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Abstract

We consider the random-anisotropy model on the square and on the cubic lattice in the strong-

anisotropy limit. We compute exact ground-state configurations, and we use them to determine

the stiffness exponent at zero temperature; we find θ = −0.275(5) and θ ≈ 0.2 respectively in two

and three dimensions. These results show that the low-temperature phase of the model is the same

as that of the usual Ising spin-glass model. We also show that no magnetic order occurs in two di-

mensions, since the expectation value of the magnetization is zero and spatial correlation functions

decay exponentially. In three dimensions our data strongly support the absence of spontaneous

magnetization in the infinite-volume limit.

PACS numbers: 75.50.Lk, 05.70.Jk, 75.40.Mg, 77.80.Bh
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I. INTRODUCTION

Amorphous alloys of rare earths, such as Dy, and of nonmagnetic transition metals, such

as Al, Cu, and Ag, have been extensively studied, both theoretically and experimentally.

They are modeled1 by a Heisenberg model with random uni-axial single-site anisotropy

defined on a simple cubic lattice, or, in short, by the random-anisotropy model (RAM)

H = −J
∑

〈xy〉

~sx · ~sy − D
∑

x

(~ux · ~sx)
2, (1)

where ~sx is a three-component spin variable, ~ux is a unit vector describing the local (spatially

uncorrelated) random anisotropy, and D is the anisotropy strength. In amorphous alloys

the a priori distribution of the quenched vectors ~ux is usually taken to be isotropic, since,

in the absence of crystalline order, there is no preferred direction.

Random anisotropy is a relevant perturbation of the pure Heisenberg model, so that

random-anisotropy systems show a critical behavior that is different from the Heisenberg

one. Even though the critical behavior of the three-dimensional RAM has been investigated

at length in the last thirty years (see Ref. 2 for a review), the phase diagram as a function

of D has not yet been determined conclusively. The argument of Imry and Ma for N -vector

systems in the presence of a random magnetic field3 has been extended to the RAM:4–6

it forbids the existence of a low-temperature phase with non-vanishing magnetization for

d < 4. An analogous conclusion is obtained by considering the Landau-Ginzburg-Wilson

Hamiltonian associated with the RAM:7,8 no fixed point is found, indicating the absence

of a standard magnetic critical transition. However, this does not exclude the possibility

of a transition with a low-temperature phase characterized by magnetic quasi-long-range

order (QLRO), i.e., a phase in which magnetic correlation functions decay algebraically.4

Functional renormalization-group calculations9,10 predict QLRO for small values of D, in

agreement with a Landau-Ginzburg calculation of the equation of state for D → 0.11 In

the large-anisotropy limit D → ∞ the model becomes an Ising spin glass, in which the

quenched random bond couplings are correlated. If we write ~sx = σx~ux with σx = ±1, the

RAM reduces to a particular Ising spin-glass model with Hamiltonian5

H = −
∑

〈xy〉

jxy σx σy , jxy ≡ ~ux · ~uy , (2)

which we call strong random-anisotropy model (SRAM) (We set J = 1 without loss of
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generality). Model (2) differs from the usual Ising spin-glass model in the bond distribution.

Here the random variables jxy on different lattice links are correlated. For instance, one has
∏

�
jxy = 1/27, where the product is over the links belonging to a given plaquette and the

average is taken with respect to the distribution of the vectors ~ux. An interesting hypothesis,

originally put forward in Ref. 12, is that in this limit the RAM transition is in the same

universality class as that of the Edwards-Anderson Ising spin-glass model (EAM).13–16 This

conjecture was confirmed in two dimensions by a renormalization-group calculation using

the large-cell method: the behavior close to the critical point T = 0 looks analogous as that

of the EAM.17 In three dimensions instead the phase diagram has been controversial for a

long time. While for small values of D numerical simulations5,18–22 confirmed the existence

of a finite-temperature transition (though QLRO was never observed), in the SRAM even

the existence of the transition was in doubt.21 In Ref. 23 a detailed finite-size scaling study

provided good evidence for the existence of a finite-temperature glassy transition in the

SRAM. Close to the transition, overlap variables, which are the usual order parameters

at a spin-glass transition, are critical. The corresponding critical exponents are in good

agreement with those obtained for the EAM (see Table 1 in Ref. 24 for a list of recent

results) confirming the conjecture of Ref. 12. The transition in the 3D SRAM is not a

magnetic transition: magnetic variables are not critical and on both sides of the transition

the system is paramagnetic.23

It is interesting to note that Hamiltonian (2) is strictly related to that considered by

Hopfield25 in the context of neural networks. The main difference lies in the fact that in

the Hopfield model the components of the vectors ~ux (which are generically N dimensional)

are uncorrelated equally distributed random variables, while in the SRAM the different

components are correlated by the constraint |~ux| = 1.

