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Abstract

The crossing number of a graph is the minimum number of edge crossings in any
drawing of the graph in the plane. Extensive research has produced bounds on
the crossing number and exact formulae for special graph classes, yet the crossing
numbers of graphs such as K11 or K9,11 are still unknown. Finding the crossing
number is NP-hard for general graphs and no practical algorithm for its computation
has been published so far. We present an integer linear programming formulation
that is based on a reduction of the general problem to a restricted version of the
crossing number problem in which each edge may be crossed at most once. We
also present cutting plane generation heuristics and a column generation scheme.
As we demonstrate in a computational study, a branch-and-cut algorithm based
on these techniques as well as recently published preprocessing algorithms can be
used to successfully compute the crossing number for small to medium sized general
graphs.
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1 Introduction

Crossing minimization is among the oldest and most fundamental problems
arising in the area of automatic graph drawing and VLSI design and — at the
same time — very easy to formulate:

“Given a graph G = (V, E), draw it in the plane with a minimum number of
edge crossings”.

A drawing of G is a mapping of each node v ∈ V to a distinct point and each
edge e = (v, w) ∈ E to a curve connecting the incident nodes v and w without
passing through any other node. Common points of two edges that are not
incident nodes are called crossings. The minimum number of crossings among
all drawings of G is denoted by cr(G).

The main goal in automatic graph drawing is to obtain a layout that is easy
to read and understand. The definition of layout quality often depends on the
particular application and is hard to measure. However, the number of edge
crossings is among the most important criteria [41]. Figure 1 shows a com-
parison of different drawings for the same graph preferring different aesthetic
criteria.

(a) (b) (c)

Fig. 1. Three drawings of the same graph with 51 (a), 12 (b), and 4 crossings (c).
Most aesthetic criteria, for example, number of bends, uniformity of edge lengths,
or drawing area, favor the first two drawings, while the last drawing is preferable
with respect to the number of edge crossings

In fact, the crossing minimization problem is even older than the area of
automatic graph drawing. It goes back to P. Turán, who proposed the problem
in his “Notes of Welcome” in the first issue of the Journal of Graph Theory [42].
While working in a labor camp during the Second World War, he noticed that
crossings of the rails between kilns and storage yards caused the trucks to jump
the rails. Minimizing these crossings corresponds to the crossing minimization
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problem for a complete bipartite graphs Km,n.

In 1953, K. Zarankiewicz [43] and K. Urbańık independently claimed a solution
to this problem by providing a drawing rule for complete bipartite graphs Km,n

with Z(m, n) = ⌊m
2
⌋⌊m−1

2
⌋⌊n

2
⌋⌊n−1

2
⌋ crossings. About ten years later, their

proof of optimality was shown to be wrong and it is still unknown whether
the conjecture holds. The situation for complete graphs Kn is similar. Their
crossing number is conjectured to be Z(n) = 1

4
⌊n

2
⌋⌊n−1

2
⌋⌊n−2

2
⌋⌊n−3

2
⌋, which

has been verified for graphs of up to ten nodes by Guy [22]. Both conjectures
are based on a drawing rule and therefore serve as an upper bound for cr(Kn)
and cr(Km,n).

Recently, de Klerk et al. [30,31] devised a method for computing asymptotic
lower bounds for cr(Km,n) and cr(Kn) based on semidefinite programming.
They show that

lim
n→∞

cr(Km,n)

Z(m, n)
≥ 0.8594

m

m− 1
and lim

n→∞

cr(Kn)

Z(n)
≥ 0.83 .

It is well known that the general crossing minimization problem is NP-hard [16].
More precisely, it is shown that the crossing number problem is NP-complete:

“Given a graph G and a non-negative integer K, decide whether there is a
drawing of G with at most K edge crossings.”

However, for fixed K, we can obtain a polynomial time algorithm by examining
all possible configurations with up to K crossings. Clearly, this algorithm is not
appropriate in practical applications for larger values of K. Recently, Grohe
could show that this problem can be solved in time O(|V |2) [17]. Even though
the exponent is independent of K, the constant factor of his algorithm grows
doubly exponentially in K. Therefore, this method is also of little relevance
in practice.

The search for approximation algorithms did not lead to significant results ei-
ther. While there is no known polynomial time approximation algorithm with
any type of quality guarantee for the general problem, Bhatt and Leighton
could derive an algorithm for graphs with bounded degree that approximates
the number of crossings plus the number of nodes in polynomial time [2]. Due
to the complexity of the crossing minimization problem, many restricted ver-
sions have been considered in the literature. However, in most cases, e.g., for bi-
partite, linear, and circular drawings, the problem remains NP-hard [14,37,36].

