
On weighted efficient total domination

Oliver Schaudt

Institut für Informatik, Arbeitsgruppe Faigle/Schrader, Universität zu Köln
Weyertal 80, 50931 Cologne, Germany

Abstract

An efficiently total dominating set of a graph G is a subset of its vertices such
that each vertex of G is adjacent to exactly one vertex of the subset. If there is
such a subset, then G is an efficiently total dominatable graph (G is etd).

In this paper, we prove NP-completeness of the etd decision problem on the
class of planar bipartite graphs of maximum degree 3. Furthermore, we give
an efficient decision algorithm that works on the T3-free chordal graphs. In the
main part, we present three graph classes on which the weighted etd problem is
polynomially solvable: claw-free graphs, odd-sun-free chordal graphs (including
strongly chordal graphs) and graphs which only induce cycles of length divisible
by four (including chordal bipartite graphs). In addition, claw-free etd graphs
are shown to be perfect.

Keywords: weighted efficient total domination, weighted efficient total edge
domination, efficient total domination, total domination

1. Introduction

Total domination has been introduced 1980 by Cockayne, Dawes and Hedet-
niemi in [1] and is intensively studied now. A good introduction to the theory
of domination in graphs, giving a broad overview of the important results and
applications, is given in [2]. In the problem of total domination, one is interested
in determining the value γt(G) of a given graph G, defined as the smallest size
of a total dominating set, i.e. a set X ⊆ V (G) such that each vertex of G has
at least one neighbor in X .

Let G be a simple undirected graph. A set X ⊆ V (G) is said to be an
efficiently total dominating set of G, or an etd set, if each v ∈ V (G) is adjacent
to exactly one vertex in X . G is then said to be an efficiently total dominatable

graph, or G is etd. The corresponding decision problem is denoted by ETD.
An important result is the following Theorem of Gavlas, Schultz and Slater:

Theorem 1 (See [2]). Let G be an etd graph. Each etd set of G has cardinality

γt(G).

Email address: schaudt@zpr.uni-koeln.de (Oliver Schaudt)

Preprint submitted to Elsevier January 3, 2011

Figure 1: T3.

ETD was shown to be NP-complete in general in the paper [3]. Further-
more, ETD can be seen as a special type of the so-called generalized domination
problem, studied in [4]. In particular, [4] shows that ETD is NP-complete even
if the instances are restricted to be chordal graphs. Furthermore, they give an
O(n3)-time algorithm for ETD on interval graphs.

In this paper, we give an NP-completeness result for ETD when restricted
to planar bipartite graphs of maximum degree 3. Furthermore, we consider
the time complexity of the weighted case of efficient total domination when
restricted to certain graph classes, namely claw-free graphs, odd-sun-free chordal
graphs and graphs which only induce cycles of length divisible by four, and prove
polynomial solvability for each class. In addition, we give an efficient decision
algorithm for ETD on T3-free chordal graphs, which generalizes the result of [4]
about interval graphs.

A weighted graph (G, c) is an ordered pair of a graph G and a function
c : V (G) → R. An instance of the weighted efficient total domination problem
WETD is a weighted graph (G, c) and we have to determine an etd set X of
G minimizing

∑

x∈X c(x) or decide that G is not etd. Clearly, an algorithm
designed to compute a minimum weight etd set can also be used to compute γt
for etd graphs. The weighted efficient domination problem has been examined
in [5] and [6] among others. According to our knowledge, there is no literature
on weighted efficient total domination yet.

Section 5.1 includes a characterization of all graphs G which are efficiently

total edge dominatable (or eted) i.e. there is some edge set D ⊆ E(G) such
that each edge of G is incident to exactly one edge of D. This characterization
implies polynomial solvability of the eted decision problem. In fact, one can
even deal with the weighted case. In contrast, efficient edge domination was
shown to be NP-complete in the general case in [7].

