
On variable-weighted exact satisfiability problems∗

Stefan Porschen

Institut für Informatik, Universität zu Köln
Pohligstr. 1, D-50969 Köln, Germany.

Email: porschen@informatik.uni-koeln.de

Abstract

We show that the NP-hard optimization problems minimum and max-
imum weight exact satisfiability (XSAT) for a CNF formula C over
n propositional variables equipped with arbitrary real-valued weights
can be solved in O(‖C‖20.2441n) time. To the best of our knowledge,
the algorithms presented here are the first handling weighted XSAT
optimization versions in non-trivial worst case time. We also investi-
gate the corresponding weighted counting problems, namely we show
that the number of all minimum, resp. maximum, weight exact satisfi-
ability solutions of an arbitrarily weighted formula can be determined
in O(n2 · ‖C‖ + 20.40567n) time. In recent years only the unweighted
counterparts of these problems have been studied [8, 9, 15].

Key Words: weighted exact satisfiability, exact algorithm, combinatorial
optimization, counting problem, NP-completeness, perfect matching, maxi-
mum weight independent set, set partition
AMS subject classification: 03B05, 68Q25, 05C85

1 Introduction

The classical propositional satisfiability problem (SAT) is a prominent prob-
lem, namely one of the first problems that have been proven to be NP-
complete [7]. Till nowadays SAT plays a fundamental role in computational
complexity theory and in the theory of designing exact algorithms. SAT also
has a wide range of applications because many problems can be encoded as
a SAT problem via reduction. This is helpful due to the fact that mean-
while several powerful solvers for SAT have been developed (cf. e.g. [13] and
references therein). Weighted satisfiability problems, by which throughout
we mean that the propositional variables are the weighted objects, provide
natural generalizations of SAT and also have important applications, e.g. in
the area of code generation [1, 12].
Besides decision and optimization problems, counting problems are interest-
ing and important objects of computational complexity theory. For a search
- or optimization problem S, its counting version denoted #S searches for
∗Preliminary versions of different parts of this paper appeared in [16, 17].

1

the number of solutions of S which is less than enumerating all solutions
explicitly. The present paper is devoted to study a variant of weighted SAT,
namely the weighted exact satisfiability problem. The corresponding de-
cision problem XSAT (also called 1-in-SAT) is known to be NP-complete
[19]. More concretely, we investigate the computational complexity of op-
timizing and counting solutions of XSAT for weighted conjunctive normal
form (CNF) formulas as input. Note that the weighted variant of a search
problem can increase its computational complexity considerably. For in-
stance 2-SAT, i.e., the satisfiability problem for an input formula containing
no clauses of length at least three, can be decided in linear time, and in
positive case a satisfying truth assignment can also be found in linear time
[5]. Whereas, finding a minimum weight truth assignment for a variable-
weighted 2-CNF formula is NP-hard. This can be seen by a straightforward
reduction from the vertex cover problem to 2-SAT for monotone formulas
via the variable graph as defined in Section 2. Thus we are motivated to
consider weighted exact satisfiability problems. Unweighted XSAT gets as
input a CNF formula C over n Boolean variables and asks whether there ex-
ists a truth assignment setting exactly one literal in each clause of C to true.
Recently, XSAT attracted much attention regarding the unweighted decision
and counting versions [6, 8, 9, 15]. However, the first breakthrough-result
by Monien et al. [14] dates back to the year 1981 and provides an algorithm
deciding XSAT in O∗(20.2441n) time. (As usual the O∗-notation suppresses
polynomial factors in the length of the formula.) Until 2003 this bound
has been the best known, then, based on the techniques in [14], it has been
improved to O∗(20.2325n) by Byskov et al. [6]. Also Dahllöf et al. in [9]
presented an XSAT decision algorithm using a different methodology but
having O∗(20.2519n) worst case time.
In this paper we first address the optimization problems minimum, resp.
maximum, weight XSAT (MINW-XSAT resp. MAXW-XSAT). Given a CNF
formula whose variables carry arbitrary real-valued weights, MINW-XSAT
(resp. MAXW-XSAT) searches for an XSAT solution of minimum (resp.
maximum) weight (a precise definition is given in Section 2). We show that
both problems can be solved in O∗(20.2441n) worst case time. Our algorithm
essentially uses the branching strategy provided in [14], and in addition it
benefits from appropriate simplification steps preserving the optimum weight
XSAT status of each intermediate weighted formula.
We also deal with the counting problems #MINW-XSAT, resp. #MAXW-
XSAT, that clearly are #P-complete [20]. The unweighted counting problem
#XSAT has attracted some attention during the last years. Dahlöf et al. in

2

[8], e.g., construct an algorithm that solves #XSAT in O∗(20.81131·n) time
based on an O(20.40567·n) time algorithm for solving #MAXW-IS, i.e., for
counting all maximum (positive integer) weighted independent sets in a fi-
nite graph of n vertices. Their bound has been improved to O∗(20.40567·n)
in [15], and in [9] the up to now best bound of O∗(20.2857·n) is shown for
#XSAT. None of the algorithms solving #XSAT mentioned so far is able to
enumerate all XSAT models of the input formula; each of them outputs the
number of solutions only. Hence, there is no evidence whether or how these
algorithms can be adapted for determining the number of all solutions of
MINW-XSAT (MAXW-XSAT). However, in this paper, refining the tech-
niques in [15], we provide algorithms solving the weighted counting problems
in O(n2 ·‖C‖+20.40567·n) time. These algorithms use monotonization proce-
dures reducing #MINW-XSAT, resp. #MAXW-XSAT, for arbitrary formu-
las to the corresponding monotone counterparts taking positive monotone
formulas as input only. The latter problems are attacked by appropriate
adaptations of the #MAXW-IS algorithm in [8].
As a byproduct of our results we obtain solutions to the optimization and
counting versions of the weighted set partition problem (for definition cf.
Section 2), which is well known to be NP-complete in its decision version
[10], and has many applications in combinatorial optimization. With slight
modifications, these problems can analogously be solved as the correspond-
ing weighted XSAT problems because set partition can be identified with
monotone XSAT in a dual sense.
Organisation of the paper: In Section 2 basic notions are defined and nota-
tion used throughout is provided. In Section 3 we prove some useful results
helping to simplify non-monotone formulas. Section 4 is devoted to solving
the optimization problems, and in Section 5 the weighted counting problems
are considered. Finally, in Section 6 we finish with some concluding remarks
and open problems.

2 Basic Notions and Notation

Let us fix the basic terminology. A literal is a propositional variable x ∈
{0, 1} (corresponding to the Boolean truth values {false, true}) or its nega-
tion x := ¬x (negated variable). The complement of a literal l is its negation
l. A clause c is the disjunction of different literals and is represented as a
literal set, thus |c| is the number of literals in c. A CNF formula C is the
conjunction of different clauses and is represented as a clause set. For short
we throughout use the term formula meaning a clause set as defined. For a

3

formula C (resp. clause c), we denote by V (C) (resp. V (c)) the set of vari-
ables contained in C (resp. c). Similarly, given a literal l, V (l) denotes the
underlying variable. For a formula C ∈ CNF and a literal l, we denote by
C(l) := {c ∈ C : l ∈ c} the subformula of all clauses in C containing l. For a
clause (or more general a literal set) c, V+(c) (V−(c)) denotes the set of all
variables occuring unnegated (negated) in c; observe that V+(c)∩V−(c) 6= ∅

is possible. We distinguish between the length ‖C‖ of a formula C and the
number |C| of its clauses.
Let CNF denote the set of all formulas, and let CNF+ denote the set of all
positive monotone formulas, i.e., no clause contains a negated variable. We
call C ∈ CNF+ a matching formula if each x ∈ V (C) occurs at most twice
in C. For C ∈ CNF+, a clause c ∈ C is called a 2-3-clause if c contains a
variable x that occurs at least three times in C and all other variables in
c occur at least twice in C. We then call x a 2-3-variable of c. A formula
C ∈ CNF+ containing a 2-3-clause is called a 2-3-formula. C ∈ CNF+ is
called a 1-3-formula if each clause c ∈ C that contains a variable x occuring
at least three times in C also contains a unique variable in C. Such a variable
x ∈ C is called a 1-3-variable. Observe that an arbitrary formula C ∈ CNF+

either is a matching formula, or a 2-3-formula, or a 1-3-formula.
The exact satisfiability problem (XSAT) asks in its decision version, whether
there exists a truth assignment t : V (C) → {0, 1} assigning exactly one lit-
eral in each clause of C to 1, such a truth assignment is called x-model of
C (here we implicitly used the truth assignment canonically induced by t
on the literal set of C). XSAT is known to be NP-complete [19]. In the
search version one has to decide whether C ∈ XSAT, and in positive case
one has to find an x-model t of C. The empty formula ∅ ∈ CNF also is ex-
actly satisfiable. However, a formula C containing the empty clause cannot
be exactly satisfiable. An optimization variant of XSAT naturally appears
when weights are assigned to the variables: Given a weighted formula which
is a pair (C,w), where C ∈ CNF and w : V (C) → R, solving problem
MINW-XSAT (MAXW-XSAT) means to decide whether C ∈ XSAT, and,
in positive case, to find a minimum (maximum) x-model of C, i.e., a model
t of the smallest (largest) weight among all x-models of C. For X ⊆ V (C),
we set w(X) :=

∑
x∈X w(x). The weight w(t) of an x-model t is defined

as w(t) := w(t−1(1)) =
∑

x∈V (C)w(x)t(x). For C ∈ CNF, let X(C) de-
note the set of all x-models of C. Similarly, given w : V (C) → R, let
Xmin(C,w) ⊆ X(C) (Xmax(C,w) ⊆ X(C)) denote the set of all minimum
(maximum) x-models of (C,w). Note that both optimization problems are
NP-hard. The counting problem #MINW-XSAT (resp. #MAXW-XSAT) is

4

to determine the number |Xmin(C,w)| (resp. |Xmax(C,w)|), for a weighted
input formula (C,w).
The set partition problem (SP) has the following weighted NP-hard counter-
parts: MINW-SP (resp. MAXW-SP) takes as input a collectionM of subsets
of a finite set M , where each T ∈ M is equipped with a weight w(T) ∈ R.
A solution of MINW-SP (resp. MAXW-SP) is a subfamily T ⊆M of lowest
(resp. largest) total weight such that each m ∈M is contained in exactly one
T ∈ T . In other words, a solution T , if existing, provides a partition of M of
least (resp. greatest) possible weight. Let #MINW-SP (resp. #MAXW-SP)
denote the corresponding #P-complete weighted counting problems.
We shall make use of two simple graph concepts assigned to formulas. First,
for a monotone formula C ∈ CNF+, we define its variable graph GV (C) with
vertex set V (C). Two vertices are joined by an edge if there is a clause
containing the corresponding variables. For a weighted monotone formula
(C,w), GV (C) is regarded as a vertex-weighted graph: each vertex carries the
weight of the corresponding variable. Second, we use the intersection graph
GC of G. Recall that the intersection graph of a set system (in our case the
sets are the clauses) has a vertex for each set and two (distinct) vertices are
joined by an edge if their sets have non-empty intersection; observe that GC
has no loops.

