
An Exact Algorithm for Robust Network

Design⋆

Christoph Buchheim1, Frauke Liers2, and Laura Sanità3

1 Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87,
44227 Dortmund, Germany

2 Universität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln, Germany
3 Institute of Mathematics, École Polytechnique Fédérale de Lausanne, 1015

Lausanne, Switzerland

Abstract. Modern life heavily relies on communication networks that
operate efficiently. A crucial issue for the design of communication net-
works is robustness with respect to traffic fluctuations, since they often
lead to congestion and traffic bottlenecks. In this paper, we address an
NP-hard single commodity robust network design problem, where the
traffic demands change over time. For k different times of the day, we
are given for each node the amount of single-commodity flow it wants
to send or to receive. The task is to determine the minimum-cost edge
capacities such that the flow can be routed integrally through the net at
all times.
We present an exact branch-and-cut algorithm, based on a decomposition
into biconnected network components, a clever primal heuristic for gen-
erating feasible solutions from the linear-programming relaxation, and
a general cutting-plane separation routine that is based on projection
and lifting. By presenting extensive experimental results on realistic in-
stances from the literature, we show that a suitable combination of these
algorithmic components can solve most of these instances to optimality.
Furthermore, cutting-plane separation considerably improves the algo-
rithmic performance.

Key words: robust network design, branch-and-cut, target cuts, non-linear
flow problems

1 Introduction

Communication networks play a fundamental role in every-day life. Due to the
huge growth of telecommunications services in the last years, the development
of efficient methods for an optimal design of such networks is nowadays a crucial
research area.

In a standard network design problem, we are given a network represented by
a graph with non-negative costs on the edges, and we aim at routing a set D of

⋆ Financial support from the German Science Foundation (DFG) is acknowledged
under contracts Bu 2313/1–2 and Li 1675/1–2.

demands through the network at minimum cost. However, since in practical set-
tings the set of demands is often subject to uncertainty and may vary with time,
more accurate models recently have been defined in the literature. In particular,
there is a well-studied class of robust network design problems, which assumes
to have as input a family D of possible sets of demands to be routed, instead of
just one set. The aim is to install minimum cost capacities such that every set
of demands D ∈ D can be suitably routed. Robust network design problems of
this kind have received a lot of attention in the network design community, see
e.g. [6, 4, 13, 11, 15] and the recent survey of Chekuri [9].

In this paper, we focus on a single commodity robust network design (RND)
problem. As an example, suppose that some clients wish to download some
program stored on several servers. For a client, it is not important which server
he or she is downloading from, as long as the demand is satisfied. Still, at different
times of the day (e.g. morning/afternoon/evening), the demands may change
(e.g. different clients show up), and we would like to design a network that is
able to route all flow in all different scenarios.

Formally, we are given an undirected graph G = (V,E) with costs cij ≥ 0
for every edge {i, j} ∈ E, and k sets {D1, . . . ,Dk} of demands. A set Dt, also
called a traffic matrix, specifies for each node u ∈ V a value bt

u ∈ Z of flow
that the node wants to send (bt

u < 0) or to receive (bt
u > 0); one may also have

bt
u = 0. The goal is to install integral min-cost capacities u ∈ ZE such that each

traffic matrix Dt can be (non-simultaneously) integrally routed on G without
exceeding the capacity.

Note that, if we have only one traffic matrix (i.e. k = 1), then the problem
is just a min-cost single commodity flow problem, the so-called transshipment
problem, and it is therefore easily solvable in polynomial time (see e.g. [10]). In
contrast, whenever we take into account more scenarios, the problem becomes
NP-hard, already for k = 3 [25] (the complexity is open for k = 2).

To the best of our knowledge, no exact methods are available in the liter-
ature for this problem so far. In this work, we provide a branch-and-cut algo-
rithm, based on the natural flow formulation strengthened by generating local
cuts, revisited according to [7]. We test our algorithm on a wide set of realistic
instances, and show that in this application local cuts significantly improve the
computational time to find an optimal integral solution.

