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Abstract

We generalize the concept of efficient total domination from graphs to digraphs.
An efficiently total dominating set X of a digraph D is a vertex subset such
that every vertex of D has exactly one predecessor in X . Not every digraph
has an efficiently total dominating set. We study graphs that permit an ori-
entation having such a set and give complexity results and characterizations
concerning this question. Furthermore, we study the computational complexity
of the (weighted) efficient total domination problem for several digraph classes.
In particular we deal with most of the common generalizations of tournaments,
like locally semicomplete and arc-locally semicomplete digraphs.

Keywords: total domination, efficient total domination, digraphs, domination
in digraphs

1. Introduction

A digraph is a pair D = (V,A) where V is a finite set and A ⊆ V × V
is an irreflexive binary relation. The elements of V are the vertices and the
elements of A are the arcs of D. Since digraphs with symmetric arc set A can
be considered as undirected graphs, digraphs are a natural generalization of
them. There is a lot of mathematical theory on digraphs. A good introduction
into the field is given by Bang-Jensen and Gutin in their book on digraphs [1].

A dominating set of a digraph D is a vertex subset X such that any member
of V \X has a predecessor inX . A total dominating set of a digraphD is a vertex
subset X such that any vertex of D has a predecessor in X . Dominating sets in
digraphs are discussed in the survey book by Grinstead, Haynes and Slater [2].
A more recent paper, containing some results on domination in tournaments, is
by Reid et al. [3]. However, there is not much theory on domination in digraphs
yet and this field is much less studied than domination in undirected graphs.
One of the possible reasons may be the following: Even for tournaments, which
may be considered as one of the most famous digraph classes, it is not clear if
there is an algorithm which efficiently computes the minimal size of a dominating
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set. According to our knowledge, the best exact algorithm is, essentially, brute
force and runs in subexponential time [3]. So to say, a tournament has quite
a lot of structure, but still not enough for the domination problem. Since the
same holds for other variants of domination, there are a lot of open problems
in algorithmical domination theory, and some of these problems have a high
difficulty. Again for some very restricted digraph classes, like De Brujin and
Kautz digraphs, some domination parameters can be explicitely computed (see
for example [4, 8, 6, 7, 5]).

Efficient total domination in graphs is a somewhat studied topic in the lit-
erature (see for example [9, 10]). In this paper, we introduce efficient total
domination for digraphs, a natural generalization of efficient total domination
in graphs. In fact, if one restricts the attention to digraphs with symmetric arc
set, one obtains the efficient total domination problem for graphs. An efficiently
total dominating set of a digraph D is a vertex subset X such that every vertex
of D has exactly one predecessor in X . So to say, the out-neighborhoods of
an efficiently total dominating set of D form a partition of the vertex set of
D. Another formulation is the following: Let v1, v2, . . . , vn be an ordering of
the vertices of D and let A be the 01-adjacency matrix of D with respect to
this ordering. That is, Aij = 1 if there is an arc from vi to vj and Aij = 0
otherwise. An efficiently total dominating set corresponds to a 01-vector x for
which Atx = 1, where 1 denotes the vector containing only ones. Let At denote
the transpose matrix of A. Then an efficiently total dominating set corresponds
to an exact cover of At and vice versa. We think that, in view of these formula-
tions, efficient total domination in digraphs is a topic worth studying. According
to our knowledge, there is not much theory on efficient domination in digraphs
(besides [11]) and efficient total domination in digraphs has not been considered
in the literature.

We contribute an in-depth study of the problem, offering an analysis of the
relation of efficiently total dominatable digraphs and their underlying graphs.
Furthermore, we study the computational complexity of the efficient total dom-
ination problem on several generalizations of tournaments. In most of the cases,
we can either prove NP-completeness or give an efficient algorithm to find even
a minimum weighted efficient total dominating set.

2. Preliminaries

For standard notations we do not introduce here, the reader is always referred
to the introductory chapter of [1].

