
A Fast Exact Algorithm for the Problem of Optimum
Cooperation and Structure of Its Solutions

Diana Fanghänel1 and Frauke Liers1

Universität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln, Germany

Abstract. Given a graph G = (V, E) with edge weights we ∈ R, the optimum
cooperation problem consists in determining a partition of the graph that max-
imizes the sum of weights of the edges with nodes in the same class plus the
number of the classes of the partition. The problem is also known in the litera-
ture as the optimum attack problem in networks. Furthermore, a relevant physics
application exists.
In this work, we present a fast exact algorithm for the optimum cooperation prob-
lem. Algorithms known in the literature require |V | − 1 minimum cut computa-
tions in a corresponding network. By theoretical considerations and appropriately
designed heuristics, we considerably reduce the numbers of minimum cut com-
putations that are necessary in practice. We show the effectiveness of our method
by presenting results on instances coming from the physics application. Further-
more, we analyze the structure of the optimal solutions.

1 Introduction

In this work, we will deal with the following optimization problem. Suppose the benefit
of cooperation between two people, say, researchers, is represented by some number.
Furthermore, there is a unit gain for each group working on, say, a research project.
We search for an optimal cooperation, i.e., want to decide which researchers should
collaborate in order to maximize the total benefit, see [1].

In graph-theoretic terms, the problem can be stated as follows. Let a graph G =
(V,E) with edge weights we ∈ R for the edges e ∈ E be given. Vertices represent the
researchers, edge weights correspond to the benefit of cooperation. We want to solve
the problem

max{cG(A) + w(A) : A ⊆ E}, (1.1)

where w(A) =
∑

e∈A we and cG(A) is the number of connected components of the
induced graph G(A) = (V,A).

The problem was first studied by Cunningham in the context of determining opti-
mum attacks in networks [5]. In this application, the weight we can be interpreted as a
measure for the effort required by an attacker to destroy edge e. The task is to minimize
the difference between the effort of destroying a set of edges and the number of newly
generated components of the graph.

Another relevant application is the separation of partition inequalities, as introduced
by Baı̈ou, Barahona and Mahjoub [2]. Given a partition {S1, . . . , Sp} of the node set

2

V , we denote by δ(S1, . . . , Sp) the set of all edges having endnodes in different sets of
the partition. Then, for given real numbers a and b, the inequality w(δ(S1, . . . , Sp)) ≤
ap+ b is called partition inequality. The latter arise as valid inequalities for a number of
combinatorial problems. In order to use them inside a cutting plane algorithm, we need
to solve the separation problem that, given edge weigths we ≥ 0, returns a partition
violating the inequality, if it exists. Baı̈ou et al. show that the separation problem can be
solved by computing an optimal solution of (1.1).

An important model in statistical physics is the Potts model [13]. It has been in-
troduced as a generalization of the so-called Ising model to describe several physical
systems. It is a model on a graph where the vertices represent magnetic spins. They are
assigned variables that each can take values between {1, . . . , q}. Interactions between
pairs of spins may be present. The aim is to compute the so-called partition function that
encodes the physics of the system. For many relevant physics systems, computing the
partition function is a difficult task. However, as pointed out by Juhasz, Rieger, Iglói
[15] and Anglès d’Auriac, Iglói, Preissmann and Sebö [1], for big numbers q, deter-
mining the dominant contribution in the Potts partition function amounts to solving a
problem of type (1.1).

Several solution algorithms for determining optimum cooperations or optimum at-
tacks have been presented in the literature. As it is not hard to see that the function to be
maximized is supermodular, any algorithm for submodular function minimization could
be used to solve the problem. By now several polynomial algorithms [4, 7] are known
to solve this task. However, the specific properties of the problem allow the usage of
algorithms with better worst-case asymptotic running time.

Cunningham [5] developed the first combinatorial algorithm for the optimum at-
tack problem that is based on |E| minimum cut computations in an associated network.
Thereafter, the worst-case running time of the algorithm was decreased to |V | − 1 min-
imum cut computations by Baı̈ou, Barahona and Mahjoub, and Barahona [2, 3]. Anglès
d’Auriac et al. [1] built upon the existing work and presented an algorithm that also
needs |V | − 1 minimum cut computations but is easier to implement. They presented
some experimental results for instances coming from the physics application.

In this article we present an algorithm that is based on the one of Anglès d’Auriac
et al. but has a better average running time, as by graph-theoretic considerations only
a fraction of the minimum cut computations are necessary in practice. The paper is
self-contained. In Section 2 we define the necessary concepts. We also provide opti-
mality conditions and theoretical results that prove the correctness of our algorithm.
In Section 3 we explain the algorithm of Anglès d’Auriac et al. Thereafter, we pro-
pose a modification yielding better performance. In Section 4 we explore the influence
of changes in the edge weights to the set of optimal solutions. Furthermore, we discuss
geometric properties of the so-called regions of stability. In Section 5 we explain details
of the implementation and present experimental results on instances coming from the
physics applications. Furthermore, we compare our algorithm with the original method
of Anglès d’Auriac et al. It turns out that for many instances the running times can be
reduced considerably.

3

2 Definitions and Theoretical Concepts

2.1 Introduction

Let a graph G = (V,E) with edge weights we ∈ R for all edges e ∈ E(G) be given.
Then

max

{
fG,w(A) = cG(A) +

∑
e∈A

we : A ⊆ E(G)

}
(2.2)

is called Potts problem and fG,w Potts function. cG(A) is the number of all con-
nected components of the graph G(A) = (V,A). w(A) denotes the sum of weights of
the edges in A. Let Ψ∗

G(w) denote the set of all optimal solutions of the Potts problem,
i.e.,

Ψ∗
G(w) := Argmax

{
fG,w(A) = cG(A) +

∑
e∈A

we : A ⊆ E(G)

}
. (2.3)

Solving the optimum cooperation problem means to determine one of the solutions
from Ψ∗

G(w). For a preprocessing step, we observe the following. Obviously, deleting
edges from G with nonpositive weights yields an equivalent problem. Analogously, for
an edge e ∈ E(G) with we ≥ 1, there always exists an optimal solution containing e.
Thus, we obtain an equivalent problem by contracting all edges with weight at least 1.
W.l.o.g., we assume we ∈ (0, 1) for all e ∈ E(G).

2.2 Potts Partitions

In this subsection we introduce the concept of Potts partitions which will be helpful for
further considerations.

Definition 2.1. LetP = {P1, . . . , Pk} be a partition of the nodes V (G) of G = (V,E).
Then P is called a Potts partition if the sets Pi induce connected subgraphs of G for all
indices i = 1, . . . , k. With PG we denote the set of all Potts partitions of G.

To each Potts partition P = {X1, . . . , Xk} we assign a value FG,w(P) := |P| +
w(P), where |P| := k denotes the number of classes of P and w(P) :=

∑k
i=1{we :

e ∈ E(G) and the endpoints of e are in the same class}. Thus, if E(P) is the induced
edge set E(P) := {e ∈ E(G) : the endpoints of e are in the same class of P}, we
obtain equality of the function values fG,w(E(P)) = FG,w(P) for all Potts partitions
P ∈ PG.

Definition 2.2. A Potts partition is called optimal if it is an optimal solution of the
problem

max
P∈PG

FG,w(P).

4

The reason why Potts partitions are relevant for solving the Potts problem (2.2)
is the following. Let A∗ be an optimal solution of the latter. It is easy to see that
each connected component of G(A∗) contains all edges of G it induces. In fact, let
X1, . . . , Xk ⊆ V (G) be the vertices of the connected components of the induced graph
G(A∗) = (V,A∗). If there exists an edge e = (u, v) ∈ E(G)\A∗ with both u, v con-
tained in the same set Xi, adding e to A∗ increases the value of the Potts function, in
contradiction to the optimality of A∗. Therefore, it is possible to consider node parti-
tions instead of edge sets. We will see in the following that the notion of Potts partitions
eases the exposition of certain statements. In the following, we will either speak of edge
sets or of the corresponding Potts partition, whatever is more natural in the context.

2.3 The Supermodularity of the Potts Function

It is not hard to see that the Potts function is supermodular [1]. We define the concept
of supermodularity next.

