An Experimental Comparison of Fast
Algorithms for Drawing General Large Graphs

Stefan Hachul and Michael Jiinger

Universitat zu Koln, Institut fiir Informatik,
Pohligstrale 1, 50969 Koln, Germany
{hachul,mjuenger}@informatik.uni-koeln.de

Abstract. In the last decade several algorithms that generate straight-
line drawings of general large graphs have been invented. In this paper
we investigate some of these methods that are based on force-directed or
algebraic approaches in terms of running time and drawing quality on a
big variety of artificial and real-world graphs. Our experiments indicate
that there exist significant differences in drawing qualities and running
times depending on the classes of tested graphs and algorithms.

1 Introduction

Force-directed graph drawing methods generate drawings of a given general
graph G = (V| E) in the plane in which each edge is represented by a straight line
connecting its two adjacent nodes. The computation of the drawings is based on
associating G with a physical model. Then, an iterative algorithm tries to find a
placement of the nodes so that the total energy of the physical system is mini-
mal. Important esthetic criteria are uniformity of edge length, few edge crossings,
non-overlapping nodes, and the display of symmetries if some exist.

Classical force-directed algorithms like [5,15,7,4, 6] are used successfully in
practice (see e.g. [2]) for drawing general graphs containing few hundreds of
vertices. However, in order to generate drawings of graphs that contain thousands
or hundreds of thousands of vertices more efficient force-directed techniques have
been developed [19,18,9,8,12,21,11,10]. Besides fast force-directed algorithms
other very fast methods for drawing large graphs (see e.g. [13,16]) have been
invented. These methods are based on techniques of linear algebra instead of
physical analogies. But they strive for the same esthetic drawing criteria.

Previous experimental tests of these methods are mainly restricted to regular
graphs with grid-like structures (see e.g. [13,16,9,21,12]). Since general graphs
share these properties quite seldom, and since the test environments of these
experiments are different, a standardized comparison of the methods on a wider
range of graphs is needed.

In this study we experimentally compare some of the fastest state-of-the-art
algorithms for straight-line drawing of general graphs on a big variety of graph
classes. In particular, we investigate the force-directed algorithm GRIP of Gajer
and Kobourov [9] and Gajer et al. [8], the Fast Multi-scale Method (FMS) of

Harel and Koren [12], and the Fast Multipole Multilevel Method (FM®) of Hachul
and Jiinger [11,10]. The examined algebraic methods are the algebraic multigrid
method ACE of Koren et al. [16] and the high-dimensional embedding approach
(HDE) by Harel and Koren [13]. Additionally, one of the faster classical force-
directed algorithms, namely the grid-variant algorithm (GVA) of Fruchterman
and Reingold [7], is tested as a benchmark.

After a short description of the tested algorithms in Section 2 and of the
experimental framework in Section 3, our results are presented in Section 4.

2 The Algorithms

2.1 The Grid-Variant Algorithm (GVA)

The grid-variant algorithm of Fruchterman and Reingold [7] is based on a model
of pairwise repelling charged particles (the nodes) and attracting springs (the
edges), similar to the model of the Spring Embedder of Eades [5]. Since a naive
exact calculation of the repulsive forces acting between all pairs of charges needs
O(|V?|) time per iteration, GVA does only calculate the repulsive forces acting
between nodes that are placed relatively near to each other. Therefore, the rect-
angular drawing area is subdivided into a regular square grid. The repulsive
forces that act on a node v that is contained in a grid box B are approximated
by summing up only the repulsive forces that are induced by the nodes contained
in B and the nodes in the grid boxes that are neighbors of B. If the number of
iterations is assumed to be constant, the best-case running time of the GVA is
O(|V| + |E]). The worst-case running time, however, remains O(|V|? + | E|).

2.2 The Method GRIP

Gajer et al. [8] and Gajer and Kobourov [9] developed the force-directed multi-
level algorithm GRIP. In general, multilevel algorithms are based on two phases.
A coarsening phase, in which a sequence of coarse graphs with decreasing sizes is
computed and a refinement phase in which successively drawings of finer graphs
are computed, using the drawings of the next coarser graphs and a variant of a
suitable force-directed single-level algorithm.

