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Abstract

In this work, we analyse optimisation problems related to the minimisation of severity and duration of
relative losses, so-called drawdowns. We model the accumulated surplus (total income minus expenses)
of an insurance company by a stochastic process X = (Xt)t≥0, which is either a Cramér–Lundberg
process or a diffusion. The running maximum M = (Mt)t≥0 and the drawdown ∆ = (∆t)t≥0 of X are
given by Mt = max{m0, sups∈[0,t]Xs} and ∆t = Mt−Xt at time t ≥ 0. With this definition, we allow
for an initial maximum m0 ∈ R which has been reached before the observation starts. The drawdown
process has the natural interpretation of the current decline from the last historical peak of the surplus
and is, therefore, a time- and performance-adjusted measure of risk. We consider value functions based
on the minimisation of the ‘expected time with critical drawdown’ E

[∫∞
0 e−δt1{∆t>d} dt

∣∣∆0 = x
]
,

x ≥ 0, by dynamic, proportional reinsurance controls. Here, the parameter d > 0 is a proxy for
the size of drawdowns that is perceived as unfavourable. The ‘discounting’ rate δ > 0 reflects the
preference of postponing critical drawdowns for as long as possible.
The first chapter contains a detailed explanation of the motivation of drawdown minimisation for
insurance companies and in stochastic control theory. We prove that the problem can be split into
the subproblems of

i) maximising the time with uncritical drawdown, ∆ ∈ [0, d], with a penalty for the overshoot
at the exit time and

ii) minimising the time of recovery if the drawdown is currently critical, ∆ > d.

In the second chapter, we consider the Cramér–Lundberg model. We show that the minimal expected
time in critical drawdown is the unique solution to a Hamilton–Jacobi–Bellman equation by considering
a set of generalised discounted penalty functions of Gerber–Shiu type. In the third chapter, we prove
that the minimal expected time in critical drawdown and optimal strategy for the diffusion model have
explicit representations in terms of the Lambert W function. From these two chapters, we conclude
that optimal reinsurance minimising drawdowns stabilises the surplus close to its running maximum.
Especially for insurance companies, this enhanced predictability is favourable. By analysing optimally
controlled processes, we discover, however, that growth of the running maximum is impeded. This
can be a drawback from an economic perspective. In the fourth chapter, we therefore introduce a
modified value function, including dividends as an ‘incentive to grow’, and solve the resulting problem
for a diffusion surplus model. In our numerical examples, we consider in detail the optimal strategies
(which are of feedback form in all cases). By putting the focus on a different aspect in each chapter,
we highlight model-specific results: in the second chapter, we address the influence of the claim
distribution, in the third chapter, the effect of costs of reinsurance and in the fourth chapter, the
impact of preference (paying dividends versus avoiding drawdowns) of the insurer. In the fifth and
last chapter, we give an outlook on the various possibilities for further research related.





Zusammenfassung

In dieser Arbeit analysieren wir Optimierungsprobleme zur Minimierung von Größe und Anhalte-
dauer relativer Verluste, so genannter Drawdowns. Wir modellieren den akkumulierten Überschuss
(gesamte Erträge abzüglich Aufwendungen) eines Versicherungsunternehmens durch einen stochas-
tischen Prozess X = (Xt)t≥0. X ist ein Cramér–Lundberg- oder ein Diffusionsmodell. Das laufende
Maximum M = (Mt)t≥0 und der Drawdownprozess ∆ = (∆t)t≥0 sind zur Zeit t ≥ 0 durch Mt =
max{m0, sups∈[0,t]Xs} und ∆t = Mt − Xt definiert. Mit dieser Definition nehmen wir an, dass es
einen ”initialen Rekord“ m0 ∈ R gibt, der schon vor der Betrachtungsperiode erreicht wurde. Eine
natürliche Interpretation des Drawdownprozesses ist die aktuelle, negative Abweichung vom letzten
historischen Überschusshoch. ”Drawdown“ ist daher ein an die Zeit und Erfolge des Unternehmens
angepasster Risikoindikator. Wir betrachten Wertefunktionen, die auf der Minimierung der ”erwar-
teten Zeit mit kritischem Drawdown“ E

[∫∞
0 e−δt1{∆t>d} dt

∣∣∆0 = x
]
, x ≥ 0, durch dynamische,

proportionale Rückversicherung basieren. Der Parameter d > 0 repräsentiert die Höhe, ab der relative
Verluste das Unternehmen schädigen können. Die ”Diskontierungsrate“ δ > 0 drückt aus, dass krit-
ische Drawdowns so spät wie möglich auftreten sollen.
Im ersten Kapitel motivieren wir die Minimierung von Drawdowns aus der Perspektive von Versicher-
ungsunternehmen und in der stochastischen Kontrolltheorie. Wir beweisen, dass das Problem in die
beiden Teilprobleme

i) Maximierung der Zeit mit unkritischem Drawdown, ∆ ∈ [0, d], mit einer Strafzahlung
für das Defizit zur Zeit des Austritts aus [0, d] und

ii) Minimierung der Zeit bis zur Wiedererreichung des unkritischen Bereichs, wenn das aktuelle
Drawdown groß ist, ∆ > d,

zerlegt werden kann. Im zweiten Kapitel betrachten wir das Cramér–Lundberg Modell. Wir zeigen
mithilfe einer verallgemeinerten, diskontierten Straffunktion vom Gerber–Shiu Typ, dass die mini-
male Zeit mit kritischem Drawdown die eindeutige Lösung der assoziierten Hamilton–Jacobi–Bellman
Gleichung ist. Im dritten Kapitel beweisen wir, dass die entsprechende Funktion für das Diffu-
sionsmodell eine explizite Darstellung besitzt, die auf der Lambert’schen W Funktion basiert. Das
Hauptergebnis dieser beiden Kapitel ist, dass die gefundenen optimalen Rückversicherungsstrategien
den Überschussprozess bei seinem Maximum stabilisieren. Der schwankungsärmere Prozess ist leichter
vorhersehbar, was besonders für Versicherungsunternehmen vorteilhaft ist. Unsere Analyse der optimal
kontrollierten Prozesse ergibt allerdings auch, dass das Wachstum des laufenden Maximums gehemmt
wird. Dies kann, in ökonomischer Hinsicht, ein Nachteil sein. Im vierten Kapitel führen wir daher eine
modifizierte Wertefunktion ein, bei der wir Dividendenzahlungen als ”Wachstumsanreiz“ einbinden.
Wir lösen dieses Problem für das Diffusionsmodell. Alle Lösungen und optimalen Strategien (gegeben
durch ”feedback“-Funktionen) werden durch numerische Beispiele illustriert. Dabei betrachten wir je-
weils unterschiedliche Aspekte: Im zweiten Kapitel steht der Einfluss der Schadenverteilung im Fokus,
im dritten Kapitel die Kosten der Rückversicherungspolice und im vierten Kapitel die Präferenz des
Unternehmens (Dividendenzahlungen versus Drawdownvermeidung). Im fünften und letzten Kapitel
betrachten wir einige Beispiele der zahlreichen Möglichkeiten zu weiterer Forschung in diesem Bereich.
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CHAPTER 1

Introduction

Uncertainty and reliability form the core of insurance business. An insurance contract, from the
perspective of the insurance company, is an agreement to pay for future claims of the insured party
in return for a predefined premium payment. While insurance premia are charged in advance of
the occurrence of the insured event, at least one of the following is typically uncertain: occurrence
times, size and number of claim payments. If an insurance company is not reliable, this causes
a reputational damage (which can manifest itself as a competitive disadvantage) and could even
lead to legal consequences and regulatory penalties. One possibility to increase the predictability of
future payments and, therefore, to facilitate being reliable, is purchasing reinsurance. Reinsurance
(i.e. insurance for the insurer) can be viewed as trading or exchanging risks. The insurer passes on a
part of the unknown claim payments to the reinsurer and in turn pays a reinsurance premium. This
results in a reduction of the ‘random’ liabilities but also reduces the deterministic income. Thus, an
essential question for insurers (and, because of the inspirational uncertainty aspects of the problem,
also for probabilists) is how to ‘optimally’ reinsure a contract portfolio.
The theory of stochastic control equips us with a mathematical framework for deriving substantiated
solutions to optimal reinsurance problems. An introduction to optimal control theory is found in
[Fleming and Soner, 1993]; an overview of different techniques to solve optimal control problems
especially in the context of actuarial mathematics provides Schmidli [2008]. The key idea is to show
that the target functional, or ‘value function’, is in a certain sense the unique solution to a Hamilton–
Jacobi–Bellman (integro-differential) equation. To this purpose, one derives an associated equation,
proves existence of a solution and then applies a martingale argument to verify that this solution
indeed belongs to an optimal strategy and is therefore the value function.
However, before finding an optimal strategy, we have to define the notion of ‘optimality’. By examining
a target functional which depends on the distance to the ‘high water mark’ of the surplus, the so-called
drawdown, this thesis aims to find both, a new question regarding optimal reinsurance and an answer.

1.1 Insurance, Reinsurance and Drawdowns

In actuarial sciences and mathematics, two of the most popular models for the development of the
accumulated surplus of an insurer are the Cramér–Lundberg model (introduced by Lundberg [1903]
and further examined by Cramér [1930 and 1955]) and its diffusion approximation. In the Cramér–
Lundberg (‘classical risk’) model, accumulated income from insurance premia is calculated as a linear
function in time and expenses for claim payments, subtracted from the income, are represented by
a sum of positive random variables, governed by a Poisson process. This simple model therefore
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Figure 1.1 Exemplary sample paths of basic surplus processes: Cramér–Lundberg model (left) and diffusion
model (right).

captures the key characteristics of insurance business. A typical path of this model is illustrated in
Figure 1.1, on the left. The underlying idea of the ‘diffusion approximation’ is that for a certain
re-scaling, the classical risk model converges weakly to a diffusion (compare, for example, [Iglehart,
1969] and [Grandell, 1977]). Intuitively, this is the case if the number of claims becomes infinitely
large while the size of the claims goes to zero. A sketch of a path of the resulting process is shown in
Figure 1.1, on the right.
A classical and well-studied approach to the optimal reinsurance problem is the minimisation of the
ruin probability (i.e. the probability that the controlled surplus of the insurer becomes negative in
finite time) for different surplus models. The classical risk model and its diffusion approximation allow,
in many cases, insightful results. For both models, the maximisation of the survival probability (the
equivalent counterpart of the minimisation of the ruin probability) is considered in [Schmidli, 2001]
in the case of proportional reinsurance. ‘Proportional’ reinsurance can be expressed via the retention
level b ∈ [0, 1] of the insurer: if a claim of size Y occurs, the insurer pays for b · Y and passes on
the remaining (1 − b) · Y to the reinsurer. For this service, the reinsurer charges a premium which
increases if the retention level is chosen smaller. Hence there is a trade-off between proportionally
reducing the payment in the event of a claim and incurring fees. For the diffusion model, a constant
retention level (which can be explicitly calculated) turns out to be optimal. For the classical risk
model, optimal strategies are of ‘feedback form’ (that is, they are given by a function evaluated at
the current surplus level) and can be calculated numerically, depending on the claim size distribution.
Hipp and Vogt [2003] and Hipp and Taksar [2010] extend these methods to include different types of
investment and reinsurance controls to minimise ruin probabilities for both models. A drawback of
using the probability of ruin as a risk measure is that this approach ignores the deficit at the time
of default: for processes with downward jumps, ruin can occur at the time of a claim payment, so
that the surplus at this time is strictly negative. In reality, a large amount of debt puts the company
in a worse situation than a small deficit. Gerber and Shiu [1998] introduced expected discounted
penalty functions which help overcome this problem and can be interpreted as additionally measuring
the severity of ruin (if it occurs). Recently, Preischl and Thonhauser [2019] analysed the problem of
optimal reinsurance for value functions of the Gerber–Shiu type, depending on the capital prior to and
the deficit at ruin for a classical risk model. Another possibility, proposed by Eisenberg and Schmidli
[2009 and 2011], is to consider the minimisation of expected capital injections (i.e. payments made
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by the insurer to ‘stay in business’ whenever the surplus is in technical ruin), which also serve as a
measure of risk, replacing the ruin probability.
However, technical ruin is an exceptional and extreme event. In reality, one not only aims to improve
the ‘worst case scenario’ but also the general performance and standing of a company during the time
it operates. Performance-oriented approaches to optimising reinsurance include the maximisation of
utility functions and dividends (see, for example, [Irgens and Paulsen, 2004] and [Azcue and Muler,
2005]). A new and somewhat different advance is based on the analysis of drawdowns of the surplus.
If the surplus of an insurance company starting at an initial capital ν0 ∈ R is modelled by a stochastic
process X = (Xt)t≥0, its running maximum M = (Mt)t≥0, given by

Mt = max
{
m0, sup

s∈[0,t]
Xs

}
, t ≥ 0 , (1.1)

for m0 ≥ ν0, can be viewed as the history of records at which the company has outperformed itself in
the past. The (absolute) drawdown ∆ = (∆t)t≥0 of X is defined as

∆t = Mt −Xt , t ≥ 0 , (1.2)

and starts at the initial value x = m0 − ν0 ≥ 0. Thus, ∆ can be interpreted as the relative loss since
the last peak. This interpretation is one of the reasons why a large drawdown can be threatening for
a company, as the following toy example illustrates.
Let us assume that we are observing two companies, insurer A and insurer B, whose surpluses develop
as in Figure 1.2. The blue graph of Figure 1.2 represents the surplus of company A and the black graph
represents the surplus of company B. At the time at which we start our observation, both companies
have the same initial capital of 100e. After time T , both have been equally profitable by increasing
the accumulated surplus by 5e. However, the drop of the surplus of company A by 25e overshadows

8>>>>
>>>>>>>
>>><
>>>>>>>
>>>>>>>
:

(

125e

100e

T

Figure 1.2 Surpluses of insurer A (blue) and insurer B (black) in our toy example.

its overall positive profit. This is the psychological effect of a drawdown, which, in a similar form,
has also been observed in connection with decreasing dividend payments (see, for example [Albrecher
et al., 2018]): while issuing dividends (or a positive profit) could generally be seen as a good sign to
the market, a strongly decreasing dividend (or a large relative loss) can disappoint shareholders and is
a sign of lowered performance or even managerial insufficiency in the eyes of the public. Reputational
risks arising from the occurrence of a large drawdown materialise as financial losses if customers and
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shareholders avoid the company in the future. On the other hand, the surplus of company B conveys
a steadiness which could be read by stakeholders as managerial strength. Especially for insurers,
signalling stability to policyholders, potential future customers and regulators is favourable.
Already in this simplistic example it can be seen that drawdown has two properties which are favour-
able for a measure of risk: firstly, it is time- and performance-adjusted (as it accounts for the historical
‘high’) and, secondly, it only measures the negative deviation from a record. Moreover, a large draw-
down is an event which can be threatening for a company, but is not as ultimate or unusual as technical
bankruptcy. In financial mathematics and economics, drawdowns are therefore used as dynamic risk
indicators and form a basis for constructing new risk measures (see for example [Chekhlov et al.,
2005] and [Maier-Paape and Zhu, 2018]) as well as for performance measurement (e.g. [Hamelink and
Hoesli, 2004], [Schuhmacher and Eling, 2011]). Only mildly related to this monograph, but important
to mention nonetheless, is that there is also a link of drawdowns to market crashes. This has been
examined by Sornette [2003] and Zhang and Hadjiliadis [2012] (amongst others).
Mathematically, ‘drawdown’ is the result of applying a functional to the paths of a stochastic process
X. The resulting, non-negative process ∆ behaves similar to −X as long as it is positive and ‘glitches’
along the x-axis whenever it arrives at zero (see Figure 1.3 on p. 6). The distributional properties of
these processes have been extensively studied. A survey covering a broad scope is due to Mijatović and
Pistorius [2012] who consider joint Laplace transforms of the first passage times of drawdown processes
and five related quantities, such as the last supremum prior to the passage time, for spectrally negat-
ive Lévy processes (which includes the models mentioned above). Additionally, they use these results
to derive explicitly the laws of certain functionals of drawdown processes. In the same framework,
Landriault et al. [2017b] derive the law of the so-called ‘time to recover’ (i.e. the time until the historic
maximum is re-reached). Moreover, they consider asymptotics of Laplace transforms of passage times
of drawdown processes as the threshold tends to zero. Wang et al. [2020] consider penalised expected
values similar to Gerber–Shiu functions, for which the ruin event is replaced by the first exit of the
drawdown process from an interval. The drawdown process in this case is a generalisation of the
above, earlier considered by Pistorius [2007], which is defined as the distance φ(Mt) − Xt at time t,
for a measurable function φ : R → R. Further results, which apply specifically to the classical risk
model, the diffusion approximation or special cases thereof, include [Taylor, 1975] (earliest calculation
of the joint Laplace transform of the passage time and the maximum for a Brownian motion), [Le-
hoczky, 1977] (a generalisation of the former to Itô diffusions), [Harrison and Reiman, 1981] (on the
connection to a reflected Brownian motion), [Landriault et al., 2015] (on the frequency of drawdowns
for arithmetic Brownian motions), [Zhang, 2015] (on probabilities of drawdowns preceding ‘drawups’
for diffusion processes) and [Landriault et al., 2017a] (on drawdowns of renewal risk processes).
In the cosmos of drawdowns, the closest relative to minimising ruin probabilities is the minimisation
of the probability that a ‘large’ drawdown occurs. That is, the probability that the drawdown pro-
cess hits or exceeds a critical level d > 0, or, so to speak, the probability that the passage time of
d is finite. In a series of articles, Chen et al. [2015] and Angoshtari et al. [2015, 2016a and 2016b]
consider the minimisation of the probabilities of ‘proportional’ drawdowns under investments and
consumption. In particular, they find strategies minimising the probability of events of the form
{∃ t < T : Xt < (1 − α)Mt}, where α ∈ [0, 1) and T represents an infinitely long or (almost surely)
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finite life time. For this definition of a drawdown, there are parallels to the risk model with tax
considered by Albrecher and Hipp [2007]. In a similar setting, Han et al. [2018 and 2019] solve pro-
portional reinsurance problems. But, similar to the ruin probability, the approach of minimising the
probability of a large drawdown has blind angles. Firstly, if the surplus process contains jumps, the
time at which the drawdown crosses the critical threshold can be a claim time. As in the case of ruin,
the total size of the deficit, the ‘severity’ of the drawdown, is ignored. Secondly, as we have established
above, a drawdown is usually not a once-in-a-lifetime event. Instead, the insurer will likely stay in
business even after the drawdown time and, thus, needs to prepare a strategy for a quick recovery as
well.

1.2 Scope and Overview of this Thesis

This monograph is based on [Brinker and Schmidli, 2021a, 2021b and 2022] and contributes, along
with [Brinker, 2021], to the existing literature by introducing a value function which measures not
only the size but also the duration period of drawdowns. That means, for preference parameters δ
and d (to be explained below), we consider the ‘expected time with critical drawdown’:

u(x) = E
[∫ ∞

0
e−δt1{∆t>d} dt

∣∣∣∆0 = x
]
, x ≥ 0 , (1.3)

where ∆ denotes the absolute drawdown. Using the expected time with critical drawdown and an
extension thereof as drawdown-based risk measures, we solve the stochastic control problem of optimal
(proportional) reinsurance for the Cramér–Lundberg model and its diffusion approximation.
In the definition of u, we choose an infinite time horizon because premature stopping (at the occurrence
of large drawdown or, for example, technical ruin) could lead to intentionally exiting business in order
to prevent future drawdowns. The size of drawdowns is reflected by the parameter d. We assume that
there is a critical threshold d > 0, predefined by the insurer, such that drawdowns larger than d are
a threat for the company. The reason for defining such a critical size is that, due to expenses such
as claim payments, the surplus of the insurance company, in fact, frequently has positive drawdowns.
The insurer expects (and saves up) to pay for claims and, thus, not every single claim payment leading
to a drawdown is a threat to the company. However, if there is an unexpectedly high number of claims
or if outstanding payments are extremely large, this can lead to drawdowns of significant, ‘critical’,
size. Figure 1.3 illustrates this condition with graphs of the surplus models in the top row and their
corresponding drawdown processes in the bottom row. In particular, the state ‘∆t ≤ d’ corresponds to
the case in which the surplus is closer than d to its running maximum at time t (and the surplus and
drawdown are in the respective white area). A critical drawdown means that the surplus is currently
bounded away from its running maximum by at least d. This corresponds to the processes being in
the grey areas of Figure 1.3. The choice of d should reflect the preferences of the insurer. If d is
large, only extreme drawdowns are ‘seen’ by the function u. In this case, a large drawdown might be
correlated with the unfavourable state of being undercapitalised. If d is small, u penalises almost all
times at which the surplus is not increasing. To simultaneously measure the duration of drawdown
phases, we ‘add together’ the times during which the drawdown is unfavourably large, that is ∆t > d.
Additionally, we include an exponential preference at rate δ > 0, to express that a large drawdown in
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Figure 1.3 Surplus models (top, black graphs) with their running maximum (top, grey graphs) and
respective drawdown processes (bottom, red graphs).

the far future is less threatening for the company than an immediate large drawdown. Similar to the
choice of d, the definition of δ is a proxy for different corporate strategies. If δ is large, this means
that early drawdowns have a much higher weight than drawdowns in the far future. In contrast, δ
chosen close to zero rather fits a long-term orientation.
The motivation to consider a constant critical drawdown size (as opposed to, for example, a proportion
of the running maximum) is the following. Firstly, in the models we consider, we assume that all
monetary units are referenced to time zero. Otherwise, premia and claim payments should increase
over time. In particular, there is no effect of inflation on the critical drawdown size d. Secondly, in
reality, an insurance company would not be allowed (by regulators, impatient shareholders and clients)
to hold an infinite surplus. This means, the surplus of the company is, in a way, ‘naturally bounded’.
Therefore, we can assume that the critical drawdown size cannot grow infinitely large. Thirdly, the
main motivation to optimise drawdowns is to enhance stability and predictability. Thus, we expect
(and prove) that the resulting controlled surplus does not fluctuate in a way which requires principal
changes of d.
In the following two sections, we introduce the basic notation and build the mathematical framework
for our analysis. We specify our surplus models and admissible control processes and review results
on the relation of drawdowns to the Skorohod problem. We use these properties to derive a dynamic
programming principle applicable to both models. The dynamic programming theorem is the first step
towards the mathematical solution in all three settings considered in the following chapters. It allows
us to split the optimisation problem into two subproblems: firstly, minimising the time with critically
large drawdown and, secondly, maximising the time with uncritical drawdown (with a penalty for
the overshoot). In Chapter 2, we focus on the Cramér–Lundberg model. This chapter is based on
[Brinker and Schmidli, 2021b]. We start by calculating explicitly the return (i.e. the expected time in
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drawdown) under simple, non-optimal controls. We prove that the minimal expected time in critical
drawdown is the unique solution to a Hamilton–Jacobi–Bellman (HJB) integro-differential equation
and that the optimal strategy is of feedback form. In particular, we show that the process under the
feedback control exists. We then develop an algorithm to solve a discrete version of the problem. This
algorithm enables us to conduct a detailed numerical study, examining the influence of input variables
(such as the costs of reinsurance), different claim distributions and reinsurance strategies. In Chapter 3,
based on [Brinker and Schmidli, 2022], we analyse the problem in a diffusion approximation. Again,
we start by considering simple controls and derive a Hamilton–Jacobi–Bellman differential equation
for the optimisation problem. However, the proof techniques used in this chapter differ widely from
those in the first chapter. In particular, we prove that solutions to the equation attain an explicit
representation in terms of Lambert’s W function and show that this also applies to the value function.
We derive optimal feedback strategies and give numerical examples. The explicit representations
allow many additional conclusions regarding the value function and optimisers. From the analytic and
numeric results of these two chapters, we conclude that ‘pure’ drawdown optimisation can lead to very
strict reinsurance policies: the minimisation of drawdowns overrules all other economically relevant
aspects. In Chapter 4, based on [Brinker and Schmidli, 2021a], we therefore consider an extension to
the model. We propose a new target functional which measures the potential growth of the surplus
while penalising the time in critical drawdown. This model has the alternative interpretation of
maximising dividends (with a barrier payout strategy) while minimising the time the surplus spends
critically ‘far away’ from the favourable position of being able to pay out dividends. We extend
the proof techniques of Chapter 3 to calculate explicitly optimal feedback strategies for the diffusion
approximation and analyse the influence of the model parameters. In numerical examples, we focus on
the impact of the newly included incentive to grow. Chapter 4 foreshadows that our study allows for
various extensions and generates opportunities for further research. In Chapter 5, we give an outlook
on examples thereof. Appendix A contains some technical results and details.
This work is written in TeXstudio (Version 2.12.16) with LATEX (MiKTeX 2.9.7400). All graphs, figures
and simulations were created by the author of this work using Maple (2020.2), Inkscape (0.92 – ‘Draw
Freely’), Ipe (7.2.20) and RStudio (1.2.5033 – ‘Orange Blossom’) with R (3.6.2 – ‘Dark and Stormy
Night’).

1.3 ‘Minimal Expected Time in Drawdown’ as a New Objective Function

We start with the following conventions. By the term surplus, we mean the present value of the
accumulated income of the insurance company minus accumulated expenses, referenced to time zero.
We assume that the surplus of the insurer (without reinsurance) is either modelled by a classical risk
model or an arithmetic Brownian motion. In the case of a classical risk model X = (Xt)t≥0, we have

Xt = ν0 + pt−
Nt∑
k=1

Yk , t ≥ 0 , (1.4)

where p is the premium rate, N = (Nt)t≥0 denotes a homogeneous Poisson process with intensity
λ > 0 and (Yk)k∈N is a sequence of positive and independent identically distributed random variables
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which is independent of N . By G we denote the distribution function of Y1 and refer to this function
as the claim (size) distribution. Correspondingly, the arrival times (Tk)k∈N of N are the claim times.
We assume that µ = E(Y1) exists and that it holds p = (1 + η)λµ, where η > 0 is a safety loading.
This corresponds to an expected value principle for the premium calculation. If Y 2

1 is integrable with
µ2 = E(Y 2

1 ), the diffusion approximation to this model (with coinciding first two moments) is the
arithmetic Brownian motion

Xt = ν0 + ηλµ t+
√
λµ2Wt , t ≥ 0 (1.5)

(compare, for example, [Schmidli, 2008, Ch. 2]). Here, W = (Wt)t≥0 denotes a standard Brownian
motion. As we work with these processes separately, we assume in the diffusion case that λ = µ−1 is
fulfilled (which corresponds to a change of the time unit) and write σ =

√
µ2µ−1 > 0 for the volatility

parameter to shorten notations.
In either case, we work on a complete probability space (Ω,F,P) which is large enough to carry the
respective surplus process. To simplify notation, we omit the specifications ‘almost surely’ or ‘with
probability one’ if there is no risk of ambiguity. We assume that the probability space is equipped
with the usual augmentation (Ft)t≥0 of the filtration generated by X. That means, for t ≥ 0, Ft is the
σ-algebra generated by Gt = σ(Xs : s ≤ t) and the P-negligible sets of F and the filtration (Ft)t≥0 is
right-continuous. We note that the paths of X are càdlàg in both cases, such that the surplus process is
progressively measurable. Additionally, we note that both of our basic surplus models have the strong
Markov property with respect to this filtration. For an extensive introduction to stochastic processes
and the probabilistic concepts mentioned up to this point we refer to [Feller, 1971] and [Revuz and
Yor, 1991]. In the following, we use techniques from martingale theory and stochastic analysis. If not
stated otherwise and explicitly referenced, the corresponding fundamental definitions and results are
taken from [Protter, 2005].

1.3.1 Surplus Models with Proportional Reinsurance

Now we introduce reinsurance to our models. We say that a stochastic process B = (Bt)t≥0 with
values in [b0, 1] ⊆ [0, 1] is an (admissible) reinsurance or retention level strategy, if it is adapted to
the underlying filtration and càdlàg (for the classical risk model) or progressively measurable (for
the diffusion model). b0 ∈ [0, 1) denotes a lower bound for the retention level to be defined in each
chapter, separately. We write B for the set of all admissible retention level strategies. We assume
that the reinsurer uses the same premium calculation principle as the first insurer. That is, there
is a parameter θ > 0 representing the safety loading, such that the premium rate of the reinsurer is
given by (1 − b)(1 + θ)λµ. In order for the problem not to be trivial, we assume θ > η which means
that reinsurance is more expensive than first insurance. This assumption ensures that there is a
trade-off between a fast recovery from a large drawdown by keeping insurance premia and controlling
future claim payments. If reinsurance was cheaper than first insurance, the insurer could sell the
full risk to the reinsurance company as a quick, optimal and trivial solution. The controlled surplus
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XB = (XB
t )t≥0 under an admissible strategy B takes the form

XB
t = ν0 +

∫ t

0

[
(1 + η)− (1−Bs)(1 + θ)

]
λµ ds−

Nt∑
k=1

BTk−Yk , t ≥ 0 , (1.6)

for the classical risk model and

XB
t = ν0 +

∫ t

0

[
η − (1−Bs)θ

]
ds+

∫ t

0
Bsσ dWs , t ≥ 0 , (1.7)

for the diffusion model (see, for example, [Grandell, 1991] or [Schmidli, 2017]). For the constant
strategy B with Bt = 1 for all t ≥ 0, these definitions coincide with (1.4) and (1.5) (with our notational
conventions). We note that, by our definition of the set B, all integrals in this representation are well-
defined as either a (pathwise) Stieltjes- or a stochastic Itô integral. In each case, we define the
(controlled) running maximum MB = (MB

t )t≥0 and the (controlled) drawdown ∆B = (∆B
t )t≥0 by

MB
t = max

{
m0, sup

s∈[0,t]
XB
s

}
, ∆B

t = MB
t −XB

t , t ≥ 0 .

For a strategy B, we define the expected time in (critical) drawdown by

vB(x) = Ex
[∫ ∞

0
e−δt1{∆B

t >d}
dt
]
, x ≥ 0 . (1.8)

Here and in the following we use the short notation Ex[ · ] for the conditional expected value E[ · |Y0 =
x], where Y is the stochastic process in question – in this case, ∆B. We refer to the function defined
in Equation (1.8) as the return function of the strategy B. In Chapters 2 and 3, the value function of
our optimisation problem is the minimal expected time in (critical) drawdown

v(x) = inf
B∈B

vB(x) = inf
B∈B

Ex
[∫ ∞

0
e−δt1{∆B

t >d}
dt
]
, x ≥ 0 . (1.9)

We call an admissible strategy B∗ for which the infimum is attained, i.e. v = vB
∗ , an optimal strategy.

In Chapter 4, we define a different (but related) value function. All other conventions also apply to
Chapter 4.

1.3.2 Reflection and the Skorohod Problem

The paths of the surplus process, its running maximum and its drawdown are connected by the
Skorohod problem. The following definition is taken from Chaleyat-Maurel et al. [1980] and was
originally formulated for general càdlàg functions. We adapt this definition for our models, which are
spectrally negative and càdlàg, that is, all jumps of the surplus processes are directed downwards (for
arbitrary strategies B).

Definition 1.1. [Chaleyat-Maurel et al., 1980]

Let y = (yt)t≥0 denote a càdlàg path such that −y is spectrally negative. A pair (c, ε) of càdlàg
paths c = (ct)t≥0 and ε = (εt)t≥0 is a solution to the Skorohod problem for y if ε is non-negative with
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εt = yt + ct for all t ≥ 0 and c is continuous and non-decreasing with c0 = 0 and∫ ∞
0

εs dcs = 0 . (1.10)

Intuitively, solving the Skorohod problem means finding an increasing compensator c for a predefined
path y such that the compensated path y+c stays non-negative. This compensator should be increasing
or constant at any time. Moreover it should be minimal in the following sense: the condition in (1.10)
implies that c can only increase when ε is equal to zero. This ensures that the compensated path has
the same characteristics as the original path whenever it is not on the boundary. Since c ‘pushes’ the
path back into the positive half plane whenever it would normally cross the boundary, the resulting
path ε is also referred to as reflected. The condition that −y is spectrally negative implies that y
is spectrally positive, i.e. only has upward jumps. This ensures that a (minimal) compensator c is
continuous. Existence and uniqueness results for the Skorohod problem and multiple variations thereof
are well known. Theorem 1.2 below is a special case of Theorem 5 by Chaleyat-Maurel et al. [1980],
which follows from part (b) of their proof.

Theorem 1.2. [Chaleyat-Maurel et al., 1980]

If y0 ≥ 0, there exists a unique solution (c, ε) to the Skorohod problem for y. c is given by ct =
max{0, sups∈[0,t](−ys)} and, accordingly, ε is defined by εt = ct + yt for all t ≥ 0. �

Now we associate the Skorohod problem with the running maximum and the drawdown process. We
denote by X = (Xt)t≥0 a spectrally negative stochastic process with càdlàg paths, starting at ν0 ≤ m0,
and by M = (Xt)t≥0 and ∆ = (∆t)t≥0 the processes defined as in (1.1) and (1.2). We denote by y

a specific path t 7→ yt = m0 − Xt(ω) for an ω ∈ Ω. By m0 − ν0 ≥ 0, we conclude y0 ≥ 0. Then,
ct = max{0,−m0 + sups∈[0,t]Xt(ω)} corresponds to Mt(ω) − m0 for all t ≥ 0. This makes ε the
drawdown of the path t 7→ Xt(ω)−m0. As the drawdown, per definition, is invariant to simultaneous
shifts of M and X (for example, by m0) along the vertical axis, ε is equal to the drawdown ∆(ω) of
X(ω). From Theorem 1.2, we therefore derive the following corollary, which characterises the running
maximum as a compensator and the drawdown as a reflected process.

Corollary 1.3. Let X = (Xt)t≥0 denote a spectrally negative stochastic process with càdlàg paths,
starting at ν0 ≤ m0, and let M = (Xt)t≥0 and ∆ = (∆t)t≥0 be defined as in (1.1) and (1.2). For
every ω ∈ Ω, (c̃, ε) = (M(ω),∆(ω)) is the unique pair of càdlàg paths such that ε is non-negative with
εt = c̃t −Xt(ω) for all t ≥ 0 and c̃ is continuous and non-decreasing with c̃0 = m0 and (1.10) with c̃

in place of c. Moreover, we have ε0 = m0 − ν0. �

In particular, this applies to the case in which X is one of our surplus models under an admissible
control, given by (1.6) or (1.7). However, this more general formulation is necessary because we are
going to use the corollary to prove that certain strategies are indeed admissible. By (1.10), the running
maximum process can only increase at times at which the drawdown is equal to zero. This, we will
use in our derivation of boundary conditions for the Hamilton–Jacobi–Bellman equations.
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1.3.3 Divide et Impera: A Dynamic Programming Equation

The target of this section and final step of our introduction is a dynamic programming theorem which
is applicable to both surplus processes. The derivation thereof is also the first step of the analysis
in [Brinker and Schmidli, 2021b and 2022]. As a convention, we cite results taken from [Brinker and
Schmidli, 2021a, 2021b and 2022] by providing, solely, the year key of the publication on the top
right (as in Lemma 1.4, below). Results by other authors are cited with the full bibliography key (as
seen in Theorem 1.2, above). We note that, in general, the ideas of the corresponding proofs in this
monograph coincide with those in the publications. However, in some cases, the proofs (or substeps
of proofs) were omitted in the original articles and are added here.
We start with a few preliminary observations regarding the functions defined in Equations (1.8) and
(1.9).

Lemma 1.4. [2021b,2022]

For arbitrary B ∈ B, the functions vB and v are bounded with values in [0, δ−1], increasing and fulfil
limx→∞ v(x) = limx→∞ v

B(x) = δ−1.

Proof. For an arbitrary B, the indicator function attains values between zero and one. Hence, we have

0 ≤
∫ ∞

0
e−δt1{∆B

t >d}
dt ≤

∫ ∞
0

e−δt dt = 1
δ

and taking expectations yields the lower and upper bounds for vB. Now consider x > y. For a surplus
process XB starting at ν0 = −y, the drawdown process ∆B with ∆B

t = max{0, sups∈[0,t]X
B
s } −XB

t ,
t ≥ 0, starts at y. For x > y, the drawdown ∆̃B with ∆̃B

t = max{0, sups∈[0,t] X̃
B
s }− X̃B

t , t ≥ 0, of X̃B

defined by X̃B
t = XB

t − x+ y, t ≥ 0, starts at x. We write

ϑ0(B) = inf{t ≥ 0 : ∆B
t = 0} = inf

{
t ≥ 0 : XB

t ≥ 0
}
,

ϑ̃0(B) = inf{t ≥ 0 : ∆̃B
t = 0} = inf

{
t ≥ 0 : XB

t ≥ x− y
}

for the respective first arrival at zero and observe ϑ̃0(B) ≥ ϑ0(B). For t < ϑ̃0(B), we have by
sups∈[0,t]X

B
s ≤ x− y and x− y > 0:

∆̃B
t = −XB

t + x− y ≥


sup
s∈[0,t]

XB
s −XB

t , t ≥ ϑ0(B) ,

−XB
t , t < ϑ0(B) ,

 = ∆B
t .

For t ≥ ϑ̃0(B), we have:

∆̃B
t = sup

s∈[0,t]

(
XB
s − x+ y

)
− (XB

t − x+ y) = ∆B
t .

This is illustrated in Figure 1.4. Thus, 1{∆B
t >d}

≤ 1{∆̃B
t >d}

for all t ≥ 0 and we get

vB(y) = Ey
[∫ ∞

0
e−δt1{∆B

t >d}
dt
]
≤ Ex

[∫ ∞
0

e−δt1{∆̃B
t >d}

dt
]

= vB(x) .
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Figure 1.4 Sketch of paths of ∆̃B (dark red) and ∆B (light red).

In particular, vB is increasing. For a drawdown process starting at x > d, the indicator function is
equal to one (at least) up to time ϑd(B) = inf{t ≥ 0 : ∆B

t ≤ d}. This means, we obtain the lower
bound

vB(x) ≥ Ex
[∫ ϑd(B)

0
e−δt dt

]
= δ−1 − δ−1Ex

[
e−δϑd(B)] ≥ δ−1 − δ−1 sup

B∈B
Ex
[
e−δϑd(B)] . (1.11)

for all x > d. As we will see in Chapters 2 and 3, the expected value on the far right is an exponential
function that converges to zero as x→∞. This means, the right hand side converges to δ−1 as x→∞.
By vB(x) ∈ [0, δ−1], we obtain limx→∞ v

B(x) = δ−1. Because B was arbitrary in all scenarios, we
immediately obtain that v is bounded and increasing as well. We observe that the lower bound on the
right hand side of (1.11) is independent of B. Thus, it is a lower bound for v, too, and the convergence
statement can be deduced in the same way. �

There are two possibilities for the initial scenario: the unfavourable state of starting with a critical
drawdown, x > d, and the state of starting with a small drawdown, x ≤ d. Intuitively, in order to
minimise the time spent in the dangerous area, the optimal strategy must force the drawdown process
to re-enter the uncritical area as fast as possible. On the other hand, the process should spend as
much time as possible between 0 and d. For y ≥ 0, we define the times

ϑy(B) = inf{t ≥ 0 : ∆B
t ≤ y} , ϑy(B) = inf{t ≥ 0 : ∆B

t > y} .

As hitting times of Borel sets, these are stopping times, compare for example Theorem I.4.15 of [Revuz
and Yor, 1991] or, for a less technical presentation, Section 1.1.7 of [Karatzas and Shreve, 1998]. Thus,
the time

ϑ(B) = max{ϑd(B), ϑd(B)} (1.12)

of the first ‘switch’ into the other area under strategy B is also a stopping time.
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Theorem 1.5 (Dynamic Programming). [2021b,2022]

The function v fulfils

v(x) =


inf
B∈B

Ex
[
e−δϑ(B)v(∆B

ϑ(B))
]
, x ≤ d ,

δ−1 − (δ−1 − v(d)) · sup
B∈B

Ex
[
e−δϑ(B)] , x > d .

(1.13)

In the proof, we use so-called ‘ε-optimal’ strategies. From the definition of v it follows that for every
x ≥ 0 and ε > 0, there exists a strategy B ∈ B (depending on x and ε) with vB(x) < v(x) + ε. We
refer to this strategy as ε-optimal for x. We follow the approach of [Schmidli, 2008, p. 31] to prove
Theorem 1.5.

Proof of Theorem 1.5. Let B ∈ B denote an arbitrary strategy and let B′ be the strategy B shifted
by ϑ(B) on the set {ϑ(B) <∞} (conditional on Fϑ(B)). We have

vB(x) = Ex
[
1{ϑ(B)<∞}

(∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt+ e−δϑ(B)Ex

[∫ ∞
0

e−δt1{∆B′
ϑ(B)+t>d}

dt
∣∣∣Fϑ(B)

])]
+ Ex

[
1{ϑ(B)=∞}

∫ ∞
0

e−δt1{∆B
t >d}

dt
]

= Ex
[∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt+ e−δϑ(B)vB

′(∆B
ϑ(B))

]
(1.14)

≥ Ex
[∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt+ e−δϑ(B)v

(
∆B
ϑ(B)

)]
,

where we could recombine the expected values on the sets {ϑ(B) <∞} and {ϑ(B) =∞} in the second
equation because vB̂ is bounded for every strategy B̂. Thus, taking the infimum on both sides of the
inequality, we get

v(x) ≥ inf
B∈B

Ex
[∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt+ e−δϑ(B)v

(
∆B
ϑ(B)

)]
. (1.15)

To prove a converse inequality, we consider again B ∈ B. For the drawdown of the diffusion process,
∆B
ϑ(B) = d on the set {ϑ(B) < ∞} follows from the continuity of paths. Since all jumps of the

drawdown of the classical risk model are directed upwards, we obtain the same result for starting

ϑd(B)ϑd(B)

x

x

d d

Figure 1.5 We distinguish the cases of starting below and starting above d.
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points x > d in this case. For an ε-optimal strategy Bε with vB
ε(d) < v(d) + ε, we can consider the

compound strategy B̃ ∈ B which corresponds to B for t < ϑ(B) and to Bε for t ≥ ϑ(B). By ∆B
ϑ(B) = d

in the aforementioned cases, we now have

vB̃
′(∆B

ϑ(B)) < v(∆B
ϑ(B)) + ε (1.16)

on the set {ϑ(B) < ∞}. Here, B̃′ again denotes the shifted strategy. As a slight extension, we (for
now) assume that there is a ‘universally’ ε-optimal strategy B̃′, such that (1.16) is also fulfilled for
the drawdown of a classical risk model starting at x ≤ d. This case is special because, due to the
upward jumps of the drawdown, we do not necessarily have ∆B

ϑ(B) = d. As we prove in Chapter 2,
the existence of such a strategy fulfilling (1.16) follows from the continuity properties of v. Similarly
as above, we get:

v(x) ≤ vB̃(x) = Ex
[∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt+ e−δϑ(B)vB̃

′(∆B
ϑ(B))

]
≤ Ex

[∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt+ e−δϑ(B)v

(
∆B
ϑ(B)

)]
+ ε .

