
A Branch-and-Cut Algorithm based on
Semidefinite Programming for the Minimum

k-Partition Problem1

Bissan Ghaddar2, Miguel Anjos3, and Frauke Liers4

Abstract

The minimum k-partition (MkP) problem is the problem of partitioning the set of vertices of a

graph into k disjoint subsets so as to minimize the total weight of the edges joining vertices in the same

partition. The main contribution of this paper is the design and implementation of a branch-and-cut

algorithm based on semidefinite programming (SBC) for the MkP problem. The two key ingredients for

this algorithm are: the combination of semidefinite programming (SDP) with polyhedral results; and

the iterative clustering heuristic (ICH) that finds feasible solutions for the MkP problem. We compare

ICH to the hyperplane rounding techniques of Goemans and Williamson and of Frieze and Jerrum,

and the computational results support the conclusion that ICH consistently provides better feasible

solutions for the MkP problem. ICH is used in our SBC algorithm to provide feasible solutions at each

node of the branch-and-bound tree. The SBC algorithm computes globally optimal solutions for dense

graphs with up to 60 vertices, for grid graphs with up to 100 vertices, and for different values of k,

providing the best exact approach to date for k ≥ 3.

Keywords: semidefinite programming, branch-and-cut, polyhedral cuts.

1 Introduction

The minimum k-partition problem (MkP) is a well-known optimization problem encountered
in various applications such as telecommunication and physics. It is known to be NP-hard in
general and difficult to solve in practice. The MkP is equivalent to finding a maximum k-cut,
where the weighted sum of all edges with their endpoints in distinct sets is maximized. It has
applications in network planning [12], VLSI layout design [3], micro-aggregation of statistical
data [11], sports team scheduling [23, 13], physics [19], and other areas. Several authors, includ-
ing Barahona and Mahjoub [4], Deza and Laurent [10], and Boros and Hammer [6], studied the
problem of partitioning a graph into two subsets. The special case with k=2 is known as the
max-cut problem and is equivalent to unconstrained binary quadratic optimization.

The maximum k-cut problem has received more attention in the literature than the minimum
k-partition problem, such as in Deza, Grötschel, and Laurent [9], Chopra and Rao [8] and the
book by Deza and Laurent [10]. The minimum k-partition problem is formulated by Chopra
and Rao in [7] where several valid and facet-defining inequalities are identified.

Mitchell [22] applied a linear programming (LP) based branch-and-cut algorithm to the k-
way equipartition problem with application to the National Football League (NFL). The k-way
equipartition problem is an MkP problem with an additional constraint that partitions have to
be of the same size. Computational results found the optimal solution for the NFL realignment
problem where k = 8 and n = 32, whereas a percentage gap of less than 2.5% was given for

1Partially supported by the Marie Curie RTN 504438 (ADONET) funded by the European Commission. BG and
MA were supported by NSERC Discovery Grant 312125 and MITACS Network of Centres of Excellence. FL was
supported by the German Science Foundation under contract Li 1675/1

2Department of Management Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario,
Canada, N2L 3G1, bghaddar@uwaterloo.ca

3Department of Management Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario,
Canada, N2L 3G1, manjos@uwaterloo.ca

4Institut für Informatik, Universität zu Köln Pohligstr. 1 D-50969 Köln, Germany, liers@informatik.uni-koeln.de

1

graphs of sizes 100 to 500. Moreover, Lisser and Rendl [20] described a telecommunication
application for the k-way equipartition problem. They investigated both semidefinite and linear
relaxations of the problem with iterative cutting plane algorithms. For graph sizes ranging from
100 to 900 vertices and k=5, 10, the SDP approach produces a gap between 4%-6% from the
optimal solution and is better than the LP approach.

For k = 2, linear bounds are strong. As they also can exploit sparsity, sparse instances
can usually be solved faster with linear than with SDP-based methods. On the other hand,
SDP-based methods perform better for dense instances. Both a linear [2, 19] and an SDP-based
server [1] are available in public domain. The former is especially designed for fast solutions of
instances defined on grids that have application in physics [19]. The latter can solve max-cut
instances of graphs of any structure up to 100 vertices.

While effective computational procedures that yield globally optimal solution for arbitrary
instances of 100 vertices and sparse graphs of larger sizes have been implemented for the k=2
case, to our knowledge all the procedures proposed in the literature either can’t be applied to
general k, provide no guarantee for global optimality, or enforce additional constraints.

In this work, we present an exact algorithm for the minimum k-partition problem that uses
positive semidefinite relaxations. We found experimentally that for k > 2 they yield much
stronger bounds than linear relaxations, for both sparse and dense instances.

This paper is organized as follows. In Section 2, technical definitions and an overview over
the literature on the MkP problem are given. The SDP-based branch-and-cut algorithm and
the primal heuristic are presented in Section 3. In Section 4, the heuristic is compared to the
hyperplane rounding of Goemans and Williamson [16] and Frieze and Jerrum [14] in terms
of bounds. In addition, computational results for the branch-and-cut algorithm on several
important classes of instances, and for different values of k, are presented. The computational
results show the potential of SBC for tackling the MkP problem. Finally, conclusions and future
research directions are discussed in Section 5.

2 Problem Description and Some Related Previous Re-

sults

An instance of the minimum k-partition problem consists of an undirected graph G = (V, E) with
edge weights wij of the edges, and a positive integer k ≥ 2. The objective is to find a partition

of V into at most k disjoint partitions V1, ..., Vk such that
∑k

l=1

∑

i,j∈Vl
wij is minimized. An

example is shown in Figure 1.

Optimal Solution

0.55

0.4

0.1

0.32

0.1

0.25

0.01

0.32

0.1

0.06

0.06

Total Weight =0.06

0.06

Figure 1: A k-partition of a graph with |V | = 7 and k = 3. The solution value is 0.06.