The phase diagram of Hamiltonian (2) has been determined in the mean-field approxi-

mation in Ref. 26. One finds a critical transition followed by a ferromagnetic phase with-

out spin-glass order. This result, which is quite general and independent of the nature of

the distribution of the vectors ~ux,
27–29 (apparently, the precise form of the distribution is

only relevant for the type of magnetic order that sets in as the temperature is lowered be-

low the critical point) is in contrast with the arguments of Ref. 4 and the field-theoretical

calculations7,8 and thus does not give us any clue on the low-temperature phase.

In this paper we consider the SRAM in two and three dimensions and study its behavior
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at zero temperature. In particular, we determine the stiffness exponent θ, which is related

to the finite-size behavior of the domain-wall energy, and several magnetic observables,

such as the magnetization, the susceptibility, and the spin-spin second-moment correlation

length. For this purpose, by means of an effective exact algorithm,30,31 we determine an

exact ground state for each instance of the randomly chosen vectors ~ux and for different

boundary conditions.

For the stiffness exponent, we find θ = −0.275(5) in two dimensions and θ ≈ 0.2 in three

dimensions. These results confirm the conclusions of Refs. 17,23, supporting the existence

of a low-temperature glassy phase in three dimensions analogous to that occurring in the

EAM and of a two-dimensional zero-temperature glassy transition in the same universality

class as the EAM transition with a continuous distribution of the couplings.

As for the magnetic behavior, in two dimensions we can conclude with confidence that

there is no magnetic order: the magnetization vanishes and magnetic correlation functions

decay exponentially with a very small correlation length, ξ ≈ 2. In three dimensions we find

that the magnetization decreases with system size and that the best fits of the numerical

data support the fact that no spontaneous magnetization occurs in the infinite-volume limit.

This is in agreement with the results of Ref. 19, in which a similar study was presented and

no evidence of magnetic criticality was found. Since in three dimensions our lattices are

relatively small (even if they are large as compared to state-of-the-art three-dimensional

exact ground-state computations half of the linear extension of the lattice only amounts to

five lattice spacings, which, together with the need of taking care of finite-size corrections,

does not allow us to distinguish in a clear cut way between a power-law and an exponential

decay) we cannot give a final statement about the issue of QLRO, though our data are

compatible with an exponential decay of the magnetic correlation functions. As far as we

can see, there are no hints that our model is different from a usual EAM in 3D.

The paper is organized as follows. In Sec. II we define the quantities we compute. In

Sec. III we present our numerical results: in Sec. IIIA we give some details on the numerical

methods we use, in Sec. III B we compute the stiffness exponent, while in Sec. IIIC we

discuss the magnetic behavior. Our conclusions are presented in Sec. IV.
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II. DEFINITIONS

In this work we focus on the computation of the stiffness exponent θ, of the magnetization

of the system and of the magnetic correlation functions. The exponent θ is defined in the

following way. We consider a lattice of size Ld and, for each disorder realization, we compute

the energies EP and EA. The energy EP is the ground-state energy for the system with

periodic boundary conditions, whereas the energy EA is the ground-state energy for a system

in which anti-periodic boundary conditions are used in one direction and periodic boundary

conditions in the other (d − 1) directions. As usual, anti-periodic boundary conditions are

implemented by changing the sign of the bond couplings along one lattice (d−1)-dimensional

boundary. More precisely, the model with anti-periodic boundary conditions is obtained by

considering Hamiltonian (2), periodic boundary conditions, and couplings jxaxb
= −~uxa

· ~uxb

when xa = (1, n2, . . . , nd) and xb = (L, n2, . . . , nd).
32 Then, we define

Em ≡ EP − EA ∆E = |EP − EA − Em|, (3)

where the over-line indicates the average over the distribution of the vectors ~ux. Note that

in the definition we have subtracted the non-zero average Em. Only with this subtraction

does ∆E provide a measure of the width of the domain-wall distribution. The presence of

Em in the definition deserves some comments. In the usual EAM, Em = 0. Indeed, the bond

distribution is invariant under the change of sign of any number of couplings, so that EA

and EP have the same distribution, which implies EA = EP and therefore Em = 0. Thus,

this subtraction is not needed in the EAM definition of ∆E.

