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Abstract. We investigate integer programs containing monomial con-
straints of the type

Q

i∈I
x

αi
i

= b. Due to the number-theoretic nature of
these constraints, standard methods based on linear algebra cannot be
applied directly. Instead, we present a reformulation resulting in integer
programs with linear constraints and polynomial objective functions, us-
ing prime decompositions of the right hand sides b. Moreover, we show
that minimizing a linear objective function with nonnegative coefficients
over bivariate constraints is possible in polynomial time.

1 Introduction

Let Z+ denote the set of nonnegative integers. We consider integer programs of
the form

max c⊤x

s.t.
∏n

i=1 x
αi,j

i = bj for j = 1, . . . , m

x ∈ Zn
+,

(1)

where c ∈ Zn, b ∈ (Z+ \ {0})m, and α ∈ Zn×m
+ . We assume throughout that

every variable appears in at least one of the monomial constraints, i.e., that for
every i ∈ {1, . . . , n} at least one αi,j is non-zero. This assumption can be made
without loss of generality, since a variable, i say, with αi,j = 0 for all j can always
be set to zero if ci ≤ 0. Otherwise, if ci > 0, then the corresponding program is
unbounded.

The number-theoretic nature of monomial constraints on integer variables
explains why such constraints are difficult to handle by standard techniques
based on linear algebra. Indeed, a notorious problem related to such constraints
is the fact that the convex hull of integer feasible solutions in general contains
integer infeasible points.

⋆ The first author is partially supported by the German Science Foundation (DFG)
under contract BU 2313/1-1. The second author is supported by the BMBF through
the FORSYS-Partnerproject “TcellTalk”.



For an example consider the constraint xy = p with p prime, where x and y
are nonnegative integer variables. This equation has only two feasible solutions,
namely (x, y) = (1, p) and (x, y) = (p, 1). The convex hull of those two points,
however, contains p − 2 additional, infeasible integer vectors,

(q, p + 1 − q) ∈ Z2
+, for q = 2, . . . , p − 1 ,

see Fig. 1(a). If p is not prime, the convex hull may even be full-dimensional and
contain integer infeasible points in its interior, see Fig. 1(b).

(a) (b)

Fig. 1. The convex hull of feasible solutions for (a) xy = 7 and (b) xy = 6.

When intersecting this convex hull with other hyperplanes, e.g., with x = y,
then one could even end up with an integer infeasible vertex. This fact limits
on the one hand the applicability of traditional polyhedral techniques for non-
linear integer programs. On the other hand, this fact motivates the search for
alternative approaches to tackle such a nonlinear integer problem.

It is our main objective to present such an alternative approach. We propose
a transformation of Problem (1) into an integer linear program with polynomial
objective function. For every monomial constraint

n
∏

i=1

x
αi,j

i = bj ,

the new formulation explicitely models the possible distributions of prime factors
of the right hand sides bj to the variables xi appearing on the left hand side.
We show that such a reformulation is always possible in quadratic time, and we
use this reformulation to show that the bivariate version of Problem (1) can be
solved in polynomial time for non-negative costs c. Moreover, we present a further
reformulation of the problem as a constrained quadratic binary optimization
problem. This construction is polynomial in the case that the right hand sides bj

are polynomially bounded in the input length.
We call Problem (1) an integer monomial program. Such a program gener-

alizes the set partitioning problem. This connection can be used to settle the
complexity of the feasibility version of Problem (1).
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Theorem 1. It is strongly NP-complete to decide whether Problem (1) has a

feasible solution, even if αi,j ≤ 1 for all i, j and
∑n

i=1 αi,j ≤ 3 for all j.

Proof. We polynomially transform the set partitioning problem to Problem (1).
For this, let Ij ⊆ {1, . . . , n}, j = 1, . . . , m, be given. Then, we ask whether there
is a binary vector z ∈ {0, 1}n such that

∑

i∈Ij

zi = 1 (2)

for j = 1, . . . , m. We claim that Equation (2) holds true if and only if

∏

i∈Ij

(zi + 1) = 2 .

Indeed, for x ∈ Zn
+, the monomial equation

∏

i∈Ij
xi = 2 is satisfied if and only

if all xi ∈ {1, 2} for i ∈ Ij and
∑

i∈Ij
(xi − 1) = 1. We conclude that the given

set partitioning instance is feasible if and only if

∏n
i=1 x

αi,j

i = 2 for j = 1, . . . , m

x ∈ Zn
+

has a feasible solution, where

αi,j =

{

1 if i ∈ Ij

0 otherwise.

