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Abstract

We define the concept of crossing numbers for simultaneous graphs
by extending the crossing number problem of traditional graphs. We
discuss differences to the traditional crossing number problem, and
give an NP-completeness proof and lower and upper bounds for the
new problem. Furthermore, we show how existing heuristic and
exact algorithms for the traditional problem can be adapted to the
new task of simultaneous crossing minimization, and report on a
brief experimental study of their implementations.
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1 Introduction

Graph structures are an intrinsic part of many real world problems.
Using graph drawing to layout the occurring graphs is a good way of
visualizing the problem and can help the user to understand complex
relationships. Traditional graph drawing deals with a single graph
as its input. However, in many graph drawing applications the input
does not consist of a single network but a series of graphs. We will
give some applications where this situation occurs in a natural way.

Analysis of biological networks. The analysis of metabolic and
signal transduction networks is a pivotal element in biochem-
istry, and a lot of research is conducted on the analysis and
identification of central metabolite cycles and the interactions
taking place within a cell. The need for good visualizations of
such networks is, e.g, described in [1]. The role of simulta-
neous graph drawing in this field is strengthened by a survey
by Suderman and Hallet [31], where they state the unfortu-
nate weak tool support for visualizing similar networks and
networks from a time series.

Evolutionary changes and interaction and function prediction.
Biochemical experiments show that the same metabolism is
usually not identical but very similar, over a set of different
organisms, such as human, mouse, yeast and bacteria. Recog-
nizing, understanding exactly how such metabolites differ, and
identifying the common and evolutionarily conserved patterns
is a crucial step to allow the identification and prediction of
biological interactions and functions, see, e.g., [2, 30, 32].

Figure 1 shows a conserved coregulated protein cluster be-
tween yeast and fly, as visualized in [32]; the gray dotted lines
are necessary to establish the node identification between the
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Figure 1: Conserved coregulated protein cluster between yeast and
fly, as visualized in [32].

Figure 2: The vitamin B6 metabolism in different species: yeast (Sac-
charomyces cerevisiae - upper left), silibacter bacterium (upper right),
staphylococcus bacterium (lower left) and streptomyces bacterium
(lower right). The drawings can be produced using one of the algo-
rithms described in this paper.

two organisms. Figure 2, on the other hand, shows the vita-
min B6 metabolism in four different organisms, drawn with a
simultaneous layout; the individual graphs are drawn side by
side instead of on top of each other. The visualization presents
the similarity of the graphs in a clear way as the common sub-
graphs in the multiple networks are drawn identically.

Network perturbation and drug design. Understanding the
functionality and interrelationship of metabolites within a cell
is a crucial task in drug design. A disease modifies metabolic
paths. In order to understand a disease it is important to un-
derstand the modifications to the affected metabolic networks.
New medicaments, on the other hand, are designed to manip-
ulate one metabolic path in a cell, e.g., by removing edges,
i.e., preventing biochemical reactions to happen. However,
this manipulation can change other pathways as well which
can lead to severe side-effects of this drug.



Biochemists want to display the cellular response arising from
perturbing the network [19]. By drawing the networks with
and without the disease or drug in a simultaneous way, these
changes and interactions are easier to determine.

Temporal changes. While the reactions in a cell take place,
the concentration of critical substances within the cell usu-
ally changes. Such changes modify the metabolite network by
making certain reactions more or less likely to occur. Ana-
lyzing the metabolites in these different states can allow new
insights into these interaction networks. Santos et al. [28]
present a graph-based concept to model such behavior, as well
as the network perturbation mentioned above, in which the
problem of drawing graphs simultaneously arises.

Social Sciences. Recent studies often use graphs to describe the
relationships of groups or individuals. E.g., in a study of pop-
ulation structures within a town [24], the bonds between citi-
zens play a major role. Such connections between people can
be created in different ways, such as blood relationship, geo-
graphical neighborhood or the membership to an association,
giving rise to a set of multiple relationship graphs. It is es-
sential to study the whole collection of connections but also to
be able to verify the different types of relationships in single
examinations.

Evolution of networks. The layout of UML diagrams is a tradi-
tional application field for graph drawing. However, often
one wants to visualize modifications to these diagrams, as it
can be interesting to see the differences between versions of
software. This can happen on a large scale, e.g., comparing
different release versions of the Java class collection, or on
a small scale for the version-differences arising in concurrent
versioning systems like CVS and SVN.

The visualization of the development of the world wide web
is just one example for a variety of networks evolving over
time. It is a natural task to study its development by forming
instances for specific points in time (e.g. an instance for every
month) and thus creating a sequence of related data.