If D is a digraph with no specified vertex or arc set, V (D) denotes its vertices
and A(D) denotes its arcs. Let D = (V,A) be a digraph. If U is a vertex subset,
D[U ] denotes the induced subdigraph on U . For any vertex v of D its out-
neighborhood, denoted by N+

D(v), is defined as the set of vertices u with (v, u) ∈
A. Such vertex u is then called an out-neighbor of v. The in-neighborhood
of v, denoted by N−

D (v), is defined as the set of vertices u with v ∈ N+(u).
Such vertex u is then called an in-neighbor of v. The out-degree d+D of D is the
function with d+D(v) = |N+

D (v)| for any v ∈ V . The maximum out-degree ∆+(D)
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is defined as ∆+(D) = maxv∈V d+(v). If there is a k such that d+D ≡ k, D is
said to be k-out-regular or just out-regular. The notions in-degree d−D, maximal
in-degree ∆−(D) and (k-)in-regularity are defined analogously. If D is clear
from the context, we sometimes omit it from our notation, e.g. we may write
N+(v) instead of N+

D (v).
An efficiently total dominating set (or etd set) of D is a set X ⊆ V such

that for any v ∈ V there is exactly one vertex x ∈ X with (x, v) ∈ A. That is,
|X ∩N−(v)| = 1 for any v ∈ V . If D has an etd set, D is called an efficiently
total dominatable digraph (or an etd digraph). Note that not every digraph has
an efficient total dominating set, e.g. acyclic digraphs. We denote the decision
problem associated to the existence of efficient total dominating sets by ETD.
If the vertices have a real-valued weight, we can consider minimum weight etd
sets. The related minimization problem is denoted by WETD. A solution of the
WETD problem is either a minimum weight etd set or the information that the
input digraph is not etd.

2.1. Digraph properties and digraph classes

All of the following digraph properties and digraph classes are discussed in
detail in [1]. Note that loops or parallel arcs do not play a role in this paper,
and we focus on simple digraphs only.

Let D = (V,A) be a digraph. Two arcs (u, v) and (v, u) are called antiparal-
lel. If D does not have antiparallel arcs, it is called an oriented graph (orgraph
for short). If (u, v) ∈ A, u and v are said to be adjacent. Thus adjacency is
an irreflexive and symmetric binary relation. The underlying graph of D is the
graph G with vertex set V defined by this adjacency relation. Hence, G is ob-
tained from D by loosing the direction of the arcs and then identifying parallel
edges. D is then called a biorientation of G. If furthermore D is an orgraph,
D is called an orientation of G. D is said to be connected if G is connected. D
is called strongly connected if for any two vertices u and v there is a directed
path from u to v and a directed path from v to u. In particular, any strongly
connected digraph is also connected. As the digraph consisting of a single arc
shows, the opposite does not hold in general. For a given digraph D the reverse
digraph D− is obtained from D by changing the direction of each arc.

If D is the biorientation of a complete graph, it is called semicomplete. If
D is furthermore an orgraph, it is called a tournament. D is called locally out-
semicomplete (locally in-semicomplete) if D[N+(v)] (D[N−(v)]) is semicomplete
for all v ∈ V . If D is both locally out-semicomplete and locally in-semicomplete,
D is simply called locally semicomplete. D is called k-partite semicomplete if
it is the biorientation of a complete k-partite graph. D is called a k-partite
tournament if it is the orientation of a complete k-partite graph. D is called arc-
locally out-semicomplete (arc-locally in-semicomplete) if for every arc (u, v) ∈ A
it holds that every out-neighbor (in-neighbor) of u is identical or adjacent to
every out-neighbor (in-neighbor) of v. If D is both arc-locally out-semicomplete
and arc-locally in-semicomplete, D is simply called arc-locally semicomplete. D
is called transitive if for all three distinct vertices u, v and w with (u, v), (v, w) ∈
A it holds that (u,w) ∈ A. D is called quasi-transitive if for all three distinct
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vertices u, v and w with (u, v), (v, w) ∈ A it holds that u is adjacent to w.
Of course, any transitive digraph is quasi-transitive. As the directed cycle of
length 3 shows, the opposite does not hold in general. A digraph is called
path-mergeable if for any two vertices u and v the following holds: For any two
directed paths P and P ′ from u to v that do not have common vertices (except
u and v), there is a directed path P ′′ from u to v with V (P ′′) = V (P )∪ V (P ′).