As the feasibility version of the set partitioning problem is NP-complete even if
all equations have a support of cardinality at most three [3], deciding whether
Problem (1) has a feasible solution is NP-complete, too. ⊓⊔

In the following sections we will investigate the complexity of special cases
of monomial integer programming problems. In doing so, we need some care in
defining the encoding of the input. It will turn out that a central element of the
analysis provided in the paper is based on prime decompositions of the right hand
sides bj. For a general integer b, a decomposition into its prime factors p1, . . . , pt

can be computed in polynomial time in the encoding length 〈b〉 of b using a
quantum computer model [6]. In the Turing computer model it is not known
whether a prime factorization can be determined in polynomial time. The best
known algorithms for the factorization of integers are sub-exponential (e.g., the
general number field sieve algorithm [4]), but not polynomial. This motivates
to include the prime decomposition of the right hand sides bj into the input of
Problem (1). We thus input, in binary encoding,

– a positive number n
– a positive number m
– for every j = 1, . . . , m, a positive integer bj , together with its unique prime

decomposition, given by the pairs (pk, µk,j) with bj =
∏

k pk
µk,j ,
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– for every i = 1, . . . , n, an integer ci,

– for every j = 1, . . . , m and i = 1, . . . , n, a non-negative integer αi,j , such
that

∑m
j=1 αi,j ≥ 1 for all i = 1, . . . , n

The objective is to solve Problem (1). Note that every µk,j is logarithmically
bounded in bj , as pk ≥ 2, and hence linear in the input size.

The paper is organized as follows: Section 2 introduces a reformulation of
Problem (1) as a polynomial optimization problem subject to linear integer con-
straints. Section 3 is devoted to the investigation of the special bivariate case in
which at most two variables appear in any constraint. In Section 4, we propose
a binary quadratic programming model for Problem (1) which is of polynomial
size if all right hand sides bi are polynomially bounded.

2 A transformation based on prime decompositions

An important difficulty in tackling nonlinear integer programs stems from the
fact that the convex hull of feasible solutions can contain infeasible integer points.
The purpose of this section is to propose a reformulation of Problem (1) that
turns all nonlinear constraints into linear ones in an extended space whose di-
mension is quadratic in the encoding length of the original problem input. The
core of this reformulation is a transformation based on the prime factorization
of the right hand sides. We consider the set of monomial constraints

n
∏

i=1

x
αi,j

i = bj =
t

∏

k=1

p
µk,j

k , ∀ j = 1, . . . , m,

x ∈ Zn
+ .

(3)

Let γi,k := min {⌊µk,j/αi,j⌋ | j = 1, . . . , m with αi,j ≥ 1}. We now associate
with each variable xi new integer variables yi,k ∈ {0, 1, . . . , γi,k}, for k = 1, . . . , t,
which count how often pk divides the value of variable xi, and consider the
following integer linear system:

∑n
i=1 αi,jyi,k = µk,j , ∀ k = 1, . . . , t, ∀ j = 1, . . . , m,

yi,k ∈ {0, . . . , γi,k}, ∀ i = 1, . . . , n, ∀k = 1, . . . , t.
(4)

Proposition 1. Each feasible solution to system (3) corresponds to a feasible

solution of the linear system (4), and vice versa.

Proof. Let x ∈ Zn
+ be feasible for (3). Since

∑m
j=1 αi,j ≥ 1 for all i = 1, . . . , n,

each xi ∈ Z+ divides at least one bj. It follows that

xi =

t
∏

k=1

p
wi,k

k , for suitable wi,k ∈ Z+.
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As x
αi,j

i must be a divisor of bj, we conclude that wi,k ∈ {0, 1, . . . , γi,k}. Now
setting yi,k = wi,k, for all i and k, we obtain for all j = 1, . . . , m that

t
∏

k=1

p
µk,j

k = bj =

n
∏

i=1

x
αi,j

i =

n
∏

i=1

t
∏

k=1

p
αi,jyi,k

k =

t
∏

k=1

p
P

n
i=1

αi,jyi,k

k .

Comparing exponents and using the uniqueness of the prime decomposition, it
follows that for all j = 1, . . . , m

n
∑

i=1

αi,jyi,k = µk,j , for all k = 1, . . . , t.

Thus yi,k is feasible for the constraints in (4).