In all of the described applications the visualization of the occur-
ring relationships between differing data helps the user to understand
the structure he is facing. The information can naturally be modelled
as a series of graphs with a common set of nodes (proteins, inhab-
itants, etc.) while the edges differ between the individual graphs,
modelling the nodes’ relationship based on certain criteria (illness,
time, type of relationship, etc.).

The layout of several graphs has become an important task within
graph drawing. During the 2006 Graph Drawing Symposium, a con-
test [14] was held with the goal to best visualize a set of graphs ex-
tracted from the statistics of all the soccer world championships.
Each graph presents the games of an individual championship,
whereby the nodes represent the participating countries.

The task to present such series of graphs in form of graph drawings
includes the creation of nice layouts for each individual graph but
also the support of understanding the relationship between these
graphs. Erten et al. [9] fix the two important criteria for simultaneous
graph drawing: the readability of the individual layouts and the
mental map preservation in the series of drawings.

1.1 Overview on this paper

Formally, a drawing of a graph G on the plane is an injection of
its vertices to points in the plane and a mapping of the edges to
simple continuous curves between the images of their endpoints,
without containing the image of any other vertex. Any point other
than the images of the vertices may only be contained in at most
two curves. Such a point which is contained in exactly two curves

is called a crossing. A drawing without crossings is called plane;
we can obtain a planarization of G by substituting each crossing by
a dummy vertex. The crossing minimization problem is to find a
drawing of G with the smallest number of crossings. The problem
is known to be NP-complete [12] and has been studied extensively
in literature, see, e.g., [33] for an extensive bibliography.

In this paper, we deal with the problem of crossing minimization
for simultaneous graphs, which, to our knowledge, has not been
studied before: given a series of graphs, we consider layouts for
each graph such that all vertices and edges belonging to more than
one graph are drawn identically in all drawings in which they appear.
The objective is to minimize the total number of edge crossings over
all these drawings. We also consider the weighted problem, where a
small number of crossings may be more important for certain graphs
of the series than for others.

We will first briefly summarize the state-of-the-art regarding si-
multaneous drawings in Section 1.2. We will then formally define
the simultaneous crossing number in Section 2, and discuss some of
its main differences to the traditional crossing number in Section 3.
Therein we show upper and lower bounds for the simultaneous cross-
ing number, and prove its NP-completeness.

In Section 4 we will show how to extend both heuristic and exact
crossing minimization algorithms. We use these algorithms for a
brief experimental study in Section 5 and offer some insights on the
quantitative difference between the two types of crossing numbers.

1.2 Preliminaries

Erten et al. [9] created layout algorithms and visualization schemes
for simultaneous drawings, utilizing a modified force-directed
method. Kobourov and Pitta [20] presented an interactive multi-
user system for drawing graphs simultaneously. Their system uses
the help of the human viewer and a rudimentary crossing minimiza-
tion heuristic to minimize the number of crossings in a straight-line
drawing of two graphs simultaneously.

Research on simultaneous embeddings of graphs started in 2003
by Brass et al. [4], and resulted in a number of publications [4, 8,
11, 13, 15, 16] that deal with different kinds of simultaneous em-
beddings, e.g., simultaneous embeddings without restrictions on the
edge drawings, simultaneous embeddings with fixed edges, simul-
taneous geometric embeddings. The main interest was the examina-
tion whether given pairs of graphs allow a simultaneous embedding
or not. Recently, also related complexity questions have been stud-
ied [10, 13].

2 Defining Simultaneous Crossing Minimization

Let {Gi = (Vi,Ei) | i = 1, . . . ,k} be a set of graphs called basic
graphs. We define their simultaneous graph G = (V ,E ) by V :=
⋃

i=1,...,k Vi and E :=
⋃

i=1,...,k Ei. Instead of creating layouts for
each graph Gi we draw G in the plane. We obtain a drawing for any
Gi by deleting all images of the vertices and edges not belonging
to Gi. Thus, a drawing Γ of G leads to a drawing Γi for each Gi

such that all vertices and edges belonging to more than one graph
are drawn equally in all corresponding drawings.

Consider a drawing Γ of G with crossings. We can distinguish
between two different kinds of crossings: Assume there is a crossing
between the edges e and f . We say it is a phantom crossing, if there
is no basic graph Gi which contains both e and f . It is a proper

crossing otherwise. Hence, phantom crossings do not correspond to
a crossing in a drawing of any basic graph, as none of these graphs
contains both edges. Thus, a drawing of a simultaneous graph G

yields a set of planar drawings for each basic graph, if it contains
only phantom crossings, if any at all.

