
Large-Graph Layout with the Fast Multipole

Multilevel Method

STEFAN HACHUL and MICHAEL JÜNGER

Universität zu Köln, Institut für Informatik

The visualization of of large and complex networks or graphs is an indispensable instrument for
getting deeper insight into their structure. Force-directed graph-drawing algorithms are widely

used to draw such graphs. However, these methods do not guarantee a sub-quadratic running time
in general. We present a new force-directed method that is based on a combination of an efficient
multilevel scheme and a strategy for approximating the repulsive forces in the system by rapidly

evaluating potential fields. Given a graph G = (V, E), the asymptotic worst-case running time of
this method is O(|V | log |V | + |E|) with linear memory requirements. In practice, the algorithm
generates nice drawings of graphs with 100000 nodes in less than 5 minutes. Furthermore, it
clearly visualizes even the structures of those graphs that turned out to be challenging for other
methods.

Categories and Subject Descriptors: ... [...]: ...

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Fast Algorithms, Graph Drawing, Large Graphs, Multilevel
Methods, N-Body Problem

1. INTRODUCTION

The biochemical reactions of proteins in baker’s yeast, the ecosystem of plankton,
sea perch, and anchovy, the American electricity network, the international air
traffic, and the world-wide web have in common that they can be modeled as
graphs. In general a graph G = (V,E) is used to model information that can be
described as objects (the node set V) and connections between those objects (the
edge set E).

One fundamental tool for analyzing such graphs is the automatic generation of
layouts that visualize the graphs and are easy to understand. A popular class of
algorithms that is used to visualize general graphs are force-directed graph-drawing
methods. Given a graph G = (V,E), these methods generate drawings of G in the
plane in which each edge is represented by a straight line connecting its two adjacent
nodes. The computation of the drawings is based on associating G with a physical
model. Then, an iterative algorithm tries to find a placement of the nodes so that
the total energy of the physical system is minimal. The desired esthetic criteria of

Authors address: Universität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln, Ger-
many, email: {hachul,mjuenger}@informatik.uni-koeln.de}; This research was partially sup-

ported by ADONET.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2005 ACM 0730-0301/2005/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, December 2005, Pages 1–0??.

2 · S. Hachul and M. Jünger

these methods are uniformity of edge length, few edge crossings, non-overlapping
nodes, and the display of symmetries if some exist.

In practice, classical force-directed algorithms like [Eades 1984; Kamada and
Kawai 1989; Fruchterman and Reingold 1991; Davidson and Harel 1996] are only
suited for drawing small graphs with at most a few hundreds of vertices, since their
worst-case running time is at least quadratic. On the other hand, the demand
for algorithms that can handle significantly larger instances is steadily increasing.
Hence, accelerated force-directed algorithms have been developed [Tunkelang 1998;
Quigley and Eades 2001; Gajer et al. 2001; Harel and Koren 2001; Walshaw 2001].
These algorithms generate nice drawings of a big range of large graphs with several
thousands of nodes in reasonable time. However, only some of these methods guar-
antee a sub-quadratic running time in special cases or under certain assumptions,
but not in general.

Besides force-directed algorithms other fast methods for drawing large graphs
have been invented by Harel and Koren [Harel and Koren 2002] and Koren et
al. [Koren et al. 2003]. These methods are based on techniques of linear algebra
and not on physical analogies. But they strive for the same esthetic drawing criteria.

In Sections 2 to 5 we describe the most important parts of a new force-directed
graph-drawing algorithm that guarantees a sub-quadratic worst-case running time.
The algorithm has been implemented and experimental results are presented in
Section 6.

2. THE FAST MULTIPOLE MULTILEVEL METHOD (FM3)

The most essential parts of the new method that is called Fast Multipole Multilevel
Method or shorter (FM3) are an efficient multilevel strategy and an O(|V | log |V |)
approximation algorithm to obtain the repulsive forces that act between all pairs of
nodes (associated with charged particles). These modules are described in Section 3
and 4, respectively. Other parts like a preprocessing step that enables the algorithm
to draw graphs with nodes of different sizes and a module that is designed to
handle disconnected graphs are not described here for brevity. Therefore, we can
simply assume that the given graph G is a connected positive weighted graph.
The edge weight of each edge e ∈ E represents its individual desired edge length
desired edge length(e).

Since FM3 is a force-directed graph-drawing algorithm, we must choose a force
model first. This is done by identifying the nodes with charged particles that repel
each other and by identifying edges with springs, like in most classical force-directed
methods. If in R

2 two charges u, v are placed at a distance d from each other, the
repulsive forces between u and v are proportional to 1/d. Our choice of the spring
forces is not strictly related to physical reality. We found that choosing the spring
force of an edge e to be proportional to log(d/desired edge length(e)) · d2 gives very
good results in practice.

3. THE MULTILEVEL STRATEGY

Since in classical force-directed algorithms many iterations are needed to trans-
form an initial (random) drawing of a large graph into the final drawing, one might
hope to reduce the constant factor of force-directed algorithms by using a multilevel

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 3

strategy. Multilevel strategies have been introduced into force-directed graph draw-
ing by [Gajer et al. 2001; Harel and Koren 2001] and [Walshaw 2001]. They share
the following basic ideas: Given G = (V,E) =: G0, a series of graphs G1, . . . , Gk

with decreasing sizes is created in a coarsening phase. In the following refinement
phase the smallest graph Gk at level k is drawn using (a variation of) a classical
force-directed (single-level) algorithm. This drawing is used to get an initial layout
of the next larger graph Gk−1 that is drawn afterwards. This process is repeated
until the original graph G0 is drawn.

Unlike previous approaches, we want to design a multilevel algorithm that has
provably the same asymptotic running time as the single-level algorithm that is
used to draw all graphs Gi with i = 0, . . . , k.

3.1 The Coarsening Phase

In the coarsening phase, we first partition the node set of G into disjoint subsets so
that the vertex-induced subgraphs (called solar systems) have bounded diameter
(at most 4).

Definition 3.1 (Solar System). Suppose, G = (V,E) is a graph and U ⊆ V .
The vertex-induced subgraph S := G[U] is called solar system if the following
conditions hold: Exactly one node in U is marked as sun node (or s-node). Each of
its neighbors is marked as planet node (or p-node) or as planet-with-moon node (or
pm-node) and is also contained in U . The other nodes in U are marked as moon
nodes (or m-nodes), each m-node is required to have graph-theoretic distance two
to the s-node in U , and each m-node is assigned to exactly one pm-node in U .
Furthermore, for each pm-node exists at least one m-node that is assigned to it.

Fig. 1. (left) Drawing of G = G0. (right) The multilevel graph G1.

Figure 1(left) shows an example of a grid graph that is partitioned into 13 solar
systems. The s-nodes, p-nodes, pm-nodes, and m-nodes are represented by the

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

4 · S. Hachul and M. Jünger

big yellow, medium light blue, medium dark blue, and small gray disks, respec-
tively. The black solid edges represent intra solar-system edges, whereas the edges
connecting nodes of two different solar systems (inter solar-system edges) are red
dashed edges. The edges that connect an m-node and its assigned pm-node are
drawn as directed edges, indicating that the m-node is assigned to this pm-node.

Next, we describe a linear time method for constructing a solar-system partition
of a graph G that works in three steps: First, we create the s-nodes. Therefore,
we store a candidate set V ′ that is a copy of V and randomly select a first s-node
s1 from V ′. Then, s1 and all nodes that have a graph-theoretic distance at most
2 from s1 in G are deleted from V ′. We iteratively select the next s-nodes in the
same way, until V ′ is empty and Suns = s1, . . . , sl is the list of all s-nodes. Second,
for each si ∈ Suns all its neighbors are labeled as p-nodes. Finally, there might be
some nodes in V that are neither labeled as p-nodes, nor as s-nodes. These nodes
are the m-nodes. Each m-node is assigned to the p-node that is its nearest neighbor
in G, and we relabel this p-node as pm-node.

Given a solar-system partition of the node set of G = G0, we construct a smaller
graph G1 by collapsing (shrinking) the node set of each solar system into one single
node and deleting parallel edges (see Figure 1(right)). The smaller graph should
reflect the attributes of the bigger graph as much as possible. Therefore, the desired
edge length of an edge e1 = (s1, t1) in G1 is initialized as follows: Suppose, p-
node u0 belongs to the solar system S0 with sun node s0 in G0 and p-node v0

belongs to the solar system T0 with sun node t0 in G0. Let us also assume that
the edge e0 = (u0, v0) is the unique inter solar-system edge connecting S0 and T0.
Furthermore, we assume that nodes s1 and t1 in G1 are obtained by collapsing S0

and T0. Then, the desired edge length of e1 is set to desired edge length((s0, u0))+
desired edge length(e0) + desired edge length((v0, t0)). For later use, we denote the
corresponding path (s0, u0, v0, t0) in G0 by P0 and its length by p0. Figure 3.1
shows an example. The case that u0 and/or v0 is a moon node is treated similarly.
If more than one inter solar-system edge in G0 connects nodes of S0 with nodes of
T0, the average of the previously calculated desired edge lengths is assigned to the
desired edge length of e1.

s0 t0

u0 v0
1 12

s1 t1

4

Fig. 2. Calculation of the edge weights: (left) A part of G = G0. (right) The corresponding part
of G1.