Now, assume that yi,k ∈ {0, . . . , γi,k} is a feasible solution for system (4).
Then, for each j = 1, . . . , m, we have that

p
µk,j

k = p
Pn

i=1
αi,jyi,k

k , for all k = 1, . . . , t.

We define xi =
∏t

k=1 p
yi,k

k , for all i = 1, . . . , n. This implies

bj =

t
∏

k=1

p
µk,j

k =

t
∏

k=1

p
Pn

i=1
αi,jyi,k

k =

n
∏

i=1

(

t
∏

k=1

p
yi,k

k

)αi,j
=

n
∏

i=1

x
αi,j

i ,

for all j ∈ {1, . . . , m}. ⊓⊔

In order to complete the reformulation of Problem (1), we still need to trans-
form the original objective function to the new model. From a solution yi,k of
system (4) we can reconstruct a feasible solution for the variables xi using

xi =
t

∏

k=1

p
yi,k

k .

Then, the objective function c⊤x turns into

c⊤x =

n
∑

i=1

ci

t
∏

k=1

p
yi,k

k =: f(y). (5)

Unfortunately, f(y) is a highly nonlinear function so that no tools are available to
solve the transformed system max f(y) subject to (4). With the help of additional
binary variables, we claim that we can write down a polynomially sized linear
system and polynomial objective function that model problem (1) correctly.

Theorem 2. In quadratic time, Problem (1) can be transformed to a linear

integer problem with polynomial objective function.
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Proof. From Proposition 1, it follows that Problem (1) is equivalent to maximiz-
ing function f(y) of Formula (5) over the linear equation system stated in (4).
Now, we replace each integer variable yi,k by the sum of γi,k binary variables
zr

i,k, i.e. yi,k =
∑γi,k

r=1 zr
i,k. Then, f(y) reads as

n
∑

i=1

ci

t
∏

k=1

p
Pγi,k

r=1
zr

i,k

k =

n
∑

i=1

ci

t
∏

k=1

γi,k
∏

r=1

(

1 + (pk − 1)zr
i,k

)

=: g(z). (6)

In summary, Problem (1) is equivalent to

max g(z)
∑n

i=1 αi,j

∑γi,k

r=1 zr
i,k = µk,j , ∀ k, j,

zr
i,k ∈ {0, 1}, ∀ k, i, r.

(7)

This model contains at most one binary variable zr
i,k for each variable xi and

each prime factor pk appearing in some right hand side bj with αi,j ≥ 1, where
we distinguish between different appearances of the same prime factor in a given
right hand side. It follows that the total number of binary variables is bounded
by n(

∑m
j=1 log bj), which is quadratic in the input length. ⊓⊔

Note that the presented construction is not linear in general. For example, to
transform the single monomial constraint

∏n
i=1 xi = b into a linear one, one

needs n log b variables yi,k. The reason is that every prime factor of b can appear
in every variable xi. However, it is easy to see that the construction becomes
linear if the degree of all monomials is bounded by a constant.

In the case where µi,k ≤ 1 for all i, k, i.e., where all right hand sides are
square-free, the variables zr

i,k are not needed, and the system (7) specializes to
the easier problem

max
∑n

i=1 ci

∏t
k=1

(

1 + (pk − 1)yi,k

)

∑n
i=1 αi,jyi,k = µk,j , ∀ k, j,

yi,k ∈ {0, 1}, ∀ k, i.

We remark that Theorem 2 cannot be proven using the standard linearization
approach in which every variable xi is expanded xi =

∑

l 2
lyil with yi,l ∈ {0, 1}.

Indeed, this approach would require to introduce additional binary variables in
order to linearize the monomial constraints. Since the numbers αi,j are part of
the input and not constant, the number of such extra linearization variables
grows exponentially with the size of the input of Problem (1).

6



Example 1. For pairwise distinct prime numbers p1, p2, p3, consider the following
instance of Problem (1):

min
∑15

i=1 xi

s.t. x1 x2 x3 x4 x5 = b1 := p4
1 p2

2 p1
3,

x6 x7 x8 x9 x10 = b2 := p4
1 p2

2 p1
3,

x11 x12 x13 x14 x15 = b3 := p4
1 p2

2 p1
3,

x1 x6 x11 = b4 := p2
1 p4

2 p0
3,

x2 x7 x12 = b5 := p3
1 p2

2 p0
3,

x3 x8 x13 = b6 := p3
1 p0

2 p1
3,

x4 x9 x14 = b7 := p4
1 p1

2 p2
3,

x5 x10 x15 = b8 := p1
1 p1

2 p1
3,

x ∈ Z15
+ .

