
Simplifying Maximum Flow Computations:
the Effect of Shrinking and Good Initial Flows✩

Frauke Liersa, Gregor Pardellaa

aUniversität zu Köln, Institut für Informatik, Pohligstraße 1, 50969 Köln, Germany

Abstract

Maximum-flow problems occur in a wide range of applications.Although already well-studied, they are still an area
of active research. The fastest available implementationsfor determining maximum flows in graphs are either based
on augmenting-path or on push-relabel algorithms. In this work, we present two ingredients that, appropriately used,
can considerably speed up these methods. On the theoreticalside, we present flow-conserving conditions under which
subgraphs can be contracted to a single vertex. These rules are in the same spirit as presented by Padberg and Rinaldi
(Math. Programming (47), 1990) for the minimum cut problem in graphs. These rules allow the reduction of known
worst-case instances for different maximum flow algorithmsto equivalent trivial instances. On the practical side,
we propose a two-step max-flow algorithm for solving the problem on instances coming from physics and computer
vision. In the two-step algorithm flow is first sent along augmenting paths of restricted lengths only. Starting from this
flow, the problem is then solved to optimality using some known max-flow methods. By extensive experiments on
instances coming from applications in theoretical physicsand in computer vision, we show that a suitable combination
of the proposed techniques speeds up traditionally used methods.

Keywords: maximum flow, minimum cut, subgraph shrinking, hybrid algorithm

1. Introduction

Determining maximum flows in networks is a classical problemin the area of combinatorial optimization, with
many applications abound in different fields. Elegant algorithms and fast implementations are available. They allow
the determination of a solution in a time growing only polynomially in the size of the input in the worst case, and
large instances can be solved in practice.

We formulate the maximums-t flow problem in following. We are given a network, that is a (directed or undi-
rected) graphG = (V, E). For an edgee ∈ E capacitiesce ≥ 0 are present. Further, we are given two vertices, called
the sources and the sinkt. Let f : E → R be a flow function on the set of edges, and denote byfe the amount of
flow on edgee. In the following we say flow and mean the corresponding flow function. We also do not distinguish
between undirected edges and directed arcs, if not necessary. The value of a flow is net amount of flow out of the
source. The objective is to determine a maximum flow, that is aflow with maximum value

∑

e∈δ+(s)

fe =
∑

e∈δ−(t)

fe,

with δ(v) = δ+(v) ∪ δ−(v) = {e ∈ E | e = (v, w)} ∪ {e ∈ E | e = (w, v)}. The flow has to respect the following
constraints:

(capacity constraints) 0 ≤ fe ≤ ce, ∀e ∈ E (1)

(flow conservation)
∑

w∈δ−(v)

f(w,v) =
∑

w∈δ+(v)

f(v,w), ∀v ∈ V \ {s, t} (2)

The set of capacity constraints (1) ensures that any feasible flow respects the capacities. The flow conservation
constraints (2) avoid flow generation or elimination other than at the source and the sink. In other words, every unit

✩Financial support from the German Science Foundation is acknowledged under contract Li 1675/1.

Preprint submitted to Elsevier June 8, 2011

M

M

M

M

1

v

w

s t

Figure 1: Simple (directed) example such that augmenting path strategies perform many unnecessary augmentations
in the worst case. Capacities are set to a very large value (indicated byM), except for the arc connectingv andw.
In the worst case, one repeatedly augments flow along the residual paths, v, w, t, then alongs, w, v, t, and so on.
Thus, one needs2M augmentations, while only two augmentations are needed if augmented along the pathss, v, t

ands, w, t.

4

4 4 4

4 4

1 1 r

s

t

vw

Figure 2: Minimum counterexample from [16] for the non-termination of augmenting path strategies if using real-
valued capacities (r =

√
5−1
2). At least one augmenting path always exists that uses the (residual) edge(v, w).

of flow that enters a vertex must leave it and vice versa. A flow is feasible if and only if the above constraints are
satisfied. A flow function violating the flow conservation constraints (2) is calledpreflow. For a vertexv that violates
the flow conservation constraint the difference of incomingflow and outgoing flow is called itsexcess.

