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D-50969 Köln, Germany

porschen@informatik.uni-koeln.de

Received (received date)
Revised (revised date)

Communicated by (Name)

Many applications like picture processing, data compression or pattern recognition re-
quire a covering of a set of points most often located in the (discrete) plane by rectangles
due to specific cost constraints. In this paper we provide exact dynamic programming
algorithms for covering point sets by regular rectangles, that have to obey certain (pa-
rameterized) boundary conditions. The concrete representative out of a class of objective
functions that is studied is to minimize sum of area, circumference and number of patches
used. This objective function may be motivated by requirements of numerically solving
PDE’s by discretization over (adaptive multi-)grids.

More precisely, we propose exact deterministic algorithms for such problems based
on a (set theoretic) dynamic programming approach yielding a time bound of O(n23n).
In a second step this bound is (asymptotically) decreased to O(n62n) by exploiting the
underlying rectangular and lattice structures. Finally, a generalization of the problem
and its solution methods is discussed for the case of arbitrary (finite) space dimension.

Keywords: rectangular set cover; optimization problem; dynamic programming; closure
operator; exact algorithm.

1. Introduction

We investigate a class of problems concerning covering grid points in the Euclidean
plane by regular rectangles such that the overall area, the total circumference and
the number of the rectangles used is minimized. Rectangular covering problems may
arise for example in numerical analysis for solving partial differential equations by
iterative multigrid methods.2,14 For that purpose the equations are discretized and
computed on grids. According to the values of error estimation functions it has to be
decided iteratively whether the lattice has to be refined in certain regions meaning
to modify the lattice spacing accordingly. Refinement steps may require a covering
of indicated regions by e.g. regular, i.e., axis parallel rectangles optimized subjected

∗A preliminary version of this paper appeared in the Proceeding of ICCSA 2006/CGA 2006 (cf.
Ref. 12).
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to some reasonable constraints. Such computations can efficiently be performed only
by parallel machines, where the communication amount of cooperating processors
assigned to different lattice regions should be minimized. The specific choice of
objective function as stated above aims at taking into account requirements of such
parallel environments. Other applications for rectangular covering problems may be
picture processing and data compression.15,17

Besides abstract set theoretic or graph theoretic covering problems,1,10 there
are numerous variants of related geometric covering or clustering problems most
of them concerning points distributed in the Euclidean plane.3,5 Many of them, as
far as dealing with arbitrary many covering components are NP-hard optimization
problems.8,17 On the other hand, there are also certain partition or tiling problems,
which could be related to partition variants of the problem at hand.9,7,4,16

In this paper we investigate the computational aspects of rectangular covering
optimization problems from an abstract point of view. Namely, for the specific class
of problems posing 1-sided boundary-constraints to rectangles, we provide exact
deterministic algorithms for finding optimal rectangular coverings. In a first step, a
(set theoretic) dynamic programming approach yielding a time bound of O(n23n) is
discussed. And in a second step this bound is (asymptotically) decreased to O(n62n)
by exploiting the underlying rectangular and lattice structures.

The rest of the paper is structured as follows. Section 2 is devoted to fix the
notation used throughout and to explain basic notions. In Section 3 we consider
the class of 1-sided problems and provide a procedure for computing an admissible
rectangle that optimally covers a given point set. In Section 4 the 1-sided problem
is solved by dynamic programming providing an exponential time bound. In Section
5 we investigate some structural features helping to improve the time bound which
will be done in Section 6. Section 7 then presents a generalization of the concepts
to the d-dimensional case, and, finally, in Section 8 some conclusions and open
questions are stated.

2. Preliminary Notions and Notation

For d ∈ N fixed, let Ed be the d-dimensional Euclidean space which is the Rd

equipped with the (orthogonal) standard basis ei ∈ Rd (i = 1, . . . , d) and the stan-
dard scalar product inducing the norm topology. Let us first consider the plane case
d = 2 (the general case is treated in Section 7). Instead of 1, 2 in this case coordi-
nate(function)s are referred to as x, y. We sometimes also write x(z), respectively,
y(z) for the coordinate values of a given z ∈ E2. Let L = Zexλ + Zeyλ be an iso-
thetical, i.e., axis-parallel integer lattice (grid) embedded in E2 with lattice constant
λ ∈ R+. (It may be convenient to set λ = 1 but in view of applications as mentioned
above a lattice spacing parameter may be useful.) Recall that the (linear) lexico-
graphic order on L is defined by z1 ≤` z2 if either x(z1) < x(z2) or x(z1) = x(z2)
and y(z1) ≤ y(z2). By translational invariance, w.l.o.g. it is sufficient to consider a
bounded region in the first quadrant of the plane: B := [0, Nxλ] × [0, Nyλ] ⊂ E2,
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Fig. 1. Two rectangles r1, r2 whose intersection contains points (white dots) of the input
set M (all dots); grid lines are omitted.

for Nx, Ny ∈ N. For n ∈ N, we write [n] := {1, . . . , n}. Let I := B ∩ L denote the
lattice part in the region of interest. For a set M we denote the collection of its
r-subsets by

(
M
r

)
, its power set by 2M , and let Br(M) := {S ⊆M : |S| ≤ r}.

Throughout we require that rectangles used for covering are placed isothetically
in the plane which we call a regular rectangle. A regular rectangle r = [xd, xu] ×
[yd, yu] ⊂ E2 is uniquely determined by its upper right zu(r) := (xu(r), yu(r)) ∈ E2

and lower left zd(r) := (xd(r), yd(r)) ∈ E2 diagonal points, which not necessarily
coincide with grid points. r is considered as closed set in the norm topology; specif-
ically meaning that points lying on the boundary of r are contained in r and thus
are covered by r. Let R denote the set of all regular rectangles r ⊂ B which can be
placed in B; each represented by (zd(r), zu(r)) ∈ B2. By `x(r), respectively, `y(r))
the length of the x-parallel, respectively, y-parallel side of r is denoted. Moreover, let
a(r) be its area, u(r) its circumference, and let ∂r be the boundary of r consisting
of its four sides ∂ir, i ∈ {1, . . . , 4}.

Definition 1. An objective function on rectangles is a partial map w : R → R+

(the domain D(w) will be made explicit by concrete problems), whose values w(r)
are assumed to be computable in constant time. Given w, a rectangle r is called
admissible if r ∈ D(w). To an objective function w assign the following R+-valued
extension to sets defined by w′(R) :=

∑
r∈R w(r), for every R ⊂ D(w). (Since the

meaning should become clear from the context we also symbolize the set extension
by w.) An objective function on rectangles is called monotone if it satisfies: r ⊆
r′ ⇒ w(r) ≤ w(r′), for all r, r′ ∈ D(w).

The monotonicity condition simply reflects the reasonable requirement that the
costs contributed by a rectangle should not be decreased by a smaller rectangle.

Next we mention several basic rectangular covering problems differing with re-
gard to their input parameters and their objective functions. Each of these problems
searches for a certain subset R ⊂ R serving as a covering of a finite input set M ⊂ I

of lattice points meaning M ⊆
⋃

r∈R r ∩ I. The rectangles of such a covering are
permitted to overlap in any way, in contrast to the rules for tiling problems. It also
may happen that (r ∩ r′) ∩M 6= ∅, i.e., there are points in M which are multiply
covered, namely by r and r′ (cf. Fig. 1). Such situations distinguish covering prob-
lems from rectangular partition problems allowing overlapping rectangles only in
case of empty intersection with the input set M .
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Definition 2. For a fixed real lattice constant λ > 0, let a point set M =
{z1, . . . , zn} ⊂ I (n ∈ N) and t, t′ ∈ R+, t′ ≥ t > 0 be given.
(1) The (fixed type) rectangular covering problem RCλ

fix is the following search prob-
lem: Find a set R of isothetical rectangles each having two parallel sides of length
t resp. t′ such that M ⊂

⋃
r∈R r ∩ I and |R| is minimized.

(2) The (2-sided) rectangular covering problem RCλ(2) is the following search prob-
lem: Find a set R of isothetical rectangles whose side lengths lie in the closed interval
[k, k′] such that M ⊂

⋃
r∈R r ∩ I and |R| is minimized.