(8)

By taking the product of the first three constraints and the product of the
last five constraints, we obtain that each feasible solution of Problem (8) must

satisfy both
∏15

i=1 xi = p12
1 p6

2 p3
3 and

∏15
i=1 xi = p13

1 p8
2 p4

3. This shows that
Problem (8) is infeasible. We have created several test instances of type (8)
characterized in Table 1. The second column contains the values chosen for the
prime numbers p1, p2 and p3. In column bmax, the largest right-hand-side that
occurs in the test instance is listed, while column umax denotes the maximum
upper bound induced on some variable xi. For solving the test instances we

name p1/p2/p3 bmax umax time (sec) BaR It.

p01 2/3/5 1200 720 102.14 10965
p02 2/3/7 2952 1008 110.19 10803
p03 2/3/11 5808 1584 148.73 14681
p04 2/3/13 8112 1872 139.96 15323

p05 3/5/2 5625 4050 270.14 28305
p06 3/5/7 19845 14175 777.07 74961
p07 3/5/11 49005 22275 975.23 98239
p08 3/5/13 68445 26325 862.08 88427

p09⋆ 5/7/2 61250 60025 1829.96 194227
p10⋆ 5/7/3 91875 60025 2558.92 259655
p11⋆ 5/7/11 529375 336875 3956.05 396555
p12⋆ 5/7/13 739375 398125 2068.02 509757

Table 1. Characteristics and computational results for test instances of Problem (8).
For instances p09–p12 marked with ⋆, BARON was not able to guarantee infeasibility
as bounds on variables were too wide.

used the software package BARON [7], a state-of-the-art global solver for mixed-
integer nonlinear optimization problems. All computations have been carried out
in a GAMS 22.5 environment [5] using BARON v. 7. 8. 1 (epsr= 1.00E − 09,
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epsa= 1.00E − 09, isotol= 1.00E − 04, nlpsol=Snopt, lpsol=Cplex) on a
3GHz Dual-Core AMD Opteron(tm) Processor 8222 SE with 64GB Ram. The
solution time and the number of BARON iterations (Bar It.) needed to prove
infeasibility are also reported in Table 1. The computational results indicate
that proving infeasibility of the test instances in their standard formulation (8)
strongly depends on the size of the right-hand-sides and of the upper bounds
on the variables, though the underlying structure, the core of the problem, is
identical for all test instances p01–p12.

To see this, let us consider the reformulation of problem (8) given by

min
∑15

i=1 p
yi,1

1 p
yi,2

2 p
yi,3

3

s.t.
∑15

i=1 αi,jyi,k = µj,k, k ∈ {1, 2, 3}, j ∈ {1, . . . , 8},
(9)

where αi,j ∈ {0, 1} reflects the exponent of variable xi in constraint j and µj,k

is the multiplicity of pk in bj. Using the integer reformulation (9), infeasibility
could be proven by BARON in the pre-processing step with less than 0.02 sec for
all test instances p01–p12. This example shows that the reformulation suggested
by Theorem 2 can capture the combinatorial structure of the problem much
better than the original formulation. ⊓⊔

Based on Proposition 1, there is little hope in solving Problem (7) efficiently,
in general. Interestingly, if we impose additional structure on the constraints,
polynomial time algorithms are available to tackle the corresponding feasibility
and optimization questions. This topic is discussed in the next section.

3 Bivariate constraints

The set partitioning problem turns easy as soon as every constraint has a support
bounded by two. In our context, this translates to the fact that Problem (1) is
easy if all monomial degrees and all right hand sides are bounded by two. In
this section we show a much more general result. We consider the case where
Problem (1) only involves bivariate monomials, but do not bound the right hand
sides. In this case, it is appropriate to rewrite Problem (1) as

max c⊤x

s.t. x
αi,j

i x
βi,j

j = bi,j =
∏t

k=1 p
µk(i,j)
k for (i, j) ∈ I, i < j,

x ∈ Zn
+,

(10)

where the index set I ⊆ {1, . . . , m}2 is given and we can assume αi,j , βi,j ≥ 1.
It is the topic of this section to show that variants of this problem can be
solved efficiently. In the following, we consider the undirected graph G = (V, E)
with V = {1, . . . , n} and (i, j) ∈ E if and only if (i, j) ∈ I and i < j, or (j, i) ∈ I
and j < i.