3 General simplification tools

In this section we prove several results that are useful for appropriately
simplifying and monotonizing weighted formulas in the algorithms described
below. First, we state a basic connection relating bijections between x-model
spaces to bijections between optimum x-model spaces.

Proposition 1 For arbitrary R-weighted formulas (C,w), (C ′, w′), assume
that there exists a bijection

F : X(C) 3 t 7→ t′ := F (t) ∈ X(C ′)

between x-model spaces such that (∗): w(t) = w′(t′) + α, where α ∈ R is
a constant independent of t and t′. Then the restricted mapping Fλ :=
F |Xλ(C,w) is a bijection between Xλ(C,w) and Xλ(C ′, w′), and we have
|Xλ(C,w)| = |Xλ(C ′, w′)|, for λ ∈ {min,max}.

Proof. First consider the minimization case. Let t ∈ Xmin(C,w) and as-
sume that t′ := Fmin(t) 6∈ Xmin(C ′, w′). Then there is a x-model t′0 ∈ X(C ′)

5

with w′(t′0) < w′(t′). Let t0 := F−1(t′0) be the corresponding x-model of C.
Applying (∗) twice we obtain w(t0) = w′(t′0) + α < w′(t′) + α = w(t), con-
tradicting the assumption that t is minimum. Hence Fmin(t) ∈ Xmin(C ′, w′)
holds for each t ∈ Xmin(C,w).
Conversely, let t′ ∈ Xmin(C ′, w′) and assume t := F−1(t′) 6∈ Xmin(C,w).
Then there is an x-model t0 ∈ X(C) with w(t0) < w(t). Let t′0 := F (t0)
be the corresponding x-model of C ′. As above, by (∗), we derive w′(t′0) =
w(t0)− α < w(t)− α = w′(t′), contradicting the assumption that t′ is min-
imum. Hence F−1(t′) ∈ Xmin(C,w) holds for each t′ ∈ Xmin(C ′, w′). Thus,
F−1 restricted to Xmin(C ′, w′) equals F−1

min from which the assertion follows.
The maximization case proceeds analogously. 2

For short, a transformation modifying a weighted formula (C,w) into a
weighted formula (C ′, w′) is called model-preserving if there exists a bijection
having property (∗) of Prop. 1 between the corresponding x-model spaces.
The first simplifying transformation step considers unit clauses in weighted
formulas. The next result tells us that such clauses can be removed in a
model-preserving manner from the formula, more precisely:

Lemma 1 Let (C,w) be a weighted formula containing unit clause cl =
{l} ∈ C. Let (C ′, w′) be the weighted formula obtained from (C,w) as fol-
lows: Set l to 1, and for each c ∈ C(l), set all literals in c−{l} to 0. Then re-
move C(l) and also all duplicate clauses from C. Next, for each c ∈ C(l̄), re-
move l̄ from c. Let w′ := w|V (C ′) be the restriction of w to V (C ′) = V (C)−
V (C(l)). Then (C ′, w′) is a well-defined weighted formula, i.e., there cannot
occur duplicate clauses or literals. Further, |Xmin(C,w)| = |Xmin(C ′, w′)|,
specifically, we have |Xmin(C,w)| = 0 if there exists x ∈ V+(C(l))∩V−(C(l))
yielding a contradiction.

Proof. By construction, C ′ obviously contains no duplicate clauses. Be-
cause no literals are added to a clause no clause of C ′ can have duplicate
literals.
For the remaining claims, due to Prop. 1 it is sufficient to show that the
stated transformation from (C,w) to (C ′, w′) is model-preserving. If C is
not exactly satisfiable then also C ′ is not, so we assume the contrary. Let
t ∈ X(C) be arbitrary then t has to set l to 1 and for each c ∈ C(l) all
literals in c− {l} must be assigned 0. Hence V (C(l)) is the collection of all
variables that are uniquely fixed by now and let wl be the corresponding
weight, i.e., the sum of weights of exactly those variables in V (C(l)) set to
1. Clearly, t′ := t|V (C ′) where V (C ′) = V (C) − V (C(l)) yields a model

6

of C ′. Conversely, from t′ ∈ X(C ′) one obtains a unique model t ∈ X(C)
by extending to the unique values that have to be assigned to the members
in V (C(l)) setting all literals to 0 in c − {l}, for all c ∈ C(l). Since wl is
independent of t, t′, above bijection has property (∗) via w(t) = w′(t′) +wl.
The last claim is obvious. 2

We say that a clause c contains a complemented pair (cp) of literals if there
is a variable occuring both negated and unnegated in c.

Lemma 2 For C ∈ CNF with weight function w : V (C) → R, let c ∈ C
contain exactly one complemented pair: x, x ∈ c. Let Cc be the formula
obtained from C by removing c and assigning all literals to 0 that occur
in c′ := c − {x, x} (which can be empty) and finally removing all duplicate
clauses. Let wc be the restriction of w to V (Cc) = V (C)− V (c′). Then: the
following holds true:
(i) |X(C)| = 2|X(Cc))| if x 6∈ V (Cc), and |X(C)| = |X(Cc)| if x ∈ V (Cc),
(ii) |Xλ(C,w)| = |Xλ(Cc, wc)|, λ ∈ {min,max}.

Proof. Obviously Cc ∈ CNF is a well-defined clause set and V (Cc) =
V (C) − V (c′) holds, because by removing duplicate clauses no other vari-
able can be removed from the formula. For proving (i) and (ii), first as-
sume that x ∈ V (Cc). Then a bijection F : X(C) → X(Cc) obviously
is given by F (t) := t|V (Cc) if the reverse is defined as the extension of
t′ ∈ X(Cc) to V (C) by assigning all literals in c′ to 0, which, clearly, is
required for every truth assignment to be an x-model of C. So, we have
(i) in this case. Moreover, one easily gets w(t) = wc(F (t)) + α, where
α =

∑
y∈V (c′)w(y)t(y) =

∑
y∈V−(c′)w(y) which is a constant since each

t ∈ X(C), if existing at all, assigns all literals in c′ to 0. Thus (ii) follows
due to Prop. 1.
If x 6∈ V (Cc), then x occurs in clause c′ of C only. Let Xi(C) be the set of all
x-models t of C such that t(x) = i, for i ∈ {0, 1}. Clearly, X(C) = X0(C) ∪
X1(C) as disjoint union. And both X0(C) and X1(C) are in bijection to
X(Cc) via restricting t ∈ Xi(C) to V (Cc), as above. Hence, we have (i) in this
case. Obviously, Xmin(C,w) ⊂ Xi(C), for either i = 0 in case w(x) > 0, or
for i = 1 in case w(x) ≤ 0. It remains to establish relation (∗) in Prop. 1: For
Fi : Xi(C)→ X(Cc), and t ∈ Xi(C), we have w(t) = w(x) · i+wc(Fi(t)) +α
with α as given above. Defining α′ := α + w(x) · i which is a constant for
fixed i ∈ {0, 1} we also have proven (ii) for the minimum and maximum
cases. 2

A formula is called cp-free if none of its clauses contains a cp of literals.
The following lemma shows how 2-clauses can be removed model-preserving

7

from a weighted formula.

Lemma 3 For C ∈ CNF cp-free and w : V (C) → R, let c ∈ C be a 2-
clause. Then there exists a weighted formula (C ′, w′), where w′ : V (C ′) →
R and C ′ ∈ CNF not containing c with |C ′| < |C| such that from each
t′ ∈ Xmin(C ′, w′) one can uniquely determine an element t ∈ Xmin(C,w)
and vice versa.

Proof. For (C,w) with C ∈ CNF cp-free and w : V (C) → R, let c =
{l1, l2} ∈ C, V (c) = {x1, x2}, and wi := w(xi) where xi = V (li), i = 1, 2. As
C is cp-free x1 6= x2. We distinguish two cases. Case 1: S := V (c) ∩ V (C −
{c}) = ∅. Then we set C ′ := C − {c}, hence V (C ′) = V (C) − V (c), and
define w′ as the restriction w′ := w|V (C ′). Observe that c can be treated
independently of the remaining formula: If t ∈ Xmin(C,w) then clearly the
restriction of t to V (C ′) is a minimum x-model of (C ′, w′) since t has to
minimize c locally. Reversely, if t′ ∈ Xmin(C ′, w′) we obtain a minimum
x-model of (C,w) by extension to V (c) again locally minimizing c. Finally,
to minimize c locally we proceed as follows: If c is monotone, either positive
or negative, one variable has to be set to 1 and the other to 0. Hence, we
get the minimum assignment according to setting x1 := 1 and x2 := 0 if
w1 ≤ w2, and setting x1 := 0 and x2 := 1 if w1 > w2. If c is not monotone,
either we have to set both variables to 1 or both to 0. If w.l.o.g. c = {x1, x2}
we obtain a minimum assignment by setting x1 := 1, x2 := 1 if w1 +w2 ≤ 0,
and x1 := 0, x2 := 0 if w1 +w2 > 0. Correctness and uniqueness are obvious.
Case 2: S 6= ∅, where w.l.o.g. we assume that at least x1 is in S (if only x2

is in S, then simply exchange the roles of x1, x2 in what follows). Now, we
define C ′ as obtained from C as follows: First, remove c from the formula,
i.e., C ← C − {c}, second, for each c′ ∈ C(l2), set c′ ← c′ − {l2} ∪ {l1} and
for each c′′ ∈ C(l2), set c′′ ← c′′ − {l2} ∪ {l1}. Finally, remove all duplicate
clauses from the resulting formula. Obviously C ′ ∈ CNF is a well-defined
clause set, because all clauses are duplicate-free by construction, and C ′ does
not contain c, hence |C ′| ≤ |C| − 1. Since c forces l2 := l1, it is easy to see
that (∗∗): C ∈ XSAT iff C ′ ∈ XSAT and moreover V (C ′) = V (C) − {x2}.
For defining w′ we distinguish two cases. We either have (i) c = {x1, x2}
(resp. c = {x1, x2}), or (ii) c = {x1, x2} (resp. c = {x1, x2}).
In subcase (i), each x-model t of C exactly satisfies c, thus t necessarily
fulfills (a): t(x1) = t(x2). We define w′ as w′(x1) := w(x1) + w(x2), and
w′(x) = w(x), for each x ∈ V (C ′)−{x1}. Define the map F : X(C)→ X(C ′)
as follows: For each t ∈ X(C), let t′ := F (t) := t|V (C ′), and for each
t′ ∈ X(C ′), we set F−1(t′) := t uniquely defined by the extension to V (C)

8

by setting t(x2) := t′(x1) = t(x1). Clearly, F is well defined because of
(∗∗) and is a bijection. Indeed suppose there are t, t1 ∈ X(C), t1 6= t2 such
that F (t1) = F (t). Then t, t1 can be different only at x2 because all other
values are the same, especially t(x1) = t1(x1), and due to (a) we obtain
t(x2) = t(x1) = t1(x1) = t1(x2). The converse direction is obvious. Now we
prove that relation (∗) of Prop. 1 holds true for F , from which the proof for
subcase (i) follows immediately. So, let t ∈ X(C), then as t(x1) = t(x2) we
have (due to x1 ∈ V (C ′) by assumption, and t′(x1) = t(x1)):

w(t) = [w(x1) + w(x2)]t(x1) +
∑

x∈V (C)−{x1,x2}

w(x)t(x)

