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Abstract. We study the problem of simultaneously embedding several
graphs on the same vertex set in such a way that edges common to two or
more graphs are represented by the same curve. This problem is known
as simultaneously embedding graphs with fixed edges. We show that this
problem is closely related to the weak realizability problem: Can a graph
be drawn such that all edge crossings occur in a given set of edge pairs?
By exploiting this relationship we can explain why the simultaneous
embedding problem is challenging, both from a computational and a
combinatorial point of view.
More precisely, we prove that simultaneously embedding graphs with
fixed edges is NP-complete even for three planar graphs. For two planar
graphs the complexity status is still open.

1 Introduction

Cologne offers various methods of public transport, including buses, trains, and
even a cable car to the zoo. Suppose your task is to design a system map dis-
playing all of the transport systems simultaneously.

We can easily model each transport system by itself as a graph: the bus
system has bus stops as vertices and edges correspond to direct connections
between two stops on a bus route. Similarly, for the train system we model train
stations as vertices and connections between train stations as edges. Let us make
the assumption that each system by itself (bus, train, cable car, etc.) is planar;
for instance, two bus routes do not intersect except at bus stops. We also assume
that all graphs share the same vertex set, so a bus stop can coincide with a train
stop or a cable car stop. To draw the full system map we need to embed vertices
and edges in the plane such that each of the systems—bus, train, cable car—is
planar by itself, but allowing, for instance, train lines and bus routes to cross
outside stations.



More formally, a simultaneous embedding of a set of graphs sharing the same
vertex set is a mapping of the vertices into the plane and a planar embedding of
each graph on the vertex set [1]. Notice that edges belonging to different graphs
are allowed to intersect. There are several natural ways to restrict the model; for
example, we could require all edges to be drawn as straight-line segments. Such
a drawing is called a simultaneous geometric embedding of the graphs [1].

Returning to the transport system example, it appears that asking for a si-
multaneous geometric embedding of the individual systems is too strict a require-
ment: we would be willing to accept Jordan curves to represent edges. However,
requiring only a simultaneous embedding does not seem satisfactory either: if a
train and bus route run in parallel, we would like to see them drawn in parallel;
that is, the two routes should be represented by the same curve. This restriction
leads to the notion of simultaneous embeddings with fixed edges introduced by
Erten and Kobourov [2], and it is this notion that will mostly concern us in
this paper: if several graphs share the same edge, that edge is represented by the
same curve in the drawing. We see that every simultaneous geometric embedding
is a simultaneous embedding with fixed edges, which, in turn, is a simultaneous
embedding.

While different variants of simultaneous embeddings have been investigated
from both theoretical and practical points of view [1–7], there is not much known
about simultaneous embeddings with fixed edges. Erten and Kobourov [2] give
an algorithm that constructs a simultaneous embedding with fixed edges of a tree
and a path in linear time and uses at most one bend per edge. They point out
that it is not known whether two trees can always be simultaneously embedded
with fixed edges such that the number of bends is a small constant.

Studying the problem from a complexity-theoretic point of view gives a dif-
ferent challenge: it was not even clear whether the problem is decidable, let alone
in NP or polynomial time. As we will see in Section 3 there is good reason for
this: simultaneously embedding graphs with fixed edges is a different (and in-
teresting) way to look at the weak realizability problem [9, 10]. The complexity
of the weak realizability problem is related to that of the string graph problem,
whose complexity was only settled recently after being open for thirty years [8,
11]. The relationship implies that the simultaneous embedding problem can be
decided in NP. We settle the computational complexity question for three or
more graphs in Section 3 by showing that it is NP-complete. The complexity of
the case for two graphs remains open.

2 Preliminaries

Given a graph G = (V,E) and a set R ⊆
(

E
2

)

= {{e, f} | e, f ∈ E, e 6= f}, we
call a drawing D of G in the plane in which all intersecting edge pairs belong to
R a weak realization of (G,R).

