
On efficient total domination

Oliver Schaudt

Institut für Informatik, Arbeitsgruppe Faigle/Schrader, Universität zu Köln
Weyertal 80, 50931 Cologne, Germany

Abstract

An efficiently total dominating set of a graph G is a subset of its vertices such
that each vertex of G is adjacent to exactly one vertex of the subset. If there is
such a subset, then G is an efficiently total dominatable graph (G is etd).

We show that the corresponding etd decision problem is NP-complete on
(1, 2)-colorable chordal graphs and on planar bipartite graphs of maximum de-
gree 3 and obtain polynomial solvability on T3-free chordal graphs, implying
polynomial solvability on interval graphs and circular arc graphs.

Keywords: graph algorithms, computational complexity, total domination,
efficient total domination

1. Introduction

Total domination has been introduced 1980 by Cockayne, Dawes and Hedet-
niemi in [2] and is intensively studied now. A good introduction to the theory
of (total) domination, giving a broad overview of the important results and ap-
plications, is given in [5]. In the problem of total domination, one is interested
in determining the value γt(G) of a given graph G, defined as the smallest size
of a subset X ⊆ V (G) such that each vertex of G has at least one neighbor in
X .

Let G be a simple undirected graph. A set X ⊆ V (G) is said to be an
efficiently total dominating set of G, or an etd set, if each v ∈ V (G) is adjacent
to exactly one vertex in X . G is then said to be an efficiently total dominatable

graph, or G is etd. The corresponding decision problem is denoted by ETD.
Let 1 denote the vector with all components equal to 1 of suitable dimension.
ETD can alternatively be defined as the class of graphs whose neighborhood
hypergraph has a perfect matching, as the class of graphs whose adjacency
matrix A accepts the equation Ax = 1 for some 01-vector x, and as the class
of graphs that have an induced matching such that each vertex is adjacent to
exactly one matched vertex. There is some literature on efficient domination.

Email address: schaudt@zpr.uni-koeln.de (Oliver Schaudt)

Preprint submitted to Elsevier February 26, 2010

Figure 1: T3.

In the case of efficient total domination however, only a few papers have been
published so far (according to our knowledge).

An important result is the following

Theorem 1 (See [5]). Let G be an etd graph. Each etd set X of G has cardi-

nality γt(G).

We can therefore understand efficient total domination as an extremal case
of total domination. Furthermore, understanding the structure of efficiently
total dominatable graphs and the algorithmic complexity of the corresponding
decision problem may put some light on total domination, too.

1.1. Preliminaries

Let G be a graph. V (G) denotes its vertices and E(G) denotes its edges.
For each U ⊆ V (G), G(U) denotes the induced subgraph on the vertices of U .
A graph is G-free if it does not contain G as induced subgraph. A graph is
(p, q)-colorable if its set of vertices can be partitioned into p + q parts, p parts
being a clique and q parts being a stable set each. (1, 1)-colorable graphs are
said to be split graphs. A graph is chordal if all of its induced cycles have length
3. A graph is planar if it can be drawn on the plane such that no two edges
cross each other. A graph is an interval graph if it has an intersection model
consisting of closed intervals on a line. A graph is a circular arc graph if it has
an intersection model consisting of arcs on a circle. A triangle is the complete
graph on 3 vertices, K3. A T3 is constructed in the following way. Start with
three paths of length two, choose an endvertex of each path and connect these
to a single new vertex r (see Fig. 1). For every vertex v, N(v) denotes the set
of the vertices adjacent to v, i.e. its open neighborhood; sometimes it is useful
to explicitly write NG(v) for the open neighborhood of v in a graph denoted by
G. A leaf is a vertex with degree 1.

All relevant graph classes and graph class inclusions are displayed in detail
in [1].

2. NP-completeness results

2.1. Stretching lemma

Given a graph G and a vertex v ∈ V (G), a stretching of v is a graph obtained
from G by substituting v by a path (v1, . . . , v5) of length four, and connecting

2

v v1 v2 v3 v4 v5

Figure 2: Stretching of v.

each former neighbor of v to exactly one of the two endvertices of the path in
an arbitrary way (see Fig. 2). It is easy to see that a stretching of v is etd iff G
is etd. Furthermore, stretching preserves bipartiteness.