= w′(x1)t′(x1) +
∑

x∈V (C′)−{x1}

w′(x)t′(x) = w′(t′)

In subcase (ii) we analogously have that each x-model t of C exactly satisfies
c, hence it necessarily fulfills (b): t(x1) = 1−t(x2). We define w′ as w′(x1) :=
w(x1) − w(x2), and w′(x) = w(x), for each x ∈ V (C ′) − {x1}. Further,
define F : X(C) → X(C ′) again via t 7→ F (t) =: t′ := t|V (C ′), and given
t′ ∈ X(C ′), we set F−1(t′) := t defined as the extension of t′ to V (C)
uniquely determined by setting t(x2) := 1− t′(x1) = 1− t(x1). Clearly, F is
well defined and is a bijection. Indeed suppose there are t, t1 ∈ X(C), t1 6= t2
such that F (t1) = F (t). Then t, t1 can be different only at x2 because all
other values are the same, especially t(x1) = t1(x1), and because of (b) we
obtain t(x2) = 1 − t(x1) = 1 − t1(x1) = t1(x2). The converse direction
is obvious. Finally, relation (∗) in Prop. 1 remains to be verified. So, let
t ∈ X(C), then since t(x2) = 1− t(x1) and t(x1) = t′(x1) we obtain

w(t) = w(x2) + [w(x1)− w(x2)]t(x1) +
∑

x∈V (C)−{x1,x2}

w(x)t(x)

= w(x2) + w′(x1)t′(x1) +
∑

x∈V (C′)−{x1}

w′(x)t′(x)

= w(x2) + w′(t′)

where w(x2) is a constant independent of t, t′. In summary we have proven
the Lemma using Prop. 1. 2

Next we consider model-preserving elimination of pure literals in weighted
formulas:

Lemma 4 For C ∈ CNF cp-free with weight function w : V (C) → R, let
x ∈ V (C) be a variable only occuring negated in C. Let Cx be obtained from

9

C by replacing each occurence of x by x and let wx : V (C) → R be defined
as w except for wx(x) := −w(x). Then:
(i) |X(C)| = |X(Cx)|,
(ii) |Xλ(C,w)| = |Xλ(Cx, wx)|, λ ∈ {min,max}.

Proof. (i) follows, since we have V (C) = V (Cx) and obviously every t ∈
X(C) yields a t′ ∈ X(Cx) defined as t except for t′(x) = 1 − t(x) and
vice versa. This defines a mapping F : X(C) 3 t 7→ F (t) := t′ ∈ X(Cx)
which obviously is a bijection of x-model spaces. To prove (ii), assume that
C ∈ XSAT otherwise we are done. From w(t) =

∑
y∈V (C)w(y)t(y), and

the fact that t and t′ as well as w and wx are distinct at x only, one easily
obtains w(t) = wx(t′) + w(x). Due to relation (∗) of Prop. 1 the assertion
follows, for the minimum and maximum cases.. 2

For obtaining a monotone weighted formula the next result is very useful
which generalizes the simple resolution concept [14] to minimum x-model
spaces of weighted formulas.

Lemma 5 Let C ∈ CNF be a cp-free formula and let w : V (C)→ R be an
arbitrary weight function. Let ci = {x}∪u, cj = {x}∪v ∈ C where x ∈ V (C)
and u, v are literal sets (which can also be empty). Let Cij be the formula
obtained from C as follows:
(1) Replace every clause c ∈ C(x) with the clause c− {x} ∪ v,
(2) replace every clause c ∈ C(x) with the clause c− {x} ∪ u,
(3) set all literals in u ∩ v to 0,
(4) remove all duplicate clauses from the current clause set.
Let wij := V (Cij) → R be the weight function defined as follows: For each
y ∈ V (Cij)− V (u⊕ v), set wij(y) := w(y), and moreover, only in case that
u⊕ v 6= ∅, define:
(1’) if V+(u⊕ v) ∩ V−(u⊕ v) = {z}, then set

wij(y) :=

w(y) , if y ∈ V (u⊕ v)− {z}

w(z) + w(x), if z = y and z ∈ u, z ∈ v
w(z)− w(x), if z = y and z ∈ u, z ∈ v

(2’) if V+(u⊕ v) ∩ V−(u⊕ v) = ∅, then set

wij(y) :=

w(y) , if y ∈ V (v − u)

w(y) + w(x), if y ∈ V−(u− v)
w(y)− w(x), if y ∈ V+(u− v)

Then we have:
(i) V (Cij) = V (C)− [{x} ∪ V (u ∩ v)], and |Cij | ≤ |C| − 1 ,
(ii) |Xλ(C,w)| = |Xλ(Cij , wij)|, λ ∈ {min,max}.

10

Proof. Since C is assumed to be cp-free and clauses are duplicate-free,
neither u nor v can contain x or x. It follows that, because of (1), (2), (3),
ci and cj are transformed into the same clause u⊕v (denoting the symmetric
difference), hence x disappears from the variable set and, because of (4), we
also have |Cij | ≤ |C|−1. Hence, we obtain V (Cij) = V (C)−[{x}∪V (u∩v)],
because no other variable can be removed during step (4). Obviously Cij ∈
CNF is a well-defined clause set, because Cij and also all its clauses are
duplicate-free by construction. For proving (ii), first observe that also wij
is well defined, specifically in case u ⊕ v = ∅ which holds if either u = v
or u = ∅ = v. It is easy to verify that in both cases C admits no x-model,
and also that ∅ ∈ Cij , therefore Xmin(C,w) = ∅ = Xmin(Cij , wij). So, from
now on we assume u ⊕ v 6= ∅ and moreover that not both u and v are
empty. Consider the map F : X(C) 3 t 7→ F (t) := t|V (Cij) ∈ X(Cij) where
t := F−1(t′) is defined as the extension of t′ to V (C) by setting all literals in
u∩v to 0 and t(x) = 0, if t′ sets all literals in v to 0; and t(x) = 1 otherwise.
Both mappings F and F−1 are one-to-one and F , in fact, is a bijection of
x-model spaces [15].
It remains to verify that F as defined above satisfies relation (∗) of Prop. 1
w.r.t. w and wij implying assertion (ii), for both the minimum and maximum
cases. To that end, assume C ∈ XSAT and let t ∈ X(C), t′ := F (t). Because
∀y ∈ V (Cij) − V (u ⊕ v) : wij(y) = w(y) and ∀y ∈ V (Cij) : t(y) = t′(y), we
obtain from w(t) =

∑
y∈V (C)w(y)t(y) that

(∗∗) : w(t) = w(x)t(x) + ŵij(t′) + α1 +
∑

y∈V (u⊕v)

w(y)t′(y)

where

ŵij(t′) :=
∑

y∈V (Cij)−V (u⊕v)

wij(y)t′(y), α1 :=
∑

y∈V−(u∩v)

w(y) ∈ R

(and specifically α1 = 0 if V−(u ∩ v) = ∅)). Clearly, any x-model of C can
assign exactly one literal in u⊕ v to 1, independent of the truth value of x.
Hence, if u⊕ v contains more than one complemented pair then C and Cij
cannot be exactly satisfiable. Thus, it remains to distinguish the two cases
s := |V+(u⊕v)∩V−(u⊕v)| ∈ {1, 0}. In case s = 1, let z be the only variable
in the intersection, then wij is uniquely defined by (1’): Since C is assumed
to be cp-free, both u−v and v−u are non-empty. If (a): z ∈ u and z ∈ v, then
the truth values of z and x have to be related as t(x) = 1− t(z) = 1− t′(z)
iff C ∈ XSAT. Due to (1’) and ∀y ∈ V (u⊕ v)−{z} : w(y)t(y) = wij(y)t′(y)

11

we derive from (∗∗)

w(t) = α1 + w(x) + wij(z)t′(z) + ŵij(t′) +
∑

y∈V (u⊕v)−{z}

wij(y)t′(y)

which means w(t) = wij(t′) + α with α := α1 + w(x) ∈ R, hence (∗).
Subcase (b): z ∈ v and z ∈ u is equivalent to t(x) = t(z) = t′(z) and by
similar calculations one obtains relation (∗) where now α = α1.
In the remaining case s = 0, there are three subcases, namely (a): u−v = ∅

and v−u 6= ∅ which holds if either u = ∅ or u ⊂ v and obviously forces each
t ∈ X(C) to set t(x) := 1. Moreover, for each y ∈ V (Cij): wij(y) = w(y),
therefore (∗∗) immediately implies w(t) = α1 + w(x) + wij(t′) thus relation
(∗) of Prop. 1 holds.
In subcase (b): u − v and v − u both are non-empty, we set wuv :=∑

y∈V (u⊕v)w(y)t′(y) and observe that

wuv =
∑

y∈V (v−u)

wij(y)t′(y) +
∑

y∈V−(u−v)

w(y)t′(y) +
∑

y∈V+(u−v)

w(y)t′(y)

=
∑

y∈V (u⊕v)

wij(y)t′(y) + w(x)

 ∑
y∈V+(u−v)

t′(y)−
∑

y∈V−(u−v)

t′(y)

thus from (∗∗) we obtain

(∗ ∗ ∗) w(t) = α1 + w(x)t(x) + wij(t′)

+w(x)

 ∑
y∈V+(u−v)

t′(y)−
∑

y∈V−(u−v)

t′(y)

Now, defining |V−(u− v)| =: p = const, first assume t(x) = 0, then exactly
one literal in u − v must be set to 1 by t all other literals in u ⊕ v are
set to 0. If the literal set to 1 belongs to a variable in V+(u − v) we have
w(t) = wij(t′)+α1+w(x)[1−p] and if it belongs to a variable in V−(u−v) then
w(t) = wij(t′)+α1 +w(x)[−(p−1)] holds. Finally, for t(x) = 1 we have that
all literals in u−v are set to 0, hence w(t) = w(x)+wij(t′)−w(x)p+α1. Thus
we obtain relation (∗) of Prop. 1 w(t) = wij(t′)+α with α = α1+w(x)[1−p] ∈
R for each model pair t, F (t) = t′.
Finally, we have subcase (c): v− u = ∅ and u− v 6= ∅ which holds if either
v = ∅ or v ⊂ u forcing each t ∈ X(C) to set t(x) := 0, and to set exactly
one literal in u− v to 1. Therefore we obtain from (∗ ∗ ∗) as in subcase (b),

12

for t(x) = 0, relation (∗) as w(t) = wij(t′)+α with α = α1 +w(x)[1−p] ∈ R

completing the proof of (ii). 2

The next result considers weighted monotone formulas containing clauses
appearing as (nearly) supersets of other clauses.

Lemma 6 Let (C,w) with C ∈ CNF+ monotone and w : V (C) → R be a
weighted formula, and let c, c′ ∈ C.
(1) For c ⊂ c′, let C ′ be obtained from C by setting all variables in c′ − c to
0 and then removing all duplicate clauses. Further, let w′ be the restriction
of w to V (C ′) = V (C)− (c′ − c) then |Xmin(C,w)| = |Xmin(C ′, w′)|.
(2) For variable sets u, v, assume c = u ∪ x, c′ = u ∪ v where x ∈ V (C) is
a variable not contained in v. Let C ′ be obtained from C by replacing each
c ∈ C(x) with c− {x} ∪ v and then removing all duplicate clauses from the
resulting formula. Moreover, let w′ be defined as w on V (C ′) − v and set
w′(y) := w(y) + w(x), for all y ∈ v, then |Xmin(C,w)| = |Xmin(C ′, w′)|.