This partitioning and collapsing process is iterated until either the smallest graph
Gk contains only a constant number of nodes or a certain stopping criterion is
fulfilled (that will be defined later).

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 5

3.2 The Refinement Phase

In the refinement phase, Gk is drawn by a force-directed single-level algorithm
that will be introduced in Section 4. Going upwards to Gk−1, we assign initial
positions to the nodes of Gk−1 in two steps: First, we place each s-node of Gk−1 at
the position of its ancestor (that represents its solar system) in the drawing of Gk.
Now, the other nodes of Gk−1 are placed. This is done by using information that has
been generated during the collapsing process: For example, given u0, v0, s0, t0, p0,
and P0 like in the example above, we place u0 on the line connecting s0 and t0 at

position Pos(s0)+ desire edge length((s0,u0))
p0

(Pos(t0)−Pos(s0)). If u0 belongs to more
than one such path P0, the barycenter of all these calculated positions is taken as
its initial placement. The case that u0 is a moon node is treated similarly. Figure 3
demonstrates this procedure.

(a) (b) (c) (d)

Fig. 3. (a) Drawing of G2. (b) Initial placement of G1. (c) Drawing of G1. (d) Initial placement
of G0.The final drawing of G0 = G is shown in Figure 1(left).

Theorem 3.2 Multilevel Strategy. Suppose, G = (V,E) is a connected
positive-weighted graph and Asingle is a force-directed single-level algorithm that
needs time tsingle(|V |, |E|) to draw G starting with an arbitrary initial placement of
the nodes of G. Then, the previously described multilevel strategy that uses Asingle
to draw the multilevel graphs generates a straight-line drawing of G in O(tsingle(|V |,
|E|)) time.

Proof. The total running time of the multilevel strategy is tmult(|V |, |E|) =
∑k−1

i=0 tcreate(|Vi|, |Ei|) +
∑k−1

i=0 tinit pl(|Vi|, |Ei|) +
∑k

i=0 tsingle(|Vi|, |Ei|). Here,
tcreate (|Vi|, |Ei|) denotes the time that is needed to create the multilevel graph
Gi+1 from Gi. tinit pl(|Vi|, |Ei|)) denotes the time that is needed to get an initial
placement of the nodes of the multilevel graph Gi from the drawing of Gi+1.

Since every node of Gi belongs to a solar system, and a solar system contains at
least two nodes, Gi+1 contains at most |Vi|/2 nodes.

Let us assume that |Ei+1| ≤ |Ei|/2 for all i ∈ {0, . . . , k − 1}. Since both

tcreate(|Vi|, |Ei|) and tinit pl((|Vi|, |Ei|) are linear in |Vi| + |Ei|, we get
∑k−1

i=0 tcreate
(|Vi|, |Ei|) +

∑k−1
i=0 tinit pl(|Vi|, |Ei|) = O(|V | + |E|). Furthermore, we get the fol-

lowing estimation on tsingle:
∑k

i=0 tsingle(|Vi|, |Ei|) ≤
∑k

i=0 O
(

tsingle

(

|V |
2i , |E|

2i

))

≤

2 O(tsingle(|V |, |E|)).

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

6 · S. Hachul and M. Jünger

The second inequality holds for sufficiently large values of |V | and |E|, since
tsingle(|V |, |E|) = Ω(|V | + |E|). Therefore, under the previous assumption, the
multilevel strategy and Asingle have the same asymptotic running time.

Certainly, it cannot be guaranteed that the number of edges decreases by fac-
tor at least 1

2 . However, it can be shown by an analogous argumentation that
tmult(|V |, |E|) = O (tsingle(|V |, |E|)) if |Ei+1| ≤ |Ei|/s for all i ∈ {0, . . . , k − 1}
and a fixed divisor 1 < s ≤ 2. If this assumption is weakened further so that

|Ei+1| ≤
|Ei|

s
for all but a constant number d of i ∈ {0, . . . , k − 1}, the equality

tmult(|V |, |E|) = O(tsingle(|V |, |E|)) holds as well.
Therefore, in order to guarantee that tmult(|V |, |E|) = O(tsingle(|V |, |E|)) it is

sufficient to stop the coarsening process, either if the number of nodes of the actual
created multilevel graph Gi is smaller than a constant or if the algorithm has gen-
erated more than a constant number of graphs Gi that do not satisfy the inequality
|Ei+1| ≤ |Ei|/d for some small constant d with 1 < d ≤ 2.

4. THE FORCE CALCULATION STEP

In order to save running time, the multilevel algorithms [Gajer et al. 2001; Harel
and Koren 2001; Walshaw 2001] use the grid-variant algorithm of [Fruchterman and
Reingold 1991] or variations of [Kamada and Kawai 1989] as force-directed single-
level algorithms. Those algorithms are comparatively inaccurate approximative
variations of the original force-directed single-level algorithms [Fruchterman and
Reingold 1991; Kamada and Kawai 1989].

Unlike this, the single-level algorithm that is used in FM3 follows the basic strategy
of [Tunkelang 1998; Quigley and Eades 2001] by approximating the repulsive forces
between all pairs of distinct nodes/particles with high accuracy and calculating the
forces induced by the edges/springs exactly. Then, these forces are added, and
the nodes are moved in direction of the resulting forces. This process is repeated
a constant number of iterations. (In practice, we let the constant decrease from
300 iterations for Gk to 30 iterations for G0, although convergence is reached even
faster for many tested graphs.)

In each iteration all spring-forces of multilevel graph Gi = (Vi, Ei) can be calcu-
lated in Θ(|Ei|) time. In contrast to this, a naive direct calculation of the repulsive
forces acting between all pairs of charged particles (nodes) needs Θ(|Vi|

2) time. This
is the main bottleneck of many force-directed algorithms. Hence, in the remainder
of this section, we will concentrate on the problem of calculating the repulsive forces
efficiently.

[Greengard 1988] has invented an N -body simulation method that is based on the
evaluation of the field of the potential energy of N charged particles. This is done by
evaluating multipole expansions using a hierarchical data structure called quadtree.
However, [Aluru et al. 1998] have shown that the running time of Greengard’s
method depends on the particle distribution and cannot be bounded in N . They
additionally have proven that the running time of the popular force-approximation
method of [Barnes and Hut 1986] that is an essential part of the graph-drawing
methods [Tunkelang 1998] and [Quigley and Eades 2001] cannot be bounded in
N . Using the techniques and analytical tools of [Greengard 1988], [Aluru et al.
1998] have presented an O(N log N) approximative multipole algorithm that is

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 7

distribution independent.
Based on the work of [Greengard 1988] and [Aluru et al. 1998], we have developed

a new O(N log N) multipole method. Practical experiments indicate that — at
same level of accuracy — our new method is up to factor 5 faster than Aluru et
al.’s method. The new multipole method works in two phases: Given a distribution
of N particles in the plane, first, a special quadtree data structure is constructed.
Then, each node of the quadtree is assigned information that is used to approximate
the potential energy of the system. In particular, a constant number of coefficients
of a so called multipole expansion (to be introduced later) are associated with each
tree node and are used to obtain the repulsive forces.

4.1 Phase 1: Construction of the Reduced Bucket Quadtree

Definition 4.1 (Quadtree, Reduced Bucket Quadtree). Suppose, a set of N par-
ticles (or data points) C = {c1, . . . , cN} are assigned distinct positions on a square
D and we fix a leaf capacity l ≥ 1. (In practice, we choose l = 25.) Furthermore,
suppose one recursively subdivides D into four squares of equal size (in the follow-
ing denoted by boxes), until each box contains at most l particles. This process can
be represented by an ordered rooted tree of maximum child degree four (with the
root representing D) that is called (bucket) quadtree. The particles are stored in
the leaves of the quadtree. A degenerate path P = (v1, . . . , vp) in a quadtree is a
path in which v1 and vp have at least 2 nonempty children and v2, . . . , vp−1 each
have exactly one nonempty child. A reduced (bucket) quadtree T can be obtained
from a quadtree by shrinking degenerate paths P = (v1, . . . , vp) to edges (v1, vp).
Figure 4 shows an example.

1

2

3

4 5

6

7

8 9
10

11

(a)

3

4

5

8

9 10 11{6, 7}

{1, 2}

v1

v2

v3

(b)

3

4

5

8

9 10 11{6, 7}

{1, 2}

v1

v3

(c)

Fig. 4. (a) A distribution of N = 11 particles in the plane. (b) The quadtree with leaf capacity
l = 2 associated with (a). P = (v1, v2, v3) is a degenerate path in the quadtree. (c) The reduced
quadtree with leaf capacity l = 2 associated with (a).

A reduced quadtree has only O(N) nodes independently of the distribution of
the particles. This allows the development of a linear time method (excluding the
time needed for constructing the reduced quadtree) for approximating the repulsive
forces, using this structure in Phase 2 (see Section 4.2).

[Aluru et al. 1998] present an O(N log N) method that constructs a reduced
quadtree with l = 1. It can be shown by a reduction from sorting that it is neither

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

8 · S. Hachul and M. Jünger

possible to construct a bucket quadtree nor a reduced bucket quadtree with constant
fixed leaf capacity l for arbitrary distributions of the N particles in o(N log N) time.