Proposition 2. If every non-trivial component of G contains an edge (i, j) such

that bij is polynomially bounded in the input size, then Problem (10) can be solved

in polynomial time.
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Proof. We may assume that the graph G is connected, as otherwise the problem
decomposes. Let bi,j be polynomial in the input size for some (i, j) ∈ I. The

constraint x
αi,j

i x
βi,j

j = bi,j has at most one solution for every subset of the set
of prime factors of bi,j . Since bi,j can have at most log bi,j many prime factors,
the number of solutions is thus bounded by bi,j . As G is connected, fixing the
value of xi either implicitly fixes all variables or leads to a contradiction. This
can be checked by a depth first traversal of G. ⊓⊔

The proof of Proposition 2 does not work for monomials of higher degree. In
fact, a crucial advantage in the bivariate case is that fixing a single variable in a
connected component of G fixes all other variables in this component. This fact
is also used in the following proof.

Theorem 3. It can be checked in polynomial time whether Problem (10) has

a solution or is infeasible. Moreover, Problem (10) can be solved in polynomial

time if c ≥ 0.

Proof. Again, we may assume that the graph G is connected. By Theorem 2, we
have to solve the problem

max
∑n

i=1 ci

∏t
k=1 p

yi,k

k

s.t. αi,jyi,k + βi,jyj,k = µk(i, j) ∀k ∀ (i, j) ∈ I, with i < j

yi,k ∈ {0, . . . , γi,k} ∀k ∀i .

(11)

Feasibility of (11) can be checked in the following way: Let k ∈ {1, . . . , t} be
fixed, and choose a variable yi,k. As each equation involves only two variables,
fixing yi,k to one of its values either leads to a uniquely feasible integer solution
for all variables yi,k, i ∈ J , or leads to a non-solvable integer system in the
remaining variables. This can obviously be checked in linear time. This means,
testing solvability requires for each k ∈ {1, . . . , t} evaluating at most γi,k + 1
possibilities for yi,k, and the total number of evaluations is polynomially bounded
in the input size.

To determine an optimal solution for Problem (11), we first fix k to one of
its values. Then, the set of equations

αi,jyi,k + βi,jyj,k = µk(i, j) ∀ (i, j) ∈ I, with i < j and i, j ∈ J

has a polynomial number of feasible solutions. One can easily verify that these
solutions are of the form

yi,k = y′
i,k + λkȳi, λk ∈ {0, . . . , lk}

with y′
i,k ∈ Z for all i, k and ȳi ∈ Z \ {0} for all i. Note that ȳi does not depend

on k, but only on the αi,j and βi,j . Using this reformulation, Problem (11) can
be rewritten as

max
∑

i∈J c̄i

(

∏t
k=1 pλk

k

)ȳi

s.t. λk ∈ {0, . . . , lk} ∀k ,
(12)
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where c̄i = ci

∏t
k=1 p

y′

i,k

k ≥ 0. Thus, the function

f : (0,∞) → R, f(x) =
∑

i∈J

c̄ix
ȳi

is convex. In particular, its maximum over the interval [1,
∏t

k=1 plk
k ] is attained

at one of the end points. In other words, an optimal solution for Problem (12)
is either λk = 0 for all k or λk = lk for all k. ⊓⊔

Example 2. Consider the problem

max 2x1 + 3x3 + x4

s.t. x2
1x2 = 23 · 34 · 53 = 81.000

x1x3 = 21 · 33 · 52 = 1.350

x2x
2
4 = 25 · 34 · 57 = 202.500.000

x3x4 = 22 · 33 · 54 = 67.500

x ∈ Z4
+.

Then p1 = 2, p2 = 3, and p3 = 5. The resulting system of linear equations is

2y1,1+ y2,1 = 3 2y1,2+ y2,2 = 4 2y1,3+ y2,3 = 3
y1,1+ y3,1 = 1 y1,2+ y3,2 = 3 y1,3+ y3,3 = 2
y2,1+ 2y4,1 = 5 y2,2+ 2y4,2 = 4 y2,3+ 2y4,3 = 7
y3,1+ y4,1 = 2 y3,2+ y4,2 = 3 y3,3+ y4,3 = 4

Then

(yi,k)i,k =









0 0 0
3 4 3
1 3 2
1 0 2









+









1 1 1
−2 −2 −2
−1 −1 −1

1 1 1













λ1

λ2

λ3



 ,

with upper bounds l1 = 1, l2 = 2, and l3 = 1. The two candidate solutions are
thus given by λ = (0, 0, 0) and λ = (1, 2, 1), they correspond to solutions

x1 = (203050, 233453, 213352, 213052) = (1, 81.000, 1.350, 50)

and

x2 = (213251, 213051, 203151, 223253) = (90, 10, 15, 4.500) .

