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Abstract. The evaluation of potential or force fields in systems of N particles whose interactions
are Coulombic or gravitational is very important for several applications in natural science, applied
mathematics, and computer science. A naive direct calculation of the interactions needs ©(N2) time
per time step which is inappropriate for large systems. Therefore, fast hierarchical algorithms (called
tree codes) are used that approximate the pairwise interactions in the systems. We present a new
multipole-based tree code that runs in O(N) time in the best case and in O(N log N) time in the
worst case. This is an improvement in comparison with existing tree codes: Few of them run in
O(N log N) time. Others are O(N) or O(N log N) in the best case but quadratic or even unbounded
in the worst case. Our practical experiments indicate that the new multipole method is faster than
several popular hierarchical N-body simulation algorithms for both uniform and highly non-uniform
particle distributions.

Key words. N-body simulations, tree codes, fast multipole method, quadtree

1. Introduction. Astrophysics, electrical engineering, molecular dynamics, or
quantum-mechanical simulations in chemistry are typical research areas that require
fast N-body simulation algorithms (see e.g., [3, 24, 6, 27]). Additionally, in the last
decade several of these methods have been successfully introduced into other research
areas like applied mathematics [7, 11, 4], information visualization [28, 26, 19], or
VLSI-design [10, 32]. In general, N-body simulation algorithms simulate the move-
ments of N masses or charged particles in a specified time interval by iteratively
calculating the force field or potential energy field in the system and updating the po-
sitions of the objects. Since a naive direct calculation of the interactions needs ©(N?)
time per iteration, efficient local methods (see e.g. [22, 21]) and fast hierarchical meth-
ods, called tree codes, have been developed. We concentrate on the latter methods
that are used to approximate the interactions if the desired accuracy is comparatively
high.

Greengard [17] and Greengard and Rokhlin [18] invented the fast multipole method
(FMM) that is based on evaluating multipole expansions using a hierarchical data struc-
ture called quadiree and runs in O(N) best-case time. Additionally, Greengard [17]
and Carrier et al. [9] invented an adaptive version of FMM for non-homogeneous par-
ticle distributions. It is straightforward to see that the worst-case running time of
FMM is O(N?). Furthermore, Aluru [1] and Aluru et al. [2] have proven that the run-
ning times of the adaptive version of FMM and of the tree code of Barnes and Hut [5]
depend on the particle distribution and cannot be bounded in N in the general case.
This undesirable scaling is caused by the choice of the hierarchical data structures.

Several research results enhance the basic tree code FMM (see e.g., [25, 16]), the
adaptive version of FMM (see e.g., [20, 12, 13, 14, 31]), or the Barnes-Hut method
(see e.g., [29, 15]) in many ways. However, since all these methods are based on
the quadtree or octtree data structure, the proofs of Aluru [1] and Aluru et al. [2]
hold for these algorithms, too. Unlike this, there exist some provably sub-quadratic
methods. In particular, Aluru et al. [2] developed an © (N log N) multipole method
that is distribution independent. Other ©(N log N) multipole methods that use a
relaxed version of a k-d tree data structure (called fair-split tree) were presented by
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Callahan and Kosaraju [8] and Xue and Lasher [30].

Based on previous work, we have developed a new provably fast multipole based
tree code. In Section 2 we will present construction methods for the used hierarchical
data structure that we call reduced bucket quadtree. The multipole framework will be
presented in Section 3. Experimental comparisons with other popular standard tree
codes will be made in Section 4. In the following, we will restrict on Coulombic inter-
actions in two dimensions. But the presented ideas can be extended to gravitational
systems or to three dimensions, too, e.g., by using the mathematical tools presented
in [17].

2. Construction of the Reduced Bucket Quadtree. We first define the used
hierarchical data structure, before we will present three different tree-construction
methods in Sections 2.1, 2.2, and 2.3.

DEFINITION 2.1 (Quadtree, Reduced Bucket Quadtree). Suppose, a set of N
particles (or data points) C = {c1,..., cn} are assigned distinct positions in a square
D, and a leaf capacity I > 1 is fized. Furthermore, suppose one recursively sub-
divides D into four squares of equal size (in the following denoted by boxes), until
each box contains at most | particles. This process can be represented by an ordered
rooted tree of mazximum child degree four (with the root representing D) that is called
(bucket) quadtree. The particles are stored in the leaves of the quadiree. A degen-
erate path P = (v1,...,vp) in a quadtree is a path in which vi and v, have at least
2 nonempty children, and vs,... ,v,_1 each have exactly one nonempty child. A re-
duced (bucket) quadtree T can be obtained from a quadtree by shrinking degenerate
paths P = (v1,...,vp) to edges (vi,vp) (Figure 2.1 shows an example).

.1 .3 U1 V1
.2 U2
e 2 3 w123 s
T 10 4 8 4 8
.8 6 9. .
11/, 5 {6,7}9 1011 5 {6,7} 9 1011

(a) (b) (c)

F1G. 2.1. (a) A distribution of N = 11 particles in the plane. (b) The quadiree with leaf capacity
l = 2 associated with (a). P = (v1,v2,v3) is a degenerate path in the quadiree. (c) The reduced
quadtree with leaf capacity | = 2 associated with (a).

One important property of a reduced quadtree is that — unlike the quadtree data
structure — it contains only O(N) nodes independently of the distribution of the
particles. Aluru et al. [2] present an O (N log N) method that constructs a reduced
quadtree with leaf capacity [ = 1 (which they call modified tree). It can be easily
shown by a reduction from sorting that it is neither possible to construct a bucket
quadtree nor a reduced bucket quadtree with constant fixed leaf capacity [ for arbitrary
distributions of the N particles in o(N log N) time.

2.1. Tree Construction Way A. In the following, let us suppose that N
charged particles C = {c1,...,cn} are distributed at distinct positions p(C) =
{p1,-..,pn} in the plane and that a fixed constant leaf capacity [ > 1 is given.
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The tree construction method that we will present next uses a box-shrinking
technique of Aluru et al. [2] and techniques that are motivated by ideas of Callahan
and Kosaraju [8] in their construction method of the fair-split tree.

2.1.1. Part 1: Initialize the square D. First, we define a square D that
covers the particles in C'. This can be easily done in linear time.

2.1.2. Part 2: Create Sorted Coordinate Lists S, and S,. Now two lists
Sy and Sy of length N are created. Each element of the lists contains a different
particle of C' and two other entries that are initialized as empty entries and will be
used later. The list elements of S, and S, that contain the same particle are linked
by a cross reference to enable efficient access operations. Then, the lists S, and Sy
are sorted according to increasing z-coordinates and y-coordinates of the positions of
the contained particles, respectively. Table 2.1(top) shows an example.

S 2 8 4 5 1 6 7 11 3 9 10
“1 0,000 |00]00)|00]00]|00)|00]|00]00]|0,0
S 11 8 9 10 6 7 4 5 2 3 1
V10,010,000 ]00)00]00]00)00]00]00]|0,0

Cz(v1) 2 8 | 4 5 116|711 |3]9]10
Cy(v1) |11 [8 (9|10 |6 |7 |4 | 5 |2 |3 1
TABLE 2.1

(top) The sorted lists Sy and Sy of the particle distribution of Figure 2.2(a) and (bottom) the
corresponding lists Cy(v1) and Cy(v1) of root node v; .
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(a) (b) (c) (d)

Fi1c. 2.2. (a) A distribution of N = 11 particles in a square D that is associated with the
root node vi of T. (b) Subdividing D = box(v1) into two halves. The left half of box(v1) contains
more particles than the right half. (c) Subdividing the left half of D into two bozes. The left bottom
boz contains more particles than the left top box. The dashed rectangle R is the smallest rectangle
that covers all particles contained in the grey sub-box of D. (d) Creating a new child va of v1 that
corresponds to the left bottom sub-boz of box(v1).

2.1.3. Part 3: Create the Root Node and Copies of S; and Sy. The
root node of the reduced bucket quadtree T is created next. Since this node is also
the actual visited node, we denote it by v,et, and the corresponding square region is
box(vget) := D.

Furthermore, a copy of S; and a copy of S, are created. In contrast to S, and
Sy, they contain the particle entries only. These lists are assigned to v,c; and are
denoted by Cg(vect) and Cy(vee). To enable efficient access operations, for each
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i € {1,..., N} the i-th entry in S, is linked with the i-th entry of C,(vac:) and vice
versa. Analog, the i-th entry in Sy is linked with the i-th entry of Cy(v,c:) and vice
versa. Additionally, cross references between elements of Cy(vgct) and Cy(vqee) that
contain the same particle are created (Table 2.1(bottom)). If N < [, we assign all
particles in C to v; and are done, since v; is already the reduced bucket quadtree.
Otherwise, we proceed with the next parts of the algorithm.

