 0.0285 0.0297
2-3-4 -0.0065 0.0028 0.0036 0.0192 -0.0086 -0.0014
2-3-4-5 -0.0145 -0.0003 -0.0099 0.0049 0.0225 0.0185

DIST_CHAR_ASIS

2 0.0049 -0.0039 0.0051 0.0080 0.0112 0.0043
2-3 -0.0002 -0.0051 -0.0048 0.0081 0.0121 0.0122
2-3-4 0.0066 0.0059 -0.0038 0.0006 0.0089 0.0184
2-3-4-5 0.0106 0.0062 -0.0028 0.0105 0.0121 0.0134

DIST_CHAR_ASIS_LEMMA
1 0.0093 0.0081 0.0066 0.0132 0.0015 0.0014
1-2 0.0021 0.0123 0.0027 0.0058 0.0019 0.0066

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0032 -0.0001 0.0112 0.0060 0.0075 0.0043
1-2 -0.0002 0.0096 0.0055 0.0137 0.0080 0.0116
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Minimum of Characters: 250 & Stacked

Table E.32: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 250 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Gender
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7737 0.7735 0.7414 0.7414 0.6647 0.6642 0.6455 0.6436
2-3 0.8138 0.8130 0.7813 0.7813 0.7156 0.7156 0.6858 0.6849
2-3-4 0.8218 0.8217 0.7912 0.7911 0.7261 0.7261 0.6933 0.6926
2-3-4-5 0.8230 0.8230 0.7927 0.7926 0.7266 0.7266 0.6936 0.6928

DIST_CHAR_ASIS

2 0.8287 0.8287 0.7983 0.7983 0.7282 0.7280 0.6947 0.6940
2-3 0.8397 0.8396 0.8076 0.8076 0.7323 0.7323 0.6996 0.6990
2-3-4 0.8392 0.8391 0.8108 0.8106 0.7353 0.7353 0.7051 0.7050
2-3-4-5 0.8359 0.8357 0.8114 0.8113 0.7345 0.7345 0.7046 0.7045

DIST_CHAR_ASIS_LEMMA
1 0.8428 0.8427 0.8090 0.8088 0.7338 0.7338 0.7041 0.7041
1-2 0.8381 0.8379 0.8109 0.8108 0.7345 0.7345 0.7044 0.7043

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8387 0.8385 0.8118 0.8117 0.7370 0.7369 0.7050 0.7044
1-2 0.8426 0.8425 0.8126 0.8125 0.7365 0.7364 0.7054 0.7054

Table E.33: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 250 characters using a stacked model on the reduced feature set (DIST,
CHAR, LEMMA, WORD)

Target Gender
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 0.0315 0.0538 0.0180 0.0214 0.0739 0.0638
2-3 0.0250 0.0498 0.0184 0.0121 0.0694 0.0464
2-3-4 0.0295 0.0412 0.0155 0.0154 0.0480 0.0440
2-3-4-5 0.0248 0.0451 0.0103 0.0112 0.0500 0.0452

DIST_CHAR_ASIS

2 0.0336 0.0458 0.0110 0.0130 0.0486 0.0443
2-3 0.0315 0.0388 0.0124 0.0391 0.0262 0.0248
2-3-4 0.0327 0.0429 0.0126 0.0066 0.0414 0.0400
2-3-4-5 0.0557 -0.0074 0.0112 0.0075 0.0403 0.0336

DIST_CHAR_ASIS_LEMMA
1 0.0366 -0.0120 0.0111 0.0280 0.0339 0.0347
1-2 0.0447 -0.0151 0.0100 0.0073 0.0339 0.0312

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0380 -0.0132 0.0121 0.0084 0.0332 0.0308
1-2 0.0207 0.0447 0.0108 0.0081 0.0305 0.0263
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Table E.34: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 250 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.6667 0.6672 0.5623 0.5621 0.4216 0.4205 0.3466 0.3196
2-3 0.7480 0.7484 0.6506 0.6498 0.5183 0.5180 0.4535 0.4513
2-3-4 0.7588 0.7592 0.6741 0.6735 0.5337 0.5308 0.4774 0.4757
2-3-4-5 0.7627 0.7630 0.6722 0.6718 0.5325 0.5292 0.4829 0.4793

DIST_CHAR_ASIS

2 0.7759 0.7763 0.6793 0.6788 0.5455 0.5419 0.4849 0.4810
2-3 0.7940 0.7943 0.6919 0.6914 0.5571 0.5567 0.4930 0.4892
2-3-4 0.7911 0.7915 0.6996 0.6991 0.5553 0.5529 0.4994 0.4962
2-3-4-5 0.7933 0.7933 0.6966 0.6962 0.5553 0.5530 0.5000 0.4972

DIST_CHAR_ASIS_LEMMA
1 0.7947 0.7948 0.6989 0.6986 0.5562 0.5540 0.5001 0.4976
1-2 0.7959 0.7961 0.6956 0.6949 0.5596 0.5559 0.5002 0.4977

DIST_CHAR_ASIS_LEMMA_WORD
1 0.7962 0.7964 0.6963 0.6956 0.5641 0.5630 0.5006 0.4985
1-2 0.7977 0.7979 0.6961 0.6954 0.5613 0.5579 0.4975 0.4967

Table E.35: Stability of feature relevance for the prediction of age on a minimal input instance
length of 250 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 0.0132 -0.0179 -0.0008 0.0021 0.0057 0.0131
2-3 0.0076 -0.0155 0.0017 0.0131 0.0161 0.0122
2-3-4 0.0248 0.0128 -0.0031 0.0107 0.0037 0.0109
2-3-4-5 0.0154 — 0.0055 0.0092 0.0169 0.0218

DIST_CHAR_ASIS

2 0.0218 0.0024 -0.0060 -0.0045 0.0118 0.0127
2-3 0.0311 -0.0075 0.0108 0.0040 0.0065 0.0082
2-3-4 0.0289 -0.0034 0.0092 0.0006 -0.0009 -0.0029
2-3-4-5 0.0335 0.0136 0.0001 0.0041 0.0002 —

DIST_CHAR_ASIS_LEMMA
1 0.0249 0.0066 0.0030 -0.0050 0.0019 0.0093
1-2 0.0185 -0.0032 0.0022 -0.0045 0.0050 0.0150

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0150 0.0033 0.0011 0.0009 0.0057 0.0093
1-2 0.0094 0.0105 0.0036 -0.0011 0.0085 0.0197
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Minimum of Characters: 500 & Stacked

Table E.36: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 500 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Gender
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.8192 0.8179 0.7780 0.7778 0.6948 0.6935 0.6765 0.6764
2-3 0.8743 0.8740 0.8369 0.8369 0.7639 0.7636 0.7286 0.7285
2-3-4 0.8874 0.8874 0.8485 0.8485 0.7772 0.7769 0.7400 0.7399
2-3-4-5 0.8884 0.8883 0.8501 0.8500 0.7773 0.7769 0.7411 0.7410

DIST_CHAR_ASIS

2 0.8920 0.8919 0.8527 0.8527 0.7767 0.7761 0.7412 0.7411
2-3 0.8983 0.8982 0.8619 0.8619 0.7844 0.7841 0.7467 0.7466
2-3-4 0.8832 0.8830 0.8670 0.8670 0.7862 0.7855 0.7505 0.7504
2-3-4-5 0.8789 0.8787 0.8664 0.8663 0.7856 0.7850 0.7515 0.7513

DIST_CHAR_ASIS_LEMMA
1 0.9015 0.9013 0.8665 0.8665 0.7852 0.7846 0.7522 0.7521
1-2 0.8983 0.8979 0.8662 0.8661 0.7858 0.7852 0.7521 0.7520

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8992 0.8992 0.8666 0.8666 0.7863 0.7856 0.7524 0.7524
1-2 0.8986 0.8983 0.8664 0.8663 0.7862 0.7855 0.7519 0.7519

Table E.37: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 500 characters using a stacked model on the reduced feature set (DIST,
CHAR, LEMMA, WORD)

Target Gender
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 0.1274 0.0535 0.0573 0.0718 0.0552 0.0749
2-3 0.1182 0.0385 0.0420 0.0543 0.0388 0.0574
2-3-4 0.1085 0.0315 0.0355 0.0490 0.0417 0.0531
2-3-4-5 0.0951 0.0258 0.0311 0.0432 0.0336 0.0474

DIST_CHAR_ASIS

2 0.1148 0.0277 0.0340 0.0439 0.0364 0.0494
2-3 0.1371 -0.0178 0.0286 0.0425 0.0308 0.0454
2-3-4 0.1046 0.0192 0.0263 0.0358 0.0282 0.0381
2-3-4-5 0.0987 0.0262 0.0281 0.0320 0.0272 0.0380