The corresponding objective values are 4.102 and 4.725. ⊓⊔

It remains open whether Problem (10) can be solved in polynomial time for
general objective functions. We conjecture that the problem is NP-hard. In fact,
the problem becomes NP-hard if instead of the prime factorization of b we fix
an arbitrary decomposition into factors that may be distributed to the variables
on the left hand sides. This problem is NP-hard even in dimension two.
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Problem 1. Given a set of integers s1, . . . , sn, minimize x1 + x2 subject to

x1x2 =

n
∏

i=1

si

and x1 =
∏

i∈I si for some I ⊆ {1, . . . , n}.

Theorem 4. Problem 1 is NP-hard.

Proof. To prove our claim, we will make use of the fact that the subset product

problem is NP-complete [3], which is defined as follows:

(Q) Given a finite set A = {1, . . . , n}, positive weights sa ∈ Z+, a ∈ A, and a
positive integer B ∈ Z+, is there a subset A′ ⊆ A such that

∏

a∈A′ sa = B?

Assume that there exists an algorithm that solves any instance of Problem 1 in
polynomial time and that an arbitrary instance of the subset product problem
(Q) is given. As for B = 1 problem (Q) can be easily solved we may assume
that B ≥ 2 and sa ≥ 2, a ∈ A.

We first introduce a new item n+1 and define its weight as sn+1 := s0

B
, where

s0 :=
∏

a∈A sa. Note that if B is not a divisor of s0 then it follows that there
cannot exist a subset A′ ⊆ A with

∏

a∈A′ sa = B. Therefore, we may assume
that B divides s0 implying that sn+1 ∈ Z+.

Now for fixed a ∈ A, we define a new item n + 2 with weight sn+2 := saB
and consider the following optimization problem:

νa := min x1 + x2

s.t. x1x2 =
(

∏

i∈A\{a}

si

)

sn+1 sn+2,

x1 ∈ X :=
{

∏

i∈I

si | I ⊆ (A \ {a}) ∪ {n + 1, n + 2}
}

.

We have that
(
∏

i∈A\{a} si

)

sn+1sn+2 =
(
∏

i∈A\{a} si

)

s0

B
saB = s2

0. Thus, if we
drop the condition x1 ∈ X , then simple arguments from analysis show that νa

equals 2s0 which can be only attained at (s0, s0). For the discrete case, we now
claim that νa = 2s0 if and only if there exists a subset A′ ⊆ A \ {a} with
B =

∏

i∈A′ si. Clearly, if there exists an A′ ⊆ A\ {a} with B =
∏

i∈A′ si, we can
choose

x1 = sn+1

∏

i∈A′

si =
s0

B
B = s0 ,

yielding x2 = s0 and νa = 2s0.
Now assume that νa = 2s0 with optimal solution (x1, x2) = (s0, s0). Without

loss of generality, sn+1 is assigned to x1. Then sn+2 cannot be assigned to x1,
as otherwise x1 ≥ sn+1sn+2 = s0

B
saB > s0. Thus we have x1 = sn+1w1 and

x2 = sn+2w2 with w1w2 =
∏

i∈A\{a} si. From the condition x1 ∈ X we derive

11



that wj ∈
{

∏

i∈I si | I ⊆ A \ {a}
}

for j = 1, 2. From x1 = x2 = s0, it moreover
follows that

w1 =
s0

sn+1
= s0

B

s0
= B and w2 =

s0

sn+2
=

∏

i∈A\{a} si

B
.

We can hence conclude that there must exist an A′ ⊆ A\{a} with B =
∏

a∈A′ si.
This shows that for answering question (Q) it suffices to compute the value νa

for all a ∈ A. Therefore, Problem 1 is NP-hard. ⊓⊔

4 Pseudopolynomial reduction to quadratic programming

The proof of Theorem 1 shows that Problem (1) remains NP-hard even if bj ≤ 2
for all j. In this section, we aim at a further transformation of Problem (1) under
the assumption that all bj are small. Our objective is to obtain an equivalent
formulation that can be addressed by standard techniques for quadratic 0–1
programming. In the following, we consider the polytope P given as the convex
hull of feasible solutions of Problem (1), i.e.,

P = conv
{

x ∈ Zn
+ |

n
∏

i=1

x
αi,j

i = bj for all j = 1, . . . , m
}

⊆ Rn .