The coarsening phase of GRIP is based on the construction of a mazimum
independent set filtration or MIS filtration of the node set V. A MIS filtration
is a family of sets {V =: V,Vi,...,Vi} with @ C Vi C Vi—1... C Vj so that
each V; with ¢ € {1,...,k} is a maximal subset of V;_; for which the graph-
theoretic distance between any pair of its elements is at least 2¢~1 + 1. Gajer
and Kobourov [9] use a Spring Embedder-like method as single-level algorithm
at each level. The used force vector is similar to that used in the Kamada-Kawai
method [15], but is restricted to a suitable chosen subset of V;.

Other notable specifics of GRIP are that it computes the MIS filtration only
and no edge sets of the coarse graphs Gy, ..., Gy that are induced by the filtra-
tions. Furthermore, it is designed to place the nodes in an n-dimensional space

(n > 2), to draw the graph in this space, and to project it into two or three
dimensions.

The asymptotic running time of the algorithm, excluding the time that is
needed to construct the MIS filtration, is ©(|V|(log diam(G)?)) for graphs with
bounded maximum node degree, where diam(G) denotes the diameter of G.

2.3 The Fast Multi-scale Method (FMS)

In order to create the sequence of coarse graphs in the force-directed multilevel
method FMS, Harel and Koren [12] use an O(k|V|) algorithm that finds a 2-
approximative solution of the N"P-hard k-center problem. The node set V; of a
graph G; in the sequence Gy, . .., G} is determined by the approximative solution
of the k;-center problem on G with k; > k;;1 for alli € {0,...,k —1}.

The authors use a variation of the algorithm of Kamada and Kawai [15] as
force-directed single-level algorithm. In order to speed up the computation of
this method, they modify the energy function of Kamada and Kawai [15] that is
associated with a graph G; with ¢ € {0,...,k —1}. The difference to the original
energy of Kamada and Kawai [15] is that only some of the |V(G;)| — 1 springs
that are connected with a node v € V(G;) are considered.

The asymptotic running time of the FMS is O(|V||E|). Additionally, O(|V|?)
memory is needed to store the distances between all pairs of nodes.

2.4 The Fast Multipole Multilevel Method (FM3)

The force-directed multilevel algorithm FM® has been introduced by Hachul and
Jinger [11,10]. It is based on a combination of an efficient multilevel technique
with an O(|V|log|V|) approximation algorithm to obtain the repulsive forces
between all pairs of nodes.

In the coarsening step subgraphs with a small diameter (called solar systems)
are collapsed to obtain a multilevel representation of the graph. In the used
single-level algorithm, the bottleneck of calculating the repulsive forces acting
between all pairs of charged particles in the Spring Embedder-like force model
is overcome by rapidly evaluating potential fields using a novel multipole-based
tree-code. The worst-case running time of FM? is O(|V'|log |V| +|E|) with linear
memory requirements.

2.5 The Algebraic Multigrid Method ACE

In the description of their method ACE, Koren et al. [16] define the quadratic
optimization problem

(P) min 27 Lz so that 272 =1 in the subspace 271, =0.

Here n = |V| and L is the Laplacian matrix of G.

The minimum of (P) is obtained by the eigenvector that corresponds to the
smallest positive eigenvalue of L. The problem of drawing the graph G in two
dimensions is reduced to the problem of finding the two eigenvectors of L that
are associated with the two smallest eigenvalues.

Instead of calculating the eigenvectors directly, an algebraic multigrid al-
gorithm is used. Similar to the force-directed multilevel ideas, the idea is to
express the originally high-dimensional problem in lower and lower dimensions,
solving the problem at the lowest dimension, and progressively solving a high-
dimensional problem by using the solutions of the low-dimensional problems.

The authors do not give an upper bound on the asymptotic running time of
ACE in the number of nodes and edges.

2.6 High-Dimensional Embedding (HDE)

The method HDE of Harel and Koren [13] is based on a two phase approach
that first generates an embedding of the graph in a very high-dimensional vector
space and then projects this drawing into the plane.

