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Abstract. The maximum planar subgraph problem is well studied. Re-
cently, it has been shown that the maximum planar subgraph problem
is NP-complete for cubic graphs [5]. In this paper we prove shortly that
the maximum planar subgraph problem remains NP-complete even for
graphs without a minor isomorphic to K5 or K3,3, respectively.

1 Introduction

Wagner characterizes a planar graph as a graph that has no K5 and K3,3 mi-
nors [13]. His theorem is a significant reformulation of Kuratowski’s well-known
result [8]. If G has either no K5 or no K3,3 minor it is intuitively close to pla-
narity.

The maximum planar subgraph problem (MPSP for short) is well-studied:
Given a graph G = (V,E) and a positive integer k ≤ |E|, is there a subset
E′ ⊆ E with |E′| ≥ k such that the graph G′ = (V,E′) is planar?

Liu et al., Yannakatis, and Watanabe et al. all independently showed that
this problem is NP-complete [10, 14, 15].

The weighted version of MPSP is a generalization of MPSP where weights are
assigned to the edges and the task is to find a planar subgraph of maximum total
weight. Recently, Faria, de Figueiredo, and de Mendonça have shown that the
maximum planar subgraph problem remains NP-complete for cubic graphs [5].
For a survey on the maximum planar subgraph problem, the reader is referred
to [9].

Obviously, the class of non-planar cubic graphs is not equal to the class of
graphs that are either K5-free or K3,3-free (see Figure 1).

We strengthen the NP-completeness result for the maximum planar sub-
graph problem by showing that it is NP-complete even for graphs without a
K3,3 or K5 minor, respectively.

? This work was partially supported by the Marie Curie Research Training Network
ADONET 504438 funded by the EU.
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(a) Cubic graph

PSfrag replacements

G1

G2

G3

G4

G5

e1

e2

b− c

b1 − c1
b2 − c2
b3 − c3
b4 − c4
b5 − c5

a
a1

a2

a3

a4

a5

c
c1
c2
c3
c4
c5

u

v
δ1
δ2
uλ
uµ
uĩ
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(b) K3,3 minor

Fig. 1. A non-planar cubic graph that has minors isomorphic to K5 and to K3,3

2 Preliminaries

Given a connected planar graph G = (V,E) the connected vertex cover decision
problem (CVC for short) asks for a vertex cover N in G of cardinality at most
k, such that the subgraph induced by N is connected. CVC is known to be
NP-hard [6].

A coloop is an edge in a graph that does not lie in any cycle.
A minor can be defined in the following way: Let G and H be two undirected

graphs. H is a minor of G if there exists a subgraph H ′ of G and a partition
V (H ′) = V1]· · ·]Vk of its vertex set into connected subsets such that contracting
each of V1, . . . , Vk yields a graph isomorphic to H.

Throughout this paper Tutte connectivity is used. The following definitions
are given by Truemper [11]: Let G = (V,E) be a connected graph. Let (E1, E2)
be a pair of nonempty sets that partition the edge set E. Let G1 (resp. G2)
be obtained by removal of the edges E2 (resp. E1). We assume G1 and G2 to
be connected. We suppose that pairwise identification of k vertices of G1 with
k vertices of G2 produces G. (E1, E2) is a (Tutte) k-separation if E1 and E2

have at least k edges each. G is called (Tutte) 3-connected if it has no (Tutte)
1- or 2-separation. G is called a 2-sum (composition) of the connected graphs
G1 = (V1, E1) and G2 = (V2, E2), denoted G = G1⊕2G2, if the following process
yields G: we identify an arbitrary edge e1 of G1 with an arbitrary edge e2 of G2

and delete this edge in G1 ∪G2.

3 NP-hardness proofs

In this section we prove NP-hardness of the maximum planar subgraph problem
on K5-free or K3,3-free graphs, respectively.

Clearly the problem is in NP and we may obviously reduce the problem on
connected graphs.

We use the following lemma for our NP-hardness proofs.



Lemma 1 (Truemper [12]). If G is a 2-sum of G1 and G2, then for any
3-connected minor N of G, G1 or G2 has a minor isomorphic to N .

Proof. If this is not so, then N has a 2-separation induced by the 2-separation
that is given by G1 or G2 minus their connecting edges. This leads to a contra-
diction to the fact that N is 3-connected. ut

Let K5 be the following class of graphs, each constructed as follows. Let
G = (V,E) be a connected planar graph and E ′ a nonempty subset of E.