[Hachul 2005] has developed an O(N log N) reduced-bucket-quadtree construc-
tion method that is omitted here, since it quite technical. Instead, we will ex-
plain another new tree construction method that is conceptually simpler and, in
practice, faster. But it restricts the possible particle distributions: We force the
particles to be placed on a large square grid with a resolution that is polynomial
in N . This can be realized by rounding the x, y coordinates of each particle to
integers in the range [0,P(N)], where P(N) is any whole-numbered polynomial
in N of maximum degree s, and by treating pathological cases in which particles
have same coordinates efficiently. This bounds the depth of the reduced quadtree
to O(log(P(N)) = O(s · log N) = O(log N). In practice, it is sufficient to set
P(N) = t · N2, with a sufficiently large constant t.

3000013100100110

3512

11

1 2 3 4 5

6

7

8 9

10

11

v1

v2

v3

(a)

01

1

2

11

1 5

1 3 3

3

4 5

6

7

8 9

10

11

{1, 2} v3v4

(b)

01

11

2 1 5

1 3 1 3

1 0 0 2 1 0

11

3

4

5 6

7

8

9 10 11

{1, 2} v3v4

(c)

01

2 1 5

1 3 1 3

1 2 1 1 1

11

3

4

5

8

9 10 11

{1, 2}

{6, 7}

v3v4

(d)

Fig. 5. Building up the reduced quadtree T with leaf capacity l = 2 and N = 11 particles for

the distribution of Figure 4(a). (a) First step: Building up the complete subtree T 1. (b) Second
step: Thinning out T 1. (c) Recursion: Building up the complete quadtrees T 2(v3) and T 2(v4).
(d) Recursion: T is constructed after thinning out T 2(v3) and T 2(v4).

Our tree-construction method works as follows: First, we build up a complete
truncated subtree T 1 with depth max{1, ⌊log N/ l⌋}. Then, all particles are assigned
to the leaves of T 1. Since T 1 contains O(N) nodes and its structure is predefined,
this step can be performed in linear time. Afterwards, the tree is traversed bottom

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 9

up and thereby for each internal tree node the number of particles that are contained
in its associated box are calculated. This also needs time linear in N . Figure 5(a)
shows an example.

In the next step, we thin out T 1. We traverse the subtree T 1 top down and
thereby delete all nodes that do not contain particles and shrink degenerate path
to edges. If (during this process) we visit an internal node v that is the root of
a subtree which contains at most l particles, this subtree is deleted, and all the
particles that were stored in the deleted subtree are assigned to v. Figure 5(b)
shows the thinned out subtree T 1.

If none of the leaves of T 1 contains more than l particles, the procedure ends and
T 1 = T has been constructed in linear time. Otherwise, we repeat the previous
steps recursively. For example, the nodes v3 and v4 in Figure 5(b) both contain
3 > l particles. Therefore, we build up complete subtrees T 2(v3) rooted at v3 and
T 2(v4) rooted at v4. Both subtrees have depth max{1, ⌊log 3/l⌋} = 1. Now, the
particles 5, 6, 7 are assigned to the leaves of T 2(v4) and the particles 9, 10, 11 are
assigned to the leaves of T 2(v3) (see Figure 5(c)). After thinning out T 2(v3) and
T 2(v4) the desired tree T (see Figure 5(d)) is created.

Theorem 4.2 Tree Construction. Suppose, C = {c1, . . . , cN} is a set of
particles that are placed at distinct positions on a regular square grid with a reso-
lution which is polynomial in N , and l ≥ 1 is an integer constant. Then, a reduced
bucked quadtree with leaf capacity l can be constructed in O(N log N) worst-case
running time.

Proof. Building up T 1 needs O(N) time. If T 1 is not the reduced quadtree,
we build up subtrees T 2(v1), . . . , T 2(vk) for all leaves v1, . . . , vk of T 1 that contain
more than l particles. This needs O(N) time in total, since the sum of the tree
nodes contained in all T 2(vi) is at most O(N). Then, we possibly have to build up
subtrees rooted at the leaves of the T 2 trees and so forth. Since for each j ≥ 1 the
sum of the tree nodes of all T j is bounded above by O(N), the total running time is
O(|recursion levels|·N). Therefore, the running time is bounded by O(N log N).

Note that the previously described tree-construction method needs only linear
time whenever the number of recursion levels is bounded by a constant.

4.2 Phase 2: The Multipole Framework

In this subsection we will concentrate on the second phase of our force-approxima-
tion method. Like in Sections 4.1, we suppose that C = {c1, . . . , cN} is a set of N
charged particles that are located at distinct positions p(C) = {p1, . . . , pN} ∈ R

2.

4.2.1 Tools From Complex Analysis. In the following, we will present some def-
initions and generalizations of theorems that have been invented by [Greengard
1988] and that are of fundamental importance for multipole methods. In order to
use tools from complex analysis, each point p = (x, y) ∈ R

2 is identified with a
point z = x + iy ∈ C.

Theorem 4.3 Multipole Expansion Theorem. Suppose, m charged parti-
cles {c1, . . . , cm} with charges {q1, . . . , qm} are located at points {p1, . . . , pm} inside
a circle of radius r with center z0. Then, for any z ∈ C with |z−z0| > r the potential
energy E(z) at point z induced by the m charged particles is given by

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

10 · S. Hachul and M. Jünger

E(z) = a0 log(z − z0) +
∞
∑

k=1

ak

(z − z0)k
, where

a0 =

m
∑

i=1

qi and ak =

m
∑

i=1

−qi(pi − z0)
k

k
.

Based on this theorem, the idea is to develop the infinite series only up to a
constant index p. The resulting truncated Laurent series Mp(z) is called p-term
multipole expansion. In practice, choosing p = 4 has turned out to be sufficient to
keep the error of the approximation less than 10−2.

The following Lemma 4.4 shows how the center of a multipole expansion can be
shifted. Lemma 4.5 describes how a multipole expansion can be converted into a
power series (that is called local expansion) in a circular region of analyticity, and
Lemma 4.6 shows how the center of a finite local expansion can be shifted. The
finite power series Lp(z) that is obtained by calculating only the coefficients 0 to p
of a local expansion is called is called p-term local expansion.

Lemma 4.4 Translation of Multipole Expansions. Suppose, E(z) = a0

log(z − z0) +
∑∞

k=1
ak

(z−z0)k is a multipole expansion of the potential energy due

to a set of charged particles that are located inside a circle of radius r and center
z0. Then, for any z outside a circle of radius r+|z0−z1| and center z1, the potential
energy induced by these particles is given by

E(z) = a0 log(z − z1) +
∞
∑

l=1

bl

(z − z1)l
, where

bl =
−a0(z0 − z1)

l

l
+

l
∑

k=1

ak(z0 − z1)
l−k

(

l − 1

k − 1

)

.

Lemma 4.5 Conversion of Multipole Expansions. Suppose, C0 is a set of
charged particles that are located inside a circle of radius r and center z0, the
corresponding multipole expansion is given by E(z) = a0 log(z−z0)+

∑∞
k=1

ak

(z−z0)k ,

and that z1 is a point with |z1 − z0| > 2r. Then, inside a circle of radius r and
center z1 the potential energy due to these particles is given by the power series

E(z) =

∞
∑

l=0

bl · (z − z1)
l , where

b0 = a0 log(z1 − z0) +
∞
∑

k=1

ak

(z1 − z0)k
and

bl =
(−1)l+1a0

(z1 − z0)l · l
+

(

1

z0 − z1

)l ∞
∑

k=1

(

l + k − 1

k − 1

)

ak

(z1 − z0)k
, for l ≥ 1 .

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 11

Lemma 4.6 Translation of Local Expansions. For any complex z0, z1, z
and {a0, . . . , ap}

p
∑

k=0

ak(z − z0)
k =

p
∑

l=0

(

p
∑

k=l

ak

(

k

l

)

(z1 − z0)
k−l

)

(z − z1)
l .

Since we are more interested in approximating the forces in the system rather
than the potential energy, the following Lemma can be used to obtain the forces
that act in a potential energy field which is described by a multipole expansion or
local expansion.

Lemma 4.7 Obtaining the Forces. (a) If E(z) = a0 log(z − z0) +
∑∞

k=1
ak

(z−z0)k describes the potential energy field in a system of charged particles,

and z is contained in a region of analyticity, then, the forces that act on a
particle of unit charge at position z are given by (Re(E ′(z)),−Im (E ′(z))) with
E ′(z) = a0

z−z0
−

∑∞
k=1

k·ak

(z−z0)k+1 .

(b) Suppose, E(z) =
∑∞

l=0 bl · (z − z1)
l describes the potential energy field in a sys-

tem of charged particles, and z is contained in a region of analyticity. Then,
the forces that act on a particle of unit charge at position z are given by
(Re(E ′(z)),−Im(E ′(z))) with E ′(z) =

∑∞
l=1 l · bl(z − z1)

l−1.

Remark 4.8. Due to the stated Multipole Expansion Theorem 4.3 and lemmas,
it is easy to confirm the following statements (assuming all operations are applied
on well-defined sets):

(a) The coefficients of a p-term multipole expansion due to m charged particles can
be obtained in O(pm) time.

(b) The coefficients of a shifted p-term multipole expansion can be obtained in
O(p2) time.

(c) The coefficients of a p-term local expansion can be obtained from the coefficients
of a p-term multipole expansion in O(p2) time.