In the SRAM, instead, this symmetry does not hold. To understand why we first notice

that the products of couplings over closed loops that do not wrap around the lattice (trivial

loops) is the same when using periodic or antiperiodic boundary conditions, since in any

such loop one always gets an even number of sign changes. Consider now the product

P (n2, . . . , nd) = jx1x2
jx2x3

. . . jxLx1
, where xk = (k, n2, . . . , nd), i.e. the product of the bond

couplings along one line (which is frequently known as Polyakov line) that wraps around

the lattice in the direction where antiperiodic boundary conditions have been imposed.

Averaging over the {ux} distribution we obtain

P (n2, . . . , nd) = 31−L.

When we consider antiperiodic boundary conditions we change the sign of one of the links
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belonging to the Polyakov line, and thus in this case the average of P (n2, . . . , nd) is −31−L.

This indicates that the probability distribution of the bond couplings for periodic and an-

tiperiodic boundary conditions is different. Thus, we have EA 6= EP , which implies Em 6= 0.

Because of that when subtracting Em, ∆E provides a measure of the width of the domain-

wall distribution.

For L → ∞, ∆E behaves as

∆E ∼ Lθ, (4)

which defines the exponent θ.

We also consider magnetic correlations. They are defined in terms of the variables ~sx =

σx~ux. In particular, we consider the average absolute value of the magnetization per site

m =
1

V

〈∣∣∣∣∣
∑

x

~sx

∣∣∣∣∣

〉
, (5)

the spin-spin correlation function

G(x) ≡ 〈~s0 · ~sx〉 − m2 = ~u0 · ~ux〈σ0σx〉 − m2, (6)

its Fourier transform G̃(p), the corresponding susceptibility χ, and the second-moment cor-

relation length ξ:

χ ≡
∑

x

G(x) = G̃(0), (7)

ξ2 ≡ 1

4 sin2(pmin/2)

χ − F

F
, F ≡ G̃(p) =

∑

x

G(x) cos
2πx1

L
, (8)

where p = (pmin, 0, 0), and pmin ≡ 2π/L.

III. RESULTS

A. The algorithm

At zero temperature the determination of the thermal averages reduces to the evaluation

of the observables in the ground-state configuration. We determine an exact ground state

by computing a maximum cut in the interaction graph.33 This is a prominent problem in

combinatorial optimization, which, for general graphs, is NP-hard. However, it can be solved

in polynomial time when restricted to two-dimensional lattices with either free boundaries or
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d = 2 d = 3

L N0(L) L N0(L)

L ≤ 60 10000 L ≤ 6 20000

70 5000 7 14000

80 4000 8 18000

90 4000 9 13860

100 3600 10 4479

110 1600

120 1000

TABLE I: Number N0(L) of computed ground states for two- (d = 2) and three-dimensional (d = 3)

lattices.

periodic boundary conditions where the coupling sizes jxy (assumed integer) are bounded by

a polynomial in the size of the input. For the case of continuous couplings that we consider

here the complexity status is not known.

For three-dimensional instances, the problem is NP-hard independent of the boundary

conditions. For the SRAM model considered here, we use a branch-and-cut approach that

is especially designed for solving NP-hard instances.30,31

To compute an exact ground state, we consider the lattice as a graph G = (V, E), in

which the nodes V are the lattice sites and the edges E are the lattice links that correspond

to a non-vanishing coupling (in our case, only nearest neighbors are connected). To each

edge we associate a cost: the cost cu,v of an edge (u, v) ∈ E is the negative coupling strength

−juv. Given a partition of the nodes into two sets W and V \ W , we associated to it a cut

in G, which is an edge set that contains all edges e = (u, v) such that u ∈ W and v ∈ V \W .

To each cut we associate a cut value, which is the sum of the costs of the cut edges. It

is not hard to see that a ground state can be obtained as follows. One first determines a

maximum cut in G, that is a cut which has a maximal value among all possible cuts. Then,

a ground-state spin configuration is obtained by assigning one orientation to the spins that

belong to one of the node partitions and the opposite orientation to the others.

To determine a maximum cut, we use a branch-and-cut algorithm from combinatorial

optimization. By studying the geometric structure of the problem, we can derive upper
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TABLE II: Estimates of θ in two dimensions. We also report the square of the residuals (χ2) and

its value divided by the number of degrees of freedom (DOF).