2.1.4. Part 4: Alternating C,(vec) Traversal. C,(v,y) is traversed alter-
nating from the beginning and the end heading toward the middle. This is done in
order to decide which particles of Cy(vect) belong to the left half of box(v,e) and
which particles belong to the right half of boz(vaet).

Let M = {c1,... ,cx} C C be the set of particles in S, that are contained in the
half of boz(v,e:) that contains the fewest particles. Then, for each particle ¢; € M
a link to veer and an index that identifies that ¢; belongs to the left (index I) or
right (index r) part of boz(v,c:) is added to the elements containing ¢; in S, and Sy,.
Afterwards, all elements of Cy(vact) and Cy(vee) that contain a particle ¢; € M are
deleted from Cyp(vget) and Cy(vqet), respectively (see Figure 2.2(b) and Table 2.2).

S 2 8 4 5 1 6 7 11 3 9 10
° 0,0 | 0,0 | 0,0 0,0 | 0,0 | 0,0 | 0,0 | vi,7 | vi,7 | vi,7 | v1,T

S 11 8 9 10 6 7 4 5 2 3 1
VoAl vi,r | 0,0 | vi,r | v, | 0,0 | 0,0 | 9,0 | 0,0 0,0 | vi,r | 0,0

Colo) 28 45167
Cyv) [ 8674|521
TABLE 2.2
The lists Sz, Sy, Cz(v1) and Cy(v1) after the alternating Cz(v1) traversal.

2.1.5. Part 5: Alternating Cy(vec:) Traversal. Let large_half (vee:) be the
half of box(vect) that contains the most particles. Then, Cy(vqct) is traversed alter-
nating from the beginning and the end heading toward the middle in order to decide
which particles of Cy(vqc¢) belong to the bottom half of large_half (vec:) and to the
top half of large_half (vqct)-

Let M = {c1,...,cx} C C denote the set of particles in S, that are contained
in the box of large_half (v4et) that covers the fewest particles. Then, for each particle
¢; € M a link to v, and an index that identifies that ¢; belongs to the top half or
bottom half of large_half (vacs) is added to the entries of ¢; in S, and S,. Afterwards,
all entries in Cy(vqact) and Cy(vqe) that contain a particle ¢; € M are deleted from
Cy(vact) and Cy(vqet), respectively (see Figure 2.2(c) and Table 2.3).

S, 2 8 4 5 1 6 7 11 3 9 10
vi,lt | 0,0 | 0,0 0,0 | vi,it | 0,0 | 0,0 | vi,7 | vi,7 | v1i,7 | wi,T

S 11 8 9 10 6 7 4 5 2 3 1
Y vi,7 | 0,0 | vi,7 | vi,7 | 0,0 | 0,0 | 0,0 | 0,0 | vi,lt | vi,7 | v1,it

Colon) [ 824567
C,u) 816745
TABLE 2.3
The lists Sz, Sy, Cz(v1) and Cy(v1) after the alternating Cy(v1) traversal.
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2.1.6. Part 6: Create a Child Node. Now a child node v¢piig of vger iS
created that corresponds to this sub-box of box(v,.t). Furthermore, Cy(vqe) and
Cy(vqet) are assigned to vepig and labeled Cp(vepig) and Cy(venia), respectively (see
Figure 2.2(d)). If the box box(vcpiq) contains at most | particles, we proceed with
part 8 of this algorithm, otherwise we proceed with part 7.

2.1.7. Part 7: Use Box-Shrinking Technique. Let R be the smallest axis
parallel rectangle that covers all particles that are contained in box(vcpiq). The box-
shrinking technique of Aluru et al. [2] can be used to find the smallest sub-box B
of box(venig) in O(1) time so that B covers R. Finally, we set box(vepaq) := B. In
our example, bozx(vs) is already the smallest sub-box of boz(vy) which covers R (see
Figure 2.2(c)).

2.1.8. Part 8: Create a Path. The previously described parts can be reused
to create a path P in the reduced bucket quadtree T' by setting vgct := Venig and by
repeating parts 4 to 7, until the box of the actual node contains less than [ particles
and, hence, is a leaf of T'. Finally, the remaining particles of C,(vqct) are assigned to
the leaf v, (see Figure 2.3 and Table 2.4).

V1 .1 3 U1 .1 3
Vo 9 V2 9
V3 4/ 5 U3 4 *|5 |
..7 10 _.7 10
8 6 9. ° U4 8 6 9. °*
1. {6,7} 1.
(a) (b) (c) (d)

Fi1g. 2.3. Constructing a path of the reduced bucket quadiree T. (a) A new node v3 is added
to the tree that corresponds to the grey boz in (b). (c) A new node vs is added to the tree that
corresponds to the grey boz in (d). Since the boz of va contains only | = 2 particles the construction
of the path stops, and the particles 6 and 7 are assigned to v4.

S, 2 8 4 5 1 6 7 11 3 9 10
vi,lt | v2,l | va,l | w3,l | vi,it | 0,0 | 0,0 | vi,7 | vi,7 | vi,7 | vi,T

s 11 8 9 10 6 7 4 5 2 3 1
Vol wi,r | wo,l | vi,r | v, | 0,0 | 0,0 | va,l | wa,l | wi,lt | vi,r | wg,lt

Cz(v3) 6 | 7
Cy(vs) || 6 | 7
TABLE 2.4
The lists S, Sy, Cz(v3), and Cy(v3) after the alternating Cx(v3) and Cy(v3) traversal.

2.1.9. Part 9: Create All Children of the Nodes to Which Links in S,
Exist. Now for each node in the actual constructed tree T, to which links in S, are
stored, children are created:

First, the list S, is traversed from left to right. If during this process one el-
ement (cj, v;, region_index) of S, contains a link to a node v; — and it is the first
time that an element of S, with a link to v; has been visited — a new sorted list
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C, (v;, region_index) is created that contains the particle ¢;. If during this process one
element (c;, v;, region_index) of S, is visited that contains a link to a node v;, and
a corresponding list Cy (v;, region_index) already exists, ¢; is appended at the end of
Cy(vy, region_index). Afterwards, the list Sy is traversed from left to right and sorted
lists Cy(v;, region_index) are created in an analog way (see Table 2.5).

Cz(v1,1t) 2|1 Cz(v2,1) 8| 4 Cy(vs,1) 5
Cy(v1,1t) 21 Cy(v2,1) 8 | 4 Cy(v3,1) 5

Co(or,r) 11 [ 3] 9 ] 10
Cy(vi,7) || 11 | 9] 10 | 3
TABLE 2.5

The sorted lists of Cy(v;, region_indez) and Cy(v;, region_indez) that are obtained from the Sy
and Sy lists of Table 2.4.

In order to enable fast access to the elements of these lists, cross references are
built up. In particular, each element of S, that contains a particle ¢; is linked with
the element of the corresponding list C,(v;, region_indez) that contains the particle
¢; and vice versa (analog for Sy and Cy(v;, region_indezx)). Then, for each element
of a list Cy(v;, region_indez) that contains a particle ¢;, a link to the element of
the list Cy(vs, region_index) that contains particle ¢; is constructed and vice versa.
For later use, the elements of S, and S, are reinitialized by replacing each element
(¢j,v;, region_indez) by the element (c;, 0, 0).

Suppose that we have given a node v; of the actual tree T for which the lists
Cy(v;, region_index) and Cy(v;, region_index) exist, and region_indez is either [ or
r. Then, we split each list C;(v;, region_index) with region_index € {l,r} into two
sub-lists Cy (v;,1t) and Cy(v;, Ib) (if region_index = 1) and Cy(v;,rt) and Cy(v;,rd) (if
region_index = r), respectively (see Table 2.6).

ng(vhlt) 2 1 Cy (’Uz,lb) 8 Cy (vz,lt) 4 Cy (vs,lt) 5
Cy(vl,lt) 2 1 Cy (’Uz,lb) 8 Cy (’UQ,lt) 4 Cy (’Ug,lt) 5
Cz(vi,rd) [[ 11 ] 9] 10 Cr(vi,rt) || 3
Cy(vy,rd) || 11 [ 9 | 10 Cy(vi,rt) || 3
TABLE 2.6

The splat sorted lists of Cq(v;, region_indez) and Cy(v;, region_indez) that are obtained from
the Cy(v;, region_index) and Cy(v;, region_index) lists of Table 2.5.

Now we create for each list Cy (v;, region_index) a child w; of v; that corresponds
to the sub-box of boz(v;) that is defined by index region_indexr. Furthermore, we
assign w; the lists Cy(w;) := Cy (vs, region_indez) and Cy(w;) := Cy(v;, region_indez)
for later use. If the list C;(w;) has length at most I, w; is a leaf in the desired reduced
bucket quadtree, and all particles that are contained in Cy(w;) are assigned to w;.
Otherwise, the box-shrinking technique of part 7 is used to obtain the smallest sub-
box B of boz(w;), which covers the smallest rectangle R that contains the particles
of Cy(w;). Finally, we set box(w;) := B (see Figure 2.4).