Notice that not all edge pairs in R are required to intersect in D, R just
defines the set of allowed crossings. (G,R) is weakly realizable if such a drawing
D exists.



Problem: Weak Realizability
Instance: A graph G = (V,E) and a set R ⊆

(

E
2

)

.
Question: Is (G,R) weakly realizable?

The weak realizability problem is closely related to the string graph prob-
lem [8]. Both problems are now known to be NP-complete even though this
question was open for a long time [11].

The simultaneous embedding with fixed edges problem was introduced by
Brass et al. [1]. It has become a major theoretical problem in simultaneous
graph drawing. We will present an example of two planar graphs which do not
have a simultaneous embedding with fixed edges. Brass et al already gave an
example of two outerplanar graphs as well as three paths with no simultaneous
embedding with fixed edges.

Problem: Simultaneous Embedding with Fixed Edges (SEFE)
Instance: A set of planar graphs Gi = (V,Ei) on the same vertex set V .
Question: Are there plane drawings Di of Gi, such that each vertex is

mapped to the same point in the plane in all Di and every
shared edge e ∈ Ei ∩Ej is represented by the same simple open
Jordan curve in Di and Dj?

In Figure 1 two planar graphs G1, G2 are given for which no SEFE exist: the
triangle induced by v1, v2, v3 is equal to G1 ∩G2 (visualized by bold edges) and
makes it impossible to include the edge (v4, v5) ∈ G1 into the unique embedding
(up to a homomorphism of the plane) of G2 without crossing an edge of G1∩G2.
This indicates that the SEFE problem is not trivial.

v1

v2

v3

v4v5

v1

v2

v3

v4v5

v1

v2v3

v4

v5

Fig. 1. Graph G1 (left), graph G2 (middle), unique planar embedding of G2 (right).

3 Complexity Results on Simultaneous Embeddings

We start with a result dealing with the relationship between the two problems
introduced in the previous section. This theorem implies the NP-completeness
of SEFE in the general case. We will show later that the problem remains NP-
complete in the case of three graphs.



Theorem 1. The weak realizability problem is polynomially equivalent to the
problem of simultaneous embedding with fixed edges.

Proof. Let ((V,E), R) be an instance of the weak realizability problem. For every
pair of edges {e, f} ∈

(

E
2

)

\R we construct a graph Ge,f = (V, {e, f}). It is easy
to verify that the weak realizability problem is solvable if and only if there exists
a simultaneous embedding with fixed edges for the set of constructed graphs
Ge,f .
Let now Gi = (V,Ei), i = 1, . . . , n, be a set of graphs on the same vertex set V .
Let E =

⋃n

i=1 Ei be the set of edges. Define R as the set of those pairs of edges
which are not contained in one graph Gi. Then the problem of simultaneously
embedding the graphs Gi is equivalent to the weak realizability problem of the
pair (G,R) with G = (V,E). ⊓⊔

Kratochv́ıl [8] and Schaefer, Sedgwick and Štefankovič [11] showed that weak
realizability is NP-complete. Hence we get the following corollary.

Corollary 1. Simultaneous embedding with fixed edges is NP-complete.

In particular, SEFE lies in NP for every fixed number k of graphs. As we will
show next, it is even NP-complete in that case, as long as k ≥ 3.

Theorem 2. Deciding whether three graphs have a simultaneous embedding with
fixed edges is NP-complete.

Proof. We have already seen that SEFE for a fixed number of graphs is in NP. We
will now show that there exists a polynomial transformation from 3SAT (which
is well-known to be NP-complete) to SEFE for three planar graphs G1 = (V,E1),
G2 = (V,E2) and G3 = (V,E3). Given an instance of 3SAT, we will construct an
instance (G1, G2, G3) of SEFE. Then we will prove that the instance of 3SAT is
satisfiable if and only if there exists a simultaneous embedding with fixed edges
of (G1, G2, G3).