(d) The coefficients of a shifted p-term local expansion can be obtained in O(p2)
time.

(e) The derivative of a p-term multipole expansion and the derivative of a p-term
local expansion can be obtained in O(p) time.

(f) An approximation of the force that acts on a particle of unit charge at a position
z — which is induced by the potential energy field that is described by a p-term
multipole expansion or a p-term local expansion — can be obtained in O(p)
time.

We will demonstrate how p-term multipole expansions can be used to speed up
force calculations in systems of charged particles by giving an example: Suppose,
m particles of unit charge are located within a circle C0 of radius r with center z0

and that another m particles of unit charge are located within a circle C1 of radius
r with center z1, and let |z0 − z1| > 2r (see Figure 6).

Computing the repulsive forces acting on each particle in C0 due to all particles
in C1 naively would need Θ(m2) time. Now, suppose that we first compute the
coefficients of a p-term multipole expansion of the potential energy due to the

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

12 · S. Hachul and M. Jünger

�� ��

��

��

��

��

��

��

��

��

����

�� ��

��
��

��

�� ��

��

��

��

��

��

��

��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

z0C0 z1
C1

rr

Fig. 6. An example distribution showing the use of p-term multipole expansions.

particles in C1. This needs O(pm) time (see Remark 4.8(a)). Then, we calculate the
derivative of the p-term multipole expansion in O(p) time (see Remark 4.8(e)) before
evaluating it for each particle in C0. This needs m ·O(p) time (see Remark 4.8(f)).
Hence, the total running time for approximating the forces is O(pm), which is
significantly faster than the naive approach if m >> p.

4.2.2 Some Terminology. In Sections 4.1 we have associated each node v of the
reduced bucket quadtree with its box box (v). In the following, we will associate
two boxes with a node v that are defined next. Figures 7(a) and 7(b) explain this
terminology at an example.

Definition 4.9 (Small Cell, Large Cell). Suppose, T is a reduced bucket quad-
tree with fixed constant leaf capacity l for a given set C = {c1, . . . , cN} of distinct
particles that are distributed in a square D, and v is a node of T . The small cell or
small box of v (shorter Sm(v)) is the smallest sub-box of D that covers all particles
that are associated with v. If v is a leaf that contains only one particle, then, Sm(v)
is a point. If v is the root of T , the large cell or large box of v (shorter Lg(v)) is
equal to Sm(v). Otherwise, let parent(v) be the parent of v in T . Then, Lg(v)
is the largest sub-box of Sm(parent(v)) with size smaller than Sm(parent(v)) that
covers Sm(v).

3

4

5

8

9 10 11

{1, 2}

{6, 7}

v1

v2

(a)

1

2

3

4 5

68 9

10

11

7

D

(b) (c)

Fig. 7. (a) A reduced bucket quadtree that corresponds to the particle distribution in the square
D shown in (b). The small cell Sm(v2) corresponds to the small dark-gray box. The small cell

of parent(v2) = v1 corresponds to the square D. The large cell Lg(v2) corresponds to the big
light-gray box that covers the small dark-gray box in (b). (c) Unlike the white boxes, the gray
boxes are neighbors of the black box.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 13

Remark 4.10. It follows from the definition of Sm(v), Lg(v), and the reduced
bucket quadtree T that the small cell Sm(v) of an interior node v is exactly box(v).
For a leaf v of T , Sm(v) is covered by box(v). Furthermore, Lg(v) \ Sm(v) covers
no particles of C, and the size of Lg(v) is 1

4 of the size of Sm(parent(v)) if v is not
the root of T . Figure 7(a,b) shows an example.

The Multipole Expansion Theorem 4.3 and the lemmas for shifting, convert-
ing, and evaluating these expansions can only be applied in well-defined regions of
analyticity. Since in all quadtree data structures the regions are squares, the termi-
nology of well-separateness is used to indicate that the operations of Theorem 4.3
and the lemmas for working with these expansions can be applied.

Definition 4.11 (Neighbor, Well-Separated, Ill-Separated). Two boxes B1 and
B2 are called neighbors if the boundaries of B1 and B2 touch, but B1 and B2

do not overlap. Two boxes B1 and B2 of same size are well-separated if they are
no neighbors. Otherwise, B1 and B2 are ill-separated. Suppose, nodes u and v are
nodes of a reduced bucket quadtree T and Sm(u) ≥ Sm(v). Then, u and v are well-
separated if and only if Sm(u) and the cell that covers Sm(v) and that has the same
size as Sm(u) are well-separated. Otherwise u and v are ill-separated. Suppose,
Sm(u) < Sm(v). Then, u and v are well-separated if and only if Sm(v) and the
cell that covers Sm(u) and that has the same size as Sm(v) are well-separated.
Otherwise u and v are ill-separated.

Figure 7(c) shows a box B and its neighbors, while Figure 8(a) and (b) show the
small cells of two tree nodes that are well-separated and ill-separated, respectively.

Sm(u)

Sm(v)

(a)

Sm(u)
Sm(v)

(b)

Fig. 8. The black boxes Sm(u) and Sm(v) are small cells of two nodes u and v of a reduced
bucked quadtree. (a) Since the gray box is no neighbor of Sm(u), u and v are well-separated. (b)
Since the gray box is a neighbor of Sm(u), u and v are ill-separated.

Like in [Greengard 1988; Aluru et al. 1998] the terminology of well-separateness
is used to define an interaction set that is used do generate p-term local expan-
sions from suitable p-term multipole expansions. The following definition of an

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

14 · S. Hachul and M. Jünger

interaction set of a node v of T has been invented in [Aluru et al. 1998] and is a
generalization of the definition of the interaction set defined in [Greengard 1988].

Definition 4.12 (Interaction Set, Minimal Ill-Separated Set). Suppose, nodes u
and v are nodes of a reduced (bucket) quadtree T . The interaction set I(v) of a
node v is the set of all nodes u that are ill-separated from the parent of v, well-
separated from v, and the parent of u is ill-separated from v. Thus, I(v) = {u |
Well Separated (v, u), Ill Separated (parent(v), u), Ill Separated (parent(u),
v)}. The minimal ill-separated set R(v) of a node v is the set of all nodes that are ill-
separated from v and have the small cell smaller or equal and the large cell larger or
equal than the small cell of v. Hence, R(v) = {u | Ill Separated (v, u), Sm(u) ≤
Sm(v)) ≤ Lg(u)}.

The multipole framework of Aluru et al. [Aluru et al. 1998] associates the lists
I(v) and R(v) with each node v of the reduced quadtree in order to approximate
the repulsive forces in the system. Since we use the reduced bucket quadtree data
structure, the leaves possibly contain more than one particle. We will see that this
generalization can be modeled in our framework by defining some additional sets
which are assigned to each node of the tree and that are introduced next.

Definition 4.13 (The Sets D1(v), D2(v), D3(v) and K(v)). For each node v of
the reduced bucket quadtree T = (V,E), D1(v) is the set of all leaves w ∈ V so
that Sm(v) < Sm(w) and Sm(v) and Sm(w) are neighbors. D2(v) is the set of all
leaves w of T so that Sm(v) < Sm(w), Sm(v) and Sm(w) are no neighbors, v and
w are ill-separated, and w is not contained in the set D2(u) of an ancestor u of v.
For each leaf v ∈ V we additionally define the sets D3(v) and K(v), where D3(v)
is the set of all leaves w ∈ V so that Sm(v) ≥ Sm(w) and Sm(v) and Sm(w) are
neighbors. For a leaf v ∈ V the set K(v) contains all nodes w so that Sm(v) and
Sm(w) are no neighbors. Additionally, it is required for each w ∈ K(v) that either
w ∈ R(v) or an ancestor of w is contained in R(v) and Sm(parent(w)) and Sm(v)
are neighbors.

4.2.3 Formal Description of the Multipole Framework. The multipole frame-
work is based on a bottom-up traversal and a top-down traversal of the reduced
bucket quadtree data structure with a fixed constant precision parameter p and can
be seen as a generalization of the multipole framework of [Aluru et al. 1998]. The
pseudocode of the framework is shown in Function Multipole Framework and Func-
tion Calculate Local Expansions and Node Sets, and its parts are explained in
the following.

Part 1: (Trivial Case and Initializations) If the reduced bucket quadtree
T = (V,E) consists of only one node, the forces that act on each particle pi due
to all other particles in C are calculated directly, and the algorithm terminates.
Otherwise, for each node v of T the sets R(v), I(v),D1(v),D2(v) (and for the leaves
additionally D3(v), and K(v)) are initialized.