DIST_CHAR_ASIS_LEMMA
1 0.1079 -0.0122 0.0277 0.0331 0.0282 0.0344
1-2 0.0976 -0.0065 0.0255 0.0252 0.0299 0.0284

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0886 -0.0027 0.0247 0.0228 0.0312 0.0300
1-2 0.0831 -0.0038 0.0293 0.0243 0.0300 0.0239
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Table E.38: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 500 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7413 0.7422 0.6347 0.6350 0.4899 0.4848 0.4263 0.4239
2-3 0.8250 0.8252 0.7357 0.7356 0.5868 0.5840 0.5140 0.5114
2-3-4 0.8415 0.8416 0.7623 0.7622 0.6156 0.6141 0.5433 0.5432
2-3-4-5 0.8397 0.8397 0.7605 0.7603 0.6172 0.6161 0.5433 0.5416

DIST_CHAR_ASIS

2 0.8473 0.8472 0.7703 0.7701 0.6201 0.6187 0.5489 0.5469
2-3 0.8651 0.8652 0.7795 0.7795 0.6280 0.6258 0.5550 0.5537
2-3-4 0.8749 0.8748 0.7912 0.7911 0.6400 0.6396 0.5630 0.5630
2-3-4-5 0.8700 0.8700 0.7878 0.7876 0.6372 0.6357 0.5623 0.5623

DIST_CHAR_ASIS_LEMMA
1 0.8700 0.8696 0.7843 0.7834 0.6392 0.6368 0.5623 0.5624
1-2 0.8727 0.8723 0.7833 0.7824 0.6391 0.6366 0.5628 0.5628

DIST_CHAR_ASIS_LEMMA_WORD
1 0.8695 0.8691 0.7899 0.7897 0.6389 0.6365 0.5633 0.5634
1-2 0.8722 0.8725 0.7820 0.7810 0.6382 0.6359 0.5629 0.5630

Table E.39: Stability of feature relevance for the prediction of age on a minimal input instance
length of 500 characters using a stacked model on the reduced feature set (DIST, CHAR,
LEMMA, WORD)

Target Age
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 0.0733 0.0228 0.0064 0.0045 -0.0029 0.0157
2-3 0.0645 -0.0005 0.0075 0.0223 -0.0016 0.0015
2-3-4 0.0493 0.0004 0.0092 0.0073 0.0037 0.0017
2-3-4-5 0.0451 0.0075 0.0236 0.0156 -0.0009 0.0045

DIST_CHAR_ASIS

2 0.0799 0.0056 0.0117 0.0167 0.0066 0.0003
2-3 0.0807 0.0021 0.0149 0.0020 0.0013 0.0205
2-3-4 0.0751 0.0083 -0.0057 -0.0054 0.0046 0.0045
2-3-4-5 0.0688 -0.0053 0.0013 0.0040 0.0018 0.0051

DIST_CHAR_ASIS_LEMMA
1 0.0628 0.0107 0.0042 0.0054 0.0044 -0.0015
1-2 0.0622 0.0067 -0.0011 0.0012 -0.0054 0.0015

DIST_CHAR_ASIS_LEMMA_WORD
1 0.0553 0.0101 0.0061 0.0045 -0.0038 0.0071
1-2 0.0517 0.0057 0.0058 0.0032 -0.0036 0.0008
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Full Set of feature types

Minimum of Characters: 100 & Cumulated

Table E.40: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 100 characters using a cumulated model on the ordered, full feature set

Target Gender
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7343 0.7338 0.6967 0.6947 0.6284 0.6276 0.6089 0.5966
2-3 0.7746 0.7738 0.7331 0.7330 0.6647 0.6645 0.6387 0.6301
2-3-4 0.7882 0.7881 0.7379 0.7370 0.6712 0.6711 0.6412 0.6312
2-3-4-5 0.7836 0.7829 0.7354 0.7342 0.6710 0.6710 0.6409 0.6305

DIST_CHAR_ASIS

2 0.7905 0.7904 0.7453 0.7453 0.6775 0.6775 0.6452 0.6340
2-3 0.7973 0.7972 0.7537 0.7534 0.6835 0.6833 0.6645 0.6645
2-3-4 0.7913 0.7908 0.7478 0.7459 0.6849 0.6848 0.6660 0.6660
2-3-4-5 0.7980 0.7979 0.7461 0.7437 0.6844 0.6844 0.6658 0.6658

DIST_CHAR_ASIS_POS
1 0.7994 0.7994 0.7519 0.7516 0.6834 0.6826 0.6660 0.6660
1-2 0.8012 0.8012 0.7475 0.7462 0.6855 0.6855 0.6663 0.6662
1-2-3 0.7959 0.7949 0.7500 0.7489 0.6861 0.6857 0.6681 0.6681

DIST_CHAR_ASIS_POS_TAG
1 0.7933 0.7920 0.7483 0.7469 0.6871 0.6871 0.6683 0.6682
1-2 0.7972 0.7968 0.7484 0.7478 0.6863 0.6863 0.6694 0.6694
1-2-3 0.7988 0.7988 0.7512 0.7511 0.6846 0.6828 0.6701 0.6698

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.7954 0.7952 0.7530 0.7529 0.6861 0.6849 0.6700 0.6696
1-2 0.7913 0.7912 0.7509 0.7507 0.6879 0.6879 0.6703 0.6701
1-2-3 0.7939 0.7937 0.7534 0.7533 0.6877 0.6872 0.6713 0.6712

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.7919 0.7918 0.7544 0.7544 0.6872 0.6858 0.6738 0.6738
1-2 0.7929 0.7927 0.7559 0.7555 0.6876 0.6861 0.6739 0.6739

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.7898 0.7895 0.7574 0.7573 0.6921 0.6921 0.6749 0.6747
1-2 0.7883 0.7883 0.7510 0.7503 0.6913 0.6913 0.6751 0.6749

Table E.41: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 100 characters using a cumulated model on the ordered, full feature set

Target Gender
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.1683 0.2888 -0.0348 -0.0259 -0.0312 -0.0785
2-3 0.0446 0.0485 0.0274 0.0075 0.1002 0.0619
2-3-4 0.0159 0.0471 0.0272 0.0942 0.0405 -0.0265
2-3-4-5 -0.0486 -0.0061 -0.0090 -0.0183 0.0560 0.0661

DIST_CHAR

2 -0.0481 -0.0285 -0.0020 -0.0628 0.0686 0.0497
2-3 -0.0355 0.0028 0.0120 0.0464 0.0665 0.0553
2-3-4 -0.0022 0.0259 0.0037 0.0052 0.0198 0.0238
2-3-4-5 -0.0103 0.0157 0.0228 0.0138 0.0165 0.0021

DIST_CHAR_ASIS

2 -0.0215 0.0133 -0.0312 0.0060 0.0065 0.0232
2-3 -0.0055 -0.0018 0.0044 0.0263 -0.0050 0.0227
2-3-4 -0.0265 -0.0274 0.0009 -0.0053 0.0245 0.0168
2-3-4-5 -0.0284 -0.0212 -0.0118 -0.0198 -0.0143 -0.0140

DIST_CHAR_ASIS_POS
1 0.0138 0.0230 -0.0061 0.0064 0.0482 0.0538
1-2 -0.0100 -0.0181 0.0198 0.0108 0.0833 0.0697
1-2-3 -0.0009 0.0076 0.0354 0.0258 0.0346 0.0240

DIST_CHAR_ASIS_POS_TAG
1 -0.0063 0.0042 0.0069 -0.0115 0.0310 0.0311
1-2 -0.0366 -0.0332 -0.0115 -0.0066 0.0082 0.0118
1-2-3 -0.0141 -0.0133 0.0296 0.0455 0.0383 0.0351

DIST_CHAR_ASIS_POS_TAG_DEP
1 -0.0154 -0.0017 0.0028 -0.0029 0.0159 0.0247
1-2 -0.0077 0.0165 -0.0028 0.0099 0.0089 0.0170
1-2-3 0.0008 0.0040 0.0022 0.0015 -0.0248 -0.0046

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0058 0.0071 0.0076 0.0101 0.0037 -0.0090
1-2 -0.0004 0.0174 0.0129 -0.0012 0.0129 0.0178

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0031 0.0001 0.0124 0.0225 0.0171 0.0133
1-2 0.0016 -0.0074 0.0278 0.0162 0.0380 0.0168
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Table E.42: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 100 characters using a cumulated model on the ordered, full feature set

Target Age
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.5983 0.5994 0.4887 0.4861 0.3739 0.3555 0.3088 0.2673
2-3 0.6907 0.6908 0.5595 0.5583 0.4424 0.4382 0.3888 0.3706
2-3-4 0.7031 0.7037 0.5749 0.5714 0.4523 0.4435 0.4023 0.3817
2-3-4-5 0.6804 0.6827 0.5378 0.5386 0.4624 0.4589 0.4017 0.3870