Definition 1 (Simultaneous Planarity). A set of graphs Gi, i =
1, . . . ,k, as well as their simultaneous graph G , are called simulta-
neously planar if G can be drawn with only phantom crossings, if
any at all.



Obviously, a planar simultaneous graph is always simultaneously
planar. This definition of simultaneous planarity is equivalent to the
definition of simultaneous embedding with fixed edges [8, 11, 13,
16]. Thus, we can reformulate a result of Gassner et al. as follows:

Theorem 1 (Gassner et al. [13]). It is NP-complete to decide
whether three or more basic graphs are simultaneously planar.

Theorem 1 shows that testing simultaneous planarity is NP-
complete for three or more graphs. The corresponding problem
for two graphs is open, without strong conjections for either a poly-
nomial time algorithm or for NP-completeness. The problem to
decide whether two (or more) graphs have a simultaneously planar
straight-line drawing is known to be NP-hard [10].

We use the new planarity definition instead of the usual embed-
ding definition to emphasize our ambition to minimize crossings and
produce simultaneous drawings.

Given a simultaneous graph G = (V ,E ), we define crossing costs
χ(e, f ) := |{i ∈ {1, . . . ,k} | e, f ∈ Ei}| for each edge pair (e, f ) ∈
(

E

2

)

, i.e., χ(e, f ) is the number of basic graphs which contain both
e and f . Hence, χ(e, f ) reflects the number of basic graphs whose
induced drawings will have a crossing if e and f cross in a drawing
of the simultaneous graph G . Given a drawing Γ of G , we define
RΓ as a multi-set of edge pairs which lists all crossings in Γ. Unlike
for the traditional crossing minimization, multiple crossings may be
induced by the same pair of edges (e, f ) (see Section 3); RΓ contains
exactly as many instances of (e, f ) as there are crossings induced by
this pair.

We define the simultaneous crossing number of a simultane-
ous graph G with respect to a drawing Γ of G as scr(G ,Γ) :=
∑(e, f )∈RΓ

χ(e, f ). Thus, scr(G ,Γ) is the total number of (proper)
crossings in the drawings of all basic graphs which are induced by Γ.

Definition 2 (Simultaneous Crossing Number). We define the si-
multaneous crossing number scr(G ) of a simultaneous graph G as
the minimum number scr(G ,Γ) over all drawings Γ of G .

Note that a phantom crossing between two edges e and f has no
effect on the simultaneous crossing number, as χ(e, f ) = 0. Fur-
thermore, we easily see the relationship to the previously defined
simultaneous planarity.

Proposition 1. A simultaneous graph is simultaneously planar if
and only if its simultaneous crossing number is zero.

Formally, we can state the problem:

Definition 3 (Simultaneous Crossing Minimization (SCM)). Given
a simultaneous graph G , find scr(G ).

The crossing minimization for the simultaneous crossing number
does not include the minimization of phantom crossings as they
have cost zero. However, we still think that these crossings should
be avoided if possible. Hence we also consider

Definition 4 (Phantom Crossing Aware Simultaneous Crossing Min-
imization (SCM+)). Given a simultaneous graph G , find scr(G )
and the smallest number of phantom crossings possible among all
drawings realizing scr(G ).

If not mentioned otherwise, we refer to a drawing realizing SCM+

as an optimal drawing. Clearly, a solution to this problem also solves
SCM. Considering SCM+ instead of SCM becomes crucial for the
implementation and runtime analysis of our algorithms.

Sometimes a small number of crossings is more important for
certain basic graphs than for others, e.g., we might want to have
few crossings in the first and the last graph of the series. This can
be achieved by considering a function w : {1, . . . ,k} → R

+ \ {0}
that specifies a positive weight for each graph Gi. We then define

weighted crossing costs χw(e, f ) := ∑i∈Me, f
w(i) where Me, f = {i ∈

{1, . . . ,k} | e, f ∈ Ei} is the index set of the basic graphs that contain
e and f . This leads to the Weighted Simultaneous Crossing Number
wscr(G ,w), and therefore to the Weighted Simultaneous Crossing
Minimization (wSCM) and the Phantom Crossing Aware Weighted
Simultaneous Crossing Minimization (wSCM+) problems.

While this paper will discuss SCM and SCM+ only, all algorithms
can be used for wSCM and wSCM+ as well.

3 Bounds and Complexity

Gassner et al. [13] also discuss the relationship between simultane-
ous planarity and the weak realizability problem. Furthermore, the
problem is closely related to the abstract topological graph prob-
lem introduced by Kratochvíl [21]. Both the abstract topological
graph problem and the simultaneous crossing minimization prob-
lem are quite different from traditional crossing minimization as we
demonstrate in Figure 4 with a slight modification of an example by
Kratochvíl.