1.1. Technical notations

Let G be a graph. V (G) denotes its vertices, E(G) its edges and G its
complement. For each U ⊆ V (G), G(U) denotes the induced subgraph on the
vertices of U . A graph is G-free if it does not contain G as induced subgraph.
The same goes for graph classes G, i.e. a graph is G-free if it is G-free for all
G ∈ G. A graph is chordal if all of its induced cycles have length 3. A graph is
chordal bipartite iff all of its induced cycles have length 4. Let n ≥ 3. An n-sun

(or sun) is a chordal graph on 2n vertices whose vertex set can be partitioned
into W = {w1, . . . , wn} and U = {u1, . . . , un} such that W is stable and ui

2

v v1 v2 v3 v4 v5

Figure 2: Stretching of v.

is adjacent to wj iff i = j or i = j + 1(mod n), for all 1 ≤ i, j ≤ n. Note
that the subgraph induced by U is not necessarily complete. An odd sun is an
n-sun with odd n. A graph is strongly chordal if it is chordal and sun-free. A
graph is planar if it can be drawn on the plane such that no two edges cross
each other. A leaf is a vertex with degree 1. An odd hole is an induced cycle
of odd length at least 5, an odd antihole is the complement of an odd hole.
A claw is the complete bipartite graph K1,3; a triangle is the complete graph
on 3 vertices, K3. A T3 is constructed in the following way. Start with three
paths of length two, choose an endvertex of each path and connect these to a
single new vertex (see Fig. 1). For every vertex v, N(v) denotes the set of
the vertices adjacent to v, its neighborhood ; sometimes it is useful to explicitly
write NG(v) for the neighborhood of v in a graph denoted by G. If U is a set
of vertices, N(U) =

⋃

u∈U N(u). Two adjacent vertices u, v are adjacent twins

if N(u) \ {v} = N(v) \ {u}.

2. NP-completeness of ETD

To show that ETD is NP-complete on the class of planar bipartite graphs
of maximum degree 3, we need the following construction: Given a graph G and
a vertex v ∈ V (G), a stretching of v is a graph obtained from G by substituting
v by a path (v1, . . . , v5) of length four, and connecting each former neighbor of
v to exactly one of the two endvertices of the path in an arbitrary way (see Fig.
2). We observe, that a stretching of v is etd iff G is etd. Furthermore, stretching
preserves bipartiteness.

Lemma 1. Let G be a graph class closed under the stretching operation. If

ETD is NP-complete on G, then ETD is NP-complete on the graphs of G with

maximum degree 3.

Proof. Let G be a graph class closed under the stretching operation. A polyno-
mial reduction of ETD on G to ETD on the graphs of G with maximum degree 3
can be done in the following way. Iteratively choose a vertex v with |N(v)| ≥ 4
and stretch v to (v1, . . . , v5) in a way that connects exactly two former neighbors
of v to v1 and all other neighbors to v5.

3

Let 1 denote the vector with all components equal to 1 of suitable dimension.
Graph classes on which ETD is NP-complete can be obtained by reducing the
Exact Cover decision problem (EC) to ETD. Given a 01-matrix A, EC asks for
the existence of a 01-vector x such that Ax = 1. Let I denote the identity
matrix of suitable dimension. EC reduces to ETD in the following way: Given
a 01-matrix A, we define a matrix BA by

BA =

0 0 0 A
0 0 I I
0 I 0 0
At I 0 0

. (1)

and observe, that A is in EC iff BA is in EC.
As is shown in [8], EC remains NP-complete when restricted to the class of

all 01-matrices A for which
(

0 A
At 0

)

(2)

is the adjacency matrix of a planar graph. We observe, that the graph with
adjacency matrix BA is a bipartite planar graph being etd iff A is in EC. By
applying Lemma 1, we obtain the following

Theorem 2. ETD is NP-complete on planar bipartite graphs of maximum

degree 3.

3. Graphs with balanced adjacency matrix

A 01-matrix is said to be balanced if it has no square submatrix (aij) of odd
dimension k ≥ 3 with

aij =

{

1 if i = j or j = i+ 1 or i = k, j = 1
0 otherwise

(3)

up to permutation of rows and columns. All results on balanced matrices men-
tioned can be found in [9].

Let 0 denote the vector with all components equal to 0 of suitable dimension.
For each balanced matrix A the partitioning polytope P (A) = {x ≥ 0 : Ax = 1},
if not empty, has only integral extreme points, as described in [9]. It is stated
in [10], that a graph has a balanced adjacency matrix iff all of its induced cycles
have length divisible by four. Such a graph is called balanced, according to [9].
If A is the adjacency matrix of a graph G, all integral points of P (A) correspond
to etd sets of G and vice versa. As linear programs are well known to be solvable
in polynomial time, WETD restricted to the class of balanced graphs is solvable
in polynomial time, too.