The most prominent and practically successful heuristic for the crossing mini-
mization problem is the planarization approach [1]. This technique is used by
our algorithm as a primal heuristic and is explained in detail in Section 3.3.
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Contribution and Structure. In this paper, we present the first algo-
rithm that is able to compute the crossing number of general sparse graphs of
moderate size. We state computational results on a popular benchmark set of
graphs, the so-called Rome library [10]. The approach uses a new integer lin-
ear programming formulation of the problem combined with strong heuristics
and problem reduction techniques. This enables us to compute the crossing
number for nearly all graphs on up to 40 nodes in the Rome library within
a time limit of five minutes per graph. In Section 2, we show how to reduce
the problem to the easier problem of computing crossing-minimal drawings
where each edge is involved in at most one crossing. We present an integer
linear programming formulation for the reduced problem and a branch-and-
cut algorithm to compute provably optimal solutions for this formulation in
Section 3. An optional preprocessing technique for reducing the size of the in-
put graph is explained in Section 4. Section 5 summarizes the computational
results obtained with our new approach for the crossing number problem for
Rome library graphs. Conclusions and further work are presented in Section 6.

2 Crossing Restricted Drawings

The area of crossing minimization is closely related to the field of planarity
testing, i.e., to decide whether a given graph G can be drawn in the plane
without any edge crossings. This task can be performed surprisingly fast,
more precisely in linear time [24,4]. One of the ground-breaking results in this
research area was Kuratowski’s theorem [33], which provides a full character-
ization of planar graphs based on the complete graph K5 and the complete
bipartite graph K3,3. In the following, a subdivision of a graph G is obtained
by repeatedly replacing its edges by a path of length two.

Theorem 1 (Kuratowski’s theorem) A finite graph is planar if and only
if it contains no subgraph that is a subdivision of K5 or K3,3.

As a consequence of Theorem 1, at least two edges in every Kuratowski subdi-
vision, i.e., a subdivision of K5 or K3,3, have to cross in every planar drawing
of a graph G. As we describe in Section 3, we can obtain inequalities from this
observation that fully characterize the set of realizable crossing configurations
(corresponding to drawings in the plane).

Unfortunately, even the problem to decide whether there is a drawing for a
given set of edge crossings is NP-complete [32]. This variant is known as the
realizability problem and can be stated as follows:

“Given a set of edge pairs D, does there exist a drawing of G such that two
edges e, f ∈ E cross each other if and only if (e, f) ∈ D?”

4



However, if we know for each edge the order of edges crossing it, it is easy to
solve the problem by placing dummy nodes on all chosen crossings and testing
the resulting graph for planarity.

One way to work around the realizability problem is the reduction to crossing
restricted drawings: a drawing is called crossing restricted (or CR-drawing) if
each edge crosses at most one other edge. Not surprisingly, there are graphs
that do not admit any crossing restricted drawing. Pach and Tóth [40] showed
the following more general theorem:

Theorem 2 Let G = (V, E) be a simple graph drawn in the plane so that
every edge is crossed by at most k others. If 0 ≤ k ≤ 4, then we have

|E| ≤ (k + 3)(|V | − 2) . (1)

They could further prove that this bound cannot be improved for 0 ≤ k ≤ 2
and that for any k ≥ 1 the following inequality holds:

|E| ≤
√

16.875 k |V | ≈ 4.108
√

k |V | (2)

Furthermore, Bodlaender and Grigoriev proved that it is NP-complete to de-
cide whether there is a crossing restricted drawing for a given graph G [3]. If
there is such a drawing, we denote the minimum number of crossings among
all crossing restricted drawings of G by crr(G).

Even if there is a crossing restricted drawing for G, its crossing number crr(G)
does not necessarily coincide with cr(G). Consider the graph in Figure 2. The
left drawing shows an optimum drawing with two crossings while the right
drawing shows an optimum drawing among all crossing restricted drawings.

Given a graph G = (V, E), we create a graph G∗ = (V ∗, E∗) by replacing every
edge e ∈ E with a path of length |E|. Then for any non-negative number K

the graph G can be drawn with K crossings if and only if there is a crossing
restricted drawing of G∗ with K crossings. Therefore, it is sufficient to solve the
crossing minimization problem for crossing restricted drawings on an extended
graph in order to solve the general crossing minimization problem — clearly at
significant computational expense. Since the transformation obviously can be
done in polynomial time, the NP-completeness of the corresponding decision
problem for crossing restricted drawings follows immediately from the NP-
completeness for the general crossing number problem [16].