Definition 2.3. Let a function f : 2E → R be given. If the inequality

f(A1 ∪A2) + f(A1 ∩A2) ≥ f(A1) + f(A2) (2.4)

holds for all subsets A1, A2 ⊆ E, the function f is called supermodular. If (−f) is
supermodular, f is called submodular.

Lemma 2.1 ([1]). The Potts function fG,w is supermodular.

Submodular function minimization occurs in a huge number of different applica-
tions, see, e.g., [4]. Whereas it was already known for some time that the problem itself
can be solved in polynomial time [10, 11], only recently, strongly polynomial combina-
torial algorithms could be designed [4, 7, 14, 19]. For solving (2.2), we could therefore
use any algorithm for minimizing submodular functions. However, exploiting the struc-
ture of the Potts function yields a faster solution algorithm, for example the optimum
cooperation algorithm. Furthermore, under certain conditions the problem can be de-
composed into smaller problems of the same type. Moreover, certain subgraphs can be
shrunk into a single node. Applying the two principles of decomposition and shrinking
yields a solution algorithm which is on average considerably faster than the basic algo-
rithm for the optimum cooperation problem. In the next section, we introduce the basic
concepts.

2.4 Decomposing the Problem

Because of the supermodularity of the Potts function, there exists an optimum solution
on G containing edge sets which are optimum for its induced subgraphs. This is stated
in the next lemma which is a generalization from a lemma given in [1].

In the following, G(U) with U ⊆ V (G) denotes the subgraph of G that is induced
by the vertex set U 6= ∅.

5

Lemma 2.2. Let a graph G = (V,E) and a vertex set U ⊂ V (G) with ∅ 6= U 6= V (G)
be given. Suppose that A1 ⊆ E(G1) resp. A2 ⊆ E(G2) are optimal solutions of (2.2)
for the induced subgraphs G1 = G(U) resp. G2 = G(V \U).

Then there exists an optimal solution A∗ ⊆ E(G) of the Potts problem on the
original graph G with A∗ ⊇ A1 ∪A2.

Proof. Supermodularity implies

fG,w(A ∪A1) ≥ fG,w(A) + fG,w(A1)− fG,w(A ∩A1)

for all edge sets A ⊆ E(G). Furthermore, since A1 and A1 ∩ A are subsets of E(G1)
it holds

fG,w(A1) = fG1,w(A1) + |V \U | ≥ fG1,w(A1 ∩A) + |V \U | = fG,w(A ∩A1).

Then these inequalities imply fG,w(A∪A1) ≥ fG,w(A) for all edges A ⊆ E(G). Thus,
there exists some set A∗

1 ∈ Ψ∗
G(w) with A∗

1 ⊇ A1.
Similarly, there exists some set A∗

2 ∈ Ψ∗
G(w) with A∗

2 ⊇ A2.
Using the equality fG,w(A∗

1) = fG,w(A∗
2) and the supermodularity of fG,w it is

easy to prove that A∗ = A∗
1 ∪A∗

2 is an optimal solution for G. ut

Thus, we can obtain an optimal solution for G by a divide-and-conquer approach
in which we first solve the problem for the smaller graphs G(U) and G(V \U) and add
further edges to the union of the optima for the smaller graphs. A special case is the
choice of node sets having cardinality 1 for which Lemma 2.2 was proven in [1].

In order to formulate Lemma 2.2 using Potts partitions, let X1, . . . , Xk be the ver-
tex sets of the connected components of G(A1) and Y1, . . . , Yl the vertex sets of the
connected components of G(A2). Then P = {X1, . . . , Xk, Y1, . . . , Yl} is a Potts par-
tition of V (G). Lemma 2.2 says that in an optimal solution A∗ for G the vertex sets of
the components of G(A∗) are either classes or the union of classes of P .

This fact will be important for the development of a fast solution algorithm. Fur-
thermore, we need some an inversion of Lemma 2.2, given in the following.

Lemma 2.3. Let G be a graph with an optimal Potts partition P = {X1, . . . , Xk}.
Further, let I ⊂ {1, . . . , k} be a nonempty index set inducing a subgraph G′ =
G(

⋃
i∈I Xi) of G. Then P ′ = {Xi : i ∈ I} is an optimal Potts partition of G′.

Proof. Assume the lemma is not valid. Then there exists a Potts partition P̄ for the
graph G′ with FG′,w(P̄) > FG′,w(P ′). Consequently,

FG,w(P)= |P|+
k∑

i=1

∑
x,y∈Xi

w(x, y)=(k − |I|) +
∑
i/∈I

∑
x,y∈Xi

w(x, y) + FG′,w(P ′)

<(k − |I|) +
∑
i/∈I

∑
x,y∈Xi

w(x, y) + FG′,w(P̄) = FG,w(P ′′) (2.5)

for a partition P ′′ = {Xi : i /∈ I} ∪ P̄ for G. This is a contradiction to the optimality
of P . ut

6

Knowing the decomposition lemma (2.2), we are interested in possible choices of
the sets U . It turns out that sets defining cuts of small weight are important.

Theorem 2.1. Let U ⊆ V (G) with cut δ(U) := {(v1, v2) ∈ E(G) : v1 ∈ U, v2 /∈ U}
be given. Assume that the weight w(δ(U)) of the cut is w(δ(U)) ≤ 1. Then there exists
an optimal solution A∗ of the Potts problem (2.2) with δ(U) ∩A∗ = ∅.

Proof. Let be given some optimal solution A ⊆ E(G) with A ∩ δ(U) 6= ∅. Then it
holds cG(A\δ(U)) ≥ cG(A) + 1. Furthermore, w(A ∩ δ(U)) ≤ w(δ(U)) ≤ 1. Hence,
it holds

fG,w(A\δ(U)) = cG(A\δ(U)) + w(A)− w(A ∩ δ(U))
≥ cG(A) + w(A) + 1− w(A ∩ δ(U))
≥ fG,w(A), (2.6)

i.e., A∗ = A\δ(U) is also an optimal solution for which δ(U) ∩A∗ = ∅. ut

For the case U = {v} with v ∈ V (G) we obtain the following trivial corollary.

Corollary 2.1. Suppose it holds w(δ(v)) ≤ 1 for some vertex v ∈ V (G). Then there
exists an optimal solution A∗ of the Potts problem (2.2) with A∗ ∩ δ(v) = ∅.

Therefore, whenever we find a partition of the nodes of G into sets U and V \U with
cut weight at most 1, we can decompose the problem into two problems of the same
type, one defined on G(U) and the other on G(V \U), that can be solved independently.
An optimal solution for G then consists of the union of the edge sets that are optimum
for G(U) and G(V \U). We state this formally in the following corollary.

Corollary 2.2. Let be given some set U ⊆ V (G) with w(δ(U)) ≤ 1. Further let A1

resp. A2 be optimal solutions for the graphs G1 = G(U) and G2 = G(V \U). Then
A1 ∪A2 is an optimal solution for G.

Proof. Following Theorem 2.1, there exists an optimal solution A∗ for G with A∗ ∩
δ(U) = ∅. Then it holds

fG,w(A∗) = fG1,w(A∗ ∩ E(G1)) + fG2,w(A∗ ∩ E(G2))
≤ fG1,w(A1) + fG2,w(A2) = fG,w(A1 ∪A2), (2.7)

i.e., A1 ∪A2 is an optimal solution for G. ut

2.5 Contracting Subgraphs

Apart from decomposing the problem, it is also possible to contract certain subgraphs
of G. As a preprocessing step, we already contract edges e ∈ E(G) with weight at
least 1 before starting a solution algorithm. We now generalize this procedure to the
contraction of subgraphs of G.

In our context, contracting a subgraph G(U) means replacing U by a supernode vU .
For all nodes v ∈ V \U , we replace the set of edges (v, u) with u ∈ U by a single edge

7

e = (v, vU) with weight we :=
∑

(v,u):u∈U w(v,u). Edges (u1, u2) with u1, u2 ∈ U are
deleted.

Contracting an edge set E′ ⊆ E(G) means contracting the set of all vertices in-
cident to these edges to a supernode, dealing with loops and multiple edges as before.
G/U resp. G/E′ denote the graphs generated by contracting the vertex set U ⊆ V (G)
resp. the edge set E′ ⊆ E(G) in G. If in a node set P a subset U ⊆ P is replaced by
a supernode, we write P/U . In the next theorem we state the condition under which a
subgraph can be contracted.

