Large-Graph Layout with the Fast Multipole
Multilevel Method

STEFAN HACHUL and MICHAEL JUNGER
Universitat zu Koln, Institut fur Informatik

The visualization of of large and complex networks or graphs is an indispensable instrument for
getting deeper insight into their structure. Force-directed graph-drawing algorithms are widely
used to draw such graphs. However, these methods do not guarantee a sub-quadratic running time
in general. We present a new force-directed method that is based on a combination of an efficient
multilevel scheme and a strategy for approximating the repulsive forces in the system by rapidly
evaluating potential fields. Given a graph G = (V, E), the asymptotic worst-case running time of
this method is O(|V|log |V| + |E|) with linear memory requirements. In practice, the algorithm
generates nice drawings of graphs with 100000 nodes in less than 5 minutes. Furthermore, it
clearly visualizes even the structures of those graphs that turned out to be challenging for other
methods.

Categories and Subject Descriptors: ... [...]: ...

General Terms: Algorithms, Performance
Additional Key Words and Phrases: Fast Algorithms, Graph Drawing, Large Graphs, Multilevel
Methods, N-Body Problem

1. INTRODUCTION

The biochemical reactions of proteins in baker’s yeast, the ecosystem of plankton,
sea perch, and anchovy, the American electricity network, the international air
traffic, and the world-wide web have in common that they can be modeled as
graphs. In general a graph G = (V, E) is used to model information that can be
described as objects (the node set V') and connections between those objects (the
edge set F).

One fundamental tool for analyzing such graphs is the automatic generation of
layouts that visualize the graphs and are easy to understand. A popular class of
algorithms that is used to visualize general graphs are force-directed graph-drawing
methods. Given a graph G = (V, E), these methods generate drawings of G in the
plane in which each edge is represented by a straight line connecting its two adjacent
nodes. The computation of the drawings is based on associating G with a physical
model. Then, an iterative algorithm tries to find a placement of the nodes so that
the total energy of the physical system is minimal. The desired esthetic criteria of

Authors address: Universitat zu Koln, Institut fiir Informatik, Pohligstraie 1, 50969 Koln, Ger-
many, email: {hachul,mjuenger}@informatik.uni-koeln.de}; This research was partially sup-
ported by ADONET.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2005 ACM 0730-0301,/2005/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, December 2005, Pages 1-077.

2 . S. Hachul and M. Jiinger

these methods are uniformity of edge length, few edge crossings, non-overlapping
nodes, and the display of symmetries if some exist.

In practice, classical force-directed algorithms like [Eades 1984; Kamada and
Kawai 1989; Fruchterman and Reingold 1991; Davidson and Harel 1996] are only
suited for drawing small graphs with at most a few hundreds of vertices, since their
worst-case running time is at least quadratic. On the other hand, the demand
for algorithms that can handle significantly larger instances is steadily increasing.
Hence, accelerated force-directed algorithms have been developed [Tunkelang 1998;
Quigley and Eades 2001; Gajer et al. 2001; Harel and Koren 2001; Walshaw 2001].
These algorithms generate nice drawings of a big range of large graphs with several
thousands of nodes in reasonable time. However, only some of these methods guar-
antee a sub-quadratic running time in special cases or under certain assumptions,
but not in general.

Besides force-directed algorithms other fast methods for drawing large graphs
have been invented by Harel and Koren [Harel and Koren 2002] and Koren et
al. [Koren et al. 2003]. These methods are based on techniques of linear algebra
and not on physical analogies. But they strive for the same esthetic drawing criteria.

In Sections 2 to 5 we describe the most important parts of a new force-directed
graph-drawing algorithm that guarantees a sub-quadratic worst-case running time.
The algorithm has been implemented and experimental results are presented in
Section 6.

2. THE FAST MULTIPOLE MULTILEVEL METHOD (FM?)

The most essential parts of the new method that is called Fast Multipole Multilevel
Method or shorter (FM?) are an efficient multilevel strategy and an O(|V|log|V|)
approximation algorithm to obtain the repulsive forces that act between all pairs of
nodes (associated with charged particles). These modules are described in Section 3
and 4, respectively. Other parts like a preprocessing step that enables the algorithm
to draw graphs with nodes of different sizes and a module that is designed to
handle disconnected graphs are not described here for brevity. Therefore, we can
simply assume that the given graph G is a connected positive weighted graph.
The edge weight of each edge e € F represents its individual desired edge length
desired_edge_length(e).

Since FM® is a force-directed graph-drawing algorithm, we must choose a force
model first. This is done by identifying the nodes with charged particles that repel
each other and by identifying edges with springs, like in most classical force-directed
methods. If in R? two charges u, v are placed at a distance d from each other, the
repulsive forces between u and v are proportional to 1/d. Our choice of the spring
forces is not strictly related to physical reality. We found that choosing the spring
force of an edge e to be proportional to log(d/ desired_edge_length(e)) - d* gives very
good results in practice.

3. THE MULTILEVEL STRATEGY

Since in classical force-directed algorithms many iterations are needed to trans-
form an initial (random) drawing of a large graph into the final drawing, one might
hope to reduce the constant factor of force-directed algorithms by using a multilevel

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 3

strategy. Multilevel strategies have been introduced into force-directed graph draw-
ing by [Gajer et al. 2001; Harel and Koren 2001] and [Walshaw 2001]. They share
the following basic ideas: Given G = (V, E) =: G, a series of graphs Gy,... , Gk
with decreasing sizes is created in a coarsening phase. In the following refinement
phase the smallest graph G at level k is drawn using (a variation of) a classical
force-directed (single-level) algorithm. This drawing is used to get an initial layout
of the next larger graph Gj_; that is drawn afterwards. This process is repeated
until the original graph Gy is drawn.

Unlike previous approaches, we want to design a multilevel algorithm that has
provably the same asymptotic running time as the single-level algorithm that is
used to draw all graphs G; with i =0,... k.

3.1 The Coarsening Phase

In the coarsening phase, we first partition the node set of G into disjoint subsets so
that the vertex-induced subgraphs (called solar systems) have bounded diameter
(at most 4).

Definition 3.1 (Solar System). Suppose, G = (V,E) is a graph and U C V.
The vertex-induced subgraph S := G[U] is called solar system if the following
conditions hold: Exactly one node in U is marked as sun node (or s-node). Each of
its neighbors is marked as planet node (or p-node) or as planet-with-moon node (or
pm-node) and is also contained in U. The other nodes in U are marked as moon
nodes (or m-nodes), each m-node is required to have graph-theoretic distance two
to the s-node in U, and each m-node is assigned to exactly one pm-node in U.
Furthermore, for each pm-node exists at least one m-node that is assigned to it.

Fig. 1. (left) Drawing of G = Gg. (right) The multilevel graph G1j.

Figure 1(left) shows an example of a grid graph that is partitioned into 13 solar
systems. The s-nodes, p-nodes, pm-nodes, and m-nodes are represented by the

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

4 . S. Hachul and M. Jiinger

big yellow, medium light blue, medium dark blue, and small gray disks, respec-
tively. The black solid edges represent intra solar-system edges, whereas the edges
connecting nodes of two different solar systems (inter solar-system edges) are red
dashed edges. The edges that connect an m-node and its assigned pm-node are
drawn as directed edges, indicating that the m-node is assigned to this pm-node.

Next, we describe a linear time method for constructing a solar-system partition
of a graph G that works in three steps: First, we create the s-nodes. Therefore,
we store a candidate set V' that is a copy of V and randomly select a first s-node
s1 from V’. Then, s; and all nodes that have a graph-theoretic distance at most
2 from s; in G are deleted from V’. We iteratively select the next s-nodes in the
same way, until V' is empty and Suns = s1,... ,s; is the list of all s-nodes. Second,
for each s; € Suns all its neighbors are labeled as p-nodes. Finally, there might be
some nodes in V that are neither labeled as p-nodes, nor as s-nodes. These nodes
are the m-nodes. Each m-node is assigned to the p-node that is its nearest neighbor
in G, and we relabel this p-node as pm-node.

Given a solar-system partition of the node set of G = Gy, we construct a smaller
graph G by collapsing (shrinking) the node set of each solar system into one single
node and deleting parallel edges (see Figure 1(right)). The smaller graph should
reflect the attributes of the bigger graph as much as possible. Therefore, the desired
edge length of an edge e; = (s1,t1) in G is initialized as follows: Suppose, p-
node ug belongs to the solar system Sy with sun node sp in Gy and p-node vy
belongs to the solar system Ty with sun node tg in Gy. Let us also assume that
the edge eg = (ug,vg) is the unique inter solar-system edge connecting Sy and Tj.
Furthermore, we assume that nodes s; and ¢; in G; are obtained by collapsing Sy
and Tp. Then, the desired edge length of e; is set to desired_edge_length((so,uo)) +
desired_edge_length(eo) + desired_edge_length((vo,to)). For later use, we denote the
corresponding path (sg,ug,vo,to) in Gy by Py and its length by py. Figure 3.1
shows an example. The case that ug and/or vg is a moon node is treated similarly.
If more than one inter solar-system edge in Gy connects nodes of Sy with nodes of
To, the average of the previously calculated desired edge lengths is assigned to the
desired edge length of e;.