It is well-known that every graph admits a drawing with a mini-
mum number of crossings, in which adjacent edges do not cross and
non-adjacent edges cross each other at most once. However, these
facts do not hold for simultaneous crossing minimization:

Proposition 2. There are simultaneous graphs G with k ≥ 2 whose
optimal drawings require that pairs of edges cross multiple times.

Proof. An example of a simultaneous graph with only two basic
graphs where a pair of edges crosses at least twice in an optimal
SCM+ drawing can be extracted from [10], cf. Figure 3: define
the simultaneous graph with its two basic graphs as described in the
construction to the proof to Theorem 1 in [10] for the 3SAT-instance
(x∨ x∨ x)∧ (x̄∨ x̄∨ x̄). As this formula is not satisfiable, there is
no simultaneous geometric embedding of G and in particular, there
is no simultaneously planar drawing of the instance that involves
single crossings on each pair of edges. However, it was shown that
there exists a simultaneously planar drawing if an arbitrary number
of phantom crossings is allowed: One clause is satisfiable while the
other is not, depending on the value of x. The satisfiable one is no
problem as it can be drawn straight-line; the other one, however,
always involves an edge pair that cross twice in any simultaneously
planar drawing.

Proposition 3. There are simultaneous graphs G with k ≥ 3 whose
optimal drawings require that pairs of adjacent edges cross multiple
times.

Proof. In Figure 4, we present a simultaneous graph G consisting
of three basic graphs Gi, i = 1,2,3, that has simultaneous cross-
ing number zero but all possible drawings involve three phantom
crossings on a pair of adjacent edges. By enlarging the example at
the zigzag line, we obtain even linearly many phantom crossings
between these two edges.

For a simultaneous graph G neither the traditional crossing num-
ber is bounded by the simultaneous crossing number nor vice-versa.
In fact, Figure 4 shows an example of a simultaneously planar (no
proper crossings) but not planar (traditional crossing number greater
than zero) graph. On the other hand, assume a non-planar graph
G and construct a simultaneous graph G by defining basic graphs
G1 = G2 = G. Then the simultaneous crossing number is twice the
traditional crossing number of G . Using this idea, we develop an
upper bound of the simultaneous crossing number:

Lemma 1. Let G be a simultaneous graph with k basic graphs.
Then scr(G ) ≤ k · cr(G ).



Figure 3: Two simultaneously planar basic graphs (top) where one
pair of edges crosses at least twice in an optimal drawing of their
simultaneous graph (bottom). In this drawing the edges e and f cross
twice.

Figure 4: A simultaneously planar simultaneous graph (shown in the
bottom right) with three basic graphs. In the drawings that realize
SCM+, the adjacent edges (A,B) and (A,C) have multiple crossings.

Proof. Starting with a simultaneous graph G with k basic graphs,
we define a new simultaneous graph H by a set of k basic graphs
H1 := . . .Hk := G . By construction we have scr(H ) = k · cr(G ),
where cr(G ) is the ordinary crossing number of G . On the other
hand scr(G ) ≤ scr(H ) as every crossing pair in G costs at most as
much in G as in H .

Corollary 1. The simultaneous crossing number scr(G )—and
therefore the number of proper crossings in any optimal drawing
of G —is polynomial in the number of vertices and basic graphs for
any simultaneous graph G .

A big difference to the traditional problem is the lack of upper
bounds for the cumulative crossing count ccc(G ), i.e., the sum of
phantom and proper crossings, in the solution of an SCM+ instance.
As we have seen in Figure 4, two edges can cross more than once.
Therefore, we cannot bound the number of crossings per edge by
|E |−1 in an optimal drawing as in traditional crossing minimization.
Furthermore we have:

Proposition 4. There are simultaneous graphs G whose optimal
drawings require that an edge is involved in an exponential number
of crossings.

Proof. Figure 5 shows a simultaneous graph with this property in
any optimal drawing. The graph is adapted from Kratochvíl and
Matoušek [22] where it was used in the context of string graphs.

It is well-known that the traditional crossing number problem is
NP-complete [12]. Since the simultaneous crossing number for a
single basic graph (i.e., k = 1 and G = G1) is equal to the ordinary
crossing number, we have NP-hardness for SCM. But the fact that
an exponential number of phantom crossings may be necessary for
any drawing realizing scr(G ) raises the question of NP-membership
of SCM. We can prove this membership by showing a relation to the
NP-complete Weak Realizability problem [29].

Definition 5 (Weak Realizability). Given a graph G = (V,E) and

a set of edge pairs R ⊆
(

E
2

)

, does there exist a drawing of G where
all crossing pairs lie in R?