Proof. First observe that C ′ ∈ CNF is a well-defined clause set in case of
(1) and (2), because C ′ and all its clauses are duplicate-free by construction.
Addressing (1), note that each x-model t of C has to set to 0 each variable
in c′− c. Hence restricting t to V (C ′) yields a uniquely determined x-model
t′ of C ′ and vice versa via extension, therefore we obtain a bijection X(C) 3
t 7→ t′ ∈ X(C ′) of x-model spaces. Moreover, because C is monotone, we
have w(t) =

∑
y∈c′−cw(y)t(y) +w(t′) = w(t′) and we are done according to

Prop. 1.
Addressing (2), we have V (C ′) = V (C)−{x}, and we obtain a bijection F :
X(C) 3 t 7→ t′ ∈ X(C ′) of x-model spaces as follows: Simply let t′ := t|V (C ′)
be the restriction to V (C ′), thus t′ is uniquely determined. For t′ ∈ X(C ′)
we define t by extension of t′ to V (C) as follows: If t′ assigns all variables
in u to 0 then it has to assign only one variable of v to 1 in which case we
set t(x) = 1. If t′ assigns all variables in v to 0 then it has to assign only
one variable of u to 1 in which case we set t(x) = 0. Therefore t is uniquely
determined by t′.

13

Finally, we claim that relation (∗) of Prop. 1 holds: First observe that
u ∩ v = ∅ because c′ = u ∪ v is a well defined clause. Moreover, we have

w(t) = w(x)t(x) +
∑
y∈v

w(y)t(y) +
∑

y∈V (C′)−v

w(y)t(y)

= w(x)t(x) +
∑
y∈v

w′(y)t′(y)− w(x)
∑
y∈v

t′(y) +
∑

y∈V (C′)−v

w′(y)t′(y)

= w(x)

[
t(x)−

∑
y∈v

t′(y)

]
+

∑
y∈v

w′(y)t′(y) +
∑

y∈V (C′)−v

w′(y)t′(y)

= w(x)

[
t(x)−

∑
y∈v

t′(y)

]
+ w′(t′)

= w′(t′)

where for the last inequality we used that t(x) = 0 ⇔ t′(v) = {0}, and
t(x) = 1 iff there exists exactly one variable in v set to 1 iff

∑
y∈v t

′(y) = 1.
Hence, we derived w(t) = w′(t′) in either case establishing (∗) of Prop. 1
and completing the proof. 2

For weight function w, let −w denote the weight function obtained from w
by pointwise multiplying its values by −1.

Lemma 7 Let A be an algorithm solving MINW-XSAT, for arbitrary weigh-
ted input formulas (C,w) with C ∈ CNF, w : V (C)→ R, then A also solves
MAXW-XSAT for (C,−w) and vice versa.

Proof. Suppose A solves MINW-XSAT for arbitrary weighted formulas
(C,w). We claim that Xmin(C,w) = Xmax(C,−w). From that claim the
assertion follows, because given a weighted formula (C,w) we perform A
on (C,−w) finding an element t ∈ Xmin(C,−w), if existing, therefore t ∈
Xmax(C,w) as required. To verify the claim let (C,w) be a weighted formula.
Let t ∈ Xmin(C,w), and assume t 6∈ Xmax(C,w′) where w′ := −w. Then
there exists t0 ∈ X(C) with w′(t0) > w′(t) which is equivalent to w(t0) <
w(t) contradicting t ∈ Xmin(C,w). Therefore Xmin(C,w) ⊆ Xmax(C,−w).
Analogously, we obtain Xmax(C,−w) ⊆ Xmin(C,w).
The vice versa assertion stating that an algorithm solving MAXW-XSAT
for (C,w) also solves MINW-XSAT for (C,−w) also follows from the claim
above restated as Xmax(C,w) = Xmin(C,−w). 2

Observe that in general |Xmin(C,w)| 6= |Xmax(C,w)| for weighted formulas
(C,w). Indeed, suppose C is a positive-monotone formula of strictly negative

14

weighted variables, and assume that C has N ≥ 2 minimum weight x-models
which is not hard to ensure. Now let x /∈ V (C) be a new variable with
strictly positive weight and let Cx := {c ∪ {x} : c ∈ C}. Then Cx has
only one maximum x-model, namely given by setting x to 1 and all other
variables to 0. But setting x to 0 yields formula C, therefore Cx also has
N ≥ 2 minimum x-models. Therefore, Lemma 7 cannot be used for deriving
an algorithm solving #MAXW-XSAT from one solving #MINW-XSAT for
arbitrary weighted formulas (C,w).

4 Solving the optimization problems

This section provides branching algorithms solving the optimization prob-
lems MINW-XSAT and MAXW-XSAT. We focus on the minimum case first
then deriving from the result an algorithm for the maximum case too. Sub-
section 4.1 describes the global structure of the algorithm, followed by an
explanation of the simplification steps in Subsection 4.2. In Subsection 4.3
the formulas corresponding to the leaves of the branching tree are shown
to be polynomial-time solvable. Finally, in Subsection 4.4 we analyse the
branching strategy and show that our algorithm works correct and runs in
O(‖C‖20.2441n) worst case time.

4.1 Structure of the algorithm

The main method of the algorithm is branching, that means, at a given
state, we take a variable x of the current formula and obtain two branches by
setting it to 0 resp. to 1. So, a binary search tree, the branching tree, is gen-
erated in a depth first manner. Its root node R corresponds to the weighted
input formula, and each other node corresponds to the unique weighted for-
mula that is calculated by branching at a variable of its parent node formula
via fixing it to exactly one truth value and simplifying afterwards. The leaf
nodes of the branching tree correspond to weighted matching formulas. As
we shall see in Section 4.3, we can compute a minimum x-model in polyno-
mial time for a weighted matching formula. Clearly, each leaf node Li defines
a unique path Pi from R to Li in the branching tree corresponding to a finite
sequence of pairs Pi := ((xi1, εi1), . . . , (xisi , εisi)) ∈ [V (C)× {0, 1}]si mean-
ing that starting at the root, variable xi1 is set to fixed value εi1 ∈ {0, 1},
followed by setting xi2 ← εi2 and traversing along Pi until Li is reached. As
explained in Section 4.4, the number of additional variables whose values

15

are determined by a branching step can be estimated so that the overall
running time can be derived from corresponding recurrence relations.
Suppose that each simplification step can be performed in a model-preser-
ving manner at the current weighted formula in the sense that we can obtain
a minimum weight solution for the non-simplified formula if we have a min-
imum x-model of the simplified one. Then, having reached a leaf node Li,
by (virtually) traversing the path Pi back to the root thereby inverting the
assignments according to variable-values of the current branching sequence
and simplifications performed, we obtain at the root, restricted to the cur-
rent path, a current minimum x-model replacing the up-to-now best solution
if it has a higher weight value. Doing so for each leaf when expanding the
tree, we obtain a global minimum x-model of the input formula. For storing
the information won along traversing a root leaf path, a stack S over truth
value assignments seems to provide the appropriate data structure, since
having found the solution of a matching formula we need the assignments
in reverse order. Moreover, in order to keep space requirements polynomi-
ally bounded it is recommended to use one stack as global object that is
managed accordingly by each instance of the recursive procedure, instead of
copying the current stack for each new procedure instantiation which obvi-
ously required exponential space. Next we state our procedure recursively
calling itself until the global solution is found, if it exists.

Algorithm MINW-XSAT(C,w, sol, currsol, S):
Input: C ∈ CNF, w : V (C)→ R

Output: Minimum x-model sol for (C,w), or nil
begin
(01) if C contains the empty clause then return nil
(02) if there occurs a contradiction then return nil
(03) SIMPLIFY(C,w, currsol, S)
(04) if C is a matching formula then
(05) MINPERFMATCH(C,w, currsol, S)
(06) if currsol = nil then return nil
(07) COMPUTECURRSOL(C,w, currsol, S)
(08) if sol weight > currsol weight then
(09) sol← currsol; sol weight← currsol weight
(10) end if
(11) if C is a 2-3-Formula then BRANCHING-2-3(C,w, currsol, S)
(12) if C is a 1-3-Formula then BRANCHING-1-3(C,w, currsol, S)
end

Each internal statement in all subprocedures stated above is followed by a

16

recursive call of MINW-XSAT. In the first two lines nil is returned because no
x-model for the current formula can exist, and the corresponding procedure
instance can be stopped. By contradiction in line (02) we mean that during
assigning truth values to variables, a single variable is required to be set to
1 and 0 at the same time.
The algorithm uses two global parameters currsol, sol for storing the current
solution, resp. the current optimal solution. Initially, i.e., before the first call
of MINW-XSAT is performed, both parameters are assumed to be set to nil.
Moreover the weights of the corresponding solutions, i.e., currsol weight
and sol weight are also global parameters initially assumed to be set to ∞.
Further, as mentioned above a global stack S is used for storing the history
of the path from the root to the current node in the branching tree: For a
current node of the branching tree, this history consists of the assignments
determined by simplifications made in each predecessor node during Proce-
dure SIMPLIFY (cf. Section 4.2) and also by the variable assignments due to
the branching sequence determining that path. Branching at a node in form
x ← 0 and x ← 1 yields two subproblem instances by evaluating the cur-
rent formula accordingly. Branching operations are executed in Procedures
BRANCHING-2-3, line (11), and BRANCHING-1-3 in line (12) of the algorithm
as long as the current formula is no matching formula (cf. Section 4.4).
If the current formula is a matching formula, then a leaf of the tree is reached
(line (05)). During Procedure MINPERFMATCH a minimum weight exact so-
lution is explicitly computed , if existing (cf. Section 4.3). Afterwards, in
case the current weighted matching formula has a minimum x-model t, in
Procedure COMPUTECURRSOL, the operations stored in S are performed on t
inversely and in reversed order yielding a minimum solution with respect to
the current branching tree path. Otherwise the current procedure instance
returns nil and the previous one continues, if there is any, otherwise the
algorithm halts.
The next subsections are devoted to decribe all procedures in detail.