The first algorithm for determining maximums-t flows has been presented in 1956 in a seminal work by Ford and
Fulkerson [10]. Flow is iteratively improved by increasingit alongaugmenting pathsbetween the source and the sink.
Given a feasible flow, an augmenting path is a path between source and sink such that additional flow can be sent to
the sink. In other words, the residual capacities of all edges on the path must be strictly positive. Most maximum
s-t flow algorithms rely on the concept of an auxiliary directed graph, the so-calledresidual graphR = (V, A). The
idea is the following. Suppose we have sentfe units flow along edgee. Thus, we can additionally sendce − fe units
flow along edgee. On the other hand, we can also cancelfe units of flow on edgee. Hence, for a given flowf the
residual graph consists of the same vertex set. Each original edgee = (v, w) is replaced by two arcsa1 = (v, w)
anda2 = (w, v). The arca1 has residual capacityce − fe while arca2 has residual capacityfe. One restricts the
residual arcs to those with positive residual capacities. Therefore we have to be more specific about augmenting path
strategies. Flow is sent along augmenting paths in the residual graphR until no such path exists. For rational capacity
choices this basic augmenting path algorithm terminates. However, its running time is pseudo-polynomial. Choosing
‘bad’ augmenting paths yields unnecessary augmentations,see Figure 1.

If capacities are real-valued there is no termination guarantee. In fact, Zwick [16] proposed a minimum coun-
terexample on which augmenting path algorithms do not terminate, see Figure 2.

Recently, Boykov and Kolmogorov [3] presented a fast implementation for determining maximums-t flows based
on augmenting paths in a more elaborate way. Two search treesare used simultaneously to determine augmenting
paths. One search tree starts at the source while the other isa backward tree starting at the sink. The trees are updated
dynamically in each search step. This ‘double tree strategy’ yields the currently fastest implementation for instances
coming from computer vision.

Dinic [4] proposed a so-called ‘blocking flow’ algorithm that can be interpreted as a clever augmenting path
strategy avoiding unnecessary augmentations. Applied to the worst case from Figure 1 only two augmentations are
made. This idea was independently proposed by Edmonds and Karp [5]. We note that these algorithms have strongly
polynomial running time. Finally, the method with the best practical performance on general instances is the push-

2

relabel algorithm by Goldberg and Tarjan [8]. We describe the general idea in the ‘highest label push-relabel’ form.
The algorithm maintains vertex labels that correspond to the distance of a vertex to the sink in the residual graph.
Initially, all vertices are labeled by a BFS starting at the sink. Next, the algorithm pushes all possible flow from the
source to its adjacent vertices, which results in a preflow. While the preflow is not a flow, a vertexv with highest
label is chosen among all vertices having positive excess. If possible, the excess atv is pushed along its incident
edges towards the sink. If there is then still some excess left at v, the distance label ofv is updated accordingly. The
push-relabel algorithm proposed by Goldberg and Tarjan [8]has strongly polynomial running time. For a detailed
discussion about network flow problems and solution methods, we refer to the excellent book ‘Network Flows’ [2]
and the references therein.

In the context of the minimum cut problem in undirected graphs, Padberg and Rinaldi [12] proposed conditions,
amongst others, for two adjacent vertices, sayv andw, such that the minimum cut either is given by (a)δ(v), (b)
by δ(w), or (c) verticesv andw belong to the same partition. In case (c) one can safely shrink these vertices. In
the context of maximums-t flows cases (a) and (b) will never occur forv, w different from source and sink. Thus,
the questions at hand are whether the same conditions from Padberg and Rinaldi can still be applied for maximum
s-t flows, or whether there exist alike shrinking operations such that maximums-t flows are preserved. Moreover, it
is interesting whether it is possible to derive conditions such that shrinking is also possible on directed graphs. We
will answer these questions in the following affirmatively.On the theoretical side, we also show that these shrinking
operations transform known worst-case maximums-t flow instances into trivial equivalent instances.

We aim at improving the practical running time of the fastestavailable implementations on instances arising in
computer vision and theoretical physics. To this end, we propose in Section 2 a reduction of the input by different
shrinking operations. Our operations are in the same spiritas the conditions for shrinking vertex sets that were
presented in [12] by Padberg and Rinaldi for the minimum cut problem in undirected graphs. In our context, we prove
the shrinking operations arguing vias-t flows in the network instead of arguing via general cuts in graphs.

Furthermore, we propose in Section 4 a hybrid maximum flow algorithm that heuristically finds a good initial flow
by increasing flow along augmenting paths of restricted lengths. If the resulting flow is not maximum, the problem is
solved to optimality by either a push-relabel or by an augmenting-path strategy. As the performance of these methods
depends on the characteristics of the input, the specific choice of the algorithm depends on the instance’s structure.

Although the methods proposed here can in principle be applied to any instance, we expect best performance for
specially structured instances. More specifically, in Section 5 we report computational results on two relevant classes
of applications in which the graph of interest is a regular two- or three-dimensional grid graph where additionally
each vertex is either connected to the source or to the sink. By extensive computational experiments, we find that
the proposed algorithm performs very well in practice, allowing the solution of realistic instances with up to15002,
2003, and9.7 ∗ 106 vertices. The outline of this work is as follows. In Section 2, we introduce the shrinking of vertex
sets. These operations are then applied in Section 3 to worst-case instances for different maximum flow algorithms.
It turns out that by doing so the worst-cases can be reduced totrivial equivalent instances. Subsequently, we present
the hybrid maximum flow algorithm in Section 4 and evaluate the computational results in Section 5. Finally, we
conclude in Section 6.