The high-dimensional embedding of the graph is generated by first using a
linear time algorithm for approximatively solving the k-center problem. A fixed
value of k = 50 is chosen, and k is also the dimension of the high-dimensional
vector space. Then, breadth-first search starting from each of the k£ center nodes
is performed resulting in k |V |-dimensional vectors that store the graph-theoretic
distances of each v € V' to each of the k centers. These vectors are interpreted
as a k-dimensional embedding of the graph.

In order to project the high-dimensional embedding of the graph into the
plane, the k vectors are used to define a covariance matrix S. The z- and y-
coordinates of the two-dimensional drawing are obtained by calculating the two
eigenvectors of S that are associated with its two largest eigenvalues. HDE runs
in O(|V| + |E]) time.

3 The Experiments
3.1 Test-Environment, Implementations, and Parameter Settings

All experiments were performed on a 2.8 GHz Intel Pentium 4 PC with one
gigabyte of memory.

We tested a version of GVA that has been implemented in the framework of
AGD [14] by S. Naher and D. Alberts, an implementation of GRIP by R. Yusufov
that is available from [22], and implementations of FMS, ACE, HDE by Y. Koren
that are available from [17]. Finally, we tested our own implementation of FM3.

In order to obtain a fair comparison, we ran each algorithm with the same
set of standard-parameter settings (given by the authors) on each tested graph.
However, we are aware that in some cases it might be possible to obtain better
results by spending a considerable amount of time with trial-and-error searching
for an optimal set of parameters for each algorithm and graph.

3.2 The Set of Test Graphs

Since only few implementations can handle disconnected and weighted graphs,
we restrict to connected unweighted graphs, here.

We generated several classes of artificial graphs to examine the scaling of the
algorithms on graphs with predefined structures but different sizes.

These are random grid graphs that were obtained by first creating regular
square grid graphs and then randomly deleting 3% of the nodes. The sierpin-
ski graphs were created by associating the Sierpinski Triangles with graphs.
Furthermore, we generated complete 6-nary trees.

The next two classes of artificial graphs were designed to test how well the
algorithms can handle highly non-uniform distributions of the nodes and high
node degrees. Therefore, we created these graphs in a way so that one can expect
that an energy-minimal configuration of the nodes in a drawing that relies on a
Spring Embedder-like force model induces a tiny subregion of the drawing area
which contains ©(|V]) nodes. In particular, we constructed trees that contain
a root node r with |V|/4 neighbors. The other nodes were subdivided into six
subtrees of equal size rooted at r. We called these graphs snowflake graphs.

Additionally we created spider graphs by constructing a circle C' containing
25% of the nodes. Each node of C is also adjacent to 12 other nodes of the
circle. The remaining nodes were distributed on 8 paths of equal length that
were rooted at one node of C. In contrast to the snowflake graphs is that the
spider graphs have bounded maximum degree.

The last kind of artificial graphs are graphs with a relatively high edge density
|E|/|V] > 14. We called them flower graphs. They are constructed by joining 6
circles of equal length at a single node before replacing each of the nodes by a
complete subgraph with 30 nodes (K3).

The rest of the test graphs are taken from real-world applications. In partic-
ular, we selected graphs from the ATET graph library [1], from C. Walshaw’s
graph collection [20], and a graph that describes a social network of 2113 people
that we obtained from C. Lipp.

We partitioned the artificial and real-world graphs into two sets. The first set
are graphs that consist of few biconnected components, have a constant max-
imum node degree, and have a low edge density. Furthermore, one can expect
that an energy-minimal configuration of the nodes in a Spring Embedder draw-
ing of such a graph does not contain ©(]V]) nodes in an extremely tiny subregion
of the drawing area. Since one can anticipate from previous experiments [13, 16,
9,12] that the graphs contained in this set do not cause problems for many of
the tested algorithms, we call the set of these graphs kind. The second set is the
complement of the first one, and we call the set of these graphs challenging.

3.3 The Criteria of Evaluation

The natural criteria to evaluate a graph-drawing algorithm in practice are the
needed running times and the quality of the drawings.