It is well-known that every graph G admits a good drawing with a minimum
number of crossings. A good drawing is a drawing that satisfies the following
conditions:

(1) no edge crosses itself
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Fig. 2. A crossing minimum drawing of a graph with two crossings (a) and an
optimum crossing restricted drawing of the same graph with three crossings (b).
Both drawings were produced with our exact algorithm presented in this paper

(2) adjacent edges do not cross each other
(3) non-adjacent edges cross each other at most once

Therefore it is sufficient to replace every edge e = (v, w) ∈ E with a path of
length |E| − |δ(v)| − |δ(w)| − 1, while δ(v) denotes the degree of node v. We
can further decrease the number of required dummy edges by using any upper
bound for cr(G), since no single edge can cross more than cr(G) other edges
in any optimum solution.

3 ILP Formulation, Branch-and-Cut, and Column Generation

In order to solve the general crossing minimization problem with the approach
outlined in the previous section, we present an integer linear programming
formulation for the problem of finding a CR-drawing of a graph G with a
minimum number of edge crossings. In Section 3.1, we discuss the set of vari-
ables and a family of simple constraints that model crossing restrictedness. In
Section 3.2, we introduce the Kuratowski constraints that ensure realizability.
Then we present three components of our algorithm that are crucial for its
performance: a powerful primal heuristic (Section 3.3), a column generation
scheme (Section 3.4), and a preprocessing technique (Section 4).

6



3.1 Variables and CR-Constraints

The first step in developing our ILP is the choice of the variable space. We will
use binary variables corresponding to potential edge crossings in the drawing
of G. As discussed in Section 2, using one integer variable per edge pair does
not yield a tractable formulation in general, since even the problem of realiz-
ability of the given crossing configuration is NP-complete. In particular, with
this set of variables no polynomial set of constraints can characterize the fea-
sible solutions, even if integrality is assumed, unless P equals NP. The same
holds for every set of constraints that can be separated in polynomial time.

Therefore, we restrict ourselves to CR-drawings, for which feasibility can be
checked easily. Let G = (V, E) be a graph and let D denote a set of unordered
pairs of edges of G. In analogy to the notation for drawings of G, we call
D crossing restricted if for every e ∈ E there is at most one f ∈ E such
that (e, f) ∈ D. Furthermore, D is called realizable if there is a drawing of G

such that there is a crossing between the edges e and f if and only if (e, f) ∈ D.

Next, let D be crossing restricted and let GD be the graph that is obtained by
introducing a dummy node for each pair of edges (e, f) ∈ D. More precisely,
we introduce dummy nodes on both e and f and identify them. Notice that GD

is only well-defined if D is crossing restricted, as otherwise it would not be
clear where to place the dummy nodes. We can obtain the following simple
characterization:

Lemma 3 Let D be crossing restricted. Then D is realizable if and only if the
graph GD is planar.

Using a linear time planarity testing and embedding algorithm, we can thus
test in time O(|V | + |D|) whether D is realizable, and compute a realizing
drawing in the affirmative case.

Lemma 3 shows that the realizability problem is easy if we restrict ourselves
to CR-drawings. In this case we can use the following natural set of variables:
for each unordered pair of edges (e, f), we use a binary variable xe,f set to
1 if and only if the two edges e and f cross each other. In other words, the
matrix x models the incidence vectors of a subset D ⊆ E2. Since Lemma 3
requires D to be crossing restricted, we have to model this property by linear
constraints. Any given edge e may accept at most one crossing, i.e., we have
to introduce the inequality

∑

f∈E

xe,f ≤ 1 (3)

for each edge e ∈ E. In the following, we call (3) the CR-constraint for e.
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3.2 Kuratowski Constraints and Separation

In order to complete the desired ILP formulation for crossing minimization
restricted to CR-drawings, we have to model realizability: a given solution
of the ILP specified so far has to be excluded by a linear constraint if the
corresponding crossing restricted set D is not realizable. The key is again
Lemma 3, by which it suffices to ensure planarity of GD. In other words, GD

must not contain a subdivision of K5 or K3,3, as stated by Theorem 1. This
is modeled by the Kuratowski constraints introduced in this section.

In the construction of GD, an edge e was split up whenever there was an
edge f with (e, f) ∈ D. For both split edges e1 and e2, we set ê1 = ê2 = e. If
an edge e is not split, we set ê = e. Moreover, for every subgraph H = (V ′, E ′)
of GD, let Ĥ = {ê | e ∈ E ′} ⊆ E. Less formally, Ĥ contains all edges of G

involved in the subgraph H of GD.

Proposition 4 Let D ⊆ E2 be crossing restricted and let H be any subdivision
of K5 or K3,3 in GD. Then every realizable crossing restricted set satisfies

CD,H :
∑

(e,f)∈Ĥ2\D

xe,f ≥ 1 −
∑

(e,f)∈Ĥ2∩D

(1 − xe,f ) . (4)

The inequalities (4) are called Kuratowski constraints.