DIST_CHAR_ASIS

2 0.7161 0.7161 0.5828 0.5810 0.4677 0.4662 0.4223 0.4062
2-3 0.7275 0.7276 0.5944 0.5926 0.4759 0.4726 0.4336 0.4241
2-3-4 0.7270 0.7267 0.6014 0.6002 0.4744 0.4672 0.4309 0.4160
2-3-4-5 0.7292 0.7295 0.5952 0.5939 0.4788 0.4738 0.4320 0.4203

DIST_CHAR_ASIS_POS
1 0.7229 0.7231 0.6008 0.5990 0.4822 0.4804 0.4324 0.4223
1-2 0.7283 0.7283 0.5954 0.5942 0.4743 0.4679 0.4354 0.4266
1-2-3 0.7053 0.7041 0.5854 0.5851 0.4850 0.4815 0.4392 0.4313

DIST_CHAR_ASIS_POS_TAG
1 0.7159 0.7162 0.5971 0.5952 0.4783 0.4756 0.4294 0.4164
1-2 0.7004 0.6989 0.5946 0.5937 0.4823 0.4776 0.4364 0.4297
1-2-3 0.6975 0.6957 0.5950 0.5931 0.4875 0.4843 0.4380 0.4277

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.7124 0.7132 0.5923 0.5914 0.4856 0.4817 0.4367 0.4257
1-2 0.7081 0.7076 0.5920 0.5910 0.4843 0.4809 0.4338 0.4204
1-2-3 0.7075 0.7080 0.5952 0.5940 0.4865 0.4838 0.4382 0.4341

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.6861 0.6845 0.5950 0.5939 0.4885 0.4842 0.4362 0.4247
1-2 0.7079 0.7082 0.5969 0.5956 0.4884 0.4844 0.4371 0.4269

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.7058 0.7055 0.5969 0.5957 0.4890 0.4857 0.4349 0.4218
1-2 0.7046 0.7043 0.5893 0.5879 0.4887 0.4856 0.4357 0.4228

Table E.43: Stability of feature relevance for the prediction of age on a minimal input instance
length of 100 characters using a cumulated model on the ordered, full feature set

Target Age
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0348 -0.0149 0.0099 0.0315 -0.0141 0.0174
2-3 -0.0051 -0.0070 -0.0063 -0.0108 0.0126 0.0458
2-3-4 -0.0033 0.0366 0.0245 -0.0002 0.0020 0.0207
2-3-4-5 0.0213 0.0143 -0.0097 -0.0042 -0.0200 -0.0321

DIST_CHAR

2 0.0013 -0.0092 0.0077 0.0500 0.0047 0.0328
2-3 0.0064 0.0009 -0.0084 -0.0053 0.0196 0.0099
2-3-4 -0.0009 0.0049 0.0101 0.0123 -0.0004 -0.0037
2-3-4-5 0.0157 0.0139 0.0107 -0.0099 0.0016 0.0008

DIST_CHAR_ASIS

2 0.0108 0.0058 -0.0019 0.0102 0.0090 0.0187
2-3 0.0089 0.0029 0.0068 0.0036 0.0053 0.0122
2-3-4 0.0119 0.0045 0.0045 0.0047 0.0087 0.0154
2-3-4-5 0.0074 0.0087 -0.0049 -0.0032 0.0018 0.0034

DIST_CHAR_ASIS_POS
1 0.0141 0.0144 0.0166 0.0247 0.0187 0.0186
1-2 0.0264 0.0325 0.0420 0.0360 0.0075 0.0030
1-2-3 0.0127 0.0213 0.0150 0.0151 0.0125 0.0151

DIST_CHAR_ASIS_POS_TAG
1 0.0108 0.0118 0.0413 0.0368 0.0266 0.0279
1-2 0.0067 0.0070 0.0243 0.0161 0.0117 0.0148
1-2-3 0.0105 0.0177 0.0271 0.0232 0.0076 0.0183

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0139 0.0094 0.0129 0.0161 0.0093 0.0124
1-2 0.0209 0.0192 0.0183 0.0169 0.0102 0.0107
1-2-3 0.0229 0.0251 0.0072 0.0043 -0.0013 0.0013

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0245 0.0257 0.0189 0.0198 0.0154 0.0243
1-2 0.0081 0.0135 0.0135 0.0140 0.0276 0.0304

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 -0.0017 -0.0044 0.0071 0.0104 0.0224 0.0262
1-2 0.0203 0.0132 0.0189 0.0189 0.0241 0.0298
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Minimum of Characters: 250 & Cumulated

Table E.44: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 250 characters using a cumulated model on the ordered, full feature set

Target Gender
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7844 0.7841 0.7495 0.7493 0.6736 0.6736 0.6514 0.6511
2-3 0.8249 0.8247 0.7771 0.7738 0.7219 0.7218 0.6916 0.6916
2-3-4 0.8310 0.8309 0.7884 0.7858 0.7306 0.7305 0.7001 0.7001
2-3-4-5 0.8316 0.8315 0.7943 0.7927 0.7283 0.7279 0.6995 0.6995

DIST_CHAR_ASIS

2 0.8434 0.8434 0.8019 0.8002 0.7419 0.7418 0.7084 0.7084
2-3 0.8423 0.8418 0.8120 0.8104 0.7475 0.7473 0.7166 0.7165
2-3-4 0.8499 0.8499 0.8260 0.8260 0.7497 0.7495 0.7176 0.7172
2-3-4-5 0.8479 0.8479 0.8243 0.8243 0.7485 0.7484 0.7173 0.7168

DIST_CHAR_ASIS_POS
1 0.8483 0.8483 0.8155 0.8145 0.7474 0.7470 0.7171 0.7171
1-2 0.8439 0.8436 0.8170 0.8163 0.7486 0.7485 0.7184 0.7183
1-2-3 0.8430 0.8430 0.8138 0.8128 0.7505 0.7505 0.7193 0.7193

DIST_CHAR_ASIS_POS_TAG
1 0.8441 0.8440 0.8159 0.8152 0.7472 0.7459 0.7176 0.7174
1-2 0.8390 0.8389 0.8169 0.8168 0.7509 0.7509 0.7185 0.7184
1-2-3 0.8377 0.8377 0.8134 0.8132 0.7521 0.7520 0.7185 0.7180

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.8345 0.8342 0.8131 0.8126 0.7505 0.7505 0.7210 0.7210
1-2 0.8345 0.8345 0.8152 0.8151 0.7513 0.7513 0.7169 0.7152
1-2-3 0.8327 0.8327 0.8142 0.8141 0.7518 0.7516 0.7205 0.7203

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.8298 0.8291 0.8173 0.8171 0.7429 0.7399 0.7178 0.7150
1-2 0.8332 0.8328 0.8162 0.8161 0.7386 0.7340 0.7206 0.7186

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.8294 0.8286 0.8133 0.8133 0.7559 0.7555 0.7232 0.7226
1-2 0.8289 0.8286 0.8064 0.8051 0.7562 0.7558 0.7252 0.7251

Table E.45: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 250 characters using a cumulated model on the ordered, full feature set

Target Gender
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0390 0.1945 0.0539 0.0938 0.2805 0.2587
2-3 0.1318 0.1969 0.0012 0.1452 0.1234 0.1113
2-3-4 0.0671 0.1703 0.0232 0.0109 0.1353 0.0908
2-3-4-5 0.0076 0.0844 0.0169 0.0175 0.0812 0.0675

DIST_CHAR

2 0.0017 0.0251 0.0348 0.0854 0.0363 0.0600
2-3 -0.0013 0.0141 -0.0077 0.0357 0.0245 0.0117
2-3-4 0.0015 0.0345 0.0257 0.0152 0.0389 0.0345
2-3-4-5 -0.0060 0.0096 0.0168 0.0283 0.0403 0.0370

DIST_CHAR_ASIS

2 0.0181 0.0458 0.0196 -0.0173 -0.0216 -0.0147
2-3 -0.0017 0.0099 0.0257 0.0034 0.0041 -0.0010
2-3-4 0.0151 -0.0199 0.0072 -0.0106 0.0263 0.0332
2-3-4-5 0.0060 0.0030 0.0127 -0.0121 0.0074 -0.0042

DIST_CHAR_ASIS_POS
1 0.0431 0.0190 -0.0015 -0.0213 0.0100 0.0060
1-2 0.0327 0.0124 -0.0106 -0.0153 0.0417 0.0422
1-2-3 0.0142 0.0324 0.0102 -0.0236 0.0124 0.0116

DIST_CHAR_ASIS_POS_TAG
1 -0.0230 -0.0049 0.0602 0.0363 0.0459 0.0400
1-2 -0.0051 -0.0015 -0.0061 -0.0297 0.0271 0.0223
1-2-3 0.0022 0.0010 -0.0143 -0.0176 0.0368 0.0398