Lemma 2. SCM reduces NP-many-one to Weak Realizability.

Proof. Given a simultaneous graph G and a positive integral number
h, we can test scr(G )≤ h in the following way. We guess ℓ≤ h pairs
of edges with non-zero crossing cost and whose crossing costs sum
up to at most h. Our guessing includes the order in which each edge
is crossed. It is allowed to guess the same edge pairs multiple times.
Each edge e involved in these crossing pairs is split into a path by
introducing a new dummy vertex for each guessed crossing. The new
dummy vertices have degree four as they are simultaneously used



Figure 5: A simultaneously planar simultaneous graph (shown in the
lowest picture) with n + 1 basic graphs. Edge (u0,v0) is involved in
2n −1 crossings. The pictures show the case n = 3.

in the paths for both edges involved in the corresponding crossing.
The guessed crossing order is maintained by the construction of the
paths. This transformation can be realized in time polynomially in
|E | and h.

We further define the set of allowed crossing pairs by the set of
edge pairs that create a phantom crossing. Path edges inherit their
original edge’s crossing costs. Edges of one constructed path are,
by construction, not allowed to cross each other.

Notice that our guessing requires only a polynomial number of
crossings as h and ℓ, the number of proper crossings, are polynomial
(cf. Corollary 1). When we correctly guess the crossings (includ-
ing the order for each edge) that lead to a solution of the original
SCM problem, the constructed Weak Realizability problem solves
the original SCM problem as it will find the corresponding phantom
crossings.

Since we have NP-hardness for SCM, we can conclude:

Theorem 2. SCM is NP-complete.

Corollary 2. SCM+ is NP-hard.

This relationship between SCM and Weak Realizability allows us
to use a similar result for Weak Realizability (see [27, Theorem 2])
to show that there are at most exponentially many crossings per edge
in an optimal drawing. Even more, we have an exponential bound
on the number of all crossings of the drawing.

Theorem 3. The cumulative crossing count ccc(G ) in an optimal
solution to SCM+ for a simultaneous graph G is at most exponen-
tial. There are at most (4m)12m+24 phantom crossings where m is
the number of edges in G while the number of proper crossings is
polynomial.

A main difference to the traditional problem lies in the fact that the
actual number of crossings is not proportional to the simultaneous
crossing number as a higher number of phantom crossings but lower
number of proper crossings is preferred to a higher number of proper
crossings (independent of the total number of crossings). Thus, the
overall number of crossings in a drawing of G that realizes SCM or
SCM+ cannot be bounded by the crossing number, the simultaneous
crossing number, or by the number of crossings in any other drawing
of G .

Figure 6: In general, a vertex with degree two cannot be shrinked by
the traditional reduction techniques, cf. text. Solid edges are in G1,
dashed edges in G2. All edges except for e and f are also in G3.

4 Algorithms

All algorithms, including the reduction techniques, are implemented
in the OGDF (Open Graph Drawing Framework) [26], an open-
source C++ library for graph drawing algorithms.

4.1 Reduction techniques

In traditional crossing minimization applications the input graphs
can usually be reduced in size by graph transformations and trans-
formed back after the crossing minimization. These transformations
are done in such a way that the crossing number of the original graph
and of the transformed graph are equal. For example, Chimani and
Gutwenger [6] developed a non-planar core reduction that yields
a significant speed-up in practical crossing minimization computa-
tions. However, these graph reduction techniques cannot be used
for simultaneous crossing minimization in general. As we shall see,
even trivial reductions are not always possible. We describe two
reduction techniques for the SCM and SCM+ problems:

Biconnected Components. Trivially, the simultaneous cross-
ing number of a graph is the sum of the simultaneous crossing num-
bers of the connected components, when computed separately. Fur-
thermore, as for the traditional crossing number problem, it is also
valid to solve the problem for each biconnected component sepa-
rately: the obtained drawings of the blocks can be glued together
at their common vertices, without introducing additional crossings.
This implies that edges with a degree one vertex can be removed
from the problem instance recursively, as they will never cause a
crossing in a drawing that realizes SCM+.

Chain Reduction. A 2-chain is a pair of edges e = (u,v) and
f = (v,w), in which the common vertex v has degree two. For the
traditional crossing number problem, we could merge them into a
single edge g = (u,w). In general, this would be invalid for simulta-
neous graphs, cf. Figure 6: Assume that e ∈ E1 \E2 and f ∈ E2 \E1.
Let there be two edges x ∈ E1 ∩E3 \E2 and y ∈ E2 ∩E3 \E1. De-
pending on the relative order in which they cross the 2-chain, they
may induce either two phantom crossings, or one phantom and one
proper crossing. Replacing e and f by some edge g = (u,w) can
never reflect both situations.