(3) Let w be an objective function. The (2-sided) rectangular covering problem w.r.t.
w RCλ

w(2) is the problem RCλ(2) where (instead of |R|) w(R) has to be minimized
over all admissible coverings R of M .

Theorem 1. All above defined rectangular covering problems are NP-hard.11 2

The following problem fixing only the left interval boundary for side lengths is a
specialization of RCλ

w(2):

Definition 3. Let w be an objective function for rectangles. The (1-sided) rect-
angular covering problem w.r.t. w RCλ

w(1) is the following search problem: For a
fixed real lattice constant λ > 0, let a point set M = {z1, . . . , zn} ⊂ I (n ∈ N) and
k ∈ R+, k > 0 be given. Find a set R of isothetical rectangles each having sides of
length at least k such that M ⊂

⋃
r∈R r ∩ I and w(R) is minimized.

Let RCλ
wc

(1) be problem RCλ
w(1) for the specific objective function wc defined

by wc(r) := a(r) + u(r) + c, where c > 0 is a fixed constant and r ∈ R is an
admissible rectangle.

We specifically have that wc is monotone: Let r′ ⊆ r and assume that (∗) :
w(r) < w(r′) holds. Setting `j(r′) = ju(r′) − jd(r′) ≥ 0 (j ∈ {x, y}) we obtain by
some elementary arithmetics:

w(r)− w(r′) = a(r)− a(r′) + u(r)− u(r′)

= (`x(r)− `x(r′))
[
1
2
(`y(r) + `y(r′)) + 2

]
+(`y(r)− `y(r′))

[
1
2
(`x(r) + `x(r′)) + 2

]
Since all terms in the rectangular braces are strictly positive, relation (∗) implies
that there is j ∈ {x, y} such that `j(r)− `j(r′) < 0 yielding a contradiction.

However, it is an open question whether RCλ
wc

(1) is NP-hard. There is a closely
related problem stemming from the application of data compression and mentioned
to be NP-complete in:6 For n, m ∈ N, let M ∈ GFn×m

2 be a matrix of binary entries.
The associated search problem asks for a minimum cardinality set of rectangles
exactly covering the 1-entries of M , which in a certain sense is related to the area
and circumference constraints in the 1-sided rectangular covering problem with
objective wc. So we conjecture that RCλ

wc
(1) also is NP-hard. That however cannot
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hold for RCλ
w(1) for all w. E.g., if w is constant, obviously one admissible rectangle

covering the input set is an optimal solution.
The rest of this paper is devoted to construct a deterministic algorithm for

RCλ
wc

(1) with exponential time bound, posing some additional boundary contraint
as explained in the next section.

3. The 1-Sided Case and Optimal 1-Covers

Again let M ⊂ I be an input set of lattice points. For given minimal side length
parameter k ∈ R+ with 0 < k < Nλ (N := min{Nx, Ny}), call r ∈ R a k-admissible
if `j(r) ≥ k, for j ∈ {x, y}. For some applications it may be required not to allow
lattice points on the boundary of rectangles. This could be encountered by posing,
in addition, a minimal distance condition for points covered by a rectangle: Given
ε ≥ 0 then a rectangle r is called ε-admissible if each point z ∈M ∩ r has minimal
euclidean distance ε to each part of the boundary ∂r of r. Finally, by a (k, ε)-
admissible rectangular covering of M we mean a set R ⊂ R of regular rectangles
which are (k, ε)-admissible such that M ⊂

⋃
r∈R r ∩ I and ∀r ∈ R : r ∩M 6= ∅. The

totality of all (k, ε)-admissible rectangular coverings of M is denoted as C(k,ε)(M) =:
C(M) ⊆ 2R, where the indices (k, ε) are omitted since these values are fixed in a
given problem class. For fixed c ≥ 1 the objective function w := wc is given by
w : R 3 r 7→ w(r) =: a(r) + u(r) + c ∈ R+. Extending to sets R ⊆ R we have
w(R) := a(R)+u(R)+ c|R| where a(R) :=

∑
r∈R a(r), u(R) :=

∑
r∈R u(r). We will

solve the following parameterized version of 1-sided problems:

Definition 4. For fixed λ, k ∈ R+ k-RECTANGULAR COVER (k-RC) is the
following optimization problem: Given Nx, Ny, c, ε ≥ 0 such that ε < λ/2, 0 < k <

N := min{Nx, Ny}λ and a finite set M ⊂ I. Find a (k, ε)-admissible covering R0

of M with opt(k, M) := min{w(R) : R ∈ C(M)} = w(R0). Such a covering R0 is
called an optimal covering.

For fixed lattice spacing λ input instances consist of the point set and the bound-
ary parameters k, ε for rectangles. According to the relation of the value of k to λ

several problem classes arise as discussed now. For arbitrarily fixed k (0 < k < Nλ,
N := min(Nx, Ny)) there is a largest ν(k) ∈ N0 : k = ν(k)λ + α(k), 0 ≤ α(k) < λ,
hence, ν(k) = b k

λc, α(k) = k − ν(k)λ. Thus, we have the following classes par-
titioning the given interval: ν(k) = 0 ⇔ 0 < k < λ is the first class and
ν(k) = i ⇔ iλ ≤ k < (i + 1)λ corresponds to class i + 1 for i ∈ {1, . . . , N − 1}.

We now address the task to determine the smallest (k, ε)-admissible rectangle
containing a given subset S ⊂M of the input set M ⊂ I. To that end, consider the
map

b : 2M 3 S 7→ b(S) := {zd(S), zu(S)} ∈
(

I

2

)
where zd(S) := (xd(S), yd(S)) and zu(S) := (xu(S), yu(S)). Here xd(S) :=
minz∈S x(z), yd(S) := minz∈S y(z) and xu(S) := maxz∈S x(z), yu(S) := maxz∈S
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Fig. 2. Black dots represent points of S (left), white dots represent the base points
zu(S), zd(S) ∈ b(S) of the rectangle r(S) enclosing S (right); grid lines are omitted.

y(z) are the extremal coordinates of points in S. Hence, b(S) in general contains no
points of S or even M , but in any case lattice points.

Definition 5. The unique set r(S) := [xd(S), xu(S)]× [yd(S), yu(S)], with r(∅) :=
∅ is called the rectangular base of S. The extremal points (which coincide for a
single element set) zd(S), zu(S) ∈ b(S) are called the (rectangular) base points of S.

Clearly, we may identify the objects r(S) tightly enclosing S and b(S) (cf. Fig.
2). Obviously this construction violates the properness condition in the case that
the points of S lie all on the same grid line, since then r(S) corresponds to a line
segment.

Lemma 1. r(S) is, w.r.t. to inclusion and also w.r.t. the objective function w, the
smallest rectangular object containing S ⊆M .

Proof. The case S = ∅ is trivial, so assume S 6= ∅. We claim that for each
rectangle r ∈ R with S ⊂ r holds r(S) ⊆ r. Suppose the contrary, then there
is z′ = (z′x, z′y) ∈ B \ S with z′ ∈ r(S) but z′ 6∈ r. Thus there is j ∈ {x, y}
such that z′j < minz∈r zj or z′j > maxz∈r zj . But since S ⊂ r we have minz∈r zj ≤
minz∈S zj and maxz∈r zj ≥ maxz∈S zj ,∀j ∈ {x, y}. It follows that z′ 6∈ r(S) yielding
a contradiction. So we are done by monotonicity of w. 2

Of course, for arbitrary k, ε in general r(S) is not (k, ε)-admissible. Thus we need
a procedure transforming r(S) into a (w.r.t. w smallest) (k, ε)-admissible rectangle
containing r(S). For convenience, we define x := y and y := x, and use a data
structure point storing the components x(z), y(z) of each z ∈ M . M is assumed
to be represented as a one-dimensional array of length n = |M | containing objects
of type point. Furthermore, suppose that Mj (j ∈ {x, y}) is an array in which
the elements of M are sorted by lexicographic j-order ≤`j