1.1 Related works

Robust network design problems with a family D of demand sets are widely
studied in the literature.

A popular model is the one introduced by Ben-Ameur and Kerivin [6], where
the family D is described by a polyhedron. In this setting, a well-known poly-
hedral set of traffic matrices is the so-called hose model, defined by Duffield et
al. [11] and by Fingerhut et al. [15]. In fact, this model is at the basis of one of
the most important robust network design problem, namely the Virtual Private
Network Design problem [19, 18]. For robust network design problems with a

polyhedral set of traffic matrices, many exact algorithms (see e.g. [4, 13]) as well
as approximation algorithms (see e.g. [12, 16, 20]) have been developed.

Whenever the set D of traffic matrices given in input is a finite list, as in our
setting, the problem is a network synthesis problem with non-simultaneous flows.
This problem has two main applications (see [22]): the first one, that we discussed
in the previous section, is related to the design of a network with time-varying
demands. Here the number k of different sets can be assumed reasonably small,
but typically we have multiple sources/destinations. The second application is
related to the design of survivable networks. Here the number k is large, since it
is equal to the number of edges of the graph, but we have a single source and a
single destination at the time.

The first application has been studied in more detail in the multi-commodity
case (i.e. when each traffic matrix specifies a demand for every pair of nodes).
This problem is NP-hard already for k = 2 [25]. In this setting, although k can
be assumed to be small, a flow formulation would use different flow variables for
every pair of nodes and every scenario, which make exact approaches based on
flow formulations more difficult to solve in practice when comparing it to our
single commodity setting. Some heuristics are given in [22]. Still, the problem can
be approximated within a factor of O(log |V |) using metric embedding techniques
[14, 25].

In survivable network design, we have a demand r(i, j) for every edge {i, j} ∈
E representing the flow that needs to be re-routed in case the edge {i, j} fails,
and the problem is to install capacity in order to non-simultaneously route each
r(i, j). In this setting, every flow is a single-commodity flow with exactly one
source and one destination, but the number k is equal to the number of edges
in the graph, therefore in a flow formulation we may again have order of |V |2

different flow variables. The study of this problem was started already by Go-
mory and Hu [17], who provided combinatorial algorithms for finding an optimal
fractional solution in unit-cost metric graphs. Later on, some people studied the
polyhedral structure of the problem (see e.g. [24, 23]), and exact approaches for
special classes of graphs (see e.g. [24, 26]).

Interestingly, there is a 2-approximation for the survivable network design
problem due to Jain [21] that is based on an iterative rounding technique. Al-
though our RND problem is also a single-commodity flow problem, we want to
remark that, our setting has more sources and more destinations, which is dif-
ferent from survivable network design. This may make the problem harder to
approximate. In fact, the 2-approximation algorithm given by Jain does not ap-
ply in our case (see [25] for more details), and it is an interesting open question
to find a constant factor approximation for the single commodity RND problem.

2 Problem Formulation

We are concerned with the problem of assigning minimum cost edge capacities
such that k different flows can be non-simultaneously integrally routed through
the network. Clearly, once we compute k flows which realize the demands of the

k traffic matrices in input, the capacity which needs to be installed on an edge
is just as large as the maximum amount of flow routed along it for all matrices.

For the matrix Dt, let the variable f t
ij model the amount of flow that is routed

along edge {i, j} in the direction from i to j. Then our optimization problem,
which from now on we simply call the RND problem, can be formulated as
follows:

min
∑

{i,j}∈E cij max(f1
ij + f1

ji, . . . , f
k
ij + fk

ji)∑
j:{j,i}∈E f t

ji −
∑

j:{i,j}∈E f t
ij = bt

i for i ∈ V, t = 1, . . . , k

f t
ij ∈ Z+ for {i, j} ∈ E, t = 1, . . . , k

(1)