Without loss of generality the graph G can be completed to K|V | by adding zero-weight
edges. The edge set is then E = {ij | 1 ≤ i < j ≤ n}. Define the variable zij as

zij =

{

1 if i and j are in the same partition,

0 otherwise.

2

Chopra and Rao considered in [8] the following integer linear programming (ILP) formulation
for MkP:

(ILPMKP) min
∑

i,j∈V

wijzij (1)

s.t. zih + zhj − zij ≤ 1 ∀ h, i, j ∈ V (2)
∑

i,j∈Q

zij ≥ 1 ∀ Q ⊆ V where |Q| = k + 1 (3)

zij ∈ {0, 1} ∀ i, j ∈ V,

where inequalities (2) and (3) are the triangle and clique inequalities, respectively. Constraint
(2) requires the values of the variables to be consistent. For example, if zih and zhj indicate
that i, h, and j are in the same partition, then by transitivity the value of zij has to reflect that
as well. Constraint (3) imposes that at least two from every subset of k + 1 vertices have to be
in the same partition. Together with the constraints (2), this implies that there are at most k

partitions. There are 3
(

|V |
3

)

triangle inequalities and
(

|V |
k+1

)

clique inequalities.
Here we are interested in exact solutions that we generate with a branch-and-cut algorithm.

The latter is an often successful framework in combinatorial optimization. Usually, (linear pro-
gramming) relaxations are used and strengthened during the run of the algorithm. However, we
found for MkP that linear bounds obtained by relaxing the integrality constraints in (ILPMKP)
are weak in practice which could result in complete enumeration of all solutions. Furthermore,
we found experimentally that the semidefinite relaxation bound that we introduce next is much
stronger than the LP bound [15]. This motivates us to use SDP relaxations within branch-and-
cut for the MkP problem.

2.1 SDP Relaxation for the MkP Problem

Semidefinite programming relaxations of combinatorial optimization problems were pioneered
by Lovasz [21] in 1979 in order to compute the Shannon capacity of a graph. Moreover, Goe-
mans and Williamson [16] used SDP to provide a performance guarantee of an approximation
algorithm for the satisfiability and the max-cut problem. The latter lead to a rapid growth of
the field. The MkP problem was formulated in [12] using SDP as follows:

min
∑

i,j∈V, i<j

wij

(k − 1)Xij + 1

k
(4)

s.t. Xii = 1 ∀i ∈ V (5)

Xij ∈ {
−1

k − 1
, 1} ∀i, j ∈ V, i < j (6)

X � 0,

where Xij = −1
k−1 can be interpreted as vertices i and j being in different partitions and Xij = 1

means that they are in the same partition. Replacing constraint (6) by −1
k−1 ≤ Xij ≤ 1 results

in a semidefinite relaxation. However, constraint Xij ≤ 1 can be dropped since it is enforced
implicitly by the constraints Xii = 1 and X � 0. We end up with the following SDP relaxation:

(SMKP) min
∑

i,j∈V, i<j

wij

(k − 1)Xij + 1

k
(7)

s.t. Xii = 1 ∀i ∈ V (8)

Xij ≥
−1

k − 1
∀i, j ∈ V, i < j (9)

X � 0.

3

The SDP relaxation can be further tightened by adding valid inequalities, i.e., inequalities
that are satisfied for all positive semidefinite matrices that are feasible for the original SDP. The
two types of valid inequalities added are the triangle and the clique inequalities formulated for
SDP. Observing that in any cycle of length three exactly zero or two edges are cut, the triangle
inequalities have the form:

Xij + Xjh − Xih ≤ 1,

where i, j, and h ∈ V . It is not hard to see that the clique inequalities take the form:

∑

i,j∈Q, i<j

Xij ≥ −
k

2
∀ Q ⊆ V where |Q| = k + 1.

To verify validity, recall that the clique inequalities ensure that for every set Q ⊆ V with
|Q| = k + 1 at least 2 vertices have to be in the same partition. This means that at least one
Xij equals 1. Therefore,

∑

i,j∈Q, i<j

Xij ≥ 1 +

(k+1

2)−1
∑

i=1

−1

k − 1
∀ Q ⊆ V where |Q| = k + 1.

⇔
∑

i,j∈Q, i<j

Xij ≥ 1 +

[

(k + 1)k

2
− 1

]

−1

k − 1

⇔
∑

i,j∈Q, i<j

Xij ≥
−k

2
.

The validity of the triangle inequality can be verified similarly. Once the (SMKP) relaxation
is solved, one can separate violated triangle and clique inequalities. Adding them to the SDP
problem will strengthen the relaxation.

2.2 Approximation Algorithm for Max k-Cut

In the previous section we discussed how to obtain a lower bound for the MkP problem. In this
section and in Section 3.2 we give an overview over an approximation algorithm and our ICH
heuristic that can be used to obtain an upper bound for this problem.

Goemans and Williamson [16] used semidefinite programming in the design of a randomized
approximation algorithm for the max-cut problem which always produces solutions of expected
value of at least 0.87856 times the optimal value. This was the first time that a performance
guarantee could be given by semidefinite programming for an NP-hard optimization problem.
The results in [16] showed that the cut generated using the randomized algorithm was in the
range of 4% to 9% away from the semidefinite bound in practice. Hence, it is an effective
heuristic technique for generating cuts.

Frieze and Jerrum presented in [14] an extension of [16] to obtain a polynomial-time approx-
imation algorithm for the max k-cut problem. They consider the following SDP relaxation:

(MkC-SDP) max
k − 1

k

∑

i,j∈V, i<j

wij(1 − Xij) (10)

s.t. Xij ≥
−1

k − 1
∀i, j ∈ V, i < j (11)

Xij � 0. (12)

It can be easily shown that (MkC-SDP) is equivalent to the MkP formulation described earlier.
Frieze and Jerrum described a rounding heuristic based on the SDP relaxation that can be used
to obtain a feasible solution of the max k-cut problem. This method works as follows:

1. Solve (MkC-SDP) to get an optimal solution, X = (Xij). Find unit vectors v1, . . . , vn ∈ R
n

satisfying vT
i vj = Xij where i, j ∈ V . This can be done by computing the Cholesky

factorization V T V of X .