Now, letting ε→ 0, we get

v(x) ≤ Ex
[∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt+ e−δϑ(B)v

(
∆B
ϑ(B)

)]
.

Taking the infimum over all B ∈ B shows, in combination with (1.15), that it holds

v(x) = inf
B∈B

Ex
[∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt+ e−δϑ(B)v

(
∆B
ϑ(B)

)]
. (1.17)

From this equation, we can conclude the assertion. We note that we have ∆B
t ≤ d for all t < ϑ(B) if

∆B
0 = x ≤ d and ∆B

t > d for all t < ϑ(B) if ∆B
0 = x > d. This is illustrated in Figure 1.5. Thus, we

get

∫ ϑ(B)

0
e−δt1{∆B

t >d}
dt =

0 , x ≤ d ,

δ−1(1− e−δϑ(B)) , x > d ,

which, combined with (1.17), yields (1.13). �

Equation (1.17) has the interpretation that an optimal strategy should minimise the time until d is
crossed and position the drawdown in such a way, that the remaining time with critical drawdown is
as small as possible. Additionally, the reappearance of the function v on the right hand side indicates
that an optimal strategy should be composed of an optimal strategy until the first passage through d
and an optimal strategy for the new starting point.

Remark. We note that, up to and including Equation (1.17), the proof did not require the definition of
ϑ(B). That means, for every stopping time for which an admissible strategy fulfilling (1.16) is available,
Equation (1.17) can be derived. In particular, this is the case for all τ(B) = max{ϑy(B), ϑy(B)}, y ≥ 0.
This means, an optimal strategy should have an ‘optimal substructure’. #
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For the split at d, we additionally get the representation given in (1.13). In the case x > d, we
see that (if v(d) is known) the problem corresponds to maximising the Laplace transform of ϑ(B).
y 7→ e−δy is a decreasing function. Thus, this essentially means that we minimise the weighted
time until the drawdown is uncritical. This could be interpreted as a quick recovery. Accordingly,
we refer to this problem as the minimisation of the recovery time. For x ≤ d, one could similarly
interpret the representation as maximising the time until a critical drawdown occurs with a penalty
for the severity. We call this the maximisation of the time to critical drawdown (with a penalty). The
dynamic programming principle implies that these subsolutions can be stringed together. Heuristically
this means, we start by forcing the process to enter the uncritical area as fast as possible, then we
maximise the time in this area, after the exit we again minimise the time until re-entering and so on.
With this intuition in mind, we now move on to model-specific results in the following chapters.
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CHAPTER 2

Minimal Expected Time in Drawdown for the Classical Risk Model

This chapter is based on [Brinker and Schmidli, 2021b] but we also present some results going beyond
the scope of the paper. We consider the setting in which the surplus process without reinsurance is
modelled by a Cramér–Lundberg process. That is, if we define

c(b) = [(1 + η)− (1 + θ)(1− b)] · λµ (2.1)

using the conditions and notation of Section 1.3, the controlled surplus process XB takes the form

XB
t = ν0 +

∫ t

0
c(Bs) ds−

Nt∑
k=1

BTk−Yk , t ≥ 0 .

c is a linear function of the retention level and it holds c(1) > λµ. That means, if the insurer chooses
not to buy reinsurance, the so-called net profit condition is fulfilled: expected income exceeds expected
claim payments. c(b) is increasing in b. In theory, we could allow all retention levels in [0, 1]. However
for b0 = θ−η

1+θ > 0, retention levels b ∈ [0, b0) yield a strictly negative income rate c(b) < 0. We exclude
these values from our consideration to ensure that the expenses for reinsurance do not exceed the
insurer’s premium income for the optimal strategy. However it should be noted that, with retention
level strategies with values in [b0, 1], the net profit condition is not obligatory in our setting.

The target of this chapter is the minimisation of the expected time in drawdown, i.e. the problem posed
in Equation (1.9), for the classical risk model. We proceed as follows. In Section 2.1, we consider a
set of predefined strategies which we refer to as ‘simple switching’ strategies. For this type of strategy,
we obtain explicit representations of the expected time in drawdown in terms of scale functions.
In particular, we derive an integro-differential equation and prove a verification theorem connecting
solutions to the equation with return functions. We consider the example of phase-type distributed
claims, for which the expected time in drawdown is an exponential polynomial. In Section 2.2, we
analyse in detail the optimisation problem. We start by proving a verification theorem for the original
problem. Then, we consider separately the subproblems of large and small initial drawdown (in that
order). In particular, for the case of critical initial drawdown, x > d, we show that the function V

defined by

V (x) = sup
B∈B

Ex
[
e−δϑ(B)] , x > d ,
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is an exponential function. We use this representation to construct a set of Gerber–Shiu type optim-
isation problems

vC(x) = inf
B∈B

Ex
[
e−δϑ(B) ·

(
δ−1 −

(
δ−1 − C

)
· V
(
∆B
ϑ(B)

))]
, x ≤ d , C ∈ [0, δ−1] ,

which contains our original problem for x ≤ d. We work with a Hamilton–Jacobi–Bellman equation
to characterise the solutions and reconnect the strategies to find a solution to the original problem. In
Section 2.3, we define a discrete version of the optimisation problem which can be solved numerically.
We present numerical examples for the cases of small (exponential) claims, large (Pareto distributed)
claims and deterministic claims. In Section 2.4, we discuss our findings.
For technical and notational simplicity, we assume from now on that the distribution function G of Y1

is continuous. The only exception of this assumption is the discrete version of the problem considered
in Section 2.3. Further, we write `f (r) =

∫∞
0 f(t)e−rt dt, r ∈ C, for the Laplace transform of a

function f : [0,∞) → R, provided that this integral exists. For the Laplace transform of Y1 we write
`Y (r) = E(e−rY1).

2.1 Simple Switching Feedback Strategies

In this section, we assume that the insurer defines a fixed retention level for each of the areas, the
critical and the uncritical, and switches the strategy whenever the drawdown exits the current one.
That is, we define a simple switching strategy B by

Bt = b(∆B
t ) , t ≥ 0 , b(x) =

b̌ , x ≤ d ,

b̂ , x > d ,
(2.2)

where b̌ ∈ [b0, 1] is the constant retention level chosen if the current drawdown is uncritical and
b̂ ∈ [b0, 1] is the constant retention level if the current drawdown is large. Figure 2.1 shows an
example. Throughout this section, we consider such a strategy B for a fixed pair (b̌, b̂) ∈ [b0, 1]2.
Because we only work with a single strategy and in order to not overload the notation, we drop the
notational reference to B whenever it is not crucial. That is, we simply write X for the surplus XB,
∆ for the drawdown ∆B, ϑd instead of ϑd(B) and so on. Additionally, we write u for the return vB

under this strategy.

x

d

Figure 2.1 Path of a drawdown process under a simple switching control with b̌ < b̂.
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A simple switching strategy is a primitive form of a feedback strategy, which depends in a measurable
way on the current drawdown. The controlled drawdown process is a piecewise deterministic Markov
process and, thus, the strategy B is admissible. The class of piecewise deterministic Markov processes
(PDMPs) was introduced by Davis [1984 and 1993]. For the sake of concision we will not give an in-
depth introduction to the technical details here. Instead, we explain the construction and properties
of PDMPs for the concrete case of the drawdown process under simple switching controls and, later
on, extend these for optimal controls.

2.1.1 Controlled Drawdown as a PDMP

We assume that c(b̂), c(b̌) > 0 holds (the cases b̌ = b0 and b̂ = b0 can be treated analogously). In order
to directly apply the results of the literature to our setting, we present the following construction in
the notation of [Davis, 1984] which is also used by Rolski et al. [1999, Ch. 11], in a similar form.
Between the jumps, the drawdown process has three different types of deterministic behaviour πc, πu
and π0. By πc we denote the case in which the drawdown is critical, that is, larger than d. In this
case, the drawdown evolves as ∆t = ∆TNt

− c(b̂)t until the next jump occurs or it arrives at d. This
behaviour can be described by the integral curve φπc(t, z) = z− c(b̂)t for z ∈Mπc = (d,∞). If there is
no jump preempting, the drawdown arrives on the boundary d at time t∗(πc, z) = (z − d)/c(b̂), where
we write

t∗(π, z) = sup{t > 0 : φπ(t, z) exists and φπ(t, z) ∈Mπ}

for all z ∈Mπc and π = πc. Further, φπc is the unique solution to the equation

φπ(t, z) = z +
∫ t

0
Hπ(φπ(s, z)) ds , t ≤ t∗(π, z) , (2.3)

for π = πc, where the constant mapping Hπc = −c(b̂) is the associated vector field. Similarly, the
state πu in which the drawdown takes values in Mπu = (0, d) (and is therefore uncritical), can be
described by φπu(t, z) = z − c(b̌)t. Mπu has two points on the boundary, 0 and d, but only 0 can be
reached by an integral curve for starting points z ∈Mπu . In this case, we have t∗(πu, z) = z/c(b̌). The
analogue equation to (2.3) with Hπu = −c(b̌) is also fulfilled in this case. Lastly, we write Mπ0 = {0}
and let φπ0(t, z) = z. That means, the path stays in this point until a jump occurs. In particular,
t∗(π0, 0) =∞ and (2.3) holds for Hπ0 = 0. Now we write E = {(π, z) : π ∈ {π0, πu, πc} , z ∈Mπ} and
denote by B(E) the Borel σ-algebra of E. (E,B(E)) is the state space of the pair (Jt,∆t)t≥0, where
Jt ∈ {π0, πu, πc} is the type of deterministic behaviour at time t ≥ 0. The set Γ = {(πc, d), (πu, 0)}
of points on the regimes’ boundaries which can be reached by integral curves in finite time is called
the active boundary of E. Intuitively, the active boundary contains the points at which the drawdown
process transitions from one state to another without a jump. As the jumps are induced by a Poisson
process, we have a constant jump intensity λ̃ : E → (0,∞) given by λ. Based on the jump size
distribution, we can define an according transition measure Q : (E ∪ Γ)×B(E)→ [0, 1]. This means,
z 7→ Q(z,A) is a measurable function of z ∈ E ∪ Γ for each fixed A ∈ B(E) and A 7→ Q(z,A) is a
probability measure on (E,B(E)) for each z ∈ E (cf. [Davis, 1984]). Writing z +A = {z + a : a ∈ A}

19



for the translated set and Gb(A) = P(bY1 ∈ A), we define

Q((πc, z), (πc, z +A)) = Gb̂(A) , Q((πu, z), (πc, z +A)) = Gb̌(A ∩ (d− z,∞)) ,
Q((πu, z), (πu, z +A)) = Gb̌(A ∩ (0, d− z)) , Q((π0, 0), (πc, A)) = Gb̌(A ∩ (d,∞)) ,
Q((π0, 0), (πu, A)) = Gb̌(A ∩ (0, d))

and, for the elements of Γ,

Q((πc, d), ·) = δ(πu,d) , Q((πu, 0), ·) = δ(π0,0) ,

where δr denotes the Dirac measure at r. With the state space, integral curves, jump intensity
and transition measure, we have characterised the drawdown process as a piecewise deterministic
Markov process. On the other hand, a piecewise deterministic Markov process can be constructed
from these ‘ingredients’. The idea is to define the process in between the jump times, independently
and according to the integral curves. The ‘feedback’ structure (or, equivalently, the semigroup property
φπ(t+s, z) = φπ(t, φπ(s, z)), s, t ∈ [0, t∗(π, z)) of the integral curves, generated by the equations of the
form (2.3), ensures that the deterministic movements depend only on the current state. In particular,
we note that even though the original definition by Davis [1984] requires all Mπ to be open sets,
the definition Mπ0 = {0} does not cause any problems because the corresponding integral curve is
constant. Having constructed ∆ as the position component of a PDMP, we can rebuild the controlled
surplus and its running maximum by defining dMt = c(b̌) dt on the set {∆t = 0}, by uniqueness of
solutions to the Skorohod problem. Then, Xt = −∆t +Mt for all t ≥ 0.
A special case of simple switching is a fully constant strategy with b̌ = b̂. In this case, the drawdown
process corresponds to the M/G/1 Queue described by Davis [1984, Sec. 2.3]. As a generalisation,
one could define other deterministic trajectories, associated to vector fields, such that Equation (2.3)
is fulfilled for all π. Additionally, the original definition by Davis [1984] allows for countably many
states. For the jump mechanism explained above, the result is again a piecewise deterministic Markov
process. In fact, as we prove at the end of Section 2.2, the optimally controlled process is also of this
form.
The following result is a modified version of Theorem 11.1.3 combined with Corollary 11.2.1 from
[Rolski et al., 1999], tailored to our needs. For an absolutely continuous function f : [0,∞)→ R with
density f ′ and b ∈ [b0, 1], we write

Abf(x) = −δf(x)− c(b)f ′(x) + λ

∫ ∞
0

[
f(x+ by)− f(x)

]
dG(y) . (2.4)

In particular, because f is absolutely continuous, it is Lebesgue almost everywhere differentiable. This
means that writing f ′ for the density is reasonable.

Lemma 2.1. [Rolski et al., 1999]

Let b : [0,∞)→ [b0, 1] denote a measurable function, such that ∆B under the feedback control B with
Bt = b(∆B

t ), t ≥ 0, is a piecewise deterministic Markov process. Let f : [0,∞)→ R denote a bounded,
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absolutely continuous function with density f ′. The process

(
e−δtf(∆t)− f(∆0)−

∫ t

0
e−δsf ′(0) dMs −

∫ t

0
e−δsAb(∆s)f(∆s) ds

)
t≥0

(2.5)

is a martingale. �

Remark. To see that (2.5) is indeed the martingale mentioned in Corollary 11.2.1 of [Rolski et al.,
1999], we observe that

∫ t

0
e−δsf ′(0) dMs +

∫ t

0
e−δsAb(∆s)f(∆s) ds =

∫ t

0
e−δsÃf(∆s) ds

with the definition

Ãf(x) = −δf(x)− c(b(x))1{x>0}f
′(x) + λ

∫ ∞
0

[
f(x+ b(x)y)− f(x)

]
dG(y) .

This is because the drift of the piecewise deterministic (drawdown) process vanishes whenever it is at
zero, that is, if the maximum is increasing. Additionally, we have dMt = c(b(0)) dt. #

The generator of the process (t,∆t)t≥0 takes the form Ã when applied to the function h(t, x) =
e−δtf(x). Intuitively, the first part of Ã stems from discounting time, the term with the first derivative
is induced by the deterministic movements and the last part is generated by the jumps. Lemma 2.1
states that h belongs to the extended domain of the generator of (t,∆t)t≥0 – which is sufficient in our
applications. However, it should be noted that the extended domain in fact contains a broader class
of functions, specified in [Rolski et al., 1999, Ch. 11].
Lemma 2.1 plays an important role in our following characterisation of the expected time in drawdown
under simple switching controls.

2.1.2 General Results

For simple switching strategies, we can split the function u at x = d and obtain a similar representation
as in Theorem 1.5:

Lemma 2.2. [2021b]

The function u fulfils

u(x) =

E
x
[
e−δϑdu(∆ϑd)

]
, x ≤ d ,

δ−1 −
(
δ−1 − u(d)

)
· Ex

[
e−δϑd

]
, x > d .

(2.6)

�

This is a direct consequence of Theorem 1.5 with the set B restricted to the single strategy currently
considered. Therefore, we can treat the two cases separately to find the return function. In the case
in which the drawdown already starts in the critical area, the drawdown is bounded away from zero.
That means, ϑd is the passage time of the process Y = (Yt)t≥0 with Yt = x− c(b̂)t+∑Nt

k=1 b̂Yk, t ≥ 0.
There is an explicit expression for this passage time.
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δ

Ψb1 Ψb2 Ψb3

γ(b3)γ(b2)γ(b1)

Figure 2.2 r 7→ Ψb(r) for three different values bi ∈ (b0, 1], i = 1, 2, 3, with b1 > b2 > b3.

Lemma 2.3. [2021b]

For b ≥ b0, we define the function Ψb by Ψb(r) = c(b)r − λ(1 − `Y (br)) for r ≥ 0 and all r < 0 for
which the right hand side exists.

i) For b > b0, there exists a unique non-negative solution r = γ(b) > 0 to Ψb(r) = δ.
ii) For all r > 0, the function b 7→ Ψb(r) defined on [b0, 1] is increasing. The function b 7→ γ(b)

defined on (b0, 1] is decreasing.
iii) We have Ex

[
e−δϑd

]
= e−γ(b̂)(x−d) for x > d and b̂ > b0. For b̂ = b0, it holds Ex

[
e−δϑd

]
= 0 for

x > d.

Proof. i) and ii) follow from properties of the Laplace transform and are illustrated in Figure 2.2.
We provide a detailed proof in the appendix, p. 111. Regarding iii), we consider the case b̂ > b0. A
direct calculation shows that the process (exp(−γ(b̂)Yt−δt))t≥0 is a martingale of expectation e−γ(b̂)x.
Applying the optional stopping theorem, we arrive at

Ex
[
e−γ(b̂)Yt∧ϑd−δ(t∧ϑd)] = e−γ(b̂)x .

We have Yϑd = d on the set {ϑd < ∞} and Yt > d for all t on its complement. Thus, letting t → ∞,
we obtain the assertion by dominated convergence. The case b̂ = b0 follows directly from the fact that
c(b0) = 0, so that Y is constant with upward jumps. This process can never reach the level d which
lies below its starting point. �

Corollary 2.4. [2021b]

For b̂ > b0, the function u takes the form

u(x) = 1
δ
−
(1
δ
− u(d)

)
· e−γ(b̂)(x−d) , x > d . (2.7)

For b̂ = b0, we have u(x) = δ−1 for x > d. �

The case of uncritical initial drawdown is more complicated: ϑd corresponds to a jump time. Addi-
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tionally, the drawdown process changes its behaviour at the arrival at zero. Therefore, if we were to
use the same approach as above, this would lead to two-sided exit times. We tackle these obstacles
one-by-one, starting with the case b̌ = b0 in which we only have to account for the overshoot.

Lemma 2.5. [2021b]

For b̂ > b0 and b̌ = b0, u is the unique solution to the integral equation

f(x) = λ

λ+ δ

∫ (d−x)/b0

0
f(x+ b0y) dG(y)

+ λ

λ+ δ

∫ ∞
(d−x)/b0

[1
δ
−
(1
δ
− f(d)

)
e−γ(b̂)(x+b0y−d)

]
dG(y) , x ≤ d , (2.8)

and it holds

u(d) = λ

δ

1− `Y (b0γ(b̂))
λ[1− `Y (b0γ(b̂))] + δ

. (2.9)

For b̂ = b0, the assertion holds with the interpretation ‘γ(b0) =∞’ and u(d) = λ(λ+ δ)−1δ−1.

Proof. By conditioning on the time T1 of the first claim, we obtain for x ≤ d:

u(x) = Ex
[
e−δT1u(x+ b0Y1)

]
= Ex

[
e−δT1

]
Ex
[
u(x+ b0Y1)

]
= λ

λ+ δ

∫ ∞
0

u(x+ b0y) dG(y) ,

by independence of Y1 and T1. We assume that it holds b̂ > b0. Plugging in (2.7) shows that u|[0,d]

is a solution to Equation (2.8). For any continuous function f : [0, d] → R fulfilling (2.8), a direct
calculation shows

f(d) = λ

λ+ δ
·
[1
δ
−
(1
δ
− f(d)

)
`Y (b0γ(b̂))

]
,

so f(d) has to be equal to the expression on the right hand side of (2.9). Now T defined by

Tf(x) = λ

λ+ δ

∫ (d−x)/b0

0
f(x+ b0y) dG(y) + λ

λ+ δ

∫ ∞
(d−x)/b0

[1
δ
−
(1
δ
− u(d)

)
e−γ(b̂)(x+b0y−d)

]
dG(y)

is a contraction, mapping the space of continuous functions on [0, d] (equipped with the supremum
norm) onto itself. Thus, (2.8) has a unique solution. The assertion for the case of b̂ = b̌ = b0 can be
proved in the same way. �

For the case b̌ = b0, we therefore have fully characterised the expected time in drawdown. In particular,
if we can solve the integral equation, we know the function u. From now on, we assume b̌ > b0. For
this case, we prove a similar result in two steps. The first step is to show that u solves an integro-
differential equation (Lemma 2.6, below). The second step is to use a martingale argument based on
Lemma 2.1, to conclude uniqueness of solutions (Lemma 2.7).

Lemma 2.6. [2021b]

For b̌ > b0, u is Lipschitz continuous and continuously differentiable for x ∈ (0, d). Moreover, u is a
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solution to the integro-differential equation

−δu(x)− c(b̌)u′(x) + λ

∫ ∞
0

[
u(x+ b̌y)− u(x)

]
dG(y) = 0 , x ∈ (0, d) . (2.10)

At x = 0, the equation holds for the derivative from the right and we have u′(0) = 0. At x = d, the
equation holds for the derivative from the left. In particular,

u(0) = λ

λ+ δ

∫ ∞
0

u(b̌y) dG(y) . (2.11)

The techniques used in the proof belong to the standard ‘tool kit’ of the Cramér–Lundberg model
(compare for example [Schmidli, 2017]) and can be applied to its drawdown as well.

Proof of Lemma 2.6. Equation (2.11) follows in the same way as in the proof of Lemma 2.5. For
x ∈ (0, d] we can define h ≤ x/c(b̌), such that ∆ starting at x cannot reach zero before time h.
Heuristically speaking, the strong Markov property allows us to ‘restart’ the process at x− c(b̌)h if no
claim occurs before time h and at x − c(b̌)T1 + b̌Y1 if there is a claim of size Y1 at time T1 < h. By
conditioning on these events, we obtain

u(x) = e−(δ+λ)hu(x− c(b̌)h) +
∫ h

0
λe−(λ+δ)tE[u(x− c(b̌)T1 + b̌Y1)] dt .

Because u is increasing and bounded with values in [0, δ−1], compare Lemma 1.4, we obtain Lipschitz
continuity with Lipschitz constant λ/(δc(b̌)):

0 ≤ u(x)− u(x− c(b̌)h) ≤
∫ h

0

λe−(λ+δ)t

δ
dt ≤ λ

δ
h .

Dividing by h and rearranging the terms, we arrive at

c(b̌)u(x)− u(x− c(b̌)h)
c(b̌)h

= e−(δ+λ)h − 1
h

u(x− c(b̌)h) + 1
h

∫ h

0
λe−(λ+δ)tE[u(x− c(b̌)t+ b̌Y1)] dt . (2.12)

The limit for h → 0 of the right hand side exists. Thus, we obtain differentiability from the left and
that (2.10) is fulfilled for the left derivative u′. Replacing x ∈ [0, d) by x+c(b̌)h, we analogously obtain
the equation for the derivative from the right. u′(0) = 0 follows from plugging (2.11) into (2.10) for
the right hand side derivative. �

In the same way (or by direct calculation, using Corollary 2.4), we can show that u solves

−δu(x)− c(b̂)u′(x) + λ

∫ ∞
0

[
u(x+ b̂y)− u(x)

]
dG(y) = −1 , x > d , (2.13)

which is also fulfilled at x = d for the right derivative. This means that, in general, the derivative of u
from the right differs from the derivative from the left at this point (for example for the choice b̌ = b̂).
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Lemma 2.7 (Verification for Simple Switching Strategies). [2021b]

Let f : [0,∞)→ R be an absolutely continuous, bounded function with density f ′. If f solves

−δf(x)− c(b(x))f ′(x) + λ

∫ ∞
0

[
f(x+ b(x)y)− f(x)

]
dG(y) = −1{x>d} , x ≥ 0 , (2.14)

for b(x) = b̌1{x∈[0,d]} + b̂1{x>d} and fulfils the initial condition given in Equation (2.11), then it holds
f(x) = u(x) for all x ≥ 0.

Proof. In the notation of Lemma 2.1, Equation (2.14) is equivalent to Ab(x)f(x) = −1{x>d}, x ≥ 0.
It follows from the equation that f ′ is continuous in an environment [0, ε), ε > 0, of zero. Thus, the
initial condition implies that either b̌ = b0 (i.e. the running maximum is constant) or f ′(0) = 0 hold.
In either case, the integral with respect to M in (2.5) vanishes and, thus, the process

(
e−δtf(∆t)− f(∆0) +

∫ t

0
e−δs1{∆s>d} ds

)
t≥0

is a martingale with mean zero. Building expectations, we find

f(x) = Ex
[
e−δtf(∆t)

]
+ Ex

[∫ t

0
e−δs1{∆s>d} ds

]
.

So, letting t→∞, we obtain the desired result by bounded and monotone convergence. �

With Lemmata 2.6 and 2.7, we have now characterised u as the unique bounded solution to (2.14)
and (2.11). Next, we are going to derive techniques to solve this equation, depending on the claim
distribution.

2.1.3 Explicit Return Functions

In this section, we consider two ways of calculating explicit solutions for claim distributions which
allow them.

A Naive Approach and Algorithmic Solutions

We assume that the claim distribution is a phase-type distribution. This means, the distribution
function G has a density g of the form g(y) = aeQyq1{y>0} fulfilling the following conditions. There is
a continuous time Markov chain with transient states {1, . . . , n} and one absorbing state t, such that Q
is the n×n-submatrix of the intensity matrix which belongs to the transient states. a is a non-negative,
n-dimensional row vector with ∑n

k=1 ak = 1. q is the product of −Q and the n-dimensional, all-ones
column vector 1. A survey of phase-type distributions and their applications in risk theory is found
in [Bladt, 2005]. Easy examples of phase-type distributions are (mixed) exponential distributions and
convolutions thereof.
For simplicity, we consider the constant strategy (b̌, b̂) = (1, 1) and write c = c(1) and γ = γ(1) for
the positive solution to Ψ1(γ) = cγ−λ(1− `Y (γ)) = δ. The general case could be treated in the same
way, as we will see in the next section.
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Example 2.8 (Exponential Distribution). If claims are exponentially distributed with parameter α > 0,
we have `Y (r) = α(α+ r)−1 for r > −α and therefore

γ = δ + λ− αc
2c +

√√√√(δ + λ− αc
2c

)2
+ δα

c
.

For x ∈ (0, d), (2.14) becomes

0 = cu′(x) + (δ + λ)u(x)−λαeαx
∫ ∞
x

e−αyu(y) dy . (2.15)

u and the integral term are continuously differentiable on (0, d), so u′ is differentiable on this interval,
as well. We differentiate with respect to x and derive a second order differential equation:

cu′′(x) + (δ + λ)u′(x) + λαu(x) = α
(
λαeαx

∫ ∞
x

e−αyu(y) dy
)

= cαu′(x) + α(δ + λ)u(x) .

Thus, it should hold cu′′(x) + (δ+λ−αc)u′(x)−αδu(x) = 0 and our candidate solution is of the form

f(x) = C1er1x + C2e−γx , r1 = γ − δ + λ− αc
c

.

The initial condition u′(0) = 0 = f ′(0) implies C2 = r1C1/γ. To calculate C1 in this case, we plug the
function f into the integro-differential equation, which yields

erxC1
(
cr1 + (δ + λ) + λα

r1 − α

)
+ e−γxC1

r1
γ

(
−cγ + (δ + λ)− λα

γ + α

)
+ eαx

(
−C1λαe(r1−α)d

( 1
r1 − α

+ 1
γ + α

)
− λγ

δ(γ + α)e−αd
)

= 0

for x ∈ (0, d]. The first and second pair of brackets are zero by definition of r1 and γ. Since the third
term must be equal to zero as well, we conclude

C1 = γ

r1 + γ

α− r1
α

e−r1d
δ

, C2 = r1
r1 + γ

α− r1
α

e−r1d
δ

.

We see here that the integro-differential equation holds for all x ∈ [0, d], although the requirement that
it is fulfilled at a single point (for example on the boundary x = d) already determines C1. Lemma 2.7
verifies that f , extended by f(x) = δ−1 − (δ−1 − f(d))e−γ(x−d) for x > d, is the expected time with
critical drawdown for exponential claims. >

The idea of differentiating to derive an ordinary differential equation can be extended to calculate the
expected time in drawdown for phase-type distributed claims. For x ∈ (0, d), we can rewrite (2.14) by
linearity of the integral:

cu′(x) + (δ + λ)u(x)− λ
n∑
k=1

ak jk = 0 , (2.16)
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where the vector j is defined by jk =
∫∞
x u(y)(eQ(y−x)q)k dy, k = 1, . . . , n. Our goal is again, as it was

done in the example, to replace the integral terms with linear combinations of derivatives of u. With
the definition

b0 = c

λ
u′(x) + δ + λ

λ
u(x) ,

(2.16) reads aj = b0. Assuming that u is p + 1 times continuously differentiable with lth derivative
u(l), differentiation of (2.16) yields p additional equations of the form

cu(l+1)(x) + (δ + λ)u(l)(x) + λ
l−1∑
k=0

u(k)(x) a(−Q)l−1−kq − λ
n∑
k=1

(a(−Q)l)k jk = 0 ,

l = 1, . . . , p. These can be rewritten as (a(−Q)l)j = bl, where

bl = c

λ
u(l+1)(x) + δ + λ

λ
u(l)(x) +

l−1∑
k=0

u(k)(x) a(−Q)l−1−kq , l = 1, . . . , p .

Differentiating n times gives n additional equations which form the linear equation system (a(−Q)l)j =
bl, l = 1, . . . , n. Neither a nor Q depend on x, so formally solving for j results in a representation of
jk as linear combination of u and its derivatives for all k = 1, . . . , n. Plugging this solution into the
original equation aj = b0 yields coefficients dl, l = 0, . . . , n+ 1, and an ordinary differential equation
of the form ∑n+1

l=0 dlu(l)(x) = 0. The general solution to this type of equation is a linear combination
of exponential functions multiplied with powers of x. Plugging in the initial conditions, we thus obtain

u(x) =
k∑
i=0

mi∑
m=1

Cm,i x
m−1erix , (2.17)

where r0 = 0 and every ri ∈ C, i > 0, is a solution to ∑n+1
l=0 dlrl = 0 of respective algebraic multiplicity

mi and for suitable constants Cm,i ∈ R, m = 1, . . . ,mi, i = 0, . . . , k. In numerical examples, this
‘algorithmic’ method works especially well for sparse matrices. These are typical for mixtures of
exponential or Erlang distributions. However, for more complicated intensity matrices, which appear,
for example, in the context of phase-type approximations to other distributions, the calculation of
high powers of Q is very inefficient. Moreover, the method strongly relies on the properties of the
exponential function, so we cannot hope to extend it to a broader class of claim distributions. We
therefore deal with a more versatile approach in the next section.

Solutions via Laplace Transforms

We consider an arbitrary claim distribution, fulfilling the conditions formulated at the beginning of this
chapter, and strategies with (b̌, b̂) ∈ [b0, 1]× (b0, 1]. The case b̂ = b0 can be treated analogously, so we
just state the corresponding results at the end. We define the function w on [0, d] by w(x) = u(d−x).
We know that u takes the form given in (2.7) above d. By w(0) = u(d), we obtain an integro-differential
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equation for w:

0 = c(b̌)w′(x)− (δ + λ)w(x) + λ

∫ x/b̌

0
w(x− b̌y) dG(y)

+ λ

∫ ∞
x/b̌

[1
δ

+
(1
δ
− w(0)

)
· e−γ(b̂)(b̌y−x)

]
dG(y) .

We extend the function w from [0, d] to [0,∞) through the equation. We note that this does not
interfere with the expected time in drawdown because u(x) is only considered for positive x. As a
continuous and bounded function, w possesses a unique Laplace transform `w. Multiplying all terms
with e−tx for t ∈ (0,∞) \ {γ(b̂)} and integrating over (0,∞), we obtain an equation for `w:

0 = c(b̌)(t`w(t)− w(0))− (δ + λ)`w(t) + λ`w(t)`Y (tb̌)

+ λ
(1− `Y (tb̌)

δt
−
(1
δ
− w(0)

)`Y (tb̌)− `Y (γ(b̂)b̌)
γ(b̂)− t

)
. (2.18)

The appendix, p. 111, can be consulted for details on the derivation of this equation. Solving (2.18)
for `w and using the definition of Ψb̌, we find

`w(t) = 1
t

(1
δ

+ 1
Ψb̌(t)− δ

)
−
(
δ−1 − w(0)

)
t− γ(b̂)

(
1−

Ψb̌(γ(b̂))− δ
Ψb̌(t)− δ

)
(2.19)

for all t /∈ {γ(b̂), γ(b̌)} if b̌ > b0 and, else, for all t /∈ {γ(b̂)}. This result enables us to write down w

in terms of the the inverse Laplace transform of t 7→ 1
Ψb̌(t)−δ

, i.e. the so-called scale function W
(δ)
b̌

,
defined by ∫ ∞

0
e−txW (δ)

b̌
(x) dx = 1

Ψb̌(t)− δ
, t > sup{r ≥ 0 : Ψb̌(r) = δ} ,

(see, for example, [Hubalek and Kyprianou, 2010] or [Kuznetsov et al., 2012]). In particular, the
condition on t is interpreted as ‘t > 0’ for b̌ = b0 and equivalent to ‘t > γ(b̌)’ for b̌ > b0. We arrive at

w(x) = 1
δ

+
∫ x

0
W

(δ)
b̌

(y) dy

− eγ(b̂)x
(1
δ
− w(0)

)(
1− (Ψb̌(γ(b̂))− δ)

∫ x

0
e−γ(b̂)yW

(δ)
b̌

(y) dy
)
.

Now we can use the definition u(x) = w(d−x) and the initial condition u′(0) = 0 to find an expression
for u. That means, we have just executed the proof of the following result.

Theorem 2.9. [2021b]

For x ∈ [0, d], the expected time in drawdown under the strategy (b̌, b̂) with b̂ > b0 is given by

u(x) = 1
δ

+
∫ d−x

0
W

(δ)
b̌

(y) dy

−
(1
δ
− u(d)

)(
1− (Ψb̌(γ(b̂))− δ)

∫ d−x

0
eγ(b̂)(d−x−y)W

(δ)
b̌

(y) dy
)
, (2.20)

28



with

u(d) = 1
δ
−

W
(δ)
b̌

(d)

γ(b̂)eγ(b̂)d(1− (Ψb̌(γ(b̂))− δ)
∫ d

0 e−γ(b̂)yW
(δ)
b̌

(y) dy
)
− (Ψb̌(γ(b̂))− δ)W (δ)

b̌
(d)

.

For b̂ = b0, it holds

u(x) = 1
δ

+
∫ d−x

0
W

(δ)
b̌

(y) dy .
�

In particular, for constant strategies with b̌ = b̂ (and, therefore, Ψb̌(γ(b̂)) = δ), the formulae take a
simpler form because the last bracket on the right hand side of (2.20) is equal to one and the numerator
of the second fraction in the representation of u(d) boils down to γ(b̂)eγ(b̂)d.
Even though we have derived an appealing and (at least for constant strategies) condensed expression
for the function u, the Laplace approach relocates the problem rather than solving it: now we have
to know the scale function. However, let us consider one more time the (large) class of phase-type
distributions. For this type of claim distribution, t 7→ Ψb̌(t)− δ is a rational function.

Example 2.10 (Revisiting Phase-type Distributions). The Laplace transform of a phase-type distribu-
tion with density g(y) = aeQyq1{y>0} takes the form

`Y (r) = −a(Q− rI(n))−1q = aA(r)q
(−1)nχQ(r) ,

where I(n) denotes the n-dimensional identity matrix. We write, on the far right, the inverse of
Q− rI(n) as the adjugate A(r) of this matrix divided by its determinant (−1)nχQ(r) = det(rIn −Q).
Here, χQ(r) = det(rIn−Q) is the characteristic polynomial of Q, which is of order n. A(r)

ij is defined
as the (i, j)-minor of Q − rI(n). Thus, we obtain again a polynomial of the variable r (maximally of
order n− 1). So, the function in question

1
Ψb̌(t)− δ

= χQ(b̌t)
c(b̌)tχQ(b̌t)− (λ+ δ)χQ(b̌t) + (−1)nλ(aA(b̌t)q)

=
k∑
i=1

mi∑
m=1

C̃i,m
(ri + t)m

is a proper rational function over the real numbers. That means, we can use partial fraction decom-
position to find constants C̃i,k such that the second equation is fulfilled. Here, every −ri ∈ C is a root
of multiplicity mi of the denominator. In [Egami and Yamazaki, 2014] and [Kuznetsov et al., 2012],
one finds explicit expressions for the constants C̃i,k. The corresponding scale function is

W
(δ)
b̌

(x) =
k∑
i=1

mi∑
m=1

C̃i,m
(m− 1)!x

m−1e−rix , x ≥ 0 .

Hence, by Theorem 2.9, we conclude that the expected time in drawdown for phase-type distributed
claims under general simple switching strategies is also of the form given in (2.17) for x ∈ [0, d] and
suitable constants Ci,m. >
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As we will see next, one possibility to obtain a solution to the integro-differential equation for a general
(positive and absolutely continuous) claim distribution is to use an approximation. A pointwise
convergent approximating sequence for a given claim distribution can be chosen from the class of
phase-type distributions (compare, for example, [Asmussen et al., 1996] or [Asmussen and Albrecher,
2010, Thm. A.5.14]). The obvious advantage of this method is that the approximate expected time
in drawdown takes the simple form of an exponential polynomial. The following lemma applies to
general approximating sequences and simple switching strategies with b̌, b̂ ∈ [b0, 1].

Lemma 2.11. [2021b]

Let (G(n))n∈N be a sequence of absolutely continuous distribution functions, concentrated on (0,∞)
with limn→∞G

(n)(x) = G(x) for every x ∈ (0,∞). Denote by u(n) the expected time in drawdown
under the strategy (b̌, b̂) with G(n)-distributed claims. If

i) b̂ = b0, or
ii) b̌ = b̂ ∈ (b0, 1], or
iii) (W δ(n)

b̌
)n∈N converges with respect to the uniform norm on [0, d],

we have limn→∞ u
(n)(x) = u(x) for all x ≥ 0.

The proof is based on our representation of u by scale functions and the extended continuity the-
orem for Laplace transforms found in [Feller, 1971]. The distinguishment of i)–iii) is motivated by
the different levels of complexity of the Laplace transform and u(d). The interested reader finds a
detailed proof in the appendix, p. 112. We acknowledge that the conditions stated are not exhaustive:
depending on the approximating sequence there could still be convergence of the expected time with
critical drawdown if neither i), ii) nor iii) are fulfilled. Moreover, it should be noted that in a numer-
ical procedure, the calculation of an approximating sequence can be time-consuming with significant
memory requirement. In addition, the calculation of the u(n) via Laplace transforms involves root-
finding, which can cause numerical inaccuracies. We present an alternative method in Section 2.3, in
which we consider numerical examples for simple switching strategies. In particular, we compare the
performance of these strategies to the performance of optimal strategies. We examine the latter in
the following section.

2.2 Solution to the Optimisation Problem

We now turn to the optimisation problem given in Equation (1.17) and start with the following general
observation.

Lemma 2.12. [2021b]

The minimal expected time with critical drawdown v is Lipschitz continuous with

|v(x)− v(y)| ≤ λ+ δ

δc(1) |x− y| , x, y ≥ 0 .

In particular, v is absolutely continuous and differentiable almost everywhere.

Proof. We consider 0 ≤ y < x and define h = (x − y)/c(1). Because −c(1) is the maximal possible
downward drift, this means that the drawdown process starting at x cannot reach y before time h. We
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choose ε > 0 and denote by Bε the ε-optimal strategy with vBε(y) < v(y) + ε. We define the strategy
B by Bt = 1{T1∧t<h}+Bε

t−h1{T1∧t≥h}. This corresponds to the strategy of ‘no reinsurance’, which we
denote by 1, until time h ∧ T1. If a claim occurs before h, that is T1 < h, this strategy is kept also
after time h. If no claim occurs, the drawdown process arrives at y at time h and then the strategy
switches to the ε-optimal strategy for the new initial capital. The return of this strategy fulfils:

vB(x) = Ex
[(∫ T1

0
e−δt1{∆1

t>d} dt
)
· 1{T1<h} + e−δT1v1(∆1

T1) · 1{T1<h}
]

+ Ex
[(∫ h

0
e−δt1{∆1

t>d} dt
)
· 1{T1≥h} + e−δhvBε(y) · 1{T1≥h}

]
≤ Ex

[1− e−δT1

δ
· 1{T1<h} + e−δT1v1(∆1

T1) · 1{T1<h}
]

+ Ex
[1− e−δh

δ
· 1{T1≥h} + e−δhvBε(y) · 1{T1≥h}

]
.

Evaluating the terms on the right hand side and using that v1 is bounded from above by δ−1, we find

vB(x) ≤ δ−1[1− e−λh + (1− e−δh)e−λh] + e−λhe−δhvBε(y)
= δ−1(1− e−(δ+λ)h)+ e−(δ+λ)hvB

ε(y) .

This means that we have:

v(x)− v(y) ≤ vB(x)− vBε(y) + ε ≤
(
δ−1 − vBε(y)

)(
1− e−(δ+λ)h)+ ε

≤ δ−1(1− e−(δ+λ)h)+ ε ≤ (λ+ δ)h
δ

+ ε = λ+ δ

δc(1) (x− y) + ε .