, that is ∀z1, z2 ∈ M :
z1 ≤`j

z2 ⇔: j(z1) ≤ j(z2) and if j(z1) = j(z2) then j(z1) ≤ j(z2), j = x, y, i.e.,
≤`=≤`x , as earlier defined; ≤`y is also called anti-lexicographic order. Hence, Mj

is sorted by increasing j-coordinate values of its points. By construction of r(S)
holds `x(r(S)), `y(r(S)) ∈ N0 and S ∩ ∂ir(S) 6= ∅,∀i = 1, . . . , 4. We can consider
the x, y-parallel sides of r independently, so for each of them two cases have to be
distinguished:

a): `j(r(S)) ≥ k, j ∈ {x, y}, then we only have to enlarge each side of r(S)
at both ends by ε simultaneously, obviously resulting in a unique smallest (k, ε)-
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admissible rectangle containing S.

b): There is j ∈ {x, y} : `j(r(S)) < k. If γj/λ := ν(k)− `j(r(S))/λ ∈ N0, is odd
then by extending `j(r(S)) at both ends symmetrically by value [γj + α(k)]/2 we
simultaneously satisfy both the k- and ε-conditions, because by definition ε < λ/2.
If γj/λ is even, we have to analyse the following subcases: (i): α(k)/2 ≥ ε, then
symmetrically extending `j(r(S)) at both ends about [k−`j(r(S))]/2, we also satisfy
the ε-condition; the rectangle achieved in this way may contain a larger set M ⊃
S′ ⊃ S. (ii): α(k)/2 < ε. In case we can find a value j in the interval I−j := [jd(S)−
γj , jd(S)] such that there is no intersection with M on the corresponding grid line
parallel j, then choosing this as the new boundary part we satisfy the ε-condition
at that side. Similarly, we proceed for the interval I+

j := [ju(S), ju(S) + γj ]. These
tests can be executed in linear time as follows: Compute all j-values corresponding
to points in M falling in the range I−j and store them in array S−j . Do the same for
I+
j storing the values in S+

j . For each j ∈ S−j , compute its counterpart j + γj ∈ I+
j ;

storing them by increasing values in C+
j . Then merge arrays S+

j , C+
j resulting to

array B+
j . Finally check if there is a gap inside, i.e., whether there is a value in

I+
j not contained in B+

j . In the positive case obviously we can choose two new
boundary parts parallel j, s.t. at both ends the ε-conditions are satisfied. Notice
that all these computations including the merge step can be done in O(|S|) time
because both arrays are assumed to be sorted by increasing values.

If there is no such choice we have to check if there can be chosen at least one
boundary part not intersecting M . This can be done by first checking, whether there
is j ∈ S−j having no counterpart in S+

j , and if the search yields no success then
perform an analogous check for S+

j . This simply can be done by two assistant arrays
R−

j , R+
j of length |I−j |, |I

+
j | having coordinate values as indices. If that, finally, also is

impossible, then we have to enlarge both sides of r(S) about γj/2+max{ε, α(k)/2}
to obtain (k, ε)-admissibility. The above discussion leads to the following algorithm:

Algorithm (OPT1)

Input: rectangular base r(S) := [xd(S), xu(S)]× [yd(S), yu(S)], S ⊂M

Output: w.r.t. w smallest (k, ε)-admissible rectangle rδ(S) containing r(S)
begin

for j = x, y do

δd
j ← δu

j ← 0, γj ← ν(k)λ− `j(S)
if `j(r(S)) ≥ k then δd

j ← δu
j ← ε

else if `j(r(S)) < k ∧ α(k)/2 ≥ ε then δd
j ← δu

j ← [k − `j(r(S))]/2
else (∗`j(r(S)) < k ∧ α(k)/2 < ε∗)
if γj/λ mod 2 = 1 then δd

j ← δu
j ← [γj + αj(k)]/2

else (∗γj/2 is even: compute arrays S−j , R−
j , C+

j ∗:)
for all zi ∈Mj : jd(S)− γj ≤ j(zi) ≤ jd(S) do

if jd(S) ≤ j(zi) ≤ ju(S) then

S−j [i]← j(zi), R−
j [j(zi)]← j(zi), C+

j [i]← j(zi) + γj

od (∗ compute arrays S+
j , R+

j ∗:)
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for all zi ∈Mj : ju(S) ≤ j(zi) ≤ ju(S) + γj do

if jd(S) ≤ j(zi) ≤ ju(S) then S+
j [i]← j(zi), R+

j [j(zi)]← j(zi)
end do

(∗ merge S+
j , C+

j into B+
j ∗)

for all ji ∈ B+
j do (∗ check if there are two sides not intersecting M∗)

if ji−1 6∈ B+
j then

δd
j ← jd(S)− ji−1 − γj + α(k)/2, δu

j ← ji−1 + α(k)/2− ju(S)
break

if ji+1 6∈ B+
j then

δd
j ← jd(S)− ji+1 − γj + α(k)/2, δu

j ← ji+1 + α(k)/2− ju(S)
break

end do

if δd
j = δu

j = 0 then (∗ check if there is one side not intersecting M∗)
for all j ∈ S−j do (∗ check for S−j ∗:)
if R+

j [j + γj ] = nil then

δd
j ← xd(S)− j + max{ε, α(k)}, δu

j ← j + γj − xu(S)
break

end do

if δd
j = δu

j = 0 then

for all j ∈ S+
j do (∗ check for S+

j ∗:)
if R−

j [j − γj ] = nil then

δd
j ← xd(S)− j + γj , δ

u
j ← j + max{ε, α(k)} − xu(S)

break

end do

if δd
j = δu

j = 0 then (∗ both sides intersect M∗)
δd
j ← δu

j ← γj/2 + max{ε, α(k)/2}
end do

rδ(S)← [xd(S)− δd
x, xu(S) + δu

x ]× [yd(S)− δd
y , yu(S) + δu

y ]
end

Summarizing the argumentation above, we have:

Lemma 2. Let (M,k) be an instance of k-RC, that is sorted lexicographically. For
each S ∈ 2M \{∅}, let r(S) be the rectangular base corresponding to ρ(S) as defined
in Lemma 1. Then Algorithm OPT1 correctly computes rδ(S) ∈ R(k, M) which,
w.r.t. w, is a smallest (k, ε)-admissible rectangle containing S, i.e., opt1(k, S) :=
min{w(r); r ⊇ S, r ∈ R(k, M)} = w(rδ(S)). In general, rδ(S) is not unique. Algo-
rithm OPT1 runs in O(|S|) time. 2

4. A Dynamic Programming Approach

A first reasonable time bound for k-RC can be achieved using dynamic programming
on a pure set theoretical base. The idea is to construct under the constraints mini-
mal rectangular coverings systematically for all subsets of a subset of M and for all
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reasonable cardinalities |R| ∈ {1, 2, . . . , n} of coverings. For a fixed subset ∅ 6= S ⊆
M, |M | := n ∈ N, let optj(k, S) := min{w(R);R ∈ C(S), |R| = j}. Suppose we can
effectively compute optj(k, M), 2 ≤ j ≤ n. Then opt(k, M) = minj∈[n] optj(k, M)
is the optimal value for k-RC with regard to the objective function.
Now suppose, for each subset S ∈ 2M\{∅}, we have computed opt1(k, S) = w(rδ(S))
as well as optj(k, S), 2 ≤ j ≤ i − 1. As induction step on that basis, for each fixed
∅ 6= S ∈ 2M , holds optj(k, S) = min{w(rδ(T ))+optj−1(T ′); ∅ 6= T ∈ 2S}, ∀∅ 6= S ∈
2M , T ′ := S \T forming the Bellman optimality equations in our context. Of course,
we touched too many subsets, needed are only those, having sufficient cardinality:
Sj := {S ∈ 2M ; |S| ≥ j}, and given S ∈ Sj , for computing optj(k, S) it is sufficient
to consider each element of Tj(S) := {T ∈ 2S \ {∅}; |T | ≤ |S| − (j − 1)}.
Before precisely stating the procedure, we explain the data structures used: Rect-
angles will be represented by their diagonal points in a data type rectangle storing
objects of type point. Thinking of M as a sorted alphabet, each subset S ⊂ M

corresponds to a unique word over M, denoted word(S) or S for short, thus 2M

may be sorted by the corresponding lexicographic order. For each S, there can be
determined an unique index ind(S) according to this order. A datatype subset is
used for storing a rectangle and an integer. Then in a preprocessing step for each
S ⊆ M there can be defined subset A S holding ind(S) and also rδ(S) such that
it is possible to read each of them in constant time. We make use of two further
container arrays Opti, Recti for i = 0, 1, each sorted by increasing ind(S). Two of
each kind are needed, because during the algorithm they may be read and filled
up alternately. The arrays Opti, i = 0, 1, shall store the intermediately computed
optj(k, S)-values. The other two arrays Recti of dynamic length have the task to
hold at each index ind(S) a set R

(j)
0 (S) for storing the intermediately computed

rectangles covering S. These arrays are also (re-)used alternately. By the common
order of these arrays the task of determining for a given set T ⊂ M its array po-
sition is solved in O(1) by referring to A S.ind = ind(S). Finally, we make use of
two arrays Subsi, i = 0, 1, of dynamic length. The first one shall store word(T ) and
the second word(T ′) for each subset T of the current S ⊂M . These arrays may be
sorted by lexicographic order.