4

2. Choose k independent random vectors r1, . . . , rk ∈ R
n.

3. Partition V into Vk = {V1, . . . , Vk} according to Vj = {i : vi · rj ≥ vi · rj′ , for j 6= j′}
for 1 ≤ j ≤ k. For this we would additionally need ‖ ri ‖= 1 ∀i = 1, . . . , k, however this
complicates the analysis. So the kn components of r1, . . . , rk are chosen as independent
random variables from a standard normal distribution with mean 0 and variance 1.

The authors proved in [14] the existence of a sequence of constants α(k≥2) such that:

E(w(Vk)) ≥ αkw(V∗
k)

where w(Vk) =
∑

1≤r<s≤k

∑

i∈Vr ,j∈Vs
wij , V∗

k determines an optimal cut, and E denotes the
expected value. In [14], it was shown that the sequence of αk satisfies the following theorem:

Theorem 1 [14] αk satisfies

1. αk > k−1
k

2. αk − k−1
k

∼ 2 ln k
k2

3. α2 ≥ 0.878567 α3 ≥ 0.800217 α4 ≥ 0.850304 α5 ≥ 0.874243

The process of Frieze and Jerrum can be iterated by varying the random vectors r1, . . . , rk and
taking the best solution (i.e., minimum upper bound). The cut obtained by this hyperplane
rounding technique may be further improved in practice by local improvement steps.

αk has the lowest value when k = 3, which is α3 ≥ 0.800217. This means that hyperplane
rounding yields the weakest guarantee for the 3-partition problem.

3 An SDP-based Branch-and-Cut Framework for the MkP

Problem

During the run of the branch-and-cut algorithm, a sequence of relaxations of the original problem
is solved at each node of the branch-and-bound tree. Cutting-planes are used to improve the
relaxations, tightening the bounds. The branch-and-bound part of the algorithm guarantees
that a globally optimum solution is obtained.

In this work, we use SDP relaxations within a branch-and-cut framework since we found
experimentally that they are stronger than the corresponding linear bounds. The root node of
the branch-and-bound tree is the original SDP relaxation (SMKP). In each iteration, we separate
valid inequalities, add them to the relaxation and resolve the SDP. If a feasible partition can be
computed in the root node, we terminate. Otherwise, when no more violated inequalities can be
generated, the algorithm branches. In the branching step, two subproblems are created by fixing
an infeasible variable (i.e., a variable that is neither 1 nor −1

k−1 in the optimal solution of the SDP

relaxation) to 1 in one subproblem and to −1
k−1 in the other. This means that in one subproblem

we force vertices i and j to be in the same partition and in the other to different partitions. The
sub problems are solved recursively. The branch-and-cut algorithm stops when all subproblems
have been fathomed. A subproblem is fathomed if it is either infeasible, determines a feasible
partition, or if we can conclude that it does not contain an optimum solution. The incumbent
solution is the best solution (giving an upper bound, since we are minimizing) found so far in
the tree. After termination, the incument is a globally optimum solution.

In the following sections, we describe in detail our branch-and-cut technique using SDP as
the bounding procedure. The addition of triangle and clique inequalities at each node markedly
improves the SDP lower bound. Moreover, at each node a feasible solution is computed to get
an upper bound.

3.1 Separation of Valid Inequalities

As discussed earlier, the SDP relaxation can be further tightened by adding valid inequalities.
Once (SMKP) is solved, one can check for violated triangle and clique inequalities and add them
to the SDP problem, hence getting a better lower bound.

5

The number of triangle and clique inequalities added at each iteration depends on the size
of the problem. We use complete enumeration for adding triangle inequalities. The triangle
inequalities are sorted by the magnitude of the violation and added starting with the most
violated ones. If not enough triangle inequalities are violated, we add clique inequalities.

Exact separation of clique inequalities is an NP-hard problem, and exact enumeration be-
comes intractable already for small values of k. Therefore, we design a heuristic separation
that generates inequalities that are ’important’ in practice. It does not necessarily determine a
violated inequality whenever one exists, however we find that it is fast and yields good bounds.

In order to find which clique inequalities are important in practice, we conducted several
experiments in which we enumerated and added all violated clique inequalities. We assume that
an inequality is important if it is binding at the optimum of the resolved problem, i.e. if it is
satisfied with equality. We found that the binding clique inequalities usually cover the whole
graph, and that each vertex in the graph is contained in several different clique inequalities. So
the heuristic separation is designed to imitate this behavior as follows. For each vertex v in
the graph, we grow a clique of size k + 1 containing v. Vertices are added to the cliques in a
greedy fashion. In each iteration, we add the vertex to a clique of size smaller than k + 1 that
contributes the smallest amount to the left-hand side of the corresponding clique inequality.
The heuristic is described in Algorithm 1.

Algorithm 1 Heuristic for separating clique inequalities for (SMKP-C)

1. Given the graph G = (V,E), let vj be a vertex of G.

2. Initialize j = 1.

3. Let Q be the set of vertices that form a clique, Q = φ.

4. Add vertex vj to Q.

5. Choose vertex vj′ with the smallest
∑

vj∈Q,vj′∈V \Q Xjj′ value.

6. Add vertex vj′ to the set Q.

7. If |Q| < k + 1 go to step 5.

8. If violated, add the clique inequality formed to the set of inequalities.

9. If j < |V | increment j, empty the clique Q, and go to step 4.

The separation routine consists of two parts: first the algorithm searches for violated triangle
inequalities as described above. If no more than ρ triangle inequalities are added, the heuristic
is used to find violated clique inequalities. If less than ρ inequalities are found, we branch. In
the computational experiments of Section 4, ρ is set to 200. The triangle inequalities are added
first since we experimentally found that they are stronger than the clique inequalities.

