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Abstract

In this note we give a finite forbidden subgraph characterization of the

connected graphs for which any non-trivial connected induced subgraph

has the property that the connected domination number is at most the

total domination number. This question is motivated by the fact that any

connected dominating set of size at least 2 is in particular a total dominat-

ing set. It turns out that in this characterization, the total domination

number can equivalently be substituted by the upper total domination

number, the paired-domination number and the upper paired-domination

number respectively. Another equivalent condition is given in terms of

structural domination.
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A dominating set of a graph G is a vertex subset such that every vertex of
G belongs to X or has a neighbor in X . The minimal size of a dominating set
of G, the domination number, is denoted γ(G). A total dominating set X of
G is a vertex subset that every vertex of G has a neighbor in. That is, X is
a dominating set and the subgraph induced by X , henceforth denoted G[X ],
does not have an isolated vertex. Note that any graph that does not have
an isolated vertex has a total dominating set (and vice versa). The minimal
size of a total dominating set of G is denoted γt(G) and is called the total
domination number of G. A total dominating set of minimal size is called a
minimum total dominating set. The maximal size of an inclusionwise minimal
total dominating set, the upper total domination number, is denoted Γt(G).
Total domination has been introduced by Cockayne, Dawes and Hedetniemi [3]
and is well-studied now. A survey of some recent results is given by Henning
[7]. A variant of (total) domination is paired-domination. A paired-dominating
set of G is a dominating set X such that G[X ] has a perfect matching. In
particular, any paired-dominating set is a total dominating set. Furthermore,
paired-dominating sets always exist in graphs that do not have isolated vertices.
The minimal size of a paired-dominating set is denoted γp(G) and is called the
paired-domination number of G. Similar to the total domination case one defines
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the upper paired-domination number Γp(G). Apparently, paired-domination was
first studied by Haynes and Slater [6].

Another variant of domination is connected domination. A connected dom-
inating set of G is a dominating set such that G[X ] is connected. Clearly, a
graph has a connected dominating set iff it is connected. The minimal size of a
connected dominating set, the connected domination number, is denoted γc(G).

One can say that total domination and connected domination (together with
independent domination) belong to the most intensively studied variants of dom-
ination. There are a lot of sharp bounds on γt and γc and for many graph classes
we know the computational complexity of the two parameters. Although a lit-
tle less studied yet, similar things can be said about paired-domination. Still a
good introduction into the theory of domination is given by the book of Haynes,
Hedetniemi and Slater [5]. The property that two parameters are equal for all
induced subgraphs is usually called perfection of the two parameters. Finding
the forbidden induced subgraph characterization for a certain type of perfec-
tion, in particular for parameters from the context of domination, seems to be
accepted as a step in the understanding of the relation of the parameters in-
volved. A prominent example for the perfection of two domination parameters
are the so-called domination perfect graphs. A graph is domination perfect iff
for any induced subgraph the domination number equals the minimal size of an
independent dominating set. After the problem was open for some time, a for-
bidden induced subgraph characterization of the domination perfect graphs was
finally given by Zverovich and Zverovich [9]. A characterization of the connected
graphs for which in any connected subgraph γ = γc holds is given by Zverovich
[10]. An extension of this result to total domination and clique-domination was
given by Goddard and Henning [4]. We call a connected graph non-trivial if it
is not an isolated vertex. It is clear that any connected dominating set of size
at least 2 is also a total dominating set. Thus any connected graph with γc ≥ 2
fulfills γc ≥ γt. However, an open problem seems to be the characterization
of the connected graphs for which we can find, in any non-trivial connected in-
duced subgraph, a minimum total dominating set that is connected, i.e. γc ≤ γt.
These graphs then fulfill γc = γt, provided γc ≥ 2.

The following Theorem gives a characterization of the connected graphs for
which any non-trivial connected induced subgraph fulfills γc ≤ γt, in terms of
forbidden induced subgraphs. Somewhat surprisingly, it turns out that in this
characterization γt can be substituted by any of the parameters Γt, γp and Γp.
Furthermore, the set of forbidden induced subgraphs yields the equivalence of
another condition in terms of structural domination.