Therefore we have

Theorem 3. WETD on balanced graphs is solvable in polynomial time.

Since chordal bipartite graphs are balanced, Theorem 3 implies the following

4

Corollary 1. WETD on chordal bipartite graphs is solvable in polynomial time.

Conforti et al. state in [9] the following powerful characterization:

Theorem 4 (See [9]). Let A be a balanced matrix. Ax = 1 holds for some

01-vector x iff there is no (−1, 0, 1)-vector y such that ytA ≥ 0 and yt1 < 0.

If transferred to our context, we obtain

Corollary 2. A balanced graph G is etd iff there are no sets X,Y ⊆ V (G) such
that |X | < |Y | and no vertex of G has more neighbors in Y than in X.

Furthermore, it can be checked in polynomial time if a given graph is bal-
anced, as shown in [9].

4. ETD and WETD on chordal graphs

We present a labeling procedure which works on arbitrary chordal graphs
as input. Its output are two subsets of the vertices of the input graph, which
satisfy certain properties presented below. These sets are then used to derive
an efficient algorithm for the ETD problem on T3-free chordal graphs and the
WETD problem on odd-sun-free chordal graphs. The idea of Algorithm 1 is,
that any edge between two vertices of an etd set of a chordal graph is necessarily
a separating edge. This allows us to determine candidate vertices for possible
etd sets of the graph. In the following, let G = (V,E) be a chordal graph and
let A, I be the output of Algorithm 1.

Observation 1. 1. For each etd set X of G, A ⊆ X and X ∩ I = ∅.
2. If A ∩ I 6= ∅, then G is not etd.

Proof. The second claim is a direct consequence of the first.
To prove the first, let X be an etd set of G. The proof is done by induction

on the iterations of the procedure. Let I and A denote the constructed sets just
before the next step. Let v ∈ V \ I such that {{v, u} : u ∈ N(v) \ I} ⊆ D. By
induction, X ∩ I = ∅. Since v has a neighbor x ∈ X and {v, x} /∈ D, v /∈ X due
to efficiency of X . Let v ∈ V and u ∈ N(v) \A such that N(v) \ {u} ⊆ I. Since
X ∩ I = ∅, u ∈ X and therefore N(N(u)) \ {u} ∩X = ∅.

Due to Observation 1, we may assume that the procedure ended with A∩I =
∅ for the remainder of this section. If a vertex v ∈ V is in A (in I) it is said
to be active (inactive). The vertices in V \ (A ∪ I) are said to be unlabeled. A
vertex v is said to be balanced if |N(v) ∩ A| = 1, unbalanced otherwise.

Observation 2. 1. A vertex v is balanced iff N(v)∩A 6= ∅ iff N(v) ⊆ A∪I.
2. Each unlabeled vertex is balanced.

Proof. The first claim follows from our assumption, that Algorithm 1 terminated
and A ∩ I = ∅.

5

Algorithm 1 Labeling algorithm

Require: A chordal graph G = (V,E).
Ensure: Vertex sets A, I ⊆ V .
1: A, I ← ∅
2: D ← {e ∈ E : e lies on a triangle}
3: labeling possible← true
4: while labeling possible do

5: labeling possible← false
6: if there is v ∈ V \ I such that {{v, u} : u ∈ N(v) \ I} ⊆ D then

7: I ← I ∪ {v}
8: labeling possible← true
9: else if there is v ∈ V and u ∈ N(v) \A such that N(v) \ {u} ⊆ I then

10: A← A ∪ {u}
11: I ← I ∪ (N(N(u)) \ {u})
12: labeling possible← true
13: end if

14: if A ∩ I 6= ∅ then
15: return A, I
16: end if

17: end while

18: return A, I

To prove the second, let Z be a connected component of the subgraph G(V \
(A ∪ I)). It is a classical result, that any chordal graph has a simplicial vertex,
i.e. a vertex whose neighbors are mutually adjacent (see [11]). Let v be a
simplicial vertex of Z. In the case of |NZ(v)| ≥ 2, each edge of Z incident to v
lies on a triangle. Thus, v is inactive, in contradiction to the premise. If v has a
single neighbor u in Z, then u must be active, in contradiction to the premise.
Thus, v must be isolated in Z and therefore is balanced, by the first claim.

Lemma 2. Algorithm 1 needs O(n3) time, where n is the number of vertices of

the given graph.