3.2 ICH: An Iterative Clustering SDP-based Heuristic

The ICH heuristic is designed to find a feasible solution from the optimum solution of the SDP
relaxation at each node of the tree. It is a recursive procedure that groups vertices together to
form a graph of smaller size and then it is recursively applied on the smaller graph until the
desired partition size is reached. Given a graph G(V, E) with n vertices, weights wij between
edges, and number of partitions k, the heuristic is described in Algorithm 2. The intuition
behind this approach is the use of aggregate information which is more reliable than single
elements of data. When we sum the X∗

ij values on the edges between three vertices, we have
a better idea of whether or not these three vertices should be in the same partition than by
looking at each edge separately. The sorting of the data is done to take advantage of the best
information first and use the less certain information only if necessary. An illustration of the
algorithm is shown in Figure 2.

6

Algorithm 2 ICH Heuristic

1. Initialize a parameter r, the current number of partitions, to zero.

2. Initialize a parameter m, the current number of nodes, to n.

3. Solve the SDP relaxation with m nodes and get the optimal solution X∗.

4. Take each triplet of vertices i, j, and h and sum the values on their edges: Tijh = X∗
ij + X∗

ih +
X∗

jh.

5. Sort the values of Tijh.

6. (a) Choose vertices i, j, and h with Tijh ≥ tol to be in the same partition.

(b) If any vertices remain unassigned to a partition, choose vertices with Tijh ≤ tol to be in
separate partitions.

(c) Update r to be the number of current partitions.

7. If r > k,

(a) Aggregate the vertices that are in the same partition to form one new vertex i′.

(b) Update the value of m and the aggregate weight matrix W̄ .

(c) Return to step 3.

8. End.

Iteration 1

Iteration 2

Aggregate Vertices

Figure 2: The ICH heuristic example with n = 20 and k = 3.

3.2.1 The ICH Heuristic with Convex Combination

The convex combination technique to improve on the Goemans-Williamson hyperplane rounding
was proposed and implemented for k = 2 in [25]. Using this convex combination technique results
in a better solution than using only hyperplane rounding. This motivated us to apply the convex
combination idea to the Frieze and Jerrum [14] algorithm presented in Section 2.2.

7

Given the SDP solution matrix X∗
1 and the hyperplane rounding feasible solution matrix

X
feasible
1 , we take their convex combination to obtain the following matrix:

X2 = αX∗
1 + (1 − α)Xfeasible

1

Next we take matrix X2 and perform the hyperplane rounding technique on this matrix to get
a new feasible solution.

Similarly, we applied the convex combination technique to the ICH heuristic. Taking the
feasible solution matrix X

feasible
1 obtained from the ICH heuristic and the SDP solution matrix,

X∗
1 , we consider a convex combination of the following form:

X2 = αX∗
1 + (1 − α)Xfeasible

1 .

Then we can apply the ICH heuristic to the X2 matrix to get a new feasible solution, X
feasible
2 .

However, we experimentally found that the new feasible solution X
feasible
2 was always identical

to X
feasible
1 . This result is not too surprising since multiplying X∗

1 by α only scales the values

of Xij and will not change their sorted order. In addition, since we got X
feasible
1 from X∗

1 , they

most likely have vertices i, j, and h with the same sorted order. Once we multiply X
feasible
1

by (1 − α) then this will only scale the values but will not change their sorted order. We have

X2 = αX∗
1 + (1 − α)Xfeasible

1 so adding the edges values, Xij , of the three vertices using the
matrix X2 will give the same result as when we add the edges of the three vertices using the
matrix X1 since the order of Tijh values in the sorting will likely remain the same (with a
difference in the value since it is scaled and shifted). This was the case in all our computational
experiments.

Hence, the convex combination technique does not seem to improve the solution for the ICH
heuristic. This gives evidence that the heuristic is strong enough that it does not benefit from
performing the convex combination improvement technique.

A computational comparison of the ICH heuristic and the hyperplane rounding technique is
presented in Section 4.1.

3.3 Branching Rules

Part of the success of a branch-and-bound algorithm depends on the choice of the variable to
branch on. Based on the results of the analysis done by Helmberg and Rendl in [17], we decided
to use in our branch-and-cut implementation a version of their branching rule R3 which branches
on the variable that is ’least decided’ in the optimal solution of the SDP relaxation of the current
node. Our branching rule works as follows:

Select the edge ij with X∗
ij farthest from 1 and −1

k−1 , i.e., branch on the edge ij that minimizes

|
2X∗

ij(k−1)−k+2

k
|.

By branching on the most difficult decision Xij , we hope that the bound will improve fast.

3.4 The SBC Algorithm

We implemented the algorithms and the methods that we described in the preceding sections
into a branch-and-cut algorithm. A description of it is provided in Algorithm 3.

4 Computational Results

4.1 Comparison of Hyperplane Rounding and the ICH Heuristic

We implemented ICH and the hyperplane rounding presented in [14] using C and MATLAB
respectively. In this section, we compare the two algorithms to find a feasible solution for the
MkP problem.

8

Algorithm 3 SBC Algorithm

Step 1: Initialization Form the root node by using the (SMKP) problem without fixing any
variables.

Step 2: Terminating If all nodes are fathomed then terminate with the incumbent solution,
Xincumbent, as the optimal solution and the corresponding objective value ν∗ as the optimal
objective value.

Step 3: Solving Choose a node t not yet solved. Solve the SDP relaxation of the current sub-
problem to get a solution X∗

t and a lower bound ωt.

Step 4: Adding Valid Inequalities Separate violated triangle and clique inequalities as dis-
cussed in Section 3.1. If none are violated go to Step 5. Otherwise, go to Step 3.