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0084 0.0033 -0.0038 -0.0138 0.0160 0.0227
1-2 0.0184 0.0234 0.0126 0.0124 0.0381 0.0358
1-2-3 0.0184 0.0299 -0.0325 -0.0191 0.0387 0.0331

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0384 0.0402 -0.0095 -0.0214 0.0229 0.0133
1-2 0.0124 0.0285 0.0307 0.0042 0.0130 0.0092

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0093 0.0051 0.0216 0.0340 0.0195 0.0214
1-2 0.0252 0.0271 0.0238 0.0170 -0.0156 -0.0159
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Table E.46: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 250 characters using a cumulated model on the ordered, full feature set

Target Age
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.6772 0.6770 0.5772 0.5772 0.4543 0.4439 0.3928 0.3686
2-3 0.7627 0.7629 0.6684 0.6689 0.5239 0.5115 0.4643 0.4581
2-3-4 0.7534 0.7555 0.6707 0.6732 0.5471 0.5440 0.4860 0.4795
2-3-4-5 0.7380 0.7413 0.6847 0.6848 0.5454 0.5361 0.4927 0.4875

DIST_CHAR_ASIS

2 0.7749 0.7751 0.6993 0.6996 0.5607 0.5567 0.4827 0.4712
2-3 0.7918 0.7920 0.7083 0.7067 0.5742 0.5705 0.5002 0.4942
2-3-4 0.7981 0.7996 0.7140 0.7131 0.5773 0.5736 0.4982 0.4902
2-3-4-5 0.7928 0.7941 0.7059 0.7071 0.5862 0.5845 0.5049 0.5020

DIST_CHAR_ASIS_POS
1 0.7622 0.7611 0.6947 0.6963 0.5817 0.5785 0.4990 0.4899
1-2 0.7842 0.7846 0.7106 0.7104 0.5852 0.5838 0.4983 0.4921
1-2-3 0.7857 0.7854 0.7052 0.7056 0.5856 0.5842 0.4992 0.4968

DIST_CHAR_ASIS_POS_TAG
1 0.7847 0.7851 0.7071 0.7068 0.5749 0.5713 0.4929 0.4799
1-2 0.7752 0.7764 0.7012 0.7016 0.5699 0.5649 0.5002 0.4960
1-2-3 0.7825 0.7829 0.7008 0.7012 0.5694 0.5635 0.5064 0.4999

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.7744 0.7747 0.6959 0.6970 0.5797 0.5749 0.4959 0.4950
1-2 0.7713 0.7721 0.6947 0.6960 0.5842 0.5829 0.4969 0.4925
1-2-3 0.7823 0.7825 0.6981 0.6980 0.5832 0.5815 0.5061 0.5003

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.7666 0.7668 0.6957 0.6956 0.5766 0.5709 0.5078 0.5031
1-2 0.7642 0.7647 0.7027 0.7019 0.5735 0.5673 0.5108 0.5060

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.7652 0.7674 0.6895 0.6883 0.5845 0.5821 0.5070 0.5042
1-2 0.7686 0.7692 0.6882 0.6875 0.5860 0.5842 0.5078 0.5019

Table E.47: Stability of feature relevance for the prediction of age on a minimal input instance
length of 250 characters using a cumulated model on the ordered, full feature set

Target Age
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0416 0.1495 0.0072 0.0051 0.0153 0.0489
2-3 -0.0223 0.0252 -0.0132 0.0114 0.0086 -0.0058
2-3-4 0.0028 0.0019 0.0258 0.0180 0.0279 0.0153
2-3-4-5 0.0040 0.0345 0.0270 0.0137 -0.0079 -0.0130

DIST_CHAR

2 0.0620 0.0267 0.0122 0.0015 0.0181 0.0090
2-3 0.0686 0.0548 0.0189 0.0225 0.0152 0.0079
2-3-4 0.0693 0.0148 0.0045 0.0058 0.0072 0.0068
2-3-4-5 0.0496 0.0082 0.0093 0.0005 -0.0054 -0.0113

DIST_CHAR_ASIS

2 0.0390 0.0173 0.0187 0.0134 0.0050 0.0077
2-3 0.0346 0.0165 0.0025 0.0088 0.0027 0.0066
2-3-4 0.0333 0.0131 0.0004 0.0048 0.0168 0.0067
2-3-4-5 0.0450 0.0078 -0.0004 0.0097 0.0206 -0.0040

DIST_CHAR_ASIS_POS
1 0.0487 0.0185 0.0226 0.0315 0.0268 0.0170
1-2 0.0371 0.0085 0.0278 0.0285 0.0101 0.0091
1-2-3 0.0359 0.0068 0.0253 0.0272 0.0106 0.0085

DIST_CHAR_ASIS_POS_TAG
1 0.0467 0.0368 0.0249 0.0209 0.0238 0.0231
1-2 0.0567 0.0221 0.0192 0.0230 0.0132 0.0162
1-2-3 0.0444 0.0179 0.0295 0.0261 0.0359 0.0319

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0169 -0.0045 0.0155 0.0171 0.0337 0.0358
1-2 0.0212 0.0112 0.0235 0.0135 0.0254 0.0214
1-2-3 0.0463 0.0107 0.0254 0.0261 0.0086 0.0097

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0495 0.0303 0.0171 0.0123 0.0171 0.0151
1-2 0.0392 0.0134 0.0085 0.0048 0.0258 0.0210

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0342 0.0096 0.0089 0.0097 0.0285 0.0263
1-2 0.0310 0.0073 0.0136 0.0129 0.0133 0.0160
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Minimum of Characters: 500 & Cumulated

Table E.48: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 500 characters using a cumulated model on the ordered, full feature set

Target Gender
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.8231 0.8230 0.7868 0.7868 0.7062 0.7058 0.6795 0.6769
2-3 0.8802 0.8802 0.8396 0.8392 0.7698 0.7696 0.7313 0.7311
2-3-4 0.8727 0.8712 0.8498 0.8494 0.7852 0.7852 0.7407 0.7392
2-3-4-5 0.8953 0.8951 0.8583 0.8583 0.7679 0.7650 0.7433 0.7429

DIST_CHAR_ASIS

2 0.8887 0.8882 0.8623 0.8623 0.7521 0.7441 0.7511 0.7494
2-3 0.8861 0.8850 0.8725 0.8725 0.8036 0.8036 0.7612 0.7602
2-3-4 0.8779 0.8764 0.8734 0.8733 0.7700 0.7641 0.7676 0.7675
2-3-4-5 0.8947 0.8942 0.8730 0.8729 0.7688 0.7626 0.7674 0.7673

DIST_CHAR_ASIS_POS
1 0.9048 0.9045 0.8717 0.8717 0.8043 0.8042 0.7660 0.7656
1-2 0.8976 0.8975 0.8670 0.8668 0.8040 0.8040 0.7678 0.7677
1-2-3 0.8937 0.8936 0.8701 0.8700 0.7985 0.7976 0.7660 0.7650

DIST_CHAR_ASIS_POS_TAG
1 0.8996 0.8996 0.8696 0.8696 0.7980 0.7971 0.7687 0.7687
1-2 0.8881 0.8881 0.8678 0.8677 0.7755 0.7704 0.7695 0.7694
1-2-3 0.8792 0.8786 0.8640 0.8639 0.8058 0.8057 0.7692 0.7691

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.8740 0.8729 0.8676 0.8676 0.8056 0.8055 0.7698 0.7698
1-2 0.8615 0.8596 0.8634 0.8633 0.8037 0.8031 0.7698 0.7697
1-2-3 0.8677 0.8664 0.8615 0.8615 0.7804 0.7761 0.7710 0.7709

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.8835 0.8835 0.8628 0.8628 0.8050 0.8049 0.7754 0.7754
1-2 0.8786 0.8786 0.8594 0.8591 0.7841 0.7801 0.7707 0.7695

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.8704 0.8698 0.8639 0.8636 0.8057 0.8055 0.7759 0.7757
1-2 0.8819 0.8814 0.8644 0.8644 0.8062 0.8060 0.7769 0.7767

Table E.49: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 500 characters using a cumulated model on the ordered, full feature set

Target Gender
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.0858 0.1370 0.1528 0.2654 0.2834 0.2834
2-3 0.1535 0.1134 0.1350 0.1049 0.1451 0.1875
2-3-4 0.1185 -0.0050 0.0893 0.0610 0.0425 0.0354
2-3-4-5 0.0904 0.0550 0.0491 0.0644 0.0457 0.0703

DIST_CHAR

2 0.0911 0.0265 0.0598 0.0466 0.0998 0.0889
2-3 0.0903 -0.0365 0.0331 0.0278 0.0178 0.0419
2-3-4 0.0990 0.0314 0.0445 0.0261 0.0454 0.0362
2-3-4-5 0.0829 -0.0121 0.0455 0.0365 0.0461 0.0232