Lemma 1. Let G be a graph class closed under the stretching operation. If

ETD is NP-complete on G then ETD is NP-complete on the class of graphs of

G with maximum degree 3.

Proof. Let G be a graph class closed under the stretching operation. The poly-
nomial reduction can be done by iteratively choosing a vertex v with |N(v)| ≥ 4
and stretching v to (v1, . . . , v5) in a way that connects exactly two former neigh-
bors of v to v1 and all other neighbors to v5. �

2.2. ETD as matrix equation

Graph classes on which ETD is NP-complete can be obtained by reducing
the well known Exact Cover decision problem (EC) to ETD. Given an arbitrary
01-matrix A, EC asks for the 01-solvability of Ax = 1. Let I denote the identity
matrix of suitable dimension. EC reduces to ETD in the following way: Given
a 01-matrix A, we define a function

A(X) =

X 0 0 A
0 0 I I
0 I 0 0
At I 0 0

(1)

and observe for each X , that A is in EC iff A(X) is in EC.
Let J denote the square matrix with all components equal to 1 of suitable

dimension. A(J − I) is the adjacency matrix of a (1, 2)-colorable chordal graph,
i.e. a chordal graph which can be partitioned into a clique and two indepen-
dent sets, and A(J − I) is in EC iff this very graph is in ETD. As EC is well
known to be NP-complete, we conclude NP-completeness of ETD restricted to
(1, 2)-colorable chordal graphs. As the class of (1, 2)-colorable chordal graphs is
only slightly bigger than the class of split graphs (which are exactly the (1, 1)-
colorable graphs) and ETD restricted to split graphs is obviously trivial, we see
that the gap of complexity between the two classes is big compared to their
structural differences.

3

We conclude

Theorem 2. ETD is NP-complete on the class of (1, 2)-colorable chordal graphs.

As mentioned in [4], EC remains NP-complete when restricted to the class
of all 01-matrices A for which

A′ =

(

0 A
At 0

)

(2)

is the adjacency matrix of a planar graph. Obviously, the graph with adjacency
matrix A(0) is a bipartite planar graph being etd iff A is in EC. By applying
Lemma 1, we obtain the following

Theorem 3. ETD is NP-complete on planar bipartite graphs of maximum de-

gree 3.

3. Polynomial solvability on T3-free chordal graphs

Each induced subgraph of a T3-free chordal graph is T3-free chordal again
and each chordal graph has a simplicial vertex, i.e. a vertex whose neighbors
form a clique (see [1]). We show that ETD is polynomially solvable on T3-free
chordal graphs, presenting our algorithm in two parts.

Algorithm 1 Labeling algorithm

Require: T3-free chordal graph G = (V,E).
Ensure: A, I ⊆ V satisfying Observation 1, 2 and 3.
1: A, I ← ∅
2: D ← {e ∈ E : e lies on a triangle}
3: labeling possible← true
4: while labeling possible do
5: labeling possible← false
6: if there is v ∈ V \ I such that {{v, u} : u ∈ N(v) \ I} ⊆ D then
7: I ← I ∪ {v}
8: labeling possible← true
9: else if there is v ∈ V and u ∈ N(v) \A such that N(v) \ {u} ⊆ I then

10: A← A ∪ {u}
11: I ← I ∪ (N(N(u)) \ {u})
12: labeling possible← true
13: end if
14: if A ∩ I 6= ∅ then
15: return A, I
16: end if
17: end while
18: return A, I

4

Let G = (V,E) be a T3-free chordal graph and let A, I be the output of
Algorithm 1. If a vertex v ∈ V is in A (in I) it is said to be active (inactive).
The vertices in V \ (A ∪ I) are said to be unlabeled. A vertex v is said to be
balanced if |N(v) ∩ A| = 1, unbalanced otherwise.