Step 5: Obtaining a Feasible Solution Get a feasible solution Xfeasiblet
using ICH heuristic

as discussed in Algorithm 2 and an upper bound νt as the objective value of Xfeasiblet
. Try

to improve νt locally by local exchange routines. Update the incumbent if νt < ν∗.

Step 6: Fathoming

1. By Solving: If the solution X∗
t has all entries −1

k−1
or 1, i.e., ωt and νt are identical. Go to

Step 2.

2. By Bound: If the SDP relaxation gives ωt ≥ ν∗, then branching on this node will not
improve the incumbent. Go to Step 2.

3. By Infeasibility: If the SDP relaxation doesn’t have a feasible solution. Go to Step 2.

Step 7: Branching Choose a variable that is non-feasible (i.e., not 1 or −1

k−1
) and create two new

nodes by fixing the variable to 1 for one node and −1

k−1
for the other node. Go to Step 2.

Since the hyperplane rounding presented by [14] is randomized, each time we run the algo-
rithm a different feasible solution might be obtained. As a result, this algorithm was run 30
times and the minimum and the average of the upper bound (UB) were computed. The average
value can be interpreted as an estimate of the expected value of the UB that this algorithm
would give. On the other hand, the minimum value is the best solution found over the 30 runs.
This minimum value is the value reported in Tables 1-3. More detailed results are presented in
[15].

In addition to randomly generated edge weights of complete graphs, we consider a set of test
problems arising in a physics application e.g., [18] provides some recent physics analysis and
introduces the physics literature. The two techniques were tested on the following three types
of graphs for k = 2 and for k = 3:

• Random Instances: These instances consist of complete graphs where the edge weights are
randomly generated between 0 and 9.

• Spinglass2g Instances: These instances consist of graphs that were generated using the
rudy graph generator [24]. Spinglass2g generates a toroidal two dimensional grid with
Gaussian distributed weights.

• Grid 2D Instances: These instances consist of graphs that were generated using the rudy
graph generator [24]. Grid 2D generates a planar bidimensional grid with edge weights all
equal to 1.

9

Frieze & α for Frieze & Jerrum with convex combination
|V | SDP LB ICH Jerrum 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k=2 30 912 912 912 912 912 912 921 927 941 925 912 912
40 1690.463 1691 1728 1728 1742 1773 1691 1691 1716 1719 1691 1691
50 2716.069 2729 2858 2848 2767 2823 2857 2815 2787 2810 2802 2855
60 3985.364 4001 4151 4054 4151 4128 4106 4172 4196 4112 4095 4159
70 5384.104 5401 5608 5667 5625 5452 5581 5654 5520 5501 5584 5557
80 7032.764 7098 7389 7389 7382 7211 7321 7363 7381 7281 7341 7230
90 9190.776 9292 9830.2 9551 9572 9595 9480 9599 9508 9450 9592 9568
100 11382.92 11496 11747 11784 11747 11881 11854 11878 11871 11878 11936 11860

k=3 30 493.7 557 589 614 588 611 623 598 605 580 592 558
40 925.5 992 1088 1117 1135 1108 1094 1130 1077 1101 1096 1089
50 1497.1 1656 1694 1752 1735 1725 1704 1766 1761 1757 1706 1737
60 2351.9 2548 2724 2749 2809 2739 2774 2716 2722 2649 2692 2705
70 3223.4 3477 3679 3815 3708 3774 3706 3789 3676 3685 3615 3664
80 4293.5 4508 4848 4892 4888 4790 4809 4909 4857 4877 4892 4815
90 5420.1 5774 6132 6249 6134 6084 6054 6263 6117 6151 6139 6098
100 6634.2 6973 7491 7566 7661 7529 7534 7602 7561 7549 7496 7433

Table 1: Computational Results for random instances with k = 2 and 3. Numbers in bold indicate that the heuristic solution is the optimal solution.

Frieze & α for Frieze & Jerrum with convex combination

|V | SDP LB ICH Jerrum 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k = 2 3 × 3 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504

4 × 4 -592434 -592202 -592202 -592202 -592202 -592202 -592202 -592202 -592202 -592202 -592202 -536551

5 × 5 -1543707 -1543707 -1451470 -1543707 -1182988 -1543707 -1543707 -1461391 -1543707 -1278662 -1543707 -1543707

6 × 6 -2846691 -2846691 -2846691 -2846691 -2554116 -2846691 -2846691 -2680268 -2846691 -2846691 -2718202 -2846691

7 × 7 -3020297 -3020297 -2818053 -2787849 -2787849 -2818053 -3020297 -3020297 -3020297 -2807370 -3020297 -3020297

8 × 8 -4489989 -4489989 -4489989 -4396002 -4489989 -4252115 -4489989 -4271661 -3702040 -4489989 -4489989 -4005560

9 × 9 -6230102 -6230102 -5522456 -6230102 -5950570 -5858896 -5522456 -5644327 -5953242 -5213005 -6230102 -6153144

10 × 10 -7872968 -7872968 -7872968 -7872968 -7760364 -7872968 -6869239 -7872968 -6480148 -7042388 -7872968 -7540716

k = 3 4 × 4 -954108 -954077 -954077 -819312 -831392 -741231 -798278 -761526 -580161 -741298 -751103 -852946

5 × 5 -1484348 -1367840 -1185097 -1484348 -1166946 -1103329 -1124676 -1188754 -836275 -1319361 -1175218 -966957

6 × 6 -2758520 -2758520 -2147425 -2115524 -1732624 -1802507 -1625819 -2758520 -1414849 -1872757 -1595561 -2690359

7 × 7 -3282586 -3282586 -2115560 -2115560 -2115560 -2889403 -1587528 -1902404 -1841520 -2171880 -2016232 -2756529

8 × 8 -4063059 -4063059 -2705506 -2469005 -2090016 -2128793 -2219785 -2419073 -2523733 -3154943 -2896465 -2502696

9 × 9 -5236178 -4758332 -2247374 -2225260 -2324296 -1970217 -2127385 -2235664 -2026423 -2085498 -2307414 -3155256

10 × 10 -7230203 -6570984 -3150645 -3251798 -3442696 -2750327 -3124199 -3122204 -3638336 -3395681 -2941674 -3579241

Table 2: Computational results for spinglass2g with k = 2 and 3. Numbers in bold indicate that the heuristic solution is the optimal solution.