2.1.10. Part 10: Recursion. If all lists Cy(w;) have length at most [, the
resulting tree is already the desired reduced bucket quadtree with leaf capacity .
Otherwise, let {wi,...,wr} be the set of nodes for which the corresponding lists
C,(w;) have length larger than [. Then, parts 4 to 8 of the algorithm are applied
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on each node w; and its corresponding lists C,(w;) and Cy(w;). As a results of this

process, paths {Py,..., P} that are rooted at {wy,... ,wy} are generated. In order
to create all children of the nodes to which links in the S, lists are stored, part 9 is
performed. Let {u1,...,un} be the set of the newly created children for which the

length of Cy(u;) is larger than [. Then, parts 4 to 8 of the algorithm are applied on
each node u;, followed by one call of part 9 and so forth. The recursion ends if for all
newly created children the corresponding C, and Cy lists have length at most I (see
Figure 2.5).

. .3
o2
4 |5
<7 10
3 6 Qs °
11.

Fi1G. 2.4. (a) The tree T after part 9 of the construction algorithm. (b) The corresponding
sub-bozes of the square D. The node vy in (a) corresponds to the grey shaded region in (b).

il
.2
5
4 U
.8 6
11/ 5 {6,7}9 10 11

(a) (b) (c)

F1G. 2.5. Recursion: (a) Creating a new child vi1 of vo. (b) The grey shaded region corresponds
to vi1. (c) After creating the children vi2 and vi3 of vy the tree-construction algorithm ends.

LeEMMA 2.2 (Reduction of the Number of Particles in Leaves). Suppose, the
previously described tree construction algorithm is used to construct a reduced bucket
quadtree with leaf capacity I, and the box of the actual visited node v, contains
|Cy (vact)| particles. Furthermore, suppose, the parts 4 to 9 of the algorithm have to be
performed on vaey and that the leaves of the newly created subtree that is rooted at vacy
are denoted by {v1,...,v;}. Then, for each leaf v; € {v1,... ,v;} the corresponding
boz box(v;) contains at most max {l, ||Cy(vact)|/2]|} particles.

Proof. Tt is clear that after performing parts 4 to 8 of the algorithm, a path P has
been created that contains one leaf v;, and the corresponding region boz(v;) contains
at most [ particles. In part 9 the other children of the nodes of P are created. For v; €
{v1,... 05} the Cz(v;) and Cy(v;) lists have length at most maz(l, ||Cy(Vact)|/2])
since we assign non-empty links only to those elements of S; and S, which contain
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particles that are covered by the half of two sub-regions that contains the fewest
particles. The length of each such list C,;(v;) corresponds to the number of particles
that are covered by the sub-box of the leaf v;, which completes the proof. O

THEOREM 2.3 (Tree Construction Way A). Suppose, C = {c1,...,cn} is a set
of particles that are placed at distinct positions p(C) = {p1,...,pn} and 1 > 1 is an
integer constant. Then, the previously described algorithm constructs a reduced bucked
quadtree with leaf capacity | in ©(N log N) time.

Proof. Obviously, parts 1 and 3 need O(NN) time, while part 2 needs O(N log N)
time. We concentrate on the running time of the parts 4 to 8 now: Let v, be the
actual visited node. Then, the alternating C (vact) traversal and alternating Cy(vact)
traversals (parts 4 and 5) need time that is proportional to the number of particles
in the part of boz(v,e:) or the part of large_half (v,et), respectively that contain the
fewest particles. Since in S, and S, all elements are marked that contain these
particles, the running time is proportional to the number of elements in S, for which
non-empty links to nodes of T have been created, too. Part 6 and 7 need O(1) time.
Therefore, the running time of the iterative path construction (part 8) is bounded
above by the initial length of Cy(v4et). Since vqe is the root of T, the initial length
of Cy(vget) has been N. In part 9 the remaining children of the nodes in T' to which
links in S, exist are created in O(N) time.

Let L' = {v1,... ,vt} be the set of all leaves that have been created in part 9 and
that contain more than [ particles. If L! = () we are done. Otherwise, we analyze the
running time of one recursion of part 10: Let v; be a node in L' with associated lists
Cq(vi) and Cy(v;). Since Y7, ;. initial_length(Cy(vi)) < N, the execution of parts 4
to 8 for all nodes v; € L' and, hence, one recursion of part 10 needs O(N) time.

Hence, the total running time of the algorithm is O (N log N+ N-|recursion_levels|),
where recursion_levels is the number of recursions. It follows from Lemma 2.2 that
the number of recursion levels is bounded above by O(log N) which completes the
proof. O

2.2. Tree Construction Way B. We will explain another new tree construc-
tion method that is conceptually simpler and works as follows: After initializing the
square D, we build up a complete truncated quadtree T* with depth max{1, |log, N/
1]}. Then, all particles are assigned to the leaves of T!. Afterwards, the tree is tra-
versed bottom up and thereby for each internal tree node the number of particles that
are contained in its associated box are calculated. Figure 2.6(a) shows an example.

In the next step, we thin out T'. Therefore, we traverse the quadtree T top
down and thereby delete all nodes that do not contain particles and shrink degenerate
path to edges. If (during this process) we visit an internal node v that is the root of a
subtree which contains at most [ particles, this subtree is deleted, and all the particles
that were stored in the deleted subtree are assigned to v (see Figure 2.6(b)). If none
of the leaves of T contains more than [ particles, the procedure ends. Otherwise, we
repeat the previous steps recursively for all leaves v; that contain N; > [ particles (see
Figure 2.6(c)-(d)).

THEOREM 2.4 (Tree Construction Way B). Suppose that C = {c1,... ,cn} is a
set of particles that are placed at distinct positions p(C) = {p1,... ,pn} and thatl > 1
is an integer constant. Suppose that the mazimum and minimum of the Fuclidean
distances between any two particles in C' are denoted by dy,ep and dpy, respectively.
Then, the described algorithm constructs a reduced bucked quadtree with leaf capacity 1
in O(N -log(dmaz/dmin)) time in the worst case. Its best-case running time is O(N).

Proof. Since the complete quadtree T contains O(N) nodes, and its structure is
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predefined, it can be build up and thinned out in O(N) time. If T is not the reduced
quadtree, we build up subtrees T2(vy), ... ,T?(vy) for all leaves vy, ... ,v; of T! that
contain more than [ particles. This needs O(N) time in total, since the sum of the
tree nodes contained in all 72(v;) is at most O(N). Then, we possibly have to build
up subtrees rooted at the leaves of the T2-trees and so forth. Since for each j > 1
the sum of the tree nodes of all 77 is bounded above by O(N), the total running
time is O(|recursion_levels| - N). The number of recursion levels is bounded above by
log(dmaz /dmin) which completes the proof. O

{17 2} 3 V4 U3
4 5 8 9
6 10
7 11
(a) (b)

3 6 91011 5 {6,7} 91011
7

(c) (d)

F1G. 2.6. Building up the reduced quadtree T' with leaf capacity | = 2 and N = 11 particles for
the distribution of Figure 2.2(a). (a) First step: Building up the complete quadtree T'. (b) Second
step: Thinning out T'. (c) Recursion: Building up the complete quadirees T?(vs) and T?(v4). (d)
The reduced quadtree is constructed after thinning out T?(v3) and T?(v4).

2.3. Tree Construction Way C. A hybrid version that is based on the previ-
ously described tree-construction ways is straightforward: First, a maximum number
of O(log N) recursion levels is fixed. Then, tree-construction way B is started and
the tree is recursively build up. Tree-construction way B is stopped if either the tree
has been built up completely or the maximum number of recursion levels has been
reached. In the latter case, tree construction way A is called for each leaf of the
partially constructed tree that contains more than the constant number [ of particles.

COROLLARY 2.5 (Tree Construction Way C). Suppose that C = {c1,... ,cn} is
a set of particles that are placed at distinct positions p(C) = {p1,...,pn} and that
Il > 1 is an integer constant. Then, the previously described hybrid tree-construction
method constructs a reduced bucked quadtree with leaf capacity | in O(N) best-case
and O(N log N) worst-case running time.

Proof. The corollary follows directly from Theorem 2.3 and Theorem 2.4. 0
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3. The Multipole Framework. In Sections 3.1 and 3.2 we will introduce the
needed mathematical tolls and some terminology, respectively. The multipole frame-
work will be described in Section 3.3.

3.1. Tools From Complex Analysis. The following theorems have been prov-
en by Greengard and Rokhlin [18] and Greengard [17] under the assumption that either
zp or 21 is the origin. We use them in the more general setting. The proofs are analog
to the ones presented in [18, 17] and omitted here for brevity.