Theorem 1. Let G be a connected graph. The following conditions are equiv-
alent:

1. Any non-trivial connected induced subgraph of G fulfills γc ≤ γt.

2. Any non-trivial connected induced subgraph of G fulfills γc ≤ Γt.

3. Any non-trivial connected induced subgraph of G fulfills γc ≤ γp.

4. Any non-trivial connected induced subgraph of G fulfills γc ≤ Γp.

5. G is {P7, C7, F1, F2}-free (see Figure 1).
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6. Any connected induced subgraph H of G has a connected dominating set
X such that H [X ] is {P5, G1, G2}-free (see Figure 2).

Figure 1: The graphs P7, C7, F1 and F2.

Figure 2: The graphs P5, G1 and G2.

We observe that the class of connected {P7, C7, F1, F2}-free graphs properly
contains the class of connected split graphs. It is well-known that the compu-
tation of the domination number γ in split graphs is NP -complete [2]. From
[4] it follows that in any non-trivial connected {P5, C5}-free graph γ equals γc
and γt, provided γ ≥ 2. Thus, the computation of the parameters γc and γt
remains NP -complete if the instances are restricted to split graphs. Therefore,
computing the parameters γc and γt on connected {P7, C7, F1, F2}-free graphs
remains NP -complete.

In view of the forbidden subgraphs of Theorem 1 (see Figures 1 and 2) we
obtain the following immediate consequence:

Corollary 1. Let G be a {C3, C7}-free graph. The following statements are
equivalent:

1. Any non-trivial connected induced subgraph fulfills γc ≤ γt (γc ≤ Γt, γc ≤
γp, γc ≤ Γp respectively).

2. G is P7-free.

3. Any connected induced subgraph H of G has a connected dominating set
X such that H [X ] is P5-free.

Note that any biparite graph is in particular {C3, C7}-free. Hence, Corollary
1 applies to bipartite graphs.

The main step of the proof of Theorem 1 is formulated in the following
Lemma:
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Lemma 1. If G is a non-trivial connected graph with γc(G) > γt(G), then G
contains P7, C7, F1 or F2 as induced subgraph (see Figure 1).

Proof. Let G be a connected graph with γc(G) > γt(G). Among the minimum
total dominating sets of G let T be minimal with respect to the number of
connected components of G[T ]. We find two connected components of T , say
T1 and T2, such that there are vertices u ∈ T1 and v ∈ T2 that have distance
at most three. Since T is a total dominating set, T1 and T2 consist of at least
two vertices each. By choice of T1 and T2, at least one of the following six cases
holds:

(a) There is a vertex x ∈ V \ T such that N(x) ∩ T1 6= ∅ and N(x) ∩ T2 6= ∅,
and one of the following cases holds:

(a.1) T1 6⊆ N(x) and T2 6⊆ N(x).

(a.2) T1 ⊆ N(x) and T2 6⊆ N(x).

(a.3) T1 ⊆ N(x) and T2 ⊆ N(x).

(b) There are two adjacent vertices x, y ∈ V \ T such that N(x) ∩ T1 6= ∅,
N(x)∩T2 = ∅, N(y)∩T1 = ∅ and N(y)∩T2 6= ∅, and one of the following
cases holds: Further, it appears that:

(b.1) T1 6⊆ N(x) and T2 6⊆ N(y).

(b.2) T1 ⊆ N(x) and T2 6⊆ N(y).

(b.3) T1 ⊆ N(x) and T2 ⊆ N(y).

We will show that in each of the cases (a.1) - (b.3) G contains P7, C7, F1 or
F2 as induced subgraph. For symmetry, we do not need to consider the cases
”T1 6⊆ N(x) and T2 ⊆ N(x)” and ”T1 6⊆ N(x) and T2 ⊆ N(y)”. For each vertex
v ∈ T we denote by P (v) the set of private neighbors of v, i.e. the vertices for
which the only neighbor among T is v. Note that P (v) may also contain vertices
of T . Since T is a minimum total dominating set, any member of T has at least
one private neighbor.