Because the left hand side is independent of ε, we can let ε→ 0. Because v is increasing by Lemma 1.4,
Lipschitz continuity follows. �

We recall that in the proof of the dynamic programming principle, Theorem 1.5, we assumed that
there is a ‘universally’ ε-optimal strategy. With Lemma 2.12, we can now rigorously prove existence
of such strategies.

Lemma 2.13. [2021b]

For every ε > 0, a set of strategies Bε(x) ∈ B can be chosen in a measurable way such that vBε(x)(x) <
v(x) + ε for every x ≥ 0.

Proof. As we have just seen, v is Lipschitz continuous and therefore uniformly continuous. That is,
there exists n ∈ N, such that |v(x)− v(y)| < ε/2 holds for all x, y ≥ 0 with |x− y| < n−1. We define
a sequence (xk)k∈N0 of grid points given by xk = kn−1. For each k, there exists a strategy Bε,k ∈ B

with vBε,k(xk) < v(xk) + ε/2. For every k ≥ 1, we define Bε(x) = Bε,k for all x ∈ (xk−1, xk]. Because
v is increasing, we have

vB
ε(x)(x) ≤ vBε,k(xk) < v(x) + v(xk)− v(x) + ε

2 < v(x) + ε

and the assertion follows. �
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The dynamic programming principle implies that the optimisation problem can be split into two parts.
Before we deal with the solutions to the subproblems, we show that they can be reconnected by the
Hamilton–Jacobi–Bellman equation

inf
b∈[b0,1]

{
− δf(x)− c(b)f ′(x) + λ

∫ ∞
0

[f(x+ by)− f(x)] dG(y)
}

= −1{x>d} . (2.21)

In particular, we start by showing that if a solution to the equation can be obtained, then this solution
corresponds to v (provided that it is bounded, increasing and fulfils an according initial condition at
zero). This could be interpreted as uniqueness of solutions to the equation. After that, we prove
existence by finding the subsolutions and proving that their combination solves the Hamilton–Jacobi–
Bellman equation.

2.2.1 Uniqueness via Associated Martingales

For an absolutely continuous and bounded function f : [0,∞) → R with density f ′ and b ∈ [b0, 1],
we define Abf(x) as in Equation (2.4). Then, the Hamilton–Jacobi–Bellman equation takes the form
infb∈[b0,1] A

bf(x) = −1{x>d}. We observe that b 7→ Abf(x) is continuous. This follows, for example,
by Theorem IV.5.6 of [Elstrodt, 2011]. So, as [b0, 1] is a compact interval, there exists a function
b∗(x) : [0,∞) → [b0, 1] with Ab∗(x)f(x) = infb∈[b0,1] A

bf(x) for a given bounded function f with
density f ′. An important step of showing uniqueness is to connect this pointwise minimiser (i.e. the
‘arg inf’) to a feedback strategy.

Proposition 2.14. [2021b]

Let f : [0,∞)→ R be a bounded, absolutely continuous and increasing solution to (2.21) with density
f ′. We denote by b∗ : [0,∞)→ [b0, 1] the pointwise minimiser. f is strictly increasing and there exists
a measurable version of b∗, such that the drawdown ∆∗ under the corresponding feedback strategy B∗

with B∗t = b∗(∆∗t ), t ≥ 0, is a piecewise deterministic Markov process and, with b = b∗, the process
defined in (2.5) is a martingale.

Proof. That the pointwise minimiser can be chosen in a measurable way is a direct consequence of
Theorem 7.4 by Wagner [1977]. Because f is increasing, we can assume that its density is non-negative.
Let us assume that f is not strictly increasing. Then there are at least two points a1 < ā1 such that
f(a1) = f(ā1). This means, we have f ′(x) = 0 for all x ∈ (a1, ā1). By (2.21), the unique minimiser is
b∗(x) = b0 for all x ∈ (a1, ā1). In particular, d /∈ (a1, ā1) because f ′ must have a jump at d. Then, it
follows that ∫ ∞

0
f(x+ b0y) dG(y) =

∫ ∞
0

f(ā1 + b0y) dG(y)

for all x ∈ (a1, ā1), such that f(x + b0y) = f(ā1 + b0y) at all points of increase of G. This implies
ā1 =∞, which is a contradiction to f solving Equation (2.21). By the same argument, there can only
be isolated points x with b∗(x) = b0. Next, we prove existence of the controlled process as a piecewise
deterministic Markov process. To this purpose, we first identify the set on which the deterministic
paths are constant (i.e. {x : b∗(x) = b0}). We start with initial values x ∈ [0, d]. We note that it
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τz(a2)

ā2a2 z

Figure 2.3 Left: Sketch of the function t 7→ φπ1(t, z) (solid line). Right: Sketch of the corresponding
function x 7→ c(b∗(x)) (solid line).

follows from the Hamilton–Jacobi–Bellman equation that H0(x) with

H0(x) = −(δ + λ)f(x) + λ

∫ ∞
0

f(x+ b0y) dG(y)

is non-negative for all x ∈ [0, d]. A necessary condition for b∗(x) = b0 is H0(x) = 0. By continuity
of f , H0 is continuous. Therefore, the set {x : H0(x) = 0} is measurable. This means that it is no
loss of generality to choose b∗(x) = b0 for all x ∈ {x : H0(x) = 0}, so that b∗(x) = b0 is equivalent to
H0(x) = 0. Next, we observe that for all x1 ∈ [0, d) with H0(x1) > 0, there exists an open interval
Ix1 = (a2, ā2) with H0(x) > 0 for all x ∈ Ix1 . In particular, b∗(x) > b0 for all x ∈ Ix1 (that means,
there are no isolated points with b∗(x) > b0). For each x1, Ix1 can be chosen maximally such that
H0(a2) = 0 or a2 = 0 is fulfilled. In case H0(d) > 0, we analogously find a half-open interval (a2, d].
Now, similarly as in the beginning of this chapter, the controlled process exists for all starting points
z with b∗(z) = b0 up to the next jump time. In the notation of Subsection 2.1.1, we could define this
as the state π0 with Mπ0 = {x ∈ [0, d] : H0(x) = 0}. For z ∈Mπ1 = {x ∈ [0, d] : H0(x) > 0}, we have
b∗(z) > b0 and there is a maximal interval Iz = (a2, ā2) as defined above such that the function

τz(u) =
∫ u

z

1
−c(b∗(y)) dy , u ∈ Iz ,

fulfils τz(z) = 0 and is absolutely continuous with a strictly negative density. Therefore, this function
possesses a unique, absolutely continuous and decreasing inverse ψz : (τz(ā2), τz(a2)) → Iz. In par-
ticular, ψz(0) = z, limt→τz(a2) ψz(t) = a2 and ψz(t) is defined for t ∈ [0, τz(a2)), i.e. up to the first
time that it reaches the next point a2 with b∗(a2) = b0. Figure 2.3 shows, on the left hand side, an
example of a function constructed in this way for a given x 7→ b∗(x) (small graph on the right hand
side). The solid line, extended by the black dashed line, corresponds to ψz(t) with t ∈ (τz(ā2), τz(a2))
in this figure. By differentiating ψz, we see that its density is given by ψ′z(t) = −c(b∗(ψz(t))). Writing
φπ1(t, z) = ψz(t), we find that the path of the controlled drawdown process starting from z is therefore
uniquely defined by

φπ1(t, z) = z −
∫ t

0
c(b∗(φπ1(s, z))) ds
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up until the first jump time or until the boundary a2 is reached, that is, for t ∈ [0, t∗(π1, z)] with
t∗(π1, z) = τz(a2). This coincides with (2.3). The cases of z > d with H0(z) = −1 and H0(z) > −1
can be treated in the same way. In particular, the process under the feedback control exists. Then,
because b∗ is measurable and the associated deterministic paths are decreasing, B∗ is an element of
B. The assertion follows by Lemma 2.1. �

Remark. If one has obtained a solution f to the Hamilton–Jacobi–Bellman equation, it is possible
to derive additional results. Firstly, on every interval (a, a) with b∗(x) > b0 + ε for all x ∈ (a, a) for
some ε > 0, we obtain the representation

f ′(x) = inf
β∈[b0+ε,1]

1{x>d} + λ
∫∞
0 f(x+ βy) dG(y)− (δ + λ)f(x)

c(β) .

Because the expression to be minimised is continuous in (β, x) ∈ [b0 + ε, 1] × [0, d) and (β, x) ∈
[b0 + ε, 1] × (d,∞) and [b0 + ε, 1] is compact, f ′(x) is continuous for x ∈ (a, a) if (a, a) ⊂ [0, d] or
(a, a) ⊂ (d,∞). This holds for all ε > 0, so that we obtain the same statement for all intervals
(a, a) ⊂ [0, d] or (a, a) ⊂ (d,∞) with b∗(x) > b0 for all x ∈ (a, a). If, in an application, additionally
the pointwise minimiser is unique on (a, a), one can conclude from the continuity of f ′ that b∗ is
also continuous on this interval. However, we note that Proposition 2.14 does not require a unique
minimiser. #

Our next step is to compare these feedback strategies to general admissible strategies. With Lemma 2.1
and 2.7, we have already seen a method to connect return functions to certain strategies by using
martingales. However, the corresponding result relied on the properties of piecewise deterministic
Markov processes and, in particular, the feedback structure of the strategy. For a general control
process B ∈ B, this is not possible. Therefore, we have to use a different result. The following Lemma
applies to arbitrary admissible controls.

Lemma 2.15. Let f : [0,∞)→ R be a bounded, absolutely continuous and increasing solution to (2.21)
with density f ′. For every strategy B ∈ B, the process

(
e−δtf(∆B

t )− f(∆B
0 )−

∫ t

0
e−δsf ′(0) dMB

s −
∫ t

0
e−δsABsf(∆B

s ) ds
)
t≥0

is a martingale.

This Lemma is a consequence of the martingale representation theorem in [Jacobsen, 2006, Thm. 4.6.1].
Details are found in the appendix, p. 112. In particular, Lemma 2.15 enables us to prove the following
result.

Theorem 2.16 (Verification for the Minimal Expected Time in Drawdown). [2021b]

Let f : [0,∞)→ R be a bounded, absolutely continuous and increasing solution to (2.21) with density
f ′ and denote by b∗ the pointwise minimiser, measurably chosen as in Proposition 2.14. If either
b∗(0) = b0 or f ′(0) = 0, we have f(x) = vB

∗(x) = v(x) for all x ≥ 0. That is, f is the minimal
expected time with critical drawdown and the associated feedback strategy B∗ is an optimal strategy.
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Proof. Because f solves (2.21), we have Abf(x) ≥ −1{x>d} for all x ≥ 0 and b ∈ [b0, 1]. Let B ∈ B be
an arbitrary admissible strategy. By f ′(0) ≥ 0, we have

∫ t

0
e−δsf ′(0) dMB

s +
∫ t

0
e−δsABsf(∆B

s ) ds ≥ −
∫ t

0
e−δs1{∆B

s >d} ds (2.22)

for all t ≥ 0. Hence, Lemma 2.15 implies

f(x) ≤ Ex
[
e−δtf(∆B

t )
]

+ Ex
[∫ t

0
e−δs1{∆B

s >d} ds
]
. (2.23)

The first term goes to zero, by boundedness of f , as t → ∞. The second term converges to vB(x)
by monotone convergence. Therefore, f(x) ≤ v(x). By Proposition 2.14, the drawdown ∆∗ under
control B∗ is a piecewise deterministic Markov process. Similarly as in the proof of Theorem 4.6, the
initial conditions imply that either, the running maximum of the surplus following this strategy is kept
constant, or, that f ′(0) = 0. Thus, the integral with respect to the running maximum is equal to zero
in both cases. Since additionally Ab∗(x)f(x) = −1{x>d} is fulfilled, repeating the above argument for
the strategy B∗ yields equality in (2.22) and (2.23). Taking the limit t → ∞ proves f(x) = vB

∗(x).
Because B∗ is an admissible strategy with vB∗(x) ≤ v(x), we conclude optimality of this strategy, that
is, vB∗(x) = v(x). �

Our goal for the rest of this section is to prove that there is, indeed, a function which solves the
equation.

2.2.2 Direct Approach to Minimising the Recovery Time

We denote by V : (d,∞) → [0, 1] the maximal Laplace transform of the time until the drawdown is
uncritical, that is,

V (x) = sup
B∈B

Ex
[
e−δϑ(B)] , x > d . (2.24)

By the dynamic programming principle, the ‘upper part’ of our original problem is equivalent to
solving this subproblem if v(d) is known. We note that the set B in (2.24) is the same set of strategies
we consider for the expected time with critical drawdown; strategies which coincide until the first
passage of d can be identified with one another. We derive a candidate solution by the following
heuristics. With our verification theorem in mind, we expect that the optimal strategy is of feedback
form. For a starting point x, this strategy influences drift and claim sizes such that the process travels
as fast as possible from x to d. Intuitively, it can therefore only depend on the length x − d of the
interval. In order to reach d, the process has to pass all levels y ∈ (d, x). For a fixed y, the optimal
strategy for initial drawdown x must be a composition of the strategy with the earliest possible arrival
at y (quickly decreasing by x − y) and the respective optimal strategy for the new starting point y
(quickly decreasing by y−d). This indicates that the function V should have an exponential structure:
V (x) = V (d + x − y)V (y) for y ∈ (d, x). Additionally, if we split the interval into 2n parts of equal
length, we observe that the problem corresponds to V (d + (x − d)2−n) in each of the subintervals.
This holds for arbitrary n ∈ N, so that the optimal strategy has to be constant. Thus we can use the
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results obtained for simple switching strategies, in particular, Lemma 2.3. In the following, we write
again γ = γ(1) for the positive solution to Ψ1(γ) = δ.

Proposition 2.17. [2021b]

We have V (x) = e−γ(x−d) for x > d and a strategy which is constant and equal to 1 up to the first
passage through d is optimal. The expected time in critical drawdown fulfils

v(x) = 1
δ
−
(1
δ
− v(d)

)
· e−γ(x−d) , x > d ,

and infb∈[0,1] A
bv(x) = −1 with the pointwise optimiser b∗(x) = 1 for all x > d.

Proof. By the above heuristics, we are looking for a strategy B which is constant for t < ϑd(B). We
can exclude the strategy equal to b0, because the drawdown will never enter the uncritical area under
this strategy. We know, by Lemma 2.3, that a strategy B with Bt = b > b0 for t < ϑd(B) fulfils
Ex
[
e−δϑd(B)] = e−γ(b)(x−d) for x > d. By Lemma 2.3 ii), γ(b) is minimal for b = 1, so that e−γ(b)(x−d)

is maximised for b = 1. Thus, we expect that f(x) = e−γ(x−d) corresponds to V (x) for x > d. This
function fulfils, for all b ∈ [b0, 1],

Abf(x) = −(δ −Ψb(γ))e−γ(x−d) ≤ 0 , x > d , (2.25)

because b 7→ Ψb(γ) is increasing in b and Ψ1(γ) = δ. For b = 1, equality holds. By Lemma 2.15 and
the optional stopping theorem, we get that

(
e−δ(t∧ϑd(B))f(∆B

t∧ϑd(B))− f(∆B
0 )−

∫ t∧ϑd(B)

0
e−δsABsf(∆B

s ) ds
)
t≥0

is a martingale for all B ∈ B. By taking expectations, we obtain

f(x) ≥ Ex
[
e−δ(t∧ϑd(B))f(∆B

t∧ϑd(B))
]

for an arbitrary strategy B, with equality for all strategies with Bt = 1 for all t < ϑd(B). By
∆B
ϑd(B) = d on the set {ϑd(B) < ∞} and bounded convergence as t → ∞, we find f(x) ≥ V B(x) for

the return of arbitrary strategies B ∈ B. From plugging in a strategy with Bt = 1 for all t < ϑd(B),
we obtain f(x) = V (x). The assertion for v now follows from the dynamic programming theorem and
(2.25). �

This means that we have now found the first part of a candidate solution. As with simple switching
strategies, the case of small initial drawdown bears more difficulties.

2.2.3 Maximising the Time to Critical Drawdown with a Penalty

Considering the dynamic programming equation and the results of the previous section, we expect:

v(x) = inf
B∈B

Ex
[
e−δϑ(B)

(1
δ
−
(1
δ
− v(d)

)
e−γ(∆B

ϑ(B)−d))]
, x ≤ d .
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Again, the process under consideration is reflected on the x-axis and enters the critical area with a
jump. This means that we cannot use the same method as for critical initial drawdown. In Section 2.1,
u(d) could be calculated because we knew the strategy for uncritical initial drawdown. Now, v(d) is
unknown because it depends on the (also unknown) strategy below d. To overcome this additional
difficulty, our approach in this section is to define a general optimisation problem with a discounted
penalty function: for C ∈ [0, δ−1], we let

vC(x) = inf
B∈B

Ex
[
e−δϑ(B)pC(∆B

ϑ(B))
]
, x ≤ d , (2.26)

where pC : [d,∞)→ [0, δ−1] is given by

pC(x) = 1
δ
−
(1
δ
− C

)
e−γ(x−d) . (2.27)

The function pC can be interpreted as a penalty for the overshoot at the exit time. We first notice that
Lemma 2.12 (with a modified Lipschitz constant) and Lemma 2.13 remain true for the function vC

on the interval [0, d]. That is, vC is increasing, Lipschitz continuous, differentiable almost everywhere
and there exist universally ε-optimal strategies. We note that pC fulfils infb∈[b0,1] A

bpC(x) = −1 with
pC(d) = C for x ≥ d.

Remark. The discounted penalty function x 7→ Ex
[
e−δϑpC(∆ϑ)

]
is related to a Gerber–Shiu function.

To see this parallel, we consider the original process X (starting at y = d−x) under a dividend barrier
strategy with barrier d. Then, if τ denotes the ruin time of the ex-dividend process U , our problem is
equivalent to minimising Ey

[
e−δτ

(
δ−1 − (δ−1 − C)eγUτ

)]
for all initial capitals y ∈ [0, d]. We further

examine this relation in Chapter 4. #

The goal of this section is to show that vC is the unique solution to a modified version of Equation
(2.21) and that there exists a ‘correct’ constant Cd ∈ [0, δ−1] with v(x) = vCd(x) for all x ≤ d. In the
modified equation, Abf(x) defined in (2.4) is replaced by

Ab
Cf(x) = −(δ + λ)f(x)− c(b)f ′(x) + λ

∫ (d−x)/b

0
f(x+ by) dG(y)

+ λ

∫ ∞
(d−x)/b

pC(x+ by) dG(y) . (2.28)

In particular, for f = vC , this expression coincides with AbwC(x), where

wC(x) = vC(x)1{x≤d} + pC(x)1{x>d} , x ≥ 0 ,

denotes the composition of the functions vC and pC . By repeating the steps of the proofs of Proposi-
tion 2.14 and Theorem 2.16, it is possible to derive the analogue result for vC .

Theorem 2.18 (Verification for vC). [2021b]

Let f : [0, d]→ R be a bounded, absolutely continuous solution to infb∈[b0,1] A
b
Cf(x) = 0 with density

f ′ and f ′(0) ≥ 0. We denote by b∗ the pointwise minimiser, measurably chosen as in the proof
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of Proposition 2.14. Let B∗ ∈ B denote a corresponding feedback strategy with B∗t = b∗(∆∗t ) for
t ∈ [0, ϑd(B∗)]. If either b∗(0) = b0 or f ′(0) = 0, we have f(x) = vB

∗
C (x) = vC(x) for x ∈ [0, d]. That

is, f coincides with the function vC and B∗ is an optimal strategy. �

The only thing that has to be modified in the proof is that the process is stopped at the first exit time
for Theorem 2.18.
For general C ∈ [0, δ−1], the composition wC defined on [0,∞) is not necessarily continuous from the
right at x = d because the first exit from the uncritical area (even when starting in d) happens at a
jump time. However, for the unknown v(d), we do expect continuity by pv(d) = v(x) for x > d and
vv(d)(x) = v(x) for x ≤ d. The following lemma implies that there exists at least one constant Cd such
that the composition of the functions vC and pC is continuous in d.

Lemma 2.19. [2021b]

There exists Cd ∈ (0, δ−1) with vCd(d) = Cd, vC(d) ≥ C for all C ≤ Cd and vC(d) ≤ C for all C ≥ Cd.
For all C ∈ [Cd, δ−1], the function wC(x) = vC(x)1{x≤d} + pC(x)1{x>d} is increasing in x.

Proof. We prove the stronger statement that for every x ∈ [0, d] there exists C ∈ (0, δ−1) such that
vC(x)− C = 0. We start by showing that C 7→ vC(x)− C is a continuous and decreasing function of
C. We consider two constants C(1), C(2) ∈ [0, δ−1] with C(1) < C(2). For all strategies B ∈ B, it holds

vBC(1)(x)− C(1) − (vBC(2)(x)− C(2)) =
(
1− Ex

[
e−δϑd(B)e−γ(∆B

ϑd(B)
−d)]) · (C(2) − C(1)) ≥ 0 .

This means that C 7→ vBC (x) − C, B ∈ B, is decreasing. This implies that C 7→ vC(x) − C is also
decreasing. Moreover, it follows from this equation that the functions C 7→ vBC (x) − C for B ∈ B

are Lipschitz continuous with a common Lipschitz constant L ≤ 1. Hence, C 7→ vC(x) − C is
also Lipschitz continuous: for C(1) < C(2), we consider an ε-optimal strategy Bε,2 for vC(2) with
vB

ε,2

C(2) (x) < vC(2)(x) + ε. Then:

0 ≤ vC(1)(x)− C(1) − (vC(2)(x)− C(2)) ≤ vBε,2C(1) (x)− C(1) − (vBε,2C(2) (x)− C(2)) + ε

≤ L(C(2) − C(1)) + ε ,

so, letting ε → 0, we derive Lipschitz continuity of C 7→ vC(x) − C. Now we plug in the boundary
values C = 0 and C = δ−1. For C = 0, we have

v0(x)− 0 = 1
δ

inf
B∈B

Ex
[
e−δϑd(B)

(
1− e−γ(∆B

ϑd(B)
−d))]

> 0 .

The strict inequality holds because we have ∆B
ϑd(B) ∈ (d,∞) and ϑd(B) <∞ almost surely. The latter

follows because even for the smallest possible claim sizes b0Yk and the largest possible premium c(1),
the ‘exit event’ A1 = {∑N1

k=1 b0Yk > d+ c(1)} has a strictly positive probability. By the Borel–Cantelli
Lemma, therefore, An = {∑Nn

k=Nn−1
b0Yk > d+c(1)} happens infinitely often, meaning that the interval

will be exited in finite time, almost surely. For C = δ−1, the dependence on the overshoot disappears,
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such that we obtain

v1/δ(x)− 1
δ

= 1
δ

(
inf
B∈B

Ex
[
e−δϑd(B)

]
− 1

)
< 0 .

The inequality holds because the earliest exit is at the first jump: ϑd(B) ≥ T1. By the intermediate
value theorem, there exists a constant Cx ∈ (0, δ−1), such that vCx(x)−Cx = 0. Because C 7→ vC(x)−C
is decreasing, vC(x) − C ≥ 0 for C ≤ Cx and vC(x) − C ≤ 0 for C ≥ Cx. In particular, this is true
for x = d. The function wC is increasing on [0, d] and on (d,∞), separately, for all C ∈ [0, δ−1]. By
C ≥ Cd, we additionally obtain pC(d) ≥ vC(d), from which the assertion follows. �

Remark. Lemma 2.19 also indicates that if a set of functions vC is known, one can determine the
candidate solution to our original problem and the corresponding value v(d) via trial and error: if
vC(d) > C, C has been chosen too small. On the other hand, vC(d) < C implies that C is too
large. #

Next we show that it holds infb∈[b0,1] A
b
CvC(x) = 0 for a density v′C of vC . We note that it can

be assumed (without loss of generality) that every considered version of the density v′C is bounded
and non-negative on [0, d] because vC is Lipschitz continuous and increasing. Furthermore, vC is
differentiable (i.e. upper and lower, left and right derivatives coincide) outside of a Lebesgue null set,
so that we can assume that v′C corresponds to the derivative at all points outside of this set. Our three
main steps (represented by Propositions 2.20, 2.21 and Theorem 2.22, below) are: firstly, deriving an
initial condition at x = 0, secondly, showing infb∈[b0,1] A

b
CvC(x) ≥ 0 and, lastly, proving the converse

inequality.

Proposition 2.20. [2021b]

The function vC fulfils the initial condition

vC(0) = inf
b∈[b0,1]

λ

λ+ δ

∫ ∞
0

wC(by) dG(y) . (2.29)

If C ≥ Cd, the infimum is attained at b = b0.

We shift the proof to the appendix, p. 113, and give an intuitive explanation here. Because the drift
of the drawdown vanishes at zero, the process stays at this point until the first claim occurs. That
means, the function vC corresponds to the value after the first jump, discounted by e−δT1 , where T1

denotes the first claim time. The prefactor λ/(δ + λ) is generated by the Laplace transform of the
exp(λ)-distributed time T1 which is independent of the claim size. In the case C ≥ Cd, the right hand
side is increasing in b, meaning that the minimiser is the value leading to the smallest possible claim
payment, b = b0. In the case C < Cd, the penalty for exiting is small as long as the overshoot is not
too large. In particular, an early large jump from x = 0 into the area above (but close by) d could be
favoured over a postponed exit with a worse pre-exit position than x = 0.

Proposition 2.21. [2021b]

i) At all x ∈ [0, d] for which an one-sided derivative v′C of vC exists or the infimum is attained at b =
b0, we have infb∈[b0,1] A

b
CvC(x) ≥ 0. In particular, the set N1 = {x ∈ [0, d] : infb∈[b0,1] A

bvC(x) <
0} has Lebesgue measure zero.
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ii) If the right derivative v′C(0) exists at x = 0 or if the infimum is attained at b = b0, we have
infb∈[b0,1] A

b
CvC(0) = 0. If the right derivative exists and the infimum is not attained at b = b0,

it fulfils v′C(0) = 0.

We recall that, in the proof of Lemma 2.6, we conditioned on the time of the first claim to connect
the return function of a simple switching strategy with an integro-differential equation. Now, for the
value function, the intuition of the following proof of Proposition 2.21 is to use a similar approach in
combination with ε-optimal strategies.

Proof of Proposition 2.21. We start with i). We consider x ∈ (0, d] and h ≤ x/c(1), so that zero is not
reached by the drawdown process before time T1 ∧ h. We choose b ∈ [b0, 1] and consider the strategy
B defined by Bt = b1{t<T1∧h} + B̃ε

t1{t≥T1∧h} for t ≥ 0, provided that ∆B
T1∧h ≤ d. Here, B̃ε denotes

a universally ε-optimal strategy (as in Lemma 2.13) shifted by the time T1 ∧ h. By distinguishing
the cases of what happens at time T1 ∧ h (that is, a) no claim occurs, b) a small claim occurs and
the drawdown stays uncritical and c) a large claim occurs, the drawdown exits and the overshoot is
penalised), we find:

vC(x) ≤ vBC (x) = Ex
[
e−δhvBεC (x− c(b)h)1{T1>h}

]
+ Ex

[
e−δT1vB

ε

C (∆B
T1)1{T1≤h}1{∆B

T1
≤d}
]

+ Ex
[
e−δT1pC(∆B

T1)1{T1≤h}1{∆B
T1
>d}
]

≤ e−(δ+λ)hvC(x− c(b)h) + Ex
[
e−δT1wC(∆B

T1)1{T1≤h}
]

+ ε .

Letting ε→ 0 yields

vC(x) ≤ e−(δ+λ)hvC(x− c(b)h) + Ex
[
e−δT1wC(∆B

T1)1{T1≤h}
]
. (2.30)

We first assume b = b0. In this case, we have c(b) = 0 and

0 ≤ (e−(δ+λ)h − 1)vC(x) + E
[
e−δT1wC(x+ b0Y1)1{T1≤h}

]
,

so by dividing by h and letting h→ 0, we obtain

0 ≤ −(δ + λ)vC(x) + λE
[
wC(x+ b0Y1)

]
.

By c(b0) = 0, we conclude Ab0vC(x) ≥ 0. Next, we assume b > b0, such that it holds c(b) > 0.
Equation (2.30) is equivalent to

0 ≤− c(b) · vC(x)− vC(x− c(b)h)
c(b)h + e−(δ+λ)h − 1

h
· vC(x− c(b)h)

+ h−1 · E
[
e−δT1wC(x− c(b)T1 + bY1)1{T1≤h}

]
.

The second and third terms on the right hand side converge and the inequality implies that the
difference quotient is bounded on one side. Thus, by choosing an appropriate subsequence (hn)n∈N ⊂
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(0, h) with hn → 0 as n→∞ such that the limit below exists, we find

0 ≤− c(b) · lim
n→∞

vC(x)− vC(x− c(b)hn)
c(b)hn

− (δ + λ)vC(x) + λE
[
wC(x+ bY1)

]
.

This shows the inequality for the derivative from the left. Repeating the above argument for x̄ =
x+ c(b)h with x ∈ [0, d), we arrive at

0 ≤− c(b) · lim
n→∞

vC(x+ c(b)hn)− vC(x)
c(b)hn

− (δ + λ)vC(x) + λE
[
wC(x+ bY1)

]
, (2.31)

again, for an appropriate subsequence (hn)n∈N. This proves the assertion for the derivative from the
right. Thus, for all x at which vC is differentiable, we showed infb∈[b0,1] A

b
CvC(x) ≥ 0. N1 is a subset

of the Lebesgue null set on which vC is not differentiable. Because we have −c(b) ≤ 0, (2.31) in
combination with (2.29) implies ii). �

Theorem 2.22. [2021b]

The set N2 = {x ∈ [0, d] : infb∈[b0,1] A
b
CvC(x) > 0} has Lebesgue measure zero. The function

vC solves the Hamilton–Jacobi–Bellman equation infb∈[b0,1] A
b
CvC(x) = 0 for Lebesgue almost all

x ∈ [0, d] and fulfils the initial condition in (2.29). In particular, a version of the density fulfils
infb∈[b0,1] A

b
CvC(x) = 0 for all x ∈ [0, d].

Proof. By Propositions 2.20 and 2.21, it suffices to prove the assertion for x > 0. For x ∈ (0, d]
we consider h ≤ x/c(1). We choose a strategy Bh such that vBhC (x) < vC(x) + h2. We recall that
Bh, as an admissible strategy, is adapted to the minimal right-continuous filtration such that X is
adapted. This means that t 7→ Bh

t must be deterministic as long as no claim occurs. We write
RB

h

t = x −
∫ t

0 c(Bh
s ) ds ≤ x for the (as a consequence, also deterministic) path of ∆Bh on the set

{T1 > h}. Applying the arguments of the proof of Proposition 2.21 to the strategy Bh, stopping at
T1 ∧ h yields:

vC(x) > vB
h

C (x)− h2 = e−(δ+λ)hvB
h

C (RBhh ) + Ex
[
e−δT1wB̃

h

C (∆Bh

T1 )1{T1≤h}
]
− h2

≥ e−(δ+λ)hvC(RBhh ) + Ex
[
e−δT1wC(∆Bh

T1 )1{T1≤h}
]
− h2 , (2.32)

where B̃h denotes the shifted strategy Bh. We first assume that there exists a subsequence (hn)n∈N ⊂
(0, h), hn → 0, n → ∞, for which it holds RBhnhn

= x for all sufficiently large n. In particular, this is
equivalent to Bhn

t = b0 almost everywhere in (0, hn). Because t 7→ Bhn
t , is right continuous, we thus

conclude Bhn
t = b0 for all t ∈ (0, hn). In this case, we have by (2.32):

0 ≥ (e−(δ+λ)hn − 1)vC(x) + E
[
e−δT1wC(x+ b0Y1)1{T1≤hn}

]
− h2

n .

Thus, letting n→∞ proves

0 ≥ −(δ + λ)vC(x) + λE
[
wC(x+ b0Y1)

]
, (2.33)
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which corresponds to Ab0
C vC(x) ≤ 0, by c(b0) = 0. If, on the other hand, there exists no such sequence,

then, for all (hn)n∈N ⊂ (0, h), there exists for all n0 ∈ N a n ≥ n0 such that RBhnhn
< x. In this case,

we can choose a subsequence (h̃n)n∈N ⊂ (hn)n∈N with RBh̃n
h̃n

< x for all n and h̃n → 0 as n→∞. Now
we can rewrite (2.32):

0 ≥ −
x−RBh̃n

h̃n

h̃n
·
vC(x)− vC(RBh̃n

h̃n
)

x−RBh̃n
h̃n

+ e−(δ+λ)h̃n − 1
h̃n

vC(RBh̃n
h̃n

) + h̃−1
n Ex

[
e−δT1wC(∆B

T1)1{T1≤h̃n}
]
− h̃n . (2.34)

Since c(b) is bounded for b ∈ [b0, 1], we can assume (without loss of generality) that

h̃−1
n (x−RBh̃n

h̃n
) = h̃−1

n

∫ h̃n

0
c(Bh̃n

s ) ds

converges. Otherwise, we can choose an appropriate subsequence. In particular, the limit can be
written as c(b̃) for some b̃ ∈ [b0, 1]. Then, the expressions h̃−1

n

∫ h̃n
0 Bh̃n

s ds and Bh̃n
t 1{t≤h̃n} converge to

b̃ as n→∞. This means that the term with the expected value converges as well, by Theorem IV.5.6
of [Elstrodt, 2011]. Therefore, we obtain:

0 ≥ −c(b̃) · lim inf
n→∞

vC(x)− vC(RBh̃n
h̃n

)

x−RBh̃n
h̃n

− (δ + λ)vC(x) + λE
[
wC(x+ b̃Y1)

]
.

for b̃ > b0 and (2.33) for b̃ = b0. In particular, for b̃ > b0, this limit corresponds to the derivative
from the left (if it exists at x). Thus, we have Ab̃

CvC(x) ≤ 0. That means, N2 is a Lebesgue null
set. By Proposition 2.21, we obtain the assertion for all x in [0, d] \ (N1 ∪ N2), that is, almost
everywhere. Now, on the Lebesgue (measurable) null set N1 ∪ N2, we can modify the density such
that the equation is fulfilled. We note that it holds −(δ + λ)vC(x) + λ

∫∞
0 vC(x + b0y) dG(y) > 0 on

this set (by Ab0vC(x) > 0). Additionally, for every x ∈ N1 ∪ N2, there exists a sequence (x(n))n∈N
which converges to x and such that vC is differentiable and the equation is fulfilled at x(n). Let b̃(n)

denote the respective minimiser for x(n). By choosing an appropriate subsequence, we can assume that
(b̃(n))n∈N converges to a limit b̃ ∈ (b0, 1] and that it holds b̃(n) ∈ (b0, 1] for all n. Now we can define the
density v′C(x) by the equation Ab̃

CvC(x) = 0. In particular, we also have limn→∞ v
′
C(x(n)) = v′C(x), so

that Ab
CvC(x) ≥ 0 by Ab

CvC(x(n)) ≥ 0 for all b ∈ [b0, 1]. �

Theorems 2.18 and 2.22 together imply that vC is the unique solution to the Hamilton–Jacobi–Bellman
equation infb∈[b0,1] A

b
CvC(x) = 0 (with certain properties) and that the optimal strategy can be ob-

tained from the equation. We have thus solved the optimisation problem posed in Equation (2.26) for
arbitrary C ∈ [0, δ−1].

2.2.4 Existence by Reconnecting the Subproblems

We are now ready to combine our findings and derive existence of a solution to the Hamilton–Jacobi–
Bellman equation given in (2.21). We conclude from Lemma 2.19, Proposition 2.20 and Theorem 2.22
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that there exists a constant Cd ∈ (0, δ−1) such that the composition of the functions vCd and pCd
is absolutely continuous and solves Equation (2.21) with the required initial condition. Therefore, it
follows by Theorem 2.16 that the constant Cd must be unique and that the composition is the expected
time with critical drawdown.

Corollary 2.23. [2021b]

There exists a unique Cd ∈ (0, δ−1) with vCd(d) = pCd(d). The expected time in critical drawdown
fulfils

v(x) =


inf
B∈B

Ex
[
e−δϑ(B)pCd

(
∆B
ϑ(B)

)]
, x ∈ [0, d] ,

δ−1 − (δ−1 − Cd)e−γ(x−d) , x > d .

Restricted to the set [0, d], v is the unique bounded solution to infbAb
Cd
v(x) = 0, x ∈ [0, d], with

v′(0) ≥ 0 and the initial condition given in (2.29) for C = Cd. We denote by b∗ : [0, d] → [b0, 1] the
pointwise minimiser of this equation (as in Theorem 2.18). It holds b∗(0) = b0 and an optimal strategy
B∗ is of feedback form with B∗t = b∗(∆∗t )1{∆∗t≤d} + 1{∆∗t>d}, t ≥ 0. �

With this, we have completely (and uniquely) characterised the minimal expected time in drawdown
as the solution to Equation (2.21) with the properties stated in Theorem 2.16.

Remark. The discerning reader could comment at this point that, as the minimiser inducing an
optimal strategy turns out to fulfil b∗(0) = b0, the maximum of the controlled process will not increase
above the initial threshold. In this case, the surplus process (and the economic success of the company
it models) is bounded from above. We address this aspect and its implications in Section 2.4. #

2.3 A Discretisation of the Problem and its Numerical Solutions

Before we come to a concluding assessment of the theoretical results, we illustrate our findings with
examples for certain claim distributions. We start by formulating a discrete version of our optimisation
problem. Firstly, we discretise the drawdown levels by replacing the interval [0, d] with a sequence of
grid points (xk)k=0,...,n with x0 = 0 and xn = d. For simplicity, we assume that all points xk have the
same distance q = xk − xk−1 to their predecessor. We set

I0 = [0, (1− ξ)q] , Ik = (xk − ξq, xk + (1− ξ)q] , k = 1, . . . , n− 1 , In = (d− ξq, d] ,

for a fixed ξ ∈ (0, 1]. Now we assume that the grid is sufficiently narrow and that ξ is chosen
appropriately such that all points within the interval Ik can be identified with xk. That is, all
drawdowns of size x ∈ Ik are perceived as approximately equally threatening by the insurer. In
particular, ξ = 1 corresponds to the conservative approach of rounding up to the next grid point and
ξ = 1

2 represents a ‘fair’ rounding function.

Remark. By the intuition and in all numerical calculations considered below, the rounding mechanism
does not have a significant impact on the result if the grid points are sufficiently dense. However, in
some cases, the stability of the numerical procedure can be increased by choosing ξ 6= 1 if the matrices
defined below would otherwise contain a large number of zeros. #
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Next, we define a discrete version of the set of admissible strategies. As the theory shows, it suffices to
consider feedback strategies which are equal to one whenever the current drawdown exceeds d. Thus,
by a discrete admissible strategy, we mean a function b : [0, d] → {%i : i = 0, . . . , a} ⊂ [b0, 1] which
is piecewise constant on the intervals Ik, k = 0, . . . , n. Here, {%i : i = 0, . . . , a} denotes a finite set
of ‘permitted’ retention levels with %0 = b0 and %a = 1. Because we assume that all points within Ik

are identified with one another, the discrete value function v (i.e. minimal time in drawdown casted
to the grid with respect to the set of discrete admissible strategies) and all strategies b are given in
terms of the values at the grid points v = (vk)k=0,...,n, b = (bk)k=0,...,n:

v(x) =
n∑
k=0

vk · 1{x∈Ik} , b(x) =
n∑
k=0

bk · 1{x∈Ik} , x ∈ [0, d] .

Similarly to the dynamic programming equation, it follows for all k that v fulfils

v(x) = inf
b∈{%i:i=0,...,m}

Exk
[
e−δτv(∆b

τ) · 1{∆b
τ≤d} + e−δτpvn(∆b

τ) · 1{∆b
τ>d}

]
, x ∈ Ik , (2.35)

for pC , C ∈ [0, δ−1], as defined in (2.27) and where τ denotes the minimum of the first exit from
the interval Ik and the first claim time. Either the interval is exited by passing through the lower
boundary or by jumping across the upper boundary. Figure 2.4 shows a drawdown process under a
discrete admissible strategy. The dashed lines represent the grid points (xk)k=0,...,n and the grey solid
lines the boundaries of the intervals (Ik)k=0,...,n. The arrows visualise that whenever the process exits
the current interval or a jump occurs, it is casted to the grid and ‘restarted’. The time τ mentioned
above is therefore represented by the sequence τ1, τ2 − τ1, . . . in the graph. By conditioning on the
time T1 of the first claim Y1 and writing ∆b

T1
= ∆0 − c(b)T1 + bY1, we therefore obtain

vk = inf
b∈{%i:i=0,...,m}

vk−1 · Exk
[
e−δτ1{τ<T1}

]
+

n∑
j=k

vj · Exk
[
e−δT11{∆b

T1
∈Ij , τ=T1}

]
+ vn · Exk

[
e−δT1e−γ(∆b

T1
−d)
1{∆b

T1
>d, τ=T1}

]
− δ−1Exk

[
e−δT1

(
e−γ(∆b

T1
−d) − 1

)
1{∆b

T1
>d, τ=T1}

]
(2.36)

for all k 6= 0. For k = 0, the first term (starting with vk−1) disappears. For k 6= 0, we additionally
note that τ corresponds to the deterministic times τ =∞ for b = b0 and τ = ξq/c(b) <∞ on the set
{τ < T1} for b > b0. We observe that the coefficients of the vk only depend on the distributions of
T1 and Y1 and can be calculated for any given claim distribution. That means, v is determined by
n+1 (minimised) linear equations. Specifically, the optimal strategy and the value function combined
should fulfil (2.36) at every grid point. In a similar way, we can define the discrete return function of
a predefined strategy and derive a characterising linear equation system. This inspires the iterative
approach explained in the following section.