We apply an iterative processing of the edges e of E ′: We take the 2-sum
of the current graph G with K5, i.e. G ⊕2 K5, where e ∈ E

′ is the edge of G
involved in the 2-sum. Then, we redefine G to be the 2-sum.

We name G[K5] to be the final 2-sum that results from the former iterative
processing.

Further, we define K3,3 and G[K3,3] in an analogue way, using K3,3 instead
of K5.

Theorem 1. The maximum planar subgraph problem is NP-complete for the
two classes K5 and K3,3.

The proof of Theorem 1 uses the following result by Asano:

Theorem 2 (Asano [1]). Let G = (V,E) be a connected planar graph, and
G(2) obtained of G by splitting each edge of G once. The new vertices are de-
noted by ai with i = 1, 2, 3, . . . , |E|. Let G2 be the graph constructed by a planar
embedding of G(2): for every face f add edges between two ai, aj, i 6= j, if they
are belonging to the boundary of f and are adjacent to the same vertex. Let G∗

2

be the dual graph of G2 in respect to the modified planar embedding of G(2). Let
N ⊂ V be a connected vertex cover of G with |N | ≤ k, k ∈ N.

If G has a connected vertex cover of size at most k then G(2) has a Steiner
tree T for the terminal set A = {ai | i = 1, 2, . . . , |E|} with |E(T )| ≤ k and all
edges (ai, aj)

∗ ∈ F ∗ with i, j = 1, 2, 3, . . . , |E|, i 6= j in G∗
2 − E(T )

∗ are coloops.
On the other hand, let S ⊂ E(G∗

2) − F
∗ be a subset of edges in G∗

2 with
|S| ≤ k such that all edges (ai, aj)

∗ ∈ F ∗ with i, j = 1, 2, 3, . . . , |E|, i 6= j in
G∗

2 − S are coloops then G has a connected vertex cover of size at most k.

Asano’s result [1] implies that the following multi-cut problem (MC for short)
is NP-hard. Obviously, MC is in NP .

Corollary 1. Given a connected planar graph H = (V,E) with edge partition
E = E1]E2 and an integer k, deciding whether there exist a subset S ⊂ E1 with
|S| ≤ k such that all edges e ∈ E2 are coloops in H − S is NP-complete.

Observe that MC is related to the minimum multi-cut problem [4] (MMC
for short): Given a graph G = (V,E), a set S ⊆ V × V of source-terminal
pairs, k ∈ N and a weight function w : E → N , is there a multi-cut, i.e., a set
E′ ⊆ E such that the removal of E′ from E disconnects si from ti for every pair
(si, ti) ∈ S such that

∑
e∈E′ w(e) ≤ k?



Therefore, MC seeks for a minimum multi-cut in E1 whether MMC uses
E. Hence MC is equal to MMC if and only if E2 = ∅. Note that MMC is a
generalization of the minimum multiway cut and is NP-hard even when the
graph is a tree [4, 7]. For a survey and bibliography the reader is referred to [2,
3].

Proof (Theorem 1). We show that there exists a polynomial transformation from
MC (that is NP-complete by Corollary 1) to the maximum planar subgraph
problem on graphs of the classes K5 or K3,3, respectively.

Given an instance of MC, i.e., a planar graph G = (V,E1]E2) and an integer
k, we can construct an instance of the weighted MSPS for graphs of K5 or K3,3,
respectively: We set E′ = E2 and create iteratively an instance G[N ] of K5 or
K3,3, respectively, with N = K5 or N = K3,3, respectively.

Moreover, we define a weight function for the edges of G[N ]: For each edge
e of G[N ] that is also included in G, i.e., e ∈ E1, we set c(e) = 1, otherwise
c(e) = k + 1.

Claim: Let G = (V,E1 ]E2) be a connected, planar graph, N ∈ {K3,3,K5},
E′ = E2 and let S ⊆ E1. Then G[N ] − S does not contain any N -minor if and
only if all edges e ∈ E2 are coloops in G− S.

Proof of claim: First assume that there exists an edge e ∈ E2 such that e = (i, j)
is no coloop in G−S. Then there exists a path P from i to j in G−S that does
not contain edge e. Since E2 = E′ and hence e is involved into a 2-sum with
G − S and N , G[N ] − S contains an N -minor using path P instead of e. This
leads to a contradiction to the assumption that G[N ]− S is N -free.

