Maximum Planar Subgraph on Graphs not Contractive to K_{5} or $K_{3,3}{ }^{\star}$

Elisabeth Gassner ${ }^{1}$ and Merijam Percan ${ }^{2}$
${ }^{1}$ Technische Universität Graz, 5020 Institut für Mathematik B
Steyrergasse 30/II, 8010 Graz, Austria
gassner@opt.math.tu-graz.ac.at
${ }^{2}$ Universität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln, Germany percan@informatik.uni-koeln.de

Abstract

The maximum planar subgraph problem is well studied. Recently, it has been shown that the maximum planar subgraph problem is $\mathcal{N} \mathcal{P}$-complete for cubic graphs [5]. In this paper we prove shortly that the maximum planar subgraph problem remains $\mathcal{N} \mathcal{P}$-complete even for graphs without a minor isomorphic to K_{5} or $K_{3,3}$, respectively.

1 Introduction

Wagner characterizes a planar graph as a graph that has no K_{5} and $K_{3,3}$ minors [13]. His theorem is a significant reformulation of Kuratowski's well-known result [8]. If G has either no K_{5} or no $K_{3,3}$ minor it is intuitively close to planarity.

The maximum planar subgraph problem (MPSP for short) is well-studied: Given a graph $G=(V, E)$ and a positive integer $k \leq|E|$, is there a subset $E^{\prime} \subseteq E$ with $\left|E^{\prime}\right| \geq k$ such that the graph $G^{\prime}=\left(V, E^{\prime}\right)$ is planar?

Liu et al., Yannakatis, and Watanabe et al. all independently showed that this problem is $\mathcal{N} \mathcal{P}$-complete $[10,14,15]$.

The weighted version of MPSP is a generalization of MPSP where weights are assigned to the edges and the task is to find a planar subgraph of maximum total weight. Recently, Faria, de Figueiredo, and de Mendonça have shown that the maximum planar subgraph problem remains $\mathcal{N} \mathcal{P}$-complete for cubic graphs [5]. For a survey on the maximum planar subgraph problem, the reader is referred to [9].

Obviously, the class of non-planar cubic graphs is not equal to the class of graphs that are either K_{5}-free or $K_{3,3}$-free (see Figure 1).

We strengthen the $\mathcal{N} \mathcal{P}$-completeness result for the maximum planar subgraph problem by showing that it is $\mathcal{N P}$-complete even for graphs without a $K_{3,3}$ or K_{5} minor, respectively.

[^0]

Fig. 1. A non-planar cubic graph that has minors isomorphic to K_{5} and to $K_{3,3}$

2 Preliminaries

Given a connected planar graph $G=(V, E)$ the connected vertex cover decision problem (CVC for short) asks for a vertex cover N in G of cardinality at most k, such that the subgraph induced by N is connected. CVC is known to be $\mathcal{N} \mathcal{P}$-hard [6].

A coloop is an edge in a graph that does not lie in any cycle.
A minor can be defined in the following way: Let G and H be two undirected graphs. H is a minor of G if there exists a subgraph H^{\prime} of G and a partition $V\left(H^{\prime}\right)=V_{1} \uplus \cdots \uplus V_{k}$ of its vertex set into connected subsets such that contracting each of V_{1}, \ldots, V_{k} yields a graph isomorphic to H.

Throughout this paper Tutte connectivity is used. The following definitions are given by Truemper [11]: Let $G=(V, E)$ be a connected graph. Let $\left(E_{1}, E_{2}\right)$ be a pair of nonempty sets that partition the edge set E. Let G_{1} (resp. G_{2}) be obtained by removal of the edges E_{2} (resp. E_{1}). We assume G_{1} and G_{2} to be connected. We suppose that pairwise identification of k vertices of G_{1} with k vertices of G_{2} produces G. $\left(E_{1}, E_{2}\right)$ is a (Tutte) k-separation if E_{1} and E_{2} have at least k edges each. G is called (Tutte) 3 -connected if it has no (Tutte) 1- or 2-separation. G is called a 2-sum (composition) of the connected graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, denoted $G=G_{1} \oplus_{2} G_{2}$, if the following process yields G : we identify an arbitrary edge e_{1} of G_{1} with an arbitrary edge e_{2} of G_{2} and delete this edge in $G_{1} \cup G_{2}$.