PROOF. Suppose (4) is violated for some realizable crossing restricted set D′

with incidence vector x. Since xe,f ∈ {0, 1} for all e, f ∈ E, inequality (4) can
only be violated if the left hand side is zero and the right hand side is one,
which means that

xe,f =







0 for all (e, f) ∈ Ĥ2 \ D ,

1 for all (e, f) ∈ Ĥ2 ∩ D .

By definition of the vector x, this implies that Ĥ2 ∩ D′ = Ĥ2 ∩ D, in other
words, that GD and GD′ coincide on the subgraph induced by Ĥ . Consequently,
the K5- or K3,3-subdivision H is also a subgraph of GD′. From Kuratowski’s
Theorem we derive that GD′ is not planar. This contradicts the realizability
of D′ by Lemma 3. ✷

Next, we show that the Kuratowski constraints suffice to give a complete
characterization of realizability of crossing restricted sets:

Theorem 5 Let G = (V, E) be a simple graph. A subset of E2 is crossing
restricted and realizable if and only if its incidence vector x satisfies all CR-

8



constraints and the Kuratowski constraints CD,H for every crossing restricted
set D ⊆ E2 and every forbidden subgraph H in GD.

PROOF. Let D′ ⊆ E2 and let x be the incidence vector of D′. It is easy to
see that the CR-constraints hold if and only if D′ is crossing restricted. Hence,
for the rest of the proof, we assume that D′ is crossing restricted. It remains
to show that D′ is realizable if and only if all Kuratowski constraints CD,H

hold.

If D′ is realizable, then every Kuratowski constraint is satisfied according to
Proposition 4. Thus we have to show that at least one Kuratowski constraint
is violated if if D′ is not realizable. By Lemma 3, the graph GD′ is not planar
if D′ is not realizable, hence GD′ contains a subdivision H of K5 or K3,3. We
claim that CD′,H is violated.

It follows from the definition of x that every xe,f ∈ Ĥ2 \D′ is zero, hence the

left hand side of CD′,H is zero. Furthermore, every xe,f ∈ Ĥ2∩D′ is one, hence

∑

(e,f)∈Ĥ2∩D′

(1 − xe,f ) = 0 ,

and the right hand side of CD′,H is one. This completes the proof. ✷

For every crossing restricted and realizable set D ⊆ E2, we can compute
a corresponding drawing in polynomial time. Thus we can reformulate the
crossing minimization problem for crossing restricted drawings as follows:

“Given a graph G = (V, E), find a realizable crossing restricted set D ⊆ E2 of
minimum cardinality”.

This leads to the following ILP-formulation. We use x(F ) as an abbreviation
for

∑

(e,f)∈F xe,f :

min x(E2)

s.t.
∑

f∈E

xe,f ≤ 1 for all e ∈ E

x(Ĥ2 \ D) − x(Ĥ2 ∩ D) ≥ 1 − |Ĥ2 ∩ D| for every crossing restricted

set D ⊆ E2 and every

forbidden subgraph H of GD

xe,f ∈ {0, 1} for all unordered pairs (e, f) ∈ E2
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It is clearly impractical to generate all constraints CD,H in advance. Instead,
we embed the given formulation into a branch-and-cut framework, separating
violated inequalities dynamically. This leads to a separation problem: given
a (possibly fractional) LP-solution, how can we decide whether one of the
Kuratowski constraints is violated?

For integer solutions, this problem can be solved easily: the LP-solution gives
rise to a crossing restricted set D ⊆ E2. If GD is planar, we know from
Lemma 3 that D is realizable, hence no Kuratowski inequality is violated.
Otherwise, the separation problem is reduced to the search for a Kuratowski
subdivision H in GD; by the proof of Theorem 5, the corresponding con-
straint CD,H is violated. The latter problem can be solved in linear time [9,5].

For fractional LP-solutions, we can solve the separation problem only heuris-
tically. For this, we round all LP-solutions to integers, then we can apply the
algorithm for integer solutions mentioned above.

3.3 Primal Heuristics

The most prominent and practically successful method for solving the cross-
ing minimization problem heuristically is the planarization approach. This
approach was introduced by Batini, Talamo and Tamassia in [1] and can be
viewed as a general framework which addresses the problem with a two step
strategy. Each step aims at solving a particular optimization problem for which
various solution methods are possible. Let G be the graph for which we want
to find a crossing minimal drawing. Then, the two steps to be executed are:

(1) Compute a planar subgraph of G that contains as many edges as possible.
(2) Reinsert the edges not contained in the planar subgraph. During this edge

insertion process, edge crossings that occur when inserting an edge are
replaced by dummy nodes with degree four, i.e., if two edges cross, both
edges are split and the two nodes produced by the split are identified.
Hence, the graphs constructed during the edge insertion step are planar.
The objective is to keep the number of dummy nodes (and thus the
number of crossings in the final drawing) as small as possible.