Proof. Let G = (V,E) be a chordal graph with n vertices and m edges. The set
D = {e ∈ E : e lies on a triangle} can be computed in O(mn). The conditions
“there is v ∈ V \ I such that {{v, u} : u ∈ N(v) \ I} ⊆ D” and “there is v ∈ V
and u ∈ N(v) \ A such that N(v) \ {u} ⊆ I” can both be checked in O(n2).
Since in each iteration (except the last one) of the while sequence a vertex is
added to A or to I, there are at most n iterations. As m < n2, Algorithm 1
needs O(n3) time.

4.1. ETD on T3-free chordal graphs

We now restrict our attention to T3-free chordal graphs. Assume G is a
T3-free chordal graph and A and I are the output sets of Algorithm 1. Due to
Observation 1, we may again assume that the procedure ended with A ∩ I = ∅.

6

Observation 3. Each unbalanced vertex has at most two unlabeled neighbors

which are not leaves of G.

Proof. Let x be an unbalanced vertex. By Observation 2, x ∈ A∪ I and N(x)∩
A = ∅.

Assume x is inactive and has at least three unlabeled neighbors u, v and w.
By Observation 2, u, v and w are balanced and pairwise not adjacent. Thus, u,
v and w are adjacent to exactly one active vertex each (denoted by u′, v′ and
w′). By chordality, these vertices are pairwise neither identical nor adjacent
and all three cannot be adjacent to x. As u′, v′ and w′ are all unbalanced, by
Observation 2 they must each have another unlabeled vertex u′′, v′′ and w′′ as
neighbor, all different to x. By chordality again, u′′, v′′ and w′′ are pairwise
neither identical nor adjacent and even not adjacent to x. Furthermore, neither
vertex u, v or w is adjacent to any of u′′, v′′ and w′′, because of Observation 2.
All in all, G({x, u, v, w, u′, v′, w′, u′′, v′′, w′′}) is an induced T3, in contradiction
to the premise.

The assumption of active x having at least three unlabeled neighbors u, v
and w not being leaves in G is dealt with in similar fashion.

By Observation 3, the remaining problem can be interpreted as an instance
f of 2-SAT. The computation of this formula is done by Algorithm 2.

Algorithm 2 Reduction to 2-SAT

Require: T3-free chordal graph G = (V,E) with A, I constructed by Alg. 1.
Ensure: 2-SAT formula f satisfying Observation 4.
1: U ← {v ∈ V : v is unlabeled and no leaf of G }
2: W ← {v ∈ V : |N(v) ∩ U | = 2}
3: for all v ∈ W adjacent to an unlabeled leaf do
4: fv =

∨

u∈N(v)∩U xu

5: end for

6: for all v ∈ W not adjacent to an unlabeled leaf do

7: fv =
(

∨

u∈N(v)∩U xu

)

∧
(

∨

u∈N(v)∩U xu

)

8: end for

9: return f =
∧

v∈W fv

Observation 4. The output formula f of Algorithm 2 is satisfiable iff G is etd.

Proof. Let f be satisfiable. Then there is a Boolean function x which satisfies
f . We set

X = A ∪ {v ∈ U : xv = 1}. (4)

By the definition of f , all vertices have at most one neighbor in X . Further-
more, each vertex not adjacent to an unlabeled leaf has exactly one neighbor
in X . For each vertex v with N(v) ∩X = ∅, we choose an arbitrary unlabeled
leaf from the neighborhood of v and add it to X . Then, |N(v) ∩X = 1| for all
v ∈ V and thus X is an etd set of G.

7

Let G be etd and X be an etd set of G, i.e. all vertices v satisfy |N(v)∩X | =
1. For each u ∈ U we set

xu =

{

1 if u ∈ X
0 otherwise

(5)

and observe that f is satisfied by x.

We now come to the time complexity analysis of the presented algorithm.

Theorem 5. ETD on the class of T3-free chordal graphs is solvable in O(n3)
time, where n is the number of vertices of the given graph.

Proof. Let G = (V,E) be a T3-free chordal graph with n vertices and m edges.
Algorithm 1 needs O(n3) time, as is shown in Lemma 2. Algorithm 2: Con-
structing the Boolean formula f and solving it takes O(n + m) steps, as the
number of literals of f is linearly bounded by n +m and solving a 2-SAT for-
mula can be done in linear time, for example as explained in [12].

All in all, we obtain a time complexity of O(n3).