81 t1

Fig. 2. Calculation of the edge weights: (left) A part of G = Gp. (right) The corresponding part
of G1.

This partitioning and collapsing process is iterated until either the smallest graph
G, contains only a constant number of nodes or a certain stopping criterion is
fulfilled (that will be defined later).

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 5

3.2 The Refinement Phase

In the refinement phase, Gy is drawn by a force-directed single-level algorithm
that will be introduced in Section 4. Going upwards to Gi_1, we assign initial
positions to the nodes of G_1 in two steps: First, we place each s-node of Gy_1 at
the position of its ancestor (that represents its solar system) in the drawing of Gy.
Now, the other nodes of Gy are placed. This is done by using information that has
been generated during the collapsing process: For example, given ug, vg, So, to, Po,
and Py like in the example above, we place ug on the line connecting so and g at
position Pos(sq) + des"e‘ed‘ge‘le:gth((so’“0)) (Pos(tg) — Pos(sg)). If ug belongs to more
than one such path Py, the barycenter of all these calculated positions is taken as
its initial placement. The case that ug is a moon node is treated similarly. Figure 3
demonstrates this procedure.

(a) (b) (c) (d)

Fig. 3. (a) Drawing of G2. (b) Initial placement of G1. (c) Drawing of G1. (d) Initial placement
of Go.The final drawing of Go = G is shown in Figure 1(left).

THEOREM 3.2 MULTILEVEL STRATEGY. Suppose, G = (V,E) is a connected
positive-weighted graph and Asingre 5 a force-directed single-level algorithm that
needs time tsingie(|V], |E|) to draw G starting with an arbitrary initial placement of
the nodes of G. Then, the previously described multilevel strategy that uses Agingie
to draw the multilevel graphs generates a straight-line drawing of G in O(tsingie(|V],
|E|)) time.

PRrOOF. The total running time of the multilevel strategy is tmu(|V], |E|) =
Yiso tereate([Vils [Eil) + X050 twiept([Vil, | Eil) + Siig temgie([Vil, |Eil). Here,
tereate (|Vil, |E:|) denotes the time that is needed to create the multilevel graph
Git1 from G;. tinis p1(|Vil, |Es|)) denotes the time that is needed to get an initial
placement of the nodes of the multilevel graph G; from the drawing of G;41.

Since every node of G; belongs to a solar system, and a solar system contains at
least two nodes, G; ;1 contains at most |V;|/2 nodes.

Let us assume that |E; 11| < |E;|/2 for all ¢ € {0,...,k — 1}. Since both
tcreatc(|‘/i|7 |E1|) and tinit_pl((|‘/i|a |Ez|) are linear in |‘/;| + |Ez|a we get Zf;ol tcrcatc
(Vil, |Ei]) + K0 tinset([Vil, |Eil) = O(|V| + |E|). Furthermore, we get the fol-

lowing estimation on tgingle: Zf:o tsingle(|Vil, |Ei]) < Zf:o 1o} (tsinglc (I;/i\7 Ifi\)) <
2 O(tsingle(|V|v |E|))

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

6 . S. Hachul and M. Jiinger

The second inequality holds for sufficiently large values of [V| and |E|, since
tsingle(|V], |El) = Q(|V| + |E|). Therefore, under the previous assumption, the
multilevel strategy and Agingie have the same asymptotic running time.

Certainly, it cannot be guaranteed that the number of edges decreases by fac-
tor at least % However, it can be shown by an analogous argumentation that
tmuts (V] |E]) = O (tsingte([V], | E|)) if |Eiga| < |Ei|/s for all ¢ € {0,... ,k— 1}
and a fixed divisor 1 < s < 2. If this assumption is weakened further so that
|E;iy1] < @ for all but a constant number d of i € {0,... ,k — 1}, the equality
truit ([V], | E|) = O(tsingie(|V], |E|)) holds as well.

Therefore, in order to guarantee that tmuic(|V], |E|) = O(tsingle(|V], |E|)) it is
sufficient to stop the coarsening process, either if the number of nodes of the actual
created multilevel graph G; is smaller than a constant or if the algorithm has gen-
erated more than a constant number of graphs G; that do not satisfy the inequality
|Eit1] < |E;|/d for some small constant d with 1 <d <2. O

4. THE FORCE CALCULATION STEP

In order to save running time, the multilevel algorithms [Gajer et al. 2001; Harel
and Koren 2001; Walshaw 2001] use the grid-variant algorithm of [Fruchterman and
Reingold 1991] or variations of [Kamada and Kawai 1989] as force-directed single-
level algorithms. Those algorithms are comparatively inaccurate approximative
variations of the original force-directed single-level algorithms [Fruchterman and
Reingold 1991; Kamada and Kawai 1989].

Unlike this, the single-level algorithm that is used in FM? follows the basic strategy
of [Tunkelang 1998; Quigley and Eades 2001] by approximating the repulsive forces
between all pairs of distinct nodes/particles with high accuracy and calculating the
forces induced by the edges/springs exactly. Then, these forces are added, and
the nodes are moved in direction of the resulting forces. This process is repeated
a constant number of iterations. (In practice, we let the constant decrease from
300 iterations for G, to 30 iterations for G, although convergence is reached even
faster for many tested graphs.)

In each iteration all spring-forces of multilevel graph G; = (V;, E;) can be calcu-
lated in O(|E;|) time. In contrast to this, a naive direct calculation of the repulsive
forces acting between all pairs of charged particles (nodes) needs ©(|V;|?) time. This
is the main bottleneck of many force-directed algorithms. Hence, in the remainder
of this section, we will concentrate on the problem of calculating the repulsive forces
efficiently.

[Greengard 1988] has invented an N-body simulation method that is based on the
evaluation of the field of the potential energy of N charged particles. This is done by
evaluating multipole expansions using a hierarchical data structure called quadtree.
However, [Aluru et al. 1998] have shown that the running time of Greengard’s
method depends on the particle distribution and cannot be bounded in N. They
additionally have proven that the running time of the popular force-approximation
method of [Barnes and Hut 1986] that is an essential part of the graph-drawing
methods [Tunkelang 1998] and [Quigley and Eades 2001] cannot be bounded in
N. Using the techniques and analytical tools of [Greengard 1988], [Aluru et al.
1998] have presented an O(N log N) approximative multipole algorithm that is

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 7

distribution independent.

Based on the work of [Greengard 1988] and [Aluru et al. 1998], we have developed
a new O(N log N) multipole method. Practical experiments indicate that — at
same level of accuracy — our new method is up to factor 5 faster than Aluru et
al.’s method. The new multipole method works in two phases: Given a distribution
of N particles in the plane, first, a special quadtree data structure is constructed.
Then, each node of the quadtree is assigned information that is used to approximate
the potential energy of the system. In particular, a constant number of coefficients
of a so called multipole expansion (to be introduced later) are associated with each
tree node and are used to obtain the repulsive forces.

4.1 Phase 1: Construction of the Reduced Bucket Quadtree

Definition 4.1 (Quadtree, Reduced Bucket Quadtree). Suppose, a set of N par-
ticles (or data points) C' = {e¢1,... , en} are assigned distinct positions on a square
D and we fix a leaf capacity I > 1. (In practice, we choose | = 25.) Furthermore,
suppose one recursively subdivides D into four squares of equal size (in the follow-
ing denoted by bozes), until each box contains at most I particles. This process can
be represented by an ordered rooted tree of maximum child degree four (with the
root representing D) that is called (bucket) quadtree. The particles are stored in
the leaves of the quadtree. A degenerate path P = (v1,...,v,) in a quadtree is a
path in which v; and v, have at least 2 nonempty children and vs,... ,v,_1 each
have exactly one nonempty child. A reduced (bucket) quadtree T can be obtained
from a quadtree by shrinking degenerate paths P = (vi,... ,vp) to edges (vi,vp).
Figure 4 shows an example.

1
3 .3
o2
4 *|5
T 10
03 6 Oe| *
11/ 5 {6,719 10 11 5 {6,719 1011

(a) (b) (c)

Fig. 4. (a) A distribution of N = 11 particles in the plane. (b) The quadtree with leaf capacity
I = 2 associated with (a). P = (v1,v2,v3) is a degenerate path in the quadtree. (¢) The reduced
quadtree with leaf capacity | = 2 associated with (a).

A reduced quadtree has only O(N) nodes independently of the distribution of
the particles. This allows the development of a linear time method (excluding the
time needed for constructing the reduced quadtree) for approximating the repulsive
forces, using this structure in Phase 2 (see Section 4.2).