$3 \mathcal{N} \mathcal{P}$-hardness proofs

In this section we prove $\mathcal{N} \mathcal{P}$-hardness of the maximum planar subgraph problem on K_{5}-free or $K_{3,3}$-free graphs, respectively.

Clearly the problem is in $\mathcal{N} \mathcal{P}$ and we may obviously reduce the problem on connected graphs.

We use the following lemma for our $\mathcal{N} \mathcal{P}$-hardness proofs.

Lemma 1 (Truemper [12]). If G is a 2-sum of G_{1} and G_{2}, then for any 3 -connected minor N of G, G_{1} or G_{2} has a minor isomorphic to N.

Proof. If this is not so, then N has a 2-separation induced by the 2-separation that is given by G_{1} or G_{2} minus their connecting edges. This leads to a contradiction to the fact that N is 3 -connected.

Let \mathcal{K}_{5} be the following class of graphs, each constructed as follows. Let $G=(V, E)$ be a connected planar graph and E^{\prime} a nonempty subset of E.

We apply an iterative processing of the edges e of E^{\prime} : We take the 2-sum of the current graph G with K_{5}, i.e. $G \oplus_{2} K_{5}$, where $e \in E^{\prime}$ is the edge of G involved in the 2 -sum. Then, we redefine G to be the 2 -sum.

We name $G\left[K_{5}\right]$ to be the final 2-sum that results from the former iterative processing.

Further, we define $\mathcal{K}_{3,3}$ and $G\left[K_{3,3}\right]$ in an analogue way, using $K_{3,3}$ instead of K_{5}.

Theorem 1. The maximum planar subgraph problem is $\mathcal{N} \mathcal{P}$-complete for the two classes \mathcal{K}_{5} and $\mathcal{K}_{3,3}$.

The proof of Theorem 1 uses the following result by Asano:
Theorem 2 (Asano [1]). Let $G=(V, E)$ be a connected planar graph, and $G(2)$ obtained of G by splitting each edge of G once. The new vertices are denoted by a_{i} with $i=1,2,3, \ldots,|E|$. Let G_{2} be the graph constructed by a planar embedding of $G(2)$: for every face f add edges between two $a_{i}, a_{j}, i \neq j$, if they are belonging to the boundary of f and are adjacent to the same vertex. Let G_{2}^{*} be the dual graph of G_{2} in respect to the modified planar embedding of $G(2)$. Let $N \subset V$ be a connected vertex cover of G with $|N| \leq k, k \in \mathbf{N}$.

If G has a connected vertex cover of size at most k then $G(2)$ has a Steiner tree T for the terminal set $A=\left\{a_{i}|i=1,2, \ldots,|E|\}\right.$ with $|E(T)| \leq k$ and all edges $\left(a_{i}, a_{j}\right)^{*} \in F^{*}$ with $i, j=1,2,3, \ldots,|E|, i \neq j$ in $G_{2}^{*}-E(T)^{*}$ are coloops.

On the other hand, let $S \subset E\left(G_{2}^{*}\right)-F^{*}$ be a subset of edges in G_{2}^{*} with $|S| \leq k$ such that all edges $\left(a_{i}, a_{j}\right)^{*} \in F^{*}$ with $i, j=1,2,3, \ldots,|E|, i \neq j$ in $G_{2}^{*}-S$ are coloops then G has a connected vertex cover of size at most k.

Asano's result [1] implies that the following multi-cut problem (MC for short) is $\mathcal{N} \mathcal{P}$-hard. Obviously, MC is in $\mathcal{N P}$.

Corollary 1. Given a connected planar graph $H=(V, E)$ with edge partition $E=E_{1} \uplus E_{2}$ and an integer k, deciding whether there exist a subset $S \subset E_{1}$ with $|S| \leq k$ such that all edges $e \in E_{2}$ are coloops in $H-S$ is $\mathcal{N} \mathcal{P}$-complete.