Note that each point p = (z,y) € R? is identified with a point z = z + iy € C.

THEOREM 3.1 (Multipole Expansion Theorem). Suppose, m charged particles
{c1,... ,¢m} with charges {qi,...,qm} are located at points {pi,...,pm} inside a
circle of radius r with center zg. Then, for any z € C with |z — zo| > r the potential
energy £(z) at point z induced by the m charged particles is given by

oo
E(z) = aglog(z — 29) + Z , where
k=1

S — —qi(pi — 20)*
a0:Zqi and a’“:ZT'
i=1 i=1

LeEMMA 3.2 (Translation of Multipole Expansions). Suppose, £(z) = ag log(z —
20) + Y opey (z_”—jo)k is a multipole expansion of the potential energy due to a set of
charged particles that are located inside a circle of radius r and center zo. Then, for

any z outside a circle of radius r+ |29 — z1| and center z1, the potential energy induced
by these particles is given by

E(z) = aglog(z — z1 +Z

=1

K where
Z — Z1

1 1

—ap(zp — 2 -1

b = 70( Ol 1) + E ak(z(] — Zl)l_k (kj _ 1) .
k=1

LemMMA 3.3 (Conversion of Multipole Expansions to Local Expansions). Suppose,
Co is a set of charged particles that are located inside a circle of radius r and center 2,
the corresponding multipole expansion is given by £(z) = aglog(z—20)+Y pey (z“—jo)k,
and that z1 is a point with |21 — zo| > 2r. Then, inside a circle of radius v and center
21 the potential energy due to these particles is given by the power series

z) = Zbl (2 —21)", where

oo
Qg
bo = aglog(z1 — 2¢) + ——— and
0 0 g( 1 0) kgl (zl _zO)k
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(-1)H1g, 1 V' & 1+k-1 ax
= _— >1.
b (Z1—z0)l-l+ o Z ko1 (ZI_ZO)k,forl_l

k=1

LEMMA 3.4 (Translation of Local Expansions). For any complex 2q, 21, z, and
{ag,-.-,a,}

iak(z —2)" = i iak F (21— 20)* ") (z—2)" .
l

k=0 =0 \k=I

The finite Laurent series MP?(z) that is obtained by calculating only the coeffi-
cients 0 to p of a multipole expansion is called p-term multipole expansion. Analog,
the finite power series LP(z) that is obtained by calculating only the coefficients 0 to
p of a local expansion is called is called p-term local expansion. Note that if £(z) de-
scribes the potential energy field in a system of charged particles, and z is contained
in a region of analyticity, then, the forces that act on a particle of unit charge at
position z are given by (Re(£'(2)), —Im (£'(2)))-

REMARK 3.5. Clearly the following statements (assuming all operations are ap-
plied on well-defined sets) hold:

(a) The coefficients of a p-term multipole expansion due to m charged particles

can be obtained in O(pm) time.

(b) The coefficients of a shifted p-term multipole expansion can be obtained in

O(p?) time.

(c) The coefficients of a p-term local expansion can be obtained from the coeffi-

cients of a p-term multipole expansion in O(p?) time.

(d) The coefficients of a shifted p-term local expansion can be obtained in O(p?)

time.

(e) The derivative of a p-term multipole expansion and the derivative of a p-term

local expansion can be obtained in O(p) time.

(f) An approzimation of the force that acts on a particle of unit charge at position

z — which is induced by the potential energy field that is described by a p-term
multipole expansion or a p-term local expansion — can be obtained in O(p)
time.

3.2. Some Terminology. In Section 2 we have associated each node v of the
reduced bucket quadtree with its box boz(v). In the following, we will associate two
additional boxes with a node v that are defined next.

DEFINITION 3.6 (Small Cell, Large Cell). Suppose, T is a reduced bucket quadtree
for a given set C = {cy,... ,cn} of particles that are distributed in a square D, and
v is a node of T. The small cell or small box of v (shorter Sm(v)) is the smallest
sub-box of D that covers all particles that are associated with v. If v is a leaf that
contains only one particle, then, Sm(v) is a point. If v is the root of T, the large
cell or large box of v (shorter Lg(v)) is equal to Sm(v). Otherwise, let parent(v) be
the parent of v in T. Then, Lg(v) is the largest sub-box of Sm(parent(v)) with size
smaller than Sm(parent(v)) that covers Sm(v).

REMARK 3.7. It follows from the definition of Sm(v), Lg(v), and the reduced
bucket quadtree T that the small cell Sm(v) of an interior node v is exactly box(v).
For a leaf v of T, Sm(v) is covered by box(v). Furthermore, Lg(v)\ Sm(v) covers no
particles of C, and the size of Lg(v) is L of the size of Sm(parent(v)) if v is not the
root of T' (see Figure 3.1).
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U1 1

° .3
o2
{172} 3 Vs .4 oI5 - D
4 8 o° 10
'8 6 g. ®
5 {6,7} 9 1011 11]s

(a) (b)

Fic. 3.1. (a) A reduced bucket quadtree that corresponds to the particle distribution in the
square D shown in (b). The small cell Sm(v2) corresponds to the small dark-gray boz. The small
cell of parent(vy) = vy corresponds to the square D. The large cell Lg(va) corresponds to the big
light-gray boz that covers the small dark-gray boz in (b).

DEFINITION 3.8 (Neighbor, Well-Separated, Ill-Separated). Two bozes By and
By are called neighbors if the boundaries of B1 and Ba touch, but By and Ba do
not overlap. Two boxes By and By of same size are well-separated if they are no
neighbors. Otherwise, By and Bs are ill-separated. Suppose, nodes u and v are nodes
of a reduced bucket quadtree T and Sm(u) > Sm(v). Then, u and v are well-separated
if and only if Sm(u) and the box that covers Sm(v) and that has the same size as
Sm(u) are well-separated. Otherwise u and v are ill-separated (Figure 3.2 shows an
example).

Sm(v)

:f>j Sm(u). r Sm(u) Smfv)

(a) (b) (c)

Fi1G. 3.2. (a) Unlike the white bozes, the gray bozes are neighbors of the black boz. (b-c) The
black bozes Sm(u) and Sm(v) are small cells of two nodes v and v of a reduced bucked quadiree.
(b) Since the gray boz is no neighbor of Sm(u), u and v are well-separated. (c) Since the gray box
is a neighbor of Sm(u), u and v are ill-separated.

Like in [17, 2] the terminology of well-separateness is used to define an interaction
set that is used do generate p-term local expansions from suitable p-term multipole
expansions.

DEFINITION 3.9 (Interaction Set, Minimal Ill-Separated Set). Suppose, nodes
u and v are nodes of a reduced (bucket) quadiree T. The interaction set I(v) of
a node v is the set of all nodes u that are ill-separated from the parent of v, well-
separated from v, and the parent of u is ill-separated from v. Thus, I(v) = {u |
Well Separated(v,u), I11_Separated (parent(v),u), I11_Separated(parent(u),v)}.
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The minimal ill-separated set R(v) of a mode v is the set of all nodes that are ill-
separated from v and have the small cell smaller or equal and the large cell larger or
equal than the small cell of v. Hence, R(v) = {u | I11 _Separated(v,u), Sm(u) <
Sm()) < Lg(u)}.

Aluru et al. [2] associate the lists I(v) and R(v) with each node v of their hier-
archical data structure. Since our data structure is more general, we have to defining
some additional sets which are assigned to each node of the tree.

DEFINITION 3.10 (The Sets D1(v), D2(v), D3(v), and K(v)). For each node v
of the reduced bucket quadtree T = (V, E), D1(v) is the set of all leaves w € V' so that
Sm(v) < Sm(w), and Sm(v) and Sm(w) are neighbors. Da(v) is the set of all leaves
w of T so that Sm(v) < Sm(w), Sm(v) and Sm(w) are no neighbors, v and w are
ill-separated, and w is not contained in the set Da(u) of an ancestor u of v. For each
leaf v € V' we additionally define the sets D3(v) and K (v), where D3(v) is the set
of all leaves w € V' so that Sm(v) > Sm(w), and Sm(v) and Sm(w) are neighbors.
For a leaf v € V the set K(v) contains all nodes w so that Sm(v) and Sm(w) are no
neighbors. Additionally, it is required for each w € K (v) that either w € R(v) or an
ancestor of w is contained in R(v), and Sm(parent(w)) and Sm(v) are neighbors.

3.3. Formal Description of the Multipole Framework. The pseudocode
of the multipole framework is shown in Function Multipole Framework and Func-
tion Calculate Local Expansions_and Node Sets, and its parts are explained next.

Part 1: (Trivial Case and Initializations) If the reduced bucket quadtree
T = (V,E) consists of only one node, the forces that act on each particle ¢; due
to all other particles in C' are calculated directly. Otherwise, for each node v of T
the sets R(v), I(v), D1(v), D2(v) (and for the leaves additionally D3(v) and K (v)) are
initialized as empty sets.