2.3.1 Construction of the Algorithm

In a preprocessing phase, we calculate the coefficients of vj on the right hand side of Equation (2.36)
for all j, k ∈ {0, . . . , n} and b ∈ {%i : i = 0, . . . , a} and collect these values in a three-dimensional array
T ∈ R(n+1)×(n+1)×(a+1). That is, the entry Tm

k,j represents the weight of vj when starting at xk with

44



|{z}|
{z

}

d

xk

xk−1

ξq

(1 − ξ)q

τ1 τ2 τ3 τ4 τ5 τ6 τ7 = ϑ

Figure 2.4 Drawdown process under a piecewise constant feedback strategy with rounding.

the strategy b(x) = bk = %m for x ∈ Ik. Additionally, we define the matrix t ∈ R(n+1)×(a+1) by

tmk = δ−1Exk
[
e−δT1

(
e−γ(∆%m

T1
−d) − 1

)
1{∆%m

T1
>d, τ=T1}

]
such that −tmk corresponds to the last term on the right hand side of (2.36).
We start with an arbitrary admissible strategy b. We write m ∈ Rn+1 for the vector containing the
indices of the retention levels, that is bk = %mk

for k = 0, . . . , n. In Step 1 of the algorithm, we
calculate the return v of the predefined strategy b. We define the matrix U ∈ R(n+1)×(n+1) and the
vector u ∈ Rn+1 by Uk,j = Tmk

k,j and uk = tmk
k for k, j = 0, . . . , n. Then, we define v as the return

of this strategy, that is, the solution to the linear equation system (U − I(n+1))v = u. We note that
this results in n+ 1 equations to find n+ 1 variables. To be completely thorough, one would have to
check if the rows of this equation system are linearly independent. However, the upper Hessenberg
structure of the matrix and complexity of its entries suggest that this will in general be the case. In
Step 2, we improve b for a given v. That means, we choose bk so that the right hand side of (2.36)
is minimal, or, equivalently, we let

mk = arg inf
m∈{0,...,a}

(Tmv− tm)k , k = 0, . . . , n ,

and define bk = %mk
. Next, we calculate the return of the new strategy. We iterate Step 1 and Step 2

until no further improvement of b in the second step is possible. Then, v is the return of the strategy
b and both functions combined solve (2.36). In particular, v is the value function and b is optimal.
In practice, the part of the algorithm causing the largest proportion of the total computation time
is the preprocessing phase in which the entries of T are defined. This is also the only part of the
procedure which depends on the claim size distribution (which also has an effect on the runtime by
the complexity of the weights). The matrix U defined in Step 1 is ‘almost triangular’ which allows
an efficient calculation of a solution. The interested reader finds additional information on the exact
definition of the involved matrices in the appendix, p. 114.
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We observe that, even though our analysis of the previous sections specifically dealt with continuous
distribution functions G, this discrete version of the problem can be transferred to discontinuous claim
distributions, such as G(y) = 1{y≥ζ} for ζ > 0. It is easy to see that, also in this case, the optimal
strategy for minimising the time spent in the critical area is the strategy of maximal drift (with Bt = 1
for t < ϑ(B)) and that Lemma 2.3 remains true.

2.3.2 Description of the Numerical Study

For all our examples, we use the parameter set given in Table 2.1. That means, the safety loading
η = 0.2 yields a premium income rate of 1 + η if no reinsurance is bought. In a unit interval, we
expect one claim, λ = 1. The relatively small preference factor δ = 0.3 could be interpreted as a
long term orientation. The critical size of drawdowns d = 0.8 has to be interpreted in combination
with the claim size distribution. In our examples below, this reflects a rather strong aversion towards
drawdowns: if µ ≈ 0.5, an example of an event leading to a large drawdown is the occurrence of two
average size claims in a row. ξ = 0.99 also corresponds to a cautious approach. We consider three
scenarios for the external factor of costs of reinsurance (represented by the reinsurance safety loading
θ). That means, we let θ ∈ {0.33, 0.8, 1.1} and compare the resulting strategies. For each of the three
considered claim distributions we compare the performance of

i) the strategy of ‘no reinsurance’, i.e. the feedback strategy induced by b(x) = 1, x ≥ 0,
ii) a feedback strategy which linearly increases with the drawdown, that is,

b`(x) = (b0 + (1− b0)xd−1)1{x≤d} + 1{x>d}, x ≥ 0,
iii) simple switching with b̌ = b0 and b̂ = 1, associated with bs(x) = b01{x≤d} + 1{x>d}, x ≥ 0, and
iv) the optimal strategy connected to b∗(x), x ≥ 0.

We note that the paths of the drawdown process under the linear strategy are determined by ex-
ponential functions between the claims (this follows by the same construction as in the proof of
Proposition 2.14). The return functions of discrete versions of these strategies can be calculated with
the algorithm described above. We compare these return functions and, additionally, consider simu-
lations of the paths of the surplus process under the respective stochastic control for the case θ = 0.8.
To ensure comparability across different claim distributions, we use the same initial values and claim
time sequence for all examples. Moreover, we recall that the absolute position of the surplus and its
running maximum is not relevant for the optimisation problem as it only depends on their relative dis-
tance, the drawdown. In particular, the simulated paths could be shifted from X0 = −x and M0 = 0
to arbitrary starting points for the surplus and historic maximum as long as their distance remains
unchanged.

η λ δ d θ n a ξ

0.2 1 0.3 0.8 (a) 0.33 1000 200 0.99
(b) 0.8
(c) 1.1

Table 2.1 Parameters of insurance surplus, preference and costs of reinsurance.
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On the following double pages, we present the return functions and b, b`, bs, b
∗ on the left page and

the path simulations on the right page. In Figures 2.5, 2.7 and 2.9 on the respective left page, each
‘row’ corresponds to one choice of θ, that is, the graphs of the first row (A) belong to the cheapest
scenario, θ = 0.33, the graphs of the middle row (B) correspond to θ = 0.8 and the last row (C) belongs
to θ = 1.1. In each row, the middle graph belongs to the function b∗ inducing the optimal feedback
strategy and the small graphs on the right show the functions b (dashed, blue line), b` (dashed, red
line), bs (dashed, yellow line). The leftmost graph illustrates the value function (black solid line) and
the return functions of the alternative strategies (in the same line type and colour as the corresponding
feedback functions). Figures 2.6, 2.8 and 2.10 display path simulations under the feedback strategies
b, b`, bs and b∗. If the graph of the surplus process (black and blue line) is in the grey area, this
corresponds to a critical drawdown. In particular, the graphs are colour coded with respect to the
retention level: a black point in the graph corresponds to the retention level 1 chosen at that time,
whereas a blue tinted point visualises that the retention level is strictly smaller than 1. For a clear
presentation of the current retention level at the jump times, the jumps of the path simulations are
displayed as solid lines (instead of dotted lines as in Figure 2.4, for example).
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2.3.3 Exponential Claims

(a) θ = 0.33

(b) θ = 0.8

(c) θ = 1.1

Figure 2.5 Return functions, pointwise optimisers and alternative feedback functions for exponential claims
(from left to right in every row).
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Figure 2.6 Path simulations for exponential claims and θ = 0.8. Top, left: no reinsurance, top, right: linear
feedback strategy, bottom, left: simple switching with b0, bottom, right: optimal feedback strategy.

We consider the claim distribution function G(y) = 1 − e−αy, y > 0, for α = 2. That means,
µ = α−1 = 0.5 is the expected claim size. The parameter set given in Table 2.1 yields γ ≈ 1.0868 as
derived in Example 2.8. In the case θ = 0.33, in the top row of Figure 2.5, we see that the optimal
strategy corresponds to a very low retention level for smaller uncritical drawdowns and shoots up
towards 1 as the process approaches the critical boundary. This corresponds to ‘playing it safe’ in an
area close to zero and, if this area is exited by a jump, pushing the process back (at the risk of even
larger jumps). Additionally, the value function is convex and increases quickly between x = 0 and
x = d. This allows the interpretation that for an ‘almost critical’ drawdown, the strategy of maximal
drift is chosen because the area close to the boundary is too dangerous. The simple switching strategy,
despite seeming to be a radical choice, leads to a smaller time in drawdown than the other alternative
strategies and resembles this behaviour the most. In the cases θ = 0.8 and θ = 1.1, we see that the
constant strategy b and its return function (dashed, blue) remain the same in all graphs as they are
independent of θ. The optimal strategy, b` and bs change with θ. This is because of the restriction to
retention levels from the set [b0, 1] with b0 = θ−η

1+θ (which is increasing in θ). Additionally, the claim
reduction by proportional reinsurance is more costly (in terms of drift reduction) for larger θ. As a
consequence, more expensive reinsurance leads to a generally longer time in critical drawdown. For
the optimal strategy, the area in which a maximal drift is chosen grows larger with θ. Below that
level, the graph attains an ‘S’-shape. From the set of alternative strategies, the strategy induced by b`
is now the best choice. This is also visible in the path simulations of Figure 2.6 which are based on the
strategies for θ = 0.8. The critical drawdown phase starting approximately at time 14.5 for the ‘ex-
treme’ strategies associated with b and bs is significantly shorter for the strategies induced by b` and b∗.
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2.3.4 Pareto Distributed Claims

(a) θ = 0.33

(b) θ = 0.8

(c) θ = 1.1

Figure 2.7 Return functions, pointwise optimisers and alternative feedback functions for Pareto claims (from
left to right in every row).
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Figure 2.8 Path simulations for Pareto claims and θ = 0.8. Top, left: no reinsurance, top, right: linear
feedback strategy, bottom, left: simple switching with b0, bottom, right: optimal feedback strategy.

Next, we assume that we have G(y) = 1 − βα(β + y)−α, y > 0, for α = 2 and β = 0.45. With this
definition, the expected value of the claims µ = β/(α− 1) = β is slightly smaller than in the previous
example. However, by choice of α, the variance is infinite. According to Lemma 2.3, the parameter
γ ≈ 1.0304 (which can be calculated numerically) is determined by the equation

δ = c(1)γ − λ
(
1− α(βγ)αeβγΓ(−α, βγ)

)
,

where Γ(−α, x) =
∫∞
x e−tt−(α+1) dt, x > 0, denotes the incomplete Gamma function. The return

and feedback functions of Figure 2.7 look similar to the case of exponential claims. For θ = 0.8 and
θ = 1.1, however, the shape of the optimiser b∗ differs. In particular, for θ = 1.1, we see a convex
‘ramp’ instead of the ‘S’-shape of the function b∗ for small x. This means that the retention level
rapidly increases as the drawdown grows larger. Another significant difference can be observed in
the path simulations of Figure 2.8. In comparison to the case of exponential claims, we see that the
surplus without reinsurance is subject to much more severe and long-lasting drawdowns. As the claim
occurrence times are unchanged, this is due to the different claim distribution. In comparison to the
surplus without reinsurance (top, left), the surplus with optimal control (bottom, right) even is at
a higher level at the end of the time interval. The main reason for this is that the impact of the
exceptionally large claims (at the approximate times 2, 8.75, 14.5 and 18) is weakened by reinsurance.
Comparing the optimally controlled path to the simple switching path (bottom, left), we see that the
optimal strategy has a similar mechanism. The retention level ‘switches’ (shoots up) already when the
drawdown is still in the uncritical area. This fits to the graph in the centre of Figure 2.7 and results
in a reduction of the time in critical drawdown.
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2.3.5 Deterministic Claims

(a) θ = 0.33

(b) θ = 0.8

(c) θ = 1.1

Figure 2.9 Return functions, pointwise optimisers and alternative feedback functions for deterministic claims
(from left to right in every row).
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Figure 2.10 Path simulations for deterministic claims and θ = 0.8. Top, left: no reinsurance, top, right:
linear feedback strategy, bottom, left: simple switching with b0, bottom, right: optimal feedback strategy.

Up to this point, we have dealt with unbounded claim distributions with support on (0,∞). This
means that from the current position of the drawdown, any higher level can be reached with the next
jump. With the example of deterministic claims, we now consider a bounded distribution. We describe
the claim size distribution by defining ζ = 0.5 and P[Y1 = ζ] = 1. Analogously to Subsection 2.2.2,
we obtain γ ≈ 1.2940 as the positive solution to the equation

δ = c(1)γ − λ(1− e−γζ) . (2.37)

Details of this calculation are found in the appendix, p. 116. In this case, the drawdown process
is more predictable and easier to control for the insurer. For example, if ζ is sufficiently small, it
is possible to choose a retention level which prevents the drawdown from exiting the uncritical area
at the next jump time. This leads to a partition of the uncritical area into different ‘bands’. That
means, retention levels of strong drift and retention levels leading to a significant claim reduction are
alternated. As seen in the graphs of the optimal strategies in Figure 2.9, this effect intensifies if costs
of reinsurance increase. A possible explanation is that in the bands with low retention levels, one
aims to stabilise the process and chooses a retention level which ensures that the uncritical area is
not exited. In the bands with higher retention levels, one chooses a strategy which quickly pushes
the process into the next ‘low retention level’-band, that is, the next ‘safety zone’. The kinks between
claims of the path of the optimally controlled process (bottom, right graph of Figure 2.10) correspond
to the local minima and maxima of b∗ for θ = 0.8 (graph in the centre of Figure 2.9). We observe
that the surplus without control (top, left in Figure 2.10) has a few critical drawdowns after time 10,
whereas critical drawdowns of the optimally controlled surplus are completely prevented.
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2.4 Key Findings and Concluding Remarks

In this chapter, we analysed the optimisation problem of minimising the expected time with critical
drawdown defined in Equation (1.9) for a classical risk model. Our first step was to prove a verification
theorem, Theorem 2.16, which implies that a bounded, increasing solution to the connected inhomo-
geneous Hamilton–Jacobi–Bellman integro-differential equation corresponds to the value function if it
fulfils the initial condition of b∗(0) = b0 (i.e. the ‘drift’ component of the equation vanishes if x = 0).
In a way, this result yields uniqueness of solutions to the equation. To prove existence, we started
by splitting the problem at the critical level x = d, according to the dynamic programming principle
proved in the introduction. For the separate problem of minimising the recovery time, we showed
that the optimal strategy is constant by analysing (explicit) Laplace transforms of the first passage
through d. For the complementary subproblem of maximising the time in the uncritical area, reflection
on the x-axis and an unknown penalty for the overshoot complicated the procedure. Here we used the
explicit representation obtained in the first part to construct a set of Gerber–Shiu optimisation prob-
lems containing our original target function. We showed that the corresponding value functions are
uniquely characterised as solutions to homogeneous Hamilton–Jacobi–Bellman equations. We found
out that the optimal strategies are of feedback form. Then, we reconnected the subsolutions to derive
the same result for the expected time in critical drawdown.
In our numerical examples, we further examined the influence of costs of reinsurance and the claim
distribution. We saw that, if the parameter θ increases, less reinsurance is bought, so that the minimal
expected time in drawdown increases. Further, we observed that the heavier the claims, the more the
insurer is willing to ‘give up’ drift in order to reduce possible claim payments. In the case of bounded
claims, the optimal strategy sensitively controls the size of the next claim and, therefore, lower and
higher retention levels are alternated. In the considered examples, it is optimal to leave the critical
level as quickly as possible, especially if reinsurance is expensive.
In our probabilistic analysis of the problem, we found out that all optimal strategies have two key
characteristics in common. Firstly, if the drawdown is already critically large, it is optimal not to
purchase reinsurance until the uncritical area is re-entered. That means, the goal of a quick recovery
is reached by choosing the strategy of maximal downward drift of the drawdown process (at the risk
of full-sized jumps). Secondly, when the drawdown is currently at zero, that is, if the surplus is at its
maximum, the lowest retention level is optimal. This fits the intuition because the reflection barrier
absorbs the drift of the process, so that controlling the next claim size becomes the only objective.
This policy has the effect that the surplus is balanced in the uncritical area close to its running max-
imum. However, as remarked in Section 2.2 and also obvious in the path simulations, this strategy
also prevents the running maximum from increasing. This means that the controlled surplus never
outgrows its initial maximum. Stability (valued over growth) is an intrinsic aspect of our optimisation
criterion and could also be perceived as a drawback thereof. Therefore, we expect this approach to
work best if there are external bounds on the surplus, for example due to taxation or regulatory laws,
or if it is subject to extraordinarily large claims. In a way, the latter is visualised by the exemplary
simulated paths with Pareto distributed claims in the previous section. In Chapter 4, we additionally
consider an extension which accounts for the potential of future records.
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CHAPTER 3

Minimal Expected Time in Drawdown for the Diffusion
Approximation

This chapter is based on [Brinker and Schmidli, 2022] and contains also some complementary results.
We consider a scenario in which the surplus is modelled by a diffusion approximation and retention
level strategies with values in [0, 1]. We define

µ(b) = η − (1− b)θ , b ∈ [0, 1] . (3.1)

That means, in the notation of Section 1.3, the surplus with reinsurance XB, B ∈ B, is the diffusion
process given by

XB
t = ν0 +

∫ t

0
µ(Bs) ds+

∫ t

0
Bsσ dWs , t ≥ 0 , (3.2)

in this chapter.

Our goal is the minimisation of the expected time with critical drawdown v, defined in Equation (1.9),
for this model. As a short introduction we start off by calculating the expected discounted time in
drawdown of an arithmetic Brownian motion without optimisation in Section 3.1. This corresponds to
the case in which the insurer decides on a certain retention level at time zero. We present a different
technique in this section which does not rely on splitting at the critical line. Additionally, we consider
simple switching controls. In Section 3.2, we turn to the optimal control problem. Using the dynamic
programming approach, we derive a ‘natural candidate’ for the value function, i.e. a solution to the
associated Hamilton–Jacobi–Bellman equation. For critical initial drawdown, we find out that the
maximal Laplace transform of the passage time of d

V (x) = sup
B∈B

Ex
[
e−δϑ(B)] , x > d ,

is an exponential function (as in the previous chapter). For uncritical initial drawdown, we calculate
explicitly the minimal Laplace transform of the first exit from [0, d]

V (x) = inf
B∈B

Ex
[
e−δϑ(B)] , x ≤ d ,

in terms of the upper branch of the Lambert W function W. By this we mean the unique inverse of
x 7→ xex with values in [−1,∞) which is defined for x ∈ [−e−1,∞) (compare, for example, [Corless
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et al., 1996]). For the pointwise minimiser of this function in the Hamilton–Jacobi–Bellman equation,
we show that the surplus under the connected feedback control exists as a solution to a (reflected)
stochastic differential equation. This enables us to prove that the return of the composition of the
optimal strategies in the subproblems is indeed the value function v. We use the explicit results
to derive further properties of the value function and its optimiser, in particular, the impact of the
parameter θ. In Section 3.3, we present numerical examples of value functions, strategies and path
simulations. We finish with concluding remarks in Section 3.4.

3.1 Warm-Up: Constant Controls and Existence

We start with the consideration of simple reinsurance strategies. As in Chapter 2, we connect these
controls to their return functions by martingale methods.

3.1.1 Motivation of the Differential Equation and an Approximation

In this section, we consider a strategy B with Bt = b ∈ (0, 1] for all t ≥ 0 and write X for the
surplus, M for the running maximum and ∆ for the drawdown of this strategy. Additionally, we
denote by u the return vB. We exclude the case b = 0, in which the drawdown corresponds to the
deterministic function t 7→ x + (θ − η)t. In this case, we clearly have u(x) = δ−1 for x > d and
u(x) = δ−1e−δ(d−x)/(θ−η) for x ≤ d. Moreover, writing b1 = (θ − η)/θ > 0 for the retention level
with µ(b1) = 0, we have lim inft→∞Xt = −∞, by the law of the iterated logarithm, for b ≤ b1. This
means that the drawdown process (eventually) spends an infinite time in the critical area. However,
in contrast to the classical risk model and the case b = 0, we do not simply get u(x) = δ−1 for x > d

because the diffusion process can re-enter the uncritical area with positive probability. This case is
included in the considerations below.
We motivate our approach in the following way. For a twice continuously differentiable function f :
[0,∞)→ [0, δ−1] with bounded first derivative, we obtain by Itô’s formula applied to f̃(t, x) = e−δtf(x)
and the process ((t,∆t))t≥0 that it holds

e−δtf(∆t)− f(∆0) =
∫ t

0
e−δsf ′(0) dMs −

∫ t

0
e−δsσbf ′(∆s) dWs

+
∫ t

0
e−δs

[
−δf(∆s)− µ(b)f ′(∆s) + σ2b2

2 f ′′(∆s)
]

ds .

Here we used that ∆ is equal to zero in all points of increase of M , by Corollary 1.3. Thus, by
boundedness of f ′, the process

(
e−δtf(∆t)− f(∆0)−

∫ t

0
e−δsf ′(0) dMs −

∫ t

0
e−δsAbf(∆s) ds

)
t≥0

is a martingale, where we write

Abf(x) = −δf(x)− µ(b)f ′(x) + σ2b2

2 f ′′(x) (3.3)
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for x ≥ 0. Thus, if f was a solution to

−δf(x)− µ(b)f ′(x) + σ2b2

2 f ′′(x) = −1{x>d} , x ≥ 0 , (3.4)

with f ′(0) = 0, we could verify that f = u holds (by the same arguments as in the proof of Lemma 2.7).
However, we observe that the right hand side of (3.4) is not continuous. This means that a classical
– twice continuously differentiable – solution cannot exist. In this section, our idea is therefore to
approximate the shifted unit step on right hand side of (3.4) by a sequence (Hk)k∈N of continuous
functions so that we can calculate a sequence of classical solutions (fk)k∈N. We show that this sequence
converges to a limit f as k →∞. Then, we use the martingale approach above with fk in place of f
and employ an additional convergence argument to verify that the limit function is indeed equal to u.
We introduce the following notation which will be frequently used in the present and the subsequent
chapter.

Notation 3.1. For b ∈ (0, 1], we define the strictly positive constants

κ(b) = −µ(b) +
√

[µ(b)]2 + 2δb2σ2

b2σ2 , ξ(b) = µ(b) +
√

[µ(b)]2 + 2δb2σ2

b2σ2 ,

so that x ∈ {−κ(b), ξ(b)} solves the quadratic equation −µ(b)x+ (σbx)2/2 = δ. We note that ξ(b1) =
κ(b1), ξ(b) > κ(b) for b > b1 and ξ(b) < κ(b) for b < b1. We use the abbreviations κ = κ(1) and
ξ = ξ(1).

With this notation, we define the functions Hk : [0,∞)→ [0, 1] and fk : [0,∞)→ (−∞, δ−1) by

Hk(x) = 1
e2k(d−x) + 1

,

fk(x) = κ(b)eξ(b)x + ξ(b)e−κ(b)x

δ[κ(b) + ξ(b)]eξ(b)d
− κ(b)ξ(b)
δ[κ(b) + ξ(b)]

∫ x

0

(
eξ(b)(x−z) − e−κ(b)(x−z))Hk(z) dz , x ≥ 0 ,

for every k ∈ N. The constant preceding the integral has the alternative representation of
1/
√

[µ(b)]2 + 2δσ2b2. We collect all preliminary results on these functions in the following lemma.

Lemma 3.2. For every k ∈ N, Hk is continuous and fk is twice continuously differentiable. We have
Abfk(x) = −Hk(x) for all x ≥ 0 and f ′k(0) = 0. For every x ≥ 0, limk→∞Hk(x) = 1

21{x=d} + 1{x>d}

and limk→∞ fk(x) = f(x), where

f(x) =

C1eξ(b)x + C2e−κ(b)x , x ≤ d ,

δ−1 −
[
δ−1 − (C1eξ(b)d + C2e−κ(b)d)

]
e−κ(b)(x−d) , x > d ,

for

C1 = κ(b)
δ[κ(b) + ξ(b)]eξ(b)d

, C2 = ξ(b)C1
κ(b) .

f : [0,∞) → (0, δ−1) is strictly increasing and continuously differentiable on (0,∞) with f ′(0) = 0.
Additionally, f |[0,d] and f |(d,∞) are classical solutions to Abf(x) = −1{x>d} on the respective domain
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if f ′′(d) is interpreted as a one-sided derivative.

The proof follows by straightforward calculation and can be found in the appendix, p. 117. Figure 3.1
shows a sketch of Hk and fk for different choices of k (black graphs) and their limits (blue graphs).
Plotting fk requires numerical evaluation of the integral. Two possibilities are to use an approximation
(for example the trapezoidal rule) or to rewrite the integral in terms of functions for which value tables
are available (as described in the appendix, p. 119).

d

1 δ−1

d

Figure 3.1 Approximation Hk to the indicator function on right hand side of (3.4) (left) and corresponding
solution fk (right) for different k.

Lemma 3.3. For f as defined in Lemma 3.2, it holds f(x) = u(x) for all x ≥ 0.

Proof. As in the introduction, we write ϑy = ϑy(B) = inf{t ≥ 0 : ∆t > y} for the first entry of the
drawdown into (y,∞) and define a sequence of stopping times (Tn)n∈N by Tn = ϑn ∧n for n ∈ N. For
x < n, we have ∆s ∈ [0, n] for all s ≤ ϑn. By Itô’s formula it follows that

(
e−δ(t∧ϑn)fk(∆t∧ϑn)− fk(∆0) +

∫ t∧ϑn

0
e−δsHk(∆s) ds

)
t≥0

is a martingale, where we have already used that f ′(0) = 0 and Abfk(x) = −Hk(x), x ≥ 0. We
note that stopping at ϑn is important because the derivative f ′k is continuous (and thus, bounded on
bounded intervals) but unbounded from below on [0,∞). This is also visible in Figure 3.1. Taking
expectations, we find

fk(x) = Ex
[
e−δ(t∧ϑn)fk(∆t∧ϑn)

]
+ Ex

[∫ t∧ϑn

0
e−δsHk(∆s) ds

]
.

We note that, for all k ∈ N and x ∈ [0, n], it holds by the mean value theorem:

|fk(x)| ≤ κ(b)eξ(b)n + ξ(b)e−κ(b)n

δ(κ(b) + ξ(b))eξ(b)d
+ n(1 + eξ(b)n)κ(b)ξ(b)

δ(κ(b) + ξ(b)) .

Thus, (fk)k∈N is uniformly bounded on [0, n]. Moreover, Hk takes values in [0, 1] and the integral in
the second expected value takes values in [0, δ−1]. Therefore, by bounded convergence, we find

f(x) = Ex
[
e−δ(t∧ϑn)f(∆t∧ϑn)

]
+ Ex

[∫ t∧ϑn

0
e−δs1{∆s>d} ds

]
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where Fubini’s theorem shows that the limit H(∆s) can be replaced by the indicator function. Next,
we take the limit n→∞, such that (pathwise) ϑn →∞ and consequently ∆t∧ϑn → ∆t for any fixed
t ≥ 0. By bounded convergence for both terms, we get

f(x) = Ex
[
e−δtf(∆t)

]
+ Ex

[∫ t

0
e−δs1{∆s>d} ds

]
.

Now, the assertion follows by taking the limit t→∞, boundedness of f and monotone convergence. �

We observe that the exponential function in the representation of u in Lemma 3.2 for x > d cor-
responds to the Laplace transform of the passage time of an arithmetic Brownian motion of drift
−µ(b) and volatility σb. This can be proved in the same way as Lemma 2.3 iii) via corresponding
martingales (see also Proposition 3.10, below). For x ∈ [0, d], the function has a similar structure as
the Laplace transform of a two-sided exit time of this process (compare [Borodin and Salminen, 2002,
p. 309, Eq. (3.0.5)]). This does not come as a surprise because, similar to the proof of the dynamic
programming principle with the set B′ = {B}, one can show:

Lemma 3.4. The function u fulfils

u(x) =

u(0) · Ex
[
e−δϑ01{ϑ0<ϑd}

]
+ u(d) · Ex

[
e−δϑd1{ϑ0>ϑd}

]
, x ≤ d ,

δ−1 −
(
δ−1 − u(d)

)
· Ex

[
e−δϑd

]
, x > d . �

Figure 3.2 shows, on the left, examples of the return of different constant strategies for the parameter
set of Table 3.1 (given and further explained at the end of this chapter, p. 75) with θ = 0.8. The
considered retention levels are b = 1 (black), b = 0.8 (dark blue), b = 0.5 (medium blue) and b = 0.2
(light blue). We observe that none of the return functions lies below the others for all x. Thus, we
can already conclude that none of the considered strategies is optimal.

dd

1

2

3

1

Figure 3.2 Return functions of constant controls with b ∈ {0.1, 0.5, 0.8, 1} (left) and simple switching
controls with b̌ ∈ {0.1, 0.5, 0.8, 1} and b̂ = 1 (right).

3.1.2 A Note on Simple Switching and General Feedback Controls

In view of the non-optimality of the considered constant controls, a canonical question is if this can
be improved by considering ‘regime dependent’ strategies. We recall that a simple switching strategy
B is induced by a function b(x) = b̌1{x≤d}+ b̂1{x>d}, so that Bt = b(∆B

t ), t ≥ 0. For the classical risk
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model, we argued at this point that the controlled process exists as a piecewise deterministic Markov
process. For the diffusion case, it is also not trivial that the controlled process exists. Indeed, the
drawdown under the simple switching control is defined by the relation

∆B
t = MB

t −
∫ t

0
µ(b(∆B

s )) ds−
∫ t

0
b(∆B

s )σ dWs , t ≥ 0 ,

which is a reflected stochastic differential equation with discontinuous coefficients. The following
definition is taken from [Pilipenko, 2014, Ch. 1] and lightly modified to fit our notation.

Definition 3.5. [Pilipenko, 2014]

Let µ̃ : [0,∞) → R and σ̃ : [0,∞) → R be measurable functions. A pair (C,E) of continuous and
adapted processes C = (Ct)t≥0 and E = (Et)t≥0 is a solution to the stochastic differential equation

Et = x+ Ct −
∫ t

0
µ̃(Es) ds−

∫ t

0
σ̃(Es) dWs , t ≥ 0 , (3.5)

with reflection at zero if all integrals are well-defined, E is non-negative and C is non-decreasing with
C0 = 0 and (1.10) for (C,E) in place of (c, ε).

Remark. Usage of term ‘reflected’ in this context is motivated by the connection of maximum and
drawdown to the Skorohod problem: the definition implies that C is the compensator for E. That is,
if a solution exists, (C,E) is (pathwise) the unique solution to the Skorohod problem for the process
(−Y )t≥0 with Yt = −Et+Ct for t ≥ 0. In particular, by Corollary 1.3, this corresponds to the controlled
surplus process up to distance-preserving shifts of the initial running maximum and surplus. #

We note that the process in Definition 3.5 is a solution in the ‘strong’ sense, i.e. a solution for a
predefined Brownian motion on a given probability space. That means, we can say that Equation
(3.5) has the property of pathwise uniqueness if any two solutions E1 and E2 fulfil E1

t = E2
t for all

t ≥ 0, almost surely. However, as our return and value functions are based on expected values, a
‘weak’ solution will generally be sufficient. That means, there exists a filtered probability space with
the properties stated in the introduction with a Brownian motion and a process fulfilling the equation.
Weak uniqueness therefore refers to uniqueness in law. For an exact definition and distinction of weak
and strong solutions (which merely serve as technical tools here) we refer to [Protter, 2005], specifically
pp. 204,246.
For reflected diffusion equations, such as in Definition 3.5, existence and uniqueness results are well
studied. For example, similar to the basic result for stochastic differential equations without reflection,
there exists a unique strong solution to (3.5) for continuous coefficients µ̃ and σ̃ fulfilling a Lipschitz-
and a linear growth condition, cf. [Pilipenko, 2014, Thm. 1.2.1].
For simple switching controls, the coefficients of (3.5) are discontinuous but still relatively ‘uncom-
plicated’. If we assume that it holds b̌ > 0 (such that the volatility component is bounded away from
zero in the uncritical area), we obtain weak existence by Theorem 4.1 of [Rozkosz and S lomiński,
1997] and pathwise uniqueness by Corollary 4.3 of [Semrau, 2009]. This means that we can apply the
Yamada–Watanabe type Theorem 333 of [Situ, 2005] which states that these two properties combined
imply strong existence and uniqueness. In the following section, we prove a general verification the-
orem which states that a candidate function with certain properties is equal to the return function of
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a feedback strategy if the process under the feedback control exists. As it will turn out, the function
defined below fulfils these conditions. As a consequence, we obtain:

Theorem 3.6. Writing u : [0,∞) → [0, δ−1] for the return function of a simple switching control
with (b̌, b̂) ∈ (0, 1]× [0, 1], we have

u(x) =

C1eξ(b̌)x + C2e−κ(b̌)x , x ≤ d ,

δ−1 − [δ−1 − (C1eξ(b̌)d + C2e−κ(b̌)d)]e−κ(b̂)(x−d) , x > d ,

where

C1 = κ(b̌)κ(b̂)
δ[κ(b̌)(κ(b̂) + ξ(b̌))eξ(b̌)d − ξ(b̌)(κ(b̌)− κ(b̂))e−κ(b̌)d]

, C2 = ξ(b̌)C1

κ(b̌)
,

with the interpretation of ‘κ(b̂) = ∞’ if b̂ = 0. u is increasing and continuously differentiable on
(0,∞) with u′(0) = 0. u|[0,d] and u|(d,∞) are classical solutions to Ab(x)u(x) = −1{x>d} on the
respective domain if u′′(d) is interpreted as a one-sided derivative. �

Some examples of these return functions are displayed on the right hand side of Figure 3.2.
In the degenerate case b̌ = 0, the controlled drawdown corresponds to the deterministic function
t 7→ x+ (θ − η)t for x ≤ d up to the first passage through d at time (d− x)(θ − η)−1. By θ > η, the
drift is strictly positive. Thus, starting at x > d with b̂ > 0, this could be viewed as a process with
reflection at d. For the sake of conciseness, we exclude this ‘outlier’ from our consideration and move
on to the optimisation problem.

3.2 Solution to the Optimisation Problem

In principle, we now follow the same ‘roadmap’ as in Chapter 2. That means, we derive a Hamilton–
Jacobi–Bellman equation and prove that certain solutions thereof can be verified to be the function
v, thus (in a way) obtaining uniqueness. Then we consider separately the two subproblems. The
main part of this section is devoted to finding a strategy which maximises the time in the uncritical
area. In the end, we reconnect the solutions. However, as our ‘warm-up’ already indicates, the proof
techniques and results differ strongly from those of the second chapter (with the small exception of
Subsection 3.2.2).

3.2.1 The HJB Equation Connected and a General Verification Theorem

The results of this section are based on [Brinker and Schmidli, 2021a] and formulated in such a way
that they fit to the case considered in [Brinker and Schmidli, 2022]. We now prove that a solution (in
a sense to be specified) f : [0,∞)→ R to the Hamilton–Jacobi–Bellman equation

inf
b∈[0,1]

{
−δf(x)− µ(b)f ′(x) + σ2b2

2 f ′′(x)
}

= −1{x>d} (3.6)
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can be verified to be the value function in Equation (1.9). With the abbreviation introduced in (3.3),
we could alternatively write infb∈[0,1] A

bf(x) = −1{x>d}. Similarly as in the constant control case, we
note that there cannot exist a classical solution to this equation as the right hand side is discontinuous
at x = d. Hence, if we refer to a function f as a solution to (3.6), we mean the composition of two
classical solutions to the homogeneous and inhomogeneous equation, connected at x = d by a smooth
fit. By f ′′(d) we denote the derivative of f ′ from the left at d, if not stated otherwise. A simple, yet
important, observation is the following. For a strictly increasing function f plugged into (3.6), the
term to be maximised with respect to b is given by

Jf (b) = −µ(b)f ′(x) + σ2b2

2 f ′′(x)

for a fixed x. If f ′(x) ≥ 0 and f ′′(x) > 0 are fulfilled at this point then, in view of

J′f (b) = −θf ′(x) + σ2bf ′′(x) , J′′f (b) = σ2f ′′(x) ,

the optimum is attained at

bf (x) = θf ′(x)
σ2f ′′(x) (3.7)

if this value is in [0, 1]. If, on the other hand, f ′(x) ≥ 0 with f ′′(x) ≤ 0, the optimum is attained at
b = 1. The next two lemmata are interesting on their own and help characterise the solutions to (3.6)
we are looking for. We first show that b = 0 is usually not optimal.

Lemma 3.7. [2021a]

If f : [0,∞) → R is a strictly increasing solution to (3.6), then there is no non-empty interval
(x, x) ⊂ [0,∞) such that the pointwise optimiser b∗ is given by b∗(x) = 0 for all x ∈ (x, x).

Proof. Suppose b∗(x) = 0 is the minimiser on (x, x) ⊂ [0, d]. Then the solution is of the form
f(x) = Cexδ/(θ−η) for x ∈ (x, x). Because f is increasing, C > 0, and therefore f ′′(x) > 0 for
x ∈ (x, x). This means that Jf (b) is minimised at

b∗(x) =
( θf ′(x)
σ2f ′′(x) ∨ 0

)
∧ 1 =

(θ(θ − η)
σ2δ

∨ 0
)
∧ 1 = θ(θ − η)

σ2δ
∧ 1 > 0 .

This is a contradiction. In the same way we can argue for the case (x, x) ⊂ (d,∞), in which b∗(x) = 0
yields f(x) = δ−1 + Cexδ/(θ−η). �

We next show that a strictly increasing solution to (3.6) cannot change from convex to concave except
at d.

Lemma 3.8. [2021a]

Let f : [0,∞) → R be a strictly increasing solution to (3.6). At a point x̄ 6= d with f ′′(x̄) = 0, the
function changes from concave to convex. Every bounded, strictly increasing solution f to (3.6) is
concave for x > d.
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Proof. We first notice that f ′′(x) = 0 cannot hold on an interval of positive length. Assume that
there is an interval (y0, y1) such that y1 < d or y0 > d and f ′′(x) = 0 for x ∈ (y0, y1). Then the
infimum is attained at b∗(x) = 1 for all x ∈ (y0, y1). By solving the resulting equation, we obtain
f ′′(x) = Cδ[µ(1)]−1f ′(x) for some constant C ∈ R. But this implies that C = 0 and f ′(x) = 0, which
is a contradiction. Let x̄ be a point with f ′′(x̄) = 0. Suppose that f ′(x̄) = 0. Then f(x̄) = δ−11{x̄>d}.
Since f is strictly increasing, there can at most be one such point on (0, d) and (d,∞), respectively.
If f ′(x̄) > 0, then the infimum of Jf (b) is taken in b = 1 in an environment of x̄ by the continuity
of |θf ′(x)/(σ2f ′′(x))|, which tends to ∞. Note that this implies that Jf (b) is increasing in b for any
sign of f ′′(x) in this environment. This implies that f ′′ is differentiable in an environment of x̄. In
particular, this shows that points with f ′′(x̄) = 0 must be isolated points as we show next. Assume
that there is such a point. Due to the continuity of the second derivative (except at x = d, which is
excluded), either f ′′(x) ≥ 0 or f ′′(x) < 0 on (x̄− ε, x̄) with a sufficiently small ε > 0. In any case, we
can assume that b = 1 is optimal on (x̄− ε, x̄). If f ′′(x) ≥ 0 on this interval, f ′(x) and f(x) are both
increasing, implying that f ′′(x) is increasing, too, by

σ2

2 f
′′(x) = −1{x>d} + δf(x) + µ(1)f ′(x) ,

where the indicator function is constant because we have excluded d. This contradicts f ′′(x̄) = 0. We
conclude that f ′′(x) < 0 on (x̄ − ε, x̄). Let us suppose that, additionally, f ′′(x) < 0 on (x̄, x̄ + ε̃) for
some ε̃ > 0. Then, the supremum is attained at b = 1 for x ∈ (x̄− ε, x̄+ ε̃). By

σ2

2 f
′′′(x) = δf ′(x) + µ(1)f ′′(x) ,

the third derivative of f exists and is continuous on this interval. We get f ′′′(x̄) = 0, so that it follows
from the differential equation that δf ′(x̄) = 0 (and δf(x̄) = 0). This is, again, a contradiction because
f ′ is strictly increasing on (x̄− ε, x̄+ ε̃). Thus, the only possible case is that f ′′ changes its sign from
negative to positive in x̄. In particular, there can be at most one change of the sign on each interval,
(0, d) and (d,∞).
Now we prove the second statement. Assume that there exists an inflection point x̄ > d. Then, by
the arguments above, f ′′(x) > 0 for all x > x̄. The convexity implies that for fixed x1 and x2 with
x2 > x1 > x̄ and any x > x2, we have:

f(x) ≥ f(x1) + (f(x2)− f(x1)) x− x1
x2 − x1

,

where the right hand side diverges to ∞ as x→∞ because f is strictly increasing. Then f would not
be bounded from above, which is a contradiction. �

We formulate the following theorem in such a way that it can also be utilised to connect a predefined
(feedback) strategy to its return. For example, this applies to the function u defined in Theorem 3.6.
For this purpose, we introduce the following notation. For x ≥ 0, denote by I(x) ⊆ [0, 1] a compact
set of possible retention levels to choose from when the drawdown is currently x. By BI we denote
the set of strategies B ∈ B with Bt ∈ I(∆B

t ), t ≥ 0. Our optimisation problem then corresponds to
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defining I(x) = [0, 1] for all x ≥ 0 and BI = B.

Theorem 3.9 (General Verification Theorem). [2021a]

We assume f : [0,∞)→ R is a bounded solution to

inf
b∈I(x)

{
−δf(x)− µ(b)f ′(x) + σ2b2

2 f ′′(x)
}

= −1{x>d} (3.8)

with f ′(0) ≥ 0. We have f(x) ≤ vB(x) for every strategy B ∈ BI and all x ≥ 0. If, in addition,
for each x there is a minimiser b∗(x) ∈ I(x) in (3.8) such that the surplus process X∗ and the
corresponding drawdown process ∆∗ under the feedback strategy B∗ with B∗t = b∗(∆∗t ), t ≥ 0, exist
and either f ′(0) = 0 holds or the controlled running maximum M∗ is constant, then we have f(x) =
vB
∗(x) = infB∈BI

vB(x) for all x ≥ 0.