4.2. WETD on odd-sun-free chordal graphs

Let G = (V,E) be an odd-sun-free chordal graph. Let A and I be the output
of Algorithm 1 to the input G. Assume A∩ I = ∅ and let G′ = (V, {e ∈ E : e 6⊆
I}).

Observation 5. 1. Each etd set of G′ disjoint to I is an etd set of G and

vice versa.

2. If G is odd-sun-free, then G′ is a balanced graph.

Proof. The first claim follows from Observation 1.
To prove the second, let G be odd-sun-free.
Let C be an induced cycle of G′ and v be an arbitrary vertex of C with

neighbors u,w ∈ C. Assume v ∈ A. Thus, the two neighbors of u and w in
C, u′ and w′, different to v are inactive, by Observation 2. By definition of G′,
u,w /∈ I and thus u,w /∈ A by Observation 2. Therefore u and w are unlabeled
and thus not adjacent, by Observation 2. As C is a cycle in G, G is not chordal,
in contradiction to the premise. Thus, C ∩ A = ∅.

By definition of G′, I is a stable set in G′, and by Observation 2, V \ (A∪ I)
is a stable set in G′. Thus, C alternates between the two sets and therefore is
an n-sun in G. As G is assumed to be odd-sun-free, n is even and hence C is a
cycle of length divisible by four in G′. Therefore, G′ is balanced.

Now consider the adjacency matrixA ofG′. By Observation 5, A is balanced.
If we delete all columns corresponding to vertices of I, we obtain a balanced
matrix A′ again, since balancedness is closed under taking submatrices. By
Observation 5, all integral points of P (A′) correspond to etd sets of G. This
implies the following

8

Theorem 6. WETD on odd-sun-free chordal graphs is solvable in polynomial

time.

By Theorem 6 and the definition of strongly chordal graphs, we obtain

Corollary 3. WETD on strongly chordal graphs is solvable in polynomial time.

5. Claw-free graphs

5.1. Line graphs

Let L be a line graph. From [13] we know that we can deduce an initial
graph G whose line graph is L in linear time. We observe that L is etd iff G is
eted. Using this observation, Algorithm 3 efficiently solves ETD on line graphs.

Algorithm 3 ETD decision on connected line graphs

Require: Connected line graph L.
Ensure: Decision if L is etd.
1: construct graph G whose line graph is L
2: if G is bipartite then

3: construct color classes V0 and V1

4: for i = 0, 1 do

5: Gi = (Vi, {{u, v} : there is w ∈ V1−i with NG(w) = {u, v}})
6: end for

7: if G0 or G1 has a perfect matching M then

8: return L is etd
9: else

10: return L is not etd
11: end if

12: else

13: return L is not etd
14: end if

The following lemma implies correctness of Algorithm 3:

Lemma 3. Let G be a connected graph. G is eted iff G is bipartite and G0 or

G1 has a perfect matching.

Proof. Let G = (V,E) be a connected graph with eted set D. We set

V1 = {v ∈ V : v is incident to exactly one edge of D} (6)

and V0 = V \ V1. We observe

V0 = {v ∈ V : v is incident to either 0 or 2 edges of D}. (7)

For each vertex v ∈ V , any incident edge has to be dominated by another edge
of D. Hence, V0 and V1 form a bipartition of G. Since two incident edges of D,

9

due to efficiency, do not have an incident edge of E in common, each incident
pair {u, v}, {v, w} ∈ D corresponds to an edge m ∈ E(G1). Let M ⊆ E(G1)
be the collection of these edges. By definition of V1 and M , M is a perfect
matching in G1.

Now let G = (V,E) be a connected bipartite graph with color classes V0, V1

and assume G1 has a perfect matching M . Thus, each vertex of V1 is incident
to exactly one edge of M . By definition, for every edge m = {u, v} ∈ M there
is at least one pair of edges {u,w}, {w, v} ∈ E with NG(w) = {u, v} = m. For
each m ∈ M we choose exactly one of these corresponding pairs and set D as
the collection of all edges of these pairs. It is easy to see, that D is an eted set
of G.

Lemma 4. ETD on line graphs is solvable in O(n2) time, where n is the number

of vertices of the given graph.