[Aluru et al. 1998] present an O(N log N) method that constructs a reduced
quadtree with [= 1. It can be shown by a reduction from sorting that it is neither

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

8 . S. Hachul and M. Jiinger

possible to construct a bucket quadtree nor a reduced bucket quadtree with constant
fixed leaf capacity [for arbitrary distributions of the N particles in o(N log N) time.

[Hachul 2005] has developed an O(N log N) reduced-bucket-quadtree construc-
tion method that is omitted here, since it quite technical. Instead, we will ex-
plain another new tree construction method that is conceptually simpler and, in
practice, faster. But it restricts the possible particle distributions: We force the
particles to be placed on a large square grid with a resolution that is polynomial
in N. This can be realized by rounding the x,y coordinates of each particle to
integers in the range [0, P(N)], where P(N) is any whole-numbered polynomial
in N of maximum degree s, and by treating pathological cases in which particles
have same coordinates efficiently. This bounds the depth of the reduced quadtree
to O(log(P(N)) = O(s -logN) = O(log N). In practice, it is sufficient to set
P(N) =t- N? with a sufficiently large constant .

{1,2} 3 V4 U3
4 5 8 9
6 10
7 11 7 11

5 {6,7}910 11

(c) (d)

Fig. 5. Building up the reduced quadtree T with leaf capacity [= 2 and N = 11 particles for
the distribution of Figure 4(a). (a) First step: Building up the complete subtree T. (b) Second
step: Thinning out T'. (c) Recursion: Building up the complete quadtrees T2(v3) and T2 (vs).
(d) Recursion: T is constructed after thinning out T2 (v3) and T2(v4).

Our tree-construction method works as follows: First, we build up a complete
truncated subtree T with depth max{1, [log N/ 1]}. Then, all particles are assigned
to the leaves of T!. Since T contains O(N) nodes and its structure is predefined,
this step can be performed in linear time. Afterwards, the tree is traversed bottom

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 9

up and thereby for each internal tree node the number of particles that are contained
in its associated box are calculated. This also needs time linear in N. Figure 5(a)
shows an example.

In the next step, we thin out 7. We traverse the subtree T top down and
thereby delete all nodes that do not contain particles and shrink degenerate path
to edges. If (during this process) we visit an internal node v that is the root of
a subtree which contains at most [particles, this subtree is deleted, and all the
particles that were stored in the deleted subtree are assigned to v. Figure 5(b)
shows the thinned out subtree 7.

If none of the leaves of T contains more than I particles, the procedure ends and
T! = T has been constructed in linear time. Otherwise, we repeat the previous
steps recursively. For example, the nodes vs and vy in Figure 5(b) both contain
3 > [particles. Therefore, we build up complete subtrees T?(v3) rooted at v and
T?(vy4) rooted at vy. Both subtrees have depth max{1, |log3/l|} = 1. Now, the
particles 5,6,7 are assigned to the leaves of T2(v4) and the particles 9,10, 11 are
assigned to the leaves of T?(v3) (see Figure 5(c)). After thinning out T2(vs) and
T?(vy) the desired tree T (see Figure 5(d)) is created.

THEOREM 4.2 TREE CONSTRUCTION. Suppose, C = {c1,... ,cn} is a set of
particles that are placed at distinct positions on a reqular square grid with a reso-
lution which is polynomial in N, and |l > 1 is an integer constant. Then, a reduced
bucked quadtree with leaf capacity | can be constructed in O(N log N) worst-case
running time.

PROOF. Building up 7" needs O(N) time. If T is not the reduced quadtree,
we build up subtrees T?(vy), ... ,T?(vg) for all leaves vy, ... ,v; of T that contain
more than [particles. This needs O(N) time in total, since the sum of the tree
nodes contained in all T?(v;) is at most O(N). Then, we possibly have to build up
subtrees rooted at the leaves of the T2 trees and so forth. Since for each j > 1 the
sum of the tree nodes of all 77 is bounded above by O(N), the total running time is
O(|recursion_levels|-N). Therefore, the running time is bounded by O(Nlog N). O

Note that the previously described tree-construction method needs only linear
time whenever the number of recursion levels is bounded by a constant.

4.2 Phase 2: The Multipole Framework

In this subsection we will concentrate on the second phase of our force-approxima-
tion method. Like in Sections 4.1, we suppose that C = {c1,... ,cy} is a set of N
charged particles that are located at distinct positions p(C) = {p1,... ,pn} € R2.

4.2.1 Tools From Complex Analysis. In the following, we will present some def-
initions and generalizations of theorems that have been invented by [Greengard
1988] and that are of fundamental importance for multipole methods. In order to
use tools from complex analysis, each point p = (z,y) € R? is identified with a
point z =z + iy € C.

THEOREM 4.3 MULTIPOLE EXPANSION THEOREM. Suppose, m charged parti-
cles{c1,... ,cm} with charges {q1, ... ,qm} are located at points {p1,... ,pm} inside
a circle of radius r with center zo. Then, for any z € C with |z—zg| > r the potential
energy E(z) at point z induced by the m charged particles is given by

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

10 . S. Hachul and M. Jiinger

E(z) = aplog(z — 2z9) + Z (z—a—kzo)k , where
k=1

_ G) d _ G —Qi(pz‘—zo)k
aO—Zqz an ak—ZT.
i=1 i=1

Based on this theorem, the idea is to develop the infinite series only up to a
constant index p. The resulting truncated Laurent series MP(z) is called p-term
multipole expansion. In practice, choosing p = 4 has turned out to be sufficient to
keep the error of the approximation less than 1072,

The following Lemma 4.4 shows how the center of a multipole expansion can be
shifted. Lemma 4.5 describes how a multipole expansion can be converted into a
power series (that is called local ezpansion) in a circular region of analyticity, and
Lemma 4.6 shows how the center of a finite local expansion can be shifted. The
finite power series LP(z) that is obtained by calculating only the coefficients 0 to p
of a local expansion is called is called p-term local expansion.

LEMMA 4.4 TRANSLATION OF MULTIPOLE EXPANSIONS. Suppose, £(z) = ag
log(z — 20) + > pey (z_“—go)k is a multipole expansion of the potential energy due
to a set of charged particles that are located inside a circle of radius r and center
zo. Then, for any z outside a circle of radius r+|z9—z1| and center z1, the potential
energy induced by these particles is given by

ik where

E(z) = aplog(z — z1) +Z
=1

Z—Zl

1 l
—ap(zp — 2 -1
bl = M—ank(’zo_zl)l_k(kl))

k=1

LEMMA 4.5 CONVERSION OF MULTIPOLE EXPANSIONS. Suppose, Cy is a set of
charged particles that are located inside a circle of radius r and center zy, the
corresponding multipole expansion is given by £(z) = aglog(z—z0) + Y pey (Zf—jo)k,
and that z1 is a point with |21 — zo| > 2r. Then, inside a circle of radius r and
center z1 the potential energy due to these particles is given by the power series

z) = Zbl (2= 21", where

oo
by = aglog(z1 — and
0 0log(z1 O+I; (1 — 2)F

(—1)*1qq I V' & l+k—1 ax
b = _— [>1.
! (21 — Z())l -l + 20 — 21 Z k—1 (Zl — Zo)k ’ fOT -

k=1

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 11

LEMMA 4.6 TRANSLATION OF LOCAL EXPANSIONS. For any complez 2y, z1, 2
and {ag, ... ,ap}

Sty (Z () >> (- a).

k=0 1=0 \k=l
Since we are more interested in approximating the forces in the system rather
than the potential energy, the following Lemma can be used to obtain the forces
that act in a potential energy field which is described by a multipole expansion or
local expansion.

LEMMA 4.7 OBTAINING THE FORCES. (a) If £(z) = aglog(z — z0) + Y pey
(z—a—go)k describes the potential energy field in a system of charged particles,
and z 1is contained in a region of analyticity, them, the forces that act on a
particle of unit charge at position z are given by (Re(E'(2)),—Im (£'(2))) with
E'(2) = 72 =30, (z_kz%

(b) Suppose, E(z) =Y ;=g b (z — z1)! describes the potential energy field in a sys-
tem of charged particles, and z is contained in a region of analyticity. Then,
the forces that act on a particle of unit charge at position z are given by

(Re(E'(2)), —Im(E'(2))) with E'(z) = >_72, 1 b(z — z1)' L.

Remark 4.8. Due to the stated Multipole Expansion Theorem 4.3 and lemmas,
it is easy to confirm the following statements (assuming all operations are applied
on well-defined sets):

(a) The coefficients of a p-term multipole expansion due to m charged particles can
be obtained in O(pm) time.

(b) The coefficients of a shifted p-term multipole expansion can be obtained in
O(p?) time.

(¢) The coefficients of a p-term local expansion can be obtained from the coefficients
of a p-term multipole expansion in O(p?) time.

(d) The coefficients of a shifted p-term local expansion can be obtained in O(p?)
time.