Unlike evaluating the first criterion, evaluating the quality of a drawing is
a difficult task. Possible ways are the calculation of the total energy in the
underlying force models or the measurement of relevant esthetic criteria (e.g.
crossing number, uniformity of the edge lengths). However, one of the most
important goals is that an individual user is satisfied with a drawing. Hence,
we decided to print the drawings and to comment how well they display the
structure of each graph by keeping the modeled esthetic criteria in mind.

4 The Results

4.1 Comparison of the Running Times

Table 1 presents the running times of the methods GVA, FM3, GRIP, FMS, ACE, and
HDE for the tested graphs.

As expected, in most cases GVA is the slowest method among the force-
directed algorithms. The largest graph fe_ocean is drawn by GVA in 5 hours
and 20 minutes.

Graph Information Algorithm Information

|E| | max. CPU Time in Seconds
Type| Name | [V |E] | 1Bl 197|400l VA [FI° [GRTP] FMS | ACE | HDE
rnd_grid_032 985 1834 2| 1.8 4 12,5 1.9 0.3 1.0{< 0.1{< 0.1
Kind rnd_grid-100| 9497 17849 6| 1.8 4 203.4| 19.1 4.4 32.01 0.5 0.1
Artie rnd_grid_320| 97359| 184532 2|1 1.9 4] 6316.1(215.4 (E)| (M) 4.1 1.3
ficial sierpinski_06| 1095 2187 1| 2.0 4 13.1| 1.8 0.3 1.0|< 0.1{< 0.1
sierpinski_08| 9843| 19683 1| 2.0 4 171.7(16.8| 4.8 33.0/ 1.0 0.1
sierpinski_10| 88575| 177147 1| 2.0 4|| 3606.4[162.0| (E)| (M)| 23.4| 1.0
Kind crack 10240 30380 1| 2.9 9 317.5| 23.0{ 6.8] (M) 0.4 0.2
Real |fePWE 36463| 144794| 55| 3.9 15(| 1869.1| 69.0| (E)| (M)| (T)| 0.5
World finan_512 74752| 261120 1| 3.4 54|l 6319.8(158.2| (E)| (M) 7.5 1.0
fe_ocean 143437(409593 39| 2.8 6((19247.0|355.9| (E)| (M) 4.0 3.4
tree_.d_4 1555 1554| 1554 1.0 7 14.3| 2.6| 0.3 2.0|< 0.1|< 0.1
tree_.d_5 9331 9330| 9330| 1.0 7 130.3| 17.7| 2.4| 43.0f 0.5|< 0.1
tree_d_6 55987| 5598655986 1.0 7|| 1769.2[121.3| (E)| (M)| 4.5 05
snowflake_A 971 970| 970| 1.0 256 8.0/ 1.6/ 0.4 73.0f 0.4|<0.1

Chal- |snowflake_B 9701 9700(9700| 1.0 2506 143.2| 17.4| 6.1(3320.0| (7T)|< 0.1
lenging|snowflake_C | 97001| 97000(97000| 1.0| 25006|(14685.7|166.5| (E)| (M)| (T)| 0.8

Arti- [spider-A 1000 2200 801| 2.2 18 17.6| 1.9 0.4 1.0 1.1|< 0.1
ficial [spider_B 10000 22000| 8001 2.2 18 189.0| 17.7| 7.2 47.0| 89| 0.1
spider_C 100000(220000({80001| 2.2 18|| 4568.3(|177.2| (E)| (M)|280.7| 1.3
flower_A 930 13521 1|14.5 30 61.7| 1.2| 0.7 1.0|< 0.1|< 0.1
flower_B 9030| 131241 1{14.5 30 595.1| 11.9| 19.3| 46.0 1.4 0.2
flower_C 90030(1308441 1|14.5 30||11841.5(121.4| (E)| (M)| (T)| 1.4
ug-380 1104 3231 27| 2.9 856 23.1| 2.1| 04 1.0|< 0.1|< 0.1