DIST_CHAR_ASIS

2 0.0815 -0.0217 0.0306 0.0077 0.0118 0.0141
2-3 0.0931 0.0012 0.0462 0.0171 0.0295 0.0138
2-3-4 0.0789 -0.0137 0.0380 0.0166 0.0026 0.0088
2-3-4-5 0.0829 0.0014 0.0459 0.0050 0.0281 0.0243

DIST_CHAR_ASIS_POS
1 0.1044 0.0228 0.0343 -0.0083 0.0389 0.0358
1-2 0.0661 0.0052 -0.0052 -0.0298 0.0173 0.0290
1-2-3 0.0603 0.0113 0.0389 0.0158 0.0362 0.0372

DIST_CHAR_ASIS_POS_TAG
1 0.0473 -0.0021 0.0340 0.0171 0.0295 0.0218
1-2 0.0578 -0.0141 0.0384 0.0072 -0.0040 -0.0065
1-2-3 0.0267 -0.0247 0.0100 -0.0060 0.0340 0.0434

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0737 0.0128 0.0054 -0.0020 0.0309 0.0268
1-2 0.0797 0.0354 -0.0123 -0.0162 0.0159 0.0262
1-2-3 0.0488 0.0061 0.0163 -0.0007 0.0464 0.0227

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0535 -0.0062 0.0102 -0.0180 0.0378 0.0332
1-2 0.0436 0.0064 0.0343 0.0316 0.0089 0.0107

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0380 -0.0058 0.0038 -0.0200 0.0358 0.0473
1-2 0.0617 0.0180 0.0094 0.0061 0.0258 0.0262



E.2. TABLES CIII

Table E.50: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 500 characters using a cumulated model on the ordered, full feature set

Target Age
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7262 0.7271 0.6350 0.6349 0.5133 0.5123 0.4465 0.4434
2-3 0.8192 0.8214 0.7342 0.7331 0.5938 0.5898 0.5199 0.5177
2-3-4 0.8321 0.8343 0.7623 0.7627 0.6151 0.6114 0.5437 0.5390
2-3-4-5 0.8232 0.8250 0.7590 0.7595 0.6186 0.6140 0.5451 0.5397

DIST_CHAR_ASIS

2 0.8508 0.8518 0.7725 0.7727 0.6203 0.6150 0.5566 0.5515
2-3 0.8727 0.8726 0.7954 0.7954 0.6640 0.6629 0.5724 0.5687
2-3-4 0.8753 0.8753 0.8017 0.8014 0.6618 0.6610 0.5643 0.5553
2-3-4-5 0.8673 0.8671 0.8007 0.8006 0.6421 0.6376 0.5764 0.5731

DIST_CHAR_ASIS_POS
1 0.8633 0.8632 0.7846 0.7846 0.6552 0.6541 0.5766 0.5736
1-2 0.8736 0.8733 0.7838 0.7841 0.6565 0.6545 0.5797 0.5772
1-2-3 0.8451 0.8466 0.7900 0.7893 0.6411 0.6362 0.5611 0.5498

DIST_CHAR_ASIS_POS_TAG
1 0.8526 0.8531 0.7741 0.7742 0.6620 0.6614 0.5714 0.5656
1-2 0.8575 0.8579 0.7851 0.7850 0.6645 0.6640 0.5764 0.5727
1-2-3 0.8362 0.8383 0.7776 0.7770 0.6530 0.6500 0.5609 0.5498

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.8388 0.8391 0.7795 0.7792 0.6606 0.6606 0.5829 0.5806
1-2 0.8482 0.8487 0.7723 0.7717 0.6534 0.6517 0.5753 0.5719
1-2-3 0.8388 0.8399 0.7694 0.7683 0.6360 0.6308 0.5651 0.5569

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.8495 0.8486 0.7737 0.7735 0.6416 0.6376 0.5705 0.5625
1-2 0.8531 0.8526 0.7795 0.7790 0.6531 0.6509 0.5803 0.5756

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.8353 0.8368 0.7718 0.7715 0.6654 0.6651 0.5751 0.5708
1-2 0.8575 0.8575 0.7755 0.7751 0.6598 0.6591 0.5676 0.5600

Table E.51: Stability of feature relevance for the prediction of age on a minimal input instance
length of 500 characters using a cumulated model on the ordered, full feature set

Target Age
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST

2 0.1872 0.0727 0.0083 0.0109 0.0192 0.0501
2-3 0.1142 0.0359 0.0275 0.0294 0.0478 0.0012
2-3-4 0.0268 0.0157 0.0502 0.0416 0.0099 0.0147
2-3-4-5 0.0219 0.0064 0.0371 0.0096 0.0154 0.0220

DIST_CHAR

2 0.1366 0.0099 0.0244 0.0326 0.0048 0.0061
2-3 0.1364 0.0224 0.0286 0.0257 0.0117 0.0144
2-3-4 0.1078 0.0159 0.0183 0.0196 0.0110 -0.0038
2-3-4-5 0.0934 0.0227 0.0179 0.0167 0.0084 0.0023

DIST_CHAR_ASIS

2 0.0901 -0.0056 0.0189 0.0107 0.0071 0.0017
2-3 0.0815 0.0144 0.0157 0.0055 0.0102 0.0100
2-3-4 0.0848 0.0158 0.0124 0.0120 0.0053 0.0009
2-3-4-5 0.0831 0.0126 0.0198 0.0020 0.0067 0.0095

DIST_CHAR_ASIS_POS
1 0.0836 0.0140 0.0336 0.0287 0.0294 0.0322
1-2 0.0750 0.0146 0.0199 0.0174 0.0331 0.0223
1-2-3 0.0830 0.0122 0.0178 0.0230 0.0221 0.0137

DIST_CHAR_ASIS_POS_TAG
1 0.0816 0.0207 0.0313 0.0318 0.0364 0.0321
1-2 0.0806 0.0242 0.0142 0.0162 0.0363 0.0337
1-2-3 0.0773 0.0271 0.0191 0.0185 0.0177 0.0214

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0728 0.0171 0.0158 0.0135 0.0362 0.0267
1-2 0.0760 0.0222 0.0086 0.0084 0.0380 0.0439
1-2-3 0.0780 0.0198 0.0306 0.0297 0.0268 0.0312

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0704 0.0164 0.0138 0.0153 0.0159 0.0129
1-2 0.0574 0.0144 0.0129 0.0065 0.0227 0.0188

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0544 0.0200 0.0196 0.0187 0.0297 0.0340
1-2 0.0652 0.0201 0.0148 0.0152 0.0180 0.0197
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Minimum of Characters: 100 & Stacked

Table E.52: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 100 characters using a stacked model on the ordered, full feature set

Target Gender
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7223 0.7220 0.6879 0.6864 0.6232 0.6230 0.6142 0.6136
2-3 0.7658 0.7658 0.7159 0.7139 0.6594 0.6594 0.6426 0.6424
2-3-4 0.7776 0.7776 0.7259 0.7253 0.6655 0.6655 0.6478 0.6475
2-3-4-5 0.7732 0.7731 0.7249 0.7243 0.6638 0.6637 0.6477 0.6474

DIST_CHAR_ASIS

2 0.7761 0.7760 0.7217 0.7200 0.6657 0.6656 0.6487 0.6484
2-3 0.7881 0.7880 0.7314 0.7300 0.6694 0.6693 0.6518 0.6516
2-3-4 0.7914 0.7914 0.7361 0.7348 0.6723 0.6723 0.6543 0.6540
2-3-4-5 0.7890 0.7889 0.7338 0.7324 0.6708 0.6707 0.6540 0.6539

DIST_CHAR_ASIS_POS
1 0.7893 0.7893 0.7334 0.7318 0.6709 0.6708 0.6535 0.6532
1-2 0.7889 0.7888 0.7340 0.7325 0.6708 0.6707 0.6533 0.6530
1-2-3 0.7903 0.7903 0.7335 0.7320 0.6711 0.6711 0.6537 0.6534

DIST_CHAR_ASIS_POS_TAG
1 0.7889 0.7888 0.7340 0.7324 0.6721 0.6721 0.6546 0.6542
1-2 0.7898 0.7897 0.7329 0.7314 0.6709 0.6709 0.6537 0.6534
1-2-3 0.7900 0.7900 0.7329 0.7313 0.6717 0.6716 0.6538 0.6535

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.7890 0.7889 0.7335 0.7319 0.6724 0.6724 0.6541 0.6539
1-2 0.7892 0.7891 0.7295 0.7273 0.6720 0.6720 0.6537 0.6534
1-2-3 0.7911 0.7910 0.7324 0.7306 0.6720 0.6720 0.6537 0.6534