Considering the above set of constraints with linear cost functions, effective
algorithms exist for determining optimum flows. However, in this formulation of
the RND problem, the cost function is non-linear in the flow variables, which pre-
vents their applicability. Trivially, this non-linear formulation can be linearized
by introducing a capacity variable uij for each edge {i, j} ∈ E that models the
maximum amount of flow sent along the edge for all matrices:

min
∑

{i,j}∈E cijuij
∑

j:{j,i}∈E f t
ji −

∑
j:{i,j}∈E f t

ij = bt
i for i ∈ V, t = 1, . . . , k

uij ≥ f t
ij + f t

ji for {i, j} ∈ E, t = 1, . . . , k
f t

ij ≥ 0 for {i, j} ∈ E, t = 1, . . . , k
uij ∈ Z+ for {i, j} ∈ E

(2)

Note that in the above formulation we relaxed the integrality constraints for
the flow variables. In fact, once an integral feasible capacity vector u is given, one
can easily compute integral flows realizing our demands by solving k different
flow problems, one for each traffic matrix Dt, with the given capacities uij .
The existence of integral flows is guaranteed since we are dealing with single
commodity flows (see e.g. [10]).

The linear relaxation of (2) is the LP at the basis of our branch-and-cut
algorithm.

3 Preprocessing

We can preprocess a given RND instance by decomposing the network into
biconnecting components. A biconnected component is a maximal connected
subgraph such that the removal of any of its nodes does not destroy its con-
nectedness. Any connected graph decomposes into its biconnected components,
which are connected to each other by so-called cut vertices.

It is easy to see that the RND instance can be solved for each of the network’s
biconnected components independently as follows. There exists at least one of
them, say C = (VC , EC), that contains only one cut vertex v ∈ VC . All flow into
and out of C has to be routed through v. Therefore, we can decompose the RND

instance on G into an RND instance on C and an RND instance on a graph G′

which is the union of all components different from C. Note that v is included in
both C and G′. In the RND instance on C, the demand of the cut vertex is set
to bv =

∑
u∈VC

bu. In the other instance, we set bv =
∑

u∈V \VC
bu. The demands

for all the other nodes are left unchanged.
Applying the same arguments to G′ recursively and appropriately choosing

the demands of the cut vertices, the RND problem on G can be reduced to RND
problems on its biconnected components, which have a smaller size. The partial
optimal solutions for different biconnected components can trivially be combined
to an optimum solution for the whole network.

4 Primal Heuristics

Within a branch-and-cut approach, it is important to design so-called primal
heuristics, that try guessing good feasible solutions to use as upper bounds on
the optimum value. A standard approach finds feasible solutions by appropriately
rounding the optimal solutions of the LP relaxations.

For the RND problem, suppose we have solved an LP relaxation at some
node in the branch-and-bound tree, and let (f∗, u∗) be the optimum solution. We
compute a feasible solution within three steps. First, we define u ∈ ZE to be the
vector with entries ue = ⌈u∗

e⌉, for all e ∈ E. Second, we determine k integral flows
that satisfy the k different traffic matrices and respect the capacities given by u.
By construction such flows exist, and we compute them by solving a minimum-
cost flow problem for each traffic matrix, with a randomly chosen linear objective
function. Finally, the k flows are combined to an RND solution by determining
for each edge the actual capacity uprim necessary to route the k flows. Note that
some entries of the vector uprim could be strictly smaller than the corresponding
entries of the vector u.

In computing the k flows, we use the same cost function for all matrices, as
the same edges should be preferred for each of the k flows, in order to keep the
values of the capacity variables low. The cost function is chosen randomly in
order to have the chance of generating different solutions in each iteration.

In the next lemma, we give an upper bound on the quality of a feasible
solution (fprim, uprim) obtained by this procedure. More specifically, we relate
it to the value of an optimum feasible solution contained in the subtree of the
corresponding node of the branch-and-bound tree. If the node is not the root,
we call such a solution local as it is optimum under the constraints given by the
branching decisions.