The outcome of the planarization procedure is a planar graph Gp which con-
sists of the original nodes of G and additional dummy nodes. If we replace
the dummy nodes in a planar drawing of Gp by edge crossings, we obtain a
drawing of G. Hence, we also say that Gp is a planarized representation of
G. Both, finding a planar subgraph of maximum size and re-inserting edges
with a minimum number of crossings are NP-hard optimization problems; see
[35,15,38].
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Many algorithms for the computation of planar subgraphs have been pub-
lished, including an exact branch-and-cut algorithm by Jünger and Mutzel [28],
a 4/9-approximation algorithm by Călinescu et al. [7], algorithms based on in-
cremental planarity testing [12,34], and fast heuristics, e.g., [6,26,27,13,25]. In
our experiments, we used the algorithm by Jayakumar et al. [26]. Although the
algorithm has quadratic worst case running time, it is very quick in practice.
Moreover, it can easily be randomized, so that calling the algorithm several
times improves the quality of the results significantly.

The planar subgraph computed in the first step is a good starting point for
finding a drawing of G with few crossings. In practice, we expect that only a
small number of edges has to be re-inserted. However, the choice of the edge
insertion technique may have a considerable impact on the quality of the final
solution. Gutwenger and Mutzel [20] have conducted an extensive study on
crossing minimization heuristics including different methods for edge insertion
and postprocessing techniques.

Usually, the edges are inserted individually one by one. The simple approach
for inserting a single edge is to fix an embedding and to compute a shortest
path in the geometric dual graph. However, the choice of the embedding may
have a large influence on the number of edge crossings. A more sophisticated
algorithm introduced by Gutwenger, Mutzel, and Weiskircher [21] allows to
insert an edge with the minimum number of crossings among all embeddings
in linear running time. After all edges have been inserted, a straight-forward
postprocessing technique can further reduce the number of crossings. It repeat-
edly removes edges with many crossings and tries to find a better insertion
path. A further observation is that the order in which the edges are inserted
also affects the final number of crossings. Calling the complete edge insertion
process several times and inserting the edges in different, randomly chosen
orders may significantly improve the solution.

Let E ′ be the edges of the planar subgraph. We remark that the original edge
insertion problem (EIP) does not allow crossings between edges in E ′. To our
knowledge, there is no practically applicable exact algorithm known for solving
the EIP. Since we are only interested in a solution with few crossings, we also
include edges of E ′ in the postprocessing step, so that the final solution may
not be a valid solution for the EIP. However, it is straight-forward to modify
the branch-and-cut algorithm presented in this paper so that it also solves the
EIP to optimality. We simply have to exclude the edges in E ′ from being re-
inserted in the postprocessing step of the primal heuristic and forbid crossings
between edges of E ′ by fixing the respective crossing variables to 0.

Primal Heuristic in the Branch-and-Cut Approach. After obtaining
a fractional solution of the current LP-relaxation, we can deduce two possibly
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distinct integer solutions – one where all fractional values are interpreted as 0,
and one based on a rounding scheme where all values below a certain threshold
are interpreted as 0, and values above that threshold are interpreted as 1. We
can then interpret these integer solutions as partial planarizations, onto which
we can apply our primal heuristic. Since the obtained partial planarizations are
highly redundant, we do not run the primal heuristic after each ILP relaxation
step, but only when the induced integer solutions have actually changed.

3.4 Column Generation

An important drawback of the ILP introduced above is the large number of
variables. It contains one variable for each pair of edge segments. In the worst
case, we have to replace every original edge by Ω(m) segments, so that the
total number of variables is as huge as Ω(m4). This is clearly impractical
for large or even medium-sized graphs. However, this situation arises mainly
because of the reduction to CR-drawings, which is crucial for our ability to
model the problem at all. Yet the number of variables with value one in an
optimum solution of the ILP is only a small fraction of the total number of
variables, as it equals the minimum number of crossings. The latter is always
in O(m2), but usually much smaller; see Section 5 for the crossing numbers of
graphs in the Rome library.

In consideration of this, it is an obvious idea to use column generation, i.e., to
start with a small subset of the given variables and add further variables only
according to need. In contrast to the well-known generic pricing scheme first
introduced by Dantzig and Wolfe [8], our column generation criteria are of a
combinatorial rather than an algebraic nature. More precisely, our decisions
to activate variables are not based on reduced costs but have a very natural
interpretation, as explained in the following.