Theorem 2.2. Let a Potts partition P = {P1, . . . , Pk} of V (G) be given. Furthermore,
let U ⊆ Pk be chosen such that P̃ = {U} is optimal for G(U). Then P is an optimal
Potts partition for G if and only if P ′ = {P1, . . . , Pk−1, Pk/U} is optimal for G/U .

Proof. Let P be an optimal partition of G and let P∗ be optimal for the graph G/U .
Then it holds FG/U,w(P∗) ≥ FG/U,w(P ′). Decontracting the set U in P∗ we obtain a
Potts partition P∗∗ for G with

FG,w(P∗∗) = FG/U,w(P∗) + w(U) ≥ FG/U,w(P ′) + w(U) = FG,w(P). (2.8)

Consequently, the optimality of P implies FG/U,w(P∗) = FG/U,w(P ′), i.e., P ′ is an
optimal partition of G/U .

Now we assume that P ′ an optimal Potts partition G/U . Because of Lemma 2.2
and the optimality of the Potts partition P̃ for G(U) there exists an optimal partition
P∗∗ = {P ∗∗

1 , . . . , P ∗∗
l } of G with U ⊆ P ∗∗

l . Hence, P∗ = {P ∗∗
1 , . . . , P ∗∗

l−1, P
∗∗
l /U}

is a Potts partition of G/U . Using the optimality of P ′ we now obtain

FG,w(P∗∗) = FG/U,w(P∗) + w(U) ≤ FG/U,w(P ′) + w(U) = FG,w(P), (2.9)

i.e., P is an optimal Potts partition of G. ut

Theorem 2.2 can be used for the computation of an optimal solution as follows:
If we find a subset U ⊆ V (G) such that {U} is optimum on G(U), we proceed by
solving the problem on G/U instead of G. G/U has a smaller number of vertices than
G. Furthermore, some edge weights are increased by the contraction. As soon as the
weight of an edge exceeds the value 1, it can be contracted.

2.6 Optimality Conditions

In this subsection we investigate optimality conditions for the Potts problem. We closely
follow the considerations in [1, 13] and generalize some results from [1].

Let U ⊆ V (G) be a vertex set such that P ′ = {U} is an optimal Potts parti-
tion for G(U), and let P ′′ = {X1, . . . , Xk} be optimal for G(V \U). Then P =
{X1, . . . , Xk, U} is a Potts partition for G. It turns out that we can obtain an opti-
mal partition for G from the latter by merging U with classes of P . In the next lemma
we state how such a union of classes changes the value of a Potts partition.

Lemma 2.4 ([1]). Let P and P∗ be two Potts partitions of G with P∗ = (P\W) ∪
{
⋃

Xi∈W Xi} for a set W ⊆ P . Then fG,w(P∗) = fG,w(P) − |W| + 1 + w(E(W)),
where E(W) is the set of all edges between the vertex sets Xi, Xj ∈ W , i 6= j.

8

For completeness, we include the proof of this lemma.

Proof. If in the Potts partition P all sets Xi ∈ W are replaced by the union of these
sets, the new partition contains |W| − 1 classes less. However, on the other side more
edges are induced. These are exactly the edges of E(W) with the weight w(E(W)).
Hence the lemma is valid. ut

In Lemma 2.4 the partition P∗ is supposed to be a Potts partition. Thus, the graph
G(

⋃
Xi∈W Xi) has to be connected. Otherwise, the lemma cannot be applied. Using

Lemma 2.4 we obtain the following trivial corollary.

Corollary 2.3. Let P be a Potts partition of G. Then P is optimal if and only if the
inequality |W| − 1− w(E(W)) ≥ 0 is valid for all W ⊆ P for which G(

⋃
Xi∈W Xi)

is connected.

Now we can prove the following theorem.

Theorem 2.3. Let U ⊆ V (G) be chosen such that {U} is optimal for G(U). Further-
more, let P ′ be an optimal Potts partition for G′ = G(V \U) with induced edge set
A∗ ⊆ E(G′). Then, for W ⊆ P ′ that attains the minimal value of |W| − w(E(W ∪
{U})), the edge set A∗ ∪ E(W ∪ {U}) is an optimal solution of the Potts problem for
G.

Proof. Let U ⊆ V (G) with {U} being an optimal solution of G(U) and let P ′ =
{X1, . . . , Xk} be optimal for G′ = G(V \U).

Then, because of Lemma 2.4 and Corollary 2.3 there exists a set W∗ ⊆ P with
P = {X1, . . . , Xk, U} such that (P\W∗) ∪ {

⋃
X∈W∗ X} is an optimal Potts partition

of G. The latter induces an edge set A∗ ∪E(W∗). We only have to prove that, w.l.o.g.,
{U} ∈ W∗ can be assumed.

Suppose {U} /∈ W∗. Then it holds |W∗| − 1− w(E(W∗)) ≥ 0 because of Corol-
lary 2.3 and the optimality of P ′ for G(V \U). Using the optimality of (P\W∗) ∪
{
⋃

Xi∈W∗ Xi} for G and Lemma 2.4 we obtain |W∗| − 1−w(E(W∗)) = 0. But then
we can also choose W∗ = {U} to obtain an optimal Potts partition. ut

The optimality conditions in this subsections have been proven in [1] restricted to
the special case U = {v} for some vertex v ∈ V (G).

3 The Algorithm

In this section we present algorithms for solving the Potts problem (2.2). As all of them
are based on the algorithm of Preissmann, Sebö et al. [1] we first introduce their original
method. In the subsections thereafter we propose modifications yielding considerable
decrease in running time on practical instances.

9

3.1 An Exact Algorithm

The optimal cooperation algorithm proposed in [1] uses the optimality conditions given
in Lemma 2.3, applied to node sets of cardinality 1. It starts with a trivial solution for a
subgraph G(U) with |U | = 1. Iteratively, nodes are added to U one after one. In each
step of the algorithm an optimum solution on G(U) is known. After having added a new
node to U , an optimum solution on the new induced graph is computed from the former
optimum by calculating a minimum s − t cut in an associated network. If U = V , the
solution at hand is optimum for the whole graph G.

Let us assume that problem (2.2) has been solved on G(U) with U ⊂ V (G), yield-
ing PU = {X1, . . . , Xk} as optimal partition. Then we contract the sets X1, . . . , Xk

as described in Subsection 2.5 and work with the possibly smaller graph shr(G(U)).
Hence we assume, w.l.o.g., that the sets X1, . . . , Xk are singletons and G(U) = shr(G(U)).

Let v ∈ V (G)\U . For maintaining optimality, we have to compute a set W ⊆
U ∪ {v}, v ∈ W , that minimizes the function

b(W) := |W | − 1− w(E(W)). (3.10)

Thus we have to solve the problem

min{b(W) : W ⊆ U ∪ {v}, v ∈ W}. (3.11)

In [1] it was shown that such a set W can be determined by computing a minimum
cut in an associated directed network DU,v . For completeness, we briefly summarize
the procedure.

We define a directed graph DU,v with weighted edges as follows:

1. Let V (DU,v) := U ∪ {v} ∪ {s, t} with new vertices s 6= t.
2. Let E(DU,v) be the set of all directed edges (u, u′) and (u′, u) with u, u′ ∈ U∪{v}

and (u, u′) ∈ E(G). To each edge (u, u′) ∈ E(DU,v) a weight c(u,u′) := 1
2w(u,u′)

is assigned.
3. To each vertex u ∈ U ∪ {v} the real number

p(u) :=
1
2

∑
u′∈U∪{v},(u,u′)∈E(G)

w(u,u′)

is assigned.
(a) If p(u) > 1, we add a directed edge (s, u) to the set E(DU,v) with weight

c(s,u) = p(u)− 1.
(b) If p(u) < 1, we add a directed edge (u, t) to the set E(DU,v) with weight

c(u,t) = 1− p(u).

Obviously, for each subset W ⊆ U ∪ {v} the set W ∪ {s} corresponds to an s− t
cut δ({s} ∪W) in DU,v .

Lemma 3.1 ([1]). Let W ⊆ U ∪ {v}. Then it holds

c(δ({s} ∪W)) = |W | − w(E(W)) + κ = b(W) + κ + 1 (3.12)

with a constant κ = c(δ(s)) =
∑

(s,u)∈E(DU,v) c(s,u).