Algorithm (k-RC)

Input: set of points in the plane M as array of points array of values

rδ(S), w(rδ(S)), for all S ∈ 2M computed by algorithm OPT1

Output: optimal covering value opt(k, M), optimal covering R0(M)
begin

if n = |rδ(M) ∩ I| then opt(k, M)← w(rδ(M)), R0(M)← {rδ(M)}
else

opt(k, M)←∞, R0(M)← ∅
sort 2M \ {∅} by lexicographic order, thereby:

∀S ∈ 2M \ {∅} : compute rδ(S), ind(S) and fill A S

∀S ∈ 2M \ {∅} : Opt0[ind(S)]← w(rδ(S)), Rect0[ind(S)]← {rδ(S)}
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opt(k, M)← Opt0[ind(M)], Rect0[ind(M)]← {rδ(M)}
if n ≥ 3 then

for j = 2 to n− 1 do

for all S ∈ Sj := {S ∈ 2M \ {∅}; j ≤ |S|} do

sort 2S \ {∅} by lexicographic order, thereby:

∀T ∈ 2S \ {∅} : Subs0[ind(T )]← word(T ), Subs1[ind(T )]← word(T ′)
Opt(j−1) mod 2[ind(S)]←∞ (∗optj(k, S)←∞∗)
for all T ∈ Tj(S) := {T ∈ 2S \ {∅}; 1− j + |S| ≥ |T |}∗) do

temp = w(rδ(T )) + Optj mod 2[ind(T ′)] (∗optj−1(k, T ′)∗)
if temp < Opt(j−1) mod 2[ind(S)] then

Opt(j−1) mod 2[ind(S)]← temp

Rect(j−1) mod 2[ind(S)]← {rδ(T )} ∪Rectj mod 2[ind(T ′)]
end do (∗ now: Opt(j−1) mod 2[ind(S)] = optj(k, S)∗)

end do

if Opt(j−1) mod 2[ind(M)] < opt(k, M) then

opt(k, M)← Opt(j−1) mod 2[ind(M)], R0(M)← Rect(j−1) mod 2[ind(M)]
end do

Opt(n−1) mod 2[ind(M)]←∞, Rect(n−1) mod 2[ind(M)]← ∅
for all T ⊂M : |T | = 1 do

temp = w(rδ(T )) + Optn mod 2(ind(T ′)) (∗optn−1(k, T ′)∗)
if temp < Opt(n−1) mod 2[ind(M)] then

Opt(n−1) mod 2[ind(M)]← temp

Rect(n−1) mod 2[ind(M)]← {rδ(T )} ∪Rectn mod 2[ind(T ′)]
end do (∗ now: optn(k, M) = min{w(rδ(T )) + optn−1(k, T ′);T ∈ Tn(M)}∗)
if Opt(n−1) mod 2[ind(M)] < opt(k, M) then

opt(k, M)← Opt(n−1) mod 2[ind(M)], R0(M)← Rect(n−1) mod 2[ind(M)]
(∗ now: opt(k, M) = min{optn(k, M);n ∈M}∗)
end

Theorem 2. For input (M,k) with n := |M |, Algorithm k-RC correctly computes
opt(k, M) = mini∈[n] opti(k, M) and R0 ∈ C(M) such that opt(k, M) = w(R0) in
O(n23n) time.

Proof. Let n := |M |. For proving correctness we first show that opt(k, M) =
mini∈[n] opti(k, M) holds true, where (∗): opti(k, M) := min{w(R);R ∈ Ci(M)},
i ∈ [n] and Ci(M) := {R ∈ C(M); |R| = i}. In the second step it is verified that the
dynamic program correctly computes (∗) by induction on n ∈ N. Clearly, as disjoint
union C(M) =

⋃
i∈N Ci(M) (|R| = 0 is impossible). Obviously, we never need more

covering components than there are elements in M , thus

opt(k, M) = min
n⋃

i=1

{w(R);R ∈ Ci(M)} = min
i∈[n]

opti(k, M)

Next, we have to show that the dynamic program will reproduce opti(k, M), 1 ≤
i ≤ n ∈ N, as in (∗). First of all, by directly applying the above argumentation it
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is clear that we never have to take into consideration more covering components
than there are elements in a set S ⊆ M for finding opt(k, S). Which means, for
|S| = j it suffices to compute optl(k, S), l ≤ j. In other words optj(k, S) has to be
computed only for all elements of Sj := {S ∈ 2M \ {∅}; j ≤ |S|}. In the same way
it is clear that in the most inner loop of the algorithm it suffices to consider only
Tj(S) := {T ∈ 2S \ {∅}; 1− j + |S| ≥ |T |}, as then |T ′| = |S \ T | ≥ j − 1, |S| ≥ j.
Let us proceed by induction on n. By Lemma 2, opt1(k, S) = w(rδ(S)) for each
∅ 6= S ⊆ M, especially opt1(k, M) = w(rδ(M)),∀|M | ∈ N, which is also the basis
of the dynamic program. Now suppose that for each |M | ≤ n holds

opti(k, S) = min{w(rδ(T )) + opti−1(k, T ′);T ∈ Ti(S)}

∀S ⊆ M, |S| ≥ i,∀i ∈ {2, . . . , n}. Consider the case |M | = n + 1. Then for S & M

we are ready by induction, because |S| ≤ n. Moreover, by definition opti(k, M) =
{w(R);R ∈ Ci(M)}, for each i ∈ {2, . . . , |M |}. Thus, for each S & M, |S| ≥ j and
|M | − |S| ≥ i − j, we have R1 ∪ R2 ∈ Ci(M) whenever R1 ∈ Cj(S), R2 ∈ Ci−j(S′),
hence

opti(k, M) = min
S⊂M :i+|S|−|M |≤j≤|S|

{w(R1) + w(R2);R1 ∈ Cj(S), R2 ∈ Ci−j(S′)}

= min
S⊂M :i+|S|−|M |≤j≤|S|

(
min

R∈Cj(S)
w(R) + min

R∈Ci−j(S′)
w(R)

)
= min

S⊂M :i+|S|−|M |≤j≤|S|
(optj(k, S) + opti−j(k, S′))

Now we state the following simple but helpful claim: For S & M and l with i +
|S| − |M | ≤ l ≤ |S| there is a T ⊂ S such that

opti(k, M) ≤ w(rδ(T )) + opti−1(k, T ′) ≤ optl(k, S) + opti−l(S
′)

From this directly follows opti(k, M) = {w(rδ(T ))+opti−1(k, T ′); ∅ 6= T ⊆M, |T | ≤
n− i + 1}, which is what has been stated.