Proof. From the differentiability properties of f we conclude that we can apply a generalised version
of Itô’s formula (compare, for example, [Elworthy et al., 2007, Thm. 2.1 and Eq. (2.23)]) to find:

e−δtf(∆B
t )− f(∆B

0 ) =
∫ t

0
e−δsf ′(∆B

s ) dMB
s −

∫ t

0
e−δsσBsf ′(∆B

s ) dWs +
∫ t

0
e−δsABsf(∆B

s ) ds

≥
∫ t

0
e−δsf ′(0) dMB

s −
∫ t

0
e−δsσBsf ′(∆B

s ) dWs −
∫ t

0
e−δs1{∆B

s >d} ds (3.9)

for B ∈ BI. Here we have used that the drawdown is equal to zero whenever the running maximum
increases. Now, by its continuity on [0,∞), f ′ is bounded on every compact interval [0, n], n ∈ N.
We define a sequence of finite stopping times (Tn)n∈N by Tn = ϑn(B) ∧ n for n ∈ N and we have that
Tn → ∞ as n → ∞ (pathwise). For every n, the stochastic integral on the right hand side of (3.9)
stopped at Tn is a martingale of expectation 0. Taking expectations and using f ′(0) ≥ 0, we find:

f(x) ≤ Ex
[
e−δt∧Tnf(∆B

t∧Tn)
]

+ Ex
[∫ t∧Tn

0
e−δs1{∆B

s >d} ds
]
.

By bounded (first term) and monotone (second term) convergence, we firstly let n → ∞ and then
t → ∞, obtaining f(x) ≤ vB(x). Provided that ∆∗ exists, we have B∗ ∈ BI and we can repeat the
argument with the strategy B∗ to obtain f(x) = vB

∗(x) and therefore f(x) = infB∈BI
vB(x). �

We can connect a feedback strategy induced by a function b(x) to its return in the following way. For
the feedback strategy B associated with b, the retention level Bt = b(∆B

t ) at time t is determined
by the function b and the current drawdown. Suppose the surplus process XB under this feedback
control B exists (as a solution to a stochastic differential equation) and f is a bounded solution to

−δf(x)− µ(b(x))f ′(x) + σ2[b(x)]2
2 f ′′(x) = −1{x>d}

with f ′(0) = 0 or such that MB is constant, then it follows from Theorem 4.6 with I(x) = {b(x)} for
all x ≥ 0 that f is the return of this feedback control.
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3.2.2 Minimising the Recovery Time

We consider in this section the function V : (d,∞)→ [0, 1] defined by

V (x) = sup
B∈B

Ex
[
e−δϑ(B)] . (3.10)

By the same heuristics as in Chapter 2, we expect that the optimal strategy is constant and induces
a maximal drift. This is indeed the case. We recall the definition κ = κ(1) from Notation 3.1.

Proposition 3.10. [2022]

We have V (x) = e−κ(x−d) for x ≥ d and a strategy which is constant and equal to 1 up to the first
passage through d is optimal. The function v fulfils

v(x) = 1
δ
−
(1
δ
− v(d)

)
e−κ(x−d) , x > d ,

and infb∈[0,1] A
bv(x) = −1 with the pointwise optimiser b∗(x) = 1 for all x > d.

Proof. Following the constant strategy B with Bt = 1 up to time ϑd(B), we have ∆B
t = −µ(1)t−σWt

for t ≤ ϑd(B) and the process (
e−κ∆B

t∧ϑd(B)−δ(t∧ϑd(B)))
t≥0

is a martingale by the optional stopping theorem. Thus, taking expectations and letting t → ∞, we
obtain Ex[e−κd−δϑd(B)] = e−κx by bounded convergence. Therefore, f(x) = e−κ(x−d) is the return
V B(x) of this strategy for all x > d. On the other hand, let B be an arbitrary admissible strategy. It
follows that Abf(x) ≤ 0 for all x ≥ d and b ∈ [0, 1] by

−δ − (θ − η − θb)κ+ σ2b2

2 κ2 ≤ −δ + ηκ+ σ2

2 κ
2 = 0 .

Additionally, we get by the classical version of Itô’s formula that the process

(
e−δ(t∧ϑd(B))f(∆B

t∧ϑd(B))− f(∆B
0 )−

∫ t∧ϑd(B)

0
e−δsABsf(∆B

s ) ds
)
t≥0

is a martingale. From here, the assertion is deduced by following closely the proof of Proposition 2.17
and using continuity of paths of the drawdown process. �

3.2.3 Maximising the Time to Critical Drawdown

In this section, we consider the function V : [0, d]→ [0, 1] defined by

V (x) = inf
B∈B

Ex
[
e−δϑ(B)] . (3.11)

In the same way as Theorem 3.9, we obtain the following result.
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Theorem 3.11 (Verification Theorem for V ). [2022]

We suppose f : [0, d] → [0, 1] is a bounded solution to infb∈[0,1] A
bf(x) = 0 with f ′(0) ≥ 0 and

f(d) = 1. We have f(x) ≤ V B(x) for every strategy B ∈ B and all x ∈ [0, d]. If, in addition, for
each x there is a minimiser b∗(x) ∈ [0, 1] such that the surplus process X∗ and the corresponding
drawdown process ∆∗ under the feedback strategy B∗ with B∗t = b∗(∆∗t ), t ≥ 0, exist and either
f ′(0) = 0 holds or M∗ is constant, then f(x) = V B∗(x) = V (x) for all x ∈ [0, d]. �

We already know, by Lemma 3.8, that the second derivative of a candidate solution can only change
its sign once and if it does, the function goes from concave to convex. The following technical result
follows from the fact that if f is concave on an interval, b = 1 is optimal, so that f solves an ordinary
differential equation. A detailed proof is found in the appendix, p. 119.

Lemma 3.12. [2022]

Let f : [0, d] → R be a non-negative and strictly increasing solution to infb∈[0,1] A
bf(x) = 0. There is

no non-empty interval (x, x) ⊂ [0, d] such that f ′′(x) ≤ 0 for all x ∈ (x, x).

This lemma implies that we can expect our value function V to be convex. Intuitively, this means
that the time up to the first critical drawdown is longer and decreases slower if the initial value is
small. Partly, this can be explained with the effect that two paths with different small (as opposed to
‘almost critical’) initial values are more likely to meet before they reach the critical line for the first
time. Another explanation is that the exponential preference discounting puts more weight on early
time intervals. That means, close to the critical line, small differences of the initial drawdown have a
greater impact than close to zero because the exit times are typically earlier.

Remark. We recall that also the functions in the numerical examples of Chapter 2 were convex
on [0, d]. However, we did not consider convexity in our proofs for the general penalised overshoot
problem vC in Chapter 2 because the above explanation only applies to sufficiently large C ≥ Cd. #

Assuming convexity, we now construct a candidate function by a (partly) heuristic approach. Once we
have finished the construction, we will use the explicit representation to fill in the missing information.

Solving the Homogeneous HJB Equation

For the sake of clarity of presentation, we assign numbers to the different steps of the construction.
Step 1: As noted in Subsection 3.2.1, for an increasing and convex function f : [0,∞) → (0,∞), the
pointwise minimiser b∗ takes the form b∗(x) = bf (x) = θf ′(x)/(σ2f ′′(x)) if this value lies in [0, 1].
Plugging this expression into the Hamilton–Jacobi–Bellman equation yields the non-linear, modified
equation

−δf(x) + (θ − η)f ′(x)− θ2

2σ2
[f ′(x)]2
f ′′(x) = 0 . (3.12)

Now we follow the approach of Højgaard and Taksar [1998] by using a substitution to solve this
equation. To this purpose, we firstly notice that x 7→ − ln(f ′(x)) is strictly decreasing and therefore
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Figure 3.3 As the controlled drawdown approaches zero, it is forced away from the reflection barrier.

has an inverse function Y with the same properties. With this definition, we have f ′(Y (z)) = e−z and
f ′′(Y (z)) = −e−z/Y ′(z). Equation (3.12) takes the form

−δf(Y (z)) + (θ − η)e−z + θ2

2σ2 e−zY ′(z) = 0 . (3.13)

Differentiating once again, we obtain an ordinary differential equation for Y , independent of f :

−δe−zY ′(z)− (θ − η)e−z − θ2

2σ2 e−zY ′(z) + θ2

2σ2 e−zY ′′(z) = 0 ,

or, equivalently:

−
(
θ2 + 2δσ2)Y ′(z) + θ2Y ′′(z) = 2σ2(θ − η) .

The general solution to this equation is

Y (z) = C1eζz − ρz − C2 , ζ = 2δσ2 + θ2

θ2 > 1 , ρ = 2σ2(θ − η)
2δσ2 + θ2 > 0 . (3.14)

Step 2: This means, our next task is to derive appropriate constants C1 and C2. The initial conditions
of Theorem 3.11 imply that it should hold f ′(0) = 0 unless X∗ never exceeds the initial maximum
M∗0 = m0. If we assume that it holds f ′(Y (z)) = e−z = 0, this means z = ∞ and Y (∞) = 0. This
is not possible because both, ζ and ρ, are strictly positive. As a consequence, we expect that X∗

never grows beyond the initial maximum. This can only happen if the drift becomes negative and,
simultaneously, the volatility of the process goes to zero whenever X∗ approaches its maximum. That
means, bf (x) has to converge to zero (in a certain way to be specified below), as x approaches zero.
This is illustrated in Figure 3.3 in which the graph represents the controlled drawdown process with
high (red) and low (blue) retention levels. The combination bf (0) = 0 and f ′(0) = 0 would imply
f(0) = 0, by (3.12), which is not possible. Therefore, we assume limx→0 f

′′(x) =∞. That means, by
(3.12) and bf (x) → 0 as x → 0, we have the initial condition f ′(0) = δf(0)/(θ − η) (assuming that
f(0) is known). From this, we derive initial conditions for Y : we let z0 = ln[(θ− η)/(δf(0))] such that

f ′(Y (z0)) = e−z0 = δf(0)
θ − η
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implies Y (z0) = 0 and, thus, Y ′(z0) = e−z0/f ′′(0) = 0. With this, we arrive at

Y (z) = ρ

ζ

[
eζ(z−z0) − ζ(z − z0)− 1

]
,

which is convex for z ∈ R.
Step 3: Our next step is to find the inverse function Z (and its domain and image) for Y such that we
can define the corresponding function f by f ′(x) = f ′(Y (Z(x))) = e−Z(x). We observe that Y is not
bijective as we have limz→∞ Y (z) = limz→−∞ Y (z) =∞. Therefore, we have to choose which ‘branch’
of Y to invert. Because f is supposed to be convex, f ′ should be increasing. That means, Z (and also
Y ) should be decreasing. Explicit calculations show that Y ′(z) < 0 for z ∈ (−∞, z0). In particular,
we define Z : [0,∞) → (−∞, z0] as the inverse of Y : (−∞, z0] → [0,∞). We prove in the appendix,
p. 120, that Z can be written in terms of the upper branch W of the Lambert W function:

Z(x) = −x
ρ
− 1
ζ
− ln

(δf(0)
θ − η

)
−

W
(
−e−(1+ζ/ρx))

ζ
. (3.15)

The argument of the Lambert W function is an element of [−e−1, 0] for all x ≥ 0. This means, Z is
determined by the part of W in the grey rectangle on left hand side of Figure 3.4. Moreover, it holds
Z(0) = z0. With this definition, we choose the ansatz

f(x) = f(0) +
∫ x

0
e−Z(y) dy . (3.16)

Using a substitution in the integral, one can show that it holds

f ′(x) = δf(0)
θ − η

Q(x) , f(x) = δf(0)
θ − η

P (x) (3.17)

with the definitions

Q(x) =
[
−W

(
−e−(1+ζ/ρx)

)]−1/ζ
, P (x) =

[
1 + W(−e−(1+ζ/ρx))

1− ζ
]
ρQ(x) , x ≥ 0 . (3.18)

We prove this identity in the appendix, p. 120.
Step 4: Lastly, we have a closer look at the function bf , to see whether or not f also solves the
Hamilton–Jacobi–Bellman equation, i.e. to determine for which x we have bf (x) ∈ [0, 1]. By noticing
that it holds

bf (x) = θf ′(x)
σ2f ′′(x) = −θY

′(Z(x))
σ2 = θρ

σ2

[
1 + W

(
−e−(1+ζ/ρx)

)]
, (3.19)

we find that bf is a non-negative, strictly increasing function with bf (0) = 0 and limx→∞ bf (x) =
θρσ−2. That means, if θρσ−2 ≤ 1, we have bf (x) ∈ [0, 1] for all x. Otherwise, there exists a unique
x0 > 0, given by

x0 = ρ

ζ
ln
( θρ

θρ− σ2

)
− σ2

θζ
, (3.20)
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such that bf (x) ∈ [0, 1] for all x ≤ x0, bf (x0) = 1 and bf (x) > 1 for all x > x0. With this, our
construction is completed.
As seen in the last step of the construction, we have to distinguish two cases, depending on whether
θρσ−2 ≤ 1 is fulfilled. Plugging in the definition of ρ, we obtain that this can be written as a condition
for the parameter θ, which is ‘externally’ determined by the reinsurer. This inspires the following
definition.

Notation 3.13. We distinguish the cases of cheap reinsurance with θ ≤ σ2ξ = η +
√
η2 + 2δσ2 (or,

equivalently, θρ ≤ σ2) and expensive reinsurance with θ > σ2ξ (that is, θρ > σ2).

Since θ represents the safety loading of the reinsurance premium and η is the safety loading charged by
the insurer, these inequalities can be interpreted as the relation of the respective prices of re- and first
insurance. It should be acknowledged that, in this context, ‘expensive’ means that the reinsurance
safety loading is more than twice as large as the first insurance safety loading. The case of ‘cheap’
reinsurance thus covers most realistic scenarios. However, including the case of expensive reinsurance
in our considerations allows further insights on the influence of pricing (in Section 3.3). Moreover, it
will be useful to assign a name to the term on the far right of Equation (3.19) as a function of x:

Notation 3.14. We define r : [0,∞)→ [0, θρσ−2] by

r(x) = θρ

σ2

[
1 + W

(
−e−(1+ζ/ρx)

)]
, x ≥ 0 . (3.21)

−e−1

−1

1

x0

Figure 3.4 Left: The functions x 7→ xex (blue graph) and W (black solid graph). Right: r (solid) and θρσ−2

(dotted) for θ categorised as cheap (light blue) and expensive (dark blue).

From our construction, we deduce:

Proposition 3.15. [2022]

We assume that reinsurance is cheap or that reinsurance is expensive with x0 ≥ d. The function
f : [0, d] → [0, 1] given by f(x) = P (x)/P (d) fulfils f(d) = 1, f ′(0) > 0 and is a solution to
infb∈[0,1] A

bf(x) = 0 for all x ∈ [0, d]. The pointwise minimiser b∗ is given by b∗(x) = r(x) for
x ∈ [0, d]. �

With a few extra arguments (found in the appendix, p. 121), we can extend the solution to [0, d] in
the case of expensive reinsurance with x0 < d. In particular, because bf is increasing, the ansatz is to
choose the minimiser b = 1.
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Proposition 3.16. [2022]

Assume that reinsurance is expensive with x0 < d. We define f : [0, d]→ [0, 1] by

f(x) =

C0P (x) , x ≤ x0 ,

C1eξx + C2e−κx , x > x0 ,

with

C0 = κξσ2(ξ + κ)
Q(x0)[(κσ2 + θ)κeξ(d−x0) − (σ2ξ − θ)ξe−κ(d−x0)]

,

C1 = C0Q(x0)e−κ(d−x0) + κ

ξeξx0e−κ(d−x0) + κeξd
, C2 = 1− C1eξd

e−κd . (3.22)

This function fulfils f(d) = 1, f ′(0) > 0 and is a solution to infb∈[0,1] A
bf(x) = 0 for all x ∈ [0, d].

The pointwise minimiser b∗ is given by b∗(x) = r(x)1{x∈[0,x0]} + 1{x∈(x0,d]}.

In view of our verification theorem, this means that f can be shown to be the value function V if we
are able to prove existence of the controlled process. To this purpose, we derive next some important
properties of the function r determining the optimiser.

Properties of the Minimiser and Existence

We note that r, defined in Notation 3.14, is independent of f and d. The following lemma summarises
our findings ‘hidden’ in the construction and further technical properties of this function.

Lemma 3.17. [2022]

i) r is strictly increasing and concave with r(0) = 0 and limx→∞ r(x) = θρσ−2.
ii) In the case of expensive reinsurance, θ > σ2ξ, there exists a unique x0 > 0, defined as in (3.20),

with r(x0) = 1. Interpreted as a function of the parameter θ, x0 : (σ2ξ,∞) → (0,∞) is strictly
decreasing with limθ→σ2ξ x0(θ) = ∞ and limθ→∞ x0(θ) = 0. In particular, there exists a unique
θd ∈ (σ2ξ,∞) with x0(θd) = d.

iii) There exists a finite constant C > 0 such that r(x) ≤ C
√
x holds for all x ≥ 0. For every

ε > 0 there is a finite constant c > 0 such that r(x) ≥ c
√
x for all x ∈ [0, ε]. In particular, r is

½-Hölder continuous.

Statement ii) implies that the condition x0 < d could be viewed as another condition on θ, i.e. θ > θd.
This means, Proposition 3.15 covers the cases of cheap and ‘moderately’ expensive reinsurance and
Proposition 3.16 corresponds to the case of ‘extremely’ expensive reinsurance. iii) implies that

√
x is

an asymptotically sharp bound for r(x) as x→ 0, which we will use below. The proof of Lemma 3.17
is found in the appendix, p. 121.
Now we show existence of the controlled processes. In consideration of our construction, we expect
that the running maximum never increases (compare Figure 3.3). Therefore, we start with a regular
stochastic differential equation without reflection.

Lemma 3.18. [2022]

We define b∗ : R → [0, 1] by b∗(x) = r(x)1{x∈[0,x0]} + 1{x>x0} with the interpretation [0, x0] = [0,∞)
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if x0 does not exist. On the set [0, d], this function coincides with b∗ defined in Propositions 3.15 or
3.16, respectively. There exists a unique strong solution to the stochastic differential equation

Et = x+
∫ t

0

[
(θ − η)− θb∗(Es)

]
ds−

∫ t

0
σb∗(Es) dWs , t ≥ 0 . (3.23)

Many existence and uniqueness results impose conditions on the linear growth of the drift component.
However, Lemma 3.17 implies that there is no linear bound for our drift close to zero. One possibility
would be to approximate the differential equation and construct a series of solutions which converge
to a limiting process. This is done for a comparable stochastic differential equation in Chapter 6.2 of
[Ikeda and Watanabe, 1989]. However, the specific information on b∗ allows us to use a combination
of different shortcuts for diffusion equations.

Proof of Lemma 3.18. We define α(x) = (θ − η) − θb∗(x) and β(x) = −σb∗(x), x ∈ R, and observe
that both of these functions are bounded and continuous. Theorem 2.2 together with Remark 2.1 in
[Ikeda and Watanabe, 1989] ensures existence of a weak solution. Since β is Hölder continuous and
α is non-increasing it follows from [Yamada, 1973, Ex. 1.1], that Equation (3.23) has the property of
pathwise uniqueness. Hence, there is a unique strong solution by Theorem 1.1 of Ikeda and Watanabe
[1989]. �

Heuristically, it is clear that the solution E from the previous lemma is non-negative due to the
definition of b∗ (recall, again, Figure 3.3). The next lemma specifies the behaviour of E at its reflecting
boundary.

Lemma 3.19. Denote by E the solution to (3.23) in Lemma 3.18.
i) E is non-negative with Et ≥ 0 for all t ≥ 0, almost surely, for all initial values x ≥ 0.
ii) We denote by τ0 the time of the first arrival τ0 = inf{t ≥ 0 : Et = 0} at zero. If reinsurance is

cheap and θ2 < 2δσ2, we have b∗(x) = r(x), x ≥ 0, and

Px[τ0 <∞] =
[
1− σ2

θρ
r(x)

](2δσ2−θ2)/(2δσ2+θ2)
, x > 0 . (3.24)

Otherwise, τ0 is almost surely finite.

Proof. We start with i). For x ≥ 0, it follows from Theorem 4.53 in [Engelbert and Schmidt, 1991]
that the stochastic differential equation

Zt = x+
∫ t

0
[−θb∗(Zs)] ds+

∫ t

0
[−σb∗(Zs)] dWs (3.25)

has a unique strong solution Z which is non-negative in the above sense. Intuitively, the reason (and
difference to (3.23)) is that Z, given by Equation (3.25), is ‘trapped’ in zero: once Z reaches the
x-axis, drift and volatility vanish. We note that it holds (θ − η)− θb∗(x) ≥ −θb∗(x), that is, the drift
component in (3.23) is larger than the one in (3.25). Thus, the comparison theorem in [Ikeda and
Watanabe, 1989, Thm. 1.1] implies Et ≥ Zt ≥ 0 for all t ≥ 0, almost surely. We prove assertion ii) in
the appendix, p. 122, because it is rather complementary than necessary for our existence result (but
interesting nonetheless). �
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Remark. As it will turn out, the re-appearing constant θρσ−2 is a critical retention level. Another
critical value is the retention level b1 = (θ − η)θ−1 ∈ (0, 1) of ‘zero drift’. The inequality θρσ−2 ≥ b1

is equivalent to θ2 ≥ 2δσ2 and can only be harmed if reinsurance is cheap and η2 < 2δσ2. For
θ2 ≥ 2δσ2, the retention level θρσ−2 leads to a negative drift of the process E with non-zero volatility
θρσ−1. Otherwise, the drift of the process is positive for this retention level. This observation yields
an intuitive explanation for the bound for θ in Lemma 3.19 ii). #

Corollary 3.20. [2022]

For b∗ as defined in Propositions 3.15 or 3.16, respectively, the surplus process X∗ (with initial capital
X∗0 = ν0), its drawdown ∆∗ and running maximum M∗ (starting at M∗ = m0) under the feedback
control B∗ with B∗t = b∗(∆∗t ), t ≥ 0, exist. In particular, B∗ is an admissible strategy. The respective
function f defined in Propositions 3.15, 3.16 is the value function, i.e. f(x) = V B∗(x) = V (x) for all
x ∈ [0, d], and B∗ is optimal.

Proof. Let x = m0−ν0. By Lemmata 3.18 and 3.19 i), it follows that E and C with Ct = 0, t ≥ 0, form
a solution to the corresponding reflected equation of Definition 3.5. It follows from the uniqueness
of solutions to the Skorohod problem, Corollary 1.3, that E is the drawdown and C is the running
maximum of the process X = −E, that is,

Xt = −(m0 − ν0) +
∫ t

0

[
η − (1− θb∗(Es)θ

]
ds+

∫ t

0
σb∗(Es) dWs , t ≥ 0 .

In particular, X∗ is defined by X∗t = Xt + m0, t ≥ 0, with the constant running maximum M∗ with
M∗t = m0, t ≥ 0. Because b∗ is continuous, B∗ is continuous and adapted and, thus, progressively
measurable. This means that the strategy is admissible. The assertion follows by Theorem 3.11. �

With this, we have explicitly calculated a strategy to postpone the first critical drawdown for as long
as possible. We discuss consequences and interpretations of Corollary 3.20 in Section 3.3 at the end of
this chapter. Next, we return to our original problem of minimising the expected time in drawdown.
We note that, by Theorem 1.5 and because the paths of the drawdown of a diffusion process are
continuous, we have v(x) = v(d)V (x), x ∈ [0, d]. The following result is therefore a direct consequence
of Corollary 3.20.

Corollary 3.21. [2022]

The function v fulfils v(x) = v(d)V (x) and infb∈[0,1] A
bv(x) = 0 for x ∈ [0, d] with the pointwise

optimiser b∗ defined as in Propositions 3.15 or 3.16. �

3.2.4 Minimal Expected Time in Critical Drawdown

By Proposition 3.10 and Corollary 3.21, we know that – up to the unknown value v(d) – v is composed
of a classical solution to infb∈[0,1] A

bv(x) = −1 for x > d and a classical solution to infb∈[0,1] A
bv(x) = 0

for x ≤ d. The corresponding pointwise minimiser in the Hamilton–Jacobi–Bellman equation is

b∗(x) =

θρσ
−2[1 + W

(
−e−(1+ζ/ρx))] , x ∈ [0, x0 ∧ d] ,

1 , x > x0 ∧ d ,
(3.26)
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with the interpretation ‘x0 =∞’ if reinsurance is cheap.

Lemma 3.22. [2022]

Let b∗ : R→ [0, 1] be defined as in Equation (3.26) for x ≥ 0 and, otherwise, equal to zero. The surplus
process X∗ (with initial capital X∗0 = ν0), its drawdown ∆∗ and running maximum M∗ (starting at
M∗ = m0) under the feedback control B∗ with B∗t = b∗(∆∗t ), t ≥ 0, exist. M∗ is constant and B∗ is
an admissible strategy.

In the case of expensive reinsurance with x0 ≤ d, b∗ coincides with the ‘old’ optimiser from the
previous section and the assertion follows from Corollary 3.20. Otherwise, b∗ has a jump at x = d

such that the classical results by Ikeda and Watanabe [1989] used in the proof of Lemma 3.18 cannot
be applied. One possibility is to adapt the techniques used by Halidias and Kloeden [2006] in the
proof of their Theorem 3.1 to the case of a decreasing drift and a ½-Hölder continuous volatility (for
diffusion equations). Another possibility is to apply Theorem 1 of [Kyprianou and Loeffen, 2010]
by connecting ∆∗ to a so-called ‘refracted’ Lévy process. We provide details on both methods in
the appendix, p. 124. Additionally, it should be noted that this special case is the only scenario in
which we ‘just’ get a progressively measurable B∗ instead of a continuous strategy. In particular,
b∗(d) 6= b∗(d+) causes a jump of t 7→ B∗t (ω) if t 7→ ∆∗t (ω) approaches d.
In view of our verification theorem, the natural candidate for v(d) is the constant Cd = κ/[δ(V ′(d−)+
κ)] ∈ (0, δ−1) leading to a smooth fit of f(x) = CdV (x), x ≤ d, and g(x) = δ−1 −

(
δ−1 − Cd

)
e−κ(x−d),

x > d. Here, V is the maximised Laplace transform of the first exit from [0, d] defined in (3.11).
Indeed, the desired explicit representation of the minimal expected time in drawdown and an optimal
strategy follow directly by Theorem 3.9, Proposition 3.10, Corollary 3.21 and Lemma 3.22. We recall
that Q and P are defined in terms of the Lambert W function, by (3.18).

Theorem 3.23. [2022]

The function v is the unique solution to (3.6) fulfilling the conditions stated in Theorem 3.9. An
optimal strategy is the feedback strategy induced by the pointwise minimiser b∗ given in Equation
(3.26), above. In particular, the controlled running maximum is constant.
Moreover, v has the following explicit representations:

i) If reinsurance is cheap or expensive with x0 ≥ d, we have

v(x) =

CdP (x)/P (d) , x ∈ [0, d] ,

δ−1 −
(
δ−1 − Cd

)
e−κ(x−d) , x > d ,

with

Cd = κP (d)
δ(Q(d) + P (d)κ) = v(d) .

ii) If reinsurance is expensive with x0 > d, we have, for the constants C0, C1 and C2 given in
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Equation (3.22),

v(x) =


CdC0P (x) , x ∈ [0, x0] ,

Cd(C1eξx + C2e−κx) , x ∈ (x0, d] ,

δ−1 −
(
δ−1 − Cd

)
e−κ(x−d) , x > d ,

with

Cd = κ

δ(C1ξeξd − C2κe−κd + κ) = v(d) .
�

3.3 Numerical Examples

For our numerical study, we consider the parameter set given in Table 3.1 on p. 75. We assume in all
cases that the drift of the insurance surplus is η = 0.5 with volatility σ = 1. The parameters δ = 0.3
and d = 0.83 could be interpreted as a long term orientation with a moderately high tolerance for
drawdowns. The price of reinsurance is an external variable which cannot be changed by the insurer
and, as we have seen, influences if and to what extent reinsurance is bought. Thus, a naturally arising
question is, at which maximal price reinsurance is still cost-effective. The explicit representations
allow us to consider the value function and the pointwise minimiser as functions of x and θ and find
an answer to this question for the diffusion model. We consider (x, θ) ∈ [0, 2d]× [η + 10−2, 2.5]. The
graph in Figure 3.5(A) belongs to the value functions of our subproblems: the respective, optimised
Laplace transform V of the passage time of d which takes values in [0, 1]. For x > d, we define V in
(3.10) as the minimal Laplace transform of the recovery time and, for x ≤ d, we define V in (3.11) as
the maximal Laplace transform of the time to critical drawdown. In particular, small values of V in
Figure 3.5(A) suggest that the controlled process stays in the initial regime for a long time whereas
values close to 1 indicate that the drawdown will soon transition to the adjoining area. Because for
x > d, the optimal strategy is independent of θ, V (given by (x, θ) 7→ e−κ(x−d)) is independent of θ as
well. For x ≤ d, the optimal strategy is given in terms of the Lambert W function and V is increasing
and convex. We recall that this reflects that the time until the favourable area is left is shorter and
decreases faster for initial drawdowns close to d. Additionally, we can see in Figure 3.5(A) that this
effect is stronger if reinsurance is cheap. Figure 3.5(B) shows the value function v of our original
optimisation problem of minimising the expected time in drawdown, defined in (1.9), as a function of
x and θ. This function is convex for x ≤ d and concave for x > d. In particular, for x > d, the function
depends on θ only by the value on the boundary, v(d). As x→∞, it converges to δ−1 ≈ 3.3333 in our
example. As for the classical risk model, we observe that the time in critical drawdown is generally
longer for larger ‘price’ parameters θ. The pointwise optimiser, defined as in Equation (3.26), for all
three problems is displayed in Figure 3.5(C). For critical x > d, the optimal retention level is always
equal to one, that means, no reinsurance should be bought. For smaller x, the optimiser takes the
shape induced by the Lambert W function. In particular, for all θ for which x0(θ) is not defined or
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(a) Optimised Laplace transform V of ϑ(B). (b) Minimal expected time in critical drawdown v.

(c) Pointwise minimiser b∗.

Figure 3.5 Value functions and pointwise minimiser in dependence of x ∈ [0, 2d] and θ ∈ [η + 10−2, 2.5] for
the parameter set of Table 3.1.

η σ δ d

0.5 1 0.3 0.83

√
2δσ2 η +

√
η2 + 2δσ2 θd

0.7746 1.4220 1.5790

Table 3.1 Parameters of insurance surplus and preference (left) and critical reinsurance prices (right).
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Figure 3.6 Path simulations without reinsurance and with optimal feedback strategies for different θ.
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which fulfil x0(θ) > d, this is the case whenever the drawdown is uncritical, x ∈ [0, d]. This causes a
discontinuity of x 7→ b∗(x, θ) at x = d. In our example, the largest safety loading qualifying as ‘cheap’
reinsurance is 1.4220, as seen on the right in Table 3.1. That means, for θ ≤ 1.4220, x0(θ) is not
defined and it is always optimal to buy reinsurance in the uncritical area (independently of the critical
drawdown size d). For our explicit d, we can determine another critical safety loading: θd ≈ 1.5790.
This is the smallest θ fulfilling x0(θ) ≤ d. For θ ≥ θd, the optimal retention level is equal to one for
x ∈ [x0(θ), d]. In particular, the boundary of the flattened area on the top of the graph of b∗ is the
curve θ 7→ (x0(θ), θ).
The properties of v and the influence of θ are also visible in the path simulations of Figure 3.6. These
are colour coded in the same way as in the previous chapter, i.e. small retention levels are represented
by a blue tint of the graph. We use the same realisations of the driving Brownian motion’s increments
for all graphs. We compare a simulation of a path of the surplus without reinsurance, (A), to paths
under optimal reinsurance for different θ ∈ {1.6, 1.2, 0.8, 0.7, 0.6}, (B)–(F). The largest value, θ = 1.6,
is considered ‘expensive’, all other values are ‘cheap’. A special choice is θ = 0.6 <

√
2δσ2 ≈ 0.7746.

Here, the maximal retention level θρσ−2 = 0.1250 for uncritical drawdowns leads to a negative drift
µ(0.1250) = −0.0250 of the controlled surplus process. As we would expect (in view of Lemma 3.19 ii)),
this path does not arrive at the initial maximum within the observed time span. In this example,
reinsurance is so cheap that one accepts the resulting small positive drift of the drawdown in order to
eliminate (almost all) volatility. Intuitively, we therefore have a smooth transition to the degenerate
case with θ = η, in which the insurer would sell all risk to never have a critical drawdown.
In general, in the cases with θ2 > 2δσ2, the drift of the controlled surplus is negative in the upper
part of the favourable area and positive in the lower part (as for θ ∈ {1.6, 1.2, 0.8}). In the cases with
θ2 < 2δσ2, the drift is always negative (as for θ ∈ {0.6, 0.7}). Roughly speaking, this means that in
the first case, the process is stabilised within the favourable area, whereas in the second case, it tends
towards the critical line until it exits. Then, it is pushed back (with maximal drift) into the uncritical
area.
We note that the influence of θ is just one aspect which can be analysed via the explicit representation.
We have seen that the optimal strategies only depend on d by the position of the ‘cut’. In particular,
the strategy for small initial drawdowns postpones reaching any larger level for as long as possible. If σ
is large, generally more reinsurance should be bought in the uncritical area. This is comparable to our
findings of the previous chapter for large claims. Similarly, a short-time oriented, optimal insurer has
a higher tolerance for reinsurance costs because the main objective is to avoid immediate drawdowns.

3.4 Key Findings and Concluding Remarks

In this chapter, we found an explicit solution to the optimisation problem of minimising the expected
time with critical drawdown defined in Equation (1.9). We considered firstly the return functions of
constant and simple switching controls. We discovered that feedback controlled drawdown processes
are determined by reflected stochastic differential equations. For the diffusion setting, this concept re-
placed the piecewise deterministic Markov processes of Chapter 2. After proving a general verification
theorem, Theorem 3.9, we considered the subproblems derived from the dynamic programming prin-
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ciple, Theorem 1.5. In particular, we saw that these correspond to optimising the Laplace transform of
the passage of d for the diffusion approximation. For the problem of minimising the time until entering
the uncritical area, we could build on our knowledge obtained in Chapter 2 to quickly obtain that the
optimal strategy is to choose a maximal drift. For the problem of maximising the time to the first
critical drawdown, we constructed an explicit solution to the homogeneous Hamilton–Jacobi–Bellman
equation by, firstly, modifying the equation using the ‘technical’ optimiser and a substitution, secondly,
solving the modified equation, thirdly, calculating a candidate function by re-substitution and, lastly,
analysing the admissibility of the optimiser. We reconnected the subsolutions with a smooth fit to
obtain an explicit representation of v and the function b∗ inducing an optimal feedback control. In
our numerical examples, we examined further the dependence on the parameter θ as a proxy for costs
of reinsurance.
Although we considered a different model (requiring different mathematical methods) than in
Chapter 2, our key observations coincide on the content level. That is, if the drawdown is crit-
ical, no reinsurance is bought in order to leave the unfavourable area as fast as possible. Below the
critical line, there is a trade-off between controlling the volatility and lowering the drawdown by drift.
This leads to a retention level strategy which increases with the drawdown. In particular, the running
maximum of the surplus is kept constant under the optimal strategy, which is not reasonable from an
economic perspective. Still, preventing large drawdowns is preferable. In the following Chapter, we
therefore extend our value function to find a new conception of ‘optimality’.
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CHAPTER 4

Maximal Growth with a Drawdown Penalty

In Chapters 2 and 3 it was shown that optimal drawdown-focused decision making has the drawback
that stability overrules all other economically important values. What adds to this general impres-
sion is that a (in a way) comparable result was obtained in [Brinker, 2021] for the case of optimal
investments. In this article, it is shown that the amount invested in an independent Black–Scholes
asset of positive drift should increase with the drawdown. Figure 4.1 shows sketches of the surplus
under the optimal reinsurance (left) and the optimal investment control (right), side by side. The
black colour corresponds to no control, blue to a decreased retention level and, similarly, green to
an increased invested amount. In particular, when the surplus is at its maximum, nothing should be
invested. This contradicts the economic intuition of investing when the process is at a high point to

Figure 4.1 Sketch of optimally controlled surplus processes under reinsurance (left, blue) and investments
(right, green).

maximise the profit. Though the proof techniques in [Brinker, 2021] differ, the results for optimal
investment have therefore similar implications as our analysis of optimal reinsurance. In all cases
mentioned, optimal strategies lead to rigorous policies preventing large relative losses at all costs. In
particular, the minimisation of drawdowns supplants the potential for current and future surpluses.
Companies favouring stability over profits and dividends might be preferable from the perspective
of the regulator but, from an economic point of view, this behaviour is not realistic. Therefore, in
this chapter (which is based on [Brinker and Schmidli, 2021a]), we introduce a drawdown-targeted
optimisation problem that additionally accounts for the potential of growth. Combining the two com-
ponents, potential growth and penalised large drawdowns, we aim at finding economically attractive
reinsurance strategies leading to a sustainable increase of the running maximum and the company’s
surplus. The optimisation problem that we present has the alternative interpretation of maximising
dividend payments while simultaneously minimising the time during which the ex-dividend process is
‘far away’ from the dividend barrier.
We consider again the diffusion approximation to the surplus of an insurance company under propor-
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tional reinsurance, as defined in (3.2) at the beginning of Chapter 3, with the set B of progressively
measurable strategies with values in [0, 1]. For B ∈ B and x ≥ 0 we consider the reward-penalty-
function

vB(x) = Ex
[
β1

∫ ∞
0

e−δt dMB
t − β2

∫ ∞
0

e−δt1{∆B
t >d}

dt
]
.

This corresponds to the time the process spends in critical drawdown with a reward for an increasing
maximum of the surplus. The weights β1 ≥ 0 and β2 ≥ 0 express the relation between the benefit
of an upturn of the surpluses maximum (that is, the company outperforms itself) and the possible
damage due to large drawdowns. Our aim is to maximise the ‘return’ by finding an optimal retention
level strategy:

v(x) = sup
B∈B

Ex
[
β1

∫ ∞
0

e−δt dMB
t − β2

∫ ∞
0

e−δt1{∆B
t >d}

dt
]
. (4.1)

Figure 4.2 illustrates the two opposing aspects of this value function. On one hand, we ‘add together’

)
d

m0

ν0

∆

Figure 4.2 vB rewards growth of the running maximum (blue) and penalises large drawdowns (red).

the phases with a critical drawdown (marked in red) at a preference rate, as before. On the other
hand, we integrate with respect to the growing running maximum during the phases marked in blue.
A different interpretation of the abstract concept ‘growth of the running maximum’ is the following.
As mentioned in the introduction of this monograph, it is not realistic to assume that a company
can gather infinite capital: for example, shareholders demand dividends if a company generates large
profits. Hence, we assume that the insurer in our optimisation problem pays dividends. Inspired by the
results of optimal dividend control problems, we assume that dividends are issued according to a barrier
strategy (see, for example, [Schmidli, 2008, Sec. 2.5] and references therein). That is, whenever the
surplus exceeds a predefined level y > 0, all additional earnings are paid. The accumulated dividend
process DB = (DB

t )t≥0 and ex-dividend surplus UB = (UBt )t≥0 are given by

DB
t = sup

s∈[0,t]

(
XB
s − y

)+
, UBt = XB

t −DB
t , t ≥ 0 .
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Figure 4.3 wB rewards dividend payments and penalises large, negative deviations from the dividend barrier.

Issuing dividends is generally a good signal to the public and can increase the market value of the
company. Hence, we assume that the insurer aims to maximise dividends. On the other hand, if the
surplus is bounded away from the dividend barrier, this means that no dividends will be paid for a
long period. If the company fails to recover from low surplus levels and has to pass over a payment,
this could lead to a depreciation of the company’s market value. For this reason, an interesting target
functional is the expected value of accumulated discounted dividends minus a penalty for the time
during which the ex-dividend surplus is further away than d from the dividend barrier:

wB(ν0) = E
[
β1

∫ ∞
0

e−δt dDB
t − β2

∫ ∞
0

e−δt1{UBt <y−d} dt
∣∣∣∣ UB0 = ν0

]
, ν0 ≤ y ,

wB(ν0) = β1(ν0 − y) + wB(y) , ν0 > y. (4.2)

We note that choosing d = y in this scenario leads to the optimisation problem of maximising dividends
and penalising the time in ‘technical ruin’ (i.e. with UB ≤ 0). This optimisation target could, for
example, occur if a certain capital requirement has to be met. Now, defining the drawdown process
∆B as the distance of the ex-dividend surplus to the dividend barrier

∆B
t = y − UBt , t ≥ 0 , (4.3)

we can rewrite the first line of (4.2) for x = y − ν0 as

wB(x) = Ex
[
β1

∫ ∞
0

e−δt dDB
t − β2

∫ ∞
0

e−δt1{∆B
t >d}

dt
]
, x ≥ 0 .

Since wB(ν0) is fixed by (4.2) for x = y − ν0 < 0, it suffices to consider

w(x) = sup
B∈B

Ex
[
β1

∫ ∞
0

e−δt dDB
t − β2

∫ ∞
0

e−δt1{∆B
t >d}

dt
]

(4.4)

for x ≥ 0 with the appropriate boundary condition. In particular, w(x) = v(y − x) for x ≤ y.
Figure 4.3 illustrates this value function. In this sketch, the solid black and grey lines represent the
ex-dividend surplus and the dividend barrier. When the ex-dividend surplus is in the grey area, this
corresponds to a large drawdown from the dividend barrier. Our intuitive explanation shows that
both problems are included in our considerations. We focus on the value function defined in Equation
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(4.1) as the proofs can analogously be carried out for the function given in (4.4). In particular,
the optimisation problems are equivalent in the sense that the functions inducing optimal feedback
strategies coincide.

This chapter is organised as follows. In Section 4.1, we deduce preliminary results from the degenerate
cases β1 = 0 and β2 = 0 such as boundedness of the value function. We conclude that for large initial
drawdown, x ≥ d, the optimal strategy is the strategy of maximal drift (i.e. Bt = 1 up to the
first time with uncritical drawdown). We derive the Hamilton–Jacobi–Bellman equation connected
to (4.1) and prove a general verification theorem. In Section 4.2, we calculate value functions and
optimal strategies by solving the Hamilton–Jacobi–Bellman equation explicitly. We prove that optimal
strategies are of feedback form, determined by the pointwise maximiser. We identify different types of
maximisers depending on the preference ratio χ = β1/β2 of the weights applied to dividends (growth)
and drawdowns. We prove existence of the processes under the respective feedback controls to conclude
that the corresponding strategies are optimal. Additionally, we analyse the effect of the price of
reinsurance on these types of strategies. In Section 4.3, we provide numerical examples and path
simulations. Here we focus on the impact of the preference ratio χ = β1/β2. We finish with some
concluding remarks in Section 4.4.