Lmin θ χ2 χ2/DOF

5 −0.276(2) 29 1.7

10 −0.278(3) 24 2.0

20 −0.271(4) 19 1.9

30 −0.271(7) 11 1.4

40 −0.279(9) 9 1.3

bounds for the maximum-cut value. A lower bound is given by the value of any cut. During

the run of the algorithm, we iteratively improve upper and lower bounds on the problem’s

solution value. It can happen that one cannot improve these bounds any further. In this case

we split up the problem into easier sub-problems, which we solve recursively by improving

their corresponding upper and lower bounds. We continue the process of tightening the

bounds and splitting up the problem into easier sub-problems until upper and lower bounds

coincide. This provides an optimal solution and a ground state of the system. Note that

in the presence of degeneracies the algorithm finds only one of the ground states. However,

since in our case the bond couplings are real numbers, we do not expect degeneracies and

thus the algorithm finds the unique ground state.

This exact algorithm allows us to compute the ground state on square lattices L2, 5 ≤
L ≤ 120 and on cubic lattices L3, 3 ≤ L ≤ 10 within reasonable time. For a two-dimensional

lattice with L ≤ 80 and periodic boundary conditions, one ground-state computation takes

less than two minutes on average on a SUN Opteron (2.2 GHz) machine; for 1202 lattices

the computation takes 28 minutes. Solving the problem for three-dimensional lattices is

more difficult, especially for periodic boundary conditions as we use here. One ground-state

computation takes less than 20 seconds for L ≤ 8, whereas the average CPU time is 8

minutes for L = 10. We report the number of computed samples in Table I.
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FIG. 1: Estimates of ∆E in two dimensions. We also report the curve aLθ, a = 1.699, θ = −0.276,

obtained by fitting all data.

B. Stiffness exponent

We have measured the stiffness exponent in two and in three dimensions. Estimates of

∆E on square lattices L2, 5 ≤ L ≤ 120 are reported in Fig. 1 versus L. On a logarithmic

scale the data fall on a straight line quite precisely. If we fit ∆E to

ln ∆E = a + θ ln L, (9)

including only data with L ≥ Lmin, we obtain the results reported in Table II. No significant

scaling corrections are present and the estimate of θ is constant within error bars. We take

as our final estimate

θ = −0.275(5), (10)

which includes all results. Estimate (10) should be compared with those obtained for the

EAM with continuous energy distributions (if energies are quantized the stiffness exponent

vanishes, see the discussion in Ref. 34): θ = −0.281(2) (Ref. 35), θ = −0.282(2) (Ref. 36),

θ = −0.282(3) (Ref. 37). Our result is consistent, indicating that the T = 0 transition in

the SRAM belongs to the same universality class as that of the EAM, as found in Ref. 17.
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FIG. 2: Estimates of ∆E in three dimensions. We also report the curve aLθ obtained by fitting

the last four data points (Lmin = 7), a = 2.12, θ = 0.227.

We have repeated the analysis in three dimensions. Estimates of ∆E on a cubic lattice

L3, 3 ≤ L ≤ 10, are reported in Table III and plotted in Fig. 2. The energy difference ∆E in-

creases with L, indicating that θ > 0. This in turn implies the existence of a low-temperature

glassy phase and of a finite-temperature glassy transition, confirming the results of Ref. 23.

In order to determine θ we performed fits of the form (9). The results, corresponding to

different values of Lmin, are reported in Table IV. In this case there are significant scaling

corrections: the χ2 is large for small values of Lmin and a significant downward trend is

visible in the estimates of θ. A reasonable χ2 is obtained for Lmin ≥ 7, corresponding to

θ ≈ 0.2. It is difficult to set a reliable error bar on this value. Nonetheless, let us note that

this estimate is close to all results obtained for the EAM. A determination of θ on cubic lat-

tices as done here gives θ = 0.19(2) (Ref. 38) and θ ≈ 0.19 (Ref. 37), while the aspect-ratio

scaling method gives a slightly different result37 θ ≈ 0.27. Given the uncertainties of the

EAM results and the relatively small lattice sizes considered in our investigation, we can

certainly conclude that our estimate of θ is fully compatible with the EAM one, confirming

the findings of Ref. 23.
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TABLE III: Estimates of ∆E, m, χ, and ξ2 in three dimensions.