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.7907 0.7906 0.7326 0.7310 0.6718 0.6718 0.6539 0.6536
1-2 0.7912 0.7911 0.7328 0.7311 0.6718 0.6718 0.6537 0.6534

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.7927 0.7926 0.7340 0.7324 0.6733 0.6733 0.6552 0.6549
1-2 0.7924 0.7923 0.7336 0.7320 0.6724 0.6723 0.6550 0.6548

Table E.53: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 100 characters using a stacked model on the ordered, full feature set

Target Gender
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 -0.0387 -0.0005 0.0055 -0.0134 0.0438 0.0420
2-3 -0.0308 -0.0107 -0.0109 -0.0139 0.0442 0.0409
2-3-4 -0.0293 -0.0093 -0.0037 -0.0112 0.0369 0.0404
2-3-4-5 -0.0168 0.0059 -0.0041 -0.0094 0.0306 0.0362

DIST_CHAR_ASIS

2 -0.0102 0.0104 -0.0034 -0.0049 0.0243 0.0322
2-3 -0.0078 0.0036 0.0263 -0.0042 -0.0069 0.0140
2-3-4 -0.0236 -0.0164 -0.0019 -0.0071 0.0207 0.0259
2-3-4-5 -0.0155 -0.0105 -0.0049 -0.0039 0.0203 0.0195

DIST_CHAR_ASIS_POS
1 -0.0262 -0.0216 -0.0101 -0.0092 0.0001 -0.0007
1-2 -0.0185 -0.0130 0.0032 0.0068 0.0391 0.0421
1-2-3 -0.0077 0.0013 -0.0343 -0.0375 0.0188 0.0232

DIST_CHAR_ASIS_POS_TAG
1 -0.0131 -0.0047 -0.0303 -0.0333 0.0116 0.0157
1-2 -0.0179 -0.0111 -0.0474 -0.0499 0.0216 0.0252
1-2-3 -0.0209 -0.0095 -0.0277 -0.0273 0.0166 0.0257

DIST_CHAR_ASIS_POS_TAG_DEP
1 -0.0184 -0.0077 -0.0274 -0.0269 0.0178 0.0263
1-2 -0.0330 -0.0194 -0.0215 -0.0223 0.0134 0.0237
1-2-3 -0.0284 -0.0184 -0.0342 -0.0277 0.0249 0.0359

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 -0.0257 -0.0151 -0.0325 -0.0235 0.0232 0.0351
1-2 0.0076 0.0090 -0.0325 -0.0245 0.0215 0.0322

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0084 0.0118 -0.0307 -0.0221 0.0209 0.0316
1-2 0.0082 0.0058 -0.0320 -0.0221 0.0256 0.0320
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Table E.54: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 100 characters using a stacked model on the ordered, full feature set

Target Age
Min. No. of Characters 100
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.5814 0.5806 0.4549 0.4544 0.2092 0.0892 0.2029 0.0707
2-3 0.6560 0.6565 0.5434 0.5426 0.4313 0.4281 0.2607 0.1626
2-3-4 0.6726 0.6728 0.5630 0.5621 0.4346 0.4147 0.3547 0.2988
2-3-4-5 0.6769 0.6773 0.5647 0.5638 0.4531 0.4464 0.3450 0.2828

DIST_CHAR_ASIS

2 0.6955 0.6954 0.5636 0.5627 0.4507 0.4473 0.3738 0.3267
2-3 0.7126 0.7128 0.5758 0.5750 0.4604 0.4584 0.3820 0.3378
2-3-4 0.7164 0.7163 0.5829 0.5822 0.4703 0.4649 0.3707 0.3001
2-3-4-5 0.7156 0.7156 0.5835 0.5828 0.4695 0.4638 0.3786 0.3584

DIST_CHAR_ASIS_POS
1 0.7158 0.7159 0.5835 0.5828 0.4693 0.4635 0.3673 0.3417
1-2 0.7158 0.7159 0.5826 0.5819 0.4693 0.4634 0.3673 0.3417
1-2-3 0.7163 0.7164 0.5831 0.5825 0.4693 0.4635 0.3679 0.3423

DIST_CHAR_ASIS_POS_TAG
1 0.7162 0.7163 0.5832 0.5825 0.4696 0.4635 0.3831 0.3488
1-2 0.7159 0.7161 0.5832 0.5825 0.4695 0.4634 0.3833 0.3491
1-2-3 0.7183 0.7184 0.5835 0.5828 0.4695 0.4635 0.3831 0.3489

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.7183 0.7184 0.5832 0.5825 0.4569 0.4440 0.3812 0.3464
1-2 0.7185 0.7186 0.5833 0.5826 0.4697 0.4634 0.3812 0.3465
1-2-3 0.7187 0.7189 0.5833 0.5826 0.4697 0.4634 0.3812 0.3464

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.7179 0.7184 0.5842 0.5835 0.4703 0.4638 0.3793 0.3440
1-2 0.7191 0.7192 0.5826 0.5820 0.4704 0.4639 0.3797 0.3443

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.7197 0.7198 0.5851 0.5843 0.4706 0.4639 0.4036 0.3761
1-2 0.7196 0.7197 0.5853 0.5846 0.4705 0.4639 0.4019 0.3724

Table E.55: Stability of feature relevance for the prediction of age on a minimal input instance
length of 100 characters using a stacked model on the ordered, full feature set

Target Age
Min. No. of Characters 100
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 -0.0261 -0.0180 -0.0041 0.0083 0.0156 0.0209
2-3 -0.0058 -0.0031 -0.0170 -0.0032 0.0285 0.0297
2-3-4 -0.0065 0.0028 0.0036 0.0192 -0.0086 -0.0014
2-3-4-5 -0.0145 -0.0003 -0.0099 0.0049 0.0225 0.0185

DIST_CHAR_ASIS

2 0.0049 -0.0039 0.0051 0.0080 0.0112 0.0043
2-3 -0.0002 -0.0051 -0.0048 0.0081 0.0121 0.0122
2-3-4 0.0066 0.0059 -0.0038 0.0006 0.0089 0.0184
2-3-4-5 0.0106 0.0062 -0.0028 0.0105 0.0121 0.0134

DIST_CHAR_ASIS_POS
1 0.0128 0.0108 0.0211 0.0260 0.0288 0.0307
1-2 0.0068 0.0038 0.0031 0.0109 0.0196 0.0211
1-2-3 0.0035 -0.0061 0.0233 0.0247 0.0061 0.0055

DIST_CHAR_ASIS_POS_TAG
1 0.0132 0.0031 0.0259 0.0330 0.0098 0.0031
1-2 0.0141 0.0051 0.0348 0.0395 0.0161 0.0098
1-2-3 0.0125 -0.0036 0.0332 0.0297 0.0227 0.0170

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0149 0.0027 0.0260 0.0241 0.0154 0.0133
1-2 0.0281 0.0163 0.0388 0.0381 0.0344 0.0309
1-2-3 0.0178 0.0115 0.0328 0.0333 0.0331 0.0304

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0309 0.0213 0.0342 0.0276 0.0324 0.0308
1-2 0.0239 0.0197 0.0286 0.0290 0.0267 0.0261

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0181 0.0120 0.0313 0.0288 0.0259 0.0256
1-2 0.0074 0.0104 0.0267 0.0247 0.0264 0.0268
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Minimum of Characters: 250 & Stacked

Table E.56: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 250 characters using a stacked model on the ordered, full feature set

Target Gender
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7737 0.7735 0.7414 0.7414 0.6647 0.6642 0.6455 0.6436
2-3 0.8138 0.8130 0.7813 0.7813 0.7156 0.7156 0.6858 0.6849
2-3-4 0.8218 0.8217 0.7912 0.7911 0.7261 0.7261 0.6933 0.6926
2-3-4-5 0.8230 0.8230 0.7927 0.7926 0.7266 0.7266 0.6936 0.6928

DIST_CHAR_ASIS

2 0.8287 0.8287 0.7983 0.7983 0.7282 0.7280 0.6947 0.6940
2-3 0.8397 0.8396 0.8076 0.8076 0.7323 0.7323 0.6996 0.6990
2-3-4 0.8392 0.8391 0.8108 0.8106 0.7353 0.7353 0.7051 0.7050
2-3-4-5 0.8359 0.8357 0.8114 0.8113 0.7345 0.7345 0.7046 0.7045

DIST_CHAR_ASIS_POS
1 0.8218 0.8200 0.8128 0.8127 0.7345 0.7345 0.7041 0.7040
1-2 0.8401 0.8400 0.8095 0.8092 0.7348 0.7348 0.7042 0.7040
1-2-3 0.8419 0.8419 0.8105 0.8104 0.7342 0.7342 0.7034 0.7027