Chal- esslingen 2075 5530 867| 2.6 97 43.8| 4.0/ 0.5| 404.0f 1.0(< 0.1
lenging add_32 4960 9462 951| 1.9 31 80.6| 12.1| 1.6| 17.0| 0.5(< 0.1
Real dg-1087 7602 7601| 7601| 1.0/ 6566 624.8| 18.1| 3.6(5402.0|108.4|< 0.1
World bcesstk_33 8738| 291583 1{33.3 140(| 1494.6| 23.8| 29.1|6636.0| 0.4| 0.3
besstk_31 35586| 572913 48(16.1 188|| 4338.4| 83.6| (E)| (M)| 1.9 0.7
besstk_32 44609| 985046 3(22.0 215|| 6387.1{110.9| (E)| (M)| 3.6/ 0.9

Table 1. The test graphs and the running times that are needed by the tested algo-
rithms to draw them. Explanations: (E) No drawing was generated due to an error in
the executable. (M) No drawing was generated because the memory is restricted to
graphs with < 10,000 nodes. (T) No drawing was generated within 10 hours of CPU
time. B denotes the set of biconnected components of the graphs.

The method FM? is significantly faster than GVA for all tested graphs. The
running times range from less than 2 seconds for the smallest graphs to less than
6 minutes for the largest graph fe_ocean. The subquadratic scaling of FM3 can
be experimentally confirmed for all classes of tested graphs.

Except for the dense graphs flower B and bcsstk_33 GRIP is faster than
FM® (up to a factor 9). Unfortunately, we could not examine the scaling of
GRIP for the largest graphs due to an error in the executable.

Since the memory requirement of FMS is quadratic in the size of the graph,
the implementation of FMS is restricted to graphs that contain at most 10,000
nodes. The running time of FMS is comparable with that of FM3 for the smallest
and the medium sized kind graphs. In contrast to this, the CPU time of FMS in-
creases drastically for several challenging graphs, in particular for graphs that
either contain nodes with a very high degree or have a high edge density.

The algorithm ACE is much faster than the force-directed algorithms for
nearly all kind graphs. However, like for FMS, the running times grow extremely
when ACE is used to draw several of the challenging graphs.

The linear time method HDE is by far the fastest algorithm. It needs less than
3.4 seconds for drawing even the largest tested graph.

4.2 Comparison of the Drawings

For all kind graphs the classical method GVA does not untangle the drawings
that were induced by the random initial placements.

In contrast to this nearly all algorithms generated comparable pleasing draw-
ings of the kind graphs (see Figure 1, Figure 2, and Figure 3(a)-(d)).

None of the drawings of the complete 6-nary trees (see Figure 3(e)-(j)) is
really convincing, since the force-directed algorithms produce many unnecessary
edge crossings. However, the drawings generated by FM3 and FMS display parts of
the regularity of these graphs. The algebraic methods ACE and HDE place many
nodes at the same coordinates. In general, this behavior of the algebraic meth-
ods can be observed for graphs that consist of many biconnected components.
Explanations of the theoretical reasons can be found in [3,16] and [10].

Except FM® none of the tested algorithms displays the global structure of
the snowflake graphs. Even the drawings of the smallest snowflake graph (see
Figure 4(a)-(f)) leave room for improvement. However, GVA and GRIP visualize
parts of its structure in an appropriate way.

The drawings of the spider_A graph (see Figure 4(g)-(1)) that are generated
by GRIP, FMS, and HDE are not as symmetric as that generated by FM3. But they
display the global structure of the graph. The drawing generated by GVA shows
the dense subregion, but GVA does not untangle the 8 paths. The paths in the
drawing of ACE are not displayed in the same length. The drawings of the larger
spider graphs are of comparable quality.

The drawings of the flower B graph (see Figure 5(a)-(f)) that are generated
by FMS and HDE display the global structure of the graph but the symmetries
are not as clear as in the drawing generated by FM3. The drawings of the other
flower graphs are of comparable quality.

We concentrate on the challenging real-world graphs now. The graphs ug-380
and dg-1087 both contain one node with a very high degree. Furthermore,
dg_1087 has many biconnected components, since it is a tree. Only the drawings
that are generated by GVA, FM3, and GRIP (see Figure 5(g)-(1) and Figure 6(a)-
(f)) clearly display the central regions of these graphs. It can be observed that
the edge lengths of the drawing of dg_1087 that is generated by FM® are more
uniform than in the drawings of dg_1087 that are generated by GVA and GRIP.