4.2 Simplifying transformations

Now we present the simplifying transformations performed on a current
formula in Procedure SIMPLIFY of Algorithm MINW-XSAT. These transfor-
mations are invertible and preserve the minimum (maximum) weight XSAT
status of the formulas in the sense that from a minimum (maximum) x-
model of the image formula one can compute in polynomial time a minimum
(maximum) x-model of the original formula and vice versa. This set of trans-
formations ensures that a current formula especially satisfies the conditions

17

needed for BRANCHING-2-3 as given in [14]. Without explicitly mentioning
it is understood that all assignments corresponding to transformations are
pushed on the global stack.
Procedure Simplify consists of the following Steps 1 - 8:
Step 1: Initially the input formula is duplicate-free. If an intermediate cur-
rent formula contains a clause c multiply, remove all except one occurences
of c. (This can obviously be done independent of weights.) Finally perform
Procedure MINW-XSAT(C,w, sol, currsol, S).
Step 2: If (C,w) contains a unit clause, then transform (C,w) due to
Lemma 1 and its proof. Finally perform Procedure MINW-XSAT(C,w, sol,
currsol, S).
Step 3: If a clause contains more than one complemented pairs, then it
can never be exactly satisfiable, hence a formula containing such a clause
has 0 x-models, and nil is returned. However, if (C,w) contains exactly one
complemented pair then transform (C,w) according to Lemma 2. Finally
perform Procedure MINW-XSAT(C,w, sol, currsol, S).
Step 4: If (C,w) contains a 2-clause then transform (C,w) according to
Lemma 3 and its proof. Finally perform MINW-XSAT(C,w, sol, currsol, S).
Step 5: If (C,w) contains a literal exclusively occuring negated then trans-
form (C,w) due to Lemma 4. Finally perform Procedure MINW-XSAT(C,w,
sol, currsol, S).
Step 6: If (C,w) contains clauses ci = {x} ∪ u, cj = {x} ∪ v then re-
turn nil in case that u ⊕ v = ∅ or |V+(u ⊕ v) ∩ V−(u ⊕ v)| > 1. Other-
wise transform (C,w) according to Lemma 5. Finally perform Procedure
MINW-XSAT(C,w, sol, currsol, S).
Step 7: If positive monotone (C,w) contains clauses c, c′ with c ⊂ c′ then
transform (C,w) according to Lemma 6 (1). Finally perform Procedure
MINW-XSAT(C,w, sol, currsol, S).
Step 8: If positive monotone (C,w) contains clauses c, c′ with c = u∪x, c′ =
u ∪ v where x ∈ V (C) is a variable not contained in the subclause v, then
transform (C,w) according to Lemma 6 (2). Finally perform Procedure
MINW-XSAT(C,w, sol, currsol, S).

Corollary 1 Let S be the collection of Steps 1 to 8 above, and let (C,w)
be a weighted formula. Then any finite sequence f ∈ S∗ whose elements
are performed subsequently on (C,w) yielding (C ′, w′) induces a bijection
Ff : Xmin(C,w)→ Xmin(C ′, w′).

Proof. Each element fi in f = (f1, . . . , f|f |) yielding intermediate formula
(Ci, wi), 1 ≤ i ≤ f|f |, where (C0, w0) := (C,w) and (C|f |, w|f |) := (C ′, w′),

18

induces bijection Fi : Xmin(Ci−1, wi−1)→ Xmin(Ci, wi) due to Lemmata 1 to
6 correspondingly. Thus Ff := F|f | ◦F|f |−1 ◦ · · ·F1 is a bijection as required,
via concatenating bijections Fi, 1 ≤ i ≤ f|f |. 2

4.3 Treating matching formulas

This subsection describes how a minimum x-model is computed in poly-
nomial time for a weighted matching formula (C,w) with C ∈ CNF+ in
Procedure MINPERFMATCH of Algorithm MINW-XSAT. Recall that a matching
formula is monotone and contains no variable occuring more than twice in
C. Actually, this is implemented by an appropriate reduction to the min-
imum weight perfect matching problem (MINW-PM) searching for a per-
fect matching of minimum weight in an edge weighted simple input graph
G = (V,E). Recall that a perfect matching is a subset P ⊆ E of pairwise
non-adjacent edges in G such that every vertex of G is incident to (exactly)
one edge in P . We construct a certain graph determined by C, called the
matching graph GM , which is a slight modification of the intersection graph
GC of C.
The matching graph is constructed depending on whether there are unique
variables in C or not:
1.) If there is no clause in C containing a unique variable, then GM := GC .
Label each edge of GC by (v, w(v)) where v is a variable of smallest weight
occuring in the intersection of the corresponding clauses (if variables are
assumed to be enumerated this is uniquely determined).
2.) If there is c ∈ C containing a unique variable, construct two copies of
G′C where G′C is build as GC but for edge labeling only variables occuring
twice have been considered. Next, join both copies of G′C by introducing
an additional edge between each two vertices in either copy that contain at
least one unique variable (both vertices clearly correspond to one and the
same clause). Label each additional edge by (v, w(v)) where v is a unique
variable of smallest weight in that clause (if variables are assumed to be
enumerated this again is uniquely determined).
Example: Consider formula C = {c1, c2, c3}, where c1 = {t, u, x, y, z}, c2 =
{r, u, v, w, x}, c3 = {r, v, y} with all weights equal to 1. The corresponding
matching graph GM is shown in Figure 1, where the labels are due to the
variables in the clause intersections, weights are omitted because they are
irrelevant.
It is not hard to see that a minimum weight perfect matching in GM w.r.t. to
the second components of the edge labels directly corresponds to a minimum

19

Figure 1: Matching graph GM corresponding to C weights are omitted as they are
all equal.

x-model of C, where the first components of all matching edge labels define
exactly those variables that have to be assigned to 1.
Clearly, for a matching formula its matching graph can be constructed in
O(|C|2 · |V (C)|) time. Since each variable that is not unique, occurs at most
in two clauses it can be obtained only in the intersection of two clauses.
Hence, there can occur no contradiction by selecting as edge label the
minimum weight variable in each intersection. Given C ∈ CNF we have∑

c∈C |c| = ‖C‖ =
∑

x∈V (C) ω(x) where ω(x) is the number of occurences of
x regardless whether negated or not. Clearly, for a matching formula holds
w(x) ≤ 2, for each x, implying |C| ≤ ‖C‖ ≤ 2|V (C)|. Because MINW-PM
is solvable in O(|V |2 · |E|) time, for G = (V,E) and arbitrary real weights
assigned to the edges [2], we obtain:

Proposition 2 For a weighted matching formula (C,w), with w : V (C)→
R, a minimum x-model can be computed in O(|V (C)|3) time. 2

In case that an x-model t is found for the current matching formula as stated
above, t has to be transformed to yield an x-model for the input formula
of Algorithm MINW-XSAT. This holds specifically, if the current matching
formula is empty. To that end, in Procedure COMPUTECURRSOL simply we
have to pop the global stack and apply each elementary assignment trans-
formation inversely in the given order. Afterwards the stack has to be filled
again with the same contents in the same order as before (which could be
made via a second stack that is filled in reverse order during poping) until
the identifier of the last call appears, then the stack is ready for the next
branching step performed in the next deepest instance of the recursive call
hierarchy, if there is any.

20

4.4 The branching operations

Procedure BRANCHING-2-3, enabled in Step (11) of Algorithm MINW-XSAT in
case that the current formula is a 2-3-formula, is based upon the techniques
provided by Monien, Speckenmeyer, and Vornberger in [14]. There has been
proven that the usual XSAT decision problem for arbitrary C ∈ CNF with
n variables can be solved in O∗(20.2441n) time, when formulas are simplified
in the same manner as ensured by Procedure SIMPLIFY disregarding weight
functions. Recall that iteratively branching at a variable means to search
the whole space of feasible truth assignments independent of their weights.
Hence, we can rely on the result by Monien et al. in [14] if and only if the
current formula has the structure that is required in their branching anal-
ysis. To that end, the formula must be a 2-3-formula C. In the recursive
algorithm proposed in [14] a leaf of the branching tree is reached when the
current formula is a 1-3-formula. The decision whether such a formula is in
XSAT can be made in polynomial time which then also yields the decision
for the input formula, as all transformations on the path from the root are
XSAT-equivalent. Unfortunately, in the weighted case 1-3-formulas cannot
be treated within polynomial time, here a leaf formula must be a match-
ing formula. So, in addition to Procedure BRANCHING-2-3 treating only
2-3-formulas, we need a branching procedure that also treats 1-3-formulas,
namely Procedure BRANCHING-1-3 in Algorithm MINW-XSAT. This procedure
takes a 1-3-variable x occuring at least three times in the current formula
and performes branching at x.
More precisely, given weighted formula (C,w) and x ∈ V (C), by C[x : ε] we
denote the formula obtained from C by assigning x← ε ∈ {0, 1} and fixing
all subsequently determined variables according to the appropriate branch-
ing strategy, either 2-3 or 1-3, without having performed any simplification
step. Let w[x : ε] denote the restriction of w to V (C[x : ε]). Assuming that
the variables of C are indexed a priori, the branching procedures have the
following explicit form, where X∈ {2-3,1-3}:

Procedure BRANCHING-X(C,w, currsol, S)
begin
take the smallest X-compatible branching variable x in C
push identifier x : 0 on S
evaluate (C0, w0)← (C[x : 0], w[x : 0])
push corresponding assignments on S
MINW-XSAT(C0, w0, sol, currsol, S)
pop S until identifier x : 0 appears, finally pop identifier x :

21

0
push identifier x : 1 on S
evaluate (C1, w1)← C[x : 1], w[x : 1]
push corresponding assignments on S
MINW-XSAT(C1, w1, sol, currsol, S)
pop S until identifier x : 1 appears, finally pop identifier x :
1
end

In order to use only one global stack S, we have to ensure that S contains
the correct information when beginning a new procedure instance. To that
end, identifiers must be pushed on the stack for which the assignment defin-
ing the current branch can serve: [x : ε]. So, when performing a new call,
first the old no longer necessary information including the last identifier can
be popped from the stack. Then the new one can be pushed on S, and the
next branch can be evaluated, etc.
We claim that the worst-case recurrence relations occuring during Procedure
BRANCHING-1-3, are already covered by those recurrence relations produced
by Procedure BRANCHING-2-3 in [14]. The latter set of critical recurrences
contains, among others, the following:

T (n) ≤ T (n− 4) + T (n− 5) + 1, T (n) ≤ T (n− 6) + T (n− 3) + 1

Here T (n) denotes the number of recursive calls the underlying algorithm
performs on a formula of n variables until a leaf of the branching tree is
reached. The two summands on each right hand side correspond to the
subproblems defined by setting a variable to 0 resp. to 1, where the lower
bounds for the number of variables whose values are determined in either
branching step are substracted. Obviously that relation with the weekest
slow-down dominates the overall running time.
So let C ∈ CNF+ be a 1-3-formula, then by Procedure SIMPLIFY we know
that each clause has length at least three, and by definition each clause
containing a variable x occurring ≥ 3 times also contains a unique variable.
Clearly, the worst case is given when such a variable occurs exactly three
times restricting the number of clauses on which x has an impact. First
assume that all clauses containing x have length exactly three:

c1 = x ∨ e1 ∨ a1, c2 = x ∨ e2 ∨ a2, c3 = x ∨ e3 ∨ a3

where ei are the pairwise distinct unique variables and ai are variables some
or all of which may coincide (i = 1, 2, 3). The subproblem defined by x← 1