Part 2: (Bottom-Up Traversal of the Tree) Now, for each leaf v of T the
coefficients {ao,...,ap} of the p-term multipole expansion MP(v) that reflects an
approximation of the potential energy field due to the particles that are contained in
Sm(v) are calculated. This is done by using Theorem 3.1 and choosing the center of
Sm(v) as the variable zg in Theorem 3.1.

The p-term multipole expansions of the interior nodes are calculated by travers-
ing the tree bottom up: Suppose, v is an interior node of T' with small cell Sm(v),
the center of Sm(v) is 21, and the p-term multipole expansions M?(w) of each of
v’s children w have been calculated. Then, the coefficients of the p-term multipole
expansion MP?(v) are obtained by, first, shifting the center of each MP?(w) to 21 (us-
ing Lemma 3.2) and, then, adding the coefficients of this shifted p-term multipole
expansion to the corresponding coefficients of M?(v).

Part 3: (Top-Down Traversal of the Tree) In the top-down traversal of
the tree T', Function Calculate Local Expansions_and _Node_Sets is called for each
child of the root node.

Part 3.1: (Find R(v), I(v), D1(v), and Dy(v)) Here, the sets R(v), I(v), D;(v),
and D, (v) are constructed starting with a set E(v) that is assigned R(parent(v)) U
D (parent(v)). Note that if parent(v) is the root of T, then, R(parent(v)) = v
and D;(parent(v)) = . Now, iteratively a node u is taken from R(parent(v)) U
D, (parent(v)), and it is checked if u already belongs to one of the previous mentioned
sets or if one has to explore the subtrees that are rooted at u recursively in order to
assign its children to these sets.

In particular, if v and v are well-separated, then, u belongs to I(v). [This can
be seen as follows: If u is a node of R(parent(v)) U D1 (parent(v)), then since u and
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Function Multipole Framework (C, T, p)

input :a set C = {c1,...,cn} of charged particles of unit charge that
are placed at distinct positions p(C) = {p1,...,pn}, a reduced
bucket quadtree T' = (V, E) with fixed constant leaf capacity ! that
is associated with C', and a fixed constant precision parameter p

output: a function F: C — R? so that F(c;) is an approximation of the
forces that act on ¢; due to all other particles in C'

begin
begin {Part 1:Trivial Case and Initializations}
if T contains only one node then
foreach ¢; € C do
| F(c;) « Naive Direct Force_Calculation;
Exit;
foreach v € V do R(v) + I(v) < D;(v) + D2(v) + 0;
foreach leaf v € V do D3(v) + K(v) + 0;
end
begin {Part 2:Bottom-Up Traversal}
foreach leaf v € V do
calculate the coefficients of M?(v) due to all particles contained in
Sm(v);
foreach interior node v € V for which coefficients of M?(w) of all
children w of v have been calculate do
\; calculate the coefficients of M?(v) due to all particles contained in

Sm(v) by adding coefficients of shifted M?(w) of all children w of
v;

end
begin {Part 3: Top-Down Traversal}
foreach child v of the root of T' do
| Calculate Local Expansions_and Node Sets(T,C,p,v);

end
begin {Part 4: Obtain the Forces}
foreach leaf v € V do
foreach particle ¢; € Sm(v) do
let C'(v) be the set of charged particles that are contained in
Sm(v);
calculate Fiocqr(c;) using the coefficients of LP(v);
calculate Firect(c;) using Dy (v) U D3(v) U C(v);
calculate Fryitipote (¢;) using K (v);
F(cz) ~— Flocal(ci) + Fdirect(ci) + qultipole (Ci);

end
end
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Function Calculate Local Expansions_and Node Sets(T,C,p,v)

input : C,T,p are defined like in Function Multipole Framework, a node v

of T

output: the coefficients {bo,. .. ,b,} of the p-term local expansions of v, the
sets R(v), I(v), D1(v), D2(v), and additionally D3(v) and K (v) if v
is a leaf

begin

begin {Part 3.1:Find R(v),I(v),D;(v), and Dy(v)}

if parent(v) is the root of T then E(v) + parent(v);

else E(v) « R(parent(v)) U D1 (parent(v));

while E # () do
pick some u € E(v), and set E(v) + E(v) \ {u};
if Well Separated(u,v) then I(v) + I(v) U {u};
else if Sm(v) > Sm(u) then R(v) + R(v) U {u};
else if v is no leaf of T then E(v) « E(v) U children(u);
else if Neighbors(Sm(u), Sm(v)) then D;(v) < Di(v) U {u};
else Dy (v) + Do(v) U{u};

end
begin {Part 3.2: Calculate Coefficients of LP(v)}
foreach u € I(v) do
convert MP(u) to LP(u), and add coefficients of LP(u) to coeffi-
| cients of LP(v);

foreach u € D,(v) do
foreach ¢; € Sm(u) do

calculate M?(c¢;), convert MP(c;) to LP(c;), and add coefficients
L of LP(c¢;) to coeflicients of LP(v);

if coefficients of LP(parent(v)) have been calculated then
| add coefficients of shifted LP(parent(v)) to LP(v);

end

begin {Part 3.3:Find D3(v) and K(v) for Leaves}
if v is a leaf of T' then

set E(v) « R(v);

while E(v) # 0 do
pick some u € E(v), and set E(v) + E(v) \ {u};
if not Neighbors(Sm(u), Sm(v)) then K (v) « K(v) U {u};
if Neighbors(Sm(u),Sm(v)) and wu is leaf then Dj(v) +
Ds(v) U{u};
else E(v) < E(v) U children(u);

end
begin {Part 3.4: Recursion}
if v is no leaf of T' then foreach child w of v do
‘ | Calculate Local Expansions_and Node Sets(T,C,p,w);
end
end
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v are well-separated u € R(parent(v)). Hence, parent(v) and u are ill-separated by
definition of R(parent(v)). Lg(u) > Sm(parent(v)) by definition of R(parent(v)) and,
hence, parent(u) and v are ill-separated, too. If in the complementary case, u is a
proper descendant of a node in R(parent(v))UD; (parent(v)), u is a proper descendant
of a node R(parent(v)) since the nodes in D, (parent(v)) are leaves. Hence, parent(v)
and u are ill-separated. Furthermore, parent(u) and v are ill-separated, since otherwise
parent(u) € I(v) by the dynamic construction of I(v).]

If v and v are ill-separated and additionally Sm(v) > Sm(u), then, u belongs to
R(v). [To see this, we have to prove that Lg(u) > Sm(v): Suppose, u € R(parent(v))U
D1 (parent(v)), then, it follows from definition of Dy (parent(v)) that u € R(parent(v)).
Therefore, Lg(u) > Sm(parent(v)) and, hence, Lg(u) > Sm(v). In the comple-
mentary case, u is a proper descendant of a node in R(parent(v)) by definition of
D, (parent(v)). In this case Lg(u) > Sm(v) holds since Sm(parent(u)) > Sm(v) by
the dynamic construction of E(v).]

If u and v are ill-separated, Sm(v) < Sm(u), u is a leaf, and Sm(u) and Sm(v)
are neighbors, then, u is contained in Dy (v).

If u and v are ill-separated, Sm(v) < Sm(u), u is a leaf, and Sm(u) and Sm(v)
are no neighbors, then, v is contained in Dy (v), since R(parent(v)) U D1(parent(v))
and Do (parent(v)) are disjoint and u is an element of R(parent(v)) U D1(parent(v))
or a descendant of an element in R(parent(v)) U Dy (parent(v)).

In the remaining case Sm(v) < Sm(u) and u is an interior node of T that is
ill-separated from v. Hence, one has to check whether its children belong to one of
the sets R(v), I(v), D1(v), or Da(v).

Note that by construction of part 3.1 the particles that are covered by the small
cells of all nodes in R(parent(v)) U D1 (parent(v)) are exactly the particles that are
covered by the small cells of all nodes in R(v) U I(v) U D;(v) U D2(v). Furthermore,
each such particle is covered by the small cell of exactly one node in R(v) U I(v) U
Dl(U) U _D2 (’U)

Part 3.2: (Calculate Coefficients of LP(v)) For each w in the interaction set
I(v) the coefficients of p-term multipole expansions MP (u) are converted to coefficients
of p-term local expansions LP(u) and added to the corresponding coefficients of L”(v)
using Lemma 3.3 and choosing 2o := center(Sm(u)) and 2 := center(Sm(v)).