2. Preprocessing Maximum Flow Instances

In this section we present preprocessing operations to reduce either the capacities or the input size. The optimum
solutions on the modified input correspond to optimum solutions in the original input and vice versa. We will discuss
the different operations on undirected as well as on directed graphs. Hence, we will mainly use terminology for
undirected graphs and the directed one only when necessary.As a general preprocessing operation we suggest to
remove isolated vertices, edges with capacity zero, and in the directed case vertices other than source and sink with
indegree or outdegree zero. Edges connecting source and sink should also be removed. Note that the latter directly
induce some amount of flow sent from the source to the sink.

2.1. Capacity Normalization

One straightforward preprocessing operation is to reduce unusable edge capacities. We call this operationcapacity
normalization. The latter should be applied especially when using solution methods with pseudo-polynomial running

3

time. Unusable capacitiesc are those that cannot be exploited by any feasible flow. The corresponding edge capacities
can then be reduced, as we observe next.

Observation 1.

M

ǫ3

ǫ2

ǫ1

v

(undirected) Let e = (v, w) be the edge incident to vertexv that has largest capacity
among all edges incident tov. If it holds

∑

g∈δ(v)\{e}
cg ≤ ce,

then we can reducece to
∑

g∈δ(v)\{e}
cg as at most this amount of flow can be sent to and fromv using edgee.

M

ǫ3

ǫ1
ǫ2

v

(directed (i) Let e = (v, w) be the arc with largest capacity with headv among all
outgoing arcs atv. If it holds

∑

g∈δ−(v)

cg ≤ ce,

then we can reducece to
∑

g∈δ−(v)

cg as at most this amount of flow can be sent tov and leavev overe.

M

ǫ3

ǫ1

ǫ2
v

(directed (ii) Let e = (v, w) be the arc with largest capacity with tailv among all
incoming arcs atv. If

∑

g∈δ+(v)

cg ≤ ce,

then we can reducece to
∑

g∈δ+(v)

cg as at most this amount of flow can be sent fromv and reachv overe.

Algorithmically, capacity normalization can be accomplished by determining for each vertex the incident edge with
largest capacity among all incident edges. If the conditionfrom Observation 1 is satisfied, its capacity can be reduced
accordingly. Checking the condition for all vertices takesO(|V ||E|) steps. At mostO(|V |) passes are needed to
ensure that all unusable capacities are removed. Thus, capacity normalization can be done inO(|V |2|E|) time. The
running time for capacity normalization is surely not competitive when compared to the running time of well-known
maximums-t flow solution methods. However, if applied in a heuristic manner, for example by applying only one
pass, the running time and the quality of normalization can be controlled.

2.2. Shrink Max Edge (SME)

Instead of applying capacity normalizing, an edgee = (v, w) that satisfies the condition in Observation 1 can
alternatively be shrunk to a supervertex by identifying itsincident verticesv andw. We call this operationshrink
max edge(SME). In the undirected case the condition from Observation 1 directly yields the SME condition. It is
easy to see that then for each flow in the modified graph there isa corresponding flow in the original graph. Hence,
an SME operation on undirected graphs preserves flow solutions. In contrast, on directed graphs this is not true, see
Figure 3. Even if the condition in Observation 1 is satisfied on directed graphs shrinking may not lead to a correct
algorithm. We cannot guarantee a one-to-one correspondence between flows in the modified and in the original graph.
Instead, we must rephrase the condition for directed graphs. The SME operation can be applied to all verticesv with
indegree or outdegree at most one, otherwise it may lead to wrong solutions, see Figure 3. Hence, the condition now
reads:

4

vw

20
v

SME

w

5

5

5

15

15

5

ca1
= 15

ca2
= 15

Figure 3: Applying the SME operation without modifications on directed graphs can lead to wrong solutions. In our
example, we would shrink verticesv andw to the supervertexvw as the condition of Observation 1 for directed graphs
is true. However, this yields the possibility to send15 units flow to supervertexvw using arca2 which can be sent
further using arca1. In the original graph there is no corresponding flow.

Observation 2.

vw

(directed) Let v be a vertex with indegree one and lete = (w, v) be the arc with head
v. If

∑

g∈δ+(v)

cg ≤ ce, or

∑

g∈δ−(w)

cg ≤ ce,

then we can shrink verticesv andw to a supervertexvw.

v w

If vertexv has outdegree one ande = (v, w) is the arc with tailv, vertices
v andw can be shrunk if

∑

g∈δ−(v)

cg ≤ ce, or

∑

g∈δ+(w)

cg ≤ ce.