Proof. Let L be a connected line graph on n vertices and G = (V,E) be the
deduced initial graph. The construction of G can be done in O(n2) as described
in [13]. G0 and G1 can be constructed in O(|E|2). Perfect matchability can
be tested in O(

√

|V ||E|) as presented in [14]. As |E| = n, we obtain a time
complexity of O(n2) in total.

Corollary 4. WETD on line graphs is solvable in O(n3) time, where n is the

number of vertices of the given graph.

Proof. We can change Algorithm 3, using a minimum weighted perfect matching
algorithm instead of a maximum cardinality matching algorithm. The weight of
an edge e of G0 or G1 is the minimum of all sums of the weights of two edges of
G corresponding to e. As the minimum perfect matching problem can be solved
in O(|V |3) (see [15]), we obtain a time complexity of O(n3).

5.2. Reduction of claw-free graphs to line graphs

In this section, we use the following characterization of line graphs given in
[13]:

Lemma 5 (Roussopoulos [13]). A graph is a line graph iff its edges can be

partitioned into cliques, such that each vertex lies in at most two of these cliques.

Lemma 6. For each input graph G and output graph L of Algorithm 4 the

following holds:

1. L is a line graph.

2. Each etd set of L that is disjoint to I is an etd set of G and vice versa.

Proof. To 1: As G is claw-free, all vertices in A are contained in at most two
inclusionwise maximal cliques and, by definition of A, one of them is a K2.
These inclusionwise maximal cliques are called active. As G is claw-free, each
vertex of G is contained in at most two active cliques.

10

Algorithm 4 Reduction from claw-free graphs to line graphs

Require: Weighted claw-free graph (G = (V,E), c).
Ensure: Weighted line graph (L, c′), vertex set I ⊆ V (L) satisfying Lemma 6.
1: A← {v ∈ V : v is incident to an edge not contained in a triangle }
2: I ← V \A
3: for all e = {u, v} ∈ E do

4: if u, v ∈ I and u, v have no common neighbor in A then

5: delete e
6: end if

7: end for

8: while there are adjacent twins v1, v2 with a third neighbor do
9: delete v2

10: end while

11: return resulting weighted graph (L, c|V (L)) and I ⊆ V (L)

Let F denote the resulting graph after step 7. We observe, that each etd set
of G is disjoint to I = V \ A. Hence, F is etd iff G is etd. Furthermore, each
edge of F belongs to an active clique. Thus, the neighborhood of each vertex is
contained in at most two active cliques. The deletion of adjacent twins clearly
preserves the latter two properties, since all adjacent twins in F belong to I
(except for the case that they have no third neighbor).

Since there are no such twins in L, there are no two vertices contained in
the same two active cliques. Thus, no two active cliques share an edge and we
can therefore apply Lemma 5 to L with respect to the active cliques.

To 2: Assume G has an etd set X . As X is disjoint to I, no vertex of X and
no edge incident to a vertex of X gets deleted during the procedure. Therefore,
X is an etd set of L, too.

Assume L has an etd set X disjoint to I. Addition of adjacent twins of
vertices of I has no effect on X being an etd set. Furthermore, adding edges
between vertices of I does not have an effect on the efficiency of X , since X is
disjoint to I. As G can be constructed from L by these two operations, X is an
etd set of G, too.

Theorem 7. WETD on claw-free graphs is solvable in O(n3) time, where n is

the number of vertices of the given graph.

Proof. We use Algorithm 4 to solve WETD on claw-free graphs in the following
way. Given a claw-free graph G, Algorithm 4 computes a line graph L satisfying
Lemma 6. We can now apply Algorithm 3 to L. Thereby, the edges correspond-
ing to vertices of I must be neglected in the definition of the auxiliary graphs
G0 and G1. Lemma 6 and Corollary 4 give correctness of the procedure.

To analyse the time complexity of the whole procedure, let G = (V,E)
have n vertices and m edges. Algorithm 4 computes the set A in O(mn) time
by iteratively taking an edge and checking for the same adjacencies of its two
incident vertices. The deletion of all edges between vertices of I without common

11

neighbor in A and the detection of adjacent twins can both be done in the same
time in an analog way. Now Algorithm 3 solves WETD on the output graph L
in O(n3) time. Since m ≤ n2, we obtain overall time complexity of O(n3).

5.3. Perfectness of etd claw-free graphs

As Lemma 3 states, etd line graphs come from bipartite graphs only. There-
fore, etd line graphs are perfect. We claim that the same holds for etd claw-free
graphs and prove this claim in two steps.