Some difficulties arise for the nodes in Da(v): Since each u € Dy(v) is a leaf
that is ill-separated from v with Sm(v) < Sm(u), one cannot apply Lemma 3.3 on u.
However, we found another way to calculate the local expansions due to the particles
that are contained in w: Let {c1,...,cr} be the set of charged particles that are
contained in Sm(u) at positions {p1,...,pr}. First, we calculate the coefficients of
the p-term multipole expansion MP(c;) for each single particle ¢; using Theorem 3.1
and choosing z¢ := p;. Since we can interpret each point p; as a dimensionless box B;,
the largest cell that covers B; and that has the same size as Sm(v) is no neighbor of
Sm(v) due to the definition of D»(v). Hence, Sm(v) and B; are well-separated, and
Lemma 3.3 can be used to convert M?(c;) to a p-term local expansion LP(c;) choosing
20 := p; and z; := center(Sm(v)). Finally, for each ¢; € {c1,... ,cx} the coeflicients
of LP(¢;) are added to LP(v).

Following standard practice, the coefficients of the shifted p-term local expansion
L? (parent(v)) of the parent of v are added to the corresponding coefficients of L? (v).
Thus, an approximation of the potential energy field of the region that is reflected by
L?(parent(v)) is inherited to v using Lemma 3.4 and choosing the center of Sm(v) as
z1. As a result of part 3.2, the coefficients of L?(v) reflect an approximation of the
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potential energy field due to all particles contained in the small cells of the nodes in
I(v), D2(v), and in the I(u) and Ds(u) sets of all ancestors of v. Furthermore, the
small cells of the nodes in R(v) U D;(v) are exactly the regions that have not been
considered yet in the calculation of the potential energy in Sm(v) due to all particles
in the region D \ Sm(v).

Part 3.3: (Find D3(v) and K (v) for Leaves) Suppose, v is a leaf of T' and u is
anode in R(v). By definition of R(v) we know that v and v are ill-separated and that
Sm(v) > Sm(u). Three cases can arise: If u and v are no neighbors, u is an element
of K(v). If u and v are neighbors and u is a leaf, u is an element of D3(v). Otherwise,
u is a neighbor of v but an interior node of 7. Thus, we can recursively assign the
children of u to either K (v) or D3(v), since all children of u are ill-separated from v,
their small cell is smaller than Sm(v), and Sm(u) is a neighbor of Sm(v).

Note that the particles that are covered by the small cells of the nodes in R(v) are
exactly the particles that are covered by the small cells of the nodes in K (v) U D3(v).
Furthermore, each such particle is covered by the small cell of exactly one node in
K(U) U D3 ('U) .

Part 3.4: (Recursion) Suppose, v is an interior node of T. The small cells
of the nodes in R(v) U D;(v) are exactly the regions that have not been considered
yet in the calculation of the potential energy in Sm(v) due to all particles that are
contained in the region D \ Sm(v). Hence, we can inherit the sets R(v) and D (v)
to each child w of v and call Function Calculate Local _Expansions_and Node_Sets
for w.

As a result of parts 1 to 3 we have given the coefficients of the p-term local
expansions LP(v) for each leaf v of T, and LP(v) reflects an approximation of the
potential energy field induced by the particles that are not covered by the small cells
of all nodes contained in D;(v) U D3(v) U K (v) U Sm(v).

Part 4: (Obtain the Forces) Suppose, v is a leaf of T so that Sm(v) contains

the particles {e1, ... ,ck}, which are placed at positions {p1,... ,pr}. We can obtain
an approximation of the forces that act on each ¢; € {c1,... ¢} due to all particles
in the system C = {c1,... ,en} as follows:

Let L' be the derivative of LP(v). Remark 3.5(f) can be used to to obtain the
forces that are induced by L' and act on ¢; by setting Focqi(c;) = (Re(L'(pi)), —Im(
L' (pi)))-

The forces that act on ¢; due to all particles that are contained in Sm(v)U{Sm(u) |
u € Dq1(v) U D3(v)} are calculated directly by a naive exact force calculation, since v
and all nodes u € D;(v) U D3(v) are leaves. The forces are denoted by Fyirecs(c;)-

We only have to concentrate on the particles that are covered by the small cells
of the nodes in K(v). Let u be a node in K(v). Since v is ill-separated from v and
Sm(v) > Sm(u), we cannot apply Lemma 3.3. However, we can use a similar trick
like the trick that we have invented in part 3.2: Let ¢; be a particle that is placed at
position p; € Sm(v). Since we can interpret p; as a dimensionless box B;, the largest
cell that contains ¢; and that has the same size as Sm(u) are no neighbors due to the
definition of K (v). Hence, Sm(u) and B; are well-separated, and Remark 3.5(f) can
be used in order to obtain the forces that act on ¢; due to all particles contained in
Sm(u). In particular, let M' be the derivative of MP(u). Then, the force on ¢; that
is induced by MP?(u) is given by Frputipote(¢i) = (Re(M'(p;)), —Im(M'(p;))).

Therefore, the approximation of the force that acts on a particle ¢; due to all parti-
clesin C' = {¢1,... ,en} is given by the sum of Fiirect (¢i); Fiocai(¢:), and Futipote (Ci)-
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3.4. The Running Time of the Multipole Framework. We need the fol-
lowing lemma.

LeEmMMA 3.11 (Sizes of the Sets R(v), I(v), D1(v), D2(v), D3(v), K(v)). Suppose,
T = (V, E) is a reduced bucket quadtree with constant leaf capacity | that is associated
with a set C = {c1,... ,cn} of N charged particles that are placed at distinct positions
{p1,...,pN}, and leaves(T) is the set of the leaves of T. Then,

> [R@)=O(N), (3.1)
veEV

> ()] = O(N), (3.2)
veV

> ID1(v)] = O(N), (33)
veV

> " |D2(v)| = O(N), (3.4)
veV

S IDs(v)| = O(N), and (3.5)
vEleaves(T)

Y K@) =0W) (3.6)

vEleaves(T)

Proof. We prove Equation (3.1) first. Let v be an arbitrary node of T. Each
node u € R(v) is ill-separated from v and Sm(v) > Sm(u). Hence, Sm(u) is either
covered by Sm(v) or covered by a neighbor box B of Sm(v) that has the same size as
Sm(v). In the first case, we know from the definition of R(v) that Sm(v) < Lg(u).
By definition of Lg(u) it follows that w = v. In the second case, by using that
Sm(v) < Lg(u) and Remark 3.7, we know that Lg(u) \ Sm(u) contains no particles.
Hence, B\ Sm(u) contains no particles, too. Since Sm(v) has exactly 8 neighbor
boxes B of equal size, we get that )y |R(v)| < (1 +38)-|V|= O(|V]) = O(N).

We now prove Equation (3.2). Suppose, w is a node in I(v), then, either w is
in R(parent(v)) or an ancestor u of w is in R(parent(v)) or w is in Dy (parent(v)) or
an ancestor u of w is in Dj (parent(v)). The last two options can be excluded by the
fact that all elements of D;(parent(v)) are neighboring leaves of Sm(parent(v)) with
a small cell that is larger than Sm(parent(v)) and, hence, are ill-separated from v and
have no descendants. Therefore,

Yvey {wlw eI} = 3oy {w|welI(v),we R(parent(v))}|+
Yvey {w [ w € I(v), w ¢ R(parent(v))}|-

By Equation (3.1) we know that ) ., [{w | w € I(v),w € R(parent(v)}| = O(N).
We can rewrite the second term of this equation as follows:

> Hw | w e I(v),w ¢ R(parent(v))} = > [{v | w € I(v),w ¢ R(parent(v))}|

veV weV
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Hence, in order to show that Equation (3.2) holds, it is sufficient to show that S(w) :=
{v | w € I(v),w ¢ R(parent(v))}| = O(1). Let w be arbitrarily fixed. Since w ¢
R(parent(v)) there exists a node u € R(parent(v)) that is an ancestor of w. Thus,
parent(v) and parent(w) are ill-separated, and Sm(parent(v)) > Sm(parent(w)). It
can be shown that there exists a box B that is a neighbor of box Sm(parent(w)),
B has the same size as Sm(parent(w)), and B is a sub-box of Sm(parent(v)) that
contains Sm(v). [To see this: Sm(v) cannot be larger than Sm(parent(w)), since — by
definition of I(v) — v and parent(w) are ill-separated but v and w are well-separated.
Suppose, Sm(v) is not covered by a box B that is a neighbor of Sm(parent(w)) and
that has the same size as Sm(parent(w)), then, v and parent(w) are well-separated,
which contradicts the fact that w € I(v) by definition of I(v). Finally, Sm(parent(v))
covers B, since Sm(parent(v)) > Sm(parent(w)).] For each such box B there exist
at most 4 sub-boxes like Sm(v) since Sm(parent(v)) covers B. Since for each w, the
number of neighbor boxes of equal size is bounded above by 8, |S(w)| is bounded
above by 4 - 8 = 32, which completes the proof of Equation (3.2).