The decision problem 3SAT is given in the following way:

Problem: 3SAT
Instance: A set U of boolean variables and a collection C of clauses in

conjunctive normal form over U such that each clause c ∈ C

has exactly three literals.
Question: Is there a truth assignment to U that satisfies C?

Construction: Let C = {c1, . . . , cm} be the set of clauses and let U =
{u1, . . . , un} be the variable set of a 3SAT-instance. Each clause is of the form
cj = l

j
1 ∨ l

j
2 ∨ l

j
3 with literals either l

j
i = uh or l

j
i = ūh for some h = 1, . . . , n and

i = 1, 2, 3.
Our construction of a SEFE-instance is made up of several components.

For our construction we assume an ordering of the clauses, say (c1, c2, . . . , cm).
Furthermore we choose an order of the three literals in each clause cj and hence
get an order of all literals in the following way (l11, l

1
2, l

1
3, l

2
1, . . . , l

m
3 ).



For each clause cj we define a clause box by introducing vertices r
j
1, . . . , r

j
6,

y1,j , y2,j , y3,j . These vertices are connected by edges in E2 and E3 to form the
cycle (rj

1, . . . , r
j
6, y

3,j , y2,j , y1,j).
Next, we introduce two global vertices R1 and R2. We add an edge (R1, R2)

which is part of all three graphs G1, G2 and G3. Furthermore, R1 is connected
to each clause box by four edges to the vertices r

j
2, r

j
3, r

j
4 and r

j
5. These edges

are part of all three graphs. R2 is connected to each clause gadget by two edges
to vertices r

j
1 and r

j
6 in E3.

To make the graphs more rigid we glue together neighboring clause boxes.
This is done by identifying r

j+1
2 with r

j
5 and r

j+1
1 with r

j
6 for j = 1, . . . ,m − 1.

Figure 2 shows the construction so far. We remark that all edges that have been
constructed so far belong (among others) to E3.

R1

R2

r1
1

y1,1 y2,1 y3,1

r1
6 = r2

1

y1,2 y3,n

rn
6

r1
2

r1
3 r1

4 r1
5 = r2

2 r2
3 rn

4

rn
5

c1 c2 cn

b b b

b b b

Fig. 2. The figure shows all clause boxes, the global vertices R1 and R2 and all con-
necting edges of E3.

For every literal l
j
i in clause cj we define a literal gadget consisting of the

vertices V i,j = {xi,j
k , z

i,j
k | k = 1, . . . , 6} ∪ {yi,j}. The edge set of the gadget is

shown in Figure 3. From now on edges of G1 are illustrated by solid lines, edges
of G2 are dashed and edges of G3 are dotted.

Furthermore, let l
j(1)
i(1) , . . . , l

j(ωh)
i(ωh) be all literals that belong to a variable uh,

that is l
j(α)
i(α) = uh or l

j(α)
i(α) = ūh for α = 1, . . . , ωh. Assume that the literals are

given in the order defined above. We connect each pair of adjacent literals in
this ordered list by the following edges of E2 (see Figure 4):

(z
i(k),j(k)
1 , z

i(k+1),j(k+1)
6 ), (z

i(k),j(k)
2 , z

i(k+1),j(k+1)
5 ), (z

i(k),j(k)
3 , z

i(k+1),j(k+1)
4 )

with k = 1, . . . , ωh − 1.
For each clause we define a clause gadget consisting of three literal gadgets,

the clause box and some additional vertices and edges. Let cj be a clause with

literals l
j
1, l

j
2 and l

j
3. Notice that the three literal gadgets are already connected

to the clause box via the vertices yi,j with i = 1, 2, 3. Further connections are
given by the additional edges (rj

3, x
1,j
2 ) ∈ E3 and (rj

4, x
3,j
2 ) ∈ E2. We also add

two vertices sj , tj .



z
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(a) Case uh = true
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(b) Case uh = false

Fig. 3. Literal gadget for literal l
j
i (with corresponding variable uh) of clause cj . The

edges in E1 are solid, those in E2 are dashed and those in E3 are dotted. The two
different drawings (a) and (b) will become important later.

z
i(1),j(1)
6 z

i(2),j(2)
6 z

i(3),j(3)
6

z
i(1),j(1)
1 z

i(2),j(2)
1 z

i(3),j(3)
1

Fig. 4. Three literal gadgets that belong to variable uh are linked with edges in E2.