Part 2: (Bottom-Up Traversal of the Tree) Now, for each leaf v of T the
coefficients {a0, . . . , ap} of the p-term multipole expansion Mp(v) that reflects an
approximation of the potential energy field due to the particles that are contained
in Sm(v) are calculated. This is done by using Theorem 4.3 and choosing the center

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 15

Function Multipole Framework(C, T, p)

input : a set C = {c1, . . . , cN} of charged particles of unit charge that are
placed at distinct positions p(C) = {p1, . . . , pN}, a reduced bucket
quadtree T = (V,E) with fixed constant leaf capacity l that is asso-
ciated with C, and a fixed constant precision parameter p

output: a function Frep : C −→ R
2 so that Frep(ci) is an approximation of the

repulsive forces that act on ci due to all other particles in C

begin
begin {Part 1: Trivial Case and Initializations}

if T contains only one node then
foreach ci ∈ C do

Frep(ci) ← Naive Direct Force Calculation;

Exit;

foreach v ∈ V do R(v) ← I(v) ← D1(v) ← D2(v) ← ∅;
foreach leaf v ∈ V do D3(v) ← K(v) ← ∅;

end
begin {Part 2: Bottom-Up Traversal}

foreach leaf v ∈ V do
calculate the coefficients of Mp(v) due to all particles contained in
Sm(v);

foreach interior node v ∈ V for which coefficients of Mp(w) of all
children w of v have been calculate do

calculate the coefficients of Mp(v) due to all particles contained in
Sm(v) by adding coefficients of shifted Mp(w) of all children w of
v;

end
begin {Part 3: Top-Down Traversal}

foreach child v of the root of T do
Calculate Local Expansions and Node Sets(T,C, p, v);

end
begin {Part 4: Obtain the Forces}

foreach leaf v ∈ V do
foreach particle ci ∈ Sm(v) do

let C(v) be the set of charged particles that are contained in
Sm(v);
calculate Flocal(ci) using the coefficients of Lp(v);
calculate Fdirect (ci) using D1(v) ∪ D3(v) ∪ C(v);
calculate Fmultipole(ci) using K(v);
Frep(ci) ← Flocal(ci) + Fdirect(ci) + Fmultipole(ci);

end
end

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

16 · S. Hachul and M. Jünger

Function Calculate Local Expansions and Node Sets(T,C, p, v)

input : C, T, p are defined like in Function Multipole Framework, a node v
of T

output: the coefficients {b0, . . . , bp} of the p-term local expansions of v, the
sets R(v), I(v), D1(v), D2(v), and additionally D3(v) and K(v) if v
is a leaf

begin
begin {Part 3.1: Find R(v), I(v),D1(v), and D2(v)}

if parent(v) is the root of T then E(v) ← parent(v);
else E(v) ← R(parent(v)) ∪ D1(parent(v));
while E 6= ∅ do

pick some u ∈ E(v), and set E(v) ← E(v) \ {u};
if Well Separated(u, v) then I(v) ← I(v) ∪ {u};
else if Sm(v) ≥ Sm(u) then R(v) ← R(v) ∪ {u};
else if v is no leaf of T then E(v) ← E(v) ∪ children(u);
else if Neighbors(Sm(u), Sm(v)) then D1(v) ← D1(v) ∪ {u};
else D2(v) ← D2(v) ∪ {u};

end
begin {Part 3.2: Calculate Coefficients of Lp(v)}

foreach u ∈ I(v) do
convert Mp(u) to Lp(u), and add coefficients of Lp(u) to coefficients
of Lp(v);

foreach u ∈ D2(v) do
foreach ci ∈ Sm(u) do

calculate Mp(ci), convert Mp(ci) to Lp(ci), and add coefficients
of Lp(ci) to coefficients of Lp(v);

if coefficients of Lp(parent(v)) have been calculated then
add coefficients of shifted Lp(parent(v)) to Lp(v);

end
begin {Part 3.3: Find D3(v) and K(v) for Leaves}

if v is a leaf of T then
set E(v) ← R(v);
while E(v) 6= ∅ do

pick some u ∈ E(v), and set E(v) ← E(v) \ {u};
if not Neighbors(Sm(u), Sm(v)) then K(v) ← K(v) ∪ {u};
if Neighbors(Sm(u), Sm(v)) and u is leaf then D3(v) ←
D3(v) ∪ {u};
else E(v) ← E(v) ∪ children(u);

end
begin {Part 3.4: Recursion}

if v is no leaf of T then foreach child w of v do
Calculate Local Expansions and Node Sets(T,C, p, w);

end
end

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 17

of Sm(v) as the variable z0 in Theorem 4.3.
The p-term multipole expansions of the interior nodes are calculated by traversing

the tree bottom up: Suppose, v is an interior node of T with small cell Sm(v), the
center of Sm(v) is z1, and the p-term multipole expansions Mp(w) of each of v’s
children w have been calculated. Then, the coefficients of the p-term multipole
expansion Mp(v) that reflects an approximation of the potential energy field due to
the particles that are contained in Sm(v) are obtained by first shifting the center
of each Mp(w) to z1 (using Lemma 4.4) and, then, adding the coefficients of this
shifted p-term multipole expansion to the corresponding coefficients of Mp(v).

Part 3: (Top-Down Traversal of the Tree) In the top-down traversal of the
tree T , Function Calculate Local Expansions and Node Sets is called for each
child of the root node.

Part 3.1: (Find R(v), I(v), D1(v), and D2(v)) Here, the sets R(v), I(v), D1(v),
and D2(v) are constructed starting with a set E(v) that is assigned R(parent(v))∪
D1(parent(v)). Note that if parent(v) is the root of T , it is clear that R(parent(v)) =
v and D1(parent(v)) = ∅. Then, iteratively a node u is taken from R(parent(v)) ∪
D1(parent(v)), and it is checked if u already belongs to one of the previous men-
tioned sets or if one has to explore the subtrees that are rooted at u recursively in
order to assign its children to these sets.

In particular, if u and v are well-separated, then, u belongs to I(v). [This can
be seen as follows: If u is a node of R(parent(v))∪D1(parent(v)), then since u and
v are well-separated u ∈ R(parent(v)). Hence, parent(v) and u are ill-separated by
definition of R(parent(v)). Lg(u) ≥ Sm(parent(v)) by definition of R(parent(v))
and, hence, parent(u) and v are ill-separated, too. If in the complementary case,
u is a proper ancestor of a node in R(parent(v)) ∪ D1(parent(v)), u is a proper
ancestor of a node R(parent(v)) since the nodes in D1(parent(v)) are leaves. Hence,
parent(v) and u are ill-separated. Furthermore, parent(u) and v are ill-separated,
since otherwise parent(u) ∈ I(v).]

If u and v are ill-separated and additionally Sm(v) ≥ Sm(u), then, u belongs
to R(v). [To see this, we have to prove that Lg(u) ≥ Sm(v): Suppose, u ∈
R(parent(v))∪D1(parent(v)), then, it follows from definition of D1(parent(v)) that
u ∈ R(parent(v)). Therefore, Lg(u) ≥ Sm(parent(v)) and, hence, Lg(u) ≥ Sm(v).
In the complementary case, u is a proper ancestor of a node in R(parent(v)) by def-
inition of D1(parent(v)). In this case Lg(u) ≥ Sm(v) holds since Sm(parent(u)) >
Sm(v) by the dynamic construction of E(v).]

If u and v are ill-separated, Sm(v) < Sm(u), u is a leaf, and Sm(u) and Sm(v)
are neighbors, then, u is contained in D1(v).

If u and v are ill-separated, Sm(v) < Sm(u), u is a leaf, and Sm(u) and Sm(v)
are no neighbors, then, u is contained in D2(v), since R(parent(v))∪D1(parent(v))
and D2(parent(v)) are disjoint and u is an element of R(parent(v))∪D1(parent(v))
or an ancestor of an element in R(parent(v)) ∪ D1(parent(v)).

In the remaining case Sm(v) < Sm(u) and u is an interior node of T that is
ill-separated from v. Hence, one has to check whether its children belong to one of
the sets R(v), I(v), D1(v), or D2(v).

Note that by construction of part 3.1 the particles that are covered by the small
cells of all nodes in R(parent(v))∪D1(parent(v)) are exactly the particles that are

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

18 · S. Hachul and M. Jünger

covered by the small cells of all nodes in R(v)∪ I(v)∪D1(v)∪D2(v). Furthermore,
each such particle is covered by the small cell of exactly one node in R(v) ∪ I(v) ∪
D1(v) ∪ D2(v).

Part 3.2: (Calculate Coefficients of Lp(v)) Like in other multipole methods,
for each u in the interaction set I(v) the coefficients of p-term multipole expansions
Mp(u) are converted to coefficients of p-term local expansions Lp(u) and added
to the corresponding coefficients of Lp(v) using Lemma 4.5 and choosing z0 :=
center(Sm(u)) and z1 := center(Sm(v)).

Some difficulties arise for the nodes in D2(v): Since each u ∈ D2(v) is a leaf that
is ill-separated from v with Sm(v) < Sm(u), one cannot apply Lemma 4.5 on u.
However, we found another way to calculate the local expansions due to the particles
that are contained in u: Let {c1, . . . , ck} be the set of charged particles that are
contained in Sm(u) at positions {p1, . . . , pk}. First, we calculate the coefficients of
the p-term multipole expansion Mp(ci) for each single particle ci using Theorem 4.3
and choosing z0 := pi. Since we can interpret each point pi as a dimensionless box
Bi, the largest cell that covers Bi and that has the same size as Sm(v) is no neighbor
of Sm(v) due to the definition of D2(v) (see Figure 9(a)). Hence, Sm(v) and Bi

are well-separated, and Lemma 4.5 can be used to convert Mp(ci) to a p-term local
expansion Lp(ci) choosing z0 := pi and z1 := center(Sm(v)). Finally, for each
ci ∈ {c1, . . . , ck} the coefficients of Lp(ci) are added to Lp(v).