2.2. Graphs and hypergraphs

Let G be a graph. A total dominating set X is a vertex subset such that any
vertex of G is adjacent to a member of X . Hence, G[X ] has minimum degree
at least 1. A pendant vertex of G is a vertex with exactly one neighbor. The
corona of G, denoted by Cr(G), is obtained from G by simultaneously attaching
a pendant vertex to any vertex of G. A graph G is (5, 2)-chordal if any cycle of
length at least 5 has two chords. A unicyclic graph is a graph that has exactly
one cycle. A graph is planar if it can be drawn into the plane without crossing
edges. A threshold graph is a graph that can be constructed from the empty
graph by repeatedly adding either an isolated vertex or a dominating vertex. A
graph is a split graph if its vertices admit a partiton into a clique and a stable
set. Detailed information on these graph classes are given in the survey by
Brandstädt, Le and Spinrad in [12].

A hypergraph H = (V,E) is an ordered pair where E is a nonempty finite
family of nonempty finite sets and V =

⋃
E. The elements of V are called

vertices and the elements of E hyperedges. The bipartite incidence graph of a
hypergraph H = (V,E) is the bipartite graph (V ∪ E, {{v, e} : v ∈ e ∈ E}). A
cover of H is a set C ⊆ E such that

⋃
C = V . A matching of a hypergraph

H = (V,E) is a set M ⊆ E such that m∩n = ∅ for all m 6= n ∈ M . A matching
M which is also a cover is a perfect matching. Not all hypergraphs have a
perfect matching; in fact it is NP-complete to decide if a given hypergraph has
a perfect matching (see exact cover in Gary and Johnson [13]).

If we prove NP-completeness of ETD for certain digraph classes in this
paper, we always give a polynomial reduction from the perfect matching problem
for hypergraphs. In our figures, we always choose the same hypergraph to be
the instance of the perfect matching problem. It is defined by

V = {v1, v2, v3},

E = {e1 = {v1, v2}, e2 = {v1}, e3 = {v2, v3}}.

The bipartite incidence graph of this hypergraph is displayed in Figure 1.

3. Underlying graphs of etd digraphs

3.1. Graphs having an etd biorientation

Given a graph, it is natural to ask if it can be oriented or bioriented in a way
such that the resulting digraph is etd. Not every graph has an etd orientation
or biorientation, e.g. the graph displayed in Figure 2.
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Figure 1: The bipartite incidence graph of the hypergraph used in our figures.

Figure 2: A graph not having an etd biorientation.

Let D be an etd digraph with etd set X . The etd condition says that every
vertex of D has exactly one in-neighbor among the set X . Hence, D[X ] is 1-
in-regular (a so-called contrafunctional digraph). The connected components of
contrafunctional digraphs have the following structure: Any connected compo-
nent has exactly one directed cycle (possibly two antiparallel arcs) and this cycle
is an induced subdigraph. If a single arc of this cycle is removed, the resulting
digraph is the orientation of a tree which has exactly one vertex of in-degree 0.
All other vertices have in-degree 1. An example of a contrafunctional digraph
is displayed in Figure 3.

Figure 3: A connected contrafunctional digraph.

Thus, if G is the underlying graph of D, G[X ] is the disjoint union of graphs
having at least two vertices but at most one cycle each. Furthermore, X is a
total dominating set of G. In the case of D being an orientation of G, G[X ] is
the disjoint union of unicyclic graphs only. Not every graph having an etd bior-
ientation has a total dominating set that induces an acyclic subgraph though,
e.g. the corona of a cycle.

On the other hand: If a graph G has a total dominating set X such that
any connected component of G[X ] has at most one cycle, it also has an etd
biorientation. Furthermore, if a graph G has a total dominating set X such
that any connected component of G[X ] has exactly one cycle, it also has an etd
orientation. Given such a total dominating set one efficiently constructs an etd
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(bi-)orientation of G as follows: The edges between the vertices of V (G) \ X
we direct in an arbitrary way. The edges between the vertices contained in
the total dominating set X can easily be (bi-)oriented such that the resulting
(bi-)orientation of G[X ] is contrafunctional. For each vertex v ∈ V (G)\X there
is at least one edge joining v to a member of X , since X is a total dominating
set. We direct exactly one of these edges from X to v and the other ones from
v to X . Now, |N−(v) ∩X | = 1 for each v ∈ V (G).

This leads to

Lemma 1. Let G be a graph.

1. G has an etd biorientation iff it has a total dominating set X such that
the connected components of G[X ] have at most one cycle each.