Observation 1. 1. For each etd set X of G, A ⊆ X and X ∩ I = ∅.
2. If A ∩ I 6= ∅, then G is not etd.

Proof. The second claim follows easily from the first.
To prove the first, let X be an etd set of G. The proof is done by induction

on the iterations of the procedure. Let I and A denote the constructed sets just
before the next step. Let v ∈ V \ I such that {{v, u} : u ∈ N(v) \ I} ⊆ D. By
induction, X ∩ I = ∅. Since v has a neighbor x ∈ X and therefore {v, x} /∈ D,
v /∈ X due to efficiency of X . Let v ∈ V and u ∈ N(v)\A such that N(v)\{u} ⊆
I. Since X ∩ I = ∅, u ∈ X and therefore N(N(u)) \ {u} ∩X = ∅. �

Due to Observation 1, we may assume that the procedure ended with A∩I =
∅ for the remainder of this section.

Observation 2. 1. A vertex v is balanced iff N(v)∩A 6= ∅ iff N(v) ⊆ A∪I.
2. Each unlabeled vertex is balanced.

Proof. The first claim follows easily from the definition of Algorithm 1 and
A ∩ I = ∅.

To prove the second, let Z be a connected component of the subgraph of
G(V \(A∪I)). Let v be a simplicial vertex of Z. In the case of |NZ(v)| ≥ 2, each
edge of Z incident to v lies on a triangle. Thus, v is inactive, in contradiction
to the premise. If v has a single neighbor u in Z, then u must be active, in
contradiction to the premise. Thus, v must be isolated in Z and therefore is
balanced, by the first claim. �

Observation 3. Each unbalanced vertex has at most two unlabeled neighbors

which are no leaves of G.

Proof. Let x be an unbalanced vertex. By Observation 2, x ∈ A ∪ I and
N(x) ∩ A = ∅.

Suppose x is inactive. Assume x has at least three unlabeled neighbors u, v
and w. By Observation 2, u, v and w are balanced and pairwise not adjacent.
Thus, u, v and w are adjacent to exactly one active vertex each (denoted by u′, v′

and w′). By chordality, these vertices are pairwise neither identical nor adjacent
and all three cannot be adjacent to x. As u′, v′ and w′ are all unbalanced, by
Observation 2 they must each have another unlabeled vertex u′′, v′′ and w′′ as
neighbor, all different to x. By chordality again, u′′, v′′ and w′′ are pairwise
neither identical nor adjacent and even not adjacent to x. Furthermore, neither
vertex u, v or w is adjacent to any of u′′, v′′ and w′′, because of Observation 2.
All in all, G({x, u, v, w, u′, v′, w′, u′′, v′′, w′′}) is an induced T3, in contradiction
to the premise.

The assumption of active x having at least three unlabeled neighbors u, v
and w not being leaves in G is dealt with in similar fashion. �

5

By Observation 3, the remaining problem can be interpreted as an instance
f of 2-SAT, as computed by Algorithm 2.

Algorithm 2 Reduction to 2-SAT

Require: T3-free chordal graph G = (V,E) with A, I constructed by Alg. 1.
Ensure: 2-SAT formula f satisfying Observation 4.
1: U ← {v ∈ V : v is unlabeled and no leaf of G }
2: W ← {v ∈ V : |N(v) ∩ U | = 2}
3: for all v ∈ W adjacent to an unlabeled leaf do
4: fv =

∨

u∈N(v)∩U
xu

5: end for
6: for all v ∈ W not adjacent to an unlabeled leaf do

7: fv =
(

∨

u∈N(v)∩U
xu

)

∧
(

∨

u∈N(v)∩U
xu

)

8: end for
9: return f =

∧

v∈W
fv

Observation 4. The output formula f of Algorithm 2 is satisfiable iff G is etd.

Proof. Let f be satisfiable. Then there is a Boolean function x which satisfies
f . We set

X = A ∪ {v ∈ U : xv = 1}. (3)

By the definition of f , all vertices have at most one neighbor in X . Further-
more, each vertex not adjacent to an unlabeled leaf has exactly one neighbor
in X . For each vertex v with N(v) ∩X = ∅, we choose an arbitrary unlabeled
leaf from the neighborhood of v and add it to X . Then, |N(v) ∩X = 1| for all
v ∈ V and thus X is an etd set of G.