22

forces e1 ← e2 ← · · · ← a3 ← 0 thus eliminating at least 5 variables. And the
subproblem defined by x← 0 forces ei ← ai, for i = 1, 2, 3, thus eliminating
at least 4 variables, i.e., this case recursively leads to the recurrence T (n) ≤
T (n − 4) + T (n − 5) + 1 which is covered by the set above. Now suppose
there exists at least one clause containing x of length four:

c1 = x ∨ e1 ∨ a1 ∨ b1, c2 = x ∨ e2 ∨ a2 ∨ b2, c3 = x ∨ e3 ∨ a3 ∨ b3

here variables ei and ai are as above and the bi (i = 1, 2, 3) are additional
variables some or all of which may coincide resp. at most 2 of which may
equal the constant 0 (i.e. they are “empty”). Again, the subproblem defined
by x← 1 eliminates at least 6 variables, and the subproblem defined by x←
0 eliminates at least 3 variables, which is ensured by Procedure SIMPLIFY
(Steps 8, 9) that is performed in the next recursive call. Hence we obtain
the recurrence T (n− 6) +T (n− 3) + 1 that also is covered by the set above.
Clearly, all other cases perform better, hence we are justified to conclude
from [14], that all the branching operations and thus Algorithm MINW-XSAT
have a worst case time bounded by O∗(20.2441n), and we are ready to state
the main result of this section:

Theorem 1 Algorithm MINW-XSAT solves minimum weight XSAT for C ∈
CNF, w : V (C)→ R in O(‖C‖20.2441n) time. 2

Proof. Considering running time, first observe that for expanding the
branching tree at most 20.2441n recursive calls of Algorithm MINW-XSAT are
needed as argumented above. Moreover, using appropriate data structures
like doubly linked lists representing clauses and variable-to-clause pointers,
branching and simplification steps can each be performed in time polyno-
mial in n. Moreover the polynomial factor in ‖C‖, the length of the input
formula C, turns out to be linear. Since stack S contains information at
most for one root-leaf path in the branching tree, fixing at most n variables,
we have |S| ∈ O(n). Altogether, at most O(p(n) · ‖C‖) time is needed for
computations corresponding to each node of the branching tree. In sum-
mary we obtain the claimed time bound, where the polynomial in n, has
been absorbed into the exponent which asymptotically is justified, as eval-
uating the recurrence relations yields an exponential factor being slightly
better than 0.2441.
For proving correctness, we state the following Claim: Let (C,w) be a mono-
tone weighted X-formula, and x ∈ V (C) be a X-variable, for X∈ {1−3, 2−3}.
Recall that (C[x : ε], w[x : ε]) denotes the monotone weighted formula re-
sulting by X-branching at x via x ← ε, ε ∈ {0, 1}, and thereby fixing all

23

variables determined by the rules of exact satisfiability, but assume that no
simplification step has been applied. Then the following holds:
(0) If C is not exactly satisfiable then neither C[x : 0] nor C[x : 1] are, and
vice versa. If C ∈ XSAT then at least one of C[x : 0], C[x : 1] also is, and
vice versa.
(1) If t ∈ Xmin(C,w) with t(x) = ε ∈ {0, 1} then tε := t|V (C[x : ε]) is a
minimum weight x-model of (C[x : ε], w[x : ε]).
(2) Let tε be a minimum x-model of (C[x : ε], w[x : ε]) and let t̂ε denote
extension of tε, ε ∈ {0, 1}, to V (C) according to the variables determined
via branching. Then t̂ with w(t̂) = min{w(t̂0), w(t̂1)} is a minimum x-model
of (C,w). (Here we define w(t̂ε) := +∞ if tε does not exist.)
Proof of the Claim: First it is obvious that each x-model t of C yields
an x-model tε of C[x : ε] via restriction if t(x) = ε, because they differ
only in variables determined by assignment of x ← ε. Similarly, each x-
model t of C[x : ε] yields via extension to V (C) an x-model of C when
additional variables are set according to the branching step. Clearly, if C is
not exactly satisfiable then neither C[x : 0] nor C[x : 1] is and vice versa.
Hence branching steps specifically preserve XSAT status of formulas, and
we proved even more than stated in (0).
Addressing (1) we have to consider weights. So let C be exactly satisfiable
and let t ∈ Xmin(C,w) with t(x) = ε ∈ {0, 1}, and suppose that tε :=
t|V (C[x : ε]) is not a minimum weight x-model of (C[x : ε], w[x : ε]). Then
there exists an x-model t′ of (C[x : ε], w[x : ε]) such that w[x : ε](t′) <
w[x : ε](tε). Then extending t′ to an x-model t̂′ of V (C) by setting the fixed
branching variables yields a uniquely determined x-model of C. Since the
branching variables in t and t′ have the same values we obtain w(t̂′) < w(t)
contradicting that t is minimum, so we established (1).
Now assume C ∈ XSAT and let tε be a minimum x-model of (C[x : ε], w[x :
ε]), ε ∈ {0, 1}, of which at least one must exist, let t̂ε denote the unique
extension of tε, ε ∈ {0, 1}, to V (C) due to the variable values determined
via branching. Assume t̂ with w(t̂) = min{w(t̂0), w(t̂1)} is not a minimum
x-model of (C,w). Since at least one of C[x : 0], C[x : 1] must have an
x-model, t̂ is well defined even if the other one has no x-model whose weight
is then set to +∞. Therefore, there exists an x-model t′ of C with w(t′) <
w(t̂). W.l.o.g. let t̂(x) = 0. We distinguish two cases. First assume that
t′(x) = t̂(x) = 0, then t′0 := t′|V (C[x : 0]) is an x-model of C[x : 0],
and because the weight of the determined variables is fixed we must have
w[x : 0](t′0) < w[x : 0](t0) contradicting that t0 was minimum. Second,
t′(x) = 1 − t̂(x) = 1, then t′1 := t′|V (C[x : 1]) is an x-model of C[x : 1]. If

24

w[x : 1](t′1) < w[x : 1](t1) then we have a contradiction to the assumption
that t1 is minimum. If w[x : 1](t′1) ≥ w[x : 1](t1) then extension to V (C)
yields w(t′) ≥ w(t̂1). On the other hand we have w(t′) < w(t̂), therefore
w(t̂) > w(t̂1) contradicting w(t̂) = min{w(t̂0), w(t̂1)} meaning w(t̂) ≤ w(t̂1),
thus (2). This finishes the proof of the Claim.
Let (CI , wI) be the input formula of Algorithm MINW-XSAT. For proving
its correctness we proceed in two steps. First we show completeness: if
MINW-XSAT returns nil then there is no x-model of (CI , wI) at all. Second
we show output-correctness: if MINW-XSAT returns tI then tI is a minimum
x-model of (CI , wI).
Completeness is not hard to see: Suppose that (CI , wI) possesses a solution
tI but Algorithm MINW-XSAT returns nil. That means no weighted matching
formula obtained during the algorithm has a solution.
By the way, there cannot exist an exactly satisfiable weighted matching
formula derivable from (CI , wI) for which there exists no branch in the
search tree, hence which is not checked by the algorithm. A current path in
the binary search tree is cut only if the current formula C has no x-model.
By Claim (0) above and due to Corollary 1 the XSAT status is preserved in
each step of the algorithm, therefore no subsequent formula can have an x-
model. Finally, the branching strategy used rests on the fact that monotone
formulas are either 1-3- or 2-3- or matching formulas. And branching is
performed as long as a matching formula occurs, then the algorithm returns
back to the next branch. Only variables are fixed that are forced by exact
satisfiability. This is independent of the order in which 1-3- or 2-3-variables
are chosen for branching as dependencies remain the same. Hence, if at all,
only matching formulas are ignored that are not exactly satisfiable.
Let (C ′I , w

′
I) be the monotonized formula recursively obtained from (CI , wI)

by Procedure Simplify until no further modification occurs. Therefore
(C ′I , w

′
I) is determined uniquely. Let F0 be the x-model space bijection

between Xmin(CI , wI) and Xmin(C ′I , w
′
I) that exists due to Corollary 1, so

t′I := FI(tI) is a minimum x-model of (C ′I , w
′
I). Now the algorithm branched

at say variable x ∈ V (C1), and t′I determines the unique branch correspond-
ing to t′I(x) ∈ {0, 1}, and in the sequence all variables determined according
to the branching strategy must be set via the appropriate transform of tI
accordingly. In this way tI inductively selects a unique path from the root
to exactly one leaf node corresponding to a weighted formula which must
have a solution as inductively applying Claim (3) and Corollary 1 ensures.
Thus we obtain a contradiction to the output of the algorithm because there
exists a matching formula having a solution.

25

For proving output correctness, suppose that Algorithm MINW-XSAT outputs
tI . Let M denote the set of all matching formulas inspected by the algo-
rithm and let X (M) be the set of corresponding x-models calculated by
the algorithm, and finally let X̂ (M) be the set of transformed x-models
of (CI , wI) as calculated during COMPUTECURRSOL. Then, by construction,
holds wI(tI) = mint̂∈X̂ (M)wI(t̂). Now suppose tI is not a minimum x-model
of (CI , wI). Then there exists t′ ∈ Xmin(CI , wI) such that t′ 6= tI and
wI(t′) < wI(tI). As in the completeness proof t′ selects a unique path let
say to matching formula (C0, w0) ∈ M, let t′0 be the corresponding model
obtained from t′ via trasforming due to the selected path. Inductively ap-
plying Claim (2) and Corollary 1 we obtain that t′0 is a minimum x-model
of (C0, w0). Now we have two cases: (i) t′0 ∈ X (M) and (ii) t′0 6∈ X (M).
In case (i) inductively applying Corollary 1 and Claim (3) traversing to the
root we obtain wI(t′) ≥ wI(tI), because of the minimum condition, which is
a contradiction. In case (ii) let tI0 be the member of X (M) corresponding to
(C0, w0). In subcase (a), w0(t′0) < w0(tI0), contradicting that by construc-
tion tI0 must be minimum. In subcase (b), w0(t′0) ≥ w0(tI0), again traversing
back to the root formula inductively implying Claim (3) and Corollary 1 we
obtain wI(t′) ≥ wI(t̂I0) ≥ mint̂∈X̂ (M)wI(t̂) = wI(tI), where t̂I0 ∈ X̂ (M),
yielding a contradiction and finishing output correctness proof. 2

Due to Lemma 7, we obtain from the last result:

Corollary 2 Maximum weight XSAT, for C ∈ CNF, w : V (C) → R, can
be solved in O(‖C‖20.2441n) time. 2

5 Algorithms for #MINW-XSAT and #MAXW-
XSAT

Next we consider the #P-complete counting problems #MINW-XSAT and
#MAXW-XSAT. To that end, we first restrict to monotone formulas in
Subsection 5.1, followed by considering the general case in Subsection 5.2.