The social network esslingen (see Figure 6(g)-(1)) consists of two big well-
connected subgraphs. This can be visualized by FM3, GRIP, and HDE. But all
drawings contain many edge crossings.

Since add-32 that describes a 32 bit adder contains many biconnected com-
ponents, we expect that the drawings have a tree-like shape. This structure is
visualized by GVA, FM3 GRIP, and ACE (see Figure 7(a)-(f)). The drawings of
GVA and GRIP contain many edge crossings, while the drawing of ACE displays
the global structure, but hides local details.

Finally, we discuss the drawings of the graphs bcsstk_31_con, besstk-32, and
besstk-33 that have a very high edge density. The drawings of besstk-33 (see
Figure 7(g)-(1)) that are generated by FM?, GRIP, and ACE are comparable and
visualize the regular structure of the graph. The car body that is modeled by
the graph besstk_31_con (see Figure 8(a)-(d)) is visualized by FM® and ACE only.
All drawings of besstk_32 are completely different (see Figure 8(e)-(h)) and an
evaluation of the drawings is left to the reader.

5 Conclusion

We can summarize that only GVA, FM3, and HDE generate drawings of all tested
graphs. The force-directed multilevel methods and the algebraic methods are
— except the methods FMS and ACE for some graphs — much faster than the
comparatively slow classical algorithm GVA. HDE, FM® and GRIP scale well on all
tested graphs. FM® needs few minutes to draw the largest graphs. GRIP is up to
factor 9 faster than FM® but it could not be tested on the largest graphs. All
tested methods are much slower than HDE that needs only few seconds to draw
even the largest graphs.

As expected, all algorithms, except GVA, generate pleasing drawings of the
kind graphs. In contrast to this, the quality of the generated drawings varies a lot
depending on the structures of the tested challenging graphs. Only FM® generates
pleasing drawings for the majority of the challenging graphs. But there still
remain classes of tested graphs (the complete trees and the social network graph
esslingen) for which the drawing quality of all tested algorithms leaves room for
improvement.

Acknowledgments We would like to thank David Alberts, Steven Kobourov,
Yehuda Koren, Stefan Néaher, and Roman Yusufov for making the implementa-
tions of their algorithms available to us. We thank Ulrik Brandes, Carola Lipp
and Chris Walshaw for the access to the real-world test graphs.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22

The AT&T graph collection: www.graphdrawing.org.

F. J. Brandenburg, M. Himsolt, and C. Rohrer. An Experimental Comparison
of Force-Directed and Randomized Graph Drawing Methods. In Graph Drawing
1995, volume 1027 of LNCS, pages 76-87. Springer-Verlag, 1996.

U. Brandes and D. Wagner. In Graph Drawing Software, volume XII of Math-
ematics and Visualization, chapter visone - Analysis and Visualization of Social
Networks, pages 321-340. Springer-Verlag, 2004.

R. Davidson and D. Harel. Drawing Graphs Nicely Using Simulated Annealing.
ACM Transactions on Graphics, 15(4):301-331, 1996.

P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149-160,
1984.

A. Frick, A. Ludwig, and H. Mehldau. A Fast Adaptive Layout Algorithm for
Undirected Graphs. In Graph Drawing 1994, volume 894 of LNCS, pages 388—403.
Springer-Verlag, 1995.

T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-directed
Placement. Software—Practice and Experience, 21(11):1129-1164, 1991.

P. Gajer, M. T. Goodrich, and S. G. Kobourov. A Multi-dimensional Approach to
Force-Directed Layouts of Large Graphs. In Graph Drawing 2000, volume 1984 of
LNCS, pages 211-221. Springer-Verlag, 2001.

P. Gajer and S. G. Kobourov. GRIP: Graph Drawing with Intelligent Placement.
In Graph Drawing 2000, volume 1984 of LNCS, pages 222—228. Springer-Verlag,
2001.

S. Hachul. A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs.
PhD thesis, Institut fiir Informatik, Universitdt zu Kéln, Germany, 2005.