We always start with only one segment per edge. Diverging from the model
introduced above, we do not add any CR-constraint for these initial edge
segments. This will guarantee that there is always a feasible solution for our
current ILP formulation, which simplifies the implementation of our approach.

Now the column generation step is performed as follows. Assume that the
current, possibly fractional, LP-value of the variable xe,f is xe,f . Then we
first check whether any of the CR-constraints for initial edge segments (which
where not included, as described above) is violated, i.e., whether

∑

f

xe,f > 1

holds for some edge segment e. Here, the sum is taken over all edge segments f
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such that the variable xe,f is active. Every initial segment e with a violated
CR-constraint is extended by adding a new segment, belonging to the same
original edge of G. More formally, we split up the initial segment e, thus
obtaining a new segment e′, and to activate every variable corresponding to a
crossing between e′ and one of the segments f with xe,f > 0. In other words,
all segments crossing e with some fraction in the current LP-solution are now
allowed to cross e′, too.

In contrast to the initial segments, every new segment obtained this way will be
accompanied by its CR-constraint; the latter is added to the ILP immediately
whenever a new edge segment is introduced. As a last step, we decrease the
objective function coefficient of all new variables by some small value ε > 0,
such that new edge segments will always be preferred over the initial ones when
crossings are distributed—notice that e and e′ would be equivalent otherwise.
By this, we make sure that the initial segment e is only overloaded if necessary,
i.e., its CR-constraint is only violated if all edge segments belonging to the
same original edge as e together do not suffice to host all crossings assigned
by the LP-solution.

As long as the number of segments for f with xe,f > 0 is greater than one, we
continue to activate new variables. However, we do not always have to extend
the segment e: if e has been extended by some segment e′ in an earlier step
and if one of the segments f with xe,f > 0 is not allowed to cross e′, then
we only activate the variable xe′,f instead of further extending the segment e,
again with an objective function coefficient decreased by ε.

Using the described column generation strategy, the Kuratowski constraints
could be left unchanged without making the ILP invalid. However, if there
is any active constraint CD,H in our ILP such that e is contained in Ĥ ∩ D,
the strength of this constraint degrades, as potential crossings can be shifted
from e to e′ now. In order to avoid this, we duplicate all Kuratowski con-
straints, adding copies with e replaced by e′.

Notice that the column generation step must always be performed before sep-
aration of new constraints. Moreover, if any variables have been activated, we
have to proceed to the next LP solution, skipping the separation step. The
reason is that the separation requires validity of all CR-constraints, as it is
based on searching for Kuratowski subdivisions in the graph GD. The latter
is only well-defined if D is crossing restricted.

The correctness of this column generation scheme follows from the fact that
we never add any CR-constraints for the initial edge segments. This implies
that every solution of the crossing number problem on the original graph
corresponds to a feasible solution of our current LP relaxation, at every point
of our optimization process. However, we cannot construct planarizations from
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these solutions as long as some of these CR-constraints are violated. So by
introducing new segments with slightly lower objective function coefficients,
we aim at obtaining a solution satisfying all CR-constraints without explicitly
introducing them. As soon as all CR-constraints are satisfied and the solution
is integer, we therefore get an optimal solution of the crossing number problem.

The computational results presented in Section 5 show that the presented
column generation strategy performs very well in practice; the number of
variables activated during the entire optimization process is only a very small
fraction of the number of potential variables. The running time decreases
significantly compared to the branch-and-cut-approach without column gen-
eration.

4 Preprocessing

Before starting the actual branch-and-cut algorithm, we apply graph reduction
techniques that try to reduce the size of the input graph without affecting its
crossing number. Such techniques are most promising for sparse graphs, so we
expect a significant reduction of the size of the input graph in many practical
applications. It is well known that it is sufficient to compute the crossing
number for each block of the graph separately. If B1, . . . , Bk are the blocks of
G, i.e., its maximally 2-connected subgraphs, then

cr(G) =
k

∑

i=1

cr(Bi) .

Recent work by Gutwenger and Chimani [18] shows that also for 2-connected
graphs further reductions are possible. Consider a decomposition of G into two
subgraphs S and K such that S ∪ K = G and S shares no edges and exactly
two nodes s and t with K. We call S an st-component of G; if, in addition,
the graph S ∪ (s, t) is planar, then S is called a planar st-component of G.
Obviously, a planar st-component can be drawn planar with s and t on the
external face. A key observation is that we can always draw a Jordan curve in
such a drawing which exactly crosses the edges of a minimum st-cut in S.