Nevertheless, we can define a valid chain reduction based on a
subset relation. Let B(e) and B( f ) be the sets of basic graphs that
contain e and f , respectively. If B(e) ⊆ B( f ), we can replace the
edges by g = (u,w) with B(g) := B(e). Clearly, this reduction can
be performed recursively on the newly generated edge, in order to
reduce even longer chains.

4.2 Heuristics

Since crossing minimization is an NP-complete problem, a number
of heuristic approaches have been developed over the years. The
probably most prominent method is the planarization approach [3]:
in a first step a small number of edges is removed such that the
remaining graph is planar, and in a second step the deleted edges
are reinserted with a minimum number of crossings. Both steps are
NP-complete.



Planar Subgraph. If G is planar in the traditional sense, it is
also simultaneously planar. Hence we can use any known algorithm
to solve the maximum or maximal planar subgraph problem, as it is
done for the traditional planarization approach. The resulting graph
may not be maximally simultaneously planar, in the sense that we
could insert additional edges without introducing proper crossings.
But it is maximally simultaneously planar in the sense that it does
not contain any phantom crossing, and the insertion of any edge
would lead to at least one phantom or proper crossing.

Edge Insertion. The insertion of all removed edges into the
planar subgraph with the minimum number of crossings is still NP-
hard [25]. Hence the traditional approach is to insert the edges one
by one. All occurring crossings are replaced by dummy vertices
such that the graph remains planar after each reinsertion step. For
the reinsertion of an edge e into a planar graph G, we can fix a
combinatorial embedding of G and insert e into this embedding
along a shortest-path in the dual graph of G. This can result in an
unnecessary high number of crossings if the chosen embedding is
disadvantageous. A stronger algorithm [18] inserts e optimally over
all possible combinatorial embeddings in linear time.

We can adapt both algorithms for usage in simultaneous crossing
minimization by modifying the crossing cost calculations. Given an
edge e and a planar simultaneous graphG , we want to add e toG such
that all introduced crossings lie on e and the simultaneous crossing
number of the resulting graph is minimized. In traditional crossing
minimization, the crossing cost for each edge f already in G is
independent of e; in the unweighted case it is fixed to 1. However, in
simultaneous crossing minimization the cost for crossing f depends
on e: the cost is given by χ(e, f ), i.e., the number of basic graphs
which contain both e and f . As mentioned above, we also want
to minimize the number of phantom crossings and set the cost for
edges f that do not have a common basic graph with e to some
small positive number ε . Hence – for each reinsertion step and
independently on whether we solve the insertion problem for a fixed
embedding or over all embeddings – the crossing cost for each edge
f in G must be calculated anew to reflect the current cost depending
on the inserted edge e. This is the only change required in both
algorithms.

Clearly, the quality of the solution depends on the order in which
the edges are inserted. As discussed in [17], there are several strong
post-processing strategies, based on removing and reinserting edges
after the first heuristic solution. All of them can also be used for the
simultaneous crossing minimization.

4.3 Exact Crossing Minimization

Recently, Buchheim et al. [5] presented an integer linear program-
ming (ILP) formulation of the crossing minimization problem and
demonstrated how to solve it to optimality with a Branch-and-Cut
approach. This approach was made more practical for medium sized
graphs by the introduction of a combinatorial column generation
scheme by Chimani et al. [7]. In this section, we show how to
extend this approach to solve the SCM+ problem to optimality.

Like the heuristic algorithms above, we must change the crossing
cost per edge pair. But this seemingly straight-forward modification
is not sufficient.

The basic ILP. We will only briefly sketch the ILP approach
mentioned above; for details see [5]. The conceptual idea is to have
a variable x̄e, f for each pair of edges which is 1 if the two edges cross,
and 0 otherwise. This variable set would not be sufficient to test the
validity of a solution if an edge e is crossed by two or more other
edges, because the order of these crossings is unknown. Therefore
each edge of the given graph is replaced by a path of α edges,
called segments, where α is the maximum number of crossings per
edge and is bounded both by the number of other edges and by any
heuristic solution for the crossing number problem. Hence, we use
variables xe, f for each pair of segments in this expanded graph. A

column generation scheme, described below, can be used to partially
avoid the huge blow-up by this transformation.

A graph is planar if and only if it does not contain any Kura-
towski subdivision, i.e., a subdivision of a K5 or a K3,3 [23]. The
Kuratowski-constraints used in [5] force at least one crossing on
each such substructure. We do not need to modify these constraints
nor their separation for usage in SCM+.