(e) The derivative of a p-term multipole expansion and the derivative of a p-term
local expansion can be obtained in O(p) time.

(f) An approximation of the force that acts on a particle of unit charge at a position
z — which is induced by the potential energy field that is described by a p-term
multipole expansion or a p-term local expansion — can be obtained in O(p)
time.

We will demonstrate how p-term multipole expansions can be used to speed up
force calculations in systems of charged particles by giving an example: Suppose,
m particles of unit charge are located within a circle Cy of radius r with center z
and that another m particles of unit charge are located within a circle Cy of radius
r with center z1, and let |29 — 21| > 2r (see Figure 6).

Computing the repulsive forces acting on each particle in Cy due to all particles
in C; naively would need ©(m?) time. Now, suppose that we first compute the
coefficients of a p-term multipole expansion of the potential energy due to the

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

12 . S. Hachul and M. Jiinger

Co G

Fig. 6. An example distribution showing the use of p-term multipole expansions.

particles in Cy. This needs O(pm) time (see Remark 4.8(a)). Then, we calculate the
derivative of the p-term multipole expansion in O(p) time (see Remark 4.8(e)) before
evaluating it for each particle in Cy. This needs m - O(p) time (see Remark 4.8(f)).
Hence, the total running time for approximating the forces is O(pm), which is
significantly faster than the naive approach if m >> p.

4.2.2 Some Terminology. In Sections 4.1 we have associated each node v of the
reduced bucket quadtree with its box boz(v). In the following, we will associate
two boxes with a node v that are defined next. Figures 7(a) and 7(b) explain this
terminology at an example.

Definition 4.9 (Small Cell, Large Cell). Suppose, T is a reduced bucket quad-
tree with fixed constant leaf capacity [for a given set C' = {¢1,... ,cy} of distinct
particles that are distributed in a square D, and v is a node of T. The small cell or
small box of v (shorter Sm(v)) is the smallest sub-box of D that covers all particles
that are associated with v. If v is a leaf that contains only one particle, then, Sm(v)
is a point. If v is the root of T', the large cell or large box of v (shorter Lg(v)) is
equal to Sm(v). Otherwise, let parent(v) be the parent of v in T. Then, Lg(v)
is the largest sub-box of Sm(parent(v)) with size smaller than Sm(parent(v)) that
covers Sm(v).

.1
o3
o2
D
Foa; -
o 10
o3 Oe| ®
5 {6,7} 9 10 11 11]e

(a) (b) (c)

Fig. 7. (a) A reduced bucket quadtree that corresponds to the particle distribution in the square
D shown in (b). The small cell Sm(v2) corresponds to the small dark-gray box. The small cell
of parent(va) = v1 corresponds to the square D. The large cell Lg(vz) corresponds to the big
light-gray box that covers the small dark-gray box in (b). (c¢) Unlike the white boxes, the gray
boxes are neighbors of the black box.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 13

Remark 4.10. Tt follows from the definition of Sm(v), Lg(v), and the reduced
bucket quadtree T that the small cell Sm(v) of an interior node v is exactly box(v).
For a leaf v of T', Sm(v) is covered by box(v). Furthermore, Lg(v) \ Sm(v) covers
no particles of C, and the size of Lg(v) is § of the size of Sm(parent(v)) if v is not
the root of T. Figure 7(a,b) shows an example.

The Multipole Expansion Theorem 4.3 and the lemmas for shifting, convert-
ing, and evaluating these expansions can only be applied in well-defined regions of
analyticity. Since in all quadtree data structures the regions are squares, the termi-
nology of well-separateness is used to indicate that the operations of Theorem 4.3
and the lemmas for working with these expansions can be applied.

Definition 4.11 (Neighbor, Well-Separated, Ill-Separated). Two boxes B; and
By are called neighbors if the boundaries of B; and Bs touch, but B; and Bs
do not overlap. Two boxes By and Bjy of same size are well-separated if they are
no neighbors. Otherwise, By and By are ill-separated. Suppose, nodes u and v are
nodes of a reduced bucket quadtree T and Sm(u) > Sm(v). Then, v and v are well-
separated if and only if Sm(u) and the cell that covers Sm(v) and that has the same
size as Sm(u) are well-separated. Otherwise u and v are ill-separated. Suppose,
Sm(u) < Sm(v). Then, u and v are well-separated if and only if Sm(v) and the
cell that covers Sm(u) and that has the same size as Sm(v) are well-separated.
Otherwise u and v are ill-separated.

Figure 7(c) shows a box B and its neighbors, while Figure 8(a) and (b) show the
small cells of two tree nodes that are well-separated and ill-separated, respectively.

Sm(v)

. . Sm(v)
Sm(u) Sm(u)

(a) (b)

Fig. 8. The black boxes Sm(u) and Sm(v) are small cells of two nodes u and v of a reduced
bucked quadtree. (a) Since the gray box is no neighbor of Sm(u), v and v are well-separated. (b)
Since the gray box is a neighbor of Sm(u), v and v are ill-separated.

Like in [Greengard 1988; Aluru et al. 1998] the terminology of well-separateness
is used to define an interaction set that is used do generate p-term local expan-
sions from suitable p-term multipole expansions. The following definition of an

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

14 . S. Hachul and M. Jiinger

interaction set of a node v of T has been invented in [Aluru et al. 1998] and is a
generalization of the definition of the interaction set defined in [Greengard 1988].

Definition 4.12 (Interaction Set, Minimal Ill-Separated Set). Suppose, nodes u
and v are nodes of a reduced (bucket) quadtree T. The interaction set I(v) of a
node v is the set of all nodes u that are ill-separated from the parent of v, well-
separated from v, and the parent of u is ill-separated from v. Thus, I(v) = {u |
Well_Separated(v,u),Ill_Separated (parent(v),u), Ill_Separated (parent(u),
v)}. The minimal ill-separated set R(v) of a node v is the set of all nodes that are ill-
separated from v and have the small cell smaller or equal and the large cell larger or
equal than the small cell of v. Hence, R(v) = {u | Ill_Separated(v,u), Sm(u) <
Sm(v)) < Lg(u)}.

The multipole framework of Aluru et al. [Aluru et al. 1998] associates the lists
I(v) and R(v) with each node v of the reduced quadtree in order to approximate
the repulsive forces in the system. Since we use the reduced bucket quadtree data
structure, the leaves possibly contain more than one particle. We will see that this
generalization can be modeled in our framework by defining some additional sets
which are assigned to each node of the tree and that are introduced next.

Definition 4.13 (The Sets D1(v), D2(v), D3(v) and K(v)). For each node v of
the reduced bucket quadtree T' = (V, E), D1(v) is the set of all leaves w € V so
that Sm(v) < Sm(w) and Sm(v) and Sm(w) are neighbors. Dy(v) is the set of all
leaves w of T' so that Sm(v) < Sm(w), Sm(v) and Sm(w) are no neighbors, v and
w are ill-separated, and w is not contained in the set Dy(u) of an ancestor u of v.
For each leaf v € V we additionally define the sets D3(v) and K(v), where D3(v)
is the set of all leaves w € V so that Sm(v) > Sm(w) and Sm(v) and Sm(w) are
neighbors. For a leaf v € V' the set K (v) contains all nodes w so that Sm(v) and
Sm(w) are no neighbors. Additionally, it is required for each w € K (v) that either
w € R(v) or an ancestor of w is contained in R(v) and Sm(parent(w)) and Sm(v)
are neighbors.

4.2.3 Formal Description of the Multipole Framework. The multipole frame-
work is based on a bottom-up traversal and a top-down traversal of the reduced
bucket quadtree data structure with a fixed constant precision parameter p and can
be seen as a generalization of the multipole framework of [Aluru et al. 1998]. The
pseudocode of the framework is shown in Function Multipole Framework and Func-
tion Calculate_Local Expansions_and_Node_Sets, and its parts are explained in
the following.

Part 1: (Trivial Case and Initializations) If the reduced bucket quadtree
T = (V,E) consists of only one node, the forces that act on each particle p; due
to all other particles in C are calculated directly, and the algorithm terminates.
Otherwise, for each node v of T the sets R(v), I(v), D1 (v), Da(v) (and for the leaves
additionally Ds(v), and K (v)) are initialized.