Let G be etd and X be an etd set of G, i.e. all vertices v satisfy |N(v)∩X | =
1. For each u ∈ U we set

xu =

{

1 if u ∈ X
0 otherwise

(4)

and observe that f is satisfied by x. �

We now come to the time complexity analysis of the presented algorithm.

Theorem 4. ETD on the class of T3-free chordal graphs is solvable in O(n3)
time, where n is the number of vertices of the given graph.

Proof. Let G = (V,E) be a T3-free chordal graph with n vertices and m edges.
Algorithm 1: The set D = {e ∈ E : e lies on a triangle} can obviously be

computed in O(mn). The conditions “there is v ∈ V \ I such that {{v, u} : u ∈
N(v)\I} ⊆ D” and “there is v ∈ V and u ∈ N(v)\A such that N(v)\{u} ⊆ I”
can both be checked in O(n2). Since in each iteration (except the last one) of

6

the while sequence a vertex is added to A or to I, there are at most n iterations.
As m < n2, Algorithm 1 needs O(n3) time.

Algorithm 2: Constructing the Boolean formula f and solving it takes O(n+
m) steps, as the number of literals of f is linearly bounded by n+m and solving
a 2-SAT formula can be done in linear time, for example as explained in [3].

All in all, we obtain time complexity of O(n3). �

Given an etd T3-free chordal graph G, γt(G) clearly equals

|A ∪ {v ∈ U : xv = 1}|+ |{v ∈ V : N(v) ∩ (A ∪ {v ∈ U : xv = 1}) = ∅}| (5)

in the notation of Algorithm 2.
As interval graphs are well-known to be chordal and obviously T3-free, we

obtain the following

Corollary 1. ETD on interval graphs is solvable in O(n3) time, where n is the

number of vertices of the given graph.

Another implication is the following.

Corollary 2. ETD on circular arc graphs is solvable in O(n3) time, where n
is the number of vertices of the given graph.

Proof. Let G = (V,E) be a circular arc graph with intersection model (C, S),
i.e. S = {Sv}v∈V a set of arcs on a circle C and E = {{u, v}, Su ∩ Sv 6= ∅}.

Assume G is not an interval graph, i.e.
⋃

S = C. If each edge of G lies on
a triangle or is incident to a leaf, it can be trivially decided if G is etd.

Assume there is an edge e = {u, v} not belonging to a triangle, u and v not
being leaves each. Thus the stretchingG′ of v (defined in section 2.1), connecting
each former neighbor of v (but u) to one endvertex of the substituting path and
u to the other endvertex, is a circular arc graph again. Let v1, . . . , v5 be the
new vertices. We define four graphs G′

1, . . . , G
′

4 obtained from G′ by deleting
either {v1, v2}, {v2, v3}, {v3, v4}, or {v4, v5}. Clearly, all four graphs are interval
graphs.

It is easy to see that G is etd iff for some 1 ≤ i ≤ 4, G′

i
has an etd set

disjoint to {vi, vi+1}. This can be decided by applying a simple modification of
Algorithm 1 (starting with I = {vi, vi+1} instead of I = ∅) and Algorithm 2
afterward. �

References

[1] A. Brandstädt, V.B. Le, J. Spinrad, Graph classes: a survey, SIAM Mono-
graphs on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia, 1999.

[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in

graphs, Networks 10 (1980), pp. 211–219.

7

[3] A. del Val, On 2-SAT and Renamable Horn, Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on In-
novative Applications of Artificial Intelligence, pp. 279–284, July 30-August
03, 2000.

[4] M.R. Garey, D.S. Johnson, Computers and Intractability–A Guide to the

Theory of NP-Completeness, Freeman, San Francisco, 1979.

[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in

Graphs, Marcel Dekker, Inc., New York, 1998.

8