Observe that MC is related to the minimum multi-cut problem [4] (MMC for short): Given a graph $G=(V, E)$, a set $S \subseteq V \times V$ of source-terminal pairs, $k \in \mathbf{N}$ and a weight function $w: E \rightarrow N$, is there a multi-cut, i.e., a set $E^{\prime} \subseteq E$ such that the removal of E^{\prime} from E disconnects s_{i} from t_{i} for every pair $\left(s_{i}, t_{i}\right) \in S$ such that $\sum_{e \in E^{\prime}} w(e) \leq k ?$

Therefore, MC seeks for a minimum multi-cut in E_{1} whether MMC uses E. Hence MC is equal to MMC if and only if $E_{2}=\emptyset$. Note that MMC is a generalization of the minimum multiway cut and is $\mathcal{N} \mathcal{P}$-hard even when the graph is a tree $[4,7]$. For a survey and bibliography the reader is referred to [2, $3]$.

Proof (Theorem 1). We show that there exists a polynomial transformation from MC (that is $\mathcal{N} \mathcal{P}$-complete by Corollary 1) to the maximum planar subgraph problem on graphs of the classes \mathcal{K}_{5} or $\mathcal{K}_{3,3}$, respectively.

Given an instance of MC, i.e., a planar graph $G=\left(V, E_{1} \uplus E_{2}\right)$ and an integer k, we can construct an instance of the weighted MSPS for graphs of \mathcal{K}_{5} or $\mathcal{K}_{3,3}$, respectively: We set $E^{\prime}=E_{2}$ and create iteratively an instance $G[N]$ of \mathcal{K}_{5} or $\mathcal{K}_{3,3}$, respectively, with $N=K_{5}$ or $N=K_{3,3}$, respectively.

Moreover, we define a weight function for the edges of $G[N]$: For each edge e of $G[N]$ that is also included in G, i.e., $e \in E_{1}$, we set $c(e)=1$, otherwise $c(e)=k+1$.

Claim: Let $G=\left(V, E_{1} \uplus E_{2}\right)$ be a connected, planar graph, $N \in\left\{K_{3,3}, K_{5}\right\}$, $E^{\prime}=E_{2}$ and let $S \subseteq E_{1}$. Then $G[N]-S$ does not contain any N-minor if and only if all edges $e \in E_{2}$ are coloops in $G-S$.

Proof of claim: First assume that there exists an edge $e \in E_{2}$ such that $e=(i, j)$ is no coloop in $G-S$. Then there exists a path P from i to j in $G-S$ that does not contain edge e. Since $E_{2}=E^{\prime}$ and hence e is involved into a 2-sum with $G-S$ and $N, G[N]-S$ contains an N-minor using path P instead of e. This leads to a contradiction to the assumption that $G[N]-S$ is N-free.

Now we assume that there exists an N-minor in $G[N]-S$. Since $G-S$ is planar and hence N-free we conclude that there is an edge $e=(i, j) \in E^{\prime}=E_{2}$ that is involved into a 2 -sum of $G-S$ and N. Furthermore, since $G[N]-S$ is not planar there is a path P in $G-S$ from i to j. This contradicts the assumption that e is a coloop in $G-S$. This concludes our claim.

Our claim implies that there exists a feasible solution $S \subset E_{1}$ with $|S| \leq k$ of instance $G=\left(V, E_{1} \uplus E_{2}\right)$ for MC if and only if there exists a subset of edges S^{\prime} of $G[N]$ with total weight $c\left(S^{\prime}\right) \leq k$ whose removal yields a planar subgraph. Observe that $c(e)=k+1>c\left(S^{\prime}\right)$ for $e \in E^{\prime}=E_{2}$ and hence $S^{\prime} \subseteq E_{1}$.

Moreover, if we replace every edge e in $G[N]$ with $c(e)=k+1$ by $(k+1)$ copies of edge e we conclude the statement of the theorem.

Finally, we get the following result.
Corollary 2. The maximum planar subgraph problem is $\mathcal{N P}$-complete for the following classes of graphs.