Part 2: (Bottom-Up Traversal of the Tree) Now, for each leaf v of T the
coeflicients {ag, ... ,a,} of the p-term multipole expansion MP(v) that reflects an
approximation of the potential energy field due to the particles that are contained
in Sm(v) are calculated. This is done by using Theorem 4.3 and choosing the center

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 15

Function Multipole_Framework(C, T, p)

input

caset C = {cy,...,cn} of charged particles of unit charge that are
placed at distinct positions p(C) = {p1,...,pn}, a reduced bucket
quadtree T' = (V, E) with fixed constant leaf capacity [that is asso-
ciated with C, and a fixed constant precision parameter p

output: a function F.,: C — R? so that Frep(c,) 18 an approximation of the

begin

end

repulsive forces that act on ¢; due to all other particles in C'

begin {Part 1:Trivial Case and Initializations}

if T contains only one node then
foreach ¢; € C' do
| Frep(ci) < Naive Direct_Force_Calculation;

Exit;
foreach v € V do R(v) « I(v) « D1 (v

— DQ(’U) — ®7
foreach leaf v € V do D3(v) «— K(v) « 0;

end
begin {Part 2: Bottom-Up Traversal}

foreach leaf v € V do
calculate the coefficients of MP(v) due to all particles contained in
L Sm(v);
foreach interior node v € V for which coefficients of MP(w) of all
children w of v have been calculate do
calculate the coefficients of MP(v) due to all particles contained in
Sm(v) by adding coefficients of shifted M?(w) of all children w of
U5

end
begin {Part 3: Top-Down Traversal}

foreach child v of the root of T' do
| Calculate_Local_Expansions_and Node_Sets(T,C,p,v);

end
begin {Part 4: Obtain the Forces}

foreach leaf v € V do
foreach particle ¢; € Sm(v) do
let C'(v) be the set of charged particles that are contained in
Sm(v);
calculate Fioeqi(c;) using the coefficients of LP(v);
calculate Firect(c;) using Dy (v) U D3(v) U C(v);
calculate Fouisipote (¢;) using K (v);
Frep (Cz) — Flocal(ci) + Fdirect (cz) + qultipole (Ci);

end

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

16 . S. Hachul and M. Jiinger

Function Calculate _Local Expansions_and Node_Sets(T,C,p,v)

input : C,T,p are defined like in Function Multipole _Framework, a node v

of T

output: the coefficients {b, ... ,b,} of the p-term local expansions of v, the
sets R(v), I(v), D1(v), D2(v), and additionally Ds(v) and K (v) if v
is a leaf

begin

begin {Part 3.1:Find R(v),I(v),Di(v), and Ds(v)}

if parent(v) is the root of T' then E(v) «— parent(v);

else E(v) « R(parent(v)) U Dy (parent(v));

while F # () do
pick some u € E(v), and set E(v) — E(v) \ {u};
if Well Separated(u,v) then I(v) «— I(v) U{u};
else if Sm(v) > Sm(u) then R(v) — R(v) U {u};
else if v is no leaf of T' then E(v) «— E(v) U children(u);
else if Neighbors(Sm(u), Sm(v)) then D;(v) «— Di(v) U {u};
else Dy(v) « Dy(v) U{u};

end
begin {Part 3.2: Calculate Coefficients of LP(v)}
foreach u € I(v) do
convert MP(u) to LP(u), and add coefficients of LP(u) to coefficients
| of L¥(v);
foreach u € Dy(v) do
foreach ¢; € Sm(u) do
calculate MP(c;), convert MP?(¢;) to LP(¢;), and add coefficients
L of LP(¢;) to coeflicients of LP(v);

if coefficients of LP(parent(v)) have been calculated then
| add coefficients of shifted LP(parent(v)) to LP(v);

end
begin {Part 3.3:Find Dj3(v) and K(v) for Leaves}
if v is a leaf of T then
set E(v) «— R(v);
while E(v) # () do
pick some u € E(v), and set E(v) «— E(v) \ {u};
if not Neighbors(Sm(u), Sm(v)) then K(v) «— K(v) U {u};
if Neighbors(Sm(u),Sm(v)) and w is leaf then Ds3(v) <
Ds(v) U{u};
else E(v) «— E(v) U children(u);

end
begin {Part 3.4:Recursion}
if v is no leaf of T' then foreach child w of v do
‘ | Calculate_Local_Expansions_and Node_Sets(T,C,p,w);
end
end

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 17

of Sm(v) as the variable zg in Theorem 4.3.

The p-term multipole expansions of the interior nodes are calculated by traversing
the tree bottom up: Suppose, v is an interior node of T with small cell Sm(v), the
center of Sm(v) is 21, and the p-term multipole expansions MP(w) of each of v’s
children w have been calculated. Then, the coefficients of the p-term multipole
expansion MP(v) that reflects an approximation of the potential energy field due to
the particles that are contained in Sm(v) are obtained by first shifting the center
of each MP(w) to z; (using Lemma 4.4) and, then, adding the coefficients of this
shifted p-term multipole expansion to the corresponding coefficients of MP(v).

Part 3: (Top-Down Traversal of the Tree) In the top-down traversal of the
tree T, Function Calculate Local Expansions_and Node Sets is called for each
child of the root node.

Part 3.1: (Find R(v), I(v), D1(v), and Dy(v)) Here, the sets R(v), I(v), D1(v),
and Dy(v) are constructed starting with a set E(v) that is assigned R(parent(v))U
D; (parent(v)). Note that if parent(v) is the root of T, it is clear that R(parent(v)) =
v and Dq(parent(v)) = (). Then, iteratively a node u is taken from R(parent(v)) U
Dy (parent(v)), and it is checked if u already belongs to one of the previous men-
tioned sets or if one has to explore the subtrees that are rooted at u recursively in
order to assign its children to these sets.

In particular, if v and v are well-separated, then, u belongs to I(v). [This can
be seen as follows: If u is a node of R(parent(v))U Dy (parent(v)), then since u and
v are well-separated u € R(parent(v)). Hence, parent(v) and u are ill-separated by
definition of R(parent(v)). Lg(u) > Sm(parent(v)) by definition of R(parent(v))
and, hence, parent(u) and v are ill-separated, too. If in the complementary case,
u is a proper ancestor of a node in R(parent(v)) U Dy(parent(v)), u is a proper
ancestor of a node R(parent(v)) since the nodes in D; (parent(v)) are leaves. Hence,
parent(v) and wu are ill-separated. Furthermore, parent(u) and v are ill-separated,
since otherwise parent(u) € I(v).]

If v and v are ill-separated and additionally Sm(v) > Sm(u), then, u belongs
to R(v). [To see this, we have to prove that Lg(u) > Sm(v): Suppose, u €
R(parent(v))U Dy (parent(v)), then, it follows from definition of Dy (parent(v)) that
u € R(parent(v)). Therefore, Lg(u) > Sm(parent(v)) and, hence, Lg(u) > Sm(v).
In the complementary case, u is a proper ancestor of a node in R(parent(v)) by def-
inition of Dy (parent(v)). In this case Lg(u) > Sm(v) holds since Sm(parent(u)) >
Sm(v) by the dynamic construction of E(v).]

If u and v are ill-separated, Sm(v) < Sm(u), v is a leaf, and Sm(u) and Sm(v)
are neighbors, then, u is contained in D1 (v).

If u and v are ill-separated, Sm(v) < Sm(u), u is a leaf, and Sm(u) and Sm(v)
are no neighbors, then, u is contained in Ds(v), since R(parent(v))U D1 (parent(v))
and Ds(parent(v)) are disjoint and u is an element of R(parent(v))U D1 (parent(v))
or an ancestor of an element in R(parent(v)) U Dy (parent(v)).

In the remaining case Sm(v) < Sm(u) and v is an interior node of T' that is
ill-separated from v. Hence, one has to check whether its children belong to one of
the sets R(v), I(v), Di(v), or Ds(v).

Note that by construction of part 3.1 the particles that are covered by the small
cells of all nodes in R(parent(v)) U D1 (parent(v)) are exactly the particles that are

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

18 . S. Hachul and M. Jiinger

covered by the small cells of all nodes in R(v)UI(v)UD;(v)U Dy(v). Furthermore,
each such particle is covered by the small cell of exactly one node in R(v) UI(v)U
Dl(’U) @] DQ(’U).

Part 3.2: (Calculate Coefficients of L?(v)) Like in other multipole methods,
for each u in the interaction set I(v) the coefficients of p-term multipole expansions
MP(u) are converted to coefficients of p-term local expansions LP(u) and added
to the corresponding coefficients of LP(v) using Lemma 4.5 and choosing zy :=
center(Sm(u)) and z; := center(Sm(v)).

Some difficulties arise for the nodes in D2 (v): Since each u € D2 (v) is a leaf that
is ill-separated from v with Sm(v) < Sm(u), one cannot apply Lemma 4.5 on u.
However, we found another way to calculate the local expansions due to the particles
that are contained in u: Let {c1,...,cx} be the set of charged particles that are
contained in Sm(u) at positions {p1, ... ,pr}. First, we calculate the coefficients of
the p-term multipole expansion MP(c;) for each single particle ¢; using Theorem 4.3
and choosing zg := p;. Since we can interpret each point p; as a dimensionless box
B, the largest cell that covers B; and that has the same size as Sm(v) is no neighbor
of Sm(v) due to the definition of Dy(v) (see Figure 9(a)). Hence, Sm(v) and B;
are well-separated, and Lemma 4.5 can be used to convert MP(c;) to a p-term local

expansion LP(c¢;) choosing zp := p; and z; := center(Sm(v)). Finally, for each
¢; € {c1,...,cx} the coeflicients of LP(¢;) are added to LP(v).
pi
Sm(v)
f . [°®
Sm(v) * s . Lo Sm(u)
. f
Sm(u)
pi

(a) (b)

Fig. 9. (a) The light-gray boxes Sm(v) and Sm(u) are ill-separated, no neighbors, and Sm(v) <
Sm(u). Sm(v) and the dark-gray sub-box of Sm(u) that contains particle ¢; at position p; and
has the same size as Sm(v) are well-separated. (b) The light-gray boxes Sm(v) and Sm(u) are
ill-separated, no neighbors, and Sm(v) > Sm(u). Sm(u) and the dark-gray sub-box of Sm(v)
that contains particle ¢; at position p; and has the same size as Sm(u) are well-separated.