2. G has an etd orientation iff it has a total dominating set X such that the
connected components of G[X ] are unicyclic graphs.

From an algorithmical point of view, the problem is intractable in general:

Theorem 1. The following decision problems are NP-hard: Given a graph G,
does G admit an etd orientation? Does G admit an etd biorientation?

Proof. Let H = (V,E) be a hypergraph. To prove NP-hardness, we define a
graph G by

V (G) = {a, b, c, a′, b′, c′} ∪ V ∪ E,

A(G) = {{a, a′}, {b, b′}, {c, c′}, {a, b}, {a, c}, {b, c}}∪ {{a, e} : e ∈ E}

∪{{e, f} : e, f ∈ E, e ∩ f 6= ∅} ∪ {{e, v} : v ∈ e ∈ E},

where {a, b, c, a′, b′, c′} is assumed to be disjoint to V ∪ E. The constructed
graph G is displayed schematically in Figure 4.

v1

v2

v3

e1

e2

e3

a

b

c

a′b′

c′

Figure 4: The constructed graph in the reduction of the proof of Theorem 1.

It is easy to see that for every total dominating setX of G, G[X ] is connected
and {a, b, c} ⊆ X . Hence, G[X ] has at least one cycle. Thus by Lemma 1, G
has an etd orientation iff it has an etd biorientation. We claim that there is a
total dominating set Y of G such that G[Y ] has exactly one cycle iff H has a
perfect matching. First we assume that there is a total dominating set X of G
such that any connected component of G[X ] has exactly one cycle. Since G[X ]
is connected, G[X ] has exactly one cycle. Since {a, b, c} ⊆ X induces a cycle,
Y = X ∩ E is a stable set. That is, Y is a matching of H . Since X is a total
dominating set and V is stable, Y is also a cover of H . Hence, Y is a perfect
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matching of H . On the other hand, if M ⊆ E is a perfect matching of H , M is
a stable set in G and hence X = {a, b, c} ∪M is a connected total dominating
set such that G[X ] has exactly one cycle.

Lemma 1 and the fact that the perfect matching decision problem is NP-
hard complete the proof.

As the proof of Theorem 1 shows, the problem remains intractable if one
asks for etd (bi-)orientations with connected etd sets. On the other hand, the
theory of the structure of total dominating subgraphs developed in [14] allows
the following characterization. As Theorem 2 of [14] shows, the following holds
for any graph G: Any induced subgraph of G without isolated vertices has a
total dominating set X such that the connected components of G[X ] have at
most one cycle each iff G does not contain the corona of a graph with two cycles
as induced subgraph. This leads to

Theorem 2. Let G be a graph without isolated vertices. G and any of its sub-
graphs without isolated vertices have an etd biorientation iff G does not contain
the corona of a graph with two cycles as induced subgraph.

3.2. Etd digraphs and their underlying graphs

A sharp non-trivial bound on the size of an etd set is given by the stability
number of the underlying graph. This number, denoted by α, equals the size of
a maximum stable set of the graph.

Theorem 3. For each etd digraph D with underlying graph G any etd set has
size at most 3α(G). This bound is sharp for etd tournaments.

Proof. Let D be an etd digraph with underlying graph G and let X be an etd
set of D. Hence, 3α(G) ≥ 3α(G[X ]) ≥ |X |.

The bound is sharp, since for each n, each etd set of an etd tournament has
size 3 = 3α(Kn).

The following results are obtained by an easy structural analysis leading to
digraph classes on which WETD can be solved by a complete enumeration. For
fixed p and q a {K1,p, qK2}-free graph is a graph that does not contain the
complete bipartite graph K1,p or q disjoint copies of K2 as induced subgraph.

Lemma 2. For fixed p and q, the maximal size of an etd set of an etd biorien-
tation of a {K1,p, qK2}-free graph is bounded by a constant.

Proof. Let G be a {K1,p, qK2}-free graph and let D be an etd biorientation of
G. Let X be an etd set of D. As described above, D[X ] is a contrafunctional
digraph. Hence, G[X ] does not have isolated vertices and is the disjoint union
of trees and unicyclic graphs. Since G is K1,p-free, the maximum degree of G[X ]
is p. Since G is qK2-free, each connected component of G[X ] has diameter at
most 3q − 2 and thus contains at most p(p − 1)3q−2 vertices. By qK2-freeness
again, G[X ] contains at most q connected components. All in all |X | ≤ qp(p−
1)3q−2.
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This gives the following

Theorem 4. For fixed p and q, WETD is efficiently solvable on the class of
biorientations of {K1,p, qK2}-free graphs.