10

Lemma 3.1 states that we have to compute a minimum s − t cut W ∪ {s} with
v ∈ W . Then the set W has a minimal value b(W). To ensure v ∈ W we can shrink
the vertex set {s, v} in DU,v or add an edge (s, v) with infinite weight to DU,v .

Using the results from Lemma 3.1 we explain the optimal cooperation algorithm
which was proposed in [1].

Algorithm 3.1. (optimal cooperation algorithm [1].)

Input: A graph G = (V,E) with edge weights we ∈ (0, 1) for all edges e ∈ E(G).
Output: An optimal Potts partition P of G.

1. Set U := ∅ and P := ∅.
2. Choose a vertex v ∈ V \U .
3. Determine the directed graph DU,v and add an edge (s, v) with infinite weight to

DU,v .
4. Determine the set W ⊆ U ∪ {v} which solves problem (3.11) by computing a

minimum s− t cut in DU,v .
5. Set U := U ∪ {v} and construct the new optimal Potts partition P .
6. Shrink the vertex set W in G and set U := U/W .
7. If U 6= V (G), go to step 2.; else STOP.

In the following example we explain the flow of the algorithm in detail.

Example 3.1. Let be given the graph of Figure 1 with edge weights we = 0.8 for all
edges e ∈ E(G).

@
@

@

�
�

�

1

2

4

3

5

Fig. 1. Graph in which an optimum Potts partition has to be computed.

Let U = {1, 2, 3}. Then it is easy to see that P = {{1}, {2}, {3}} is an optimal
Potts partition of G(U), i.e., the empty set is an optimal solution of (2.2). Choosing
vertex v = 4, we obtain the network as shown in Figure 2.

W = {1, 2, 4} is a minimum s-t cut in DU,v . The new optimal Potts partition P =
{{1, 2, 4}, {3}} is computed by unifying with {v} all classes in P in which the vertices
u ∈ W\{v} are contained. Now we contract W to a supernode w which yields a new
set U = {w, 3} and a new graph G/W as can be seen in Figure 3.

with all edge weights equal to 0.8. In the next iteration we choose vertex v = 5
and again construct the network DU,v . Computing a minimum s − t cut we obtain the
set W = {w, 3, 5}. We construct a new partition by unifying the class {1, 2, 4} that is

11

@
@

@
@

@R

�
�

�
�

��

-

-

6

@
@

@
@

@I

�
�

�
�

�	

?

PPPPPPPPPPPPPPPPq

� �
�

�
�

��

�
�

�
�

�
�

�
�

�
��*

H
H

H
H

H
H

H
H

H
HHj

zz z

z z

z

1

2

4

3

s t

0.2

∞

0.4

0.4
0.4

0.4

0.2

0.2

0.6

Fig. 2. Choosing v = 4, we get the following directed network in which a minimum s-t cut has
to be computed.

HHHH
HH

�
�����

w

3

5

Fig. 3. Graph G/W after shrinking the node W = {1, 2, 4} determining a minimum s-t cut in
DU,v .

12

represented by the vertex w, the class {3} and {v}. The algorithm stops with the optimal
Potts partition P = {1, 2, 3, 4, 5} of G. Consequently, E(G) is an optimal solution of
(2.2) for G.

Example 3.1 shows that there is a one-to-one correspondence between the classes
of the Potts partition P and the vertices of G(U), the sets W being contracted. It is
important to know for each vertex u ∈ U the accompanying class of the partition P .
Contractions are not performed in the partition, but only in the graph and the set U .

In Algorithm 3.1 |V (G)| − 1 minimum cut problems are solved in graphs with
|U | + 3 vertices and at most 2(|E(G(U ∪ {v})| + |U | + 3) many arcs. If, e.g., the
Goldberg-Tarjan algorithm [8] is used for the computation of the minimum s−t cuts, the
algorithm has a worst case running time of O(|V (DU,v)|2

√
|E(DU,v)|) in each of the

|V (G)| − 1 iterations. Thus, Algorithm 3.1 has polynomial running time. However, its
performance depends strongly on the size of the directed graphs DU,v and the number
of minimum cut computations.

In the following subsection we present ideas for improving the running time of the
algorithm.

3.2 Enhancement of the Basic Exact Algorithm

In order to reduce the running time in practice, we explore several ideas. We first briefly
summarize the necessary conditions and present their justifications subsequently.

Firstly, if we know that for a given vertex u ∈ V (G) there exists an optimal solution
of the Potts problem that does not contain any edge incident to u, we do not need to
choose u in Step 2. of the algorithm. According to our experience, this often reduces the
number of minimum cut computations and the cardinality of the set U . Moreover, this
also implies a reduction of the size of the networks DU,v and thus better running times
of the minimum cut algorithms. Secondly, assume a vertex u ∈ V (G) has been choosen
in Step 2. of the algorithm. If we know that W = {u} is an optimal solution of problem
(3.11) we can skip Steps 3. and 4. of the algorithm. Finally, assume we know a set
U ⊆ V (G) such that {U} is an optimal Potts partition of G(U). Then we can contract
the set U in G and apply the algorithm to the smaller graph G/U (cf. Theorem 2.2).

The first idea is strongly related to Corollary 2.1. Before we start Algorithm 3.1
we determine for each vertex v ∈ V (G) the value w(δ(v)). All vertices v ∈ V (G)
with w(δ(v)) ≤ 1 are saved in a set notU . Thereafter, Algorithm 3.1 is applied to
G\notU . Let P = {X1, . . . , Xk} be an optimal Potts partition of G\notU and let
notU = {v1, . . . , vl}. Then

P∗ = {X1, . . . , Xk, {v1}, . . . , {vl}} (3.13)

is an optimal Potts partition of G, which is a direct consequence of Corollary 2.1.
The second improvement of Algorithm 3.1 works analogously. Let v ∈ V (G)\U

for a given subset U ⊂ V (G). With

δU (v) := {e ∈ E(G) : e = (v, u), u ∈ U} (3.14)

we denote the set of all edges, where one of the endnodes is v and the other one is
contained in U . Furthermore, let A∗ be an optimal solution of the Potts problem for

13

G(U) and let w(δU (v)) ≤ 1. Then A∗ is also an optimal solution for G(U ∪{v}). This
is equivalent to the following lemma.

Lemma 3.2. Let v ∈ V (G)\U for a given nonempty subset U ⊂ V (G). Further, let
w(δU (v)) ≤ 1. Then W = {v} is an optimal solution of problem (3.11).

Thus, if the conditions of the Lemma 3.2 are satisfied, we do not need to determine
the set W by computing a minimum s− t cut in the network DU,v .

In the third approach we ask for a set U ⊆ V (G) such that {U} is an optimal Potts
partition of G(U). To find such a set in an efficient way, we need knowledge about the
solution of the problem for special classes of graphs. It turns out that possible candidates
are for instance cycles and complete graphs.

Suppose that we know a graph G′ such that {V (G′)} is an optimal Potts partition
of G′. Then we need to develop a fast algorithm that finds a subgraph of G that is
equivalent to G′.

Assuming we already know how this can be done we give an outline of the improved
algorithm. In order to be able to reconstruct the optimum partition from the shrunk
graph, we assign a set S(v) to the vertices v ∈ V that saves the original nodes shrunk
into supernode v. These sets are updated throughout the algorithm.

Algorithm 3.2. (improved algorithm)

Input: A graph G = (V,E) with edge weights we ∈ (0, 1) for all edges e ∈ E(G).
1. Compute the set notU and delete all vertices v ∈ notU from G.
2. Set U := ∅ and P := ∅.
3. Choose v ∈ V \U and set S(v) := {v}.
4. If w({(u, v) ∈ E(G) : u ∈ U}) ≤ 1, set U := U ∪ {v} and P := P ∪ {S(v)}

and proceed with Step 3.
5. While a subset W ⊆ U ∪ {v}, |W | > 1, is found with v ∈ W such that {W} is an

optimal partition for G(W), do the following:
Set U := U\W and P := P\

⋃
u∈(W\{v}) S(u). Contract W in G to a supernode

vW and set S(vW) :=
⋃

u∈W S(u). Identify v := vW .
6. Construct DU,v and determine W ⊆ U ∪ {v} that solves (3.11) by computing a

minimum s− t cut in DU,v .
Then, update U , P , G, and v, analogously to Step 5.