In order to distinguish between negated and non-negated variables we define
connections between the literal gadgets. The gadget of l

j
1 is connected along

sj with the gadget of l
j
2. And the gadget of l

j
2 is connected along tj with the

gadget of l
j
3. More precisely, we add edges (pj

1, s
j) ∈ E3 (where p

j
1 is a vertex

of the gadget of l
j
1), (sj , p

j
2) ∈ E1 ∩ E2 and (qj

2, t
j) ∈ E1 ∩ E3 (where p

j
2 and q

j
2

are vertices of the gadget of ui2) and (tj , qj
3) ∈ E2 (where q

j
3 is a vertex of the

gadget of l
j
3). If l

j
1 is not negated, we set p

j
1 = x

1,j
3 (i. e., x

1,j
3 is connected with

sj), otherwise, if l
j
1 is negated, we set p

j
1 = x

1,j
1 . Analogously we set p

j
2 = x

2,j
1

and q
j
2 = x

2,j
3 if l

j
2 is not negated and p

j
2 = x

2,j
3 and q

j
2 = x

2,j
1 if l

j
2 is negated.

And finally, we set q
j
3 = x

3,j
1 if l

j
3 is not negated and q

j
3 = x

3,j
3 if l

j
3 is negated.

See Figure 5 for a clause gadget.
We complete the construction by adding an edge from R2 to z

i,j
5 to graph

G3 for each literal l
j
i .

1. Assume that the 3SAT-instance is satisfiable. We will prove that there
exists a simultaneous embedding with fixed edges of the constructed instance.
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r
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6
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Fig. 5. Clause gadget for the case where uk(2) is the only variable that makes cj true.

If variable uh = true we draw each of its literal gadgets as shown in Fig-
ure 3(a). Otherwise we draw the gadgets as shown in Figure 3(b).

The clause gadgets are drawn side by side as illustrated in Figure 2 for the
clause boxes. Furthermore, the x-vertices of each literal gadget lie inside the cycle
of the corresponding clause boxes and the z-vertices lie outside (see Figure 5).
Moreover, every variable gets its own horizontal level for the z-variables of its
literal gadgets (in Figure 4 the horizontal level is marked gray). Since all literal
gadgets that belong to one variable uh are drawn in the same way we can draw
the edges that connect literal gadgets which belong to the same variable without
crossings (see Figure 4).

It remains to show that we can draw the edges inside the clause gadgets
without crossings of edges of the same graph. We say that a variable u makes a
clause c true if either u ∈ c and u = true or if ū ∈ c and u = false. Since the
instance of 3SAT is satisfiable there exists at least one variable u in each clause
c that makes c true.

Consider clause cj with literals l
j
1, l

j
2, and l

j
3. Let uk(i) be the corresponding

variable to literal l
j
i , thus either l

j
i = uk(i) or l

j
i = ūk(i). Assume first that uk(1)

makes cj true. Then there are two possibilities. Either uk(1) ∈ cj and uk(1) is
set to true or ūk(1) ∈ cj and uk(1) = false. In the first case the literal gadget

is drawn like Figure 3(a) and p
j
1 = x

1,j
3 and in the other case we have the

situation of Figure 3(b) and p
j
1 = x

1,j
1 . But in both of these cases the vertex

p
j
1 is the upper right vertex of literal gadget l

j
1 (see Figure 6). Figure 6 shows

that in the case where uk(1) is the only variable that makes cj true there is a
simultaneous embedding with fixed edges of the corresponding clause gadget.
Simple modifications yield a simultaneous embedding for the case where uk(1) is
not the only variable that makes cj true. Due to symmetry an analogue drawing
can be found for the case where uk(3) makes cj true.
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6
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Fig. 6. Simultaneous embedding of the clause gadget when uk(1) is the only variable
that makes cj true.