We now proveNP-completeness of ETD on (bi-)orientations of certain graph
classes.

Theorem 5. ETD is NP-complete on the following digraph classes:

1. orientations of split graphs,

2. path-mergeable orientations of planar bipartite graphs of maximum degree
4,

3. strongly connected biorientations of threshold graphs,

4. strongly connected biorientations of complete k-partite graphs for all fixed
k ≥ 2.

Proof. Let H = (V,E) be a hypergraph on the vertices V = {v1, v2, . . . , vn}.
To see claim 1, we define an orgraph D by

V (D) = V ∪ E ∪ {a, b, c, d},

A(D) = {(a, b), (b, c), (c, a), (a, d)} ∪ {(a, e) : e ∈ E}

∪{(e, v) : v ∈ e ∈ E} ∪ {(vi, vj) : 1 ≤ j < i ≤ n}

∪{(v, a), (v, c), (v, d) : v ∈ V }.

The underlying graph of D is a split graph: D[{b, d}∪E] is arcless and D[{a, c}∪
V ] is a tournament. D is displayed schematically in Figure 5.

If X ⊆ E is a perfect matching of H , then X ∪ {a, b, c} is an etd set of D.
On the other hand, let X be an etd set of D. N−(b) = {a} gives a ∈ X . Since
N−(d) = {a} ∪ V , X ∩ V = ∅. Hence, N−(v) ∩ X ⊆ E for all v ∈ V and so
X ∩ E is a perfect matching of H .

Therefore, H has a perfect matching iff D is etd and this completes the proof
of claim 1.

As is shown in [15], the decision problem of the existence of a perfect match-
ing is NP-complete if restricted to the class of hypergraphs whose bipartite
incidence graph (given by (V ∪E, {(e, v) : v ∈ e ∈ E})) is planar and has max-
imum degree 3. Thus we can assume that the bipartite incidence graph of H is
planar and has maximum degree 3.

We define a path-mergeable orgraph D by

V (D) = V ∪ E ∪ {ae, be, ce, de : e ∈ E},

A(D) = {(ae, be), (be, ce), (ce, de), (de, ae) : e ∈ E} ∪ {(ae, e) : e ∈ E}

∪{(e, v) : v ∈ e ∈ E}

and observe that the underlying graph of D is a planar bipartite graph of max-
imum degree four.

If X ⊆ E is a perfect matching of H , then X ∪ {ae, be, ce, de : e ∈ E}
is an etd set of D. On the other hand, let X be an etd set of D. Since
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N−(v) = {e : v ∈ e ∈ E} for all v ∈ V , it follows that X ∩ E is a perfect
matching of H .

Therefore, H has a perfect matching iff D is etd and this completes the proof
of claim 2.

To see claim 3, we define a digraph D by

V (D) = V ∪ E ∪ {a, b},

A(D) = {(a, b), (b, a)} ∪ {(a, e) : e ∈ E}

∪{(e, v) : v ∈ e ∈ E} ∪ {(v, e) : v /∈ e ∈ E}

∪{(vi, vj) : 1 ≤ j < i ≤ n} ∪ {(v, a), (v, b) : v ∈ V }

We observe that the underlying graph ofD is a threshold graph. It is constructed
by iteratively adding {b}∪E as isolated vertices and then {a}∪V as dominating
vertices. Since, by definition, every vertex of V is contained in at least one
hyperedge and there is no empty hyperedge, D is strongly connected. D is
displayed schematically in Figure 5.

b

d

e1

e2

e3

a

c

v1

v2

v3

b

e1

e2

e3

a

v1

v2

v3

Figure 5: The constructed digraphs in the reduction of the proof of claim 1 resp. claim 3.
The boxed subgraphs are acyclic tournaments in which each arc is directed upwards.

IfX ⊆ E is a perfect matching ofH , thenX∪{a, b} is an etd set ofD. On the
other hand, let X be an etd set of D. N−(b) = {a}∪V gives |X∩({a}∪V )| = 1.
Let x ∈ X ∩ ({a} ∪ V ). Clearly any vertex of E is dominated by x. Since any
vertex of H is contained in a hyperedge, x /∈ V . Hence, a ∈ X and X ∩ V = ∅.
Thus, N−(v) ∩X ⊆ E for all v ∈ V and so X ∩ E is a perfect matching of H .