1. The graphs without a K_{5} minor,
2. The graphs without a $K_{3,3}$ minor.

Proof. Clearly the problem is in $\mathcal{N P}$ since planarity is polynomially checkable.
The $\mathcal{N} \mathcal{P}$-hardness follows immediately by Lemma 1: The class of graphs without a K_{5} or $K_{3,3}$ minor, respectively, contains the class $\mathcal{K}_{3,3}$ or \mathcal{K}_{5}, respectively, for which Theorem 1 establishes the problem to be $\mathcal{N} \mathcal{P}$-complete.

Conclusion

Surprisingly, the (weighted) maximum planar subgraph problem gets easy for a triconnected non-planar graph G without a minor isomorphic to $K_{3,3}$. By the major decomposition theorems [11], then G is isomorphic to K_{5}. Hence, the maximum planar subgraph of G is equal to K_{5} minus one of the cheapest edges.

We consider a triconnected non-planar graph G without a minor isomorphic to $K_{5} . G$ is called a Δ-sum (composition) of G_{1} and G_{2}, denoted $G=G_{1} \oplus_{\Delta} G_{2}$, if identification of an arbitrary triangle of G_{1} with an arbitrary triangle in G_{2} and subsequent deletion of the edges of this triangle produces G. By the major decomposition theorems [11], then G is either isomorphic to $K_{3,3}$, or to V_{8}, or is equal to Δ-sum compositions of planar graphs. For the first two cases, the (weighted) maximum planar subgraph problem gets easy: we delete one of the cheapest edges in $K_{3,3}$ or V_{8}, respectively. For the remaining case we conjecture that it is $\mathcal{N} \mathcal{P}$-complete as well.

Furthermore, we conjecture that the crossing minimization problem on graphs without a K_{5} or $K_{3,3}$ minor, respectively, is $\mathcal{N} \mathcal{P}$-hard.

Acknowledgments

We would like to thank Michael Jünger for helpful discussions.
Moreover, we are grateful to Klaus Truemper who has pointed out a significant simplification using Lemma 1. His idea shortened our original proof based on the major decomposition theorems. Further, we would like to thank him for helpful discussions and for proof-reading this paper.
Last but not least, we would like to thank Stefan Hachul and Katrina Riehl for proof-reading this paper.

References

1. T. Asano. An application of duality to edge-deletion problems. SIAM Journal on Computing, 16(2):312-331, 1987.
2. C. Bentz, M.-C. Costa, L. Létocart, and F. Roupin. A bibliography on multicut and integer multiflow problems. Technical report, Rapport scientifique CEDRIC 654, 2004.
3. M.-C. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal integer multiflow: A survey. EJOR European Journal on Operational Research, 162(1):5569, 2005.
4. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23:864-894, 1994.
5. L. Faria, C. M. H. de Figueiredo, and C. F. X. de Mendonça N. Splitting number is NP-complete. Discrete Applied Mathematics, 108(1-2):65-83, 2001.
6. M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is NPcomplete. SIAM Journal on Applied Mathematics, 32:826-834, 1977.
7. N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica, 18:3-20, 1997.
8. K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae, 15:271-283, 1930.
9. A. Liebers. Planarizing graphs - a survey and annotated bibliography. Journal of Graph Algorithms and Applications, 5(1):1-74, 2001.
10. P. C. Liu and R. Geldmacher. On the deletion of nonplanar edges of a graph. In Proc. of the 10th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, Florida, USA, 1979, part 2, volume 24, pages 727-738. Congressus Numerantium, 1979.
11. K. Truemper. Matroid Decomposition. Academic Press, University of Texas at Dallas, Richardson, Texas, 1992.
12. K. Truemper. Personal communications. July 2006.
13. K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570-590, 1937.
14. T. Watanabe, T. Ae, and A. Nakamura. On the NP-hardness of edge-deletion and -contraction problems. Discrete Applied Mathematics, 6:63-78, 1983.
15. M. Yannakakis. Node- and edge-deletion NP-complete problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing, STOC'78, pages 253-264, 1978.

[^0]: * This work was partially supported by the Marie Curie Research Training Network ADONET 504438 funded by the EU.