Let λ be the cardinality of a minimum st-cut in S, and let K∗ be the graph
obtained by inserting a single edge est = (s, t) with weight λ into K. The edge
est can be seen as a placeholder for the planar st-component S. If each crossing
with est counts as λ crossings, we can extend a drawing of the reduced graph
K∗ to a drawing of G with the same number of crossings. In this drawing,
an edge crossing est in the drawing of K∗ is routed across the edges of a
minimum st-cut instead; see Figure 3. On the other hand, it can be shown
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(a) Reduced graph. (b) Original graph.

Fig. 3. Reduction of a planar st-component S to an edge with weight λ = 3.

that the crossing number of K∗ is a lower bound for the number of crossing in
any drawing of G. Hence, the reduced graph K∗ has the same crossing number
as G.

Applying this reduction strategy repeatedly leads to a weighted graph with
the same crossing number as G. In this case, a crossing between two edges
with weight w1 and w2 counts as w1 · w2 many crossings. This is equivalent
to replacing an edge with weight w by a bundle of w parallel edges. A very
efficient way to apply this strategy exhaustively uses the decomposition of a
graph into its triconnected components [23], which can be represented by the
data structure SPQR-tree [11,19].

The SPQR-tree T of a 2-connected graph reflects its 3-connectivity structure
which is comprised of

• serial structures (S-nodes);
• parallel structures (P-nodes); and
• triconnected structures (R-nodes).

With each node µ of T , a skeleton graph Gµ is associated. According to the
type of µ, its skeleton graph is either a cycle of at least three nodes (S-node),
a bundle of at least three parallel edges (P-node), or a triconnected simple
graph (R-node).

A skeleton can be seen as a sketch of G in the following sense. An edge (u, v)
in Gµ is either a real edge corresponding to an edge (u, v) in G, or a virtual
edge corresponding to a uv-component of G. The respective uv-component of
a virtual edge is determined by a neighbor ν of µ whose skeleton Gν contains
an edge (u, v) as well. Hence, the skeletons of two adjacent nodes µ and ν

can be merged by contracting the edge (µ, ν), identifying the corresponding
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(a) Original graph. (b) Non-planar core.

Fig. 4. An example for the non-planar core of a graph.

virtual edges in the skeletons, and finally removing the resulting virtual edge.
Exhaustively merging skeletons recreates the graph G.

Obviously, only skeletons of R-nodes can be non-planar. If we determine which
R-nodes have a non-planar skeleton, it is easy to find planar st-components of
maximal size. We just look for the smallest subtree S of T that contains all
R-nodes with non-planar skeletons. Then, S induces a minimal reduction of
G with respect to the reduction strategy described above. The reduced graph
is obtained from S by merging the skeletons of its tree nodes. Figure 4 gives
an example of this reduction strategy.

The entire reduction algorithm, including the construction of the SPQR-tree
and the computation of the edge weights in the reduced graph, can be imple-
mented to run in O(|V | + |E|) time; see [18]. Observe that the edge weights
can be computed in linear time, since we only look for minimum st-cuts in
planar graphs. The resulting weighted graph is called the non-planar core of
G. In our experiments, we observed that every non-planar block of a graph in
the Rome library was reduced to the skeleton of a single non-planar R-node.
However, this seems to be merely a special property of the graphs in this
particular benchmark set.

5 Experiments

We implemented the presented algorithms as part of the open-source C++ li-
brary Open Graph Drawing Framework (OGDF) [39]. We use the free branch-
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Fig. 5. The percentage of graphs solved to provable optimality, categorized by the
number of nodes. The size of the data points represents the number of graphs falling
into the respective classes.

and-cut-and-price framework ABACUS [29], in conjunction with the commer-
cial optimization library CPLEX (version 9). The tests were performed on a
single AMD Opteron CPU with 2.4 GHz, and 32 GB RAM shared between 4
CPUs. As it turned out, the memory consumption seldomly exceeded 1 GB.

To test the performance of our new algorithm, we used a benchmark set of
graphs of the University of Rome III, introduced in [10]. The set contains
11, 389 graphs that consist of 10 to 100 nodes and 9 to 158 edges. These graphs
were generated from a core set of 112 “real life” graphs used in database design
and software engineering applications. Most of the graphs are sparse, which
is a common property in most application areas of automatic graph drawing.
The average ratio between the number of edges and the number of nodes of
the graphs from the benchmark set is about 1.35.

Due to the complexity of the crossing minimization problem, we only consider
graphs of up to 75 nodes. As it turns out, the number of edges in the non-planar
core is of often more important than the number of nodes in the original graph.
Figure 5 shows the percentage of graphs we could solve to provable optimality
within 5 and 30 minutes, respectively. Using the number of edges in the non-
planar core (Figure 6) as the x-axis, we can observe the clear dependence on
that parameter.