5.1 Solving the monotone cases

This section is devoted to provide algorithms solving #MINW-XSAT (resp.
#MAXW-XSAT) restricted to the class CNF+, in O(n2 · ‖C‖ + 20.40567·n)
time, for formulas C containing n weighted variables. By a dualization
argument presented below it will turn out that these algorithms also solve

26

the set partition counting variants #MINW-SP (resp. #MAXW-SP). In [8],
Dahlöf and Jonsson proved an upper bound of O(20.40567·n) for calculating
the number of all maximum weight independent sets in a graph of n vertices
each equipped with a positive integer weight. For convenience, we refer to
that algorithm as to the DJ-Algorithm. Recall that the maximum weight
independent set problem (MAXW-IS) gets as input a finite (simple) graph
G = (V,E), and a vertex weight function w : V → N. It asks whether there
is an independent set in G, i.e., a set of pairwise non-adjacent vertices, of
maximal weight. Observe that MAXW-IS is NP-hard even if all weights
are equal to 1 which follows from the vertex cover problem [10], because a
minimum cardinality vertex cover in G is the complement of a maximum
cardinality independent set.
In order to attack monotone #MINW-XSAT we reduce it to a conditional
variant of #MAXW-IS called #MINW-MAXW-IS. The underlying opti-
mization problem MINW-MAXW-IS is defined as follows, for any weight
functions f1 : V → N, f2 : V → R:

Input: G = (V,E), f : V → N× R with f(x) =: (f1(x), f2(x)), x ∈ V .
Output: X ⊆ V such that f2(X) = min{f2(Y) : Y ∈ Fmax

1 (G)}, where
Fmax

1 (G) is the set of all independent sets Y in G such that f1(Y) is maxi-
mal, with fi(S) :=

∑
x∈S fi(x), i = 1, 2, for any S ⊆ V (G).

Thus, an algorithm solving #MINW-MAXW-IS, has to count all indepen-
dent sets X in G of minimal weight w.r.t. the second component under the
condition that f1(X) is maximal.

Proposition 3 Counting all solutions of MINW-MAXW-IS is possible in
O(20.40567·|V (G)|) time, for input G, f = (f1, f2), where f1 : V (G) → N,
f2 : V (G)→ R.

Proof. In [8] an adaptation of the DJ-algorithm is outlined for counting
among all maximum weighted independent sets in a graph only those that
have minimal cardinality (cf. [8], proof of Prop. 5.2). This algorithm runs
in O(20.40567·|V (G)|) worst case time. Clearly that variant of the maximum
weight independent set problem corresponds to #MINW-MAXW-IS where
f2(x) = 1 for each vertex x ∈ V (G). In this adapted version, the return func-
tion of the algorithm is employed by a separate component reserved for the
cardinality of the current independent set under consideration. It is obvious
that the mentioned adaptation carries over also to the generalization where
f2 is an arbitrary real-valued function: Simply take the value f2(X) in the
corresponding component of the return function. It is not hard to see that
the resulting recursive algorithm works as desired with this modification. 2

27

Monotone #MINW-XSAT can be identified as a subproblem of #MINW-
MAXW-IS in the following way. For C ∈ CNF+ with variable graph G :=
GV (C), consider variable weight function w : V (C) → R. Recall that each
variable x ∈ V (C) constitutes a vertex in G and that two vertices are joined
by an edge if the corresponding variables occur together in a clause. Since
we have positive literals only, C(x) = {c ∈ C|x ∈ c} is the subformula of
all clauses in C containing x. As vector-valued weight function f = (f1, f2)
we define f : V (C) → N × R, by f1(x) := |C(x)|, f2(x) := w(x), for each
x ∈ V (C). Now, t is a minimum x-model of C if and only if vertex set t−1(1)
is a solution of MINW-MAXW-IS for G, f . Indeed, let t be any x-model of
C, then each x ∈ t−1(1) is the unique variable exactly satisfying subformula
C(x), hence the corresponding vertex contributes first component weight
f1(x) = |C(x)| in G. Clearly, variables in t−1(1) must yield a partition
C =

⋃
x∈t−1(1)C(x), thus f1(t−1(1)) = |C| which is maximum, because a

larger weight meant that there are clauses in which more than one variable
is set to 1. Conversely, it is easy to see that each independent set X ⊂ V (G)
of weight w(X) = f1(X) = |C| defines an x-model of C assigning 1 to
exactly those varibles corresponding to vertices in X, and 0 to the remaining
variables. Observe that an independent set of weight larger than |C| cannot
exist, because otherwise there are two variables occuring in the same clause
and corresponding vertices are adjacent in G. Hence such an independent
set indeed has maximal first component weight. Therefore, t is a minimum
x-model, if and only if it satisfies w(t) = f2(t−1(1)) = min{f2(t̂−1(1)) :
t̂ ∈ X(C)} which is equivalent to the fact that t−1(1) provides a solution of
MINW-MAXW-IS for input instance G, f = (f1, f2) as defined above.

Theorem 2 #MINW-XSAT for positive monotone formulas C of n vari-
ables (resp. #MINW-SP for a collection C of n input sets), where variables
(resp. input sets) are equipped with arbitrary real weights, can be solved in
O(n2 · ‖C‖+ 20.40567·n) time, with ‖C‖ =

∑
c∈C |c|.

Proof. First, we show that the reduction provided above from #MINW-
XSAT to #MINW-MAXW-IS can be executed in O(n2 · ‖C‖) time, where
n := |V (C)| and C ∈ CNF+. This confirmes the claim of the theorem
regarding #MINW-XSAT relying on Proposition 3. So, for computing the
weighted variable graph (GV (C), f), we first have to determine the vertex
weights, for which an array W is maintained. Each position of W stores a
variable occuring in C together with both weight components. Regarding the
first component f1, we have to determine the number of occurences |C(x)| of
each variable x in C. This can be done by running once through the formula.

28

Each variable x found in C is compared to all variables already stored in W ,
for each of which we maintain a counter corresponding to the number of its
occurences in C. If we find a match the counter for x is incremented by 1,
otherwise the variable is stored in the next position of W , and its counter
is initialized by value one, finally the second weight component w(x) is
assigned. Therefore a running time proportional to n2 · ‖C‖ results. Next
we have to form the edges of the variable graph. Clearly, this can be done
by building a clique K|c| for each clause c ∈ C. As there are |C| ≤ ‖C‖
clauses and each clause contains at most n2 variables, the time needed for
constructing all edges of GC is upper bounded by O(n2 · ‖C‖).
It remains to verify the claim of the theorem regarding #MINW-SP. First
observe that MINW-SP and MINW-XSAT for monotone formulas essentially
are the same, as the following dualization argument shows: Let (M,M, w)
be an input instance of MINW-SP with weight function w : M → R. As-
signing to each T ∈M a Boolean variable xT ∈ {0, 1} equipped with weight
w(T), and assigning to each m ∈ M a clause cm that contains variable xT
if and only if m ∈ T yields a variable-weighted positive monotone input for-
mula of MINW-XSAT. It is easy to see that solving MINW-XSAT for this
formula is the same as solving MINW-SP for (M,M, w), because exactly the
variables set to 1 correspond to those sets that have to be chosen to obtain a
minimum weight partition of M . The converse direction reducing monotone
MINW-XSAT to MINW-SP proceeds analogously. For completing the proof
it is left to verify that the reduction previously described can be done in at
most O(n2 ·‖C‖) time. To that end, we hold a table A of Boolean having size
|M |·‖M‖ storing A(mi, Tj) = 1 iff mi ∈ Tj , whereM := {T1, . . . , T|M|} and
M = {m1, . . . ,m|M |} are assumed to be indexed. After having filled this ta-
ble, we row-wise assign to each clause cm all xTj with A(mi, Tj) = 1 needing
O(|M |·|M|) time. For filling the table, we run once throughM starting with
T1 working column-wise. In column i, we assign value 1 to entry A(mj , Ti) if
we find mj ∈ Ti. So, filling the table needs O(‖M‖) time overall. Therefore,
in summary, we obtain O(‖M‖+ |M | · |M|) = O(‖C‖+ |C| ·n) = O(n ·‖C‖),
where we took into account that M is in bijection to C, M is in bijection
to V (C), and ‖C‖ = ‖M‖ > |C| = |M|. 2

Observe that monotone MINW-XSAT more directly can be identified with
the minimum weight exact hitting set problem. Corresponding input in-
stances consist of a base set S of arbitrarily weighted elements (which are
the variables of a formula C ∈ CNF+) and a collection T of subsets of S (cor-
responding to the clauses in C). Then one searches for a minimum weight
subset X ⊆ S such that X contains exactly one element of each T ∈ T .

29

Clearly a minimum x-model t of C via t−1(1) ⊆ V (C) yields a minimum
weight hitting set and vice versa, correspondingly. We thus obtain:

Corollary 3 Counting all solutions of minimum weight hitting set takes
O(n2 ·‖C‖+20.40567·n) time, for a base set of n arbitrarily weighted elements
and subset collection C. 2

Similarly, for #MAXW-XSAT, we consider #MAXW-MAXW-IS which is
defined as follows via its underlying optimization problem MAXW-MAXW-
IS, for arbitrary weight functions f1 : V → N, f2 : V → R:

Input: G = (V,E), f : V → N× R with f(x) =: (f1(x), f2(x)), x ∈ V .
Output: X ⊆ V such that f2(X) = max{f2(Y) : Y ∈ Fmax

1 (G)}, where
Fmax

1 (G) is the set of all independent sets Y in G such that f1(Y) is maxi-
mal, with fi(S) :=

∑
x∈S fi(x), i = 1, 2, for any S ⊆ V (G).

Thus, an algorithm solving #MAXW-MAXW-IS, has to count all indepen-
dent sets X in G of maximal weight w.r.t. the second component under the
condition that f1(X) is maximal. Now mimicking the argumentation above
immediately yields:

Corollary 4 #MAXW-XSAT for positive monotone formulas C of n vari-
ables (resp. #MAXW-SP for a collection C of n input sets c), where vari-
ables (resp. input sets) are equipped with arbitrary real weights, can be solved
in O(n2 · ‖C‖+ 20.40567·n) time, with ‖C‖ =

∑
c∈C |c|.

Moreover, counting all solutions of maximum weight hitting set takes O(n2 ·
‖C‖+ 20.40567·n) time, for a base set of n arbitrarily weighted elements and
subset collection C. 2

5.2 The general non-monotone case

In this section we provide a polynomial time reduction from #MINW-
XSAT (#MAXW-XSAT) for arbitrary CNF formulas to #MINW-XSAT
(#MAXW-XSAT) restricted to the class CNF+ of monotone formulas en-
abling us to solve these problems in O(n2 · ‖C‖+ 20.40567·n) time, too. The
main idea is to establish a sequence of polynomial time computable map-
pings that, iteratively, transform an arbitrary input instance (C,w) into
(C ′, w′) where C ′ is positive monotone and such that the number of mini-
mum (maximum) x-models of the original instance is preserved, i.e., equals
the number of minimum (maximum) x-models of the transformed instance.
Since for the empty formula ∅ holds V (∅) = ∅, we have |X(∅)| = 20 = 1.
These transformations are managed by Procedure Monotonization stated

30

below which as input gets a non-(positive-)monotone CNF formula C and
recursively calls itself until C is positive monotone thereby it computes a
multiplicator N ∈ {0, 1} for C. N gets value 0 if and only if C turns out
not to be exactly satisfiable during the monotonization process:

Procedure Monotonizationλ(C,w;N) (λ ∈ {max,min})
Input: C ∈ CNF, w : V (C)→ R

Output: C ′ ∈ CNF+, w
′: |Xλ(C,w)| = |Xλ(C ′, w′)|, N ∈ {0, 1}

begin
(0) N ← 1
(1) if there occurs a contradiction then return N ← 0
(2) if ∅ ∈ C then return N ← 0
(3) if ∃c ∈ C with ≥ 2 complemented pairs then return N ← 0
(4) if ∃c ∈ C with 1 complemented pair {x, x} then

C ← Cc, w ← wc, Monotonizationλ(C,w;N)
(5) if ∃x ∈ V (C) occuring only negated in C then

C ← Cx, w ← wx, Monotonizationλ(C,w;N)
(6) if ∃ci = {x} ∪ u, cj = {x} ∪ v ∈ C, x ∈ V (C)then

if u⊕ v = ∅ or |V+(u⊕ v) ∩ V−(u⊕ v)| > 1then return N ← 0
C ← Cij , w ← wij, Monotonizationλ(C,w;N)

(7) return C,w,N
end

Theorem 3 For C ∈ CNF, w : V (C) → R, λ ∈ {max,min}, Procedure
Monotonizationλ, in O(n2 · ‖C‖) time, correctly computes a monotone for-
mula C ′ ∈ CNF+ with w′ : V (C ′)→ R such that |Xλ(C,w)| = |Xλ(C ′, w′)|.