Following standard practice, the coefficients of the shifted p-term local expansion
LP (parent(v)) of the parent of v are added to the corresponding coefficients of
L?(v). Thus, an approximation of the potential energy field of the region that
is reflected by LP(parent(v)) is inherited to v using Lemma 4.6 and choosing the
center of Sm(v) as z1.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 19

As a result of part 3.2, the coeflicients of L”(v) reflect an approximation of the
potential energy field due to all particles contained in the small cells of the nodes
in I(v), Da(v), and in the I(u) and Do(u) sets of all ancestors of v. Furthermore,
the small cells of the nodes in R(v) U Dy (v) are exactly the regions that have not
been considered yet in the calculation of the potential energy in Sm(v) due to all
particles in the region D\ Sm(v).

Part 3.3: (Find D3(v) and K(v) for Leaves) Suppose, v is a leaf of T' and u
is a node in R(v). By definition of R(v) we know that v and v are ill-separated
and that Sm(v) > Sm(u). Three cases can arise: If v and v are no neighbors, u
is an element of K (v). If u and v are neighbors and w is a leaf, u is an element of
Ds(v). Otherwise, u is a neighbor of v but an interior node of T. Thus, we can
recursively assign the children of u to either K (v) or Ds3(v), since all children of
u are ill-separated from v, their small cell is smaller than Sm(v), and Sm(u) is a
neighbor of Sm(v).

Note that the particles that are covered by the small cells of the nodes in R(v) are
exactly the particles that are covered by the small cells of the nodes in K (v)UD3(v).
Furthermore, each such particle is covered by the small cell of exactly one node in
K(U) U D3(1}).

Part 3.4: (Recursion) Suppose, v is an interior node of 7. The small cells of
the nodes in R(v) U D1 (v) are exactly the regions that have not been considered
yet in the calculation of the potential energy in Sm(v) due to all particles that are
contained in the region D\ Sm(v). Hence, we can inherit the sets R(v) and D1 (v) to
each child w of v and call Function Calculate_Local Expansions_and Node_Sets
for w.

As a result of parts 1 to 3 we have given the coefficients of the p-term local
expansions LP(v) for each leaf v of T, and LP(v) reflects an approximation of the
potential energy field induced by the particles that are not covered by the small
cells of all nodes contained in D;(v) U D3(v) U K(v) U Sm(v).

Part 4: (Obtain the Forces) Suppose, v is a leaf of T' so that Sm(v) contains the

particles {c1,...,ck}, which are placed at positions {p1,... ,pr}. We can obtain
an approximation of the repulsive forces that act on each ¢; € {c1,...,c} due to
all particles in the system C = {¢1,... ,cn} as follows:

Let L’ be the derivative of LP(v). Lemma 4.7(b) can be used to to obtain the
forces that are induced by L’ and act on ¢; by setting Focqi(c;) = (Re(L'(pi)), —Im(
L' (pi)))-

The forces that act on ¢; due to all particles that are contained in Sm(v) U
{Sm(u) | u € D1(v) U D3(v)} are calculated directly by a naive exact force calcu-
lation, since v and all nodes u € Dy (v) U D3(v) are leaves. The resulting forces are
denoted by Fgirect(c;)-

We only have to concentrate on the particles that are covered by the small cells
of the nodes in K(v). Let u be a node in K(v). Since u is ill-separated from
v and Sm(v) > Sm(u), we cannot apply Lemma 4.5 in order to convert MP(u)
to LP(u) and to add the coefficients of LP(u) to the corresponding coefficients of
L?(v). However, we can use a similar trick as the trick that we have invented in
part 3.2: Let ¢; be a particle that is placed at position p; € Sm(v). Since we can

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

20 . S. Hachul and M. Jiinger

interpret p; as a dimensionless box B;, the largest cell that contains ¢; and that
has the same size as Sm(u) are no neighbors due to the definition of K (v) (see
Figure 9(b)). Hence, Sm(u) and B; are well-separated, and Lemma 4.7(a) can be
used in order to obtain the forces that act on ¢; due to all particles contained in
Sm(u). In particular, let M’ be the derivative of M?(u). Then, the force on ¢; that
is induced by MP(u) is given by Fruitipote(ci) = (Re(M'(p;)), —Im(M'(p;))).

Therefore, the approximation of the repulsive force that acts on a particle ¢; due
to all particles in C' = {e¢1,...,cn} is given by the sum of Fyirect(¢i), Flocal(Ci)s
and qultipole (Cz)

4.2.4 The Running Time of the Multipole Framework. In order to prove that the
running time of Function Multipole Framework is linear in the number of particles,
we need the following lemma.

LEMMA 4.14 S1zES OF THE SETS R(v), I(v), Di(v), D2(v), D3(v), K(v). Sup-
pose, T = (V, E) is a reduced bucket quadtree with constant leaf capacity l that is
associated with a set C = {c1,...,cn} of N charged particles that are placed at
distinct positions {p1,... ,pn}, and leaves(T) is the set of the leaves of T. Then,

Y |R(v)| = O, (1)

veV

Y @) =0, (2)

veV

Y IDi(v)| = O(N), 3)

veV

> IDa(v)| = O(N), (4)

veV

> [Ds(v)| = O(N), and (5)

v€Eleaves(T)

Y K@ =0W). (6)

v€Eleaves(T)

PROOF. The proofs of Equations (1) and (2) are similar to the corresponding
proofs in [Aluru et al. 1998]. We prove Equation (1) first. Let v be an arbitrary
node of T. Each node u € R(v) is ill-separated from v and Sm(v) > Sm(u). Hence,
Sm(u) is either covered by Sm(v) or covered by a neighbor box B of Sm(v) that
has the same size as Sm(v). In the first case, we know from the definition of R(v)
that Sm(v) < Lg(u). By definition of Lg(u) it follows that « = v. In the second
case, by using that Sm(v) < Lg(u) and Remark 4.10, we know that Lg(u) \ Sm(u)
contains no particles. Hence, B\ Sm(u) contains no particles, too. Since Sm(v) has
exactly 8 neighbor boxes B of equal size, we get that >° i, |[R(v)] < (1+8)-|[V]=
O(V1) = O(N).

We now prove Equation (2). Suppose, w is a node in I(v), then, either w is in
R(parent(v)) or an ancestor u of w is in R(parent(v)) or w is in Dj(parent(v)) or
an ancestor u of w is in Dj(parent(v)). The last two options can be excluded by

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 21

the fact that all elements of Dj(parent(v)) are neighboring leaves of Sm(parent(v))
with a small cell that is larger than Sm(parent(v)) and, hence, are ill-separated
from v and have no ancestors. Therefore,

2vev {w [wel(W)} = 30 oy {w|w e I(v),w € R(parent(v))}[+

2 vev {w [w € I(v),w ¢ R(parent(v))}|.

By Equation (1) we know that) ., {w | w € I(v),w € R(parent(v)}| = O(N).
We can rewrite the second term of this equation as follows:

Y Hwlwe I(v),w ¢ R(parent(v))} = > {v | w € I(v),w ¢ R(parent(v))}]

veV weV

Hence, in order to show that Equation (2) holds, it is sufficient to show that S(w) :=
Hv | w e I(v),w ¢ R(parent(v))}| = O(1). Let w be arbitrarily fixed. Since w ¢
R(parent(v)) there exists a node u € R(parent(v)) that is an ancestor of w. Thus,
parent(v) and parent(w) are ill-separated, and Sm(parent(v)) > Sm(parent(w)).
It can be shown that there exists a box B that is a neighbor of box Sm(parent(w)),
B has the same size as Sm(parent(w)), and B is a sub-box of Sm(parent(v)) that
contains Sm(v). [To see this: Sm(v) cannot be larger than Sm(parent(w)), since
— by definition of I(v) — v and parent(w) are ill-separated but v and w are
well-separated. Suppose, Sm(v) is not covered by a box B that is a neighbor of
Sm(parent(w)) and that has the same size as Sm(parent(w)), then, v and parent(w)
are well-separated, which contradicts the fact that w € I(v) by definition of I(v).
Finally, Sm(parent(v)) covers B, since Sm(parent(v)) > Sm(parent(w)).] For each
such box B there exist at most 4 sub-boxes like Sm(v) since Sm(parent(v)) covers
B. Since for each w, the number of neighbor boxes of equal size is bounded above by
8, |S(w)| is bounded above by 4-8 = 32, which completes the proof of Equation (2).