Therefore, H has a perfect matching iff D is etd and this completes the proof
of claim 3.

To see claim 4, let k ≥ 2 be arbitrary. We define a digraph D by

V (D) = V ∪ E ∪ {a, b} ∪ {ui : 1 ≤ i ≤ k − 2},

A(D) = {(a, b), (b, a)} ∪ {(a, e) : e ∈ E} ∪ {(v, b) : v ∈ V }

∪{(e, v) : v ∈ e ∈ E} ∪ {(v, e) : v /∈ e ∈ E}

∪{(a, ui) : 1 ≤ i ≤ k − 2} ∪ {(v, ui) : v ∈ V, 1 ≤ i ≤ k − 2}

∪{(ui, b) : 1 ≤ i ≤ k − 2} ∪ {(ui, e) : e ∈ E, 1 ≤ i ≤ k − 2}

∪{(ui, uj) : 1 ≤ j < i ≤ n}
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and observe that the underlying graph of D is a complete k-partite graph.
Thereby, the k partitions are {b} ∪ E, {a} ∪ V and {u1}, {u2}, . . . , {uk−2}.
Furthermore, D is easily seen to be strongly connected.

If X ⊆ E is a perfect matching of H , then X ∪ {a, b} is an etd set of D.
On the other hand, let X be an etd set of D. N−(a) = {b} gives b ∈ X . Since
N−(b) = {a}∪V ∪{ui : 1 ≤ i ≤ k−2},X∩({a}∪V ∪{ui : 1 ≤ i ≤ k−2}) contains
exactly one vertex. Let x be that vertex. Since D[X ] is a contrafunctional
digraph, it is not acyclic. If x 6= a, any cycle of D[X ] necessarily contains at
least three vertices, in contradiction to |X ∩N−(b)| = 1. Hence, x = a. Thus,
N−(v) ∩X ⊆ E for all v ∈ V and so X ∩ E is a perfect matching of H .

Therefore, H has a perfect matching iff D is etd and this completes the proof
of claim 4.

4. ETD and WETD in digraph classes generalizing tournaments

This section deals with the algorithmic complexity of ETD and WETD on
digraph classes generalizing tournaments. All of these digraphs are rich in struc-
ture and thus some allow simple combinatorial algorithms even for WETD.

Some of our proofs make use of the following lemma:

Lemma 3. 1. A minumum weighted etd set that induces a cycle of length 2
or 3 can be found in O(m∆+ max{∆−,∆+}) time.

2. A minumum weighted etd set that induces a cycle of length 2, 3 or 4 can
be found in O(m∆−∆+2

) time.

Proof. All cycles of length 2 can clearly be found in O(m∆+). Now, the etd
property can be checked in 2∆+ steps for each such cycle.

The cycles of length three can be found in the following way. For each
edge a = (u, v), it can be checked if there is a vertex w ∈ N−(u) ∩ N+(v) in
O(max{∆−,∆+}) time. Again, the etd property can be checked in 3∆+ steps
for each such cycle.

The cycles of length four can be found in the following way. For each edge
a = (u, v), and each two t ∈ N−(u) and w ∈ N+(v), one has to check if
(w, t) ∈ A. The etd property can be checked in 4∆+ steps. This completes the
proof.

4.1. Quasi-transitive digraphs and k-partite tournaments

Lemma 4. If D is a connected etd quasi-transitive digraph, each etd set of D
induces a cycle of length 2 or 3.

Proof. We observe that the only connected contrafunctional quasi-transitive di-
graphs are cycles of length 2 or 3.

Let D = (V,A) be a connected quasi-transitive digraph and X be an etd set
of D. Thus, D[X ] is the disjoint union of cycles of length 2 or 3. Assume for
contradiction that D[X ] is not a single cycle. Furthermore, assume there are
two cycles in D[X ], say C1 and C2, and a vertex v with N−(v)∩V (C1) 6= ∅ and
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N+(v)∩V (C2) 6= ∅. Since D is quasi-transitive, there is a vertex in C1 which is
adjacent to some vertex in C2, a contradiction. Assume there are two cycles in
D[X ], say C1 and C2, and two vertices, say u and v, with the following property:
u is dominated by some x ∈ V (C1), v is dominated by some y ∈ V (C2), and
(u, v) ∈ A. By quasi-transitivity, (v, x) ∈ A and thus x is adjacent to y. This is
a contradiction to the etd property of X .