L ∆E m χ ξ2

3 2.073(10) 0.5601(6)

4 2.538(13) 0.4985(5)

5 2.853(15) 0.4468(5) 0.3446(9) −1.716(3)

6 3.086(15) 0.4022(6) 0.5151(11) −3.320(7)

7 3.287(20) 0.3638(6) 0.5213(12) −12.15(7)

8 3.414(18) 0.3292(7) 0.6277(12) −35.13(3)

9 3.465(21) 0.2986(10) 0.6276(12) 13.82(8)

10 3.595(38) 0.2710(16) 0.6915(24) 12.86(13)

TABLE IV: Estimates of θ in three dimensions. We also report the square of the residuals (χ2)

and its value divided by the number of degrees of freedom (DOF).

Lmin θ χ2 χ2/DOF

3 0.465(5) 280 46.7

4 0.390(7) 70 13.9

5 0.338(11) 26 6.4

6 0.294(16) 12 3.9

7 0.227(28) 2.7 1.3

8 0.197(47) 2.1 2.1

C. Magnetic behavior

Once it has been established that the SRAM has a glassy ground state, it is of interest

to check whether at T = 0 glassy behavior and some kind of magnetic order coexist.

In Fig. 3 we show the average magnetization per site m versus L in two dimensions. The

magnetization decreases as expected. Moreover a fit of ln m to a + ρ ln L gives ρ ≈ −1.

More precisely, we obtain ρ = −0.9405(8), −0.9946(17), −1.003(3) for Lmin = 5, 10, 20,
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FIG. 3: Estimates of the magnetization m in two dimensions. We also report the curve obtained

by fitting all data.
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FIG. 4: Estimates of the susceptibility and of the correlation length in two dimensions.

respectively. These results are perfectly consistent with a behavior of the form m ∼ V −1/2,

where V is the volume, which is the expected behavior if the system is paramagnetic. As

a check we also computed χ and ξ, which are reported in Fig. 4. They become constant as

L → ∞ indicating the absence of magnetic order. Moreover, χ converges to a constant with

1/V corrections, as expected: indeed, a fit of χ to a + b/Lδ gives a = 0.8617(8), 0.8607(9)

and δ = 2.02(2), 2.18(13) for Lmin = 5, 10. Analogously, ξ2 converges to ξ = 1.90(5):

magnetic correlations extend only over two lattice spacings. Finally, in Fig. 5 we report
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FIG. 5: Connected magnetic correlation function G(r) in two dimensions.

G(r) for several values of L. No L dependence can be observed, so that our data provide

the infinite-volume spin-spin correlation function. In two dimensions and in infinite volume

we expect

G(r) ≈ A√
r
e−r/ξe (11)

for r → ∞, where ξe is a second definition of correlation length. Fitting the data in the

range r ∈ [a, b], a ≈ 3-6, b ≈ 13-15, for L ≥ 60, we always obtain ξe ≈ 2, which is, as

expected, close to the estimate of the second-moment correlation length considered before.

Clearly, for T = 0 the system is not magnetized nor is there QLRO.

Let us now consider the three-dimensional case. The mean values of the magnetization,

χ, and ξ2 are reported in Table III. The magnetization decreases, as already observed in

Ref. 19, thus supporting the claim that no spontaneous magnetization occurs. Fits that

lead to a non-magnetized infinite-volume limit are always preferred to best fits that imply

a spontaneous magnetization: if we fit the data to the form m + aL−x, fixing m to a given

value (we have tried for example m = 0.05, 0.1 and 0.15), the reduced χ2 decreases with

decreasing (fixed) values of m. Also a fit of the correlation functions to an exponential decay

has a better χ2 than a fit to a pure power law (always considering fits with the same number

of parameters).

The presence of large finite-size corrections does not allow us to verify the expected

asymptotic behavior m ∼ V −1/2 ∼ L−3/2. However, as we show in Fig. 6, the data show

a clear trend compatible with this behavior. To make a more quantitative comparison we
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FIG. 6: Log-log plot of the magnetization m in three dimensions as a function of L.

have checked that the deviations can be interpreted as scaling corrections. For this purpose

we fit the data with L ≥ 5 to
A

L1.5

(
1 +

B

L
+

C

L2

)
, (12)

including two analytic corrections. If the system is paramagnetic non-analytic exponents

are not expected and thus Eq. (12) represents the expected asymptotic form. The fit—the

resulting curve is shown in Fig. 7—is quite good and provides very reasonable values for the

fit parameters: A ≃ 15, B ≃ −5, and C ≃ 8.