10

Frieze & α for Frieze & Jerrum with convex combination
|V | SDP LB ICH Jerrum 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k = 2 3 × 3 0 0 0 0 0 0 0 0 0 0 0 0
4 × 4 0 0 0 0 0 0 0 0 0 0 3 0
5 × 5 0 0 0 2 0 2 0 0 0 6 6 0
6 × 6 0 0 0 0 0 0 0 3 0 2 0 2
7 × 7 0 0 4 4 4 3 3 0 0 0 0 3
8 × 8 0 0 0 0 4 20 0 4 0 0 13 0
9 × 9 0 0 0 3 0 10 2 0 8 0 0 12

10 × 10 0 0 0 0 0 10 0 3 7 0 4 0

k = 3 3 × 3 0 0 1 2 0 1 0 0 1 0 1 0
4 × 4 0 0 2 3 3 1 3 2 1 4 2 3
5 × 5 0 0 4 7 7 4 4 1 5 6 4 4
6 × 6 0 0 7 12 8 12 8 12 7 8 7 9
7 × 7 0 0 14 15 16 18 14 13 17 13 13 13
8 × 8 0 0 17 16 20 20 24 20 17 19 17 20
9 × 9 0 0 22 32 29 23 24 25 25 24 26 21

10 × 10 0 0 36 39 34 33 39 37 35 39 35 33

Table 3: Computational Results for grid 2D with k = 2 and 3. Numbers in bold indicate that the heuristic solution
is the optimal solution.

From Tables 1-3, we notice that ICH is in most cases at least as good as the hyperplane
rounding minimum. Moreover, even using different values of α for the hyperplane rounding with
convex combination, the results are still not as good as those of the ICH heuristic. Therefore,
the UBs provided by ICH are generally tighter and using it at each node of the branch-and-cut
algorithm helps reducing the size of the tree.

From Table 2 we see that for spinglass2g instances where positive and negative edge weights
are present, the ICH heuristic provides a better solution than the minimum value of hyperplane
rounding for all values of α. This shows that ICH is still very effective in the presence of negative
weights unlike the hyperplane rounding (we note that the performance guarantee from Theorem
1 does not apply for these instances). Moreover, by comparing the UB provided by ICH with
the LB, we see that the ICH heuristic provides a tight bound at the root node and sometimes
immediately finds the optimal solution.

We note that for the grid 2D instances we can find a solution by inspection. For the case
k = 2 there is a unique solution, while for k = 3 we have multiple solutions. Moreover, for k = 2
the SDP matrix X∗ satisfies Xij ∈ {−1, 1} while for k = 3 the SDP matrix X∗ doesn’t have
its entries Xij ∈ {− 1

2 , 1} but the matrix is in practice often a convex combination of several
multiple solutions. We included the results for grid 2D instances to show that even if we don’t
have the SDP matrix with Xij ∈ {− 1

k−1 , 1} entries, the ICH heuristic can still extract a feasible
solution that was found to be optimal for all test cases tried, unlike the hyperplane rounding.

4.2 Computational Results for SBC Algorithm

We implemented in C the branch-and-cut SDP-based Algorithm (SBC) described in Section 3.4.
To solve the SDP, which has to be done at each node of the tree, we used the CSDP solver [5].
The computations were done on a a 1200 MHz Sun Sparc machine.

11

|V | Optimal Solution Time Number of Nodes

20 147 0:00:06 1
30 495 0:00:09 1
40 1183 0:02:10 1
50 2312 0:14:20 1
60 3990 0:06:41 1
70 6348 0:58:29 1

Table 4: SBC results for clique instances where k = 3. The time is given in hr:min:sec. The last
column is the number of nodes required to reach the optimal solution

4.2.1 Test Instances

The test instances consist of graphs generated using the graph generator rudy of Rinaldi [24].
The instances consist of complete graphs and two and three-dimensional grid graphs with Gaus-
sian distributed and ±1 edge weights:

• Clique: generates complete graphs with edge weight of edge (i, j) chosen as |i − j|.

• Spinglass2g: described in Section 4.1.

• Spinglass3g: generates a toroidal three-dimensional grid with Gaussian distributed weights.
The grid has size n =(rows×columns×layers).

• Spinglass2pm: generates a toroidal two-dimensional grid with ±1 weights. The grid has size
n =(rows×columns). The percentage of negative weights is 50%.

• Spinglass3pm: generates a toroidal three dimensional grid with ±1 weights. The grid has size
n =(rows×columns×layers). The percentage of negative weights is 50%.

Table 4 shows the computational result for clique instances. Tables 5-6 show the computational
results for the SBC algorithm for two-dimensional and three-dimensional grid instances with
k = 3. In addition to the optimum solution value, the lower bound and the upper bound at the
root node as well as the time at the root node are presented. Moreover, the number of nodes
of the branch-and-bound tree as well as the time to reach a certain percentage gap are given in
the tables. The symbol x denotes that a gap smaller than the one written in the corresponding
column was achieved at the root node. For Table 5, we give optimum solutions for sizes up to
100 vertices (10×10 grids) and provide a feasible solution for larger sizes (up to 169 vertices)
with a percentage gap of less than 6%.