Finally, if uk(2) makes cj true we can find a simultaneous embedding as shown
in Figure 5. Hence, we have found a simultaneous embedding with fixed edges
of the constructed instance.

2. Now assume that we are given a simultaneous embedding with fixed edges.
We will show that we can find a satisfying truth assignment for the 3SAT-
instance.

Notice that the subgraph of G3 shown in Figure 2 is a triconnected subdi-
vision. Consequently, it has a unique combinatorial embedding. We choose the
planar embedding with the edge (R1, R2) on the boundary of the outer face such
that the cycle (R1, r

1
2, r

1
1, R2, r

n
6 , rn

5 ) has the same order as visualized in Figure 2.

Due to the edge (R2, z
i,j
5 ) the vertex z

i,j
5 lies outside the clause box of clause

cj for each literal l
j
i . Hence, all z-vertices of every literal lie outside all clause

boxes.

Moreover, all x-vertices of a literal l
j
i lie inside the clause box of clause cj .

Notice first that both paths (rj
3, x

1,j
2 , x

1,j
5 , y1,j) and (rj

4, x
3,j
2 , x

3,j
5 , y3,j) have to be

completely within the clause box of clause cj due to vertex R1 and its incident

edges. Then all x
1,j
k and x

3,j
k , k = 1, . . . , 6, have to lie within the clause box. Thus,

sj is also forced to lie within the clause box. Otherwise, the edge (pj
1, s

j) ∈ E3

crosses an edge of the clause box boundary which is also in E3. Hence, the edge
(sj , p

j
2) and then all x

2,j
k , k = 1, . . . , 6, have to lie within the clause box, otherwise

there would be a crossing of two edges of graph G2.

Observe further, that each literal gadget contains (among others) two cycles,
C

i,j
1 = {xi,j

k | k = 1, . . . , 6} and C
i,j
2 = {zi,j

k | k = 1, . . . , 6}. Since the literal gad-
gets in G1 are planar graphs, that are a triconnected subdivision, these gadgets
have a unique planar embedding. Therefore, the clockwise ordering of the vertices
of C

i,j
1 and C

i,j
2 in a simultaneous embedding is either (xi,j

1 , x
i,j
2 , . . . , x

i,j
6 ) and



(zi,j
1 , z

i,j
2 , . . . , z

i,j
6 ) or (xi,j

6 , x
i,j
5 , . . . , x

i,j
1 ) and (zi,j

6 , z
i,j
5 , . . . z

i,j
1 ). In the first case,

we say the literal gadget has a positive ordering and in the second case it has
a negative ordering. Thus, the clockwise ordering of C

i,j
1 implies the clockwise

ordering of C
i,j
2 and vice versa.

Again, let l
j(1)
i(1) , . . . , l

j(ωh)
i(ωh) be all literals that belong to the same variable uh.

Notice that the subgraph of G2 induced by the vertices z
i(k),j(k)
q for q = 1, . . . , 6

and k = 1, . . . , ωh is also a triconnected subdivision. Since G2 is drawn planar,

the ordering of all cycles C
i(k),j(k)
2 has to be the same. We conclude that all cycles

C1 and C2 that belong to one variable uh have the same ordering. Therefore, we
can let

uh =

{

true if the literal gadgets of uh have a positive ordering,

false if the literal gadgets of uh have a negative ordering.