Sm(u)

Sm(v)

pi

(a)

Sm(u)

Sm(v)

pi

(b)

Fig. 9. (a) The light-gray boxes Sm(v) and Sm(u) are ill-separated, no neighbors, and Sm(v) <

Sm(u). Sm(v) and the dark-gray sub-box of Sm(u) that contains particle ci at position pi and

has the same size as Sm(v) are well-separated. (b) The light-gray boxes Sm(v) and Sm(u) are
ill-separated, no neighbors, and Sm(v) > Sm(u). Sm(u) and the dark-gray sub-box of Sm(v)
that contains particle ci at position pi and has the same size as Sm(u) are well-separated.

Following standard practice, the coefficients of the shifted p-term local expansion
Lp (parent(v)) of the parent of v are added to the corresponding coefficients of
Lp(v). Thus, an approximation of the potential energy field of the region that
is reflected by Lp(parent(v)) is inherited to v using Lemma 4.6 and choosing the
center of Sm(v) as z1.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 19

As a result of part 3.2, the coefficients of Lp(v) reflect an approximation of the
potential energy field due to all particles contained in the small cells of the nodes
in I(v), D2(v), and in the I(u) and D2(u) sets of all ancestors of v. Furthermore,
the small cells of the nodes in R(v) ∪ D1(v) are exactly the regions that have not
been considered yet in the calculation of the potential energy in Sm(v) due to all
particles in the region D \ Sm(v).

Part 3.3: (Find D3(v) and K(v) for Leaves) Suppose, v is a leaf of T and u
is a node in R(v). By definition of R(v) we know that u and v are ill-separated
and that Sm(v) ≥ Sm(u). Three cases can arise: If u and v are no neighbors, u
is an element of K(v). If u and v are neighbors and u is a leaf, u is an element of
D3(v). Otherwise, u is a neighbor of v but an interior node of T . Thus, we can
recursively assign the children of u to either K(v) or D3(v), since all children of
u are ill-separated from v, their small cell is smaller than Sm(v), and Sm(u) is a
neighbor of Sm(v).

Note that the particles that are covered by the small cells of the nodes in R(v) are
exactly the particles that are covered by the small cells of the nodes in K(v)∪D3(v).
Furthermore, each such particle is covered by the small cell of exactly one node in
K(v) ∪ D3(v).

Part 3.4: (Recursion) Suppose, v is an interior node of T . The small cells of
the nodes in R(v) ∪ D1(v) are exactly the regions that have not been considered
yet in the calculation of the potential energy in Sm(v) due to all particles that are
contained in the region D\Sm(v). Hence, we can inherit the sets R(v) and D1(v) to
each child w of v and call Function Calculate Local Expansions and Node Sets

for w.

As a result of parts 1 to 3 we have given the coefficients of the p-term local
expansions Lp(v) for each leaf v of T , and Lp(v) reflects an approximation of the
potential energy field induced by the particles that are not covered by the small
cells of all nodes contained in D1(v) ∪ D3(v) ∪ K(v) ∪ Sm(v).

Part 4: (Obtain the Forces) Suppose, v is a leaf of T so that Sm(v) contains the
particles {c1, . . . , ck}, which are placed at positions {p1, . . . , pk}. We can obtain
an approximation of the repulsive forces that act on each ci ∈ {c1, . . . , ck} due to
all particles in the system C = {c1, . . . , cN} as follows:

Let L′ be the derivative of Lp(v). Lemma 4.7(b) can be used to to obtain the
forces that are induced by L′ and act on ci by setting Flocal(ci) = (Re(L′(pi)),−Im(
L′(pi))).

The forces that act on ci due to all particles that are contained in Sm(v) ∪
{Sm(u) | u ∈ D1(v) ∪ D3(v)} are calculated directly by a naive exact force calcu-
lation, since v and all nodes u ∈ D1(v)∪D3(v) are leaves. The resulting forces are
denoted by Fdirect (ci).

We only have to concentrate on the particles that are covered by the small cells
of the nodes in K(v). Let u be a node in K(v). Since u is ill-separated from
v and Sm(v) > Sm(u), we cannot apply Lemma 4.5 in order to convert Mp(u)
to Lp(u) and to add the coefficients of Lp(u) to the corresponding coefficients of
Lp(v). However, we can use a similar trick as the trick that we have invented in
part 3.2: Let ci be a particle that is placed at position pi ∈ Sm(v). Since we can

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

20 · S. Hachul and M. Jünger

interpret pi as a dimensionless box Bi, the largest cell that contains ci and that
has the same size as Sm(u) are no neighbors due to the definition of K(v) (see
Figure 9(b)). Hence, Sm(u) and Bi are well-separated, and Lemma 4.7(a) can be
used in order to obtain the forces that act on ci due to all particles contained in
Sm(u). In particular, let M ′ be the derivative of Mp(u). Then, the force on ci that
is induced by Mp(u) is given by Fmultipole(ci) = (Re(M ′(pi)),−Im(M ′(pi))).

Therefore, the approximation of the repulsive force that acts on a particle ci due
to all particles in C = {c1, . . . , cN} is given by the sum of Fdirect(ci), Flocal(ci),
and Fmultipole(ci).

4.2.4 The Running Time of the Multipole Framework. In order to prove that the
running time of Function Multipole Framework is linear in the number of particles,
we need the following lemma.

Lemma 4.14 Sizes of the Sets R(v), I(v), D1(v), D2(v), D3(v), K(v). Sup-
pose, T = (V,E) is a reduced bucket quadtree with constant leaf capacity l that is
associated with a set C = {c1, . . . , cN} of N charged particles that are placed at
distinct positions {p1, . . . , pN}, and leaves(T) is the set of the leaves of T . Then,

∑

v∈V

|R(v)| = O(N), (1)

∑

v∈V

|I(v)| = O(N), (2)

∑

v∈V

|D1(v)| = O(N), (3)

∑

v∈V

|D2(v)| = O(N), (4)

∑

v∈leaves(T)

|D3(v)| = O(N), and (5)

∑

v∈leaves(T)

|K(v)| = O(N). (6)

Proof. The proofs of Equations (1) and (2) are similar to the corresponding
proofs in [Aluru et al. 1998]. We prove Equation (1) first. Let v be an arbitrary
node of T . Each node u ∈ R(v) is ill-separated from v and Sm(v) ≥ Sm(u). Hence,
Sm(u) is either covered by Sm(v) or covered by a neighbor box B of Sm(v) that
has the same size as Sm(v). In the first case, we know from the definition of R(v)
that Sm(v) ≤ Lg(u). By definition of Lg(u) it follows that u = v. In the second
case, by using that Sm(v) ≤ Lg(u) and Remark 4.10, we know that Lg(u) \Sm(u)
contains no particles. Hence, B\Sm(u) contains no particles, too. Since Sm(v) has
exactly 8 neighbor boxes B of equal size, we get that

∑

v∈V |R(v)| ≤ (1 + 8) · |V | =
O(|V |) = O(N).

We now prove Equation (2). Suppose, w is a node in I(v), then, either w is in
R(parent(v)) or an ancestor u of w is in R(parent(v)) or w is in D1(parent(v)) or
an ancestor u of w is in D1(parent(v)). The last two options can be excluded by

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 21

the fact that all elements of D1(parent(v)) are neighboring leaves of Sm(parent(v))
with a small cell that is larger than Sm(parent(v)) and, hence, are ill-separated
from v and have no ancestors. Therefore,

∑

v∈V |{w | w ∈ I(v)}| =
∑

v∈V |{w | w ∈ I(v), w ∈ R(parent(v))}|+

∑

v∈V |{w | w ∈ I(v), w /∈ R(parent(v))}|.

By Equation (1) we know that
∑

v∈V |{w | w ∈ I(v), w ∈ R(parent(v)}| = O(N).
We can rewrite the second term of this equation as follows:

∑

v∈V

|{w | w ∈ I(v), w /∈ R(parent(v))}| =
∑

w∈V

|{v | w ∈ I(v), w /∈ R(parent(v))}|

Hence, in order to show that Equation (2) holds, it is sufficient to show that S(w) :=
|{v | w ∈ I(v), w /∈ R(parent(v))}| = O(1). Let w be arbitrarily fixed. Since w /∈
R(parent(v)) there exists a node u ∈ R(parent(v)) that is an ancestor of w. Thus,
parent(v) and parent(w) are ill-separated, and Sm(parent(v)) ≥ Sm(parent(w)).
It can be shown that there exists a box B that is a neighbor of box Sm(parent(w)),
B has the same size as Sm(parent(w)), and B is a sub-box of Sm(parent(v)) that
contains Sm(v). [To see this: Sm(v) cannot be larger than Sm(parent(w)), since
— by definition of I(v) — v and parent(w) are ill-separated but v and w are
well-separated. Suppose, Sm(v) is not covered by a box B that is a neighbor of
Sm(parent(w)) and that has the same size as Sm(parent(w)), then, v and parent(w)
are well-separated, which contradicts the fact that w ∈ I(v) by definition of I(v).
Finally, Sm(parent(v)) covers B, since Sm(parent(v)) ≥ Sm(parent(w)).] For each
such box B there exist at most 4 sub-boxes like Sm(v) since Sm(parent(v)) covers
B. Since for each w, the number of neighbor boxes of equal size is bounded above by
8, |S(w)| is bounded above by 4 ·8 = 32, which completes the proof of Equation (2).