7. While there exists an edge e = (u, v) ∈ E(G) with we ≥ 1 do:
If u /∈ U , shrink e in G and set S(v) := S(v) ∪ {u}. If u ∈ U , set W := {u, v}
and update U , P , G, and v, analogously to Step 5.

8. If in Step 7. an edge e = (u, v) was found with u /∈ U , proceed with Step 4; else
set U := U ∪ {v}, P := P ∪ {S(v)}, and proceed with Step 9.

9. If U 6= V (G), go to Step 3.
10. Output: The optimum partition P := P ∪ {{v} : v ∈ notU}.

Why is Step 8. of the improved algorithm important? Assume W has been deter-
mined by computing a minimum s− t cut in the network DU,v . Then there might exist
edges e = (v, u) in G/W with we = 1 and u ∈ U . In this case, the partition we obtain
after shrinking these edges is still optimal for G(U ∪ {v}). However, there possibly

14

exist edges e = (v, u) in G/W with we ≥ 1 and u /∈ U . Then, after contracting these
edges, in general P ∪{S(v)} is not an optimal partition for G(U ∪{v}). Therefore, we
have to repeat the iteration by using vertex v.

In Step 5. of Algorithm 3.2 we iteratively search for a subset W ⊆ U ∪ {v} with
|W | > 1 and v ∈ W such that {W} is optimal for G(W). This also includes the search
for edges having weight larger than or equal to one. In case the search is successful,
contracting the corresponding set decreases the size of the networks and the number of
minimum cut computations in the subsequent iterations.

In the following subsection we present theoretical results together with search algo-
rithms providing such kind of subsets.

3.3 Exact Solutions on Specific Subgraphs

In this subsection we provide explicitely the solution of the Potts problem for some
special graph structures. Theorem 2.2 says that if we find such a structure as a subgraph
G′ = (V ′, E′) in G, we can use the optimal solution of the problem for G′ to find an
optimal solution for the original graph G. Furthermore, we can shrink in G the subgraph
G′ to a single node and continue working on the smaller graph G/V ′. We start with a
result on forests.

Lemma 3.3. Let G = (V,E) be a forest with edge weights we ∈ (0; 1) for all edges
e ∈ E(G). Then A∗ = ∅ is the unique optimal solution of the Potts problem (2.2).

Proof. For each nonempty set A ⊆ E(G) it holds

fG,w(A) = cG(A) +
∑
e∈A

we︸︷︷︸
<1

< cG(A) + |A| = |V (G)| = fG,w(∅), (3.15)

since for each subset A ⊆ E(G) the graph G(A) = (V,A) is a forest with |V (G)|
vertices. Consequently, A∗ = ∅ is an optimal solution of problem (2.2) for G. ut

For application in Step 5 of the improved algorithm, the above result is a negative
one, as no candidate forest will have an optimum solution that contains all edges. How-
ever, forests are subgraphs of many graphs, and the above result yields a helper theorem
in the investigation of more difficult structures, for example cycles. Next, we show that
under certain conditions an optimum solution on a cycle contains all edges.

Theorem 3.1. 1. Let a cycle Cn with n ≥ 3 vertices and edge weights we ∈ (0, 1)
for all e ∈ E(Cn) be given. If

∑
e∈E(Cn) we ≥ n − 1, the edge set E(Cn) is an

optimal solution of (2.2).
2. Let F2 denote a cycle C4 consisting of four edges with a chord e0 inducing two

triangles with edge sets {e0, e1, e2} and {e0, e3, e4}, resp. Let we ∈ (0, 1) for all
e ∈ E(F2). Then, {V (F2)} is an optimal partition for F2 if the weights satisfy
we0 + we1 + we2 + we3 + we4 ≥ 3, we1 + we2 ≥ 1 and we3 + we4 ≥ 1.

Proof. We will prove Theorem 3.1 in detail only for cycles. The proof for the graph F2

is straight forward by comparing all possible edge sets.

15

Let A∗ ⊆ E(Cn) be an optimal solution of problem (2.2). Assume it is 0 < |A∗| <
n. Then Lemma 2.3 implies that A∗ is also an optimal solution for the subgraph G′ =
G(A∗). G′ = G(A∗) is a forest, as |A∗| < n. 0 < |A∗| is a contradiction to the previous
result on forests.

Thus it holds A∗ = ∅ or A∗ = E(Cn). The latter implies the lemma, as the inequal-
ity

∑
e∈E(Cn)

we ≥ n− 1 is equivalent to

fCn,w(∅) = n ≤
∑

e∈E(Cn)

w(e) + 1 = fCn,w(E(Cn)). (3.16)

ut

In the following example we demonstrate how Theorem 3.1 can be applied for the
solution of the Potts problem.

Example 3.2. Let be given the graph G from Figure 4 with vertex set

V (G) = {x1, . . . , x4, y1, . . . , y4, z1, . . . , z4}.

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

u
u

u

u
u

u

u
u

u

u
u

u
7
8

7
8

7
8

7
8

7
8

7
8

7
8

7
8

7
8

7
8

7
8

7
8

3
8 3

8

3
8 3

8

1
8 1

8

1
8 1

8

Fig. 4. Graph G/W after shrinking the node W = {1, 2, 4} determining a minimum s-t cut in
DU,v .

The edge weights can be read off from Figure 4.
Let us consider the sets X = {x1, x2, x3, x4}, Y = {y1, y2, y3, y4} and Z =

{z1, z2, z3, z4}. G contains the cycles G1 = G(X), G2 = G(Y) and G3 = G(Z) as
induced subgraphs. Theorem 3.1 implies that the edge sets E(G1), E(G2) resp. E(G3)

16

u u u
X Y Z

3
2

1
2

Fig. 5. Graph shr(G) after shrinking the sets X, Y, Z.

are optimal for G1, G2 resp. G3. We contract the sets X , Y and Z. Then the problem
is reduced to the investigation of the graph shr(G) displayed in Figure 5.

Then, obviously Ā = {(X, Y)} is an optimal solution for shr(G). Using Theo-
rem 2.2 we obtain the following optimal solution for G

A∗ = E(G)\{(yi, zi) : i = 1, . . . , 4}.

Instead of subsequent minimum cut computations on associated networks, we could
solve the toy problem by subsequent application of the theorems outlined above.

The cycles we found in Example 3.2 have been induced subgraphs in G. In general,
the subgraphs we find in a graph are often not induced ones. In the following lemma we
show that this fact does not cause problems.

Lemma 3.4. Let U ⊆ V (G) be given and P∗ = {U} an optimal Potts partition for
G(U) with edges weights w′

e for all e ∈ E(G). Then P∗ = {U} is also optimal for
G(U) with edges weights we chosen as we ≥ w′

e for all e ∈ E(G).

Proof. Assume that there exists an optimal Potts partition P = {P1, . . . , Pk} of G′ =
G(U) with FG′,w(P) > FG′,w(P∗). Then obviously it holds E(P) ⊆ E(P∗). Let
E′ = E(P∗)\E(P). Then FG′,w(P) > FG′,w(P∗) implies

w(P∗) + 1 < w(P) + k (3.17)
w′(E′) ≤ w(E′) = w(P∗)− w(P) < k − 1 (3.18)

FG′,w′(P∗) = w′(P∗) + 1 < w′(P) + k = FG′,w′(P). (3.19)

This is a contradiction to the optimality of P∗ for the edge weights w′
e. ut

Assume G contains a subgraph G′ with V (G) = V (G′) and {V (G′)} being optimal
for G′. Then the consideration of G′ equals that of G, where the weights are chosen as
w′

e := we for all e ∈ E(G′) and w′
e := 0 for all edges e ∈ E(G)\E(G′). Thus

Lemma 3.4 states that {V (G)} is an optimal partition of G.
Given these statements, a subgraph satisfying one of the above-mentioned condi-

tions can be contracted.
In the following we present algorithms that, given a graph G with edge weights

we ∈ (0; 1) for all e ∈ E(G), determine subgraphs Ck and F2 in G that satisfy the
conditions of Theorem 3.1. We start the considerations with the search for cycles C =
(VC , EC) satisfying the condition

∑
e∈EC

we ≥ |VC | − 1. Let G− denote a copy of G,

17

where edge weigths are chosen as w−
e := 1− we for all e ∈ E(G). Then the condition

to be satisfied can be expressed as ∑
e∈E(G)

w−
e ≤ 1. (3.20)

Cycles satisfying the latter can be computed by shortest-path computations in G− as
follows.