Finally, for proving the claim take an arbitrary fixed S & M, then the case l = 1
is clear by setting T = S. For |S| ≥ l > 1 by induction there is a T0 ⊂ S : |T0| ≤
|S| − l + 1 with optl(k, S) = w(rδ(T0)) + optl−1(k, S \ T0) hence

optl(k, S) + opti−l(k, S′) = w(rδ(T0)) + optl−1(k, S \ T0) + opti−l(k, S′)︸ ︷︷ ︸
covering S′∪(S\T0)=M\T0

thus optl−1(k, S \ T0) + opti−l(k, S′) ≥ opti−1(k, M \ T0). Therefore the choice T0

establishes the claim.
Addressing the running time only the else-part is of interest. First of all there is the
preprocessing step consisting of sorting 2M \ {∅} thereby computing rδ(S), ind(S).
For fixed S computing r(S) needs O(|S|) time and from this according to Lemma 2
we can compute rδ(S) also in O(|S|) time which also holds for computing ind(S),
hence this step delivers an additive term of O(n2n). Next, there is the dominating
part consisting of two nested loops. The inner loop considers all subsets S ⊂M such
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that |S| = p ≥ j; for each p we have
(
n
p

)
such sets. For each of which there is com-

puted the body containing two further loops. In the first for each S, |S| = p ≥ j,

the set 2S is constructed, and for each fixed T ⊂ S corresponding word(T ) and
word(T ′) are computed needing O(|S|) time thus yielding O(p2p). In the second
loop each relevant T ⊆ S is considered where all operations are of O(1). Therefore
and because of

∑p−j+1
k=1

(
p
k

)
≤ 2p ≤ p2p it also contributes O(p2p). Hence, by the

binomial theorem, we get for the inner loop O(
∑n

p=j

(
n
p

)
p2p ≤ n3n). Finally, the

outer loop is iterated less than n times leading altogether to O(n23n) also domi-
nating the bound of the preprocessing step. The last step contains a loop of O(n)
iterations during each of which O(n) time is needed for computing word(T ′) thus it
contributes additively O(n2) also dominated by O(n23n) completing the proof. 2

Proposition 1. Algorithm k-RC has a space requirement of O(2|M ||M |
log(max{Nx, Ny})).

Proof. First there are 2|M | subset types, for all S ⊂ M, each holding a rect-
angle consisting of four real numbers not greater than O(max{Nx, Ny}) thus
needing space of at most O(log(max{Nx, Ny})). Further an integer is stored rep-
resenting ind(S) ≤ 2|M | therefore requiring O(|M |) thus the term O([|M | +
log(max{Nx, Ny})]2|M |) is contributed additively. Next, consider the two arrays
Opt0, Opt1 of length O(2|M |) for storing the opti(k, S)-values. In each component of
Opti, i = 0, 1, we have to store a real number of worst case bound O(w(rδ(M))|M |)
with w(rδ(M)) ∈ O(max{Nx, Ny}2 + 4 max{Nx, Ny} + |M |) and by noting |M | ≤
max{Nx, Ny}2 we have to store numbers of length O(log(max{Nx, Ny})) leading
to a worst case space complexity of O(log(max{Nx, Ny})2|M |). In a similar manner
for Recti, i = 0, 1, holding in each component a set of rectangles consisting of max-
imally 4|M | numbers whose lengths are bounded by O(log(max{Nx, Ny})) one is
lead to O(|M | log(max{Nx, Ny})2|M |) as space complexity contribution. The arrays
Subs of maximal length 2|M | holding in each component a word of maximal length
|M | delivering space length O(log(max{Nx, Ny})) thus contributes additively the
term O(2|M | log(max{Nx, Ny})). By collecting all terms the claimed space bound
is obtained. 2

5. Underlying Structural Features

This section is devoted to enumerate possible covering patches based on grid orders
and to investigate the rectangular structure. Both features may be used to improve
the time bound obtained in the previous section.

5.1. Grid orderings

There is a natural (partial) order ≤L on the lattice given by z1 ≤L z2 ⇔ x(z1) ≤
x(z2)∧ y(z1) ≤ y(z2) (∀z1, z2 ∈ L). Recall that ≤L is not a linear order on the grid
points as, for example, the points z1 = (2, 5) and z2 = (3, 4) are not comparable
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Fig. 3. An antichain A, a strict chain C, and two chains H, V (grid lines are omitted).

with respect to ≤L, whereas z1 ≤` z2 lexicographically holds true. We call a ≤`-
sequence {z1, . . . , zn} ⊂ L a chain if zi ≤L zi+1, 1 ≤ i ≤ n − 1, and call it strict if
≤L is replaced by <L at any position. A ≤`-sequence {z1, . . . , zn} ⊂ L is called an
antichain if x(zi) < x(zi+1) and y(zi+1) < y(zi), 1 ≤ i ≤ n− 1 (cf. Fig. 3).

By some simple combinatorics, first of all, we can enumerate the set of all possible
rectangular bases in the bounded grid region under consideration.

Lemma 3. For I = Ix × Iy, let ≤j denote the restriction of the usual order ≤ to
I2
j , j ∈ {x, y}. Then there is a bijection between ≤L and ≤x × ≤y.

Proof. Let zi = (xi, yi), i = 1, 2, then (z1, z2) ∈≤L⇔ x1 ≤ x2 ∧ y1 ≤ y2. Thus
(z1, z2)↔ ((x1, x2), (y1, y2)) yields the desired bijection. 2

Lemma 4. Let P (I) := {(z1, z2) ∈ I2; z1 ≤L z2}, then (∗) : |P (I)| =
1
4 |Ix||Iy|(|Ix|+ 1)(|Iy|+ 1) and the following defines a partial order ≤P on P (I):

∀p = (z1, z2), p′ = (z′1, z
′
2) ∈ P (I) : p ≤P p′ ⇔def z′1 ≤L z1 ∧ z2 ≤L z′2

Moreover the map

ρ : 2I − {∅} 3 S 7→ ρ(S) := (zd(S), zu(S)) ∈ P (I)

(where the points zd(S) := (xd(S), yd(S)), zu(S) := (xu(S), yu(S)) are determined
as shown above Definition 5) is well defined, surjective and order preserving:
∀S, S′ ∈ 2I : S ⊆ S′ ⇒ ρ(S) ≤P ρ(S′), hence transporting the lattice structure
of (2I ,⊆) to (P (I),≤P ).

Proof. The first claim immediately follows from the existence of a bijection between
≤x × ≤y and ≤L (cf. Lemma 3): As ≤j is a total order on Ij , | ≤j | = 1

2 |Ij |(|Ij |+1)
holds for j = x, y establishing (∗).

Let p = (z1, z2), p′ = (z′1, z
′
2), p

′′ = (z′′1 , z′′2 ) ∈ P (I) be arbitrarily chosen, then
because ≤L is a partial order we have p ≤P p meaning reflexivity. Let p ≤P p′ and
p′ ≤P p, then by definition z′1 ≤L z1 ∧ z2 ≤L z′2 and z1 ≤L z′1 ∧ z′2 ≤L z2. By the
antisymmetry property of ≤L immediately follows p = p′ which is antisymmetry
of ≤P . Finally, p ≤P p′ ∧ p′ ≤P p′′ by definition means z′1 ≤L z1 ∧ z2 ≤L z′2 and
z′′1 ≤L z′1 ∧ z′2 ≤L z′′2 . Now making use of the ≤L-transitivity one obtains p ≤P p′′,
thus ≤P is a partial order on P (I).

Let S ⊆ I then the points xd(S) := mini∈S xi, xu(S) := maxi∈S xi and yd(S) :=
mini∈S yi, yu(S) := maxi∈S yi are uniquely determined from S, they may coincide
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but they obviously fulfill xd(S) ≤ xu(S) and yd(S) ≤ yu(S). Thus by Lemma 3 we
have zd ≤L zu hence (zd, zu) ∈ P (I) and ρ is well defined. For arbitrary (z1, z2) ∈
P (I), clearly {z1, z2} ∈ ρ−1(z1, z2) showing surjectivity of π. Now let S, S′ ∈ 2I :
S ⊆ S′ then holds mini∈S xi ≥ mini∈S′ xi ⇒ xd(S) ≥ xd(S′) and mini∈S yi ≥
mini∈S′ yi ⇒ yd(S) ≥ yd(S′) establishing (1): zd(S′) ≤L zd(S). Moreover, we have
maxi∈S xi ≤ maxi∈S′ xi ⇒ xu(S) ≤ xu(S′) and maxi∈S yi ≤ maxi∈S′ yi ⇒ yu(S) ≤
yu(S′) establishing (2): zu(S) ≤L zu(S′). Now (1), (2) by definition imply ρ(S) ≤P

ρ(S′) proving the partial order preserving property of ρ. 2

Of course, the set P (I) is bijective to the set B(I) of all possible rectangular
bases in the region I by P (I) 3 (z1, z2)↔ [x1, x2]×[y1, y2] ∈ B(I), with zi = (xi, yi).