The proof of Equation (3.3) is easy. Let v be an arbitrary node of T'. Since there
exist at most 8 boxes that are neighbors of Sm(v) and that have the same size as
Sm(v), there exist less than 8 leaves w that are neighbors of v with Sm(w) > Sm(v).
Hence, }_, oy |D1(v)| < 8|V| = O(N).

Next, we prove Equation (3.4). Let us suppose that the leaf capacity [ is 1 and that
vis anodeof T. Then, the small cells of all leaves have size zero. By definition of D; (v)
and D (v) it follows that D;(v) = Dy(v) = 0. Thus, by Equations (3.1) and (3.2) for
I = 1 the equality > .y [R(v)|+|I(v)|+|D1(v)|+|D2(v)| = O(N) holds. Furthermore,
the elements of R(parent(v)) U Dy (parent(v)) or the descendants of the elements of
R(parent(v)) U Dy (parent(v)) are partitioned into the disjoint subsets R(v) and I(v)
(since Dy (v) = D2(v) = 0). Now, let us suppose that [ > 1. Then, the nodes contained
in Do (v) are either elements of the set R(parent(v))UD; (parent(v)) or are descendants
of the elements of R(parent(v)) U D1 (parent(v)). In the first case, the number of
elements of D»(v) that are contained in R(parent(v)) U Dq(parent(v)) is bounded
above by O(N) using Equations (3.1) and (3.3). In the second case, we use that by
Equations (3.1), (3.2), and (3.3) >, cy |R(v)| + [I(v)| + |D1(v)| = O(N). Hence, it
is sufficient to show that - ., |R(v)|+ |I(v)| + [D1(v)| + |D2(v)| = O(N). This can
be shown as follows: Suppose, leaf u is a descendant of a node in R(parent(v)) U
D (parent(v)), contains k particles with 2 < k < [, and is neither assigned to I(v)
nor to R(v). Then, u is assigned to either D;(v) or D3(v) since it has no further
descendants in T'. Hence, the cardinality of the actual set R(v) UI(v)UD;(v)U Da(v)
is increased by one. In contrast to this, in the case that | = 1 the subtree rooted
at u would have been explored further. This exploration would result in adding at
least two nodes to R(v) U I(v). Therefore, in the case that I > 1 the expression
Y wev [B@)| 4+ |I(v)] +|D1(v)| + |D2(v)| is bounded above by O(N), too.

In order to prove Equation (3.5), we can use that >, c;cqpes(ry {w | SM(v) >
Sm(w), leaf (W)} = 3 creavesiry {1V | SM(v) > Sm(w), leaf (w)}|. It is sufficient to
show that for each leaf w the set S'(w) := |{v | Sm(v) > Sm(w), leaf (w)}|is bounded
by a constant. Since for each such w at most 8 boxes exist that are neighbors of Sm(w)
and have the same size as Sm(w), we get that |S"(w)| < 8.

T~

Finally, we prove Equation (3.6). By definition of K (v), we know that for each
leaf v of the tree K(v) = K;(v) U Ka(v) so that K;(v) is the set of all nodes w with
Sm(v) and Sm(w) are no neighbors and w € R(v). K(v) is the set of all nodes w so
that Sm(v) and Sm(w) are no neighbors, Sm(parent(w)) and Sm(v) are neighbors,
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and an ancestor of w is contained in R(v). Hence, we get that - ;. pes(r) {0 | w €
K(”)}' = Zvelea/ues(T) |{w | w € Kl (U)}| + Zveleaves(T) |{w | w € K2(v)}|
The first term is bounded by O(N) using Equation (3.1). To estimate the second

term, we use that

Y. HwlweK@i= Y HvlweK)}l

vEleaves(T) weleaves(T)

Let S"(w) := [{v | w € K2(v)}|. Then, it is sufficient to show that |S"(w)| is bounded
by a constant for an arbitrary node w of T'. Suppose, there exists a leaf v of T" so that
w € Ks(v). Then, Sm(parent(w)) and Sm(v) are neighbors. Since parent(w) or an
ancestor of parent(w) is contained in R(v), it is clear that Sm(v) > Sm(parent(w)).
Since at most 8 such leaves v of size larger or equal than Sm(parent(w)) are neighbors
of Sm(parent(w)), we get that |S”(w)| < 8, which completes the proof. O

THEOREM 3.12 (Multipole Framework). Suppose, C = {c1,... ,cn} is a set of
charged particles of unit charge that are placed at distinct positions p(C) = {p1,...,
pn}, T = (V,E) is a reduced bucket quadtree with fixed constant leaf capacity | that
is associated with C, and p is a fixed constant precision parameter. Then, Func-
tion Multipole Framework approximates the force that acts on each particle ¢; due
to all other particles in C in O(N) time.

Proof. If T' contains only one node, |C| = N <. Since [ is a constant, the exact
naive force calculation in part 1 needs constant time. Otherwise, the initialization of
the sets in part 1 needs O(|V|) = O(N) time.

In part 2 the coefficients of the p-term multipole expansions M?(v) are calculated
for all leaves v, using Theorem 3.1. Let m(v) denote the number of particles that are
contained in Sm(v) for each leaf v of T'. By Remark 3.5(a) this needs >, ¢ j.qy¢5(0) O(P*
m(v)) = O(p- N) = O(N) time. The coefficients of the p-term multipole expansions
of the interior nodes are obtained using Lemma 3.2. By Remark 3.5(b) and the fact
that |V| = O(N) the total running time of this step is O(p? - |[V'|) = O(N).

In part 3.1 the sets R(v), I(v), Di(v), and Dy(v) are found for a fixed node
v. This is done by exploring a collection of |R(parent(v)) U D;(parent(v))| rooted
subtrees, where each node in R(parent(v)) U D (parent(v)) is a root. The nodes in
R(parent(v)) U Dy (parent(v)) are either assigned to one of the sets R(v), I(v), D;(v),
and Dy (v) directly, or their children are examined later. Since T is a reduced bucket
quadtree, each interior node has at least two children. Hence, the total number of
nodes that are visited in the exploration of all subtrees of the nodes in R(parent(v))U
D, (parent(v)) is proportional to |R(v)| + |[I(v)| + |D1(v)| + |D2(v)|. It follows from
Lemma 3.11 that applying parts 3.1 to all nodes v of T' needs O(N) time.

In part 3.2 for each node u € I(v) converting the coefficients of the p-term mul-
tipole expansion MP(u) to the p-term local expansion LP(u) and adding these coef-
ficients to the corresponding coefficients of p-term local expansion L?(v) of v can be
done in O(p?) time using Lemma 3.3 (see Remark 3.5(c)). For each u € Dy (v) there
exists at most [ particles ¢; that are contained in Sm(u). For each such particle the
work needed to calculate MP(c;), to convert it to LP(c;), and to add its coefficients
to the corresponding coefficients of L?(v) is O(p?) using Theorem 3.1 and Lemma 3.3
(see Remarks 3.5(a) and (c)). Adding the coefficients of the shifted p-term local ex-
pansions LP(parent(v)) of the parent of a fixed node v to L?(v) can be done in O(p?)
time using Lemma 3.4 (see Remark 3.5(d)). Since we know from Lemma 3.11 that
Y ey L(0) UD3(v) = O(N), O(L-p? - N) = O(N) time is needed to apply part 3.2 on
all nodes v € V.
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In part 3.3 the sets D3(v) and K (v) are constructed by exploring a set of |R(v)|
rooted subtrees with roots in R(v). The total number of nodes that are visited in
the exploration of all subtrees that are rooted at the nodes in R(v) is proportional
to |D3(v)| + |K (v)|. Using Lemma 3.11, applying part 3.3 on all leaves v of T' needs
O(N) time in total.

In part 4 the forces Firect(ci); Flocat(¢i), and Fruitipote (¢;) are calculated for
each particle ¢; that is contained in a leaf v of T. The calculation of Fj,cqi(c;) needs
O(p) time by Remark 3.5(f). Calculating Firect(c;) can be done in O(l - (|D1(v)| +
|D3(v)| + 1)) time. Calculating Fpyitipote (¢;) can be done in O(p - |K(v)|) time by
Remark 3.5(f). Adding Fgirect(¢;i), Flocat(¢:), and Fpyitipote (¢;) to obtain F'(c;) needs
O(1) time. Hence, it follows from Lemma 3.11 that the running time of part 4 is
bounded by 3°, c1caves(r) 2ciesmp) O@+1- (ID1(v)| +[D3(v)| +1) +p- K (v)| +1) =
O(N). O

4. Experimental Comparisons.

4.1. The Experimental Framework. In this section we will experimentally
compare several tree codes. In particular, we implemented the tree code of Barnes and
Hut [5] (BaHu), FMM by Greengard [17] and Greengard and Rokhlin [18], the method
of Aluru et al. [2] (A1), and variants of the new multipole method that are based
on tree-construction ways A and B (NMM,; and NMMg). Additionally, we implemented
the naive exact force-calculation algorithm (Ex) that is used as a benchmark. Note
that the results for the hybrid tree-construction method (NMM¢) are identical to that
of NMMg by a suitable choice of the maximum number of recursion levels.