Now we assume that there exists an N -minor in G[N ] − S. Since G − S is
planar and hence N -free we conclude that there is an edge e = (i, j) ∈ E ′ = E2

that is involved into a 2-sum of G−S and N . Furthermore, since G[N ]−S is not
planar there is a path P in G− S from i to j. This contradicts the assumption
that e is a coloop in G− S. This concludes our claim.

Our claim implies that there exists a feasible solution S ⊂ E1 with |S| ≤ k
of instance G = (V,E1 ]E2) for MC if and only if there exists a subset of edges
S′ of G[N ] with total weight c(S ′) ≤ k whose removal yields a planar subgraph.
Observe that c(e) = k + 1 > c(S ′) for e ∈ E′ = E2 and hence S′ ⊆ E1.

Moreover, if we replace every edge e in G[N ] with c(e) = k + 1 by (k + 1)
copies of edge e we conclude the statement of the theorem. ut

Finally, we get the following result.

Corollary 2. The maximum planar subgraph problem is NP-complete for the
following classes of graphs.

1. The graphs without a K5 minor,
2. The graphs without a K3,3 minor.



Proof. Clearly the problem is in NP since planarity is polynomially checkable.
The NP-hardness follows immediately by Lemma 1: The class of graphs

without a K5 or K3,3 minor, respectively, contains the class K3,3 or K5, respec-
tively, for which Theorem 1 establishes the problem to be NP-complete. ut

Conclusion

Surprisingly, the (weighted) maximum planar subgraph problem gets easy for a
triconnected non-planar graph G without a minor isomorphic to K3,3. By the
major decomposition theorems [11], then G is isomorphic to K5. Hence, the
maximum planar subgraph of G is equal to K5 minus one of the cheapest edges.

We consider a triconnected non-planar graph G without a minor isomorphic
to K5. G is called a ∆-sum (composition) of G1 and G2, denoted G = G1⊕∆G2,
if identification of an arbitrary triangle of G1 with an arbitrary triangle in G2

and subsequent deletion of the edges of this triangle produces G. By the major
decomposition theorems [11], then G is either isomorphic to K3,3, or to V8, or
is equal to ∆-sum compositions of planar graphs. For the first two cases, the
(weighted) maximum planar subgraph problem gets easy: we delete one of the
cheapest edges in K3,3 or V8, respectively. For the remaining case we conjecture
that it is NP-complete as well.

Furthermore, we conjecture that the crossing minimization problem on graphs
without a K5 or K3,3 minor, respectively, is NP-hard.
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Moreover, we are grateful to Klaus Truemper who has pointed out a significant
simplification using Lemma 1. His idea shortened our original proof based on the
major decomposition theorems. Further, we would like to thank him for helpful
discussions and for proof-reading this paper.
Last but not least, we would like to thank Stefan Hachul and Katrina Riehl for
proof-reading this paper.

References

1. T. Asano. An application of duality to edge-deletion problems. SIAM Journal on

Computing, 16(2):312–331, 1987.
2. C. Bentz, M.-C. Costa, L. Létocart, and F. Roupin. A bibliography on multicut

and integer multiflow problems. Technical report, Rapport scientifique CEDRIC
654, 2004.

3. M.-C. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal integer
multiflow: A survey. EJOR European Journal on Operational Research, 162(1):55–
69, 2005.

4. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23:864–894, 1994.



5. L. Faria, C. M. H. de Figueiredo, and C. F. X. de Mendonça N. Splitting number
is NP-complete. Discrete Applied Mathematics, 108(1–2):65–83, 2001.

6. M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is NP-
complete. SIAM Journal on Applied Mathematics, 32:826–834, 1977.

7. N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

8. K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta

Mathematicae, 15:271–283, 1930.
9. A. Liebers. Planarizing graphs – a survey and annotated bibliography. Journal of

Graph Algorithms and Applications, 5(1):1–74, 2001.
10. P. C. Liu and R. Geldmacher. On the deletion of nonplanar edges of a graph. In

Proc. of the 10th Southeastern Conference on Combinatorics, Graph Theory, and

Computing, Boca Raton, Florida, USA, 1979, part 2, volume 24, pages 727–738.
Congressus Numerantium, 1979.

11. K. Truemper. Matroid Decomposition. Academic Press, University of Texas at
Dallas, Richardson, Texas, 1992.

12. K. Truemper. Personal communications. July 2006.
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