To (a.1): Let u, u′ ∈ T1 such that u ∈ N(x) and u′ ∈ N(u) \N(x). Similar,
let v, v′ ∈ T2 such that v ∈ N(x) and v′ ∈ N(v)\N(x). If the subgraph induced
by the set (T \ {u′})∪{x} has fewer connected components than G[T ], it is not
a total dominating set. Thus there is a private neighbor u′′ of u′ that is not
adjacent to x. If the subgraph induced by (T \ {u′}) ∪ {x} does not have fewer
connected components than G[T ], u′ is a cut-vertex of G[T1 ∪ {x}]. Then we
can choose a vertex u′′ ∈ N(u′) ∩ T1 that is not adjacent to u or x, since they
belong to the same component of G[T1 ∪ {x}]. For symmetry, there is neighbor
v′′ of v′ that is not adjacent to u′, u, x or v. Hence, G[{u′′, u′, u, x, v, v′, v′′}] is
isomorphic to P7 or C7, depending on the adjacency of u′′ and v′′.

To (b.1): Again let u, u′ ∈ T1 such that u ∈ N(x) and u′ ∈ N(u) \N(x) and
let v, v′ ∈ T2 such that v ∈ N(y) and v′ ∈ N(v)\N(y). If P (u′) 6⊆ N(x)∪N(y),
then G[{u′′, u′, u, x, y, v, v′}] ∼= P7 for any u′′ ∈ P (u′) \ (N(x) ∪ N(y)). Hence
we can assume P (u′) ⊆ N(x) ∪ N(y) and P (v′) ⊆ N(x) ∪ N(y) by symmetry.
If the subgraph induced by the set (T \ {u′, v′}) ∪ {x, y} has fewer connected
components than G[T ], it is not a total dominating set. Thus there is a vertex
w ∈ N(u′) ∩ N(v′) that is not adjacent to any member of (T \ {u′, v′}) ∪
{x, y}. Therefore G[{w, u′, u, x, y, v, v′}] ∼= C7. If the subgraph induced by
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(T \ {u′, v′}) ∪ {x, y} does not have fewer connected components than G[T ],
{u′, v′} is a cut-set of G[T1 ∪ T2 ∪ {x, y}]. Since the edge {x, y} is a bridge
of G[T1 ∪ T2 ∪ {x, y}], u′ is a cut-vertex of G[T1 ∪ {x}] or v′ is a cut-vertex
of G[T2 ∪ {y}]. Say u′ is such a cut-vertex. Then we can choose a vertex
u′′ ∈ N(u′) ∩ T1 that is not adjacent to u or x, since they belong to the same
component of G[T1 ∪ {x}]. Therefore G[{u′′, u′, u, x, y, v, v′}] ∼= P7.

To (a.2): We choose two adjacent vertices u, v ∈ T1. Further, let w,w
′ ∈ T2

such that w ∈ N(x) and w′ ∈ N(w) \ N(x). As described in case (a.1), we
find vertices u′ ∈ P (u) \N(x) and v′ ∈ P (v) \N(x), since neither u nor v is a
cut-vertex of G[T1 ∪ {x}]. If the subgraph induced by the set (T \ {w′}) ∪ {x}
has fewer connected components than G[T ], it is not a total dominating set.
Thus there is a private neighbor w′′ of w′ that is not adjacent to x. If u′ or
v′ is adjacent to w′′, say u′, then we have the following: If w′′ /∈ T2, u

′ and
w′′ fulfill the condition of (b.1). If w′′ ∈ T2, u

′ fulfills the condition of (a.1).
Since we dealt with both cases above, we can assume that u′ and v′ are both
not adjacent to w′′. If the subgraph induced by (T \ {w′}) ∪ {x} does not have
fewer connected components than G[T ], w′ is a cut-vertex of G[T2 ∪ {x}]. We
can choose a vertex w′′ ∈ N(u′) ∩ T2 that is not adjacent to w or x, since
they belong to the same component of G[T2 ∪ {x}]. If u′ is not adjacent to v′,
G[{u′, v′, u, v, x, w,w′, w′′}] ∼= F1. Otherwise G[{u′, v′, u, x, w,w′, w′′}] ∼= P7.