The proof of Equation (3) is easy. Let v be an arbitrary node of T. Since there
exist at most 8 boxes that are neighbors of Sm(v) and that have the same size as
Sm(v), there exist less than 8 leaves w that are neighbors of v with Sm(w) > Sm(v).
Hence, }_, oy |D1(v)| < 8|V|= O(N).

Next, we prove Equation (4). Let us suppose that the leaf capacity [is 1 and
that v is a node of T'. Then, the small cells of all leaves have size zero. By definition
of Dy(v) and Ds(v) it follows that D;(v) = Ds(v) = (). Thus, by Equations (1)
and (2) for I = 1 the equality », .y, [R(v)|+[I(v)|+|D1(v)|+|D2(v)| = O(N) holds.
Furthermore, the elements of R(parent(v))UD1(parent(v)) or the descendants of the
elements of R(parent(v)) U Dy(parent(v)) are partitioned into the disjoint subsets
R(v) and I(v) (since D;(v) = Da(v) =). Now, let us suppose that [> 1. Then, the
nodes contained in Do (v) are either elements of the set R(parent(v))UD: (parent(v))
or are descendants of the elements of R(parent(v))UD;(parent(v)). In the first case,
the number of elements of Da(v) that are contained in R(parent(v))UD;(parent(v))
is bounded above by O(N) using Equations (1) and (3). In the second case, we use
that by Equations (1), (2), and (3) >_, oy [R(v)|+[I(v)| +[D1(v)| = O(N). Hence,
it is sufficient to show that > ., [R(v)| + [I(v)| + |D1(v)| 4 |D2(v)| = O(N). This
can be shown as follows: Suppose, leaf u is an ancestor of a node in R(parent(v))U
D; (parent(v)), contains k particles with 2 < k < [, and is neither assigned to I(v)
nor to R(v). Then, u is assigned to either D;(v) or Dy(v) since it has no further

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

22 . S. Hachul and M. Jiinger

descendants in T'. Hence, the cardinality of the actual set R(v)UI(v)UD1(v)UDs(v)
is increased by one. In contrast to this, in the case that [= 1 the subtree rooted at
u would have been explored further. Since in this case T is a reduced quadtree, this
exploration would result in adding at least two nodes to R(v) U I(v). Therefore,
in the case that [> 1 the expression) i |R(v)| + [I(v)| + |D1(v)| + [D2(v)] is
bounded above by O(N), too.

In order to prove Equation (5), we can use that >°, cjqpes(r) {w | Sm(v) 2
Sm(w), leaf (W)} = -, creqves(r) [{v | SM(v) = Sm(w), leaf (w)}]. It is sufficient
to show that for each leaf w the set S’(w) := [{v | Sm(v) > Sm(w), leaf (w)}|
is bounded by a constant. Since for each such w at most 8 boxes exist that are
neighbors of Sm(w) and have the same size as Sm(w), we get that |S’'(w)| < 8.

Finally, we prove Equation (6). By definition of K (v), we know that for each leaf
v of the tree K(v) = K;(v) U Ka(v) so that Kj(v) is the set of all nodes w with
Sm(v) and Sm(w) are no neighbors and w € R(v). K(v) is the set of all nodes w so
that Sm(v) and Sm(w) are no neighbors, Sm(parent(w)) and Sm(v) are neighbors,
and an ancestor of w is contained in R(v). Hence, we get that 3, cppes(r) {w |
w € K} =2 vereaves(ry {w [w € Ki(v)} 4 32, creqves(ry {w | w € Ka(v)}].

The first term is bounded by O(N) using Equation (1). To estimate the second
term, we use that

Y, HwlweK()}= Y HvlweKa(v)}]

v€leaves(T) weleaves(T)

Let S"(w) := |{v | w € Ka(v)}|- Then, it is sufficient to show that |S”(w)]| is
bounded by a constant for an arbitrary node w of T. Suppose, there exists a
leaf v of T so that w € Ka(v). Then, Sm(parent(w)) and Sm(v) are neighbors.
Since parent(w) or an ancestor of parent(w) is contained in R(v), it is clear that
Sm(v) > Sm(parent(w)). Since at most 8 such leaves v of size larger or equal than
Sm(parent(w)) are neighbors of Sm(parent(w)), we get that |S”(w)| < 8, which
completes the proof. [J

THEOREM 4.15 MULTIPOLE FRAMEWORK. Suppose, C = {c1,... ,cn} is a set
of charged particles of unit charge that are placed at distinct positions p(C) =
{p1,...,on}, T = (V, E) is a reduced bucket quadtree with fixed constant leaf ca-
pacity | that is associated with C, and p is a fized constant precision parameter.
Then, Function Multipole Framework approximates the repulsive force that acts
on each particle ¢; due to all other particles in C in O(N) time.

ProOF. If T contains only one node, |C| = N <. Since ! is a constant, the exact
naive force calculation in part 1 needs constant time. Otherwise, the initialization
of the sets in part 1 needs O(|V]) = O(N) time.

In part 2 of Function Multipole_Framework the coefficients of the p-term mul-
tipole expansions MP(v) are calculated for all leaves v, using Theorem 4.3. Let
m(v) denote the number of particles that are contained in Sm(v) for each leaf v
of T. By Remark 4.8(a) this needs >, .ppe5(0) O(p - m(v)) = O(p- N) = O(N)
time. The coefficients of the p-term multipole expansions of the interior nodes are
obtained using Lemma 4.4. By Remark 4.8(b) and the fact that |[V| = O(N) the
total running time of this step is O(p? - |[V|) = O(N).

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 23

In part 3.1 the sets R(v), I(v), D1(v), and Dy(v) are found for a fixed node
v. This is done by exploring a collection of |R(parent(v)) U D1 (parent(v))| rooted
subtrees, where each node in R(parent(v)) U Di(parent(v)) is a root. The nodes
in R(parent(v)) U Dy (parent(v)) are either assigned to one of the sets R(v), I(v),
D, (v), and D5 (v) directly, or their children are examined later. Since T is a reduced
bucket quadtree, each interior node has at least two children. Hence, the total
number of nodes that are visited in the exploration of all subtrees of the nodes in
R(parent(v)) U Dy (parent(v)) is proportional to |R(v)| + [I(v)| + |D1(v)| + | D2(v)|.
It follows from Lemma 4.14 that applying parts 3.1 to all nodes v of T' needs O(N)
time.

In part 3.2 for each node u € I(v) converting the coefficients of the p-term
multipole expansion M?(u) to the p-term local expansion LP(u) and adding these
coefficients to the corresponding coefficients of p-term local expansion L?(v) of v can
be done in O(p?) time using Lemma 4.5 (see Remark 4.8(c)). For each u € Ds(v)
there exists at most [particles ¢; that are contained in Sm(u). For each such
particle the work needed to calculate MP(c;), to convert it to LP(c;), and to add its
coefficients to the corresponding coefficients of LP(v) is O(p?) using Theorem 4.3
and Lemma 4.5 (see Remarks 4.8(a) and (c)). Adding the coefficients of the shifted
p-term local expansions LP(parent(v)) of the parent of a fixed node v to LP(v) can
be done in O(p?) time using Lemma 4.6 (see Remark 4.8(d)). Since we know from
Lemma 4.14 that Y .\, I(v) UD2(v) = O(N), O(l - p* - N) = O(N) time is needed
to apply part 3.2 on all nodes v € V..

In part 3.3 the sets D3(v) and K (v) are constructed by exploring a set of |R(v)]
rooted subtrees with roots in R(v). The total number of nodes that are visited in
the exploration of all subtrees that are rooted at the nodes in R(v) is proportional
to |Ds(v)|+ | K (v)|. Using Lemma 4.14, applying part 3.3 on all leaves v of T needs
O(N) time in total.

In part 4 the forces Firect(¢i), Flocai(¢i), and Fpuuipote(c;) are calculated for
each particle ¢; that is contained in a leaf v of T'. The calculation of F,eq(c;) needs
O(p) time using Lemma 4.7(b) (see Remark 4.8(e) and (f)). Calculating Fairect(c;)
can be done in O(l - (|D1(v)| + |D3(v)| + 1)) time. Calculating Fpuiipoie(ci) can
be done in O(p - |K(v)|) time using Lemma 4.7(a) (see Remark 4.8(e) and (f)).
Adding Fiyirect (i), Flocar(¢i), and Fouitipoie (¢;) to obtain Frep(c;) needs O(1) time.
Hence, it follows from Lemma 4.14 that the running time of part 4 is bounded by
Z’UEZE(M}CS(T) ZciES’m(v) O(p+l ! (|D1 (U)| + |D3(U)| + 1) +p- |K(U)| + 1) = O(N) O

5. RUNNING TIME OF FM?

COROLLARY 5.1 MAIN THEOREM. Suppose, G = (V, E) is a positive weighted
graph. Then, the Fast Multipole Multilevel Method (FM®) generates a straight-line
drawing of G in O(|V|log |V |+ |E|) worst-case running time. Its best-case running
time is O(|V| + |E|).