4.1 Preliminary Results

The optimal strategy and its return depend heavily on the weights β1 and β2 attached to the growth
reward and the drawdown penalty. We use the ‘degenerate’ cases β1 = 0 and β2 = 0 to give a first
intuition of the impacts of the weights and to derive first results on the value function for arbitrary
weights. We recall the following definition of κ and ξ from Chapter 3, Notation 3.1:

Notation 4.1. We write

κ = −η +
√
η2 + 2δσ2

σ2 , ξ = η +
√
η2 + 2δσ2

σ2 . (4.5)

4.1.1 Implications of the Cases β1 = 0 and β2 = 0

The case β1 > 0 with β2 = 0 has the interpretation of maximising growth of the process (and,
respectively, dividend payments) without a drawdown penalty. In many optimisation problems, the
time of ruin marks the end of the period of collecting dividends. This leads to a trade-off between the
payment of dividends and the risk of early ruin. In our case, since the time horizon is infinite, the
insurer has no reason to be cautious. Noting that∫ ∞

0
e−δt dMB

t = δ

∫ ∞
0

e−δtMB
t dt ,

we conclude that the optimal strategy maximises Ex[MB
t ]. This is attained for the constant maximal

drift strategy B with Bt = 1, t ≥ 0. The return of this strategy is the value function v with

v(x) = β1e−κx
κ

, x ≥ 0 .
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A rigorous proof can be executed by following the steps of the proofs of Theorems 4.6 and 4.12,
below. The function v is decreasing in this case. This is intuitively clear because the larger the initial
drawdown, the further away the surplus is from the ‘dividend’ barrier, i.e. the running maximum. By
the same argument, the return vB of any other retention level strategy B is decreasing. The convexity
of v indicates that this effect is stronger for small initial drawdowns (under the optimal strategy).
The case β1 = 0 with β2 > 0 (that is, solely the drawdown penalty is taken into account) leads to
the optimisation problem considered in Chapter 3. Hence, the functions v and vB are decreasing and
attain values in (−β2δ

−1, 0) for β1 = 0.
From the consideration of these extreme cases we conclude:

Lemma 4.2. [2021a]

For arbitrary β1, β2 ≥ 0 and any admissible strategy B, the functions vB and v are bounded and
decreasing. In particular,

vB(x), v(x) ∈
[
−β2
δ
,
β1
κ

]
, x ≥ 0 .

�

If the drawdown process starts above the critical level d, the running maximum cannot increase until
the process enters the uncritical area for the first time. This means that, for x > d and t smaller than
ϑd(B), the only objective is to minimise the time to ϑd(B). In the previous chapter, we have seen that
the constant strategy with Bt = 1, t < ϑd(B), is optimal for large initial drawdowns. This yields:

Lemma 4.3. [2021a]

For arbitrary β1, β2 ≥ 0, we have

v(x) = −β2
δ

+
(
v(d) + β2

δ

)
e−κ(x−d) , x > d .

This corresponds to the return of a strategy B with Bt = 1 for all t < ϑd(B). �

A rigorous proof of the statement of Lemma 4.3 follows in Section 4.2.

4.1.2 General Verification and the Case of Critical Initial Drawdown

The Hamilton–Jacobi–Bellman equation connected to the problem posed in Equation (4.1) takes the
form

sup
b∈[0,1]

{
− δf(x)− µ(b)f ′(x) + σ2b2

2 f ′′(x)
}

= β21{x>d} (4.6)

for f : [0,∞) → R. Again, as there exists no twice continuously differentiable function solving
the equation, with a solution to (4.6) we mean the composition of two classical solutions to the
homogeneous and inhomogeneous equation, connected at x = d by a smooth fit. By f ′′(d) we denote
the derivative of f ′ from the left at d, if not stated otherwise. Similarly as in Section 3.2, the term to
be maximised with respect to b is

Jf (b) = −µ(b)f ′(x) + σ2b2

2 f ′′(x)
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for a strictly decreasing function f inserted into (4.6). We observe that, by f ′(x) < 0, the optimum is
attained at b = 1 for a fixed x if either f ′′(x) ≥ 0 or if f ′′(x) < 0 with θf ′(x) ≤ σ2f ′′(x). Also, these
are the only cases in that the optimum is b = 1. Analogously as in the previous chapter (Lemmata 3.7
and 3.8), we obtain the following two results.

Lemma 4.4. [2021a]

If f : [0,∞) → R is a strictly decreasing solution to (4.6), then there is no non-empty interval
(x, x) ⊂ [0,∞) such that the optimiser is given by b∗(x) = 0 for all x ∈ (x, x). �

Lemma 4.5. [2021a]

Let f : [0,∞) → R be a strictly decreasing solution to (4.6). At a point x̄ 6= d with f ′′(x̄) = 0 the
function changes from convex to concave. Every bounded, strictly decreasing solution f to (4.6) is
convex for x > d. �

Moreover, in the notation of Theorem 3.9, we also have a generalised verification theorem (with new,
generalised boundary conditions).

Theorem 4.6 (General Verification Theorem). [2021a]

We assume that f : [0,∞)→ R is a bounded solution to

sup
b∈I(x)

{
−δf(x)− µ(b)f ′(x) + σ2b2

2 f ′′(x)
}

= β21{x>d} (4.7)

with f ′(0) ≤ −β1. We have f(x) ≥ vB(x) for every strategy B ∈ BI and all x ≥ 0. If, in addition,
for each x there is a minimiser b∗(x) ∈ I(x) in (4.7) such that the process X∗ and the corresponding
drawdown process ∆∗ under the feedback strategy B∗ with B∗t = b∗(∆∗t ), t ≥ 0, exist and either
f ′(0) = −β1 holds or M∗ is constant, then we have f(x) = vB

∗(x) = supB∈BI
vB(x) for all x ≥ 0.

Proof. By the generalised Itô formula of [Elworthy et al., 2007, Thm. 2.1 and Eq. (2.23)], it follows:

e−δtf(∆B
t )− f(∆B

0 ) =
∫ t

0
e−δsf ′(∆B

s ) dMB
s −

∫ t

0
e−δsσBsf ′(∆B

s ) dWs

+
∫ t

0
e−δs

(
−δf(∆B

t )− µ(Bs)f ′(∆B
s ) + σ2B2

s

2 f ′′(∆B
s )
)

ds

≤
∫ t

0
e−δsf ′(0) dMB

s −
∫ t

0
e−δsσBsf ′(∆B

s ) dWs +
∫ t

0
e−δsβ21{∆B

s >d} ds . (4.8)

Stopping at Tn = ϑn(B) ∧ n, n ∈ N, we find (by boundedness of f ′ on bounded intervals):

f(x) ≥ Ex
[
e−δ(t∧Tn)f(∆B

t∧Tn)
]

+ Ex
[
β1

∫ t∧Tn

0
e−δs dMB

s − β2

∫ t∧Tn

0
e−δs1{∆B

s >d} ds
]
,

for all x ≥ 0. Here we used that it holds f ′(0) ≤ −β1. By the same arguments as in the proof of
Theorem 3.9, we can let n → ∞ and then t → ∞ to find f(x) ≥ vB(x). Applying the same steps to
the strategy B∗, we obtain equality and, thus, f(x) = supB∈BI

vB(x). �

The following two results can be verified directly and will be useful in the remainder of this chapter.
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Lemma 4.7. [2021a]

Any function g : (d,∞)→ R of the form

g(x) = −β2
δ

+
(
C + β2

δ

)
e−κ(x−d) , x ≥ d ,

with C ≥ −β2δ
−1 is a bounded, decreasing and convex solution to

sup
b∈[0,1]

{
− δg(x)− µ(b)g′(x) + σ2b2

2 g′′(x)
}

= β2

for all x > d with bounded first and second derivatives. In particular, v|(d,∞) has these properties. �

Corollary 4.8. [2021a]

A decreasing function f : [0,∞)→ R that solves

sup
b∈[0,1]

{
− δf(x)− µ(b)f ′(x) + σ2b2

2 f ′′(x)
}

= 0

for all x ≤ d and fulfils f ′(d) = −κ(f(d) + β2δ
−1), can be extended to a bounded solution to (4.6) by

a decreasing and convex function g : (d,∞)→ R of the form

g(x) = −β2
δ

+
(
f(d) + β2

δ

)
e−κ(x−d) , x > d .

�

4.2 Optimal Proportional Reinsurance

As in the previous chapter, we use the following definitions to shorten notation and facilitate inter-
pretation.

Notation 4.9. We write

ζ = 2δσ2 + θ2

θ2 > 1 , ρ = 2σ2(θ − η)
2δσ2 + θ2 > 0 (4.9)

and distinguish the cases of cheap reinsurance with θ ≤ σ2ξ = η +
√
η2 + 2δσ2 (which is equivalent to

θρ ≤ σ2) and expensive reinsurance with θ > σ2ξ (i.e. θρ > σ2).

4.2.1 Optimality of Operating without Reinsurance

As we have seen in our preliminary considerations, there is no incentive to be cautious if only dividends
are taken into account (i.e. β2 = 0). The corresponding optimal strategy is withholding the full
premium income in the company. Intuitively, this should also be the case if the condition is weakened
in the sense that ‘dividends are just much more important than the threat of a large drawdown’.
We now calculate conditions on the model parameters for this statement to be true. We start by
evaluating the reward-penalty-function of the constant strategy B with Bt = 1, t ≥ 0.
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Proposition 4.10. [2021a]

The function u : [0,∞)→ R defined as

u(x) =

C1eξx + C2e−κx , x ≤ d ,

−β2
δ +

(
C1eξd + C2e−κd + β2

δ

)
e−κ(x−d) , x > d ,

with

C1 = − β2κ

δeξd(ξ + κ) , C2 = C1ξ + β1
κ

(4.10)

is the return of the constant strategy B with Bt = 1, t ≥ 0.

Proof. As an arithmetic Brownian motion, the surplus process under constant controls exists. The
composite function u solves (4.7) with I(x) = {1} for all x ≥ 0 and u′(0) = −β1. Thus, the assertion
follows by Theorem 4.6. �

From now on, we express the weight of growth in comparison to drawdowns in terms of the ratio
χ = β1/β2. The above Lemma and following analysis also apply to the degenerate case β2 = 0
mentioned in the introduction (with the interpretation χ =∞).

Notation 4.11. We define the critical preference ratios

χc,1 =
κξ
[
(θ + σ2κ)e−ξd − (θ − σ2ξ)eκd

]
δ(θ + σ2κ)(κ+ ξ) , χe,1 = κξσ2e−ξd

δ(θ + σ2κ) .

Remark. We note that we have χc,1 = χe,1 for θ = σ2ξ, that is, the price of reinsurance lies on the
boundary between the cheap and expensive area. In general, we have χc,1 > 0 (at least for cheap
reinsurance) and χe,1 > 0. #

Theorem 4.12. [2021a]

u : [0,∞) → R as defined in Proposition 4.10 solves Equation (4.6) with the constant pointwise
optimiser b∗(x) = 1 for all x ≥ 0 if and only if the parameter set fulfils one of the following conditions:

i) Reinsurance is cheap and χ ≥ χc,1.
ii) Reinsurance is expensive and χ ≥ χe,1.

In these cases, u is equal to the value function and an optimal strategy B∗ is constant with B∗t = 1
for all t ≥ 0.

Proof. In view of Lemma 4.7, Proposition 4.10 and the verification theorem, the only thing left to
prove is that u solves the homogeneous part of Equation (4.7) for I(x) = [0, 1] for all x ∈ [0, d] (if and
only if one of the conditions is fulfilled). This is the case if the optimiser of the equation is indeed
b = 1. The term to be maximised with respect to b is given by Ju(b), defined as above. The inequality
θu′(x) ≤ σ2u′′(x) is equivalent to

(
1− σ2ξ

θ

)
ξC1 ≤

(
1 + σ2κ

θ

)
κe−(κ+ξ)xC2 . (4.11)
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The cases of cheap and expensive reinsurance lead to different signs of the bracket term on the left
hand side. One can show, by distinguishing these cases, that the proposed bounds on χ are necessary
and sufficient for one of the conditions, u′′(x) ≥ 0 or u′′(x) < 0 with (4.11), to be fulfilled for all
x ∈ [0, d]. The details of this calculation are found in the appendix, p. 126. �

Intuitively, the lower bounds on χ = β1/β2 indicate that, if future growth is (or dividends are) much
more important than the threat of a large drawdown, then the insurer will choose the same strategy as
in the example without drawdowns. Further, the price of reinsurance influences the critical weights.
From the explicit expressions, we conclude that the more expensive the reinsurance premium, the
sooner (in terms of the importance of dividends in comparison to drawdowns) the insurer will refuse
a reinsurance contract.
If the conditions stated in Proposition 4.12 are harmed, the return of the constant strategy of never
buying reinsurance does not solve Equation (4.6). In view of the verification theorem, it is reasonable
to assume that this strategy is therefore not optimal for χ smaller than χc,1 and χe,1, respectively. This
means that the drawdown penalty forces the insurer to buy reinsurance. As we show in the following,
the strategies for different ratios χ are non-constant and of feedback form. By Lemma 4.5, the ‘natural
candidates’ for the value function are decreasing and concave solutions to the homogeneous Hamilton–
Jacobi–Bellman equation for x ∈ [0, d] that are smoothly extended to [0,∞). In the following, we
derive a family of solutions related to the Lambert W function W (which made its first appearance
in the introduction of Chapter 3). Value functions, optimal strategies and optimality criteria will be
expressed in terms of these solutions.

4.2.2 Solutions to the Homogeneous HJB Equation for General Initial Conditions

We characterise in detail explicit solutions to the Hamilton–Jacobi–Bellman equation

sup
b∈[0,1]

{
− δf(x)− µ(b)f ′(x) + σ2b2

2 f ′′(x)
}

= 0 , x ≥ 0 . (4.12)

We write bf (x) = θf ′(x)/(σ2f ′′(x)) if this expression is defined. Moreover, we introduce the following
notation.

Notation 4.13. For a ∈ [0,∞) and γ ∈ [0, 1], we write

Eγ,a(x) = γσ2 − θρ
θρ

· exp
[γσ2 − θρ

θρ
− ζ

ρ
(x− a)

]
, x ≥ a .

For θρ 6= σ2γ, we additionally define

Qγ,a(x) =
[ γσ2 − θρ
θρW(Eγ,a(x))

]1/ζ
, Pγ,a(x) =

[
1 + W(Eγ,a(x))

1− ζ
]
ρQγ,a(x) , x ≥ a .

We write Eγ(x) = Eγ,0(x), Qγ(x) = Qγ,0(x), Pγ(x) = Pγ,0(x) for x ≥ 0.

We note that Q0 and P0 coincide with the functions Q and P defined in Equation (3.18) of the
preceding chapter for the degenerate case β1 = 0. The next lemma states conditions under which a
solution to (4.12) with the initial values f ′(a) = α < 0 and bf (a) = γ ∈ [0, 1] (at some a ≥ 0) exists.
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Lemma 4.14. [2021a]

For given a ∈ [0,∞), γ ∈ [0, 1] and α < 0, we let

f(a) = α
2(θ − η)− θγ

2δ , f(x) = f(a)−
∫ x

a
e−Z(y) dy , x > a , (4.13)

and

Z(x) = −x− a
ρ
− θρ− σ2γ

θζρ
− ln(−α)−

W
(
Eγ,a(x)

)
ζ

. (4.14)

i) If θρ < σ2γ, the function f is a strictly concave and decreasing solution to (4.12) for x ∈ [a,∞)
fulfilling the initial conditions f ′(a) = α and b(a) = γ. The pointwise maximiser is given by

bf (x) = θf ′(x)
σ2f ′′(x) = θρ

σ2

[
1 + W

(
Eγ,a(x)

)]
, (4.15)

strictly decreasing in x and converges to its lower bound θρσ−2 as x→∞.
ii) If θρ = σ2γ, the function f is a strictly concave and decreasing solution to (4.12) for x ∈ [a,∞)

fulfilling the initial conditions f ′(a) = α and b(a) = γ. The pointwise maximiser is equal to bf

and constant with bf (x) = θρσ−2.
iii) a) If θρ > σ2γ and θρ ≤ σ2, the function f is a strictly concave and decreasing solution to (4.12)

for x ∈ [a,∞) that fulfils the initial conditions f ′(a) = α and b(a) = γ. The pointwise maximiser
is given by (4.15), strictly increasing in x and converges to its upper bound θρσ−2 as x→∞.
b) If θρ > σ2γ and θρ > σ2, f is a strictly concave and decreasing solution to (4.12) for
x ∈ [a, xγ ] fulfilling the initial conditions f ′(a) = α and b(a) = γ with

xγ = a+ ρ

ζ
ln
(θρ− σ2γ

θρ− σ2

)
− σ2(1− γ)

θζ
. (4.16)

The pointwise maximiser is given by (4.15), strictly increasing in x and equal to 1 at xγ.

In a simpler form, we have already seen parts of the proof in our construction in Section 3.2 for γ = 0.
For the general case we need a more sophisticated approach. However, as the underlying idea of the
proof remains the same, we postpone the technical details to the appendix, p. 127.
Lemma 4.14 is an important tool as it yields explicit solutions to the Hamilton–Jacobi–Bellman equa-
tion for arbitrary starting points. In particular, the initial condition for the second derivative is
presented as an initial condition for the pointwise maximiser. Thus, the lemma enables us to con-
struct a corresponding solution to the Hamilton–Jacobi–Bellman equation based on the intuition of
what the optimal strategy ‘should’ look like. The following result will be useful to show existence of
processes under the corresponding feedback controls.

Lemma 4.15. [2021a]

Under the conditions of Lemma 4.14, bf : [a,∞) → R given in (4.15) is continuously differentiable
and convex when it is decreasing, case i), and concave when it is increasing, case iii). In case i), its
derivative is absolutely bounded. In case iii), its derivative is absolutely bounded if (and only if) γ > 0.

The proof of Lemma 4.15 is based on properties of W and is found in the appendix, p. 128. We
note that the special case ‘iii) with γ = 0’ (in which the derivative is unbounded) also follows by
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Lemma 3.17, which states that bf (x) is of order Θ(
√
x) as x→ a.

In the case θρ = σ2γ, the function f defined in (4.13) has the simple representation f(x) = αρe(x−a)/ρ.
In the remaining two cases, we can write f in terms of the functions Qγ,a and Pγ,a, as we show in the
appendix, p. 129:

Lemma 4.16. [2021a]

Under the conditions of Lemma 4.14 and θρ 6= σ2γ, we have f(x) = αPγ,a(x), f ′(x) = αQγ,a(x), and
f ′′(x)σ2bf (x) = αθQγ,a(x) for x ≥ a.

In the next section, we use these results to find solutions to the inhomogeneous Hamilton–Jacobi–
Bellman equation.

4.2.3 Optimal Feedback Controls

We construct solutions to the Hamilton–Jacobi–Bellman equation for the different cases of cheap and
expensive reinsurance. At the end of this section we prove existence of the processes under the feedback
controls and conclude that the candidates are indeed the value functions.

Optimal Strategies for Cheap Reinsurance

Throughout this section, we assume that reinsurance is cheap; θρ ≤ σ2. We introduce the following
critical ratios.

Notation 4.17. For θρ < σ2, we write

χc,2 = κ

δ(P1(d)κ+Q1(d))

and for θρ ≤ σ2, we additionally define

χc,3 = κ

δed/ρ(κρ+ 1)
, χc,4 = κ

δ(P0(d)κ+Q0(d)) .

Remark. For θρ = σ2, we have ρ−1 = ξ and therefore χc,1 = χc,3 (where χc,2 is undefined). However,
similarly to the proof of Lemma A.3 of the appendix, p. 131, one can show that limθρ↗σ2 χc,2 = χc,1.
For this reason, we interpret intervals such as [χc,2, χc,1) or (χc,3, χc,2] as empty sets if θρ = σ2, in the
following. #

Lemma 4.18. [2021a]

We have χc,1 > χc,2 > χc,3 > χc,4 > 0 for θρ < σ2. For θρ = σ2, it holds χc,1 = χc,3 > χc,4 > 0. �

This lemma is a direct consequence of two rather technical results found in the appendix, p. 130
(Lemmata A.2 and A.3).
To present our findings as clearly as possible, we start with an outline of the cases to distinguish for
cheap reinsurance. The case χ ∈ [χc,2, χc,1) is closest to the case χ ≥ χc,1. One might presume that the
strategy with maximal drift is kept when the drawdown is close to zero and that reinsurance is bought
if the drawdown grows towards the critical value d. We prove below that this is indeed the case and
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Figure 4.4 Optimal reinsurance strategies for cheap reinsurance.

that the pointwise maximiser b∗ of the Hamilton–Jacobi–Bellman equation (that induces the optimal
feedback strategy) takes the form represented by the dotted line in Figure 4.4. If the ratio of dividend
to drawdown penalty is further reduced, the strategy with maximal drift will never be chosen, even
if the drawdown process is currently in zero. We distinguish three cases that are represented by the
dashed lines in Figure 4.4. For χ ∈ (χc,3, χc,2), the optimal retention level for uncritical drawdowns
is given as a decreasing function of the current drawdown (short dashes in Figure 4.4), bounded from
below by θρσ−2. For χ = χc,3, the optimal retention level is constant and equal to θρσ−2 (medium
length dashes in Figure 4.4). This corresponds to a simple switching strategy. For χ ∈ (χc,4, χc,3),
the influence of the weight of the dividends is still large enough for the insurer to choose b∗(0) > 0
(long dashed line in Figure 4.4). In this case, the retention level increases with the drawdown and
is bounded from above by θρσ−2. For χ ≤ χc,4, the weight of the drawdown penalty dominates the
value function: we obtain that b∗ corresponds to the pointwise optimiser of the case without dividends
considered in Chapter 3 (solid line in Figure 4.4).

Lemma 4.19. [2021a]

We assume χ ∈ (χc,2, χc,1). There exists a unique a ∈ (0, d) such that the function f : [0,∞) → R
defined by

f(x) =


C1eξx + C2e−κx , x ∈ [0, a),

(ξC1eξa − κC2e−κa)P1,a(x) , x ∈ [a, d],

−β2δ
−1 + ([ξC1eξa − κC2e−κa]P1,a(d) + β2δ

−1)e−κ(x−d) , x > d,

with
C1 = − β1(σ2κ+ θ)

((σ2κ+ θ) + (σ2ξ − θ)e(ξ+κ)a)ξ
and C2 = ξC1 + β1

κ

is a bounded solution to (4.6) with f ′(0) = −β1. The pointwise maximiser is given by

b∗(x) =


1 , x ∈ [0, a) ,

θρσ−2[1 + W(E1,a(x))] , x ∈ [a, d] ,

1 , x > d ,
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and continuous in every point except in x = d. b∗ is strictly decreasing and convex for x ∈ (a, d). If
χ = χc,2, the assertion holds for a = 0.

Proof. We first construct a solution on the interval [0, a], then extend it to [0, d] and afterwards to
[0,∞). Suppose that there exists a ∈ [0, d) such that the optimiser is equal to one for all x ∈ [0, a].
Similarly to Proposition 4.10, this implies that the function for x ∈ [0, a] with derivative −β1 in zero
should be of the form

h0(x) = Ceξx + Cξ + β1
κ

e−κx

for some constant C. The condition σ2h′′0(x) ≥ θh′0(x) is equivalent to

C ≥ − β1(σ2κ+ θ)
ξ((σ2κ+ θ) + (σ2ξ − θ)e(ξ+κ)x)

. (4.17)

The right hand side is increasing in x. In particular, for C = C1, the condition is fulfilled for all
x ∈ [0, a] and a is the rightmost point with this property. Thus, we assume C = C1. By C1 <

β1/((e(ξ+κ)a−1)ξ) and C1 < −β1κ/((ξ−κ)ξ), h0 is strictly decreasing and concave for x ∈ [0, a]. This
means, h0 solves the Hamilton–Jacobi–Bellman equation for all x ∈ [0, a] with optimiser b∗(x) = 1.
According to Lemma 4.14 i), the function h1(x) = h′0(a)P1,a(x) is an extension of h0 that solves the
equation on [a, d] with the optimiser defined above. Because the first derivatives of h0 and h1 coincide
at x = a and we have

1 = θh′0(a)
σ2h′′0(a) = θh′1(a)

σ2h′′1(a) ,

the second derivatives coincide as well. Since both functions solve the Hamilton–Jacobi–Bellman
equation at x = a with the same optimiser, we also obtain h0(a) = h1(a). In view of Lemma 4.7 and
Corollary 4.8, we choose the ansatz g(x) = −β2δ

−1 + (h1(d) + β2δ
−1)e−κ(x−d) and look for a smooth

fit. Continuity of the first derivative at x = d implies h′1(d) = −κ(h1(d) + β2δ
−1) which is equivalent

to

h′0(a)Q1,a(d) = −κ(h′0(a)P1,a(d) + β2δ
−1) . (4.18)

By plugging in the definitions of h′0(a) and C1, we obtain

χ =
κ
[
(σ2κ+ θ) + (σ2ξ − θ)e(κ+ξ)a]

δσ2(κ+ ξ)eξa
[
κP1,a(d) +Q1,a(d)

] . (4.19)

The right hand side is strictly increasing in a (compare Lemma A.2), equal to χc,2 for a = 0 and equal
to χc,1 for a = d. Thus, for any χ ∈ [χc,2, χc,1), there exists a unique a ∈ [0, d), implicitly given by
(4.19), so that f as defined above is a solution to (4.6). �

A by-product of the proof is the following corollary, which states that the ‘plateau’ [0, a] with b∗(x) = 1
is growing with χ. This means, the point a marking the sharp bend of the dotted graph of Figure 4.4
slides to the left if χ ∈ [χc,2, χc,1] is chosen smaller and is equal to zero for χ = χc,2.
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Corollary 4.20. [2021a]

The function a : [χc,2, χc,1]→ [0, d] implicitly given by

χ =
κ
[
(σ2κ+ θ)e−ξa(χ) + (σ2ξ − θ)eκa(χ)]
δσ2(κ+ ξ)

[
κP1,a(χ)(d) +Q1,a(χ)(d)

] (4.20)

is increasing with a(χc,2) = 0 and a(χc,1) = d. �

We next deal with the cases represented by the three dashed graphs of Figure 4.4.

Lemma 4.21. [2021a]

i) For χ ∈ (χc,3, χc,2), there exists a unique γ ∈ (θρσ−2, 1) such that the function f : [0,∞) → R
defined by

f(x) =

−β1Pγ(x) , x ∈ [0, d] ,

−β2δ
−1 +

(
−β1Pγ(d) + β2δ

−1
)
e−κ(x−d) , x > d ,

(4.21)

is a bounded solution to (4.6) with f ′(0) = −β1. The pointwise maximiser is given by

b∗(x) =

θρσ
−2[1 + W(Eγ(x))] , x ∈ [0, d] ,

1 , x > d ,
(4.22)

and continuous in every point except in x = d. b∗ fulfils b∗(0) = γ and is strictly decreasing and
convex on [0, d).

ii) For χ = χc,3 the statement holds for the function

f(x) =

−β1ρex/ρ , x ∈ [0, d] ,

−β2δ
−1 +

(
−β1ρed/ρ + β2δ

−1
)
e−κ(x−d) , x > d ,

and the maximiser given by (4.22), which is piecewise constant with b∗(x) = θρσ−2 for x ∈ [0, d].
iii) For χ ∈ [χc,4, χc,3), there exists a unique γ ∈ [0, θρσ−2) such that the statement holds for the

function f : [0,∞)→ R defined in (4.21) and the maximiser given by (4.22) which fulfils b(0) = γ

and is strictly increasing and concave on [0, d). In particular, if χ = χc,4, the assertion is fulfilled
for γ = 0.

Proof. In the cases i) and iii) it suffices to prove that there exists for every χ in the respective interval
a unique γ(χ) such that f defined above is continuously differentiable at x = d. Then, the desired
properties of f |[0,d] and f |(d,∞) follow from Lemma 4.7, Corollary 4.8 and Lemma 4.14 i), iii). The
condition of smooth fit is equivalent to

χ = κ

δ(Pγ(d)κ+Qγ(d)) . (4.23)

We prove in the appendix, Lemma A.3 i), that the right hand side is defined for all γ ∈ [0, 1]\{θρσ−2},
positive, continuous with a removable discontinuity at γ = θρσ−2 and strictly increasing. For γ = 1,
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it is equal to χc,2. As γ ↘ θρσ−2 and as γ ↗ θρσ−2, it converges to χc,3. It is equal to χc,4 for
γ = 0. Thus, for any χ ∈ (χc,3, χc,2) there exists a unique γ ∈ (θρσ−2, 1), defined by the relation
(4.23), such that the function f is a solution to the Hamilton–Jacobi–Bellman equation. The same
holds for χ ∈ (χc,4, χc,3) and γ ∈ (0, θρσ−2). In case ii), χ = χc,3, an explicit calculation shows that
the smooth fit condition is fulfilled as well. The result follows again from Lemma 4.7, Corollary 4.8
and Lemma 4.14 ii). �

Similarly as above, a result hidden in the proof is the following.

Corollary 4.22. [2021a]

The function γ : [χc,4, χc,2] \ {χc,3} → [0, 1] \ {θρσ−2} implicitly given by

χ = κ

δ(Pγ(χ)(d)κ+Qγ(χ)(d)) (4.24)

is strictly increasing with γ(χc,4) = 0, limχ↗χc,3 γ(χ) = θρσ−2, limχ↘χc,3 γ(χ) = θρσ−2 and γ(χc,2) =
1. The function is continuous except for a removable discontinuity at χc,3. �

This means, if χ ∈ [χc,4, χc,2] is reduced, the starting point b∗(0) = γ ‘slides down’ the y-axis (compare
Figure 4.4) and we have b∗(0) = 0 for χ = χc,4. Lastly, we consider the case χ < χc,4 which is
represented by the solid line in Figure 4.4.

Lemma 4.23. [2021a]

For χ ∈ [0, χc,4), the function f : [0,∞)→ R defined by

f(x) =

−β2χc,4P0(x) , x ∈ [0, d] ,

−β2δ
−1 +

(
−β2χc,4P0(d) + β2δ

−1
)
e−κ(x−d) , x > d ,

is a bounded solution to (4.6) with f ′(0) = −β2χc,4 < −β1. The pointwise maximiser is given by (4.22)
with γ = 0 and continuous in every point except in x = d. The pointwise maximiser b∗ fulfils b∗(0) = 0
and is strictly increasing and concave on [0, d).

Proof. A direct calculation proves that the smooth fit condition is fulfilled. The result therefore follows
by Lemma 4.7, Corollary 4.8 and Lemma 4.14 iii). �

We note that the function f defined in Lemma 4.23 is a multiple of the value function from Chapter 3,
so that we could alternatively prove this result with Corollary 3.23.

Optimal Strategies for Expensive Reinsurance

In this section, we calculate optimisers and value functions under the assumption that θρ > σ2 is
fulfilled (expensive reinsurance).

Notation 4.24. For θρ > σ2 and γ ∈ [0, 1], we define xγ as in (4.16). In particular, x1 = 0. For
γ = 0, xγ coincides with the definition of x0 in Equation (3.20).

We recall that, by Lemma 3.17 ii), x0 can be interpreted as a strictly decreasing function of θ and
that there is a unique θd = x−1

0 (d) ∈ (σ2ξ,∞). As it turns out, the structure of optimal strategies for
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the cases θ ∈ (σ2ξ, θd] and θ > θd differs slightly. The following Lemma can be verified by an explicit
calculation of derivatives.

Lemma 4.25. [2021a]

xγ is continuous and strictly decreasing in γ. For θ ∈ (σ2ξ, θd], there exists a unique γ̄ ∈ [0, 1) with
xγ̄ = d. We have γ̄ = θρσ−2[1 + W(E1,d(0))]. For θ ∈ (θd,∞), we have xγ < d for all γ ∈ [0, 1]. �

We define the following critical preference ratios for the case of expensive reinsurance.

Notation 4.26. We assume θρ > σ2. If θ ≤ θd, we define

χe,2 = κξσ2

δ(σ2κ+ θ)Qγ̄(d) and χe,3 = κ

δ(κP0(d) +Q0(d)) .

If θ > θd, we write

χde,2 = κξσ2eξx0

δ(σ2κ+ θ)eξdQ0(x0) .

Remark. We note that, for θ = θd, we have γ̄ = 0, x0 = d and therefore Qγ̄(d) = Q0(x0) and
χe,2 = χe,3 = χde,2. Moreover, it holds limθρ↘σ2 χe,2 = limθρ↗σ2 χc,1 and the definition of χe,3 coincides
with χc,4. Hence, the ‘transitions’ between the cases of cheap reinsurance, expensive reinsurance with
θ ≤ θd and expensive reinsurance with θ > θd are continuous. #

Lemma 4.27. [2021a]

i) For θ < θd, we have χe,1 > χe,2 > χe,3 > 0 and for θ = θd, χe,1 > χe,2 = χe,3 > 0.
ii) For θ > θd, we have χe,1 > χde,2 > 0. �

This follows from Lemma A.3 and Lemma A.4 of the appendix, pp. 131, 132.
As in the case of cheap reinsurance, we start with an overview of the core results of this section. If
reinsurance is ‘moderately’ expensive, that means θ ≤ θd, we obtain in the following that there are
three different types of increasing optimisers depending on the size of χ < χe,1. These are displayed
in the left graph of in Figure 4.5. If χ ∈ [χe,2, χe,1), the optimiser is positive in zero (b∗(0) > 0) and
there exists a point xγ < d from which on it is equal to one (dotted line). χ = χe,2 is the critical value
such that the corresponding pair (γ̄, xγ̄) fulfils xγ̄ = d (short dashed, black line). For χ ∈ (χe,3, χe,2)
we have b∗(0) > 0 and b∗(d−) < 1 (long dashed line). For χ ∈ [0, χe,3], we additionally have b∗(0) = 0

1

dxγ

γ
γ̄

θρσ−2

dxγ

1

x0

θρσ−2

γ

Figure 4.5 Optimal reinsurance strategies for expensive reinsurance with θ ≤ θd (left) and θ > θd (right).
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(solid line). This optimiser corresponds to the one obtained in Chapter 3 for pure drawdown control.
If reinsurance is even more expensive with θ > θd, there are two possibilities for χ < χe,1. These are
displayed in the right graph of in Figure 4.5. For χ ∈ (χde,2, χe,1), we get b∗(0) > 0 and xγ < d with
b∗(xγ) = 1 (dotted line). For χ ∈ [0, χde,2], b∗(0) = 0 and b∗(x) = 1 is fulfilled for all x ∈ [x0, d] (solid
line). Again, b∗ coincides with the function obtained in Chapter 3.

The case θ ≤ θd

Lemma 4.28. [2021a]

For χ ∈ (χe,2, χe,1), there exists a unique γ ∈ (γ̄, 1) with xγ ∈ (0, d) such that the function f : [0,∞)→
R defined by

f(x) =


−β1Pγ(x) , x ∈ [0, xγ ] ,

C1eξx + C2e−κx , x ∈ (xγ , d] ,

−β2δ
−1 +

(
C1eξd + C2e−κd + β2δ

−1)e−κ(x−d) , x > d ,

with
C1 = −β1Q(xγ)(θ + κσ2)

σ2ξ(κ+ ξ)eξxγ and C2 = −β1Q(xγ)(θ − ξσ2)
σ2κ(κ+ ξ)e−κxγ

is a bounded solution to (4.6) with f ′(0) = −β1. The pointwise maximiser is given by

b∗(x) =

θρσ
−2(1 + W(Eγ(x))) , x ∈ [0, xγ ] ,

1 , x > xγ ,
(4.25)

and continuous. b∗ is strictly increasing and concave on (0, xγ). If χ = χe,2, the assertion holds for
the pair γ̄ and xγ̄ = d.

Proof. The third case of Lemma 4.14 implies that, for all γ ∈ [0, 1], the function h0(x) = −β1Pγ(x)
solves the homogeneous Hamilton–Jacobi–Bellman equation for x ∈ [0, xγ ] with the proposed optimiser
which fulfils b∗(0) = γ and b∗(xγ) = 1. For γ ≥ γ̄, we have xγ ≤ d. Similarly to Lemma 4.19, we
extend h0 on (xγ , d] by h1(x) = C1eξx + C2e−κx. Here, C1 and C2 are defined as above and chosen
such that the first and second derivatives coincide at x = xγ . Now, the condition of smooth fit at
x = d of h1 extended by g(x) = −β2/δ + (h1(d) + β2/δ)e−κ(x−d) becomes

χ = κξσ2

δ(σ2κ+ θ)eξd
eξxγ

Qγ(xγ) . (4.26)

By Lemma A.4, the right hand side is continuous and strictly increasing in γ, equal to χe,2 for γ = γ̄

and equal to χe,1 for γ = 1. In particular, for any χ ∈ [χe,2, χe,1], there is a unique γ ∈ [γ̄, 1] such that
equality holds.
This means, the only thing left to check is whether h1 solves the Hamilton–Jacobi–Bellman equation
with maximiser 1 on (xγ , d] in the case xγ < d. This can be shown by observing that h1 is strictly
decreasing and concave on that interval and that the ‘technical’ maximum of Jh1(b) fulfils bh1(x) ≥
bh1(xγ) = 1 for all x ∈ [xγ , d]. We provide details in the appendix, p. 130. Because h1 solves the
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homogeneous differential equation for I(x) = {1} for all x ≥ 0, this implies that h1 is in fact a solution
to the Hamilton–Jacobi–Bellman equation for x ∈ [xγ , d]. Therefore, f solves (4.6) by Lemma 4.7. �

These are the cases represented by the dotted line and the short-dashed line on the left hand side of
Figure 4.5. Next, we consider functions associated with the long-dashed line of the graph.

Lemma 4.29. [2021a]

For χ ∈ (χe,3, χe,2), there exists a unique γ ∈ (0, γ̄) such that the function f : [0,∞) → R defined by
(4.21) is a bounded solution to (4.6) with f ′(0) = −β1. The pointwise maximiser is given by (4.22) and
continuous in every point except in x = d. b∗ is strictly increasing and concave on (0, d). If χ = χe,3,
the assertion holds for γ = 0.

Proof. Similarly to the proof of Lemma 4.21, we obtain that the condition of smooth fit at x = d is

χ = κ

δ(κPγ(d) +Qγ(d)) .

By Lemma A.3, the right hand side is positive and strictly increasing in γ. The rest of the assertion
is a direct consequence of Lemma 4.7, Corollary 4.8 and Lemma 4.14 iii). �

The analogue to Corollary 4.22 is the following result, which is related to the proofs of Lemmata 4.28
and 4.29.

Corollary 4.30. [2021a]

The function γ : [χe,3, χe,1]→ [0, 1] implicitly given by

χ = κ

δ(κPγ(χ)(d) +Qγ(χ)(d)) · 1[χe,3,χe,2)(χ) + κξσ2

δ(σ2κ+ θ)eξd
eξxγ(χ)

Qγ(χ)(xγ(χ))
· 1[χe,2,χe,1](χ)

is continuous and strictly increasing with γ(χc,3) = 0, γ(χe,2) = γ̄ and γ(χe,1) = 1. The function
xγ : [χe,2, χe,1]→ [0, d] given by xγ(χ) = xγ(χ) is continuous and strictly decreasing. �

This means, if χ ∈ [χe,3, χe,1] is reduced, the starting point b∗(0) = γ ‘slides down’ the y-axis and,
simultaneously, xγ is shifted to the right on the x-axis in the left graph of Figure 4.5. Lastly, we
consider the maximiser corresponding to the solid line in the left graph of Figure 4.5.

Lemma 4.31. [2021a]

For χ ∈ [0, χe,3), the function f : [0,∞)→ R defined by

f(x) =

−β2χe,3P0(x) , x ∈ [0, d] ,

−β2δ
−1 +

(
−β2χe,3P0(d) + β2δ

−1
)
e−κ(x−d) , x > d ,

is a bounded solution to (4.6) with f ′(0) = −β2χe,3 < −β1. The pointwise maximiser b∗ is given by
(4.22) with γ = 0 and continuous in every point except in x = d. b∗ is strictly increasing and concave
on (0, d).

Proof. An explicit calculation proves the continuity of the derivative of f at x = d. Hence, the
assertion follows by Lemma 4.7, Corollary 4.8 and Lemma 4.14 iii). �
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The case θ > θd

The following statements can be shown by repeating the arguments of the proof of Lemma 4.28.

Lemma 4.32. [2021a]

For χ ∈ (χde,2, χe,1), there exists a unique γ ∈ (0, 1) with xγ ∈ (0, d) such that the function f : [0,∞)→
R defined as in Lemma 4.28 is a bounded solution to (4.6) with f ′(0) = −β1. The pointwise maximiser
b∗ is given by (4.25) and is continuous. b∗ is strictly increasing and concave on (0, xγ). If χ = χde,2,
the assertion holds for the pair γ = 0 and x0. �

This case corresponds to the dotted line in the right graph of Figure 4.5. The next result follows from
Lemma A.4 of the appendix, p. 132.

Corollary 4.33. [2021a]

The function γ : [χde,2, χe,1]→ [0, 1] implicitly given by

χ = κξσ2

δ(σ2κ+ θ)eξd
eξxγ(χ)

Qγ(χ)(xγ(χ))

is continuous and increasing with γ(χde,2) = 0 and γ(χe,1) = 1. The function xγ : [χde,2, χe,1]→ [0, x0]
given by xγ(χ) = xγ(χ) is continuous and strictly decreasing. �

Hence, we get the same behaviour as in the case θ ≤ θd. Lastly, we consider the case in which the
drawdown penalty dominates.