Problem (1) is equivalent to the maximization of an arbitrary linear objective
function over P , so our aim is to derive tight linear relaxations of P .

For this, let P ∗ denote the convex hull of vectors (x, y) ∈ Zn
+×Znt

+ satisfying

xi =
∏t

k=1 p
yi,k

k , ∀ i,

yi,k ∈ {0, . . . , γi,k}, ∀ i, k.

By Proposition 1, an integer vector x ∈ Zn
+ belongs to P if and only if there is

a vector y ∈ Znt
+ that satisfies

n
∑

i=1

αi,jyi,k = µk,j , ∀k, j

such that (x, y) ∈ P ∗. It is thus desirable to understand the polyhedral structure
of P ∗.

Theorem 5. The polytope P ∗ is a projection of a face of a boolean quadric

polytope Q∗. The latter can be constructed in time quadratic in the input length

of Problem (1) plus b.

Proof. First, we introduce z-variables as in the proof of Theorem 2, which is
possible in quadratic time, yielding a polytope P ∗∗ given as the convex hull of
feasible solutions of

xi =
∏t

k=1

∏γi,k

r=1

(

1 + (pk − 1)zr
i,k

)

, ∀ i,

zr
i,k ∈ {0, 1}, ∀ k, i, r.

12



As for every i ∈ {1, . . . , n} there is a j ∈ {1, . . . , m} with αi,j ≥ 1, we have

t
∑

k=1

γi,k ≤

t
∑

k=1

αi,jγi,k ≤

t
∑

k=1

µk,j ≤ log bj .

The number of subsets of Ji = {(k, r) | k = 1, . . . , t, r = 1, . . . , γi,k} is thus
bounded by B = max{bj | j = 1, . . . , m}. In particular, we can introduce new
binary variables

zi,L =
∏

(k,r)∈L

zr
i,k

for every i and every L ⊆ Ji. Then

xi =

t
∏

k=1

γi,k
∏

r=1

(

1 + (pk − 1)zr
i,k

)

=
∑

L⊆Ji

cLzi,L

with cL =
∏

(k,r)∈L(pk − 1). Let P ∗∗∗ denote the convex hull of all feasible
solutions of the new model, i.e.,

P ∗∗∗ = conv
{

(x, z) ∈ Zn
+ × {0, 1}Bn | xi =

∑

L⊆Ji

cLzi,L

}

.

By construction, P ∗ is a projection of P ∗∗∗, via

yi,k =

γi,k
∑

r=1

zr
i,k =

γi,k
∑

r=1

zi,{(k,r)} .

Moreover, as each variable xi is an affine combination of variables zi,L, the
polytope P ∗∗∗ is isomorphic to its own projection to the space of z-variables. The
latter projection corresponds to the standard linearization of an unconstrained
polynomial 0–1 optimization problem over the basic variables zr

i,k, with a set of
monomials zi,L that is closed under taking submonomials. By Corollary 3.4 in [1],
it follows that P ∗∗∗ is isomorphic to a face of a boolean quadric polytope Q∗.
Following the construction given in [2], the dimension of Q∗ can be bounded
by four times the dimension of P ∗∗∗. As the latter is at most quadratic in the
dimension of the original problem plus b, the result follows. ⊓⊔

Example 3. Consider the single monomial constraint x2
1x2x

2
3 = 2252 = 100.

Then P ∗ is defined as the convex hull of all vectors (x, y) ∈ Z9
+ satisfying

x1 = 2y1,15y1,2 , x2 = 2y2,15y2,2 , x3 = 2y3,15y3,2

y1,1, y1,2, y3,1, y3,2 ∈ {0, 1}, y2,1, y2,2 ∈ {0, 1, 2} ,

and P ∗∗ is spanned by the feasible solutions of

x1 = (z1
1,1 + 1)(4z1

1,2 + 1)

x2 = (z1
2,1 + 1)(z2

2,1 + 1)(4z1
2,2 + 1)(4z2

2,2 + 1)

x3 = (z1
3,1 + 1)(4z1

3,2 + 1)

z ∈ {0, 1}8 .
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The polytope P ∗∗∗ obtained from multiplication and linearization is then defined
over 21 binary variables zi,L, corresponding to the monomials