Lemma 1. The distance of a (local) optimum RND solution to the feasible so-
lution (uprim, fprim) generated in the primal heuristic is at most c⊤(u − u∗).

Proof. Let (f loc, uloc) be a (local) optimum solution that is feasible for RND.
Clearly, c⊤uprim ≤ c⊤u and c⊤uloc ≥ c⊤u∗. This implies

c⊤uprim − c⊤uloc ≤ c⊤u − c⊤u∗ .

5 Separation of Target Cuts

For designing an effective branch-and-cut algorithm, it is essential to separate
strong cutting planes so that branching is rarely necessary. In [7], the separation
of target cuts was introduced as a variant of the local cuts by Applegate et al. [5].
No predescribed structure is imposed on the generated cutting planes. Further-
more, their separation is a general procedure that can be applied in various con-
texts. For the separation, the problem is first projected into a low-dimensional
space. Let P denote the convex hull of all projections of feasible solutions. Let x∗

be the point to be separated and x∗ its projection. The separation problem for
x∗ and the polytope P in question is solved heuristically by generating a facet
separating x∗ from P , if it exists. Such a facet can be found by determining an
optimal extremal solution of a linear optimization problem whose size is linear
in the number of vertices of P and the extreme rays. Let q ∈ P be arbitrarily
chosen. The cut-generation LP is of the form

max a⊤(x∗ − q)

s.t. a⊤(xi − q) ≤ 1 for all vertices xi of P

a⊤(xi − q) ≤ 0 for all extreme rays xi of P

a ∈ Rr

(3)

If the optimum value of (3) is larger than 1, the inequality a⊤(x − q) ≤ 1
is violated by x∗. Furthermore, it is proven in [7] that an optimum solution
of (3) defines a facet of P . In case (3) is unbounded, then a⊤(x − q) = 0 is a
valid equation for P and violated by x∗, where a is an unbounded ray. Finally,
the inequality is lifted to become valid (not necessarily facet-defining) for P .
In [8], target cuts were successfully used for solving several constrained binary
quadratic optimization problems.

5.1 Choice of the Projection

Choosing good projections is crucial for the success of the target-cut separation.
In most optimization problems defined on a graph G = (V,E), the polytope
P is either determined through an orthogonal projection onto some subgraph
of G, or through shrinking subsets of nodes or edges in G. The resulting graph
is denoted by G = (V ,E).

For the RND problem, the polytope P in the original variable space is the
convex hull of all feasible solutions (f, u) of problem (2). An orthogonal pro-
jection onto some subgraph that only contains a subset of nodes is not useful.
Indeed, suppose G is obtained through an orthogonal projection such that for
an edge {v1, v2} ∈ E it is v1 ∈ V but v2 6∈ V . Then, P also contains vectors
(f, u) for which f does not need to satisfy the flow-conservation constraints for
v1 because (positive or negative) excess flow at v1 could be annihilated in G by
routing flow along {v1, v2}. Therefore, most of the structure of the RND polytope
is lost when using such a projection.

In contrast, we iteratively choose an edge {v1, v2} ∈ E randomly and shrink it
by identifying the nodes v1 and v2. Loops are deleted, multiple edges are replaced
by one edge, the demand of the resulting supernode is set to bv1

+ bv2
. The

corresponding entries in the optimum solution x∗ of the relaxation are summed
up. We shrink until the number of (super-)nodes in the shrunk graph is equal to
the value of a fixed parameter c that specifies the size of G.

Let P be the convex hull of the vertices in the projected space obtained
through shrinking edges as outlined above. Clearly, the vectors in P that are
projections of feasible solutions of problem (2) need to satisfy the flow conser-
vation constraints on G. In fact, it is easy to see that P is again the convex hull
of feasible solutions of problem (2), but defined on the graph G.