S. Hachul and M. Jiinger. Drawing Large Graphs with a Potential-Field-Based
Multilevel Algorithm (Extended Abstract). In Graph Drawing 2004, volume 3383
of Lecture Notes in Computer Science, pages 285-295. Springer-Verlag, 2005.

D. Harel and Y. Koren. A Fast Multi-scale Method for Drawing Large Graphs.
In Graph Drawing 2000, volume 1984 of LNCS, pages 183-196. Springer-Verlag,
2001.

D. Harel and Y. Koren. Graph Drawing by High-Dimensional Embedding. In Graph
Drawing 2002, volume 2528 of LNCS, pages 207-219. Springer-Verlag, 2002.

M. Jinger, G. W. Klau, P. Mutzel, and R. Weiskircher. In Graph Drawing Soft-
ware, volume XII of Mathematics and Visualization, chapter AGD - A Library of
Algorithms for Graph Drawing, pages 149-172. Springer-Verlag, 2004.

T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected Graphs.
Information Processing Letters, 31:7-15, 1989.

Y. Koren, L. Carmel, and D. Harel. Drawing Huge Graphs by Algebraic Multigrid
Optimization. Multiscale Modeling and Simulation, 1(4):645-673, 2003.

Y. Koren’s algorithms: research.att.com/ yehuda/index_programs.html.

A. Quigley and P. Eades. FADE: Graph Drawing, Clustering, and Visual Abstrac-
tion. In Graph Drawing 2000, volume 1984 of LNCS, pages 197-210. Springer-
Verlag, 2001.

D. Tunkelang. JIGGLE: Java Interactive Graph Layout Environment. In Graph
Drawing 1998, volume 1547 of LNCS, pages 413—422. Springer-Verlag, 1998.

C. Walshaw’s graph collection: staffweb.cms.gre.ac.uk/"c.walshaw/partition.
C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. In Graph
Drawing 2000, volume 1984 of LNCS, pages 171-182. Springer-Verlag, 2001.

R. Yusufov’s implementation of GRIP: www.cs.arizona.edu/ kobourov/GRIP.

(j) FMS (k) ACE (1) HDE

Fig. 1. (a)-(f) Drawings of rnd_grid-100 and (g)-(1) sierpinski_08 generated by different
algorithms.

(b) FM?

(d) ACE (e) HDE (f) GVA

(h) HDE

(i) GVA

() e’

(k) ACE (1) HDE
Fig. 2. (a)-(e) Drawings of crack, (f)-(h) fe_pwt, and (i)-(l1) finan_512 generated by
different algorithms.

(a) GVA (b) FM®

(c) ACE (d) HDE

(e) GVA (f) F® (g) GRIP

(h) FMS (i) ACE (j) HDE

Fig. 3. (a)-(d) Drawings of fe_ocean and (e)-(j) tree_06_05 generated by different algo-
rithms.

(a) GVA (b) FM? (c) GRIP

(f) HDE

(i) GRIP

(j) FMS (k) ACE 1)
HDE

Fig. 4. (a)-(f) Drawings of snowflake_A and (g)-(1) spider_A generated by different
algorithms.

(b) FM® (c) GRIP

(d) FMS (e) ACE (f) HDE

(j) FMS (k) ACE

Fig. 5. (a)-(f) Drawings of flower B and (g)-(1) ug-380 generated by different algo-

rithms.

(b) FM® (c) GRIP

(e) ACE

(g) GVA (h) FM®

(j) FMS (k) ACE (1) HDE

Fig. 6. (a)-(f) Drawings of dg_1087 and (g)-(1) esslingen generated by different algo-
rithms

(d) FMS (e) ()

() GvA (h) Fi® (i) GRIP

(j) FMs (k) ACE (1) HDE

Fig. 7. (a)-(f) Drawings of add_32 and (g)-(1) besstk_33 generated by different algo-

rithms.

(a) GVA (b) FM® (c) ACE

(d) HDE (e) GVA (f) FM?

(g) ACE (h) HDE

Fig. 8. (a)-(d) Drawings of besstk_31_con and (e)-(h) besstk_32 generated by different
algorithms.