Proof. Correctness of Steps (0) to (3) is obvious, where by contradiction
we mean the circumstance that the same variable during a simplifying trans-
formation is forced to be set to 1 and 0 at the same time. Correctness of
Steps (4) to (6) follows by Lemmata 2, 4, 5, for λ ∈ {min,max}, and by the
fact that the current formula is cp-free when Step (5) is executed for the
first time. Thus the current weighted formula returned in Step (7) is posi-
tive monotone having the same number of minimum (maximum) x-models
as the weighted input formula.
Addressing the claim for the running time we assume that we can rely on
appropriate data structures, such as doubly linked lists: For each variable x,
we maintain a list containing pointers to all clauses containing x, carrying
additional information whether x appears negative or not. Similarly, for
each clause we hold a list, containing pointers to all variables contained,
and assume that these lists are doubly linked. It is not hard to verify that

31

these data structures, for given input instance, can be filled in O(n2 · ‖C‖)
time, and that this bound also dominates the running time of Procedure
Monotonizationλ relying on these data structures. 2

Now we are ready for presenting the main algorithms solving the weighted
XSAT counting problems, for arbitrary weighted formulas, where as abbre-
viation we use (Λ, λ) ∈ {(MINW,min), (MAXW,max)}:
Algorithm #Λ-XSAT(C,w; |Xλ(C,w)|)
Input: C ∈ CNF, w : V (C)→ R

Output: |Xλ(C,w)|
begin
(1) if C is not positive monotone then
(2) Monotonizationλ(C,w;N)
(3) if N = 0 then return |Xλ(C,w)| ← 0
(4) if C = ∅ then return |Xmin(C,w)| ← 1
(5) solve monotone #Λ-XSAT (∗ let r be its result ∗)
(6) return |Xλ(C,w)| ← r
end

Theorem 4 Algorithm #MINW-XSAT (#MAXW-XSAT) correctly calculates the
number of all minimum (maximum) weight x-models of arbitrary weighted
input formula C ∈ CNF, w : V (C)→ R, in O(n2 ·‖C‖+20.40567·|V (C)|) time.

Proof. First consider Algorithm #MINW-XSAT. Theorem 3 establishes the
correctness of statement (2) which needs to be executed only if the input for-
mula is not monotone. By the correctness of Prodecure Monotonizationmin

it is guaranteed that the multiplicator N is 0 if and only if C 6∈ XSAT in
which case the number of x-models is 0, hence (3) is correct. Correctness of
(4) is due to the fact mentioned above that the empty formula has only one
x-model. Step (5) is correct according to Theorem 2, based on the weighted
positive monotone formula as output by Procedure Monotonizationmin.
Addressing the running time, observe that the test in (1) needs O(‖C‖) time,
and Procedure Monotonizationλ can be executed O(n2 · ‖C‖) time due to
Theorem 3. Finally, Step (5) solving monotone #MINW-XSAT performs in
O(n2 · ‖C‖ + 20.40567·|V (C)|) time according to Theorem 2 establishing the
assertion for Algorithm #MINW-XSAT.
Argumentation for Algorithm #MAXW-SAT proceeds analogously based on
Theorem 3 regarding Procedure Monotonizationmax and Corollary 4 com-
pleting the proof. 2

32

6 Concluding remarks and open problems

We proposed an algorithm solving the NP-hard optimization problems min-
imum, resp. maximum, weight XSAT in O(‖C‖20.2441n) time, for arbitrarily
weighted C ∈ CNF over n variables. As far as we know the presented algo-
rithm is the first breakthrough in handling the weighted XSAT optimization
version in nearly the record worst case time of the decision problem. To con-
struct a faster optimization algorithm, especially one that achieves the up
to now best running time for the decision problem, namely O∗(20.2325n) in
[6] is left as an open problem.
Recall from the proof of Theorem 2 that the set partition problem (SP) is,
by dualization, can be identified with XSAT restricted to positive monotone
formulas. So, we also provided algorithms for solving minimum (maximum)
weight SP in O(‖C‖20.2441n) time, where n is the number of sets in the input
family, which are equipped with arbitrary real weights.
Unfortunately, the presented optimization algorithms cannot be used also
to solve the weighted counting problems #MINW-XSAT resp. #MAXW-
XSAT. This is due to the fact that the leaf case of the branching tree al-
gorithm would require to compute all minimum, resp. maximum, weight
perfect matchings in polynomial time which is not expected to be achiev-
able, since it meant to solve #P-complete problems in polynomial time.
However, relying on the monotonization techniques in Section 3, we were
able to provide algorithms for #MINW-XSAT, resp. #MAXW-XSAT, run-
ning in O(n2 · ‖C‖+ 20.40567·n) time, for input formulas C ∈ CNF of n real
weighted variables. Observe that testing all possible truth assignments in a
brute-force manner needs O(n2 · ‖C‖ · 2n) time.
Whether faster algorithms solving unweighted #XSAT like that in [9] can
be adapted also to treat the weighted case without affecting the running
time, is an open question. Another open problem is whether all (weighted)
x-models can be enumerated explicitly with polynomial delay only, which is
not provided by an algorithm merely counting (weighted) x-models. Such an
enumeration algorithm running with polynomial delay only, in the number
of solutions, has been provided, e.g., by Johnson et al. [11] for enumerating
all maximal independent sets in a finite graph.
Of specific interest are also the weighted optimization and counting ver-
sions of XSAT restricted to 3-CNF formulas, X3SAT for short, as X3SAT
remains NP-complete. The NP-hard optimization variants MINW-X3SAT,
resp. MAXW-X3SAT, can be solved in O(20.16254n) time [3, 4] via techniques
provided here and in [18]. However, it is left for future work to achieve for

33

the optimization variants of X3SAT the up to now best bound of O(20.1379n)
for decision as obtained in [6]. Finally, solving the weighted counting prob-
lems #MINW-X3SAT, resp. #MAXW-X3SAT, faster than the general cases
of unrestricted CNF formulas are also left as open problems. For the un-
weighted counterpart #X3SAT, an algorithm having worst case running
time bounded by O(20.20001n) is presented in [9].

References

[1] A. V. Aho, M. Ganapathi, and S. W. Tjiang, Code Generation Using
Tree Matching and Dynamic Programming, ACM Trans. Program-
ming Languages and Systems, 11 (1989) 491-516.

[2] D. Applegate, and W. Cook, Solving large-scale matching problems,
in: D. S. Johnson, C. C. McGeoch (Eds.), Algorithms for Network
Flows and Matching Theory, American Mathematical Society, pp. 557-
576, 1993.

[3] G. Arnopolina, Über Variablen-Gewichtete X3SAT Optimierungs-
Probleme, Diploma Thesis, Univ. Köln, 2006.

[4] G. Arnopolina, and S. Porschen, Solving optimum weight Exact 3-Sa-
tisfiability in O(20.16254n) time, Techn. Report, Univ. Köln, 2006, in
preparation.

[5] B. Aspvall, M. R. Plass, and R. E. Tarjan, A linear-time algorithm
for testing the truth of certain quantified Boolean formulas, Inform.
Process. Lett. 8 (1979) 121-123.

[6] J. M. Byskov, B. Ammitzboll Madsen, and B. Skjernaa, New Algo-
rithms for Exact Satisfiability, Theoretical Comp. Science 332 (2005)
515-541.

[7] S. A. Cook, The Complexity of Theorem Proving Procedures, in: Pro-
ceedings of the 3rd ACM Symposium on Theory of Computing, pp.
151-158, 1971.

[8] V. Dahllöf, and P. Jonsson, An Algorithm for Counting Maximum
Weighted Independent Sets and its Applications, in: Proceedings of
the 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 292-298,
2002.

34

[9] V. Dahllöf, P. Jonsson, and R. Beigel, Algorithms for four variants
of the exact satisfiability problem, Theoretical Comp. Sci. 320 (2004)
373-394.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and Com-
pany, San Francisco, 1979.

[11] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On Gener-
ating All Maximal Independent Sets, Inform. Process. Lett. 27 (1988)
119-123.

[12] S. Liao, K. Kreutzer, S. W. Tjiang, and S. Devadas, A New Viewpoint
on Code Generation for Directed Acyclic Graphs, ACM Trans. Design
Automation of Electronic Systems, 3 (1998) 51-75.

[13] D. Le Berre, and L. Simon, The Essentials of the SAT 2003 Compe-
tition, in: E. Giunchiglia, A. Tacchella (Eds.), Proceedings of the 6th
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), Lecture Notes in Computer Science, Vol. 2919, pp.
172-187, Springer-Verlag, 2004.

[14] B. Monien, E. Speckenmeyer, and O. Vornberger, Upper Bounds for
Covering Problems, Methods of Operations Research 43 (1981) 419-
431.

[15] S. Porschen, On Some Weighted Satisfiability and Graph Problems, in:
“P. Vojtas, et al. (Eds.), Proceedings of the 31st Conference on Current
Trends in Theory and Practice of Informatics (SOFSEM 2005)”, Lec-
ture Notes in Comp. Science, Vol. 3381, pp. 278-287, Springer-Verlag,
2005.

[16] S. Porschen, Solving Minimum Weight Exact Satisfiability in O(20.2441

n) Time, in: “X. Deng, D. Du (Eds.), Proceedings of the 16th Interna-
tional Symposium on Algorithms and Computation (ISAAC 2005)”,
Lecture Notes in Comp. Science, Vol. 3827, pp. 654-664, Springer-
Verlag, 2005.

[17] S. Porschen, Counting All Solutions of Minimum Weight Exact Sat-
isfiability, in: “T. Calamoneri, I. Finocchi, and G. F. Italiano (Eds.),
Proceedings of the 6th Italian Conference on Algorithms and Com-
plexity (CIAC 2006)”, Lecture Notes in Comp. Science, Vol. 3998, pp.
50-59, Springer-Verlag, 2006.

35

[18] S. Porschen, B. Randerath, and E. Speckenmeyer, Exact 3-Satis-
fiability is Decidable in Time O(20.16254n), Annals of Mathematics and
Artificial Intelligence 43 (2005) 173-193.

[19] T. J. Schaefer, The complexity of satisfiability problems, in: Pro-
ceedings of the 10th ACM Symposium on Theory of Computing, pp.
216-226, 1978.

[20] L. Valiant, The complexity of enumeration and reliability problems,
SIAM J. Comput. 9 (1979) 410-421.

36