12

Best Root Node Number of Nodes - Time
Solution to achieve % Gap

|V | Value LB UB Time 0% 1% 2% 5% 10%

3 × 3 -449795 -449795 -449795 0:00:05 1 - 0:00:5 x x x x

4 × 4 -954077 -954077 -954077 0:00:16 1 - 0:00:16 x x x x

5 × 5 -1484348 -1484722 -1484348 0:00:18 2 - 0:00:23 1 - 0:00:18 x x x

6 × 6 -2865560 -2865560 -2865560 0:05:12 1 - 0:05:12 x x x x

7 × 7 -3282435 -3282435 -3282435 0:52:08 1 - 0:52:08 x x x x

8 × 8 -5935341 -5935341 -5935341 2:21:43 1 - 2:21:43 x x x x

9 × 9 -4758332 -4806178 -4758332 3:35:49 4 - 13:41:17 1 - 3:35:49 x x x

10 × 10 -6570984 -6630202.5 -6570984 10:36:23 6 - 18:09:41 1 - 10:36:23 x x x

11 × 11 -8586382 -9015701.1 -8586382 5:48:50 - - - 1 - 5:48:50 x

12 × 12 -10646782 -11189768 -10646782 9:31:00 - - - 1 - 9:31:00 x

13 × 13 -11618406 -12292274 -11618406 29:33:27 - - - - 1 - 29:33:27
14 × 14 -13780370 -14607192 -13780370 47:16:57 - - - - 1 - 47:16:57

2 × 3 × 4 -2197030 -2197030 -2197030 0:01:14 1 - 0:01:14 x x x x

2 × 3 × 5 -2026448 -2026448 -2026448 0:08:02 1 - 0:08:02 x x x x

2 × 4 × 5 -3392938 -3392938 -3392938 0:36:18 1 - 0:36:18 x x x x

3 × 3 × 3 -1882389 -1882389 -1882389 0:00:21 1 - 0:00:21 x x x x

3 × 3 × 4 -3192317 -3192317 -3192317 0:26:52 1 - 0:26:52 x x x x

3 × 3 × 5 -4204246 -4209348 -4204246 2:52:31 5 - 3:38:37 1 - 2:52:31 x x x

3 × 4 × 4 -5387838 -5421403 -5387838 0:58:15 3 - 1:38:51 1 - 0:58:15 x x x

3 × 4 × 5 -5240435 -5323788 -5049424 6:02:52 13 - 19:12:31 10 - 16:43:10 7 - 11:21:53 1 - 6:02:52 x

4 × 4 × 4 -7474525 -7529318 -7474525 3:22:37 3 - 10:12:11 1 - 3:22:37 x x x

Table 5: SBC results for spinglass2g and spinglass3g instances where k = 3. The time is given in hr:min:sec. The last five columns are
the number of nodes of the tree and the time required to reach the given gap.

13

Best Root Node Number of Nodes - Time
Solution to achieve % Gap

|V | Value LB UB Time 0% 1% 2% 5% 10%

4 × 4 -13 -13 -13 0:00:00 1 - 0:00:00 x x x x

5 × 5 -20 -20 -20 0:00:04 1 - 0:00:04 x x x x

6 × 6 -29 -29 -29 0:00:22 1 - 0:00:22 x x x x

7 × 7 -40 -40 -40 0:01:52 1 - 0:01:52 x x x x

8 × 8 -55 -55 -55 0:26:38 1 - 0:26:38 x x x x

9 × 9 -65 -65 -65 7:35:49 1 - 7:35:49 x x x x

2 × 3 × 4 -20 -20 -20 0:00:03 1 - 0:00:03 x x x x

2 × 4 × 4 -28 -28 -27 0:03:54 4 - 0:01:02 x x 1 - 0:20:14 x

3 × 3 × 3 -26 -26 -26 0:00:11 1 - 0:00:11 x x x x

3 × 3 × 4 -36 -36 -36 0:00:50 1 - 0:00:50 x x x x

3 × 4 × 4 -48 -48 -48 0:11:59 1 - 0:11:59 x x 1 - 2:40:22 x

3 × 4 × 5 -65 -66 -62 4:38:12 16 - 8:55:33 10 - 7:09:22 7 - 6:04:19 1 - 4:38:12 x

4 × 4 × 4 -65 -65 -64 4:32:18 19 - 8:36:15 12 - 7:38:33 1 - 4:32:18 x x

Table 6: SBC results for spinglass2pm and spinglass3pm instances where k = 3. The time is given in hr:min:sec. The last five columns
are the number of nodes of the tree and the time required to reach the given gap.

14

Size Time

6 20

20 30

69 40

207 50

1001 60

4237 70

12162 80

35486 100

Size of the graph vs. Time

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100 120

|V|

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 3: Size of Random instances versus computational time for k = 3. The average is always
taken over five instances of the same size.

k = 5 k = 7
|V | Objective Value Time Objective Value Time

spinglass2g 6 × 6 -2865560 0:23:41 -2865560 0:21:00
7 × 7 -3843979 0:42:31 -3864156 0:39:23
8 × 8 -5935341 2:09:07 -5935341 2:13:05
9 × 9 -5745419 2:39:38 -6026024 2:18:56

10 × 10 -6860706 19:14:02 -7644016 17:32:29

spinglass3g 2 × 3 × 4 -2212707 0:00:10 -2212707 0:00:08
2 × 3 × 5 -2081357 0:08:07 -2081358 0:05:35
2 × 4 × 5 -3578762 0:17:00 -3578762 0:13:01
3 × 3 × 3 -2932403 0:00:47 -2932403 0:00:03
3 × 3 × 4 -3552295 0:26:58 -3559337 0:21:15
3 × 3 × 5 -4561622 2:04:49 -4648539 1:02:09
3 × 4 × 4 -5371414 1:14:11 -5466518 1:18:02
4 × 4 × 4 -7619675 9:30:19 -7646881 4:57:05

Table 7: SBC results for k = 5 and 7. The time is given in hr:min:sec.

15

4.2.2 Comparison and Analysis

The computational results which we have presented for spin-glass problems lead to the following
observations:

1. SBC is able to determine optimum solutions for problems with Gaussian distributed and ±1 edge
weights for two- and three-dimensional grids with up to n = 60 vertices, and for k=3 within reasonable
time. For 60 < n ≤ 100 we reach a gap of 1% within a reasonable amount of time, however reaching a
0% gap takes longer.