For each edge e = (v, u) ∈ E(G), we temporarily delete e from G− and search for
a shortest path P = (VP , EP) in G− from v to u. We use the algorithm of Dijkstra [6].
If the weight of the path does not exceed 1 − w−

e , P together with e forms a cycle
satisfying the condition. This method is an exact cycle search, i.e., if there exists a cycle
satisfying the condition, the algorithm finds it.

In practice many of the cycles satisfying (3.20) are cycles C3 with only three nodes
which can be found by enumeration. Similarly, candidate subgraphs F2 are determined
by enumeration.

In the next section we discuss the structure of the solution sets. Subsequently, we
provide implementation details and present experimental results.

4 Properties of Solution Sets and Regions of Stability

In the Potts problem, in general, the optimal solutions are not unique. Thus, for w ≥ 0
it is interesting to investigate the structure of the solution sets. In Lemma 3.4 we have
proved that if {V } is an optimal partition, it stays optimal if we increase the edge
weights of the graph. This result will be generalized in this section. We also explore the
geometric properties of the so-called regions of stability, that are defined as the set of
all edge weights for which a given Potts partition is optimal.

4.1 The Structure of the Optimal Sets

In this subsection we investigate the solution sets

Ψ∗
G(w) := {A ⊆ E(G) : fG,w(A) ≥ fG,w(B) for all B ⊆ E(G)} (4.21)

for the Potts problem (2.2). As for w > 0 there is a one-to-one correspondence between
the optimal solutions and the optimal Potts partitions (see Subsection 2.2), we also
consider the set

Ψ∗
PG

(w) := {P∗ ∈ PG : FG,w(P∗) ≥ FG,w(P) for all P ∈ PG}. (4.22)

These solution sets are point-to-set mappings with respect to the vector of the edge
weights w ∈ R|E(G)|

+ . Thus, we are interested in the structure of Ψ∗
G(w) and Ψ∗

PG
(w)

for all possible choices of w and in the way the solution sets change when modifying
the edge weights.

First we mention the following well-known result which is also true for general
supermodular functions.

18

Lemma 4.1. Let A,B ∈ Ψ∗
G(w) be optimal solutions for w ∈ R|E(G)|

+ . Then A ∩ B
and A ∪B are also optimal solutions, i.e., A ∪B,A ∩B ∈ Ψ∗

G(w).

The above lemma is a special case of the following more general result.

Theorem 4.1. Let be given some vectors of edge weights w1, w2 ∈ R|E(G)|
+ with w1

e ≥
w2

e for all edges e ∈ E(G). Further, let A1 ∈ Ψ∗
G(w1) and A2 ∈ Ψ∗

G(w2) be some
optimal solutions for the edge weights w1 resp. w2. Then it is

A1 ∪A2 ∈ Ψ∗
G(w1) and A1 ∩A2 ∈ Ψ∗

G(w2).

Proof. As A1 resp. A2 are optimal, it holds

cG(A1) + w1(A1) ≥ cG(A1 ∪A2) + w1(A1 ∪A2) and (4.23)
cG(A2) + w2(A2) ≥ cG(A1 ∩A2) + w2(A1 ∩A2). (4.24)

Adding these inequalities yields

cG(A1) + cG(A2) + w1(A1) + w2(A2) ≥ cG(A1 ∪A2) + cG(A1 ∩A2)
+w1(A1 ∪A2) + w2(A1 ∩A2). (4.25)

Additionally it is cG(A1) + cG(A2) ≤ cG(A1 ∩A2) + cG(A1 ∪A2) since the function
cG(·) is supermodular [1]. Together with inequality (4.25) it follows

w1(A1) + w2(A2) ≥ w1(A1 ∪A2) + w2(A1 ∩A2),
w2(A2)− w2(A1 ∩A2) ≥ w1(A1 ∪A2)− w1(A1),

w2(A2\A1) ≥ w1(A2\A1).

Because of w1 ≥ w2 this implies equality in all inequalities above, especially in (4.23)
and (4.24). Hence it is A1 ∪A2 ∈ Ψ∗

G(w1) and A1 ∩A2 ∈ Ψ∗
G(w2). ut

Assume we have computed an optimal solution A2 for edge weights w2. Then, if
we increase the edge weights, there always exists an optimal solution that contains A2

as a subset. Let P2 = {Y1, . . . , Yl} be the Potts partition corresponding to A2. Then
in terms of Potts partitions this implies that, when increasing the edge weights, there
always exists an optimal partition where its classes are the unions of the Yj . Therefore,
we can shrink the classes ofP2 in G and repeat the computations with the larger weights
for the potentially smaller shrunk graph.

Reversely, assume we have computed an optimal solution A1 for edge weights w1.
Then, there always exists a subset of A1 that is optimal for the decreased edge weights.
Let P1 = {X1, . . . , Xk} be the Potts partition corresponding to A1. Then this im-
plies that we obtain an optimal solution by solving the Potts problem separately with
the smaller edge weights for the graphs G(X1), . . . , G(Xk) and unifying their optimal
solutions.

For some special cases we can simplify the computation of the new optimal solution
further. This is stated in the following easy corollary of Theorem 4.1.

Corollary 4.1. Let w1, w2 ∈ R|E(G)|
+ with w1 ≥ w2. Further, let A1 ∈ Ψ∗

G(w1) and
A2 ∈ Ψ∗

G(w2).

19

1. If w1
e = w2

e for all edges e ∈ A1, it is A1 ∈ Ψ∗
G(w2).

2. If w1
e = w2

e for all edges e /∈ A2, it is A2 ∈ Ψ∗
G(w1).

To rewrite Theorem 4.1 in terms of Potts partitions we first need to discuss the lattice
properties [9, 20] of the set PG.

Definition 4.1. Let P1 = {X1, . . . , Xk} and P2 = {Y1, . . . , Yl} be some Potts parti-
tions. Then we say P1 � P2 iff for all indices i = 1, . . . , k there exists some j with
Xi ⊆ Yj .

Obviously it holds P1 � P2 iff it is E(P1) ⊆ E(P2) for the induced edge sets.
(PG,�) is a partial ordering on the set of all Potts partitions. We say that two Potts

partitions P1,P2 ∈ PG are comparable if P1 � P2 or P2 � P1. Otherwise, P1 and P2

are called incomparable which is denoted by P1||P2.
To each pair of Potts partitions P1,P2 we can assign an infimum P1 ∧ P2 and a

supremum P1 ∨ P2, i.e., (PG,�) is a lattice. At this, the infimum P1 ∧ P2 is the Potts
partition that is induced by the edge set E(P1) ∩ E(P2). The supremum P1 ∨ P2 is
induced by E(P1) ∪ E(P2).

This implies the following corollary of Theorem 4.1.

Corollary 4.2. Let w1, w2 ∈ R|E(G)|
+ with w1 ≥ w2. Further, let P1 ∈ Ψ∗

PG
(w1) and

P2 ∈ Ψ∗
PG

(w2). Then we have

P1 ∨ P2 ∈ Ψ∗
PG

(w1) and P1 ∧ P2 ∈ Ψ∗
PG

(w2).

The results of Corollary 4.2 can also be viewed in the more general context of
general parametric supermodular problems on lattices. Amongst others, this setting is
studied in detail in the monograph [20] by Topkis. In fact, Theorem 2.8.2 from [20] can
be specified appropriately so that Corollary 4.2 results.

Assume two Potts partitions P1 = {X1, . . . , Xk} and P2 = {Y1, . . . , Yl} are given.
Then the supremumP1∨P2 is computed fromP1 by substituting iteratively two classes
Xi1 , Xi2 by their union if there exists some j with Xi1 ∩ Yj 6= ∅ and Xi2 ∩ Yj 6= ∅.

To construct the infimum P1 ∧ P2 we consider the partition P∩ = {Xi ∩ Yj :
Xi ∩ Yj 6= ∅}. This partition has an induced edge set E(P∩) = E(P1) ∩ E(P2) but
is not necessarily a Potts partition. We obtain the infimum P1 ∧ P2 by substituting the
classes of P∩ by the components of the subgraphs G(Xi ∩ Yj).