Finally, a different parameter l specifies the number of traffic matrices that
should be taken into account. In case this number is smaller than the original
number k of matrices, we randomly choose a subset of them.

The target-cut separation routine now determines facets of P that are vio-
lated by x∗, if they exist. These inequalities need to be lifted to become valid for
P . We use standard lifting procedures. First, we argue that an inequality valid
for a subset of scenarios remains valid if all scenarios are adressed. Indeed, as the
capacity variables are not bounded from above in the RND model, their coeffi-
cients are necessarily nonpositive in any valid inequality. As the capacity values
can only increase when enlarging the set of traffic matrices, an inequality that is
valid for a subset remains valid when all matrices are considered. An inequality is
then iteratively lifted to an inequality valid for P by simultaneously unshrinking
the graph. The shrinking steps are undone one after the other, in reverse order
of the shrinking procedure. Suppose some loop was deleted when shrinking an
edge {v1, v2}. Furthermore, also suppose some multiple edges were replaced by
a single edge e. We obtain the lifted inequality for the graph in which nodes v1

and v2 are unshrunk as follows. The coefficient corresponding to the loop edge
is set to zero. Let ae be the coefficient of the single edge that represents multiple
edges. As the flow along e in G can now be split along multiple edges, ae is
set as coefficient for each of these. The coefficient of {v1, v2} is set to zero. All
other coefficients remain unchanged. It is easy to see that iteratively applying
this lifting and unshrinking procedure yields an inequality valid for P .

5.2 Cut Generation

In our implementation, target cuts are generated by delayed column genera-
tion [7]. Starting from a small subset of feasible points in P , the remaining
points of P are generated only if necessary. More precisely, a candidate target
cut is computed considering the initial set of points, then it is checked whether
this inequality is violated by some point in P not generated yet. If so, the new
point is added and a new candidate cut is computed. To check whether P con-
tains a point violating the given cut, we need a so-called oracle that solves the
RND problem on the shrunk graph G. This is done by applying a branch-and-cut
algorithm to the MIP model (2).

In our application, the delayed column generation approach is crucial. While
for binary problems it might be a feasible approach to completely enumerate
all integer points in P at once, at least in small dimensions, this is practically
not possible any more in the presence of general integer variables, since the
number of these point could become much larger. As described in [7], the delayed
column generation procedure can be applied even if the set of initial points is low-
dimensional. However, to avoid dealing with numerical problems and to speed up
the cut generation process significantly, we always start from a full-dimensional
polyhedron P 0, which is computed as sketched in the following.

First we compute any feasible solution (f, u) for the RND problem on the
shrunk graph G and set P 0 = {(f, u)}. Such a solution (f, u) can be computed
efficiently as a composition of arbitrary feasible solutions for the single matrices,
computing appropriate values for the variables uij in the end. Next, we determine
any cycle basis of G. For each cycle C in the basis and for each of the l matrices
considered (recall that we may select a subset of the k matrices), we add the
incidence vector of C to the entries of f corresponding to the chosen matrix
and adjust the u-entries. The result is a new feasible vector in P , which we
add to P 0. All vectors added in this way are affinely independent. If G has n̄

nodes and m̄ directed edges (counted in both directions (i, j) and (j, i)), the cycle
basis contains m̄ − n̄ + 1 elements, so the current polytope P 0 has dimension
l(m̄ − n̄ + 1).

Additionally, we add an unbounded direction to P 0 for each variable uij , since
increasing uij preserves feasibility. Equivalently, in the cut generation LP (3) we
may enforce that the coefficient of uij is non-positive. The dimension of P 0

increases to l(m̄− n̄+1)+ 1
2
m̄. Finally, for each vertex in G, we have a valid flow

conservation constraint (and all but one of these equations are independent). If a

is the coefficient vector of any such constraint, we add the unbounded directions a

and −a to P 0. Considering (3), this implies that all generated target cuts will
be orthogonal to all flow conservation constraints. The final dimension of P 0

is l(m̄− n̄ + 1) + 1
2
m̄ + l(n̄− 1) = (l + 1

2
)m̄, which means P 0 is full-dimensional.