According to the problem parameter k, we get a hierarchy of irreflexive transitive
binary relations on I, the class k < λ⇔ ν(k) = 0 corresponds to the reflexive order
≤L:

Lemma 5. Let k ∈ [λ, Nλ) ⊂ R+, (N := min{Nx, Ny}) be fixed, then z1 <ν(k)

z2 ⇔def x2 − x1 ≥ ν(k)λ ∧ y2 − y1 ≥ ν(k)λ is a transistive binary relation. Setting
P0(I) := P (I), Pν(k)(I) := {(z1, z2) ∈ I2; z1 <ν(k) z2}, then P0(I) ⊃ P1(I) ⊃ · · · ⊃
PN−1(I). Similarly we have a hierarchy of rectangular base sets: B(I) =: B0(I) ⊃
B1(I) ⊃ · · · ⊃ BN−1(I), Bi(I) corresponding to Pi(I) in obvious manner. Finally,
for each i ∈ {1, . . . , N − 1}:

|Bi(I)| = |Pi(I)| = 1
4
(|Ix| − i)(|Iy| − i)(|Ix| − i + 1)(|Iy| − i + 1)

Proof. The transitivity of <i is obvious, as well as the indicated set hierarchies.
For the last claim observe that <i is bijective to Pi(Ix) × Pi(Iy) with Pi(Ij) :=
{(j1, j2) ∈ I2

j ; j2− j1 ≥ iλ} and obviously |Pi(Ij)| = 1
2 (|Ij |− i)(|Ij |− i+1), j = x, y.

2

Remark 1. For the sets Pi(M) induced by points of M we have Pi(M) :=
Pi(I)∩M2 and Bi(M) := Bi(I)∩M2, as the corresponding rectangular bases. Con-
sequently, specifically for i = 0 holds |B(M)| ≤ 1

4 (Nx +1)(Ny +1)(Nx +2)(Ny +2),
because |Ij | = Nj + 1, j = x, y.

5.2. Rectangular subset classes

In the discussion of Section 4 almost all subsets S ∈ 2M have been considered,
but many of these subsets can be identified in the sense that they lead to the same
rectangular base: r(S) = r(S′), S, S′ ∈ 2M . Now, independently of the grid structure
we analyse some kind of rectangular structure inherent in the discrete point set M

itself.

Definition 6. A set S ∈ 2M \ {∅} is called admissible rectangular subset of M

if r(S) ∩ M = S. Let A(M) ⊂ 2M \ {∅} denote the set of all admissible rect-
angular subsets of M . Given k, we define Aν(k)(M) := {A ∈ A(M)|`x(r(A)) ≥
ν(k)λ, `y(r(A)) ≥ ν(k)λ} ⊂ A(M) =: A0(M), for each ν(k) ∈ {0, . . . , N − 1}.
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Proposition 2. Let (M,k) be an input instance of k-RC and A(M) as above, then

(i) S1 ∼r S2 ⇔def r(S1) = r(S2),∀∅ 6= S1, S2 ∈ 2M defines an equivalence relation
on 2M \ {∅}. We write M := [2M \ {∅}]/ ∼r.

(ii) The map σ : 2M 3 S 7→ σ(S) := r(S) ∩ M ∈ 2M (r(∅) := ∅) is a closure
operator (rectangular closure) having image σ(2M ) = A(M) ∪ {∅}.

(iii) The sets A(M) and M are isomorphic, let the corresponding bijection be de-
noted by µ : A(M)→M. Thus each A ∈ A(M) defines a class of subsets µ(A)
called rectangular subset class.

(iv) ∀S ⊆ M we have µ−1([T ]) ⊆ µ−1([S]),∀T ⊆ S. Especially ∀A ∈ A(M) holds
µ−1(T ) ⊆ A,∀T ⊆ A. Moreover for each [S] ∈ M we have µ−1([S]) ∈ [S] is
according to ⊆ the greatest element of [S] (which means ∀T ∈ [S] : T ⊆ A :=
µ−1([S]) ∈ A(M)).

(v) For A ∈ A(M) we have µ(A) = {T ⊆ A : T ∩ ∂ir(A) 6= ∅, i = 1, . . . , 4}.
(vi) Let Ai(M) := {A ∈ A(M) : r(A) ∈ Bi(I)}, i ∈ {1, . . . , N − 1}, then A(M) =:

A0(M) ⊃ A1(M) ⊃ · · · ⊃ AN−1 and |Aν(k)(M)| ≤ |Bν(k)(I)| = |Pν(k)(I)|.

Proof. Part (i) is obvious. For proving (ii) recall that a closure operator ω : 2I → 2I

has the following defining properties: (a) ∀S ⊆ I holds S ⊆ ω(S), (b) ∀S1, S2 ⊆ I

with S1 ⊆ S2 holds ω(S1) ⊆ ω(S2), and (c) ∀S ⊆ I we have ω(ω(S)) = ω(S). To
show now that σ has the above properties, we first observe that S ⊆ r(S) implies
S ⊆ σ(S),∀S ∈ 2I , i.e., the first condition is fulfilled. Also it is quite obvious that
r(S1) ⊆ r(S2) whenever S1 ⊆ S2 ⊆ I thus we have also σ(S1) ⊆ σ(S2) which
is (ii). Addressing (iii) we have to show that if T = σ(S) then σ(T ) = T for an
arbitrary S ⊆ M . By definition we have σ(S) = T = r(S) ∩M so that obviously
r(T ) = r[r(S) ∩M ] = r(S) implying σ(T ) = r(T ) ∩M = r(S) ∩M = T . The
claim concerning the image then directly follows from the closure operator property
σ(σ(S)) = σ(S).

To justify (iii), we first have to show that ∀A1, A2 ∈ A(M) : A1 6= A2 implies
[A1] 6= [A2]. But this is true, because Ai = r(Ai) ∩M, i = 1, 2, and r(A1) ∩M 6=
r(A2)∩M ⇔ r(A1) 6= r(A2), thus [A1] 6= [A2]. Second, for ∅ 6= A ⊂M, let [A] ∈M,

then σ(A) ∈ A(M) and [σ(A)] = [A], because r(A) = r(r(A) ∩M). For showing
part (iv) we have µ−1([T ]) = σ(T ′),∀T ′ ∈ [T ], because r(T ′) = r(T ) ⇒ σ(T ′) =
σ(T ) ∈ A(M), as T ′, T ⊆M, especially µ−1([T ]) = σ(T ). By this all claims of (iv)
readily follow from the closure operator properties of σ. Part (v) is obvious. The last
part (vi) directly follows because A 6= A′ ⇔ r(A) 6= r(A′) ∈ B(I),∀A,A′ ∈ A(M).
That means A0(M) = A(M) and |Aν(k)(M)| ≤ |Bi(I)|, for ν(k) ∈ {0, . . . , N − 1}.

2

We have another useful lemma:

Lemma 6. For (M,k),A(M) as above, |A(M)| ∈ O(|M |4) (hence |Aν(k)(M)| ∈
O(|M |4),∀ν(k) ∈ {0, . . . , N − 1}).
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Proof. For B4(M) = {∅ 6= T ⊆M ; |T | ≤ 4} we first prove that the map

τ : B4(M) 3 T 7→ τ(T ) := µ−1([T ]) ∈ A(M)

is well defined and is surjective. Assume M 6= ∅ otherwise the situation is trivial.
Because B4(M) ⊆ 2M , for each T , there is [T ] ∈ M due to Proposition 2, and
therefore µ−1([T ]) = τ(T ) ∈ A(M). To complete the proof that τ is well defined,
observe that each T lies in exactly one equivalence class [T ]. Now let A ∈ A(M)
be arbitrarily chosen. Then either (i): |A| ≤ 4 or (ii): |A| ≥ 5. In case (i) we have
A ∈ B4(M) ∩ A(M) and therefore A = µ−1([A]) = τ(A) thus A ∈ τ−1(A). We
observe that τ |B4(M) ∩ A(M) = idB4(M)∩A(M), where τ |B4(M) ∩ A(M) denotes
the corresponding restriction of τ . Next, let A satisfy case (ii). We claim (∗): there
exists T ∈ B4(M) such that r(T ) = r(A). From (∗) the assertion follows since then
T ∈ [A] which is the same as A ∈ [T ] thus A = µ−1([T ]) = τ(T ). Hence, T ∈ τ−1(A)
establishing that τ is surjective.