Lemma 4.34. [2021a]

For χ ∈ [0, χde,2) the function f : [0,∞)→ R defined by

f(x) =


−β2χ

d
e,2P0(x) , x ∈ [0, x0] ,

C1eξx + C2e−κx , x ∈ (x0, d] ,

−β2δ
−1 +

(
C1eξd + C2e−κd + β2δ

−1
)
e−κ(x−d) , x > d ,

where

C1 = −β2κ

δeξd(κ+ ξ) and C2 = ξe(κ+ξ)x0(θ − σ2ξ)
κ(θ + σ2κ) C1 ,

is a bounded solution to (4.6) with f ′(0) = −β2χ
d
e,2 < −β1. The pointwise maximiser b∗ is given by

(4.25) with γ = 0 and is continuous. b∗ is strictly increasing and concave on (0, x0). �

Now that we have identified solutions to (4.6) for cheap and expensive reinsurance, we move on to
verifying that these solutions correspond to optimal strategies.

Verification

In view of Theorem 4.6, we have to prove existence of the processes under the respective feedback
controls to conclude that our candidate solutions are return functions of admissible strategies. We
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combine strategies of the same ‘type’. The first result applies to the functions defined in Lemmata 4.29
and 4.32. These are the cases in which the optimiser b∗ is bounded away from zero and continuous
and which are, with regard to the related stochastic differential equations, the easiest to handle.

Proposition 4.35. [2021a]

The processes under the feedback controls induced by the functions defined for expensive reinsurance
with θ ≤ θd and χ > χe,2 or θ > θd and χ > χde,2 exist.

Proof. For the respective optimiser b∗, we consider the reflected stochastic differential equation of
Definition 3.5 with µ̃(x) = µ(b∗(x)) and σ̃(x) = σb∗(x), x ≥ 0. By Lemma 4.15, b∗ is everywhere
continuously differentiable except at x = xγ , where it is continuous. Additionally, the derivative of b∗

is bounded. Hence, b∗ is Lipschitz continuous and fulfils a linear growth condition. Thus, Equation
(3.5) has a unique strong solution (E,C) by [Pilipenko, 2014, Thm. 2.1.1] where E corresponds to the
drawdown under the feedback control and C to the controlled running maximum with initial value
zero. From this, the controlled surplus can be obtained for arbitrary initial capitals. �

Next, we consider optimisers that are bounded away from zero and fulfil a Lipschitz and linear growth
condition except at x = d where they are discontinuous. This result covers the cases of Lemmata 4.19,
4.21 and 4.28 and the argument coincides with the one for simple switching controls in Chapter 3.

Proposition 4.36. [2021a]

The processes under the feedback controls induced by the functions defined for cheap reinsurance with
χ > χc,4 and for expensive reinsurance with θ ≤ θd and χ ∈ (χe,3, χe,2] exist.

Proof. By Lemma 4.15 and the same arguments as above, b∗ is Lipschitz continuous on [0, d) and
(d,∞) with a bounded derivative. If b∗ jumps at x = d, weak existence of the controlled drawdown as
a solution to (3.5) in Definition 3.5 follows by Theorem 4.1 of [Rozkosz and S lomiński, 1997]. As b∗ is
bounded away from zero, Corollary 4.3 of [Semrau, 2009] ensures pathwise uniqueness. The Yamada–
Watanabe type Theorem 333 of [Situ, 2005] therefore implies strong existence and uniqueness. �

Lastly, we consider the cases of Lemmata 4.23, 4.31, 4.34. The optimisers coincide with those of pure
drawdown control and are associated with solutions f to the Hamilton–Jacobi–Bellman equation with
f ′(0) < β1. Therefore, the result follows from Lemma 3.22 from the previous chapter.

Proposition 4.37. [2021a]

The processes under the feedback controls induced by the functions defined for cheap reinsurance with
χ ≤ χc,4 and expensive reinsurance with χ ≤ χe,2 and χ ≤ χde,2 exist. The running maximum of the
respective controlled process is constant. �

We obtain the following theorem as a consequence of the existence results and the verification theorem.

Theorem 4.38. [2021a]

For cheap and expensive reinsurance, the functions we have obtained in this section are indeed the
value functions for the respective choices of χ. For all cases, an optimal strategy is given by the
feedback strategy induced by the associated pointwise maximiser. �
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4.3 Numerical Examples

For our numerical study, we consider the parameter set given in Table 4.1. We assume in all cases that
the drift of the insurance surplus is η = 0.5 with volatility σ = 1. Further, we choose the preference
parameters δ = 0.3 and d = 0.83, so these key parameters coincide with those of Chapter 3. We fix

η σ δ d θ β1 β2
0.5 1 0.3 0.83 0.6 (a) 1.58 (d) 0.28 1

(b) 0.8 (e) 0.2
(c) 0.4 (f) 0.016

Table 4.1 Parameters of insurance surplus, preference and costs of reinsurance and weights of the value
function.

the (cheap) reinsurance safety loading θ = 0.6 for which we are going to compare different preference
ratios χ. In particular, the optimal strategies are either constant and equal to one or take one of the
shapes displayed in Figure 4.4. The critical values χc,i for this parameter set are given in Table 4.2.
This means that for χ > χc,1 ≈ 1.5715, the strategy of never purchasing reinsurance is optimal, for
χ ≥ χc,2 ≈ 0.3153, the optimiser is equal to one at least at those times when the drawdown is zero and
so on. For the sake of clarity of presentation we choose β2 = 1 in all cases so that we have β1 = χ. In
the following, we consider value functions, optimisers and path simulations for different values of χ:
χ ∈ {1.58, 0.8, 0.4, 0.28, 0.2, 0.016}. With this choice, we focus on parameter sets for which the insurer
has some interest in increasing the maximum surplus (χ ≥ χc,3 in five out of six cases) and include
the extreme cases χ ≥ χc,1 and χ ≤ χc,4.
Figure 4.6 shows the value functions and optimisers for the optimal control problem defined in Equa-
tion (4.1). In particular, for χ = 1.58, the left image of Figure 4.6(A) displays the return v of the
optimal strategy that is constant and equal to one. The grey area corresponds to x > d, that is,
a large drawdown. The red, dotted lines on the very bottom and very top of this graph represent
the a priori bounds of Lemma 4.2. The right image of Figure 4.6(A) displays the maximiser b∗ of
the Hamilton–Jacobi–Bellman equation that induces the optimal feedback strategy. Again, the area
with x > d is shaded in grey. The grey, horizontal line corresponds to the value θρσ−2 = 0.1250.
Figures 4.6(B) and 4.6(C) show graphs of these functions (solid lines) for χ = 0.8, 0.4 ∈ (χc,2, χc,1).
These strategies are of the type considered in Lemma 4.19, that is, they are equal to one in an envir-
onment of zero. Figures 4.6(D) and 4.6(E) display the graphs for χ = 0.28, 0.2 ∈ (χc,3, χc,2), which are
strictly decreasing and of the type defined in Lemma 4.21 i). For χ = 0.016 < χc,4, the graph of the
optimal strategy in Figure 4.6(F) corresponds to the optimal strategy for pure drawdown optimisation
considered in Chapter 3. In the cases (B)–(F), the return of the optimal strategies is higher than the
return of the constant strategy of never buying reinsurance which is represented by the blue, dashed
line in the (respective) left graph. The optimal retention level tends towards the critical value θρσ−2

χc,1 χc,2 χc,3 χc,4
1.5715 0.3153 0.0241 0.0165

Table 4.2 Critical preference ratios for the parameter set of Table 4.1.
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Figure 4.6 Value functions (left) and optimal strategies (right) for different χ.

represented by the grey line in the respective right graph.
Comparing the different cases included in Figure 4.6, we observe that the value functions and the
upper a priori bound generally attain lower values as χ is chosen smaller. This is just due the fact
that β2 is kept constant while β1 decreases. Additionally, the distance to the return of the constant
strategy increases as χ decreases. Intuitively, this is because the optimal strategy differs more from
the constant strategy in the cases of smaller χ.
For our path simulation, we assume that the initial drawdown is x = 0.5. The graphs of Figure 4.7,
(A)–(F), correspond to possible paths of the surplus following the optimal strategies induced by the
functions displayed in Figure 4.6. We use the same data set of increments of the Brownian motion as
in Chapter 3, that means, the external scenario remains unchanged. Again, the colour of the graph
of the surplus path indicates the current retention level of the insurer. Therefore, the black graph
representing the surplus without reinsurance for χ = 1.58, Figure 4.7(A), coincides with the graph
in Figure 3.6(A) of the previous chapter. For the extreme case on the other side of the spectrum,
χ = 0.016, the optimal strategy coincides with the optimal ‘pure’ drawdown control. Thus, the light
blue graph of Figure 4.7(F) is the same as the one pictured in Figure 3.6(F). For the ‘intermediate’
weights and strategies, Figures 4.7(B)–(E) show that reinsurance is bought whenever the drawdown
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Figure 4.7 Path simulations for the optimal feedback strategies.
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Figure 4.8 Path simulations of ex-dividend processes (top) and accumulated dividends (bottom) for
different values of χ.

approaches the unfavourable area and that it forces the process to stay in the uncritical area for a
longer time. In Figure 4.7(B), this even leads to a higher surplus level (and higher historical record) at
the end of the time interval than in the case without reinsurance. In Figures 4.7(C)–(F), we see that
stricter controls corresponding to smaller χ lead to even less drawdowns at the cost of a lower record
level.
As stated in the introduction of this chapter, our optimisation has the additional interpretation of
‘maximal dividends with enhanced stability’. This is the function defined in Equation (4.2). Choosing
the dividend barrier y = 1 and keeping the remaining parameters of Table 4.1, the value function w

penalises the state of a surplus lower than y − d = 0.17. In particular, w(x) corresponds to v(y − x)
(displayed in Figure 4.6) for x ≤ y and is extended by β1(x−y)+w(y) for x > y. In path simulations,
it can be observed that the accumulated dividend processes correspond to the running maxima of the
processes without dividend payments (as per definition) and that the retention level strategies, indeed,
coincide at every point in time (see Figure 4.8).

4.4 Key Findings and Concluding Remarks

In this chapter, we considered an extension to our central optimal control problem (1.9). In particular,
we defined in (4.1) a new target function, which measures the discounted growth (or, equivalently,
accumulated dividends) with a penalty for the time in critical drawdown. This choice was motivated by
the fact that ‘pure drawdown’ controls stabilise the surplus process at the cost of never outperforming
(and, in some cases, never reaching) the historical high water mark again. We started by proving a
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general verification theorem for the related Hamilton–Jacobi–Bellman equation. For the homogeneous
part of this equation, we found (by refining the methods of Chapter 3) a set of solutions with non-
constant optimisers related to the Lambert W function. For the inhomogeneous part, we derived
that the optimal strategy for large initial drawdown is again the strategy of ‘maximal drift’. This
allowed us to approach the optimal control problem from a behaviouristic perspective. That is, instead
of solving the Hamilton–Jacobi–Bellman equation itself, we started with a ‘reasonable’ pointwise
optimiser b∗ with respect to the preference ratio χ = β1/β2. Then, we calculated a solution to
the modified differential equation and derived conditions under which this solution also solves the
maximised equation. We got a first intuition of what a ‘reasonable’ optimiser looks like by considering
the return function of the constant strategy B with Bt = 1, t ≥ 0. Here we found out that this
strategy is optimal if the preference ratio is large enough, i.e. χ ≥ χc,1 for cheap and χ ≥ χe,1 for
expensive reinsurance. Correspondingly, we derived for both cases critical upper bounds for χ such
that the maximiser corresponded to the ‘pure drawdown’ control of Chapter 3. Distinguishing cheap
and expensive reinsurance, we found a spectrum of optimisers and value functions connecting these
extreme cases. Moreover, we calculated explicitly the critical preference ratios for certain strategy
‘types’ and showed that the transitions between all cases are continuous.
Our analysis and numerical examples show that, with the considered extension, we overcome the
problem of non-increasing surplus brought up in Chapters 2 and 3. With the preference weights β1

and β2, it is possible to sensitively manage the dynamics of the surplus under the resulting feedback
control. In particular, the optimal strategies combine the positive aspects of drawdown control, such
as enhanced stability, with the opportunity of increasing profits and dividends.
Apart from the possibilities discussed in the following chapter, there are two specific aspects of this
model raising interesting questions for further research. Firstly, because the definition of our problem
was inspired by the case considered in Chapter 3, we transferred the assumption θ > η, i.e. reinsurance
is more expensive than first insurance. In Chapter 3, θ ≤ η leads to trivial strategies. With the
possibility of paying dividends included, however, this is not the case. From an economic point of
view, the case θ = η of free risk trade could therefore be a scenario worth analysing. Though the
case θ < η is not as realistic, the related stochastic differential equations are still intriguing from
a mathematical perspective. Secondly, we assumed without further comments that the preference
discounting for dividends is the same as for the drawdown penalty. If δ is interpreted as reflecting the
general time value of money, this is a reasonable assumption. Another possibility would be to allow
different discounting factors δ1 (for growth or dividends) and δ2 (for the drawdown penalty). This
setting allows for two different ‘time lines’ for the perception of the benefit from dividends and the
threat caused by drawdowns. In particular, this results in a two-dimensional problem because the
Hamilton–Jacobi–Bellman equation and the optimal strategy are time dependent. Such problems are
usually hard to solve. However, in view of the smooth transitions between the different categories of χ,
an approach could be to compose a two-dimensional strategy by ‘glueing’ one-dimensional strategies
together. We discuss further extensions of the preference model in the following chapter.
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CHAPTER 5

Opportunities for Future Research

Drawdown-targeted optimal reinsurance enforces stability and, therefore, increases predictability of
stochastic surplus models, as our analysis shows. The optimal strategies connected are anti-cyclic:
reinsuring to minimise the time with critical drawdown (without any additional motives) means to
‘play it safe’ whenever the surplus is close to its historical peak and to take a risk when the drawdown
is already critical. This equalises the surplus in the favourable area and, should a critical drawdown
occur, induces a quick recovery. In combination with an incentive to grow (such as dividends), the
proposed drawdown performance measure can be utilised to find balanced reinsurance policies leading
to a ‘sustainably’ increasing profit. With this chapter, we conclude this monograph by addressing the
various possibilities of further research related.

We start with extensions inspired by (some obstacles of) transferring our model results to a
realistic setting. The classical risk process and its diffusion approximation with proportional
reinsurance are very simple and versatile models. However, in an application, a more complex model
could be favoured and more ‘tools’ for drawdown control might be available. Therefore, canonical
extensions are to allow a broader class of surplus models (e.g. spectrally negative Lévy processes), to
consider different types of reinsurance contracts (e.g. excess of loss) or to combine different control
tools (e.g. reinsurance and investments or dividends).
Throughout this work, we assumed that the parameters d (critical drawdown size) and δ (exponential
time preference rate) are predefined. With regard to applications, a significant challenge is to examine
how to ‘correctly’ choose these parameters. Moreover, in reality, the risk preference of a company

∆

Figure 5.1 Left: The tolerance for drawdowns changes over time. Right: A time-dependent target function f
replaces the running maximum in an alternative problem.
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could vary over time (for example because of a new manager or changed market situation). Therefore,
a preference rate or critical drawdown size changing over time would be an interesting variant of the
problem (compare Figure 5.1). One possibility (preserving the Markovian structure of the problem)
is to consider a regime switching model, such as in [Jiang and Pistorius, 2012] or [Brinker and
Eisenberg, 2021]. That means, the preference parameters switch between different ‘states’ according
to a time-homogeneous Markov chain. This method leads to a system of Hamilton–Jacobi–Bellman
equations with one equation for each state.
Another aspect which would have to be adjusted in an application is the structure of optimal
policies. As we have seen, the optimal strategies are of feedback form in our models. However, in
reality, an insurer cannot change the retention level continuously in time without added costs. That
means, reinsurance strategies would have to be discretised to match target dates or periods. Adminis-
trative costs related to changes of the reinsurance coverage are also a suitable addition to the problem.

In Chapter 4, we have already seen one possibility to combine drawdown minimisation with
other incentives in a value function. In the following, we consider further ideas for drawdown-oriented
optimisation problems based on our analysis and applicable to different models or control tools.

Drawdown from an Economic Target

In the spirit of the alternative interpretation of the problem considered in Chapter 4, one may analyse
the time the surplus spends ‘far away’ from a time-dependent target value f(t) (given as a deterministic
function or adapted stochastic process) representing an economic goal. This economic goal could, for
example, be a managerial (previsible) decision or be influenced by factors which cannot be foreseen
such as development of the market index or performance of a competitor. That means, if X = (Xt)t≥0

denotes the surplus process, the value function is the expected (discounted) time during which the
process ∆ = (∆t)t≥0 given by

∆t =
(
f(t)−Xt

)+
, t ≥ 0 ,

exceeds a critical level d, minimised with respect to reinsurance or investments. The right graph of
Figure 5.1 shows an example. If f(t) increases over time, this target function already accounts for the
potential of growth. This effect can be reinforced by ‘rewarding’ the time in which ∆ is equal to zero.
For the constant function f(t) = y ∈ R, this corresponds to the problem considered in Chapter 4.
However, in general, the problem will be time-dependent.

Dividend Optimisation without Regrets

Another variant of the model in Chapter 4 would be to consider the problem as an optimisation of
the dividend policy (with or without reinsurance). That means, for an adapted increasing process
D representing the accumulated dividends, we define the ex-dividend maximum M = (Mt)t≥0 and
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drawdown ∆ = (∆t)t≥0 by

Mt = max
{
m0, sup

s≤t
(Xs −Ds)

}
, ∆t = Mt − (Xt −Dt) , t ≥ 0 ,

and consider

β1

∫ ∞
0

e−δt dDt − β2

∫ ∞
0

e−δt1{∆t>d} dt .

This is the value of accumulated dividends minus a penalty for the time in which the company’s
reputation is at risk because of large relative losses. In general, M changes over time depending on
D, so that ∆ and M have to be tracked. Still, we note that the return of barrier strategies can be
calculated analogously to Chapter 4. In this way, one could find an optimal strategy (at least) from
the set of barrier strategies.

Ruin and Drawdown Penalties

In all considered models, the strategy of not purchasing reinsurance is optimal in the critical area. As
we found out, this is the best strategy for quickly re-entering the uncritical area. But for a company
whose surplus is already at very low level, such a ‘high risk’ strategy might not be favourable. For
example, the surplus path in the left graph of Figure 5.1 starts closer to the bankruptcy line than to
the uncritical area. One possibility to overcome this problem is to include ruin in the value function.

Figure 5.2 Two penalty functions increasing with the drawdown size.

In this case, one has to ensure that an early, deliberate ruin to prevent future drawdowns is not
possible. That means, ruin has to be penalised, for example with the value δ−1 of staying in critical
drawdown forever. More generally, one could minimise expressions such as∫ τ

0
e−δt1{∆t>d} dt+ e−δτφ(Xτ) , for τ = {t ≥ 0 : Xt < 0} ,

or, similarly as in [Schmidli and Vierkötter, 2017],∫ ∞
0

e−δt
[
1{∆t>d} + φ(Xt)

]
dt ,
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where φ is a decreasing function. In these cases, an increasing maximum postpones the time of ruin or
lowers the penalising term in the future. A disadvantage of including the surplus in the value function
is that these two-dimensional problems (depending on X and ∆) are mathematically less tractable.
A different and promising approach is the following. Low surplus levels are caused by particularly
large drawdowns. However, our original value function penalises all ‘critical’ drawdowns above d in
the same way. Instead, one could define an increasing and convex penalty function ϕ expressing the
negative impact of extreme drawdowns and minimise∫ ∞

0
e−δtϕ(∆t) dt .

Of course, here one has to prove that the integral is finite for the chosen ϕ. A simple example is
ϕ(x) = 1{x>d}(x − d)2. This function resembles our original problem in the way that there is a
tolerance for uncritical drawdowns. Relative losses exceeding the critical value are counted with a
quadratic penalty. The left graph of Figure 5.2 illustrates this. A different possibility is shown in
the right image of Figure 5.2: there are different critical drawdown sizes with constant penalties. As
before, the white area of both images corresponds to a small drawdown and the darker areas symbolise
the less favourable states.

Drawdown Control for Extreme Events

In our considerations of the classical risk model, we have seen that drawdown minimising strategies
are especially effective in the case of an extraordinarily high number or large size of claims. This is a
useful property in the context of time-inhomogeneous claim intensities. For example, a Poisson process
counting claims can be replaced by a Cox process with a shot-noise intensity to model ‘catastrophic’
events (such as floods or hurricanes) triggering a large number of claims (compare [Dassios and Jang,
2003] and [Albrecher and Asmussen, 2006]). That is, we assume that the intensity of the process
N = (Nt)t≥0 in the definition of the classical risk model is itself a stochastic process λ = (λt)t≥0, given
by

λt = λ0e−δt +
Ñt∑
i=1

Zie−δ(t−Ti) , t ≥ 0 ,

λ X

Figure 5.3 The claim arrival intensity changes over time and an ‘extreme event’ causes a critical drawdown.
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ϑ̃

Figure 5.4 The process is observed at discrete points in time.

where Ñ = (Ñt)t≥0 is a homogeneous Poisson process with arrival times (Ti)i∈N and (Zi)i∈N is an
independent sequence of independently identically distributed random variables determining the size
of the ‘shots’. The resulting surplus process is still a piecewise deterministic Markov process. Figure 5.3
is a sketch of possible paths of the intensity and surplus. To consider optimisation problems in this
‘doubly stochastic’ setting is an intriguing and significant challenge. Moreover, how to reinsure (based
on the given information) to lower the resulting relative losses for extreme events is also an economically
relevant question. As a first approach, one could assume that the surplus process and the intensity
are observed. This leads to a two-dimensional problem. However, in reality, the insurer can only
monitor the intensity indirectly by counting claim arrivals of the surplus process. That means, one
would additionally have to use a filtering argument to estimate the unknown intensity.

Revisiting Reputational Risks

Completing the circle, we consider an idea inspired by our motivation in Chapter 1. Here we stated
that large drawdowns could damage a company’s reputation because stakeholders would loose trust
in the management. However, it is reasonable to assume that (potential) customers and shareholders
do not monitor the surplus of the company continuously in time. Therefore, another extension to
the model worth analysing is to allow ‘inattentive’ stakeholders who only check on the company at
discrete observation times (as considered by Albrecher et al. [2011]). In this setting, critical drawdowns
in between observation times remain unnoticed. If we denote the sequence of observation times by
(Sk)k∈N, the expression to minimise (in expectation) is

∞∑
k=1

e−δSk1{∆Sk
>d} .

This is illustrated in Figure 5.4: the vertical lines represent the observation times, such that the first
critical drawdown which ‘counts’ is the one at time ϑ̃. In addition, if the times between observations
are memoryless (i.e. exponentially distributed), ϑ̃ corresponds to the time to critical drawdown with
exponential Parisian delay (compare [Dassios and Wu, 2008]), which is interesting on its own.
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APPENDIX A

Appendix: Details, Proofs and Technical Results

A.1 Addendum to Chapter 2

Proof of Lemma 2.3 i), ii). We start by showing i). We observe that Ψb(r) is defined (at least) for all
r ≥ 0. We have Ψb(0) = 0, Ψ′′b (r) = λb2E(Y 2

1 e−rbY ) > 0 and limr→∞Ψb(r) = ∞. If Ψ′b(0) ≥ 0 then
Ψb is strictly increasing on (0,∞) and γ(b) > 0 with Ψb(γ(b)) = δ exists and is unique. Otherwise, if
Ψ′b(0) < 0, there exists a unique r0 > 0 with Ψb(r0) = 0 because of the strict convexity of Ψb. Then,
Ψ′b(r0) > 0 and Ψb(r) < 0 for all r ∈ (0, r0), so that there exists a unique γ(b) > r0 with the desired
properties. Now we prove ii). We notice that b 7→ Ψb(r) is increasing in b ∈ [b0, 1] for all r > 0: it
holds

d
dbΨb(x) = (1 + θ)λµr + λ`′Y (br)r ,

where the right hand side is increasing in b and positive at b = b0 by `′Y (rb0) = −E(Y e−rb0Y ) > −µ,
so (1 + θ)λµr + λ`′Y (b0r)r > θλµr > 0. Hence, by Ψb(0) = 0, b 7→ γ(b) decreases for b ∈ (b0, 1]. �

Proof of Equation (2.18). We note that

∫ ∞
0

e−tx
∫ x/b̌

0
w(x− b̌y) dG(y) dx =

∫ ∞
0

∫ ∞
b̌y

e−txw(x− b̌y) dx dG(y)

=
∫ ∞

0

∫ ∞
0

e−t(z+b̌y)w(z) dz dG(y) =
(∫ ∞

0
e−tb̌y dG(y)

)(∫ ∞
0

e−tzw(z) dz
)

= `w(t)`Y (tb̌)

and ∫ ∞
0

e−tx
∫ ∞
x/b̌

G(y) dx =
∫ ∞

0

∫ b̌y

0
e−tx dx dG(y) = 1

t

∫ ∞
0

(
1− e−tb̌y

)
dG(y) = 1− `Y (tb̌)

t

and ∫ ∞
0

e−tx
∫ ∞
x/b̌

e−γ(b̂)(b̌y−x) dG(y) dx =
∫ ∞

0
e−γ(b̂)b̌y

∫ b̌y

0
e−(t−γ(b̂))x dx dG(y)

= − 1
γ(b̂)− t

∫ ∞
0

(
e−γ(b̂)b̌y − e−tb̌y

)
dG(y) = `Y (tb̌)− `Y (γ(b̂)b̌)

γ(b̂)− t
.
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The equation follows from plugging in these expressions. �

Proof of Lemma 2.11. By adding a superscript ‘(n)’ to the already existing notation we indicate the
quantities related to the claim distribution G(n). By the extended continuity theorem in [Feller, 1971],
the Laplace transforms of the approximating sequence converge pointwise to the Laplace transform
of Y1. Therefore, Ψ(n)

b (t) = c(b)t − λ(1 − `Y (n)(b)) → Ψb(t) as n → ∞ for all t ≥ 0. We first
show that γ(n)(b) converges to γ(b) if it exists, that is, if b ∈ (b0, 1]. To this purpose, we recall
that Ψ(n)

b and Ψb are continuous and convex. In particular, these functions are increasing on the
subinterval of (0,∞) on which they are positive. Now we use a similar technique as in [Asmussen
and Albrecher, 2010, Corollary A5.17] to prove the convergence of the γ(n)(b). For all ε > 0, it holds
Ψ(n)
b (γ(b) + ε) → Ψb(γ(b) + ε) > δ, such that there exists nε with Ψ(n)

b (γ(b) + ε) > δ for all n ≥ nε.
By δ = Ψ(n)

b (γ(n)(b)), we obtain γ(b) + ε > γ(n)(b), which holds for all n ≥ nε. This implies that we
have supn≥nε γ(n)(b) ≤ γ(b) + ε and, as a consequence: lim supn→∞ γ(n)(b) ≤ γ(b). Analogously, one
can show the opposite inequality: lim infn→∞ γ(n)(b) ≥ γ(b). Therefore, in case i) with b̂ = b0, the
Laplace transforms

`w(n)(t) = 1
t

(1
δ

+ 1
Ψ(n)
b̌

(t)− δ

)
,

converge to `w (which takes the same form) on an interval (a,∞), a ≥ 0. Again by the extended
continuity theorem, we can conclude u(n)(x) = w(n)(d − x) → w(d − x) = u(x) as n → ∞ for all
x ∈ [0, d]. In case ii), (2.19) takes the form

`w(n)(t) = 1
t

(1
δ

+ 1
Ψ(n)
b̌

(t)− δ

)
−
(
δ−1 − w(n)(0)

)
t− γ(n)(b̂)

.

Thus, in this case, we additionally have to show that w(n)(0), that is u(n)(d), converges. As in case
i), we conclude convergence of W δ(n)

b̌
(x) to W δ

b̌
(x) for every x ∈ [0, d] from the convergence of Ψ(n)

b̌
to

Ψb̌. In particular, this is fulfilled at x = d. Thus, it follows from the representation of u(n)(d), u(d)
given in Theorem 2.9, that `w(n)(t)→ `w(t), as above, and thus that u(n)(x)→ u(x) for all x ∈ [0, d].
Case iii) follows analogously: we can assume that (γ(n))n∈N is monotone by choosing an adequate
subsequence. In combination with the uniform convergence of W δ(n)

b̌
, the integral in the denominator

of u(n)(d) in (2.20) converges. Again we obtain convergence of the Laplace transforms and of u(n)(d),
so that the assertion can be concluded. In all cases, we have limn→∞ u

(n)(x) = u(x) for all x > d by
Equation (2.7) and convergence at x = d. �

Proof of Lemma 2.15. We first note that ∆B and XB are processes of locally bounded variation, since
the size and number of jumps in a finite time interval are almost surely finite. MB additionally is
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increasing and continuous. We have, by change of variables:

e−δtf(∆B
t )− f(∆B

0 ) =
∫ t

0
−δe−δsf(∆B

s−) ds+
∫ t

0
e−δsf ′(∆B

s−) dMB
s

−
∫ t

0
e−δsf ′(∆B

s−) d (XB
s )c +

∑
s≤t

e−δs
[
f(∆B

s )− f(∆B
s−)
]
,

where (XB)c denotes the continuous part of the respective path of XB. Since the running maximum
can only increase if the drawdown is equal to zero, we can replace the integrand of the integral with
respect to MB with e−δsf ′(0). Additionally plugging in the continuous part of XB, we arrive at

e−δtf(∆B
t )− f(∆B

0 ) =
∫ t

0
e−δsf ′(0) dMB

s +
∫ t

0
e−δs

(
−δf(∆B

s−)− c(Bs−)f ′(∆B
s−)
)

ds

+
Nt∑
k=1

e−δTk
(
f(∆B

Tk− +BTk−Yk)− f(∆B
Tk−)

)
. (A.1)

Now the last term on the right hand side is a pure jump process. This process can be expressed as
a stochastic integral with respect to the random counting measure µ◦ associated to the compound
Poisson process determined by N and (Yk)k∈N. The processes Sy = (Sys )s≥0, y ≥ 0, with

Sys = e−δs
(
f(∆B

s− +Bs−y)− f(∆B
s−)
)
, s ≥ 0 ,

are predictable. Since f is bounded, the absolute value of Sys is bounded by e−δs multiplied with a
constant. Thus, by the martingale representation theorem (compare [Jacobsen, 2006, Thm. 4.6.1]),
the process O = (Ot)t≥0 with

Ot =
Nt∑
k=1

e−δTk
(
f(∆B

Tk− +BTk−Yk)− f(∆B
Tk−)

)
−
∫ t

0
λ

∫ ∞
0

Sys dG(y) ds , t ≥ 0 ,

is a martingale of expectation zero. By (A.1), we have

Ot = e−δtf(∆B
t )− f(∆B

0 )−
∫ t

0
e−δsf ′(0) dMB

s

−
∫ t

0
e−δs

(
−δf(∆B

s )− c(Bs)f ′(∆B
s ) + λ

∫ ∞
0

f(∆B
s +Bsy)− f(∆B

s ) dG(y)
)

ds .

Since we integrate with respect to the Lebesgue measure and every path s 7→ ∆B
s (ω) is càdlàg and has

at most countably many jumps, it is possible to replace the left limits ‘s−’ with ‘s’ in the integrand. �

Proof of Proposition 2.20. The drawdown process stays in zero up to the first claim time T1 for all
B ∈ B because we have −c(Bt) ≤ −c(b0) = 0, t ≥ 0. For a given strategy B, we write B̃ for the
strategy shifted by the time of the first claim, that is B̃t = BT1+t, t ≥ 0. Distinguishing the cases of
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staying in [0, d] and exiting at the first claim time, we obtain:

vBC (0) = E0[e−δT1vB̃C (BT1−Y1)1{∆B
T1
≤d}
]

+ E0[e−δT1pC(BT1−Y1)1{∆B
T1
>d}
]

≥ E0[e−δT1wC(BT1−Y1)
]
≥ inf

b∈[b0,1]
E0[e−δT1wC(bY1)

]
.

Because this is fulfilled for arbitrary strategies B ∈ B, we obtain (using independence of Y1 and T1):

vC(0) ≥ inf
b∈[b0,1]

E0[e−δT1wC(bY1)
]

= λ

λ+ δ
inf

b∈[b0,1]

∫ ∞
0

wC(by) dG(y) .

By [Elstrodt, 2011, Thm. IV.5.6], b 7→ E0[wC(bY1)] is continuous and [b0, 1] is compact. Thus, the
infimum on the far right is attained at some b′ ∈ [b0, 1]. To show the opposite inequality we define the
strategy B by Bt = b′, t < T1, and Bt = Bε

t−T1
, t ≥ T1, where Bε fulfils vC(x) > vB

ε

C (x) − ε for all
x ∈ [0, d]. We recall that such a universally ε-optimal strategy exists. Now we have

vC(0) ≤ vBC (0) = E0[e−δT1vB
ε

C (b′Y1)1{∆B
T1
≤d}
]

+ E0[e−δT1pC(b′Y1)1{∆B
T1
>d}
]

≤ E0[e−δT1wC(b′Y1)
]

+ ε

and letting ε → 0 shows (2.29). Because, by Lemma 2.19, wC is an increasing function for C ≥ Cd,
this representation implies b′ = b0. �

Calculation of T and t in Subsection 2.3.1. We distinguish the cases of zero drift (i.e. k = 0 or m = 0)
and the cases of non-zero drift (k > 0 and m > 0). In order to avoid repetition, we identify frequently
reappearing expressions which only have to be calculated once. Then we show how T and t can be
defined based on these terms. If either k = 0 or m = 0 with k < n, we obtain, similarly to Equation
(2.36):

vk = vk · E
[
e−δT11{%mY1≤(1−ξ)q}

]
+

n−1∑
j=k+1

vj · E
[
e−δT11{(j−k)q−ξq<%mY1≤(j−k)q+(1−ξ)q}

]
+ vn ·

(
E
[
e−δT11{(n−k)q−ξq<%mY1≤(n−k)q}

]
+ e(n−k)q E

[
e−δT1e−γ%mY11{%mY1>(n−k)q}

])
+ δ−1

(
E
[
e−δT11{%mY1>(n−k)q}

]
− e(n−k)q E

[
e−δT1e−γ%mY11{%mY1>(n−k)q}

])
.

For k = n and m = 0, this equation holds with the first and second terms set to zero. We observe
that in all cases, the expressions only depend on the distance of the grid points. Thus, writing for
m = 0, . . . , n

D[p,m] = E
[
e−δT11{pq−ξq<%mY1≤pq+(1−ξ)q}

]
,

= λ

λ+ δ
P
[pq − ξq

%m
< Y1 ≤

pq + (1− ξ)q
%m

]
, p = 0, . . . , n− 1 ,
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and for m = 0 (with k = 0, . . . , n) and k = 0 (with m = 0, . . . , a)

R[k,m] = E
[
e−δT11{(n−k)q−ξq<%mY1≤(n−k)q}

]
= λ

λ+ δ
P
[(n− k)q − ξq

%m
< Y1 ≤

(n− k)q
%m

]
,

J1[k,m] = e(n−k)q E
[
e−δT1e−γ%mY11{%mY1>(n−k)q}

]
= λ

λ+ δ
e(n−k)q E

[
e−γ%mY11{%mY1>(n−k)q}

]
,

J2[k,m] = E
[
e−δT11{%mY1>(n−k)q}

]
= λ

λ+ δ
P
[
Y1 >

(n− k)q
%m

]
,

we get, in the zero drift case:

vk =
n−1∑
j=k

vj ·D[j − k,m] + vn
(
R[k,m] + J1[k,m]

)
+ δ−1

(
J2[k,m]− J1[k,m]

)
, k < n ,

vn = vn
(
R[n,m] + J1[n,m]

)
+ δ−1

(
J2[n,m]− J1[n,m]

)
.

For k /∈ {0, n}, m 6= 0, we have:

vk = vk−1 · e−(δ+λ)ξq/c(%m) + vk · E
[
e−δT11{−c(%m)T1+%mY1≤(1−ξ)q}1{T1<ξq/c(%m)}

]
+

n−1∑
j=k+1

vj · E
[
e−δT11{(j−k)q−ξq<−c(%m)T1+%mY1≤(j−k)q+(1−ξ)q}1{T1<ξq/c(%m)}

]
+ vn ·

(
E
[
e−δT11{(n−k)q−ξq<−c(%m)T1+%mY1≤(n−k)q}1{T1<ξq/c(%m)}

]
+ e(n−k)q E

[
e−(δ−γc(%m))T1e−γ%mY11{−c(%m)T1+%mY1>(n−k)q}1{T1<ξq/c(%m)}

])
+ δ−1

(
E
[
e−δT11{−c(%m)T1+%mY1>(n−k)q}1{T1<ξq/c(%m)}

]
− e(n−k)q E

[
e−(δ−γc(%m))T1e−γ%mY11{−c(%m)T1+%mY1>(n−k)q}1{T1<ξq/c(%m)}

])
,

with the interpretation of ∑n−1
j=n = 0, where we used that xj−xk = (j−k)q and d = nq. For k = n and

m 6= 0, this equation holds with the second and third terms set to zero. We write, for m = 1, . . . , a,

E[p,m] = E
[
e−δT11{pq−ξq<−c(%m)T1+%mY1≤pq+(1−ξ)q}1{T1<ξq/c(%m)}

]
, p = 0, . . . , n− 1 ,

and for m = 1, . . . , a, k = 1, . . . , n,

R[k,m] = E
[
e−δT11{(n−k)q−ξq<−c(%m)T1+%mY1≤(n−k)q}1{T1<ξq/c(%m)}

]
,

J1[k,m] = e(n−k)q E
[
e−(δ−γc(%m))T1e−γ%mY11{−c(%m)T1+%mY1>(n−k)q}1{T1<ξq/c(%m)}

]
,

J2[k,m] = E
[
e−δT11{−c(%m)T1+%mY1>(n−k)q}1{T1<ξq/c(%m)}

]
,
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so that, in the negative drift case:

vk = vk−1 · e−(δ+λ)ξq/c(%m) +
n−1∑
j=k

vj · E[j − k,m] + vn
(
R[k,m] + J1[k,m]

)
+ δ−1

(
J2[k,m]− J1[k,m]

)
, k < n ,

vn = vn−1 · e−(δ+λ)ξq/c(%m) + vn
(
R[k,m] + J1[k,m]

)
+ δ−1

(
J2[k,m]− J1[k,m]

)
.

So, if D, E, R, J1 and J2 are known for the corresponding claim distribution, T and t are given by

Tm
k,j =



e−(δ+λ)ξq/c(%m) , j = k − 1 and m = 1, . . . , a , and k = 1, . . . , n ,

E[j − k,m] , j = k, . . . , n− 1 and m = 1, . . . , a , and k = 1, . . . , n− 1 ,

D[j − k,m] , j = k, . . . , n− 1 and m = 0 or k = 0,

R[j − k,m] + J1[k,m] , j = n ,

0 , else ,

and

tmk = δ−1(J1[k,m]− J2[k,m]
)
, k = 0, . . . , n and m = 0, . . . , a .

For the cases of deterministic and exponential claims, all expected values can be explicitly calculated.
For the Pareto distribution, the calculation is not trivial. Here we used the incomplete Gamma
function Γ, given by

Γ(s, x, x) =
∫ x

x
e−zzs−1 dz , s > 0 ,

which is available as a pre-implemented function in many programming languages. In particular, by
substituting z = Q(B + Ct)/C, we can transform integrals of the form

∫ A

A
e−Qt 1

(B + Ct)α dt = eQB/CQ
α−1

Cα
· Γ
[
1− α, QBC +QA, QBC +QA

]
,

∫ A

A
e−Qt 1

(B + Ct)α+1 dt = eQB/C Qα

Cα+1 · Γ
[
−α, QBC +QA, QBC +QA

]
,

which appear in the calculation of R, J1 and J2. �

Calculation of γ for Deterministic Claims in Subsection 2.3.5. Similar to Lemma 2.3, we have that γ
is determined by Equation (2.37). Rearranging the terms, we find

(δ + λ− c(1)γ)ζ
λ

= ζe−γζ ,
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so substituting z = (δ + λ− c(1)γ)ζ/λ, we obtain

− zλ

c(1)e−zλ/c(1) = − λζ

c(1)e−ζ(δ+λ)/c(1) .

We recall that the Lambert W function W : [−e−1,∞) → [−1,∞) is the unique inverse of x 7→ xex

with values in [−1,∞). Applying this function to both sides of the equation, we arrive at

− zλ

c(1) = W
[
− λζ

c(1)e−ζ(δ+λ)/c(1)
]
.

We plug in the explicit expression of z and rearrange the terms to find:

γ = δ + λ

c(1) + 1
ζ
W
(
− λζ

c(1)e−ζ(δ+λ)/c(1)
)

= 1
ζ

[ δ + λ

(1 + η)λ + W
(
− 1

1 + η
e−(δ+λ)/((1+η)λ)

)]
.

To obtain the last equality, we additionally used the definition of c(1). Now, with the explicit para-
meters given in Subsection 2.3.5, one can use an implementation of the Lambert W function to obtain
an approximation to γ. �

A.2 Addendum to Chapter 3

Proof of Lemma 3.2. To see that every fk solves the corresponding ordinary differential equation, we
first observe that l : [0,∞)→ R defined by

l(x) = κ(b)eξ(b)x + ξ(b)e−κ(b)x

δ(κ(b) + ξ(b))eξ(b)d
= C1eξ(b)x + C2e−κ(b)x

solves the homogeneous equation Abl(x) = 0 by definition of ξ(b) and κ(b). Moreover, we have

fk(x) = l(x)− κ(b)ξ(b)
δ(κ(b) + ξ(b))(gk − jk)(x) ,

where we write

gk(x) =
∫ x

0
eξ(b)(x−z)Hk(z) dz , jk(x) =

∫ x

0
e−κ(b)(x−z)Hk(z) dz .