If a target cut is found in the end, i.e., if x∗ 6∈ P , we try to compute further
target cuts by a reoptimization approach: in (3), we choose the first non-zero
coefficient in the last generated cut and fix it to zero. Then we reoptimize (3),
using delyed column generation again if necessary, and continue fixing coefficients
until no violated target cut is found.

6 Computational Results on Realistic Instances

We implemented an exact branch-and-cut algorithm based on the ideas outlined
in the previous sections, using the optimization tool SCIL in combination with
ABACUS 3.0 [1], LEDA 6.1[3], and CPLEX 12.1 [2]. The executable is run on
2.3 GHz machines with a limit of four hours CPU time for each job. Furthermore,
as the program is a 32-bit executable, a maximum of 4 GB of memory can
be addressed. Parameters controlling the target-cut separation are the chunk
size c and the number of traffic matrices l used in the target-cut separation.

In particular, for c = 0, no separation is performed. We evaluate our method
on 1120 realistic network topologies from the literature [4]. For each of these
instances, k = 2, 3, 4, 5 random traffic scenarios are added. Furthermore, for
each network topology and each choice of k, we randomly choose the percentage
p of terminals, i.e., nodes with non-zero demand, as p = 25, 50, 75, 100%. For very
small instances, we did not use p = 25%. Altogether, these are 1120 different
instances. In Table 6, we report the distribution of the instance sizes. As the
instances from [4] strongly vary in size, they are grouped with respect to the
number of nodes in the network in bins of size 150. Average node and edge
numbers of the instances in the respective groups are also given.

bin |V |avg |E|avg # instances

0 ≤ |V | ≤ 149 34.31 55.48 612
150 ≤ |V | ≤ 299 201.31 383.57 268
300 ≤ |V | ≤ 449 352.00 578.80 240

Table 1. Distribution of sizes for the realistic instances, grouped in bins by the number
of nodes |V | in the network.

Within the time and memory limits, 94% of the instances could be solved
to optimality, even without separation. Using target cuts separation, we can
further increase the number of instances that can be solved to optimality. The
fact that almost all of the instance set can be solved shows the effectiveness of
our approach. In order to evaluate the computational results in more detail, we
first assess the quality of the primal heuristic. For the instances that could be
solved to optimality without separation, we report the distance of the optimum
solution to the feasible RND solution generated from the first LP relaxation.
More specifically, we determine the relative gap g in percent, i.e.,

g = 100 ·
xprim − xopt

xopt
.

In 24% of the cases, g < 0.1%, in 45% of the cases, g < 1%, and in 55% of the
cases, g > 10%. In the worst case, the gap is not larger than 61%.

In Table 2, we report results for solving the instances to optimality. Results
are presented separately for each number l of scenarios, grouped with respect
to the number of nodes in the network. As the running time usually increases
for chunk sizes larger than 4, we restrict ourselves to smaller chunks and there-
fore use the parameter choices (c, l) = (0, 0), (3, 2), (3, 3), (4, 2), (4, 3), where the
case (0, 0) means that no separation takes place. Numbers are only shown for
instances in which the number k of scenarios is at least as large as l. For each pa-
rameter choice, we report in the first column the number of instances that could
be solved to optimality for a specific choice of separation parameters, followed
by the number of instances that could not be solved due to time or memory
constraints, respectively. Typically, for an instance that could not be solved due

to memory constraints, a number of subproblems in the order of 105 was gen-
erated. The following columns show the average number of subproblems in the
branch-and-bound tree and the average cpu time of the instances that could be
solved to optimality.

Interestingly, many instances in Table 2 can be solved within a few minutes
only. On average, instances with only two scenarios are computationally easier
than those with a larger number of scenarios, as can be expected. Furthermore,
on average the difficulty often increases with increasing network sizes.