To justify (∗), let zd(A) = (xd(A), yd(A)) and zu(A) = (xu(A), yu(A)) be the
base points of A, where xd(A) = minz∈A x(z), yd(A) = minz∈A y(z) and xu(A) =
maxz∈A x(z), yu(A) = maxz∈A y(z). Hence, there must exist members z1, z2, z3, z4 ∈
A, at least one, for determining each of these extremal values: x(z1) = xd(A),
y(z2) = yd(A), x(z3) = xu(A), y(z4) = yu(A). In conclusion, for the set T :=⋃4

i=1{zi}, holds |T | ≤ 4⇒ T ∈ B4(M) and by construction r(T ) = r(A) which has
been claimed. Finally, by surjectivity we obtain

τ(B4(M)) = A(M)⇒ |A(M)| ≤ |B4(M)| =
4⋃

i=1

(
|M |
i

)
∈ O

(
4∑

i=1

|M |i
)

therefore |A(M)| ∈ O(|M |4). 2

5.3. The rectangular subset closure

From a slightly different point of view we have that the pair GI := (I, P (I)) is
a (plane-embedded) acyclic directed graph (DAG) and GM = (M,P (M)), where
P (M) = P (I)∩M2, is a (plane-embedded) induced DAG. Unfortunately the digraph
(M,P (M)) cannot directly be used to enumerate the set of covering components,
because it will not determine all necessary rectangular bases. Intuitively, we are
looking for some kind of a ”covering hull” which means adding the minimal number
of necessary vertices (i.e. points) from I \M to M and also the corresponding edges
to P (M) such that all rectangular bases needed for covering are determined.

The concept we need for that is the rectangular subset closure.12 To make the
presentation more self-contained we shall briefly explain the main features. The rect-
angular subset closure of a point set M naturally appears as the smallest superset
of M containing the base points of all subsets of M .

Definition 7. For M ⊂ L finite, the rectangular subset closure RS(M) ⊂ L is
defined by RS(M) :=

⋂
{L ⊇M ′ ⊇M : b(S) ⊂M ′,∀S ∈ 2M}.
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Fig. 4. A set M and its rectangular subset closure RS(M) (grid lines are omitted).
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Fig. 5. An antichain M of n = 4 points yielding a rectangular subset closure RS(M) of

n2 = 16 points (grid lines are omitted).

Definition 7 obviously is equivalent to:

Lemma 7. For M ⊂ L finite, we have RS(M) = M ∪
⋃

S⊆M b(S).12 2

As an example consider Figure 4, where all additional base points, for a given
set M , contained in the corresponding RS(M) are represented as white dots.

The rectangular subset closure as introduced above gives rise to a closure oper-
ator defined for a fixed finite rectangular grid region I ⊂ L.

Proposition 3. RS : 2I → 2I is a closure operator.12

The rectangular subset closure of a M ⊂ I gives rise to a (plane-embedded)
directed acyclic graph. Its vertex set is RS(M) and each chain (zd, zu) ∈ RS(M)2

forms an edge if and only if they appear as base points of some S ⊆ M . Such a
graph has loops (z, z) corresponding to the single element subsets, i.e., to the points
z ∈M .

Moreover we have:12

Theorem 3. For finite M ⊂ L holds:
(1) |RS(M)| ≤ |M |2, and |RS(M)| = |M |2 if and only if M is an antichain (cf.
Fig. 5).
(2) RS(M) can be computed in time O(|M |2).
(3) |A(M)| ≤ |RS(M)|2.
(4) A(M) can be computed in time O(|M |4).

Observe that the bound for |R(M)|, in many cases, namely when |RS(M)| ∈
O(|M |) (which, e.g., is the case for chains) holds, is much better than that stated
above. Moreover, observe that in case M is an antichain, i.e., the most extremely
class regarding the size of RS(M), then for computing A(M) only all subsets of size
two of M are needed. Hence, for an antichain M , holds A(M) ∈ O(|M |2).
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6. Improving Time Bounds

The structural features provided previously next will be used to improve the bound
for solving k-RCn stated in Theorem 2.

Lemma 8. Let (M,k) be an input instance of k-RC. If, for each S ∈ Sj one
replaces Tj(S) by the set T̂j(S) := Tj(S)∩Aν(k)(M), j ∈ {2, . . . , |M |}, in Algorithm
k-RC, then it still works correctly.

Proof. We have to show that

(∗) : optj(k, S) = min{w(rδ(T )) + optj−1(k, S′) : T ∈ T̂j(S)}

holds, for 2 ≤ j ≤ |M |; in any case it is necessary to compute opt1(k, S),∀S ∈
2M \ {∅}. By Theorem 2 we have optj(k, S) = min{f j

S(T ) : T ∈ Tj(S)} defining
f j

S(T ) := w(rδ(T )) + optj−1(k, S′). Now we claim that for each T ∈ Tj(S) there is
A ∈ T̂j(S) : f j

S(A) ≤ f j
S(T ), from which the lemma immediately follows, because

in that case we do not miss a relevant candidate when optj(k, S) is computed
according to (∗). To show the claim consider any T ∈ Tj(S); if T ∈ T̂j(S) we are
ready by setting A := T implying f j

S(A) = f j
S(T ). Moreover, T ∈ Tj(S) \ T̂j(S)

implies T 6∈ Aν(k)(M), and we set A := A(T ) := r(T ) ∩M ∈ A(M), and obviously
w(rδ(T )) = w(rδ(A)). From Proposition 2, (iv), we obtain S \ A ⊆ S \ T , because
T ⊆ A(T ), which in case |S \ A| ≥ j − 1 directly implies f j

S(A) ≤ f j
S(T ). In the

remaining case |S \A| < j − 1, we have

optj−1(k, S \A) = optl(k, S \ T ) + optj−1−l(k, ∅)
≤ optl(k, S \ T ) + optj−1−l(k, ∅)
≤ optj−1(k, S \ T )

where the last inequality holds because |S \ T | ≥ j − 1 and optj−1−l(k, ∅) means
the value of w for j− 1− l rectangles being smallest according to k, from which the
claim and also the lemma follow. 2

Defining f(k, |M |, Nx, Ny) := min{|B4(M)|, |Pν(k)(I)|}, with |B4(M)| ∈
O(|M |4), |Pν(k)(I)| ∈ O([Nx − ν(k)]2[Ny − ν(k)]2) one obtains:

Theorem 4. For input (M,k) problem k-RC can be solved in time
O(|M |2f(k, |M |, Nx, Ny)2|M |) ∈ O(|M |62|M |).

Proof. The correctness directly follows from Lemma 8. To verify the time bound
first observe that from the proof of Theorem 2 follows that for the most inner
loops instead of considering each element of Tj(S) we have to consider only those
also being elements of Aν(k)(M). Thus, instead of p2p, for fixed S ⊂ M with
|S| = p, one obtains

∑n
p=j

(
n
p

)
p|Aν(k)(M)| ≤ n2n|Aν(k)(M)| and the outer loop

never is iterated more than n times yielding another factor n := |M |. Finally,
realizing |A(M)| ≤ min{|B4(M)|, |Pν(k)(I)|} which directly follows from Lemma 6
and Proposition 2, (vi), finishes the proof. 2
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Observe that there are many situations where RS(M) is much less than |M |2.
E.g. for an chain M , we even have RS(M) = M . In such cases we achieve a smaller
exponent of |M | than that in the bound stated above, which could shrink from 6
to 4, if |RS(M)| is considered instead of |B4(M)|.

Consider the following parameterized variant of the problem at hand: For fixed
p ∈ N, let k-RCp be the problem of solving k-RC with at most p covering compo-
nents. For this situation we have:

Theorem 5. For fixed p ∈ N, and input (M,k), k-RCp can be solved in time
O(p|M |f(k, |M |, Nx, Ny)p).

Proof. Even as brute force search: we only have to check each covering candidate
R in the set

p⋃
i=1

(
Aν(k)(M)

p

)
whose cardinality is in O(|Aν(k)(M)|p), hence the bound follows, because
|Aν(k)(M)| ≤ min{|B4(M)|, |Pν(k)(I)|} and w({rδ(A), A ∈ R}) can be computed
in worst case time O(p|M |). 2

7. Generalization to the d-Dimensional Case

The setup described in the preceeding section will be generalized in the sequel to
the d-dimensional case for 2 ≤ d ∈ N. This generalization is not only interesting
from an abstract point of view but it may be profitable also for modeling higher
dimensional applications.