Furthermore, connected etd quasi-transitive digraphs are strongly connected.
Lemma 3.1 and Lemma 4 give

Theorem 6. WETD can be solved in O(m∆+ max{∆−,∆+}) on quasi-transitive
digraphs.

Another easy observation is the following

Lemma 5. If D is an etd k-partite tournament, each etd set of D induces a
cycle of length 3 or 4.

Proof. The only contrafunctional k-partite tournaments are cycles of length 3 or
4. It is clear that a k-partite tournament does not have an induced subdigraph
that is the disjoint union of two cycles.

Again, etd k-partite tournaments are strongly connected. Lemma 3.2 and
Lemma 5 give

Theorem 7. WETD can be solved in O(m∆−∆+2
) on k-partite tournaments.

In contrast, Theorem 5 shows that ETD is NP-complete on k-partite semi-
complete digraphs for all fixed k ≥ 2. In fact, the k-partite semicomplete
digraphs constructed in the proof of Theorem 5 only have a single antiparallel
arc. Hence, the existence of a single antiparallel arc leads to the intractability
of the problem.

For bipartite tournaments one easily obtains the following simple character-
ization.

Theorem 8. A bipartite tournament T is etd iff T− is etd iff there is a 4-cycle
(u1, v1, u2, v2, u1) in T such that N+(u1) = N−(u2) and N+(v1) = N−(v2).

4.2. Locally semicomplete digraphs

Theorem 9. WETD can be solved in O(m∆+) on the class of locally out-
semicomplete digraphs.

Proof. WETD can be solved using the following procedure. Let D = (V,A)
be a locally out-semicomplete digraph with real-valued vertex weight c. First
we determine the set B of all arcs a = (u, v) of D with N+(u) ∩ N+(w) = ∅.
Then we determine the strong components of the digraphDB defined by the arcs
contained in B. Next we check the vertex set of each of these strong components
for being an etd set of D. For all of those etd sets, we return as output the one
with minimal total weight.

11



To see the correctness of the procedure, let X be an arbitrary etd set of D.
Hence N+(u)∩N+(v) = ∅ holds for each arc a = (u, v) of D[X ] and thusD[X ] is
an induced subdigraph of DB. Since D is locally out-semicomplete, DB is 1-out-
regular and thus the strong components of DB are exactly the contrafunctional
subdigraphs of DB (they are exactly the cycles of DB). Therefore, D[X ] is a
strong component of DB and gets detected during the procedure.

Strongly connected components can be found in linear time by the algorithm
of Tarjan [16]. Hence, the time of each step of the procedure is bounded by
O(m∆+).

Furthermore, connected etd locally out-semicomplete digraphs are strongly
connected.

Note that the locally out-semicomplete digraphs properly include (locally)
semicomplete digraphs and (local) tournaments. We did not yet classify the
complexity of ETD on locally in-semicomplete digraphs. However, Theorem 5.2
shows that for path-mergeable orgraphs ETD remains intractable. As stated
in [1], this is a common superclass of locally out-semicomplete and locally in-
semicomplete orgraphs.

4.3. Arc-locally semicomplete digraphs

Since any bipartite semicomplete digraph is arc-locally semicomplete, The-
orem 5.4 has the following consequence:

Theorem 10. ETD is NP-complete on strongly connected arc-locally semicom-
plete digraphs.

Another intractable problem is given by the following

Theorem 11. ETD is NP-complete on arc-locally in-semicomplete orgraphs.

Proof. LetH = (V,E) be a hypergraph. We define an arc-locally in-semicomplete
orgraph D by

V (D) = V ∪E ∪ {a, b, c},

A(D) = {(a, b), (b, c), (c, a)} ∪ {(b, e) : e ∈ E} ∪ {(e, v) : v ∈ e ∈ E}.

We observe the following: IfM ⊆ E is a perfect matching ofH , then {a, b, c}∪M
is an etd set of D. On the other hand, if X is an etd set of D, then X ∩ E is
a perfect matching of H . Hence, D is etd iff H has a perfect matching. This
completes the proof.