PROOF. The corollary follows directly form Theorems 3.2, 4.2, 4.15 and the pre-
vious discussion. []

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

24 . S. Hachul and M. Jiinger

6. EXPERIMENTAL RESULTS

FM® has been implemented in C++ within the framework of AGD [Jiinger et al.
2004]. We tested the algorithm on a 2.8 GHz PC running Linux. The tested
graphs are the graphs contained in [Walshaw’s graph collection | with up to 200000
nodes and the biggest graphs from the [AT&T graph collection]. Furthermore,
we generated artificial graphs with up to 100000 nodes. These graphs include grid
graphs, sierpinski graphs, trees, random disconnected graphs, graphs that contain
many biconnected components, graphs with a very high edge density, and graphs
that contain nodes with very high degrees. Figure 10 shows the running times of
FM? for the real-world and artificially generated graphs. All graphs with less than
1000, 10000, and 100000 nodes have been drawn in less than 2, 24, and 263 seconds,
respectively.

1000 T T T T
artificia graphs —=— -
real world graphs —e— /
12}
© 100 ¢ E
3
£
™ 10 ¢ E
=
[
S
(]
£ 1 E
=
D
£
c
5
g O0lfp_ E
001 1 1 1 1

100 1000 10000 100000
Number of Nodes

Fig. 10. The running times of FM® for drawing all artificial graphs and all real-world graphs.

Figure 11 shows example drawings that are generated by FM® with standard-
parameter settings. The practical experiments indicate that FM® generates well-
structured drawings for the majority of the tested artificial and real-world graphs:
Like other force-directed multilevel methods, it generates nice drawings of regular
well connected and almost planar graphs (see Figure 11(a,b,c,d). But even the
structure of more challenging graphs like disconnected graphs, graphs with a high
edge density or graphs that contain high degree nodes (see Figure 11(e,f,g,h)) is
visualized in an appropriate concise way.

This is a clear improvement in comparison with several other state-of-the-art
graph-drawing methods and will be illustrated by an example (see Figure 12):
The test-graph (snowflake_A) is a symmetric tree which consists of 971 nodes and
one central root node that has 256 neighbors. Besides FM3, we tested a classical
force directed algorithm (the grid-variant algorithm (GVA) of [Fruchterman and
Reingold 1991]) and two multilevel algorithms (GRIP of [Gajer and Kobourov 2001]
and [Gajer et al. 2001], and the Fast Multi-scale Method (FMS) of [Harel and Koren

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method

i\
g \'"\,\
LA A

5 \if?

(b) (c)

1 [T R oA, e N ey et A ———

] D) T

()

(8)

Fig. 11. (a) grid_rnd_100: |V| = 9497, |E| = 17849, CPU-time = 19.1 seconds. (b) sierpinski_10:
|V| = 88575, |E| = 177147, CPU-time = 162.0 seconds. (c) fe_pwt: |V| = 36463, |E| = 144794,
CPU-time = 69.0 seconds. (d) finan512: |V| = 74752, |E| = 261120, CPU-time = 158.2 seconds.
(e) fe_body: |V| = 44775, |E| = 163734, CPU-time = 96.5 seconds. (c) besstk31: |V| = 35588,

|E| = 572914, edge density = 16.1, CPU-time = 83.6 seconds. (f) dg-1087: |V| = 7602, |E| =
7601, maximum degree = 6566, CPU-time = 18.1 seconds. (g) ug-380: |V| = 1104, |E| = 3231,
maximum degree = 856, CPU-time = 2.1 seconds.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

25

26 . S. Hachul and M. Jiinger

2001]). Additionally, we compared FM3*with algebraic graph-drawing methods (the
algebraic multigrid method ACE of [Koren et al. 2003] and the high-dimensional
embedding approach (HDE) of [Harel and Koren 2002]).

An extensive experimental comparison of these graph-drawing algorithms can be
found in [Hachul and Jiinger 2005].

(c) GRIP

(d) FMS (e) ACE (f) HDE

Fig. 12. (a)-(f) Drawings of snowflake_A generated by different algorithms.

7. SUMMARY AND FUTURE WORK

We have developed a new force-directed graph-drawing algorithm (FM?) that runs
in O(|V]log |V| + |E|) time. This is an improvement in comparison with previous
force-directed approaches that are not sub-quadratic in general. The improvement
has been reached by combining a new multilevel scheme and a generalized strategy
for approximating the repulsive forces in the system by rapidly evaluating potential
fields.

The practical experiments demonstrate that FM® is very fast and creates nice
drawings of even those graphs that turned out to be challenging for other tested
algorithms. Currently, FM? is integrated into the software package TULIP [Auber
2004], and it will be newly implemented for a commercial software package in the
near future.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method . 27

REFERENCES

ALURU, S. ET AL. 1998. Distribution-Independent Hierarchical Algorithms for the N-body Prob-
lem. Journal of Supercomputing 12, 303-323.

AT&T graph collection. www.graphdrawing.org.

AUBER, D. 2004. Graph Drawing Software. Mathematics and Visualization, vol. XII. Springer-
Verlag, Chapter TULIP — A Huge Graph Visualization Framework, 105—-126.

BARNES, J. AND HuT, P. 1986. A hierarchical O(N log N) force-calculation algorithm. Na-
ture 324, 4, 446-449.

DaAvIDSON, R. AND HAREL, D. 1996. Drawing Graphs Nicely Using Simulated Annealing. ACM
Transaction on Graphics 15, 4, 301-331.

EADES, P. 1984. A heuristic for graph drawing. Congressus Numerantium 42, 149-160.

FRUCHTERMAN, T. AND REINGOLD, E. 1991. Graph Drawing by Force-directed Placement.
Software—Practice and Ezxperience 21, 11, 1129-1164.

GAJER, P. ET AL. 2001. A Multi-dimensional Approach to Force-Directed Layouts of Large
Graphs. In Graph Drawing 2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984.
Springer-Verlag, 211-221.

GAJER, P. AND KOBOUROV, S. 2001. GRIP: Graph Drawing with Intelligent Placement. In Graph
Drawing 2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984. Springer-Verlag,
222-228.

GREENGARD, L. 1988. The Rapid Ewvaluation of Potential Fields in Particle Systems. ACM
distinguished dissertations. The MIT Press, Cambridge, Massachusetts.

HacHUL, S. 2005. A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs. Ph.D.
thesis, Institut fiir Informatik, Universitat zu Koéln, Germany. http://kups.ub.uni-koeln.de/
volltexte/2005/1409.

HacHuL, S. AND JUNGER, M. 2005. An Experimental Comparison of Algorithms for Draw-
ing Large Graphs. Tech. Rep. zaik2004-472, Institut fiir Informatik, Universitdt zu Koln.
www.zaik.uni-koeln.de/"paper, to appear in P. Healy (ed.) Graph Drawing 2005, Lecture
Notes in Computer Science, Springer-Verlag, 2006.

HAREL, D. AND KOREN, Y. 2001. A Fast Multi-scale Method for Drawing Large Graphs. In Graph
Drawing 2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984. Springer-Verlag,
183-196.

HAREL, D. AND KOREN, Y. 2002. Graph Drawing by High-Dimensional Embedding. In Graph
Drawing 2002. Lecture Notes in Computer Science, vol. 2528. Springer-Verlag, 207-219.

JUNGER, M. ET AL. 2004. Graph Drawing Software. Mathematics and Visualization, vol. XII.
Springer-Verlag, Chapter AGD - A Library of Algorithms for Graph Drawing, 149-169.

KamADA, T. AND Kawal, S. 1989. An Algorithm for Drawing General Undirected Graphs. In-
formation Processing Letters 31, 7T—15.

KOREN, Y. ET AL. 2003. Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale
Modeling and Simulation 1, 4, 645—673.

QUIGLEY, A. AND EADES, P. 2001. FADE: Graph Drawing, Clustering, and Visual Abstraction.
In Graph Drawing 2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984. Springer-
Verlag, 197-210.

TUNKELANG, D. 1998. JIGGLE: Java Interactive Graph Layout Environment. In Graph Drawing
1998, S. H. Whitesides, Ed. Lecture Notes in Computer Science, vol. 1547. Springer-Verlag,
413-422.

WaLsHAw, C. 2001. A Multilevel Algorithm for Force-Directed Graph Drawing. In Graph Drawing
2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984. Springer-Verlag, 171-182.

Walshaw’s graph collection. www.gre.ac.uk/"c.walshaw/partition.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