These functions fulfil

g′k(x) = ξ(b)gk(x) +Hk(x) , g′′k(x) = [ξ(b)]2gk(x) + ξ(b)Hk(x) +H ′k(x) ,
j′k(x) = −κ(b)jk(x) +Hk(x) , j′′k (x) = [κ(b)]2jk(x)− κ(b)Hk(x) +H ′k(x) ,

so that we have

(gk − jk)′(x) = ξ(b)gk(x) + κ(b)jk(x) ,
(gk − jk)′′(x) = [ξ(b)]2gk(x)− [κ(b)]2jk(x) + (κ(b) + ξ(b))Hk(x) .
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From the definition of ξ(b) it follows that (σbξ(b))2 = 2(δ+µ(b)ξ(b)) and an analogous equation holds
for −κ(b). Thus, multiplying both sides of the second order equation with σ2b2/2 = δ/(κ(b)ξ(b)), we
find

σ2b2

2 (gk − jk)′′(x) = (δ + µ(b)ξ(b))gk(x)− (δ − µ(b)κ(b))jk(x) + σ2b2(κ(b) + ξ(b))
2 Hk(x)

= δ(gk − jk)(x) + µ(b)(gk − jk)′(x) + δ(κ(b) + ξ(b))
κ(b)ξ(b) Hk(x) .

So, it follows:

Abfk(x) = κ(b)ξ(b)
δ(κ(b) + ξ(b))

(
δ(gk − jk)(x) + µ(b)(gk − jk)′(x)− σ2b2

2 (gk − jk)′′(x)
)

= −Hk(x) .

Except for the convergence of (fk)k∈N, all other properties follow directly from the explicit represent-
ations of the functions. To see limk→∞ fk(x) = f(x) for all x ≥ 0, we firstly note that for x ≤ d, we
have d − z ≥ x − z > 0 for all z ∈ [0, x). Hence, k 7→ Hk(z) is decreasing for all z ∈ [0, x). Thus, it
follows by monotone convergence that

lim
k→∞

∫ x

0

(
eξ(b)(x−z) − e−κ(b)(x−z))Hk(z) dz = 0 .

Hence, we have convergence for x ≤ d by

lim
k→∞

fk(x) = κ(b)eξ(b)x + ξ(b)e−κ(b)x

δ(κ(b) + ξ(b))eξ(b)d
− κ(b)ξ(b)
δ(κ(b) + ξ(b)) lim

k→∞

∫ x

0

(
eξ(b)(x−z) − e−κ(b)(x−z))Hk(z) dz

= κ(b)eξ(b)x + ξ(b)e−κ(b)x

δ(κ(b) + ξ(b))eξ(b)d
= C1eξ(b)x + C2e−κ(b)x .

For x > d, we have d − z > 0 for z ∈ [0, d) and d − z < 0 for z ∈ (d, x) and k 7→ Hk(z) is increasing
for all z ∈ [d, x). Splitting the integral at x = d, we get (again by monotone convergence):

lim
k→∞

∫ x

0

(
eξ(b)(x−z) − e−κ(b)(x−z))Hk(z) dz =

∫ x

d

(
eξ(b)(x−z) − e−κ(b)(x−z)) dz

= eξ(b)(x−d) − 1
ξ(b) + e−κ(b)(x−d) − 1

κ(b) ,

from which we obtain convergence for x > d by

lim
k→∞

fk(x) = κ(b)eξ(b)x + ξ(b)e−κ(b)x

δ(κ(b) + ξ(b))eξ(b)d
− κ(b)ξ(b)
δ(κ(b) + ξ(b))

[eξ(b)(x−d) − 1
ξ(b) + e−κ(b)(x−d) − 1

κ(b)
]

= 1
δ

+ κ(b)eξ(b)(x−d)

δ(κ(b) + ξ(b)) + ξ(b)e−κ(b)x

δ(κ(b) + ξ(b))eξ(b)d
− ξ(b)e−κ(b)(x−d)

δ(κ(b) + ξ(b)) −
κ(b)eξ(b)(x−d)

δ(κ(b) + ξ(b))

= 1
δ

+ ξ(b)e−κ(b)(x−d)e−κ(b)d

δ(κ(b) + ξ(b))eξ(b)d
− ξ(b)e−κ(b)(x−d)

δ(κ(b) + ξ(b)) = 1
δ
−
[1
δ
−
(κ(b)eξ(b)d + ξ(b)e−κ(b)d

δ(κ(b) + ξ(b))eξ(b)d
)]
· e−κ(b)(x−d) ,

which completes the proof. �
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Alternative representation of fk in Lemma 3.2. We denote by 2F1 the Gaussian hypergeometric func-
tion, defined by

2F1(c1, c2, c1 + 1, h) = c1

∫ 1

0
tc1−1(1− th)−c2 dt = c1

hc1

∫ h

0
tc1−1(1− t)−c2 dt (A.2)

for |h| < 1, c1 > 0 and c2 ∈ R, cf. [Paris, 2010, Eq. (8.17.7)]. We firstly consider the function gk (in the
notation of the preceding proof of Lemma 3.2). We note that Hk fulfils H ′k(x) = 2ke2k(d−z)[H(z)]2.
Substituting h = Hk(z) in the integral, we therefore arrive at

gk(x) =
∫ x

0
eξ(b)(x−z)Hk(z) dz = eξ(b)(x−d)

2k

∫ Hk(x)

Hk(0)
h(1−ξ(b)/2k)−1(1− h)ξ(b)/2k−1 dh

= eξ(b)(x−d)

2k
[ [Hk(x)]1−ξ(b)/2k

1− ξ(b)/2k 2F1
(
1− ξ(b)

2k , 1− ξ(b)
2k , 2− ξ(b)

2k ,Hk(x)
)

− [Hk(0)]1−ξ(b)/2k
1− ξ(b)/2k 2F1

(
1− ξ(b)

2k , 1− ξ(b)
2k , 2− ξ(b)

2k ,Hk(0)
)]

for all k > ξ(b)/2. Similarly, we get

jk(x) = e−κ(b)(x−d)

2k

∫ Hk(x)

Hk(0)
h(1+κ(b)/2k)−1(1− h)−κ(b)/2k−1 dh

= e−κ(b)(x−d)

2k
[ [Hk(x)]κ(b)/2k+1

κ(b)/2k + 1 2F1
(κ(b)

2k + 1, κ(b)
2k + 1, κ(b)

2k + 2, Hk(x)
)

− [Hk(0)]κ(b)/2k+1

κ(b)/2k + 1 2F1
(κ(b)

2k + 1, κ(b)
2k + 1, κ(b)

2k + 2, Hk(0)
)]
.

By (A.2), the integrals can alternatively be approximated with an implementation of the incomplete
Beta function. �

Proof of Lemma 3.12. If f ′′(x) ≤ 0 holds for all x ∈ (x, x), then Jf (b) is minimised by b = 1 on this
interval because f ′(x) ≥ 0 and −µ(b) is decreasing in b. Thus, we have

−δf(x)− ηf ′(x) + σ2

2 f
′′(x) = 0 .

All solutions to this equation are of the form f(x) = C1eξx−C2e−κx. Since the function is non-negative
and the second derivative is non-positive, this implies

C1
ξ2

κ2 e(κ+ξ)x ≤ C2 ≤ C1e(κ+ξ)x .

By ξ > κ, this can only be true if C1 ≤ 0. Then we have C2 ≤ 0 as well. Therefore, f ′(x) =
C1ξeξx+C2κe−κx ≤ 0. This is a contradiction as the function is supposed to be strictly increasing. �

119



Proof of Equation (3.15). x = Y (z) is equivalent to

ζ(z − z0) + 1 + ζ

ρ
x = eζ(z−z0) .

Thus, substituting w = ζ(z − z0) + 1 + ζ/ρx, we obtain

−we−w = −e−(1+ζ/ρx) .

Noting that the right hand side takes values in [−e−1, 0] for all x ≥ 0, we find

−w = W
(
−e−(1+ζ/ρx)) .

So, it follows from plugging in the explicit representation of w:

z = z0 −
1
ζ
− x

ρ
−

W
(
−e−(1+ζ/ρx))

ζ
,

which corresponds to the desired expression. �

Proof of Equation (3.17). By plugging in the explicit representation of Z, we obtain:

f(x) = f(0) + δf(0)
θ − η

∫ x

0

[
e1+ζ/ρyeW

(
−e−(1+ζ/ρy)

)]1/ζ
dy . (A.3)

By definition of the Lambert W function, we have exp(W(x)) = x/W(x), so that we can rewrite the
term in the integral:

f(x) = f(0) + δf(0)
θ − η

∫ x

0

[
−W

(
−e−(1+ζ/ρy))]−1/ζ

dy .

From this equation, we conclude the representation of f ′ in terms of Q. We note that W fulfils
W′(x) = W(x)/(x(1 + W(x))) for x 6= 0, as found in [Corless et al., 1996]. Therefore, we have

d
dyW

(
−e−(1+ζ/ρy)) = −ζ

ρ

W
(
−e−(1+ζ/ρy))

(1 + W
(
−e−(1+ζ/ρy)))

and substituting z = W(− exp(−(1 + ζ/ρy))) in the integral, we find

f(x) = f(0) + δf(0)
θ − η

ρ

ζ

∫ W(− exp(−(1+ζ/ρx)))

−1

(
−z
)−(1/ζ+1)(1 + z) dz

= f(0) + δf(0)
θ − η

ρ
([

1 + W(−e−(1+ζ/ρx))
1− ζ

]
Q(x)− ζ

ζ − 1
)
.
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Now we note that we have ((ζ − 1)(θ − η))−1δρζ = 1, to conclude

f(x) = δf(0)
θ − η

ρ
[
1 + W(−e−(1+ζ/ρx))

1− ζ
]
Q(x) = δf(0)

θ − η
P (x) ,

which corresponds to Equation (3.17). �

Proof of Proposition 3.16. We give a slightly different argument than in [Brinker and Schmidli, 2022],
which is based on the differential equation. We observe that Q0(x) > 0 is fulfilled for all x ≥ 0 and,
by θ > ξσ2,

(κ2σ2 + θκ)e(ξ+κ)(d−x0) − (σ2ξ2 − θξ) > (κ2σ2 + θκ)− σ2ξ2 − θξ = [σ2(κ− ξ) + θ](ξ + κ)
> σ2κ(ξ + κ) > 0 ,

so that C0 > 0. That means, the equation is fulfilled for all x ∈ [0, x0]. Similarly, one can show that
C1, C2 > 0 holds, implying f ′′(x) > 0 for x ∈ [x0, d]. By f ′(x0) > 0, it therefore holds f ′(x) > 0
on [x0, d]. Thus, the optimiser is given by bf (x) = θf ′(x)/σ2f ′′(x). The constants are chosen such
that it holds: f(d) = 1, f ′(x0+) = C0P

′
0(x) and bf (x0+) = 1, i.e. θf ′(x0+) = σ2f ′′(x0+). Therefore,

bf (x0+) = bf (x0−) = 1. We have

σ2

2 f
′′(x) = ηf ′(x) + δf(x) ,

so that we can calculate the third derivative of f . In particular, f ′′′ is positive and increasing. We
note that it holds

[f ′′(x)]2 − f ′′′(x)f ′(x) = C1C2e(ξ−κ)xκξ(κ+ ξ)2 > 0

and, therefore,

θ

σ2
(
bf (x)

)′ = ( f ′(x)
f ′′(x)

)′
= [f ′′(x)]2 − f ′′′(x)f ′(x)

[f ′′(x)]2 > 0 .

Hence, bf is increasing on [x0, d]. In particular, we have bf (x) ≥ bf (x0) = 1, so that f solves the
Hamilton–Jacobi–Bellman equation with optimiser b(x) = 1 for x ∈ [x0, d]. �

Proof of Lemma 3.17. Regarding i), we obtain that r is increasing and concave by an explicit calcu-
lation based on the first and second derivative. The limit follows from the definition of the Lambert
W function. Then, ii) follows from the implicit function theorem. We prove iii) in the following way.
For the upper bound, we note that r(x) ≤ C

√
x for some C ≥ 0 may in general be rewritten as

W
(
−e−(1+ζ/ρx)

)
≤ Cσ2

θρ

√
x− 1 .
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Since both sides are larger or equal to −1, applying the function x 7→ xex to both sides yields the
equivalent inequality:

1 ≥
(
1− σ2C

θρ

√
x
)
eσ2C/(θρ)

√
x+ζ/ρx . (A.4)

For x = 0, we have equality of both sides for all C ≥ 0. The derivative of the right hand side is equal
to

σ4eζ/ρx+(σ2C)/(θρ)
√
x

2θ2ρ2 ·
(
−2θζC

σ2
√
x+ 2θ2ζρ

σ4 − C2
)
.

The first term is positive. The bracket term is non-positive for all x ≥ 0 if C ≥ θ
√

2ζρσ−2. In this
case the right hand side of (A.4) is decreasing. This means that (A.4) holds for all x > 0 as well. We
also conclude from this analysis that C cannot be chosen any smaller: the right hand side of (A.4)
would be strictly increasing in a small environment around zero. By equality at zero, this would mean
that the inequality is harmed for small x.
Since r is bounded by θρσ−2 and

√
x →∞ as x →∞, there can be no global lower bound of square

root order. By the same argument as above, one may choose c ≤ θσ−2(−ζ
√
ε+

√
ζ2ε+ 2ζρ) such that

the right hand side of (A.4) is increasing for all x ∈ [0, ε]. Then, (A.4) holds in the opposite direction,
implying r(x) ≥ c

√
x on this interval. However, we note that this bound is not necessarily sharp.

We know that r is increasing and concave. Thus, for every h ≥ 0 it holds that r′(x + h) ≤ r′(x) for
all x ≥ 0. By r(0) = 0 we conclude:

r(x+ h)− r(x) ≤ r(h) ≤ C
√
h .

This means that r is Hölder continuous with exponent ½. �

Proof of Lemma 3.19 ii). We use a classic technique which is, for example, repeatedly applied in [Lam-
berton and Lapeyre, 1996]. We define the function

s(x) =
∫ x

1
exp

(
−
∫ y

1

2[θ − η − θb∗(z)]
σ2(b∗(z))2 dz

)
dy ,

which is twice continuously differentiable for x ∈ (0,∞) and solves the differential equation

σ2[b∗(x)]2
2 s′′(x) + [θ − η − θb∗(x)]s′(x) = 0 .

Now we let 0 < a < x < b < ∞ and denote by τba = inf{t ≥ 0 : Et /∈ (a, b)} the exit time from the
interval (a, b). By Itô’s formula, the process (s(Eτba∧t)−s(x))t≥0 is a Px-martingale because |s(y)−s(x)|
is bounded for y ∈ [a, b]. By boundedness of s(y) and since s′(y)b∗(y) is bounded away from zero on

122



[a, b], we have

C > Ex
[
(s(Eτba∧t)− s(x))2] = Ex

[∫ t∧τba

0
σ2(s′(Es)b∗(Es))2 ds

]
≥ Ex

[∫ t∧τba

0
σ2
(

min
y∈[a,b]

s′(y)b∗(y)
)2

ds
]
> 0

for some constant C > 0, for all t ≥ 0. Letting t→∞ on both sides and using monotone convergence
to pull the limit into the expectation, we find that τba must be finite almost surely. Otherwise the
inequality would be harmed. By the martingale property and bounded convergence we have

Ex[s(Eτba
)] = s(a)Px[Eτba

= a] + s(b)(1− Px[Eτba
= a]) = s(x) ,

and, hence,

Px[Eτba
= a] = s(b)− s(x)

s(b)− s(a) .

We start with the case of cheap reinsurance. In particular, b∗ coincides with r. Using the substitution

dr(z)
dz = θζ

σ2

(
θρσ−2 − r(z)

)
r(z)

in the exponent of the integrand of s, we find

−
∫ x

1

2[(θ − η)− θr(z)]
σ2(r(z))2 dz = − 2

θζ

∫ r(x)

r(1)

(θ − η)− θr
r
(
θρσ−2 − r

) dr

= − ln(r(x)) + 2δσ2 − θ2

2δσ2 + θ2 ln
(θρ
σ2 − r(x)

)
+ ln(r(1))− 2δσ2 − θ2

2δσ2 + θ2 ln
(θρ
σ2 − r(1)

)
.

Both logarithms exist for all x > 0 by r(x) ↗ θρσ−2 as x → ∞. Let us assume that θ2 6= 2δσ2. It
follows that

s(x) = r(1)[
θρσ−2 − r(1)

](2δσ2−θ2)/(2δσ2+θ2)︸ ︷︷ ︸
=:C1

·
∫ x

1

1
r(y)

[θρ
σ2 − r(y)

](2δσ2−θ2)/(2δσ2+θ2)
dy .

Substituting r(x) in the same way as above, we arrive at:

s(x) = C1

∫ r(x)

r(1)

σ2

θζ

[θρ
σ2 − r

](−2θ2)/(2δσ2+θ2)
dr

= −C1
σ2θ

2δσ2 − θ2

[θρ
σ2 − r(x)

](2δσ2−θ2)/(2δσ2+θ2)
+ C2

for

C2 = σ2r(1)
θζ

2δσ2 + θ2

2δσ2 − θ2 .
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If θ2 = 2δσ2, we analogously find

s(x) = −C1
σ2

θζ
ln
(θρ
σ2 − r(x)

)
+ C2

for different constants C1 > 0 and C2. By r(0) = 0, there exists a limit limx→0 s(x) = s(0) ∈ (−∞,∞).
For x → ∞, r(x) → θρσ−2, so if θ2 < 2δσ2, we have limx→∞ s(x) = C2. If θ2 ≥ 2δσ2, we have
limx→∞ s(x) =∞. This means that, by continuity from below, it follows for every b > 0:

Px[Eτb0
= 0] = lim

a↓0

s(b)− s(x)
s(b)− s(a) = s(b)− s(x)

s(b)− s(0) . (A.5)

Similarly, continuity from above yields, for b→∞,

Px[τ0 <∞] = Px
[ ⋃
b∈Q+

{Eτb0
= 0}

]
= lim

b→∞

s(b)− s(x)
s(b)− s(0)

=


[
1− σ2

θρ r(x)
](2δσ2−θ2)/(2δσ2+θ2)

if θ2 < 2δσ2 ,

1 , if θ2 ≥ 2δσ2 .

For expensive reinsurance, we have b∗(x) = r(x)1{x≤x0} + 1{x>x0}. We can split the integral at x0

to obtain, in the same way as above, a finite limit s(0) as x → 0. By b∗(x) = 1 for x > x0, we have
limx→∞ s(x) = limx→∞C1e2ησ−2x − C2 =∞ for some constants C1 > 0 and C2 ∈ R. Px[τ0 <∞] = 1
follows in the same way as above. Noticing that E is the drawdown under the feedback control, see
Corollary 3.20, we could also calculate probabilities of the form Px[ϑ0 < ϑd] by plugging b = d into
Equation (A.5). �

Proof of Lemma 3.22. We note that, since the behaviour of the controlled drawdown (if it exists) on
[0, d) is the same as in the case of continuous drift (considered in Lemma 3.18), the running maximum
is constant.
For existence in the case case b∗(d) < b∗(d+), we give two different arguments – both of which
are of interest on their own. The first argument is based on the approach of Halidias and Kloeden
[2006] and specifically applies to diffusion equations with discontinuous (and, in our case, decreasing)
drift component. The second argument, taken from [Kyprianou and Loeffen, 2010], applies to Lévy
processes from which we subtract a deterministic drift whenever the process is above a certain level.
For our first construction, we start with an alteration of the problem. To overcome the discontinuity
of the volatility component, we define two auxiliary functions. Firstly, let

rd(x) =


0 , x < 0 ,

r(x) , x ∈ [0, d] ,

r(d) , x > d ,

(A.6)

which corresponds to the function r extended with constant values outside of [0, d]. In particular, rd
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is equal to b∗ on [0, d]. We note that we have rd(d) ∈ (0, 1). Secondly. we define

h(x) =

θ − η − θrd(x) , x ≤ d ,

−ηrd(d) , x > d .

With this construction, if we assume for a moment that there exists a (strong) solution Y = (Yt)t≥0

to the stochastic differential equation

Yt = x+
∫ t

0
h(Ys) ds−

∫ t

0
σrd(Ys) dWs , t ≥ 0 , (A.7)

the process ∆ = (∆t)t≥0 defined by

∆t = Yt1{Yt≤d} +
(
d+ Yt − d

rd(d)
)
1{Yt>d} , t ≥ 0 , (A.8)

has the desired properties. This corresponds to ‘stretching’ the process Y vertically whenever it
exceeds d. That means, we have to show that Y solving (A.7) exists. In particular, the volatility
coefficient of the altered Equation (A.7) is now continuous whereas the drift still has a jump at
x = d. To this purpose, we follow the proof of Theorem 3.1 of [Halidias and Kloeden, 2006] with some
modifications. We omit the technical details because they go beyond the scope of this monograph
and, more importantly, are not ‘sufficiently different’ from the original proof by Halidias and Kloeden
[2006]. However, we give a general outline of the proof and list all necessary changes such that it can
be executed by following closely the steps of their proof. We define the processes Y̌ = (Y̌t)t≥0 and
Ŷ = (Ŷt)t≥0 by

Ŷt = x+
∫ t

0
(θ − η) ds−

∫ t

0
σrd(Ŷs) dWs , t ≥ 0 ,

Y̌t = x+
∫ t

0

(
−ηrd(d)

)
ds−

∫ t

0
σrd(Y̌s) dWs , t ≥ 0 .

We note that Y̌ and Ŷ exist and that it holds Ŷt ≥ Y̌t for all t ≥ 0, almost surely, by Theorems IV 1.1,
2.2, 3.2 and VI 1.1 of [Ikeda and Watanabe, 1989]. This means that we can define the order interval
K of processes U with trajectories between those of Y̌ and Ŷ and certain continuity and integrability
properties, specified in [Halidias and Kloeden, 2006]. For every U ∈ K, Ŷ is a so called upper and Y̌

is a so called lower solution to

Yt = x+
∫ t

0
h(Us) ds−

∫ t

0
σrd(Ys) dWs , t ≥ 0 . (A.9)

This means, in effect, that Y̌ and Ŷ fulfil the equation with ‘≥’ and ‘≤’ in place of ‘=’. Now, Halidias
and Kloeden [2006] show in their Theorem 2.2 that for every pair Y 1, Y 2 ∈ K of an upper and a lower
solution, Equation (A.9) has a unique solution Y ∈ K with trajectories between those of Y 1 and Y 2.
This theorem, though formulated for coefficients of linear growth, remains true in our case. The only
point that has to be changed in the proof of Theorem 2.2 is the reference for existence and uniqueness.
For example, Theorems 1.1 and 1.4 of [Lan and Wu, 2014] are an appropriate choice for our absolutely
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bounded drift and ½-Hölder continuous volatility coefficient. Next, Halidias and Kloeden [2006] prove
that the map S : K→ K assigning the solution Y = S(U) to the process U is increasing and must, by
Corollary 3.2 in [Heikkilä, 1993], have a fixed point in K. Similarly, because h is a decreasing function,
one can show that S is a decreasing map in our setting. Thus, also by the result of Heikkilä [1993],
there is a fixed point Y ∗ ∈ K fulfilling Y ∗ = S(Y ∗). For this fixed point Y ∗, Equation (A.7) is valid.
We note that the strong solution obtained in this way is not necessarily unique.
A different proof is possible by applying Theorem 1 by Kyprianou and Loeffen [2010]. Similarly as
above, we assume that rd is given by (A.6). We consider the process Ỹ = (Ỹt)t≥0 defined as the unique
strong solution to

Ỹt = x+
∫ t

0
[−η + θ(1− rd(Ỹs))] ds−

∫ t

0
σrd(Ỹs) dWs , t ≥ 0 , (A.10)

which exists by the same arguments as the process considered in Lemma 3.18. Then, we consider the
equation

Yt = Ỹt − θ
(
1− rd(d)

) ∫ t

0
1{Ys>d} ds , t ≥ 0 . (A.11)

This corresponds to a refracted Lévy process as considered in [Kyprianou and Loeffen, 2010]. It follows
by their Theorem 1 that there exists a unique strong solution Y = (Yt)t≥0. We note that we could
not directly apply Theorem 305 of [Situ, 2005] (as mentioned in Remark 2 of Kyprianou and Loeffen
[2010]) because our volatility component is not bounded away from zero. The process ∆ = (∆t)t≥0

defined by (A.8) has the properties we expect from the drawdown under the feedback control. �

A.3 Addendum to Chapter 4

Proof of Theorem 4.12, Technical Details. We write f(x) = C1eξx+C2e−κx for the extension of u|[0,d]

to R. Since we have C1 < 0, f ′′(x) ≥ 0 for some x is only possible if C2 > 0. We distinguish the cases
of cheap and expensive reinsurance.
We start with i). We assume χ ≥ χc,1 and θρ < σ2. Then, in particular,

χ >
κξe−ξd
δ(κ+ ξ) (A.12)

and, thus, C2 > 0. In this case, f ′′(x) is strictly decreasing and there exists a unique x̄ ∈ R with
f ′′(x̄) = 0. For all x ≤ x̄, f ′′(x) ≥ 0 and, thus, Ju(b) is maximised at b = 1. If x̄ < d, we have
f ′′(x) < 0 for x ∈ (x̄, d]. Now χ ≥ χc,1 is equivalent to (4.11) at x = d. The inequality holds, in this
case, for all x ∈ (x̄, d], as the right hand side of (4.11) is positive and decreasing in x and the left hand
side is positive and independent of x. Therefore, b = 1 is optimal for all x ∈ [0, d]. Assume now that
b = 1 is optimal for all x ∈ [0, d] and that reinsurance is cheap. We show first that (A.12) must hold.
If (A.12) is harmed, then C2 ≤ 0, and thus f ′′(x) < 0 for all x. Then, (4.11) is harmed as well (for all
x, as the right hand side is negative) which is a contradiction to b = 1 being optimal. Thus, (A.12)
must at least be fulfilled. By the same arguments as above, optimality of b = 1 for all x ∈ [0, d] is now
equivalent to χ ≥ χc,1.
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Now we show ii). We assume χ ≥ χe,1 and that θρ ≥ σ2. If the stronger condition (A.12) holds with
‘≥’ in place of χe,1, then C2 ≥ 0. Hence, the left hand side of (4.11) is negative and the right hand
side is non-negative for all x. This means that for every x we either have f ′′(x) > 0 or f ′′(x) ≤ 0 and
(4.11), so b = 1 is optimal. If χ ≥ χe,1 and (A.12) holds with ‘<’ in place of ‘>’, we have C2 < 0,
f ′′(x) < 0 and the right hand side of (4.11) is negative and increasing. This means, (4.11) if fulfilled
for all x ∈ [0, d], precisely if it is fulfilled at x = 0. This condition is equivalent to χ ≥ χe,1. The
converse statement follows analogously. �

Proof of Lemma 4.14. For a strictly concave and decreasing solution f to (4.12), Jf (b) is maximised
at bf (x) = θf ′(x)/(σ2f ′′(x)) if this value lies within [0, 1]. Plugging this optimiser into the equation
we arrive at the non-linear differential equation

−δf(x) + (θ − η)f ′(x)− θ2

2σ2
[f ′(x)]2
f ′′(x) = 0 . (A.13)

The function − log(−f ′(y)) is strictly decreasing and therefore invertible. Assuming continuity, there
is a function Y : R → [0,∞) such that f ′(Y (z)) = −e−z holds. Plugging this into (A.13) and
differentiating again, we receive an equation that is solved by functions of the form Y (z) = C1eζz −
ρz−C2. A detailed calculation of this step can be executed analogously to Section 3.2 of Chapter 3. The
first initial condition implies that for z0 with Y (z0) = a we have −e−z0 = α and, hence, z0 = − ln(−α).
The second initial condition in combination with f ′′(Y (z)) = e−z/Y ′(z) and the assumption that
the maximum is attained at bf (Y (z0)) yields bf (Y (z0)) = −σ−2θY ′(− ln(−α)) = γ. Therefore, the
constants C1 and C2 are given by

C1 = θρ− σ2γ

ζθ
(−α)ζ , C2 = θρ− σ2γ

θζ
+ ρ ln(−α)− a . (A.14)

We have α < 0 by assumption, so the sign of C1 is determined by the term θρ − σ2γ. Technically,
Y (z) is defined for all z ∈ R. Since our goal is to calculate f ′(x), we have to find an inverse function
Z of Y . If C1 > 0, the function Y is not bijective, so here we have to decide which branch of Y to
invert. The function z 7→ f ′(Y (z)) = −e−z is increasing. Since f ′(x) is supposed to be decreasing, Y
should be decreasing as well. We distinguish three cases:

i) θρ < γσ2, and thus C1 < 0. Y as defined above is decreasing on (−∞,∞). Inverting the function
yields

Z(x) = −x+ C2
ρ

− 1
ζ
W
(
−ζC1

ρ
e−ζρ−1(x+C2)

)
. (A.15)

Because C1 < 0, the argument of the function W is positive. Plugging in the constants C1 and
C2 proves that this is the function Z defined in Equation (4.14). We note that the case γσ2 > θρ

can only occur if θρ < σ2.
ii) γσ2 = θρ, and thus C1 = 0. Y (z) is decreasing on (−∞,∞) with inverse Z(x) = −(x + C2)/ρ.

By W(0) = 0, this coincides with the representation (4.14). We note that this case can only
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occur if θρ ≤ σ2.
iii) γσ2 < θρ, and thus C1 > 0. Y (z) is decreasing for z ∈ (−∞, z1] with z1 = − ln(−α) +

ζ−1 ln(θρ/(θρ− γσ2)). We note that z0 ∈ (−∞, z1]. If we invert the function Y on this interval,
we obtain again Z(x) of the form (A.15). This time, the argument of W is negative with values
in [−e−1, 0).

In all three cases f ′(x) = −e−Z(x) solves the equation that results from differentiating (A.13). For the
anti-derivative to solve (A.13), we have to calculate f(a) such that f fulfils the equation at x = a.
This implies

−δf(a) + (θ − η)α− θαγ

2 = 0 ,

from which f(a) can be obtained. This corresponds to (4.13). From the construction it follows that
f is decreasing and concave. We noted above that any concave and decreasing solution g to (A.13)
solves Equation (4.12) for all x ≥ a with θg′(x) ≥ σ2g′′(x). Hence, the last part of this proof is to
consider bf (x) = bf (Y (Z(x))) = −θσ−2Y ′(Z(x)) for f as constructed above in each of the three cases:

i) γσ2 > θρ. We have

bf (x) = θρ

σ2

[
1 + W

(
−ζC1

ρ
e−

ζ
ρ

(x+C2)
)]

= θρ

σ2

[
1 + W

(
Eγ,a(x)

)]
.

Since W is (strictly) increasing, bf is (strictly) decreasing. This implies bf (x) < bf (a) = γ ≤ 1
for x > a. Moreover, we observe that bf (x)→ θρσ−2 as x→∞ and that bf (x) > θρσ−2 for all
x ≥ a by W(y) > 0 for y > 0.

ii) γσ2 = θρ. We have bf (x) = θρσ−2. We have γ ∈ [0, 1], so it holds bf (x) ∈ [0, 1] for all x ∈ [a, d].
By W(0) = 0, this also coincides with the representation (4.15).

iii) γσ2 < θρ. bf (x) takes the same form as in case i) and is strictly increasing with bf (a) ∈ [0, 1].
Again, we have bf (x)→ θρσ−2 as x→∞. Thus, if θρ ≤ σ2, bf (x) ∈ [0, 1] for all x ≥ a. On the
other hand, if θρ > σ2, the limit of bf (x) is larger than one and there exists a unique xγ > a

with bf (xγ) = 1 which is given by

xγ = a+ ρ

ζ
ln
(θρ− γσ2

θρ− σ2

)
− σ2(1− γ)

θζ
.

With this, the proof is complete. �

Proof of Lemma 4.15. We start with i), that is γσ2 > θρ. We already know, from the proof of
Lemma 4.14, that W is (strictly) increasing and that bf is (strictly) decreasing. As Eγ,a(x) > 0,
W(Eγ,a(x)) > 0 for x ≥ a. We have

b′f (x) = θρ

σ2
W
(
Eγ,a(x)

)
1 + W

(
Eγ,a(x)

)E′γ,a(x)
Eγ,a(x) = −θζ

σ2
W
(
Eγ,a(x)

)
1 + W

(
Eγ,a(x)

) . (A.16)
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As the numerator is larger than zero, we can rewrite this as

b′f (x) = −θζ
σ2

1
1 + 1/W

(
Eγ,a(x)

) .
Since W

(
Eγ,a(x)

)
is decreasing, we conclude that b′f is increasing, such that bf is convex. In particular,

as γ > θρσ−2 > 0, we have

|b′f (x)| ≤ |b′f (a)| = θζ

σ2

(
1− θρ

γσ2

)
<
θζ

σ2

as an upper bound for the absolute value of the derivative.
Now we prove the assertion for iii), that is γσ2 < θρ. We already know that bf is optimal and strictly
increasing for x ≥ a if θρ ≤ σ2 and for x ∈ [a, xγ ] if θρ > σ2. The derivative of bf takes the form
(A.16). W(Eγ,a(x)) is negative and increasing. The denominator is positive and increasing. Hence,
bf is concave. If γ > 0, we obtain in the same way as above:

|b′f (x)| ≤ |b′f (a)| = θζ

σ2

( θρ
γσ2 − 1

)
.

In the case γ = 0, we get for x ∈ (a, xγ):

|b′f (x)| = θζ

σ2
1

1 + 1/W
(
−e−1e−(x−a)ζ/ρ) . (A.17)

As x↘ a, W
(
−e−1e−(x−a)ζ/ρ)↘ −1, meaning that the denominator of the right hand side of (A.17)

goes to zero (from above). In particular, the right hand side is unbounded as x↘ a. �

Proof of Lemma 4.16. From the definition of the Lambert W function it follows that

−e−Z(x) = α
[ θρ

γσ2 − θρ
Eγ,a(x)

]−1/ζ
eW(Eγ,a(x))/ζ = α

[γσ2 − θρ
θρ

[
W(Eγ,a(x))

]−1]1/ζ
,

such that Qγ,a(x) = −e−Z(x)α−1 = f ′(x)α−1. In particular, W(Eγ,a(a)) = (σ2γ − θρ)θ−1ρ−1 and
Qγ,a(a) = 1. Pγ,a is the anti-derivative of Qγ,a with Pγ,a(a) = f(a)α−1. This can be obtained by
substituting z = W(Eγ,a(x)) with

dz
dx = z

1 + z

E′γ,a(x)
Eγ,a(x) = − z

1 + z

ζ

ρ

in the integral over Qγ,a(x). This step is similar to the proof of Equation (3.17), p. 120. The statement
involving bf now follows from the construction of f in the proof of Lemma 4.14. �

Lemma A.1. [2021a]

Under the conditions of Lemma 4.14 and θρ 6= σ2γ, we have κPγ,a(x) +Qγ,a(x) > 0 for x ≥ a.
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Proof. We know that Pγ,a is increasing and convex (because f is decreasing and concave and α is
negative) and therefore κPγ,a(x) +Qγ,a(x) is increasing in x. We have Qγ,a(a) = 1 and thus

κPγ,a(a) +Qγ,a(a) = κρ
[
1 + γσ2 − θρ

θρ(1− ζ)
]

+ 1 = κρ+ κ(σ2 − θρ)
θ(1− ζ) + 1 .

Plugging in the explicit representations of κ, ζ and ρ, we find:

κρ+ κ(σ2 − θρ)
θ(1− ζ) + 1 = (−η +

√
2δσ2 + η2)(θ − 2η) + 2δσ2

2δσ2

≥ (η −
√
η2 + 2δσ2)2

2δσ2 > 0

where we have used θ ≥ 0 and δ, σ > 0. Hence, we get κPγ,a(x)+Qγ,a(x) ≥ κPγ,a(a)+Qγ,a(a) > 0. �

Proof of Lemma 4.28, Technical Details. This follows in a similar way as in the proof of Proposi-
tion 3.16, p. 121. We consider the function h1 on the interval (xγ , d] for xγ < d. We observe that C1

and C2 are negative by Q(xγ) > 0 and θ > σ2ξ. This implies that h1 is strictly concave on [xγ , d].
Moreover, by 1 = θh′1(xγ)/(σ2h′′1(xγ)), we have h′1(xγ) < 0 and thus h′1(x) < 0 for x ∈ [xγ , d]. This
means, the maximiser of the Hamilton–Jacobi–Bellman equation is given by bh1(x)∧1. Differentiating
bh1 , we get

[h′′1(x)]2 − h′′′1 (x)h′1(x) = C1C2e(ξ−κ)xκξ(κ+ ξ)2 ≥ 0 ,

so

bh1(x) = θh′1(x)
σ2h′′1(x) ≥

θh′1(xγ)
σ2h′′1(xγ) = 1

for x ∈ [xγ , d]. �

Lemma A.2. [2021a]

Let θρ < σ2. The function R : [0, d]→ [χc,2, χc,1] defined by

R(a) = (σ2κ+ θ) + (σ2ξ − θ)e(κ+ξ)a

δσ2(κ+ ξ)eξa
[
κP1,a(d) +Q1,a(d)

]
is strictly increasing. We have R(0) = χc,2 and R(d) = χc,1. In particular, χc,1 > χc,2.

Proof. The numerator is positive and strictly increasing in a and the function in the denominator,
R̃(a) = eξa

[
κP1,a(d) + Q1,a(d)

]
, is positive and decreasing in a. The latter follows by taking the
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derivative: we have

e−ξa d
da
[
eξa
[
κP1,a(d) +Q1,a(d)

]]
= ξκP1,a(d) + (ξ − κ)P ′1,a(d)− P ′′1,a(d)

= 2
σ2

(
δP1,a(d) + ηP ′1,a(d)− σ2

2 P
′′
1,a(d)

)
<

2
σ2 sup

b∈[0,1]

{
δP1,a(d) + µ(b)P ′1,a(d)− σ2b2

2 P ′′1,a(d)
}

= 0

for a < d (and equality for a = d). For a = d, we note that

χ1,c = (σ2κ+ θ)e−ξd + (σ2ξ − θ)eκd
δσ2(κ+ ξ)

[
P1,d(d)κ+Q1,d(d)

] = R(d) .

Hence, plugging in the remaining boundary value a = 0 proves the assertion. �

Lemma A.3. [2021a]

i) Let θρ < σ2. The function S : [0, θρσ−2) ∪ (θρσ−2, 1]→ [χc,4, χc,3) ∪ (χc,3, χc,2] defined by

S(γ) = κ

δ(Pγ(d)κ+Qγ(d))

is positive and strictly increasing. It holds S(0) = χc,4, limγ↘θρσ−2 S(γ) = χc,3 =
limγ↗θρσ−2 S(γ) and S(1) = χc,2. In particular, χc,2 > χc,3 > χc,4 > 0. For θρ = σ2, the
corresponding result holds for S : [0, θρσ−2)→ [χc,4, χc,3) and we have χc,3 > χc,4 > 0.

ii) Let θρ > σ2. The function S : [0, γ̄] → [χe,3, χe,2] defined as above is positive and strictly
increasing. We have S(0) = χe,3 and S(γ̄) = χe,2. In particular, χe,2 > χe,3 > 0.

Proof. We assume θρ < σ2 and γ ∈ [0, θρσ−2) ∪ (θρσ−2, 1]. Taking derivatives, we see that y 7→
W(yeyC)− y is strictly decreasing for y ∈ R for any C ∈ [0, 1). We note that

Qγ(d) = ed/ρ
[(

exp
(
W
(γσ2 − θρ

θρ
e
γσ2−θρ
θρ e−ζ/ρd

)
− γσ2 − θρ

θρ

)]1/ζ
(A.18)

and therefore conclude that γ 7→ Qγ(d) is decreasing. Now, we have

Pγ(d)κ+Qγ(d) =
(
κρ+ κρ

W(Eγ(x))
1− ζ + 1

)
Qγ(d) .

Since the left hand side is positive by Lemma 4.16 and Qγ(d) is positive, the term in brackets must
also be positive. By 1 − ζ < 0 the bracket term is also decreasing in γ. Hence, Pγ(d)κ + Qγ(d) is
decreasing in γ. The monotonicity is strict in all cases. Hence, S(γ) is strictly increasing in γ. The
statements for γ = 0 and γ = 1 follow from explicitly evaluating the function. From the representation
(A.19) it follows that limγ→θρσ−2 Qγ(d) = ed/ρ and, hence, limγ→θρσ−2 Pγ(d) = ρed/ρ which proves the
statements for γ let towards θρσ−2. The cases θρ = σ2 and θρ > σ2 can be treated analogously. �
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Lemma A.4. [2021a]

i) Let θρ > σ2 and θ ≤ θd. The function T : [γ̄, 1]→ [χe,2, χe,1] defined by

T (γ) = κξσ2

δ(σ2κ+ θ)eξd
eξxγ

Qγ(xγ)

is strictly increasing. We have T (γ̄) = χe,2 and T (1) = χe,1. In particular, χe,1 > χe,2.
ii) Let θρ > σ2 and θ > θd. The function T : [0, 1] → [χde,2, χe,1] as defined above is strictly

increasing. It holds T (0) = χde,2 and T (1) = χe,1. In particular, χe,1 > χde,2.

Proof. We have

T (γ) = κξσ2

δ(σ2κ+ θ)eξd
[θρ− σ2γ

θρ− σ2

](ξρ−1)/ζ
eξσ2(γ−1)/(ζθ) , (A.19)

by Qγ(xγ) = [(θρ− γσ2)/(θρ− σ2)]1/ζ . We conclude that, by ξρ− 1 < 0 for θρ > σ2, the right hand
side is strictly increasing in γ, equal to χe,2 for γ = γ̄ and equal to χe,1 for γ = 1. In particular, for any
χ ∈ [χe,2, χe,1], there is a unique γ ∈ [γ̄, 1] with T (γ) = χ. The second case is proved analogously. �
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Jiang, Z. and M.R. Pistorius, 2012. ‘Optimal dividend distribution under Markov regime switching’.

In: Finance and Stochastics 16, 449–476.
Karatzas, I. and S. Shreve, 1998. Brownian Motion and Stochastic Calculus. Second edition. New York:

Springer.
Kuznetsov, A., A.E. Kyprianou and V. Rivero, 2012. ‘The theory of scale functions for spectrally
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ich die Ordnung zur Sicherung guter wissenschaftlicher Praxis und zum Umgang mit wissenschaftli-
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