The proof of Equation (3) is easy. Let v be an arbitrary node of T . Since there
exist at most 8 boxes that are neighbors of Sm(v) and that have the same size as
Sm(v), there exist less than 8 leaves w that are neighbors of v with Sm(w) > Sm(v).
Hence,

∑

v∈V |D1(v)| < 8|V | = O(N).
Next, we prove Equation (4). Let us suppose that the leaf capacity l is 1 and

that v is a node of T . Then, the small cells of all leaves have size zero. By definition
of D1(v) and D2(v) it follows that D1(v) = D2(v) = ∅. Thus, by Equations (1)
and (2) for l = 1 the equality

∑

v∈V |R(v)|+|I(v)|+|D1(v)|+|D2(v)| = O(N) holds.
Furthermore, the elements of R(parent(v))∪D1(parent(v)) or the descendants of the
elements of R(parent(v)) ∪ D1(parent(v)) are partitioned into the disjoint subsets
R(v) and I(v) (since D1(v) = D2(v) = ∅). Now, let us suppose that l > 1. Then, the
nodes contained in D2(v) are either elements of the set R(parent(v))∪D1(parent(v))
or are descendants of the elements of R(parent(v))∪D1(parent(v)). In the first case,
the number of elements of D2(v) that are contained in R(parent(v))∪D1(parent(v))
is bounded above by O(N) using Equations (1) and (3). In the second case, we use
that by Equations (1), (2), and (3)

∑

v∈V |R(v)|+ |I(v)|+ |D1(v)| = O(N). Hence,
it is sufficient to show that

∑

v∈V |R(v)|+ |I(v)|+ |D1(v)|+ |D2(v)| = O(N). This
can be shown as follows: Suppose, leaf u is an ancestor of a node in R(parent(v))∪
D1(parent(v)), contains k particles with 2 ≤ k ≤ l, and is neither assigned to I(v)
nor to R(v). Then, u is assigned to either D1(v) or D2(v) since it has no further

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

22 · S. Hachul and M. Jünger

descendants in T . Hence, the cardinality of the actual set R(v)∪I(v)∪D1(v)∪D2(v)
is increased by one. In contrast to this, in the case that l = 1 the subtree rooted at
u would have been explored further. Since in this case T is a reduced quadtree, this
exploration would result in adding at least two nodes to R(v) ∪ I(v). Therefore,
in the case that l > 1 the expression

∑

v∈V |R(v)| + |I(v)| + |D1(v)| + |D2(v)| is
bounded above by O(N), too.

In order to prove Equation (5), we can use that
∑

v∈leaves(T) |{w | Sm(v) ≥

Sm(w), leaf (w)}| =
∑

w∈leaves(T) |{v | Sm(v) ≥ Sm(w), leaf (w)}|. It is sufficient

to show that for each leaf w the set S′(w) := |{v | Sm(v) ≥ Sm(w), leaf (w)}|
is bounded by a constant. Since for each such w at most 8 boxes exist that are
neighbors of Sm(w) and have the same size as Sm(w), we get that |S′(w)| ≤ 8.

Finally, we prove Equation (6). By definition of K(v), we know that for each leaf
v of the tree K(v) = K1(v) ∪ K2(v) so that K1(v) is the set of all nodes w with
Sm(v) and Sm(w) are no neighbors and w ∈ R(v). K2(v) is the set of all nodes w so
that Sm(v) and Sm(w) are no neighbors, Sm(parent(w)) and Sm(v) are neighbors,
and an ancestor of w is contained in R(v). Hence, we get that

∑

v∈leaves(T) |{w |

w ∈ K(v)}| =
∑

v∈leaves(T) |{w | w ∈ K1(v)}| +
∑

v∈leaves(T) |{w | w ∈ K2(v)}|.

The first term is bounded by O(N) using Equation (1). To estimate the second
term, we use that

∑

v∈leaves(T)

|{w | w ∈ K2(v)}| =
∑

w∈leaves(T)

|{v | w ∈ K2(v)}|.

Let S′′(w) := |{v | w ∈ K2(v)}|. Then, it is sufficient to show that |S′′(w)| is
bounded by a constant for an arbitrary node w of T . Suppose, there exists a
leaf v of T so that w ∈ K2(v). Then, Sm(parent(w)) and Sm(v) are neighbors.
Since parent(w) or an ancestor of parent(w) is contained in R(v), it is clear that
Sm(v) ≥ Sm(parent(w)). Since at most 8 such leaves v of size larger or equal than
Sm(parent(w)) are neighbors of Sm(parent(w)), we get that |S′′(w)| ≤ 8, which
completes the proof.

Theorem 4.15 Multipole Framework. Suppose, C = {c1, . . . , cN} is a set
of charged particles of unit charge that are placed at distinct positions p(C) =
{p1, . . . , pN}, T = (V,E) is a reduced bucket quadtree with fixed constant leaf ca-
pacity l that is associated with C, and p is a fixed constant precision parameter.
Then, Function Multipole Framework approximates the repulsive force that acts
on each particle ci due to all other particles in C in O(N) time.

Proof. If T contains only one node, |C| = N ≤ l. Since l is a constant, the exact
naive force calculation in part 1 needs constant time. Otherwise, the initialization
of the sets in part 1 needs O(|V |) = O(N) time.

In part 2 of Function Multipole Framework the coefficients of the p-term mul-
tipole expansions Mp(v) are calculated for all leaves v, using Theorem 4.3. Let
m(v) denote the number of particles that are contained in Sm(v) for each leaf v
of T . By Remark 4.8(a) this needs

∑

v∈leaves(v) O(p · m(v)) = O(p · N) = O(N)
time. The coefficients of the p-term multipole expansions of the interior nodes are
obtained using Lemma 4.4. By Remark 4.8(b) and the fact that |V | = O(N) the
total running time of this step is O(p2 · |V |) = O(N).

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 23

In part 3.1 the sets R(v), I(v), D1(v), and D2(v) are found for a fixed node
v. This is done by exploring a collection of |R(parent(v)) ∪ D1(parent(v))| rooted
subtrees, where each node in R(parent(v)) ∪ D1(parent(v)) is a root. The nodes
in R(parent(v)) ∪ D1(parent(v)) are either assigned to one of the sets R(v), I(v),
D1(v), and D2(v) directly, or their children are examined later. Since T is a reduced
bucket quadtree, each interior node has at least two children. Hence, the total
number of nodes that are visited in the exploration of all subtrees of the nodes in
R(parent(v))∪D1(parent(v)) is proportional to |R(v)|+ |I(v)|+ |D1(v)|+ |D2(v)|.
It follows from Lemma 4.14 that applying parts 3.1 to all nodes v of T needs O(N)
time.

In part 3.2 for each node u ∈ I(v) converting the coefficients of the p-term
multipole expansion Mp(u) to the p-term local expansion Lp(u) and adding these
coefficients to the corresponding coefficients of p-term local expansion Lp(v) of v can
be done in O(p2) time using Lemma 4.5 (see Remark 4.8(c)). For each u ∈ D2(v)
there exists at most l particles ci that are contained in Sm(u). For each such
particle the work needed to calculate Mp(ci), to convert it to Lp(ci), and to add its
coefficients to the corresponding coefficients of Lp(v) is O(p2) using Theorem 4.3
and Lemma 4.5 (see Remarks 4.8(a) and (c)). Adding the coefficients of the shifted
p-term local expansions Lp(parent(v)) of the parent of a fixed node v to Lp(v) can
be done in O(p2) time using Lemma 4.6 (see Remark 4.8(d)). Since we know from
Lemma 4.14 that

∑

v∈V I(v)∪D2(v) = O(N), O(l · p2 ·N) = O(N) time is needed
to apply part 3.2 on all nodes v ∈ V .

In part 3.3 the sets D3(v) and K(v) are constructed by exploring a set of |R(v)|
rooted subtrees with roots in R(v). The total number of nodes that are visited in
the exploration of all subtrees that are rooted at the nodes in R(v) is proportional
to |D3(v)|+ |K(v)|. Using Lemma 4.14, applying part 3.3 on all leaves v of T needs
O(N) time in total.

In part 4 the forces Fdirect (ci), Flocal(ci), and Fmultipole(ci) are calculated for
each particle ci that is contained in a leaf v of T . The calculation of Flocal(ci) needs
O(p) time using Lemma 4.7(b) (see Remark 4.8(e) and (f)). Calculating Fdirect (ci)
can be done in O(l · (|D1(v)| + |D3(v)| + 1)) time. Calculating Fmultipole(ci) can
be done in O(p · |K(v)|) time using Lemma 4.7(a) (see Remark 4.8(e) and (f)).
Adding Fdirect(ci), Flocal(ci), and Fmultipole(ci) to obtain Frep(ci) needs O(1) time.
Hence, it follows from Lemma 4.14 that the running time of part 4 is bounded by
∑

v∈leaves(T)

∑

ci∈Sm(v) O(p+ l · (|D1(v)|+ |D3(v)|+1)+p · |K(v)|+1) = O(N).

5. RUNNING TIME OF FM3

Corollary 5.1 Main Theorem. Suppose, G = (V,E) is a positive weighted
graph. Then, the Fast Multipole Multilevel Method (FM3) generates a straight-line
drawing of G in O(|V | log |V |+ |E|) worst-case running time. Its best-case running
time is O(|V | + |E|).