(deg 1) z1
1,1, z1

1,2, z1
2,1, z2

2,1, z1
2,2, z2

2,2, z1
3,1, z1

3,2

(deg 2) z1
1,1z

1
1,2, z1

2,1z
2
2,1, z1

2,1z
1
2,2, z1

2,1z
2
2,2, z2

2,1z
1
2,2, z2

2,1z
2
2,2, z1

2,2z
2
2,2, z1

3,1z
1
3,2

(deg 3) z1
2,1z

2
2,1z

1
2,2, z1

2,1z
2
2,1z

2
2,2, z1

2,1z
1
2,2z

2
2,2, z2

2,1z
1
2,2z

2
2,2

(deg 4) z1
2,1z

2
2,1z

1
2,2z

2
2,2 .

It is isomorphic to a face of a boolean quadric polytope, corresponding to a
quadratic function over 20 binary variables [2]. ⊓⊔

Theorem 5 shows that Problem (1) can be polynomially reformulated as a
binary quadratic programming problem with additional linear constraints

n
∑

i=1

αi,j

γi,k
∑

r=1

zr
i,k = µk,j , ∀k, j

whenever the right hand sides of the monomial constraints are polynomially
bounded in the input length. For binary quadratic programming problems, many
well-studied and practically fast solution methods exist, based on integer or
semidefinite programming techniques. Moreover, this approach remains feasible
even when monomial constraints as in Problem (1) are combined with arbitrary
linear constraints.

Theorem 6. The polytope P is a projection of a face of a boolean quadric

polytope Q. If all multiplicities µk,j are bounded by a constant, then Q can be

constructed in polynomial time.

Proof. By construction, the polytope P is a projection of the convex hull of
integer points in the intersection of the polytope P ∗∗∗ constructed in the proof
of Theorem 5 with the constraints

n
∑

i=1

αi,j

γi,k
∑

r=1

zi,{(k,r)} = µk,j (13)

for all k and j. We extend P ∗∗∗ by introducing further monomials over the same
set of basic variables zr

i,k as follows. For each k and j, let Mk,j be the set of
minimal subsets of {(i, r) | i = 1, . . . , n, r = 1, . . . , γi,k} with

∑

(i,r)∈I

αi,jzi,{(k,r)} > µk,j .

For each subset J of some set I ∈ Mk,j , we introduce a variable zJ modeling the
monomial

∏

(i,r)∈J zr
i,k. Let P ∗∗∗∗ denote the resulting polytope. Then P ∗∗∗∗

is isomorphic to a face of a boolean quadric polytope Q by [1] and P ∗∗∗ is a
projection of P ∗∗∗∗. Now the equation (13) implies zI = 0 for all I ∈ Mk,j . The
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set of constraints zI = 0 for I ∈ Mk,j , for all k and j, induces a face F of P ∗∗∗∗.
In this face, the inequality

n
∑

i=1

αi,j

γi,k
∑

r=1

zi,{(k,r)} ≤ µk,j

is valid, so adding (13) induces a face F ∗ of F and hence of Q. This proves the
first statement. The second statement follows from the fact that the cardinality
of the set Mk,j is polynomial for constant µk,j . ⊓⊔

Example 4. Continuing Example 3, we have the linear constraints

2z1
1,1 + z1

2,1 + z2
2,1 + 2z1

3,1 = 2

2z1
1,2 + z1

2,2 + z2
2,2 + 2z1

3,2 = 2

and eliminate the minimal infeasible solutions by adding

z1
1,1z

1
2,1 = z1

1,1z
2
2,1 = z1

1,1z
1
3,1 = z1

2,1z
1
3,1 = z2

2,1z
1
3,1 = 0

z1
1,1z

1
2,1 = z1

1,1z
2
2,1 = z1

1,1z
1
3,1 = z1

2,1z
1
3,1 = z2

2,1z
1
3,1 = 0 .

After linearizing all 13 + 10 non-linear monomials of the problem and reducing
it to a binary quadratic optimization problem according to [1, 2], the constraints

2z1
1,1 + z1

2,1 + z2
2,1 + 2z1

3,1 ≥ 2

2z1
1,2 + z1

2,2 + z2
2,2 + 2z1

3,2 ≥ 2

are face-inducing. ⊓⊔
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