For fixed 1 < d ∈ N, let Ed be the Euclidean space in d dimensions with
fixed (orthogonal) standard basis Bd = {e1, . . . , ed}. For the (orthogonal) integer
lattice Ld = Ze1λ + · · · + Zedλ with lattice constant 0 < λ ∈ R by the vector
N := (N1, . . . , Nd) ∈ Nd we fix the bounded region

Id = ([0, N1λ]× · · · × [0, Ndλ]) ∩ Ld

Let M = {m1, . . . ,mn} ⊂ Id, where each mi = (m1
i , . . . ,m

d
i ) is represented by

its coordinate values with respect to Bd. We are searching for a covering of M,

by regular, i.e., Bd-parallel d-boxes of minimal fixed side lengths k with 0 < k <

min1≤i≤d Niλ, s.t. the overall volume, boundary volume and number of boxes used
are minimized. Let r be a d-box with side-length vector (`1, . . . , `d), `i ≥ k, then its
volume is given by vol(r) =

∏d
i=1 `i, and the volume of its boundary is vol(∂r) =

2
∑d

i=1

∏d
i 6=j `j . Here ∂r denotes the boundary of r topologically viewed as closed

set. Generalizing Definition 4, more precisely we define:

Definition 8. Let N ∈ Nd, and k, λ, ε ∈ R+ − {0} such that k < N := min{N iλ :
i ∈ [d]}, and λ/2 > ε be fixed. A (k, ε)-admissible d-box is a regular d-box
r ⊂ [−ε, N1λ + ε] × · · · × [−ε, Ndλ + ε] and k ≤ `i(r) (1 ≤ i ≤ d) such that
each m ∈ r ∩M has minimal (Euclidean) distance ε to ∂ir, ∀i = 1, . . . , 2d. Let Rd
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be the set of all (k, ε)-admissible d-boxes. A (k, ε)-admissible d-box covering of M

is a set R ⊂ Rd such that M ⊆
⋃

r∈R r ∩ Id and for each r ∈ R : r ∩M 6= ∅. The
set of all such coverings of M is denoted as C(M) ⊆ 2R(k,M). As objective function
define w : Rd 3 r 7→ w(r) := vol(r) + vol(∂r) + c ∈ R+, for fixed c ≥ 1, and by
extension R ∈ C(M) : w(R) :=

∑
r∈R w(r).

k, d-RECTANGULAR COVER (k-RCd) is the following optimization problem:
Given M ⊂ Id, find opt(k, M) := min{w(R);R ∈ C(M)} and R0 ∈ C(M), with
w(R0) = opt(k, M), which is called an optimal d-covering.

Given m ∈ Id and ei ∈ Bd, there is a unique hyperplane Hm(ei) ⊂ Ed contain-
ing m and being orthogonal to ei, which is given by Hm(ei) := {miei +

∑
j 6=i αjej :

αj ∈ R}. Hence given S ∈ 2M , by bd(S) := {ma(S),mb(S)} ∈
(
Id

2

)
, a unique d-box

base rd(S) is determined in time O(d|M |) via the intersections of the corresponding
hyperplanes, where mi

a(S) := min{mi : m ∈ S} and mi
b(S) := max{mi : m ∈ S},

1 ≤ i ≤ d. Thus, by slightly modifying Algorithm OPT1 resulting to Algorithm
OPT1d considering all d directions, we obtain the time bound O(d|M |) for comput-
ing a (k, ε)-admissible d-box covering S from bd(S), if S is assumed to be ordered
lexicographically. Similarly, Algorithm k-RC may be modified to Algorithm k-RCd

only by incorporating OPT1d yielding the worst case time bound of O(d|M |23|M |)
for solving k-RCd.

This bound can be improved by generalizing the structural features discussed
in Section 5 to the d-dimensional case. The equivalence relation ∼ on the power set
2M can also be generalized to the d-dimensional case where M ⊂ Ld:

S1 ∼d S2 ⇔def bd(S1) = bd(S2),∀S1, S2 ∈ 2M

with classes [S]d. DefiningMd := 2M/ ∼d as well as

σd : 2M 3 S 7→ σd(S) := rd(S) ∩M ∈ 2M

(rd(∅) := ∅) and Ad(M) := {S ⊆M : σd(S) = S} we arrive at:

Proposition 4. σd : 2M → 2M is a closure operator and there is a bijection
µd : Ad(M)→Md defined by S 7→ µd(S) := [S]d, S ∈ Ad(M). 2

Instead of B4 we now have to consider the set B2d = {S ⊂M : |S| ≤ 2d}, |B2d| ∈
O(|M |2d) which for fixed d defines a polynomial bound. As in the plane case we
have for the sets Adν(k)(M) = {A ∈ Ad(M) : `i(rd(A)) ≥ ν(k)λ, i ∈ [d]} that
|Adν(k)(M)| ≤ |B2d|, for all ν(k) ∈ {0, . . . , N − 1}.

Furthermore there is a straightforward generalization of the relations ≤ν(k)⊆ I2

(cf. Lemmata 4 and 5), to Id × Id via m1 ≤ν(k) m2 ⇔def mi
2 −mi

1 ≥ ν(k)λ, 1 ≤
i ≤ d. The corresponding sets Pi(Id), Bi(Id) are defined analogously to Pi(I), Bi(I),
and for each i ∈ {1, . . . ,min1≤j≤d Nj − 1} we have:

|Pi(Id)| = |Bi(Id)| =
d∏

l=1

1
2
(Nl − i)(Nl − i + 1)
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Defining fd(k, |M |,N) := min{|B2d(M)|, |Pν(k)(Id)|}, where |B2d(M)| ∈
O(|M |2d), |Pν(k)(Id)| ∈ O(

∏d
i=1[N

i − ν(k)]2) and Collecting all parts of the pre-
ceeding discussion we obtain the result:

Theorem 6. A worst case time bound for exactly solving k-RCd for input (M,k)
is O(d|M |2fd(k, |M |,N)2|M |).

We also have a generalization of the notion of the rectangular subset closure of a
point set:12 The d-dimensional rectangular subset closure RSd(M) of a finite point
set M ⊂ Ld is given by RSd(M) = M ∪

⋃
S⊆M bd(S). Moreover one has:12:

Theorem 7. For M ⊂ L(d) finite, we have

Similarly, we can derive generalized results concerning the set Rd(M) of repre-
sentatives according to relation ∼d, for a finite set M ⊂ L(d).

Theorem 8. For M ⊂ L(d) finite, we have
(1) |RSd(M)| ∈ O(|M |2), and RSd(M) can be computed in time O(d|M |2).
(2) |Ad(M)| ∈ O(|RSd(M)|2).

As in the plane case the exponent of |M | in the bound stated in Theorem 6 may
be decreased when |RSd(M)| is considered instead of |B2d(M)|.

For fixed p ∈ N, let k-RCd
p be the problem of solving k-RCd with at most p

covering components, we have generalizing the proof of Theorem 5:

Theorem 9. For input (M,k) problem k-RCd
p can be solved in time

O(dp|M |f(k, |M |,N)p).

8. Concluding Remarks and Open Problems

We provided algorithms for covering a given set of n points in the discrete d-
dimensional Euclidean space, d ≥ 2, by regular rectangles due to an objective
function minimizing sum of areas, circumferences and number of rectangles used.
A first dynamic programming approach yielding an appropriate covering algorithm
of running time O(dn23n) could be improved to O(dn62n) by slight modifications
exploiting the underlying rectangular structure.

The methods provided can be easily adapted to 1-sided (parameterized) rect-
angular covering problems defined for any monotone objective function w. An im-
portant open question is whether the rectangular problems with 1-sided boundary
constraints as discussed are NP-hard.

Closely related is the question whether the methods presented here also apply
to the variants of 2-sided boundary constraints which are known to be NP-hard.

Finally, it might be worthwhile also to formulate the problem in terms of lin-
ear/integer programming with appropriate relaxations. However to fixing concrete
time bounds and to encounter the presented structural features seems not to be as
accessible as in the dynamic programming environment discussed here.
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