DIST_CHAR_ASIS_POS_TAG
1 0.8401 0.8399 0.8127 0.8126 0.7357 0.7357 0.7040 0.7034
1-2 0.8437 0.8437 0.8094 0.8090 0.7347 0.7347 0.7038 0.7037
1-2-3 0.8105 0.8085 0.8104 0.8103 0.7348 0.7348 0.7034 0.7028

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.8417 0.8417 0.8085 0.8082 0.7362 0.7362 0.7031 0.7026
1-2 0.8376 0.8375 0.8082 0.8079 0.7350 0.7350 0.7038 0.7037
1-2-3 0.8376 0.8374 0.8105 0.8104 0.7351 0.7351 0.7026 0.7021

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.8387 0.8386 0.8072 0.8069 0.7330 0.7330 0.7027 0.7022
1-2 0.8397 0.8396 0.8105 0.8104 0.7351 0.7351 0.7027 0.7021

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.8365 0.8363 0.8067 0.8064 0.7363 0.7359 0.7042 0.7036
1-2 0.8383 0.8381 0.8054 0.8050 0.7364 0.7361 0.7054 0.7054

Table E.57: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 250 characters using a stacked model on the ordered, full feature set

Target Gender
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 0.0315 0.0538 0.0180 0.0214 0.0739 0.0638
2-3 0.0250 0.0498 0.0184 0.0121 0.0694 0.0464
2-3-4 0.0295 0.0412 0.0155 0.0154 0.0480 0.0440
2-3-4-5 0.0248 0.0451 0.0103 0.0112 0.0500 0.0452

DIST_CHAR_ASIS

2 0.0336 0.0458 0.0110 0.0130 0.0486 0.0443
2-3 0.0315 0.0388 0.0124 0.0391 0.0262 0.0248
2-3-4 0.0327 0.0429 0.0126 0.0066 0.0414 0.0400
2-3-4-5 0.0557 -0.0074 0.0112 0.0075 0.0403 0.0336

DIST_CHAR_ASIS_POS
1 0.0237 0.0340 0.0405 0.0371 0.0685 0.0623
1-2 0.0525 0.0020 0.0072 0.0242 0.0643 0.0586
1-2-3 0.0106 0.0140 -0.0034 -0.0059 0.0298 0.0240

DIST_CHAR_ASIS_POS_TAG
1 0.0069 0.0149 0.0095 0.0072 0.0283 0.0229
1-2 0.0019 -0.0313 0.0135 0.0283 0.0243 0.0202
1-2-3 0.0152 0.0117 -0.0018 -0.0021 0.0263 0.0163

DIST_CHAR_ASIS_POS_TAG_DEP
1 -0.0049 -0.0251 0.0210 0.0162 0.0381 0.0286
1-2 -0.0067 -0.0289 0.0067 0.0067 0.0194 0.0124
1-2-3 0.0186 0.0083 -0.0189 -0.0083 0.0308 0.0178

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0143 0.0056 -0.0178 -0.0085 0.0274 0.0191
1-2 0.0173 0.0120 -0.0170 -0.0071 0.0277 0.0177

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0133 0.0108 -0.0146 -0.0058 0.0275 0.0180
1-2 0.0136 0.0149 -0.0143 -0.0054 0.0260 0.0156
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Table E.58: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 250 characters using a stacked model on the ordered, full feature set

Target Age
Min. No. of Characters 250
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.6667 0.6672 0.5623 0.5621 0.4216 0.4205 0.3466 0.3196
2-3 0.7480 0.7484 0.6506 0.6498 0.5183 0.5180 0.4535 0.4513
2-3-4 0.7588 0.7592 0.6741 0.6735 0.5337 0.5308 0.4774 0.4757
2-3-4-5 0.7627 0.7630 0.6722 0.6718 0.5325 0.5292 0.4829 0.4793

DIST_CHAR_ASIS

2 0.7759 0.7763 0.6793 0.6788 0.5455 0.5419 0.4849 0.4810
2-3 0.7940 0.7943 0.6919 0.6914 0.5571 0.5567 0.4930 0.4892
2-3-4 0.7911 0.7915 0.6996 0.6991 0.5553 0.5529 0.4994 0.4962
2-3-4-5 0.7933 0.7933 0.6966 0.6962 0.5553 0.5530 0.5000 0.4972

DIST_CHAR_ASIS_POS
1 0.7869 0.7874 0.6967 0.6962 0.5553 0.5530 0.5000 0.4975
1-2 0.7930 0.7930 0.6969 0.6965 0.5553 0.5529 0.5001 0.4976
1-2-3 0.7986 0.7990 0.6975 0.6971 0.5554 0.5530 0.5000 0.4975

DIST_CHAR_ASIS_POS_TAG
1 0.7984 0.7989 0.6974 0.6970 0.5547 0.5522 0.4973 0.4965
1-2 0.7986 0.7988 0.6965 0.6963 0.5547 0.5523 0.4973 0.4965
1-2-3 0.7984 0.7990 0.6981 0.6974 0.5550 0.5525 0.4975 0.4966

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.7979 0.7985 0.6976 0.6969 0.5625 0.5625 0.4974 0.4967
1-2 0.7986 0.7992 0.6978 0.6970 0.5626 0.5626 0.4975 0.4968
1-2-3 0.7981 0.7985 0.6986 0.6979 0.5628 0.5628 0.4976 0.4969

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.7893 0.7899 0.6971 0.6964 0.5560 0.5537 0.4974 0.4968
1-2 0.7925 0.7930 0.6966 0.6959 0.5554 0.5531 0.4972 0.4967

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.7962 0.7964 0.6967 0.6960 0.5604 0.5568 0.4972 0.4967
1-2 0.8003 0.8005 0.6973 0.6966 0.5565 0.5544 0.4974 0.4969

Table E.59: Stability of feature relevance for the prediction of age on a minimal input instance
length of 250 characters using a stacked model on the ordered, full feature set

Target Age
Min. No. of Characters 250
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 0.0132 -0.0179 -0.0008 0.0021 0.0057 0.0131
2-3 0.0076 -0.0155 0.0017 0.0131 0.0161 0.0122
2-3-4 0.0248 0.0128 -0.0031 0.0107 0.0037 0.0109
2-3-4-5 0.0154 — 0.0055 0.0092 0.0169 0.0218

DIST_CHAR_ASIS

2 0.0218 0.0024 -0.0060 -0.0045 0.0118 0.0127
2-3 0.0311 -0.0075 0.0108 0.0040 0.0065 0.0082
2-3-4 0.0289 -0.0034 0.0092 0.0006 -0.0009 -0.0029
2-3-4-5 0.0335 0.0136 0.0001 0.0041 0.0002 —

DIST_CHAR_ASIS_POS
1 0.0386 0.0154 0.0174 0.0131 0.0050 0.0073
1-2 0.0268 0.0082 0.0128 0.0042 0.0088 0.0037
1-2-3 0.0241 0.0055 -0.0044 -0.0052 0.0085 0.0093

DIST_CHAR_ASIS_POS_TAG
1 0.0239 0.0045 -0.0050 -0.0100 0.0033 0.0047
1-2 0.0252 0.0051 0.0043 -0.0025 0.0144 0.0131
1-2-3 0.0344 0.0300 -0.0073 -0.0073 0.0085 0.0086

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0329 0.0234 -0.0059 -0.0065 0.0145 0.0159
1-2 0.0298 0.0162 -0.0067 -0.0084 0.0237 0.0231
1-2-3 0.0259 0.0234 -0.0017 0.0031 0.0254 0.0271

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0212 0.0223 0.0092 0.0033 0.0190 0.0194
1-2 0.0212 0.0179 0.0037 0.0047 0.0215 0.0199

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0212 0.0178 0.0053 -0.0020 0.0219 0.0186
1-2 0.0144 0.0180 0.0050 0.0030 0.0124 0.0166
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Minimum of Characters: 500 & Stacked

Table E.60: Accuracy and F1-scores for the prediction of gender on a minimal input instance
length of 500 characters using a stacked model on the ordered, full feature set

Target Gender
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.8192 0.8179 0.7780 0.7778 0.6948 0.6935 0.6765 0.6764
2-3 0.8743 0.8740 0.8369 0.8369 0.7639 0.7636 0.7286 0.7285
2-3-4 0.8874 0.8874 0.8485 0.8485 0.7772 0.7769 0.7400 0.7399
2-3-4-5 0.8884 0.8883 0.8501 0.8500 0.7773 0.7769 0.7411 0.7410

DIST_CHAR_ASIS

2 0.8920 0.8919 0.8527 0.8527 0.7767 0.7761 0.7412 0.7411
2-3 0.8983 0.8982 0.8619 0.8619 0.7844 0.7841 0.7467 0.7466
2-3-4 0.8832 0.8830 0.8670 0.8670 0.7862 0.7855 0.7505 0.7504
2-3-4-5 0.8789 0.8787 0.8664 0.8663 0.7856 0.7850 0.7515 0.7513