To obtain positive results, we need further details on the structural properties
of arc-locally digraphs. A recent paper by Wang and Wang [17] gives a complete
description of the strongly connected arc-locally in-semicomplete digraphs. To
state this characterization, we need the following notions:

An extended cycle of length k ≥ 2 is a digraph C = (V,A) where V admits
a partition into k non-empty sets U1, U2, . . . , Uk such that A = {(u, v) : u ∈
Ui, v ∈ Ui+1 for some 1 ≤ i ≤ k} where the index is taken modulo k. It is clear
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that any extended cycle has an etd set. In fact, the etd sets of extended cycles
are exactly the sets that contain exactly one element of Ui for each 1 ≤ i ≤ k.

A T-digraph is a strongly connected digraph T = (V,A) with the following
properties. V admits a partition into the sets V1, V2, V3 and V4 such that T [V1]
and T [V3] have no arcs, |V2| = 1 and T [V4] is semicomplete. V3 and V4 may not
be empty at the same time. If V1 is empty, V3 must be empty, too (a case the
authors of [17] forgot). The arcs of T are as follows: For each v1 ∈ V1, v2 ∈ V2,
v3 ∈ V3 and v4 ∈ V4 we have

• (v1, v2) ∈ A,

• (v2, v3) ∈ A, but (v3, v2) /∈ A,

• (v3, v1) ∈ A, but (v1, v3) /∈ A,

• (v4, v1) ∈ A, but (v1, v4) /∈ A,

• (v4, v3) ∈ A, but (v3, v4) /∈ A.

Furthermore, there may be some more arcs between V2 and V1 ∪ V4 since T is
strongly connected.

Wang and Wang obtain the following characterization:

Theorem 12 (Wang and Wang [17]). Let D be a strongly connected arc-locally
in-semicomplete digraph. D is either semicomplete, semicomplete bipartite, an
extended cycle or a T-digraph. If D has an induced cycle of length at least 5, it
is an extended cycle.

Since the reverse digraph of an arc-locally in-semicomplete digraph is an
arc-locally out-semicomplete digraph and strongly connectedness is preserved
by the reversing operation, we have the following

Corollary 1 (Wang and Wang [17]). Let D be a strongly connected arc-locally
out-semicomplete digraph. If D has an induced cycle of length at least 5, it is
an extended cycle.

Using these characterizations, we obtain the next

Theorem 13. WETD can be solved in O(m∆−∆+2
) time on arc-locally out-

semicomplete orgraphs.

Proof. We observe that any connected contrafunctional arc-locally out-semicomplete
orgraph is a cycle. Hence, the subdigraphs induced by etd sets in arc-locally
out-semicomplete orgraphs are the disjoint union of cycles. A similar argument
to the one used in the proof of Theorem 6 shows that in a connected arc-locally
out-semicomplete orgraph each etd set induces a single cycle. Again, connected
etd arc-locally out-semicomplete orgraphs are strongly connected.

Let D be a connected arc-locally out-semicomplete digraph. We can solve
WETD using the following procedure. First we check if D is the extension of
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a cycle. This can be done in linear time easily. If this is the case, a minimum
weight etd set is obtained by a greedy technique in linear time.

If D is not the extension of a cycle, there is no induced cycle of length at
least 5 in D, by Corollary 1. Hence, we only have to search for a minimum
weight etd set of D that induces a cycle of length at most four. By Lemma 3,
this can be done in O(m∆−∆+2

) time. If such a set does not exist, D is not
etd.

Using a similar algorithm, we obtain the same time complexity for strongly
connected arc-locally in-semicomplete digraphs.

Theorem 14. WETD can be solved in O(m∆−∆+2
) time on strongly connected

arc-locally in-semicomplete orgraphs.

Proof. Let D be a strongly connected arc-locally in-semicomplete digraph. By
Theorem 12, D is either semicomplete, semicomplete bipartite, an extended
cycle or a T-digraph. In the case that D is semicomplete or semicomplete
bipartite it is clear that each etd set induces a cycle of length at most 4. A few
easy case distinctions show that the same holds if D is a T-digraph.

Hence, we can use the same procedure to solve WETD as for arc-locally
out-semicomplete orgraphs.
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