In three dimensions we cannot draw any final conclusion on the question of QLRO from

the data of χ and ξ, since currently treatable lattice sizes are too small to allow a clear-cut

selection of a given functional behavior. We present here a few comments. First, the values

we find for χ are quite small, of the same order of those occurring in two dimensions, where

we know with confidence that there is no magnetic critical behavior. Second, note that for

L ≤ 8, ξ2 is negative. This happens because F [see definition (8)] is small and negative

(F ≈ −0.03 for L = 8), indicating that there is no magnetic order, even on a scale of

one lattice spacing. For L = 9, 10 we find ξ ≈ 3.7 (the approximate equality of the two

values is probably an effect of even-odd oscillations, which are typical of systems with anti-

ferromagnetic couplings, and should not be taken as an indication that ξ is already close to

its infinite-volume value ξ∞). Since infinite-volume results can only be obtained if L ∼> c ξ,

c ∼> 4-5, we expect that lattices with at least L = 20 are needed in order to give a definite
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FIG. 7: Three-dimensional average magnetization versus L on a log-log scale. The continuous line

is the best fit to (12), which accounts for finite-size corrections (only data with L ≥ 5 have been

considered in the fit).

assessment about the question of magnetic QLRO in three dimensions.

IV. CONCLUSIONS

In this paper we have investigated the behavior of the SRAM at T = 0 in two and three

dimensions. Our main results are the following:

(i) We determine the stiffness exponent, obtaining θ ≈ 0.2 in three dimensions and θ =

−0.275(5) in two dimensions. These results show that the low-temperature behavior of

the SRAM is the same as that of the EAM, confirming the conclusions of Refs. 17,23.

In particular, the correlation among the bond couplings is irrelevant.

(ii) We investigate the question of the magnetic order. In two dimensions we find no evi-

dence of critical behavior: magnetic correlations die out after a few lattice spacings. In

three dimensions we exclude the presence of spontaneous magnetization, in agreement

with Ref. 19. The question of QLRO is still open; the limited linear size only allows

us to claim that the decay of correlation functions is compatible with an exponential

decay. Note that if QLRO would hold at T = 0, a second transition should occur,

at temperatures below the temperature Tg of the glassy transition found in Ref. 23.
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Indeed, the numerical data of Ref. 23 indicate paramagnetic behavior all around Tg.

There are several generalizations of the SRAM that can be investigated with the method

we use here. For instance, we could consider N -dimensional vectors ux with N 6= 3 or

different distributions of the vectors ux. In the first case, we can give precise predictions.

The correlation of the bond variables around a lattice plaquette becomes
∏

�
jxy = 1/N3,

which implies that bond correlations vanish for N → ∞. Thus, for N = ∞, the SRAM

is just an EAM with a different continuous bond distribution. In this limit, therefore, the

two models belong to the same universality class. Our results for N = 3 imply that the

same holds for any N ≥ 3. For N = 1 it is enough to redefine σi → uiσi to re-obtain

the standard ferromagnetic Ising model. The behavior for N = 2 is not predicted by our

results, since, for N = 2, the model is less frustrated than that with N = 3 studied here.

In three dimensions, numerical studies19,39–41 provide some evidence that the N = 2 SRAM

has a magnetic transition with a diverging magnetic susceptibility. The nature of the low-

temperature phase is however still controversial.

Little is known for generic distributions of the vector ux. The arguments of Refs. 4,5

do not necessarily apply to this case. Indeed, they either assume that correlation functions

have a Goldstone-like singularity or that the relevant magnetic modes are spin waves. Both

assumptions may not hold for generic distributions, since the O(N) symmetry is broken even

after averaging over disorder. The only available results are those of Ref. 8 that considers

generic cubic-symmetric distributions in three dimensions. They generically exclude the

presence of a ferromagnetic transition belonging to the random-exchange universality class

(there are some exceptions, but they appear to be of limited practical interest42). Different

types of magnetic transitions are however still possible, and in this case nothing is known

on a possible glassy transition and on the presence of QLRO.
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31 F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt, Operations Research 36, 493 (1988).

32 We could impose antiperiodic boundary conditions directly on model (1), i.e., set ~sL+1,... =

−~s1,... and ~uL+1,... = −~u1,.... This amounts to consider model (1) with interaction +J~sxa
· ~sxb

,

when xa = (1, . . . , nd) and xb = (L, . . . , nd). Under the mapping ~sx = ~uxσx, we reobtain the

same Hamiltonian discussed in the text.

33 F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982).

34 C. Amoruso, E. Marinari, O. C. Martin, and A. Pagnani, Phys. Rev. Lett. 91, 087201 (2003).

35 H. Rieger, L. Santen, U. Blasum, M. Diehl, M. Jünger, and G. Rinaldi, J. Phys. A 29, 3939
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