Variables and Expansion of Edges. For the traditional cross-
ing number, we are able to bound α , the number of crossings per
edge, by the number of graph edges and by any heuristic solu-
tion. But as discussed in Section 3, there are no bounds of prac-
tical interest in case of the SCM+ problem. We define ccc(G ,Γ)
as the sum of phantom and proper crossing in the drawing Γ of
G . We cannot even use ccc(G ,Γ), for some heuristically computed
Γ, as a valid upper bound for the number of crossings per edge:
the optimal drawing Γ∗ might have fewer proper crossings than
Γ, but require many more phantom crossings, possibly resulting
in ccc(G ) = ccc(G ,Γ∗) > ccc(G ,Γ).

Hence we consider a maximum expansion with exponentially
many segments per edge. This drawback, although terrifying on
first sight, turns out to be of little relevance in practice, since the
column generation scheme described below does not generate this
enormous amount of additional variables in any of our tests. Hence
it becomes clear that the use of the column generation scheme is
not only an enhancement to improve the runtime, but the column
generation scheme becomes a compulsory element of the algorithm.

Also, the original approach allows to leave out the variables xe, f

for adjacent edges e and f . Additionally, it uses constraints that
allow at most one crossing per pair of original edges. Both these
possibilities are no longer valid.

Crossing Costs and Column Generation Scheme. The main
idea for computing a solution to the SCM+ problem with our ILP is
to use the crossing cost χ(e, f ) as the coefficient of the variable xe, f

in the objective function, for each pair of edges e, f . Since phantom
crossings correspond to χ(e, f ) = 0, the ILP would not solve SCM+

correctly. Hence we set the crossing costs for phantom crossing to
some small enough value ε̂ > 0. This approach comes with certain
difficulties regarding the column generation scheme: [7] compared
two different column generation schemes, a general approach based
on reduced costs, and a second approach based on combinatorial
arguments. It became clear that the latter is far more efficient and
should therefore be used.

The central idea of the combinatorial column generation scheme
is to start with one segment per edge, and adding additional segments
when necessary. It is crucial for the validity of the algorithm that
these additional segments are a bit cheaper to cross than the first
segment of an edge, say by some small enough ε∗ > 0. Hence we
have to be careful about mixing these two different epsilons. Note
that also crossings with cost ε̂ have to be reduced by ε∗ for later (i.e.,
not the first) segments. Hence we require ε∗ < ε̂ to prohibit negative
costs. But we cannot choose ε∗ ≪ ε̂ due to the risk of numerical
instabilities.

A nice property of the original column generation approach, us-
ing a suitable ε∗, is that the objective value of the ILP can always be
rounded up to obtain the unskewed real integer objective value, i.e.,

any solution of the ILP is of the form
⌈

cr(G)− ℓ · ε∗− ℓ′ · ε∗2
⌉

=

cr(G). Thereby, ℓ and ℓ′ reflect the number of crossings on later seg-
ments. We loose this property by the introduction of ε̂ , since cross-
ings with such cost have to be rounded down to obtain the graph
theoretic crossing cost 0. Hence the ILP solution is of the form
scr(G )− ℓ · ε∗ − ℓ′ · ε∗2 + ℓ̂ · ε̂ which can be greater than scr(G ).
Overall, we can in fact use both ε∗ and ε̂ simultaneously, choosing,
e.g., 2ε∗ = ε̂ , but we must adapt all bounding schemes accordingly.
By choosing the epsilons carefully, we can change the ⌈.⌉-function



π scr prop phan ccc

0 0.4 0.4 6.2 6.6
10 0.6 0.6 5.4 6.0
20 0.8 0.8 5.0 5.8
30 1.2 1.2 4.4 5.6
40 1.8 1.8 3.4 5.2
50 2.6 2.0 2.4 4.4
60 4.2 2.8 0.8 3.6
70 4.4 3.2 0.2 3.4
80 5.0 3.0 0.2 3.2
90 5.6 3.2 0.0 3.2

100 6.0 3.0 0.0 3.0

Figure 7: (Exact) The figure shows the computed simultaneous cross-
ing number (scr), the number of proper (prop) and phantom (phan)
crossings and the cumulative crossing count (ccc) for different values
of π. The underlying graph has 10 nodes and 23 edges. The re-
sults were computed using the exact Branch-and-Cut algorithm. For
each value π, the values were averaged over 5 simultaneous graphs
generated from G.

into a rounding scheme which transforms any value within the in-
terval [a− 0.5,a + 0.5) into the integral value a, and still use the
combinatorial column generation scheme.