2. The remarkable tightness of the bounds obtained at the root node make it worthwhile to conduct a
branch-and-cut algorithm since the bounds will likely help reduce the number of nodes in the tree.

3. Furthermore, the ICH heuristic often provides an optimal solution at the root node or after only a few
branches. Most of the times computing the lower bound is the bottleneck; often ICH obtains the global
optimal solution, but we cannot prove optimality right away.

4. For k = 5 and 7, our empirical analysis shows that for a given |V | as k increases, the computational
time decreases. Moreover, for some test cases the objective function values of the same test instance
with different k values are the same, see Table 7. This is because the solution partitioned the vertices
into less than k partitions due to the presence of positive and negative edge weights.

5 Conclusions and Future Work

In this paper we presented an exact algorithm for computing minimum k-partitions. Inside a
branch-and-cut algorithm we used positive semidefinite relaxations that were further tightened
using polyhedral results. The resulting algorithm is called SBC. The SBC algorithm was im-
plemented and tested using several instances, and our computational results show the potential
of SBC in tackling the MkP problem. We developed and implemented the novel ICH heuristic
which appears to be a promising method for generating a good feasible solution. The proposed
model often improves the upper bound and gives good feasible solutions. ICH can be applied to
the MkP problem for different values of k. When compared with other approaches in the litera-
ture such as the hyperplane rounding technique by Frieze and Jerrum [14], it provides a better
solution in practice. Moreover, the ICH heuristic was used in a SDP-based branch-and-cut
approach to provide optimal solution for MkP.

Future research will investigate the solver used to solve the SDP at each node of the tree
since it is the major bottleneck in the SBC algorithm. In particular, exploiting the structure of
the graph and its sparsity may lead to an effective way for solving the SDP relaxations. Future
work also includes adjusting the SBC algorithm and the ICH heuristic so that they can be
applied to closely related partitioning problems such as the k-way equipartition problem.

References

[1] Biq Mac solver. http://biqmac.uni-klu.ac.at/.

[2] Spin-glass server. http://www.informatik.uni-koeln.de/ls juenger/research/sgs/index.html.

[3] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt. An application of combinatorial optimization
to statistical physics and circuit layout design. Operations Research, 36:493–513, 1988.

[4] F. Barahona and A. Mahjoub. On the cut polytope. Mathematical Programming, 36:157–173, 1986.

[5] B. Borchers. CSDP, a C library for semidefinite programming. Optimization Methods and Software,
11/12(1-4):613–623, 1999.

[6] E. Boros and P. Hammer. The max-cut problem and quadratic 0-1 optimization: Polyhedral aspects,
relaxations and bounds. Annals of Operations Research, 33:151–180, 1991.

16

[7] S. Chopra and M. R. Rao. The partition problem. Mathematical Programming, 59:87–115, 1993.

[8] S. Chopra and M. R. Rao. Facets of the k-partition problem. Discrete Applied Mathematics, 61:27–48,
1995.

[9] M. Deza, M. Grötschel, and M. Laurent. Complete descriptions of small multicut polytopes. Applied
Geometry and Discrete Mathematics - The Victor Klee Festschrift, 4:205–220, 1991.

[10] M. Deza and M. Laurent. Geometry of Cuts and Metrics. Algorithms and Combinatorics, Springer
Verlag, 1997.

[11] J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical data-oriented microaggregation for statistical dis-
closure control. IEEE Transactions on Knowledge and Data Engineering, 14(1):189–201, 2002.

[12] A. Eisenblätter. The semidefinite relaxation of the k-partition polytope is strong. Proceedings of the 9th
International IPCO Conference on Integer Programming and Combinatorial Optimization, 2337:273–
290, 2002.

[13] M. Elf, M. Jünger, and G. Rinaldi. Minimizing breaks by maximizing cuts. Operations Research Letters,
31(5):343–349, 2003.

[14] A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut and max bisection. Algo-
rithmica, 18:67–81, 1997.

[15] B. Ghaddar. A branch-and-cut algorithm based on semidefinite programming for the minimum k-
partition problem. Master’s thesis, University of Waterloo, 2007.

[16] M. Goemans and D. Williamson. New 3
4 -approximation algorithms for the maximum satisfiability

problem. SIAM Journal of Discrete Mathematics, 7(4):656–666, 1994.

[17] C. Helmberg and F. Rendl. Solving quadratic (0, 1)-problems by semidefinite programs and cutting
planes. Mathematical Programming, 82(3, Series A):291–315, 1998.

[18] L. W. Lee, H. G. Katzgraber, and A. P. Young. Critical behavior of the three- and ten-state short-range
Potts glass: A Monte Carlo study. Physical Review B, 74:104–116, 2006.

[19] F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi. Computing Exact Ground States of Hard Ising Spin
Glass Problems by Branch-and-Cut, pages 47–68. New Optimization Algorithms in Physics, Wiley,
2004.

[20] A. Lisser and F. Rendl. Telecommunication clustering using linear and semidefinite programming.
Mathematical Programming, 95:91–101, 2003.

[21] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions Information Theory, IT-25:1–7,
1979.

[22] J. Mitchell. Branch-and-cut for the k-way equipartition problem. Technical report, Department of
Mathematical Sciences, Rensselaer Polytechnic Institute, 2001.

[23] J. E. Mitchell. Realignment in the National Football League: Did they do it right? Naval Research
Logistics, 50(7):683–701, 2003.

[24] G. Rinaldi. Rudy. http://www-user.tu-chemnitz.de/∼helmberg/rudy.tar.gz.

[25] A. Wiegele. Nonlinear Optimization Techniques Applied to Combinatorial Optimization Problems. PhD
thesis, Alpen-Adria-Universität Klagenfurt, 2006.

17