The algorithms have been implemented in C++ using LEDA-libraries [23]. All
experiments were performed on a 2.8 GHz Intel Pentium 4 PC with one gigabyte of
memory. We tested these algorithms on three different classes of distributions of N
particles. For each distribution we let NV range from 4000 up to 128000.

Fic. 4.1. (left) A uniform and (middle) a non-uniform distribution of 4000 particles. (right)
A quasi-converging distribution of 125 particles.

We distributed the particles randomly with uniform probability within the square
[0,1] x [0,1] and, following standard practice, call these distributions uniform distri-
butions.

The second class of distributions are non-uniform distributions. They were cre-
ated by distributing 20% of the particles randomly with uniform probability within
the box [0, 1] x [0,1]. Another 20% of the particles were randomly distributed within
a disc of radius 1 with centelr (%,%). The rest of the pa,rlticlles was distributed analo-

gously within discs of radii {5, g7 and 55 with center (3, 3).
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Finally, we constructed quasi-converging distributions by distributing the N parti-
cles on the line connecting (0,0) and P := (10?°,10?%). In particular, the first particle

was placed at position %P. The i-th particle was placed at position p; := %513—1, for
each i with x-coordinate of p; greater than @ := 10725, The other particles were

placed uniformly on the line connecting (0,0) and @. Figure 4.1 illustrates the three
classes of distributions.

Suppose, 4 is a force-approximation method, F, (i) denotes the approximation of
the force that acts on particle ¢ due to all other particles, and Fg,; (i) denotes the exact
force that acts on particle ¢ due to all other particles. The error of the approximation
generated by 4 is:

Yo 1Fes (i) — Fa ()]
SN Fe (3)]12

We say that an approximation that is generated by 4 is of low, medium, and high
accuracy if Error(4) < 1072, Error(4) < 102, and Error(4) < 10~%), respectively.

Error(4) :=

4.2. The Numerical Results. For each tree code and class of distributions,
we determined the parameters that guarantee low, medium, and high accuracy for
all sizes of N. We selected the set of parameters that resulted in the fastest running
times for the fixed accuracies. These parameters are listed in Table 4.1. The bucket
capacity [ in NMM, and NMMjp is 25.

Class of Accuracy Parameters of Algorithm:
Distributions BaHu [ FMM | Al [ NMMx | NMMs
low a=0.7 p=3|p=3|p=3|p=3
uniform medium a=0.2 p=4 | p=4|p=4|p=4
high a=0.1 p=6|p= p=6 | p=6
low a=0.7 p=3 | p=3|p=3|p=3
non-uniform medium a=0.2 p= p= p=5|p=5
high a=0.1 p= p= p=7|p="7
low a=10.3 p=1|p=4|p=4|p=4
quasi-converging | medium a=0.1 p=1|p= p=6|p=6
high a=003 | p=1|p=8 | p=8 | p=38

TABLE 4.1

Parameters of tree codes that guarantee a desired accuracy.

Note that choosing p = 1 in the method FMM for quasi-converging distributions is
sufficient to guarantee all desired accuracies, since there exists a leaf in each complete
quadtree that contains nearly all particles. Hence, the interactions between these
nodes are calculated exactly, and the choice of p is marginal. The parameters of
NMM, and NMMp are identical, since both methods differ in the tree construction pro-
cedure only. For brevity, we only present the running times for low and high desired
accuracies. For each size of IV, each class of distribution, and each algorithm, the
reported times are the average times of 100 tests.

For uniform distributions (see Table 4.2) and low and high accuracy all tree codes
are much faster than the exact method. In comparison with BaHu the multipole
methods scale much better if high accuracy is desired. The expected running time of
FMM and NMMp is linear for these distributions. Therefore, it is not surprising that they
are very fast. NMMp is the fastest method for both accuracies. Al is roughly a factor
3 to 5 slower than NMMg. NMM, is roughly a factor 2 slower than NMMg.
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Particles | Accuracy Tree Codes Exact
BaHu FMM Al NMMa NMMg Method
4000 0.18 0.09 0.34 0.15 0.08 2.03
8000 0.42 0.34 0.70 0.39 0.21 8.59
16000 Low 0.95 0.40 1.46 0.83 0.40 35.52
32000 2.07 1.42 2.93 1.90 0.93| 142.58
64000 4.57 1.73 6.01 3.96 1.79| 572.90
128000 10.16 5.86 12.28 9.00 4.07 | 2288.73
4000 3.23 0.20 0.60 0.18 0.11 2.03
8000 8.49 0.78 1.24 0.49 0.29 8.59
16000 High 21.30 0.85 2.57 0.96 0.50 35.52
32000 51.22 3.25 5.22 2.36 1.29| 142.58
64000 120.42 3.59 10.60 4.64 2.26| 572.90
128000 282.20 13.33 21.50 10.91 5.54 | 2288.73

TABLE 4.2

Running times in seconds for the calculation of the forces and uniform distributions.

As expected, for non-uniform distributions (see Table 4.3) the running times
of FMM grow significantly in comparison with the running times of FMM for uniform
distributions. The method BaHu is up to a factor 2 slower in comparison with the CPU
times that are needed by BaHu for uniform distributions. Only the running times of
A1, NMM,, and NMMg keep nearly unchanged. Again, for both desired accuracies NMMj is
the fastest method.

Particles | Accuracy Tree Codes Exact
Babu | P | a1 | mM NMMs | Method
4000 0.26 0.53 0.33 0.17 0.12 2.06
8000 0.58 1.95 0.68 0.36 0.22 8.57
16000 | o 1.29 10.33 1.41 0.81 0.46| 35.54
32000 2.72 25.07 2.81 1.65 0.91| 142.37
64000 5.97 109.34 5.78 3.67 1.92| 572.12
128000 12.71 230.60 11.87 7.92 3.80| 2283.39
4000 5.31 0.64 0.70 0.20 0.14 2.06
8000 15.34 2.46 1.44 0.48 0.32 8.57
16000 ngh 38.97 11.01 2.98 0.97 0.61 35.54
32000 91.76 28.44 6.07 2.26 1.40 | 142.37
64000 212.94| 120.67 12.30 453 2.58| 572.12
128000 468.64 250.17 25.04 10.45 5.88 | 2283.39

TABLE 4.3

Running times in seconds for the calculation of the forces and non-uniform distributions.

For quasi-converging distributions (see Table 4.4) the running times of FMM are
nearly identical with that of Ex. NMM, and NMMg are the fastest methods for both
accuracies and need nearly the same amounts of running time. The method Al is a
factor 2 to 3 slower than NMM, and NMMg.

We can summarize that the multipole methods A1, NMM,, NMMg (and, hence, NMM¢)
are best suited for approximating Coulombic interactions in the plane if high accuracy
is desired and the particle distributions are not uniform. Since the constant factors of
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Particles | Accuracy Tree Codes Exact
BaHu FMM Al NMMa NMMg Method
4000 0.87 2.06 0.26 0.08 0.15 2.03
8000 1.79 8.83 0.53 0.18 0.27 8.53
16000 Low 3.67 35.92 1.04 0.39 0.55 35.83
32000 7.34 144.59 2.10 0.77 0.97| 142.14
64000 14.99 577.18 4.11 1.67 1.95| 573.30
128000 30.92| 2315.93 8.44 3.61 3.67 | 2280.16
4000 1.67 2.06 0.39 0.10 0.16 2.03
8000 3.65 8.83 0.80 0.21 0.29 8.53
16000 High 7.89 35.92 1.60 0.45 0.60 35.83
32000 16.11 144.59 3.18 0.94 1.06 | 142.14
64000 35.62 577.18 6.32 2.03 2.13| 573.30
128000 79.57 | 2315.93 12.83 4.34 4.00 | 2280.16

TABLE 4.4

Running times in seconds for the calculation of the forces and quasi-converging distributions.

the O(N log N) methods A1 and NMM, are quite large, NMMz (and NMM¢) outperform the
other tree codes for all desired accuracies and uniform and non-uniform distributions.
For quasi-converging distributions NMMp (and NMM¢) are nearly as fast as NMM, which,
in this case, is the fastest method.

5. Summary and Future Work. We have presented a new multipole-based
tree code that runs in O(NN) best-case and in O(N log N) worst-case running time.
Our practical experiments for Coulombic systems in two dimensions indicate that the
new multipole methods is faster than several popular tree codes for both uniform
and highly non-uniform particle distributions. It is straightforward to extend it to
three dimensions or gravitational systems. The algorithm has already been applied
successfully to the visualization of large and complex networks [19]. Additionally,
we plan to adopt these techniques to solve large-scale placement problems in VLSI
design.
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