4.2 Regions of Stability

In this subsection we investigate the geometric structure of the so-called regions of
stability. We consider some arbitrary Potts partition P∗ and ask for the set of all edge
weights w ∈ R|E(G)|

+ such that P∗ is optimal.

Definition 4.2. Let be given some P∗ ∈ PG. Then the set

R(P∗) = {w ∈ R|E(G)|
+ : P∗ ∈ Ψ∗

PG
(w)}

is called region of stability for P∗.

20

This is an inverse concept to the solution sets since for all edge weights w ∈ R|E(G)|
+

it holds
Ψ∗

PG
(w) = {P ∈ PG : w ∈ R(P)}. (4.26)

First we state an alternative formula for the regions of stability in the next easy
lemma.

Lemma 4.2. Let P∗ ∈ PG. Then,

R(P∗) =
{
w ∈ R|E(G)|

+ :
∑

e∈E(P)

we −
∑

e∈E(P∗)

we ≤ |P∗| − |P| ∀P ∈ PG

}
.

(4.27)

Proof. Let w ∈ R|E(G)|
+ . Then it is w ∈ R(P∗) if and only if P∗ ∈ Ψ∗

PG
(w). This is

equivalent to the following inequalities.

FG,w(P∗) ≥ FG,w(P) ∀P ∈ PG∑
e∈E(P)

we −
∑

e∈E(P∗)

we ≤ |P∗| − |P| ∀P ∈ PG.

ut

Lemma 4.2 states that each region of stability is given by a finite (but exponentially
large) number of linear inequalities. Thus the stability regions are convex polyhedrons
and so convex and closed. Now we prove that they are nonempty and therefore full-
dimensional.

Theorem 4.2. For all Potts partitions P ∈ PG the regions of stability have a nonempty
interior, i.e., intR(P) 6= ∅.

Proof. Let P∗ ∈ PG and w ∈ R|E(G)|
+ be defined as

we =
{

2 if e ∈ E(P∗)
0 otherwise.

Assume there exists some P ∈ Ψ∗
PG

(w) with FG,w(P) ≥ FG,w(P∗). Let P ∗ =
{X1, . . . , Xk} and P = {Y1, . . . , Yl}. Because of the specific structure of w we have

w(E(P)) =
k∑

i=1

l∑
j=1

w(Xi ∩ Yj) = w(E(P ∧ P∗)),

where w(Xi ∩ Yj) denotes the weight of all edges with both endnodes in Xi ∩ Yj .
Then P ∈ Ψ∗

PG
(w) implies cG(P) = cG(P ∧ P∗), and thus, P = P ∧ P∗. Therefore,

P � P∗. Let
Ii = {j ∈ {1, . . . , l} : Yj ⊆ Xi}, i = 1, . . . , k.

Then it is
⋃

j∈Ii
Yj = Xi for all i = 1, . . . , k. Since the graphs G(Xi) are connected,

it holds
|E(Xi)| ≥

∑
j∈Ii

|E(Yj)|+ (|Ii| − 1), i = 1, . . . , k.

21

If there exists an index i with |Ii| > 1, we obtain

|Ii|+
∑
j∈Ii

w(Yj) = |Ii|+ 2
∑
j∈Ii

|E(Yj)|

≤ 2|E(Xi)| − |Ii|+ 2
< 2|E(Xi)|+ 1
= w(Xi) + 1.

This is a contradiction to P ∈ Ψ∗
PG

(w), since P ′ = (P\{Yj : j ∈ Ii})∪Xi has a better
function value than P . Consequently it holds |Ii| = 1 for all i = 1, . . . , k. This implies
P = P∗, i.e., w ∈ R(P∗) and w /∈ R(P) for all Potts partitions P 6= P∗.

Let v ∈ R|E(G)|
+ with ve = 1 for all e ∈ E(G). By similar arguments, it is (w+εv) ∈

R(P∗) and (w + εv) /∈ R(P) for all Potts partitions P 6= P∗ if the real number
ε > 0 is sufficiently small. Additionally we have we + εve > 0 for all e ∈ E(G),
i.e., (w + εv) ∈ intR(P∗). Consequently, intR(P∗) 6= ∅, and the full-dimensionality
follows. ut

Next we show that the regions of stability provide a partition of the set R|E(G)
+ . For

this, we need to prove that the regions of stability overlap only at their boundaries and
that R|E(G)|

+ is covered by the latter. Finally, we show that for all overlapping regions
of stability R(P1) and R(P2) the intersection R(P1) ∩ R(P2) is a face of both R(P1)
and R(P2).

Theorem 4.3. 1. R|E(G)|
+ is covered by the set of all regions of stability, i.e.,

R|E(G)|
+ =

⋃
P∈PG

R(P).

2. Each pair of regions of stability overlap each other only at their boundary, i.e.,

int(R(P1) ∩R(P2)) = ∅ for all P1,P2 ∈ PG, P1 6= P2.

3. Let P1,P2 ∈ PG be some arbitrary Potts partitions with

R(P1) ∩R(P2) 6= ∅.

Then, R(P1) ∩R(P2) is a face of both polyhedrons R(P1) and R(P2).

Proof. 1. The first property is equivalent to Ψ∗
PG

(w) 6= ∅ for all w ∈ R|E(G)|
+ . The

latter is true due to the finite cardinality of PG.
2. Let P1,P2 ∈ PG, P1 6= P2, be arbitrary Potts partitions. If R(P1) ∩ R(P2) =
∅, there is nothing to show. Let w ∈ R(P1) ∩ R(P2), and thus, FG,w(P1) =
FG,w(P2). Further, let v ∈ R|E(G)| with

ve =

 1 for e ∈ E(P1)\E(P2)
−1 for e ∈ E(P2)\E(P1)

0 otherwise.

22

Then for all real numbers ε > 0 we have

FG,w+εv(P1) = FG,w(P1) + ε|E(P1)\E(P2)|

and therefore

FG,w+εv(P2) = FG,w(P2)− ε|E(P2)\E(P1)|
= FG,w(P1)− ε|E(P2)\E(P1)|
= FG,w+εv(P1)− ε|E(P1)\E(P2)| − ε|E(P2)\E(P1)|)
< FG,w+εv(P1) because of P1 6= P2.

The latter implies w + εv /∈ R(P1) ∩ R(P2) for all real numbers ε > 0, i.e.,
w /∈ int(R(P1) ∩R(P2)). Hence the second property is verified.

3. Let P1,P2 ∈ PG, P1 6= P2, be two Potts partitions with R(P1) ∩ R(P2) 6= ∅.
Then, obviously it is

R(P1) ∩R(P2) =
{
w ∈ R|E(G)|

+ : FG,w(P1) = FG,w(P2)

FG,w(P1) ≥ FG,w(P) ∀P ∈ PG

}
.

Thus we obtain R(P1) ∩ R(P2) by replacing exactly one inequality by an equa-
tion in both formulas (4.27) for the regions of stability R(P1) and R(P2) (see
Lemma 4.2). Hence, R(P1) ∩R(P2) is a face of both R(P1) and R(P2). ut

Using formula (4.26) it is easy to see that Ψ∗
PG

(w) = {P} for all w ∈ intR(P).

Together with Theorem 4.3 this implies that for almost all w ∈ R|E(G)|
+ there exists a

unique optimal solution.
If we want to compute a region of stability R(P∗), it is not efficient to use formula

(4.27) without modifications since the set PG has a large cardinality and since often
there are a lot of redundant inequalities. The next theorem gives a sufficient criterion
for an inequality to be redundant.

Theorem 4.4. Let P1 and P2 be two incomparable Potts partitions. Then R(P1) and
R(P2) do not have a common face of dimension |E(G)| − 1, i.e., P2 is redundant for
the computation of R(P1).