To understand the test set better, it is worth looking at Figure 7. The Rome
graph library consists of many planar graphs and non-planar graphs for which
we know that their crossing number is 1, based on the primal heuristic; we call
these graphs trivial, since they are of no interest for our algorithm. As we can
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Rome library.

see, there are only very few graphs with up to 33 nodes which are non-trivial.

Now that we can solve many instances to provable optimality, it is interesting
to see the quality of the commonly used planarization heuristics, described in
Section 3.3. As it turns out, the heuristic often directly computes the optimum
crossing number, especially if the graph or the crossing number is relatively
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Fig. 8. Percentage of graphs for which we could improve on the heuristic solution.
The stacked bar labeled “diff n” refers to the instances with a decrease of n in the
number of crossings compared with the result of the heuristic.

small. Figure 8 shows that even for the large graphs, we could only improve
the result for less than half of the non-trivial graphs within 30 minutes. This
statistic also includes results where the branch-and-cut algorithm produced
lower crossing numbers than the pure heuristics during the computation, but
could not prove optimality within the time bound.

Figure 9 demonstrates the efficiency of our column generation scheme, based
on the successfully optimized test instances. Basically all graphs with a cross-
ing number of two were detected as such by the heuristics. Only two graphs
with actual crossing number of 1 have been estimated with 2 crossings by
the heuristic. In all those cases where the heuristic gives an upper bound of
two, our algorithm does not allow any edge splitting at all, since it is enough
to prove the non-existence of any better solution, i.e., a solution with one
crossing. Hence in these cases the column generation scheme did of course not
reduce the number of variables; but since these cases are quite easy to com-
pute anyway, this is of no concern for us. Notice that for a crossing number
of 3, after obtaining an upper bound of 3, the starting set of variables already
constitutes 25% of all possible variables. Figure 10 shows the discrepancy be-
tween the number of variables we would have had to generate without our
column generation scheme and the number of variables we actually generated.
As shown in Figure 11, we typically need about 40% additional variables, com-
pared to the starting set where each edge pair is represented by exactly one
segment. It also shows that this percentage is correlated with the number of
edges in the non-planar core.

The runtime analysis (Figures 12 and 13) shows that the performance mainly

19



0

10

20

30

40

50

60

70

80

30 35 40 45 50 55 60 65 70 75

# nodes

%
 v

ar
ia

bl
es

average

minimum

Fig. 9. The number of variables used by the column generation scheme relative to
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Fig. 10. The number of variables by the number of nodes for the following three
categories: potential variables; those generated when optimality was established;
those generated at the beginning of the computation.

depends on the crossing number of the graph. The gentle slope in Figure 12
is mainly due to the fact that the larger graphs tend to have higher crossing
numbers. The potentially interesting data points referring to the minimum
time needed for the non-trivial class all turn out to be constantly under one
second. Notice that the apparent convergence between the maximum and the
minimum for the graphs with crossing number 12 is due to the fact that only
four such graphs could be solved with proven optimality.
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Fig. 12. The running time of all test instances solved to provable optimality relative
to the number of nodes.

In the last statistics (Figure 14), we show the distribution of the final upper
and lower bound obtained after the 30 minutes time limit for all graphs. The
main diagonal shows the number of graphs solved to proven optimality. As
we can see, we could prove the crossing number for all graphs with up to 5
crossings. For scaling purposes, the first diagram does not show two data points
corresponding to a single graph each. They are the lower-bound/upper-bound
pairs 16/51 and 20/62.
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We also applied our algorithm to complete graphs Kn. By this, we managed
to verify the crossing number conjecture up to n = 8. In view of Figure 13,
this is very surprising, as the number of crossings is 18 for K8. The resulting
planarizations are different from those generated by Zarankiewicz’s rule. We
are convinced that we will be able to compute the crossing numbers of much
larger complete graphs using specialized versions of our algorithm, e.g., by
using the knowledge of cr(Kn−1) in order to add stronger inequalities for Kn.
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6 Conclusion

We presented the first algorithm for computing the crossing number and a
corresponding planarization for small to medium-sized graphs. Our system
combines a sophisticated problem-reduction algorithm using SPQR-trees with
a branch-and-cut approach that reduces the general crossing number prob-
lem to the restricted version where each edge is crossed at most once. We
introduced a column generation scheme that reduces the number of necessary
variable tremendously and thus makes larger instances solvable. Our approach
works well for benchmark graphs of up to 40–50 core edges and can also solve
larger instances provided the crossing number is not too high. In the future,
we hope to improve the cutting strategy by a more thorough polyhedral inves-
tigation. Moreover, we will try to contribute to open questions concerning the
crossing numbers of complete (bipartite) graphs by specializing our approach
to these instances.
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[28] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings:
Practical layout tools. Algorithmica, 16(1):33–59, 1996.
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