Clearly, target-cut separation considerably improves the performance of the
algorithm. Whereas several instances cannot be solved to optimality without
separation, the number of unsolved instances is never worse and often better
if target-cut separation is used. Furthermore, the instances that are solvable
without separation can be solved considerably faster and within a smaller number
of subproblems when target cuts are separated.

We conclude that our approach can solve to optimality most of the realistic
instances that we have at hand. Whereas instances defined on small networks
should probably be solved without separation, in many cases target cut sepa-
ration leads to faster solution of instances or even makes it possible to solve
otherwise unsolvable instances.

References

[1] ABACUS – A Branch-And-CUt System. www.informatik.uni-
koeln.de/abacus.

[2] ILOG CPLEX 12.1, 2009. www.ilog.com/products/cplex.

[3] LEDA – Library of Efficient Data Types and Algorithms. www.algorithmic-
solutions.com.

[4] A. Altin, E. Amaldi, P. Belotti, and M.C. Pinar. Provisioning virtual private
networks under traffic uncertainty. Networks, 49(1):100–115, 2007.

[5] A. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP cuts which do
not conform to the template paradigm. In Computational Combinatorial
Optimization: Optimal or Provably Near-Optimal Solutions, volume 2241 of
Lecture Notes in Computer Science, pages 261–304. Springer Verlag, 2001.

[6] W. Ben-Ameur and H. Kerivin. Routing of uncertain demands. Optimiza-
tion and Engineering, 3:283–313, 2005.

[7] C. Buchheim, F. Liers, and M. Oswald. Local cuts revisited. Operations
Research Letters, 36(4):430–433, 2008.

[8] C. Buchheim, F. Liers, and M. Oswald. Speeding up IP-based algorithms
for constrained quadratic 0–1 optimization. Mathematical Programming
(Series B), 124(1-2):513–535, 2010.

[9] C. Chekuri. Routing and network design with robustness to changing or
uncertain traffic demands. SIGACT News, 38(3):106–128, 2007.

[10] V. Chvátal. Linear programming. Series of books in the mathematical
sciences. W.H. Freeman, 1983.

|V | (0,0) (3,2) (3,3) (4,2) (4,3)

slvd t m subs CPU slvd t m subs CPU slvd t m subs CPU slvd t m subs CPU slvd t m subs CPU

0 ≤ |V | ≤ 149 152 0 1 373.09 1.40 152 0 1 116.78 1.20 153 0 0 62.34 3.46
150 ≤ |V | ≤ 299 63 1 3 4416.32 112.01 66 0 1 1272.03 133.91 65 0 2 932.94 331.68
300 ≤ |V | ≤ 449 56 0 4 1093.98 1.64 60 0 0 3301.40 85.96 59 1 0 1370.51 228.32

0 ≤ |V | ≤ 149 149 0 4 627.54 3.66 150 0 3 323.63 3.28 150 0 3 506.13 12.85 152 0 1 135.61 9.95 151 0 2 146.58 49.46
150 ≤ |V | ≤ 299 59 0 9 7764.75 57.86 61 3 4 237.79 8.42 61 3 4 458.61 67.93 61 3 4 371.62 120.32 59 5 4 409.24 511.14
300 ≤ |V | ≤ 449 57 0 3 8225.11 139.17 60 0 0 3780.33 108.29 58 2 0 3344.52 262.48 59 1 0 1928.53 336.32 56 3 1 938.36 522.55

0 ≤ |V | ≤ 149 146 0 7 844.09 7.53 147 0 6 409.96 7.29 148 0 5 1554.40 50.00 150 0 3 383.42 26.49 150 1 2 421.49 123.11
150 ≤ |V | ≤ 299 61 0 6 4403.41 23.66 62 0 5 1685.76 59.78 62 1 4 1277.21 166.56 60 3 4 1981.53 657.47 58 5 4 426.67 539.23
300 ≤ |V | ≤ 449 57 0 3 1723.42 3.65 58 0 2 579.90 17.66 58 0 2 630.38 34.01 59 1 0 1319.71 220.21 58 2 0 719.55 380.44