Proof. In case R(P1) ∩ R(P2) = ∅ the assertion obviously holds. Thus, let w ∈
R(P1) ∩ R(P2). Then, because of Corollary 4.2 it is true that P1 ∧ P2 ∈ Ψ∗

PG
(w)

and P1 ∨ P2 ∈ Ψ∗
PG

(w). This implies w ∈ R(P1 ∨ P2) ∩ R(P1 ∧ P2) for all
w ∈ R(P1) ∩R(P2), i.e.,

R(P1) ∩R(P2) ⊆ R(P1 ∧ P2) ∩R(P1 ∨ P2) ∩R(P1),

where P1 ∧ P2, P1, P2 and P1 ∨ P2 are pairwise different because of P1||P2. Since it
is contained in the intersection of at least three full-dimensinal polyhedrons, the dimen-
sion of R(P1) ∩R(P2) is smaller than |E(G)| − 1. ut

23

5 Implementation and Experimental Results

We implemented both the original algorithm by Anglès d’Auriac et al. and our modifi-
cations within the same framework, using the OGDF library [17]. For the minimum cut
computations, we used a fast implementation of the Goldberg-Tarjan algorithm [16].
The runs were performed on an Intel Celeron machine with 1.86 GHz.

Before starting Algorithm 3.2, we ran a heuristic for the computation of problem
(1.1). This heuristic is constructed simply by skipping the minimum cut computations
in Step 6. of Algorithm 3.2. In order to solve the problem exactly, the heuristics is
followed by the improved exact algorithm. Furthermore, in Step 5. of the latter, we used
fast heuristics for the cycle search and an enumerative algorithm for the F2 = G(W)
subgraphs consisting of two triangles sharing an edge for which {W} is optimal for F2.

As we are not aware of other experimental results presented in the literature, we fo-
cused on the physics application. For the latter, instances defined on regular grid graphs
in d dimensions with weights chosen according to some probability distribution are very
relevant. In order to be able to compare our results with the algorithm implemented in
[1], we used the same test bed. We studied two-dimensional square grid graphs with
randomly chosen weights that can take only two different values, w1 6= w2, where p%
of the edges have weight w1. Furthermore, the weights satisfy w1 + w2 = 1. We vary
the size L of the L×L grid, w1 and p. As the weights are randomly chosen, we always
report averages over 20 different instances of the same class.

We compare the behaviour of the different algorithms for L = 128, 256 and differ-
ent values of w1 and p in Table 1 and Table 2. We report the CPU times in seconds,
the number of minimum cut computations, and the maximum size of U , for which a
minimum cut is computed.

p Improved Method Algorithm 3.1
mincut comp. maximal U CPU time # mincut comp. maximal U CPU time

80 6.30 64.55 0.48 16383 16301.80 138.06
70 210.65 1566.00 4.50 16383 15979.70 145.93
60 1765.30 9983.85 19.07 16383 14979.65 153.05
50 2364.10 5738.45 19.03 16383 7635.80 115.61
40 265.05 183.70 4.93 16383 907.30 21.43
30 3.90 13.55 3.15 16383 218.45 14.10
20 0.25 0.55 2.14 16383 133.40 12.50
80 23.95 265.05 4.64 65535 65232.10 2273.66
70 904.30 6851.65 102.08 65535 63925.50 2510.13
60 6898.85 39705.05 330.18 65535 59817.25 2772.62
50 9265.45 22285.20 340.97 65535 30089.30 2310.81
40 1047.75 671.90 86.32 65535 3400.40 401.48
30 23.30 41.70 55.01 65535 765.55 245.17
20 0.85 1.45 32.22 65535 262.85 212.49

Table 1. Results for L = 128 (top), L = 256 (bottom) and w1 = 0.2. CPU times are given in
seconds.

24

For the choice of w1 = 0.2, the cycle search heuristics is very often successful.
Moreover, the heuristic for large p often solves the problem exactly. Also for smaller
p the heuristic helps reducing the running time. We note that the basic Algorithm 3.1
always computes |V | − 1 minimum cuts, independently of the distribution of the edge
weights. In contrast, in the improved algorithm the number depends on the choice of
w1 and p.

For w1 = 0.4, the heuristic has only a running time of about 0.2 seconds, but it is
never successful in reducing the size of the graph. Furthermore, the cycle search algo-
rithms contribute less than for w1 = 0.2. However, for w1 = 0.4 the search for the
subgraphs F2 and Step 4. of Algorithm 3.2 are often successful. We compare the run-
ning times in seconds in Table 2. Clearly, the performance can drastically be improved
by the above-mentioned graph-theoretic considerations.

L p=80 p=70 p=60 p=50 p=40 p=30 p=20
Impr. Method 128 9.24 17.26 28.55 74.95 8.09 3.38 2.89
Algorithm 3.1 128 142.64 149.96 150.52 279.99 15.08 13.09 12.82
Impr. Method 256 118.55 252.29 473.60 2116.18 81.03 32.09 32.73
Algorithm 3.1 256 2248.08 2418.49 2614.13 8454.78 219.73 208.77 207.20

Table 2. Solution times in seconds for w1 = 0.4

In 2002, Anglès d’Auriac et al. presented average running times for L × L grid
graphs with w1 + w2 = 1, using a Pentium III processor with 800 MHz. Their program
needed on average 1.5 hours for a 1282 grid and one day of CPU time for a grid of size
2562. Our implementation of the basic algorithm needs roughly half an hour on average
for L = 256, whereas the improved method only takes ca. 6 minutes. We note that the
machine we used is considerably faster, and so we cannot easily compare our running
times with those reported in [1].

6 Conclusions

In this work, we presented a fast algorithm for the problem of optimum cooperation.
By an intensive study of the underlying graph-theoretic problem, the running time of
the solution algorithm can considerably be reduced. Finally, we analyzed the structure
of the solution sets.

Acknowledgments

We are grateful to Andrea Wagner for significant help with the implementation of the
algorithm. We thank Heiko Rieger for valuable remarks on the physics aspects of the
problem.

25

References

1. Anglès d’Auriac JCh, Iglói F, Preissmann M, and Sebö A (2002) Optimal cooperation and
submodularity for computing Potts’ partition functions with a large number of states. J Phys A:
Math Gen 35:6973-6983

2. Baı̈ou M, Barahona F, Mahjoub R (2000) Separation of partition inequalities. Math of Oper-
ations Research, 25(2):243-254

3. Barahona F (1992) Separating from the dominant of the spanning tree polytope. Operations
Research Letters 12:201-203

4. McCormick ST (2005) Submodular Function Minimization. In: Aardal K et al (ed) Discrete
Optimization: Handbooks in Operations Research and Management Science Vol.12 , Elsevier,
Amsterdam, pp 321-391

5. Cunningham WH (1985) Optimal Attack and Reinforcement of a Network. Journal of the
Association for Computing Machinery 32(3):549-561

6. Dempe S, Schreier H (2006) Operations Research - Deterministische Modelle und Methoden.
Teubner-Verlag, Wiesbaden

7. Fujishige S (2005) Submodular Functions and Optimization. Annals of Discrete Mathematics
Vol.58, Elsevier, Amsterdam

8. Goldberg AV, Tarjan RE (1988) A new approach to the maximum-flow problem. Journal of
the ACM 35(4):921-940.

9. Grätzer G (1978) General Lattice Theory. Birkhäuser-Verlag, Basel
10. Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in

combinatorial optimization. Combinatorica 1(2):169-197
11. Grötschel M, Lovász L, Schrijver A (1988) Geometric Algorithms and Combinatorial Opti-

mization. Springer Verlag
12. Hartmann AK, Rieger H (2002) Optimization Algorithms in Physics. Wiley-VHC, Berlin
13. Hartmann AK, Rieger H (2004) New Optimization Algorithms in Physics, Wiley-VHC,

Berlin
14. Iwata S, Fleischer L, and Fujishige S (2001) A combinatorial strongly polynomial algorithm

for minimizing submodular functions. Journal of the ACM 48(4):761-777
15. Juhasz R, Rieger H, Iglói F (2001) The random-bond Potts model in the large-q limit. Phys

Rev E 64:056122
16. Jünger M, Rinaldi G, Thienel S (2000) Practical Performance of Efficient Minimum Cut

Algorithms. Algorithmica 26:172-195
17. Open Graph Drawing Framework, www.ogdf.net
18. Preissmann M, Sebö A Graphic submodular function minimization: an graphic approach and

applications , unpublished
19. Schrijver A (2000) A Combinatorial Algorithm Minimizing Submodular Functions in

Strongly Polynomial Time. J Combinatorial Theory B 80:346-355
20. Topkis DM (1998) Supermodularity and Complementarity. Princeton University Press,

Princeton