5 Experiments

We implemented both heuristic approaches, as well as the exact algo-
rithm, as part of the open-source C++-library Open Graph Drawing
Framework [26]. We ran experiments to test the behavior of the
presented crossing minimization concept.

First, we created a set of 10 random graphs with varying size. We
then interpreted each graph G of this set as a simultaneous graph of
two basic graphs by randomly choosing the basic graphs for each
edge of G: we set the probability for every edge to belong to both
basic graphs to some percentage π . All edges which do not belong
to both basic graphs had an equal chance to belong to either basic
graph. We used different values for π: 0, 10, 20, …, 90, and created
a set of 10 simultaneous graphs for each original graph and each
value of π . This resulted in 1000 simultaneous graphs.

We applied the heuristic algorithms to this test set and com-
puted the simultaneous crossing number, together with the num-
ber of phantom and proper crossings. Assume a simultaneous
graph G generated from G with π = 100: all edges belong to
both basic graphs and thus this instance reflects the traditional
crossing minimization problem: there are no phantom crossings,
we have scr(G ) = 2 · ccc(G ), and for optimal solutions we have
ccc(G ) = cr(G). We performed similar experiments with the ex-
act algorithm. These were run on smaller and less dense graphs,
as the algorithm’s running time is highly dependent on the cross-
ings number (cf. [7]), in our case on the cumulative crossing count
ccc(G ).
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π scr prop phan ccc

0 0.8 0.8 110.7 111.5
10 1.9 1.9 96.1 98.0
20 4.7 4.7 71.7 76.4
30 9.1 8.9 54.3 63.2
40 14.6 13.0 40.2 53.2
50 23.8 20.1 23.8 43.9
60 28.2 22.9 13.0 35.9
70 33.2 25.4 8.4 33.8
80 39.5 27.7 3.8 31.5
90 49.5 30.0 1.1 31.1

100 58.0 29.0 0.0 29.0

Figure 8: (Heuristic) The figure shows the computed simultaneous
crossing number (scr), the number of proper (prop) and phantom
(phan) crossings and the cumulative crossing count (ccc) for differ-
ent values of π. The underlying graph G has 33 nodes and 70 edges.
The results were computed heuristically. For each value π, the values
were averaged over 10 simultaneous graphs generated from G.

Generally, we encountered the same effects throughout all in-
stances and algorithms. Figure 7 and Figure 8 show two representa-
tive examples: the former one was computed via the exact algorithm,
the second one via the heuristic which optimizes the edge insertions
over all planar embeddings. The heuristic-specific parameters are
the ones proposed in [17].

The simultaneous crossing number and the number of proper
crossings increase as π gets larger. On the other hand, the number of
phantom crossings strongly decreases at the same time, and thus the
total number of crossings slightly decreases. Interestingly, while the
simultaneous crossing number of course monotonically increases,
this does not hold in general for the number of proper crossings due
to their differing crossing costs.

Over all values for π , the runtime of the heuristic algorithms
was in general roughly four times larger than the original heuris-
tics, most runtime loss was due to the more complex crossing cost
calculation for each pair of edges. For the tested ILP instances, the
heuristic was always able to find the optimal solution. Hence the
exact Branch-and-Cut algorithm had only to proof this optimality:
the running time was thereby highly dependent on the bounding ef-
ficiency, ranging from 10 to 1000 seconds for graphs with a crossing
count of up to 7.

6 Open Problems

We showed SCM to be NP-complete (Theorem 2), while SCM+ is
NP-hard (Corollary 2). The NP-membership of SCM+ remains as
an open problem.

In Proposition 3 we required three basic graphs to force adjacent
edges to cross. It is yet open whether such crossings can be forced
with only two basic graphs.

In Proposition 4 we required an unbounded number of basic
graphs to force an exponential number of crossings on a single edge.



Is it possible to find an example with a fixed number of basic graphs?

7 Conclusion

In this paper we examined crossing minimization in the context of
simultaneous graph drawing. We developed a natural way to extend
the concept of crossing minimization for simultaneous graphs and
discussed differences to the ordinary crossing number. We showed
how traditional crossing minimization methods and algorithms can
be adapted to applications where more than one graph is given at
a time. We modified existing heuristic crossing minimization al-
gorithms and used an approach to the exact crossing minimization
problem to construct the first exact crossing minimization method
for simultaneous drawing.

Furthermore, the latter algorithm gives us the first simultaneous
planarity testing algorithm, since it recognizes simultaneously pla-
nar graphs G by computing scr(G ) = 0. It is not surprising that the
runtime of this algorithm is not practical for large graphs as the cor-
responding combinatorial problem is NP-complete (cf. Theorem 1)
for three or more basic graphs.
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