0 ≤ |V | ≤ 149 150 0 3 994.91 10.17 150 0 3 441.43 7.39 150 0 3 475.33 15.94 152 0 1 256.52 16.80 150 0 3 250.77 56.18
150 ≤ |V | ≤ 299 57 0 10 8762.09 99.26 61 2 4 4940.90 172.72 57 6 4 4005.89 409.68 58 5 4 2309.07 551.97 55 8 4 584.24 661.29
300 ≤ |V | ≤ 449 50 0 10 7774.72 69.81 55 0 5 6373.80 180.31 55 2 3 6450.38 421.98 54 5 1 3126.33 384.23 51 9 0 1148.20 734.27

Table 2. Experimental results for the realistic instances from the literature. From top to bottom, the number of scenarios increases from
k = 2 to k = 5. For each parameter choice in the separation, we first report the number of instances solved, followed by the number of
instances that were not solved due to the time limit (t) or due to memory constraints (m), respectively. The following columns show the
average number of subproblems and the average cpu time for solving the remaining instances.

[11] N.G. Duffield, P. Goyal, A.G. Greenberg, P.P. Mishra, K.K. Ramakrishnan,
and J.E. van der Merwe. A flexible model for resource management in
virtual private networks. Proceedings of SIGCOMM, 29:95–108, 1999.

[12] F. Eisenbrand, F. Grandoni, G. Oriolo, and L. Sanità. New approaches
for virtual private network design. SIAM Journal on Computing, pages
706–721, 2007.

[13] T. Erlebach and M. Rüegg. Optimal bandwidth reservation in hose-model
VPNs with multi-path routing. Proceedings of INFOCOM, 4:2275–2282,
2004.

[14] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, pages 448–455, 2003.

[15] J.A. Fingerhut, S. Suri, and J.S. Turner. Designing least-cost nonblocking
broadband networks. Journal of Algorithms, 24(2):287–309, 1997.

[16] S. Fiorini, G. Oriolo, L. Sanità, and D.O. Theis. The VPN problem with
concave costs. SIAM Journal on Discrete Mathematics, pages 1080–1090,
2010.

[17] R.E Gomory and T.C. Hu. Multi-terminal network flow. SIAM Journal on
Applied Mathematics, 9:551–570, 1961.

[18] N. Goyal, N. Olver, and B. Shepherd. The VPN conjecture is true. Pro-
ceedings of STOC, pages 443–450, 2008.

[19] A. Gupta, J. Kleinberg, R. Rastogi, and B. Yener. Provisioning a virtual
private network: A network design problem for multicommodity flow. Pro-
ceedings of STOC, pages 389–398, 2001.

[20] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approxima-
tion algorithms for network design. Proceedings of STOC, pages 365–372,
2003.

[21] K. Jain. A factor 2 approximation algorithm for the generalized Steiner net-
work problem. Proceedings of the 39th Annual Symposium on Foundations
of Computer Science (FOCS), 1998.

[22] M. Labbe, R. Séguin, P. Soriano, and C. Wynants. Network synthesis with
non-simultaneous multicommodity flow requirements: Bounds and heuris-
tics, 1999.

[23] T.L. Magnanti and S. Raghavan. Strong formulations for network design
problems with connectivity requirements. Networks, 45:61–79, 2005.

[24] T.L. Magnanti and Y. Wang. Polyhedral properties of the network restora-
tion problem with the convex hull of a special case. Technical report, Op-
erations Research Center, MIT, 1997.

[25] L. Sanità. Robust Network Design. Ph.D. Thesis. Università Sapienza di
Roma, 2009.

[26] S. Sridhar and R. Chandrasekaran. Integer solution to synthesis of commu-
nication networks. Mathematics of Operations Research, 3:581–585, 1992.