To (a.3): We choose two adjacent vertices u, v ∈ T1 and two adjacent ver-
tices w, z ∈ T2. As described in case (a.1), we find vertices u′ ∈ P (u) \ N(x),
v′ ∈ P (v) \ N(x), w′ ∈ P (w) \ N(x) and z′ ∈ P (z) \ N(x), since none of
the vertices u, v, w or z is a cut-vertex of G[T1 ∪ {x}] (resp. G[T2 ∪ {x}]).
Further, as described in case (a.2), we can assume that there is not an edge
from u′ or v′ to w′ or z′. If u′ is not adjacent to v′ and w′ is not adja-
cent to z′, G[{u′, v′, u, v, x, w, z, w′, z′}] ∼= F2. If u′ is adjacent to v′ and w′

is not adjacent to z′ (or conversely), G[{u′, v′, u, x, w, z, w′, z′}] ∼= F1 (resp.
G[{u′, v′, u, v, x, w,w′, z′}] ∼= F1). If u′ is adjacent to v′ and w′ is adjacent to
z′, G[{u′, v′, u, x, w,w′, z′}] ∼= P7.

To (b.2): We find two adjacent vertices u, v ∈ T1 and w,w′ ∈ T2 such
that w ∈ N(y) and w′ ∈ N(w) \ N(y). If there is a private neighbor, say z,
of u or v that is adjacent to y, then z and y fulfill the condition of (b.1), as
N(y) ∩ T1 = ∅ and thus z /∈ T . Hence, we can assume that no private neighbor
of u or v is adjacent to y. Further, if P (u) ⊆ N(x), then T ′ = (T \ {u}) ∪ {x}
is a minimum total dominating set. The number of connected components of
G[T ′] equals the number of connected components of G[T ], as T1 ⊆ N(x). With
respect to y, T ′ fulfills (a.1) which we already dealt with. Thus we can choose
u′ ∈ P (u) \ (N(x)∪N(y)) and, for symmetry, v′ ∈ P (v) \ (N(x)∪N(y)). Since
w,w′ ∈ T2, there is not an edge from u′ or v′ to w or w′. If u′ is adjacent to v′,
G[{u′, v′, u, x, y, w, w′}] ∼= P7. Otherwise, G[{u′, v′, u, v, x, y, w, w′}] ∼= F1.

To (b.3): We choose two adjacent vertices u, v ∈ T1 and w ∈ T2. As described
in (b.2), we find private neighbors u′ ∈ P (u)\(N(x)∪N(y)), v′ ∈ P (v)\(N(x)∪
N(y)) and w′ ∈ P (w) \ (N(x) ∪ N(y)) (otherwise, case (a.2) or (b.2) holds).
We observe that if u′ or v′ is adjacent to w′, say u′, then u′ and w′ fulfill the
condition of (b.1), as T1 ⊆ N(x) and T2 ⊆ N(y) give u′, w′ /∈ T . Hence, we
can assume that u′ and v′ are both not adjacent to w′. If u′ is adjacent to v′,
G[{u′, v′, u, x, y, w, w′}] ∼= P7. Otherwise, G[{u′, v′, u, v, x, y, w, w′}] ∼= F1.

We are now ready to prove Theorem 1:
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Proof of Theorem 1. Let G be a connected graph. We have to show the equiv-
alence of the conditions 1 - 6 formulated in Theorem 1.

Since by definition γt is a lower bound for Γt, γp and Γp, it is clear that 1
implies 2, 3 and 4. Furthermore, we observe that

γt(H) = Γt(H) = γp(H) = Γp(H) = 4

and γc(H) = 5 for all H ∈ {P7, C7, F1, F2}. Hence, 1, 2, 3 and 4 imply 5 each.
By Lemma 1, 5 implies 1.

We finish the proof by showing that condition 5 is equivalent to 6. We
need a recent Theorem from Tuza [8] (that was independently proven by Bacsó
[1]) about structural domination in graphs. Let G be any non-empty class
of connected graphs closed under taking connected induced subgraphs. Their
Theorem yields a forbidden subgraph characterization of the connected graphs
for which any connected induced subgraph H has a connected dominating set X
such that H [X ] is isomorphic to some member of G. By applying their Theorem
we obtain that if G is the class of {P5, G1, G2}-free graphs, the set of forbidden
induced subgraphs is {P7, C7, F1, F2}. This completes the proof.
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