Lemma 7. An etd claw-free graph does not contain odd holes.

Proof. Let G be a claw-free graph with etd set X . Assume C is an odd hole of
G. Let x ∈ X . We show that x is adjacent to exactly 0 or 2 vertices of C, a
contradiction to the oddity of C.

Assume x is adjacent to exactly one vertex v of C. Then N(v) ∩C, x and v
induce a claw, in contradiction to the premise. Assume x is adjacent to at least
three vertices u, v and w of C. As C is induced, x cannot belong to C itself.
As C is of length at least 5, u, v and w are not pairwise adjacent. Assume u is
not adjacent to v. As G is claw-free, x has neighbor y in X not belonging to
C. Due to efficiency, y is not adjacent to u or v and therefore G({x, u, v, y}) is
a claw, in contradiction to the premise.

In the case of odd antiholes we use Ben Rebea’s lemma, as presented in [16]:

Lemma 8 (Ben Rebea’s lemma, see [16]). If a claw-free graph contains a stable

set of size at least three and an odd antihole, then it contains an odd hole of

length 5.

Lemma 9. An etd claw-free graph does not contain odd antiholes.

Proof. Let G be a connected claw-free graph with etd set X . In the case of
|X | = 2, the open neighborhood of each of the two dominating vertices is the
disjoint union of two cliques, since G is claw-free. Hence, G does not contain
an odd antihole. In the case of |X | ≥ 4, G contains a stable set of size at least
three. If G contained an odd antihole, it would also contain an odd hole by
Lemma 8. This would be a contradiction to Lemma 7.

By the famous characterization of perfect graphs, we obtain

Theorem 8. Etd claw-free graphs are perfect.

References

[1] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in

graphs, Networks 10 (1980), pp. 211–219.

[2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in

Graphs, Marcel Dekker, Inc., New York, 1998.

12

[3] E.M. Bakker, J. van Leeuwen, Some domination problems on trees and on

general grahps, technical report RUU-CS-91-22 (1991), Department of In-
formation and Computing Sciences, Utrecht University.

[4] J. Kratochv́ıl, P.D. Manuel, M. Miller, Generalized domination in chordal

graphs, Nordic Journal of Computing 2 (1995), pp. 41–50.

[5] G.J. Chang, C.P. Rangan, S.R. Coorg, Weighted independent perfect domi-

nation on cocomparability graphs, Discrete Applied Mathematics 63 (1995),
pp. 215–222.

[6] C.L. Lu, C.Y. Tang, Weighted efficient domination problem on some perfect

graphs, Discrete Applied Mathematics 117 (2002), pp. 163–182.

[7] D.L. Grinstead, P.J. Slater, N.A. Sherwani and N.D. Holmes, Efficient edge

domination problems in graphs, Inform. Process. Lett. 8 (1993), pp. 221–228.

[8] M. E. Dyer and A. M. Frieze, Planar 3DM is NP-complete, Journal of Al-
gorithms 7 (1986), pp. 174–184.

[9] M. Conforti, G. Cornuéjols and K. Vus̆ković, Balanced matrices, Discrete
Mathematics 306 (2006), pp. 2411–2437.

[10] A.E. Brouwer, P. Duchet, A. Schrijver, Graphs whose neighborhoods have

no special cycles, Discrete Mathematics 47 (1983), pp. 177–182.

[11] A. Brandstädt, V.B. Le, J. Spinrad, Graph classes: a survey, SIAM Mono-
graphs on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia, 1999.

[12] A. del Val, On 2-SAT and Renamable Horn, Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on In-
novative Applications of Artificial Intelligence, pp. 279–284, July 30-August
03, 2000.

[13] N.D. Roussopoulos, A max{m,n} algorithm for determining the graph H

from its line graph G, Inform. Process. Lett. 2 (1973), pp. 108–112.

[14] V.V. Vazirani, A theory of alternating paths and blossoms for proving cor-

rectness of the O(
√
V E) general graph maximum matching algorithm, Com-

binatorica 14 (1994), pp. 71–109.

[15] H.N. Gabow, Implementation of Algorithms for Maximum Matching on

Nonbipartite Graphs, Ph.D. Thesis, Stanford University, 1974.

[16] J.L. Fouquet, A strengthening of Ben Rebea’s lemma, J. Comb. Theory Ser.
B 59 (1993), pp. 35–40.

13