Proof. The corollary follows directly form Theorems 3.2, 4.2, 4.15 and the pre-
vious discussion.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

24 · S. Hachul and M. Jünger

6. EXPERIMENTAL RESULTS

FM3 has been implemented in C++ within the framework of AGD [Jünger et al.
2004]. We tested the algorithm on a 2.8 GHz PC running Linux. The tested
graphs are the graphs contained in [Walshaw’s graph collection] with up to 200000
nodes and the biggest graphs from the [AT&T graph collection]. Furthermore,
we generated artificial graphs with up to 100000 nodes. These graphs include grid
graphs, sierpinski graphs, trees, random disconnected graphs, graphs that contain
many biconnected components, graphs with a very high edge density, and graphs
that contain nodes with very high degrees. Figure 10 shows the running times of
FM3 for the real-world and artificially generated graphs. All graphs with less than
1000, 10000, and 100000 nodes have been drawn in less than 2, 24, and 263 seconds,
respectively.

0.01

0.1

1

10

100

1000

100 1000 10000 100000

R
un

ni
ng

 T
im

e
of

 F
M

3 i
n

Se
co

nd
s

Number of Nodes

artificial graphs
real world graphs

Fig. 10. The running times of FM3 for drawing all artificial graphs and all real-world graphs.

Figure 11 shows example drawings that are generated by FM3 with standard-
parameter settings. The practical experiments indicate that FM3 generates well-
structured drawings for the majority of the tested artificial and real-world graphs:
Like other force-directed multilevel methods, it generates nice drawings of regular
well connected and almost planar graphs (see Figure 11(a,b,c,d). But even the
structure of more challenging graphs like disconnected graphs, graphs with a high
edge density or graphs that contain high degree nodes (see Figure 11(e,f,g,h)) is
visualized in an appropriate concise way.

This is a clear improvement in comparison with several other state-of-the-art
graph-drawing methods and will be illustrated by an example (see Figure 12):
The test-graph (snowflake A) is a symmetric tree which consists of 971 nodes and
one central root node that has 256 neighbors. Besides FM3, we tested a classical
force directed algorithm (the grid-variant algorithm (GVA) of [Fruchterman and
Reingold 1991]) and two multilevel algorithms (GRIP of [Gajer and Kobourov 2001]
and [Gajer et al. 2001], and the Fast Multi-scale Method (FMS) of [Harel and Koren

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 25

(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 11. (a) grid rnd 100 : |V | = 9497, |E| = 17849, CPU-time = 19.1 seconds. (b) sierpinski 10 :

|V | = 88575, |E| = 177147, CPU-time = 162.0 seconds. (c) fe pwt : |V | = 36463, |E| = 144794,
CPU-time = 69.0 seconds. (d) finan512 : |V | = 74752, |E| = 261120, CPU-time = 158.2 seconds.
(e) fe body: |V | = 44775, |E| = 163734, CPU-time = 96.5 seconds. (c) bcsstk31 : |V | = 35588,
|E| = 572914, edge density = 16.1, CPU-time = 83.6 seconds. (f) dg 1087 : |V | = 7602, |E| =

7601, maximum degree = 6566, CPU-time = 18.1 seconds. (g) ug 380 : |V | = 1104, |E| = 3231,
maximum degree = 856, CPU-time = 2.1 seconds.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

26 · S. Hachul and M. Jünger

2001]). Additionally, we compared FM3with algebraic graph-drawing methods (the
algebraic multigrid method ACE of [Koren et al. 2003] and the high-dimensional
embedding approach (HDE) of [Harel and Koren 2002]).

An extensive experimental comparison of these graph-drawing algorithms can be
found in [Hachul and Jünger 2005].

(a) FM3

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277278

279

280

281

282

283

284

285

286

287

288

289

290

291

292
293

294

295296

297

298

299

300
301 302

303

304

305 306
307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336
337

338
339

340

341

342

343 344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369
370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423424

425

426
427

428

429

430

431

432

433

434

435

436
437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455 456

457

458
459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495 496
497

498
499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526
527

528

529

530

531

532

533

534

535

536

537

538

539
540

541

542

543

544

545

546

547

548

549

550

551

552

553 554

555

556

557

558559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586 587

588

589

590

591

592

593

594
595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622623

624

625

626
627

628

629

630
631

632

633

634

635 636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689690691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736 737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763764

765

766

767

768

769

770

771

772

773774

775

776
777

778

779

780

781
782

783

784

785

786

787

788
789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818819820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850
851

852

853

854

855

856

857

858

859

860

861862

863

864

865
866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890
891

892
893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908909910

911

912

913

914

915

916

917

918
919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936
937

938

939
940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

(b) GVA (c) GRIP

(d) FMS (e) ACE (f) HDE

Fig. 12. (a)-(f) Drawings of snowflake A generated by different algorithms.

7. SUMMARY AND FUTURE WORK

We have developed a new force-directed graph-drawing algorithm (FM3) that runs
in O(|V | log |V | + |E|) time. This is an improvement in comparison with previous
force-directed approaches that are not sub-quadratic in general. The improvement
has been reached by combining a new multilevel scheme and a generalized strategy
for approximating the repulsive forces in the system by rapidly evaluating potential
fields.

The practical experiments demonstrate that FM3 is very fast and creates nice
drawings of even those graphs that turned out to be challenging for other tested
algorithms. Currently, FM3 is integrated into the software package TULIP [Auber
2004], and it will be newly implemented for a commercial software package in the
near future.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

Large-Graph Layout with the Fast Multipole Multilevel Method · 27

REFERENCES

Aluru, S. et al. 1998. Distribution-Independent Hierarchical Algorithms for the N-body Prob-
lem. Journal of Supercomputing 12, 303–323.

AT&T graph collection. www.graphdrawing.org.

Auber, D. 2004. Graph Drawing Software. Mathematics and Visualization, vol. XII. Springer-

Verlag, Chapter TULIP – A Huge Graph Visualization Framework, 105–126.

Barnes, J. and Hut, P. 1986. A hierarchical O(N log N) force-calculation algorithm. Na-

ture 324, 4, 446–449.

Davidson, R. and Harel, D. 1996. Drawing Graphs Nicely Using Simulated Annealing. ACM

Transaction on Graphics 15, 4, 301–331.

Eades, P. 1984. A heuristic for graph drawing. Congressus Numerantium 42, 149–160.

Fruchterman, T. and Reingold, E. 1991. Graph Drawing by Force-directed Placement.
Software–Practice and Experience 21, 11, 1129–1164.

Gajer, P. et al. 2001. A Multi-dimensional Approach to Force-Directed Layouts of Large
Graphs. In Graph Drawing 2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984.

Springer-Verlag, 211–221.

Gajer, P. and Kobourov, S. 2001. GRIP: Graph Drawing with Intelligent Placement. In Graph

Drawing 2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984. Springer-Verlag,
222–228.

Greengard, L. 1988. The Rapid Evaluation of Potential Fields in Particle Systems. ACM
distinguished dissertations. The MIT Press, Cambridge, Massachusetts.

Hachul, S. 2005. A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs. Ph.D.
thesis, Institut für Informatik, Universität zu Köln, Germany. http://kups.ub.uni-koeln.de/
volltexte/2005/1409.

Hachul, S. and Jünger, M. 2005. An Experimental Comparison of Algorithms for Draw-
ing Large Graphs. Tech. Rep. zaik2004-472, Institut für Informatik, Universität zu Köln.
www.zaik.uni-koeln.de/~paper, to appear in P. Healy (ed.) Graph Drawing 2005, Lecture

Notes in Computer Science, Springer-Verlag, 2006.

Harel, D. and Koren, Y. 2001. A Fast Multi-scale Method for Drawing Large Graphs. In Graph

Drawing 2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984. Springer-Verlag,
183–196.

Harel, D. and Koren, Y. 2002. Graph Drawing by High-Dimensional Embedding. In Graph

Drawing 2002. Lecture Notes in Computer Science, vol. 2528. Springer-Verlag, 207–219.

Jünger, M. et al. 2004. Graph Drawing Software. Mathematics and Visualization, vol. XII.
Springer-Verlag, Chapter AGD - A Library of Algorithms for Graph Drawing, 149–169.

Kamada, T. and Kawai, S. 1989. An Algorithm for Drawing General Undirected Graphs. In-

formation Processing Letters 31, 7–15.

Koren, Y. et al. 2003. Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale

Modeling and Simulation 1, 4, 645–673.

Quigley, A. and Eades, P. 2001. FADE: Graph Drawing, Clustering, and Visual Abstraction.
In Graph Drawing 2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984. Springer-
Verlag, 197–210.

Tunkelang, D. 1998. JIGGLE: Java Interactive Graph Layout Environment. In Graph Drawing

1998, S. H. Whitesides, Ed. Lecture Notes in Computer Science, vol. 1547. Springer-Verlag,
413–422.

Walshaw, C. 2001. A Multilevel Algorithm for Force-Directed Graph Drawing. In Graph Drawing

2000, J. Marks, Ed. Lecture Notes in Computer Science, vol. 1984. Springer-Verlag, 171–182.

Walshaw’s graph collection. www.gre.ac.uk/~c.walshaw/partition.

ACM Transactions on Graphics, Vol. V, No. N, December 2005.