DIST_CHAR_ASIS_POS
1 0.8756 0.8754 0.8653 0.8652 0.7858 0.7852 0.7526 0.7525
1-2 0.8986 0.8982 0.8673 0.8672 0.7860 0.7854 0.7516 0.7515
1-2-3 0.8819 0.8817 0.8663 0.8662 0.7860 0.7854 0.7513 0.7512

DIST_CHAR_ASIS_POS_TAG
1 0.8815 0.8814 0.8666 0.8665 0.7851 0.7845 0.7522 0.7522
1-2 0.8940 0.8940 0.8659 0.8659 0.7861 0.7855 0.7513 0.7511
1-2-3 0.8924 0.8923 0.8664 0.8663 0.7864 0.7859 0.7514 0.7512

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.8897 0.8897 0.8647 0.8646 0.7878 0.7873 0.7525 0.7525
1-2 0.8871 0.8871 0.8664 0.8663 0.7875 0.7869 0.7515 0.7514
1-2-3 0.8933 0.8933 0.8665 0.8664 0.7864 0.7859 0.7511 0.7509

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.8858 0.8854 0.8674 0.8673 0.7865 0.7859 0.7511 0.7510
1-2 0.8989 0.8987 0.8672 0.8671 0.7862 0.7856 0.7509 0.7508

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.8828 0.8822 0.8673 0.8672 0.7872 0.7866 0.7523 0.7523
1-2 0.8966 0.8963 0.8684 0.8684 0.7872 0.7866 0.7514 0.7514

Table E.61: Stability of feature relevance for the prediction of gender on a minimal input
instance length of 500 characters using a stacked model on the ordered, full feature set

Target Gender
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 0.1274 0.0535 0.0573 0.0718 0.0552 0.0749
2-3 0.1182 0.0385 0.0420 0.0543 0.0388 0.0574
2-3-4 0.1085 0.0315 0.0355 0.0490 0.0417 0.0531
2-3-4-5 0.0951 0.0258 0.0311 0.0432 0.0336 0.0474

DIST_CHAR_ASIS

2 0.1148 0.0277 0.0340 0.0439 0.0364 0.0494
2-3 0.1371 -0.0178 0.0286 0.0425 0.0308 0.0454
2-3-4 0.1046 0.0192 0.0263 0.0358 0.0282 0.0381
2-3-4-5 0.0987 0.0262 0.0281 0.0320 0.0272 0.0380

DIST_CHAR_ASIS_POS
1 0.1100 0.0431 0.0500 0.0536 0.0403 0.0503
1-2 0.0886 0.0270 0.0025 0.0091 0.0610 0.0674
1-2-3 0.0702 0.0068 0.0181 0.0232 0.0334 0.0421

DIST_CHAR_ASIS_POS_TAG
1 0.0644 0.0050 0.0067 0.0122 0.0316 0.0398
1-2 0.0779 0.0190 0.0207 0.0189 0.0429 0.0500
1-2-3 0.0695 0.0170 0.0159 0.0142 0.0485 0.0553

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0664 0.0061 0.0203 0.0188 0.0472 0.0537
1-2 0.0733 0.0239 0.0040 0.0025 0.0411 0.0456
1-2-3 0.0548 0.0065 0.0150 0.0154 0.0521 0.0573

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0522 -0.0209 0.0153 0.0168 0.0516 0.0543
1-2 0.0481 0.0099 0.0146 0.0128 0.0516 0.0498

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0449 -0.0142 0.0145 0.0117 0.0515 0.0499
1-2 0.0431 -0.0145 0.0179 0.0132 0.0499 0.0451
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Table E.62: Accuracy and F1-scores for the prediction of age on a minimal input instance
length of 500 characters using a stacked model on the ordered, full feature set

Target Age
Min. No. of Characters 500
No. of Authors 50 150 500 1000
Score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

Feature types N-gram ranges

DIST_CHAR

2 0.7413 0.7422 0.6347 0.6350 0.4899 0.4848 0.4263 0.4239
2-3 0.8250 0.8252 0.7357 0.7356 0.5868 0.5840 0.5140 0.5114
2-3-4 0.8415 0.8416 0.7623 0.7622 0.6156 0.6141 0.5433 0.5432
2-3-4-5 0.8397 0.8397 0.7605 0.7603 0.6172 0.6161 0.5433 0.5416

DIST_CHAR_ASIS

2 0.8473 0.8472 0.7703 0.7701 0.6201 0.6187 0.5489 0.5469
2-3 0.8651 0.8652 0.7795 0.7795 0.6280 0.6258 0.5550 0.5537
2-3-4 0.8749 0.8748 0.7912 0.7911 0.6400 0.6396 0.5630 0.5630
2-3-4-5 0.8700 0.8700 0.7878 0.7876 0.6372 0.6357 0.5623 0.5623

DIST_CHAR_ASIS_POS
1 0.8713 0.8709 0.7878 0.7877 0.6375 0.6360 0.5621 0.5621
1-2 0.8718 0.8715 0.7881 0.7879 0.6375 0.6360 0.5621 0.5621
1-2-3 0.8749 0.8746 0.7870 0.7868 0.6372 0.6357 0.5620 0.5621

DIST_CHAR_ASIS_POS_TAG
1 0.8767 0.8767 0.7869 0.7867 0.6395 0.6385 0.5621 0.5621
1-2 0.8793 0.8793 0.7843 0.7833 0.6395 0.6385 0.5636 0.5636
1-2-3 0.8820 0.8821 0.7910 0.7908 0.6417 0.6415 0.5628 0.5629

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.8802 0.8803 0.7905 0.7904 0.6419 0.6418 0.5626 0.5627
1-2 0.8736 0.8735 0.7911 0.7909 0.6376 0.6351 0.5626 0.5627
1-2-3 0.8793 0.8794 0.7912 0.7911 0.6418 0.6417 0.5631 0.5632

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.8740 0.8741 0.7911 0.7909 0.6387 0.6362 0.5632 0.5633
1-2 0.8776 0.8773 0.7914 0.7912 0.6387 0.6361 0.5633 0.5634

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.8758 0.8756 0.7946 0.7945 0.6399 0.6385 0.5634 0.5635
1-2 0.8762 0.8761 0.7911 0.7908 0.6389 0.6374 0.5634 0.5635

Table E.63: Stability of feature relevance for the prediction of age on a minimal input instance
length of 500 characters using a stacked model on the ordered, full feature set

Target Age
Min. No. of Characters 500
No. of Authors 150 500 1000

Score Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Avg.
Spearman’s ρ (ext.)

Avg.
Spearman’s ρ (red.)

Feature types N-gram ranges

DIST_CHAR

2 0.0733 0.0228 0.0064 0.0045 -0.0029 0.0157
2-3 0.0645 -0.0005 0.0075 0.0223 -0.0016 0.0015
2-3-4 0.0493 0.0004 0.0092 0.0073 0.0037 0.0017
2-3-4-5 0.0451 0.0075 0.0236 0.0156 -0.0009 0.0045

DIST_CHAR_ASIS

2 0.0799 0.0056 0.0117 0.0167 0.0066 0.0003
2-3 0.0807 0.0021 0.0149 0.0020 0.0013 0.0205
2-3-4 0.0751 0.0083 -0.0057 -0.0054 0.0046 0.0045
2-3-4-5 0.0688 -0.0053 0.0013 0.0040 0.0018 0.0051

DIST_CHAR_ASIS_POS
1 0.0877 0.0359 0.0129 0.0079 0.0084 0.0085
1-2 0.0772 0.0195 0.0121 0.0085 0.0058 0.0069
1-2-3 0.0694 0.0280 -0.0024 0.0009 0.0064 0.0082

DIST_CHAR_ASIS_POS_TAG
1 0.0568 0.0114 -0.0062 — 0.0164 0.0198
1-2 0.0600 0.0070 0.0046 -0.0013 0.0009 0.0146
1-2-3 0.0652 0.0193 0.0145 0.0120 0.0032 0.0120

DIST_CHAR_ASIS_POS_TAG_DEP
1 0.0593 0.0090 0.0097 0.0081 0.0046 0.0094
1-2 0.0666 0.0221 0.0106 0.0098 0.0118 0.0109
1-2-3 0.0577 0.0178 0.0123 0.0135 0.0120 0.0110

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA
1 0.0462 0.0048 0.0117 0.0081 0.0019 0.0065
1-2 0.0491 0.0121 0.0052 -0.0006 0.0025 0.0052

DIST_CHAR_ASIS_POS_TAG_DEP_LEMMA_WORD
1 0.0519 0.0136 0.0101 0.0044 0.0128 0.0159
1-2 0.0459 0.0123 0.0077 0.0107 0.0098 0.0004
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