We define the interior of cycle C ′ = (rj
1, r

j
2, r

j
3, x

1,j
2 , x

1,j
5 , y1,j) as region F

j
1 ,

the interior of cycle (rj
3, r

j
4, x

3,j
2 , x

3,j
5 , y3,j , y2,j , y1,j , x

1,j
5 , x

1,j
2 ) as region F

j
2 and

the interior of cycle C ′′ = (rj
4, r

j
5, r

j
6, y

3,j , x
3,j
5 , x

3,j
2 ) as region F

j
3 (see Figure 7).
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Fig. 7. p
j
1 and sj have to be embedded in region F

j
1 , p

j
2 and q

j
2 have to be embedded

in region F
j
2 and q

j
3 and tj have to be embedded in region F

j
3 .

Assume that there exists a clause cj that is not true. This implies that none
of the three corresponding clause variables uk(1), uk(2), uk(3) makes cj true. If

uk(1) ∈ cj then the literal gadget of l
j
1 has a negative ordering and p

j
1 = x

1,j
3

is connected with sj (see Figure 8). Otherwise, if ūk(1) ∈ cj then the variable

gadgets of uk(1) have a positive ordering and p
j
1 = x

1,j
1 is connected with sj .

But in both cases the vertex p
j
1 has to be embedded in region F

j
1 . With similar

arguments for uk(2) and uk(3) we conclude that the clause gadget of cj is of the

form illustrated in Figure 8. To be more specific, vertex q
j
3 has to lie within

region F
j
3 and both p

j
2 and q

j
2 have to be embedded within region F

j
2 . For the

last two vertices we have an additional restriction: running through cycle C
2,j
1



in clockwise order starting from vertex x
2,j
5 the vertex p

j
2 comes first compared

to vertex q
j
2 (see Figure 8).

y1,j y2,j y3,j

p
j
1 q
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2 p

j
2 q

j
3

r
j
1

r
j
2

r
j
3 r

j
4 r

j
5

r
j
6

tjsj

Fig. 8. If a clause is false then there exists a crossing of two edges of the same graph
in the corresponding clause gadget.

In Figure 8 we observe that vertex sj has to be placed within region F
j
1 .

Otherwise edge (pj
1, s

j) ∈ E3 would cross at least one edge of the cycle C ′ ⊂ E3.

Moreover, tj has to be placed within the cycle C ′′ that is region F
j
3 . Otherwise

we have a crossing of two edges of E2, since C ′′ ⊆ E2. If (qj
2, t

j) is drawn without
crossing an edge of the same graph there exists a cycle consisting of edges in
E1∪E2 that separates p

j
2 from sj . Since (sj , p

j
2) ∈ E1∩E2 we conclude that there

exists a crossing of at least two edges of the same graph. If (sj , p
j
2) is drawn,

analogue implications lead to a non planar embedding of one of the graphs G1,
G2 or G3. This leads to a contradiction to the assumption that clause cj is not
true. Hence, all clauses are satisfied and thus, we have found a truth assignment.

⊓⊔

4 Summary and Future Work

We believe that in spite of their unwieldy name, simultaneous graph embeddings
with fixed edges are a natural problem to study. Erten and Kobourov [2] supply
an important reason why the fixed-edge model is more natural for many appli-
cations in comparison to the unrestricted version: Building a mental model of a
complex graph drawing is easier if the underlying structure resembles the graph
drawing, or, as Charles Peirce would have phrased it, if the drawing is iconic.
In other words, edges belonging to several graphs should not have multiple rep-
resentations, since this complicates forming a mental model: we have to identify



the different curves as representations of the same edge. And while straight-
line embeddings resolve this issue, they exclude the possibility of simultaneously
embedding even very simple planar graphs, such as trees [5].

It has been known that the weak realizability problem is related to several
famous problems, such as string graphs, topological inference, and Euler dia-
grams [9, 11], but the connection to fixed edge embeddings is the most purely
combinatorial connection we have seen so far.

The main open question of complexity is the question whether two planar
graphs allow a simultaneous embedding with fixed edges.
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