Roughly speaking, the first condition in Observation 2 tellsus either that the arc of interest can relay the maximum
‘incoming’ flow at vertexw to vertexv, or that the maximum ‘outgoing’ flow at vertexv is less than the amount of
flow that may reachv. The second condition deals with the case that either the capacity of the arc of interest is larger
than the amount of ‘incoming’ flow at vertexv, or it is larger than the amount of ‘outgoing’ flow at vertexw. Together
with the degree constraint shrinking is a feasible operation in both cases.

Note that we can drop the degree constraints from conditionsfrom Observation 2 and apply them to the sources

and to the sinkt. If shrinking is possible for those vertices, arcs with heads or tail t are possibly created. The latter
arcs can be removed as no units of flow will enter the source andno units of flow will leave the sink.

The complexity of the SME operation isO(|E|2) if deleting and inserting an edge takes constant time. As a
special case, vertices with degree two (respectively indegree and outdegree one in the directed case) can be eliminated
by shrinking the edge with larger capacity. Removing degree-two vertices can be performed in timeO(|V |).

2.3. Triangle SME

The straightforward SME operation is the building block of more general shrinking operations. A natural extension
can be formulated when considering three pairwise adjacentvertices. We call this extensiontriangle SME. In Lemma 1
we establish conditions under which two of the three vertices can be shrunk to a supervertex even if the SME operation
is not applicable. For ease of presentation, we first define the sum of capacitiescv at a vertexv with respect to its
incident edges. Hence, in the undirected case letcv =

∑

g∈δ(v)

cg for all verticesv ∈ V \ {s, t}. In the directed case we

distinguish betweenincome capacitiesc−v andoutcome capacitiesc+
v , wherec−v =

∑

g∈δ−(v)

cg andc+
v =

∑

g∈δ+(v)

cg,

for all verticesv ∈ V \ {s, t}.

5

Lemma 1.

v

w

q

(undirected) Letq,v, andw be three pairwise adjacent vertices such thatv andw are different
from the source and the sink. Verticesv andw can be shrunk to a supervertex, if

2(cqv + cvw) ≥ cv and

2(cqw + cvw) ≥ cw.

v

w

s

(directed (a)) Let s,v, andw be three pairwise adjacent vertices wheres is the source. Ver-
ticesv andw can be shrunk to a supervertex, if

csv + cvw + cwv ≥ c+
v and

csw + cvw + cwv ≥ c+
w .

v

w

t

(directed (b)) Let t,v, andw be three pairwise adjacent vertices wheret is the sink. Vertices
v andw can be shrunk to a supervertex, if

cvt + cvw + cwv ≥ c−v and

cwt + cvw + cwv ≥ c−w .

PROOF (LEMMA 1). We prove the correctness by showing that any feasible amount of flow through supervertexvw

in the modified graph has a corresponding flow with the same value in the original graph. The reverse direction is
obvious. In the undirected case our argumentation is based on a local rerouting strategy. For the directed cases, the
proofs rely on the fact that units of flow can be rerouted globally by rerouting them back to the source and then sending
them along.

(undirected) We need to distinguish the incident edges at supervertexvw that carry units of flow. More specifically,
we distinguish between the edges incident tov andw in the original graph and show how to reroute units of
flow. Further, we only consider the case in which the maximum feasible amount of flow passes supervertexvw.
All other cases directly follow.

First consider the case in which there arefq,vw > 0 units of flow betweenq andvw. As we consider only feasi-

ble flows in the modified graph it holds thatfq,vw ≤ cqv+cqw andfq,vw =
∑

r∈N(v),w 6=r 6=q

fvr

︸ ︷︷ ︸

=:fv

+
∑

r∈N(w),v 6=r 6=q

fwr

︸ ︷︷ ︸

=:fw

.

We routefq,vw units of flow in the original graph to verticesv andw using edges(q, v) and(q, w). On edge
(q, v) we route some amount of flowfqv such thatfqv ≤ cqv and on edge(q, w) we routefqw ≤ cqw units.
Now, it is possible that eitherfv > fqv or fw > fqw is true. Note that both cannot be true, otherwise the flow
is not feasible in the modified graph. W.l.o.g., assumefv > fqv. Hence, we must still routefv − fqv units of
flow in the original graph viaw to vertexv. By the conditions in Lemma 1 it is true that

cv ≤ 2(cqv + cvw) ⇔ cv − cqv − cvw
︸ ︷︷ ︸

≥fv

≤ cqv
︸︷︷︸

≥fqv

+cvw

Therefore,fv − fqv ≤ cvw. The flow in the modified graph respects the capacity constraints, that isfq,vw ≤
cqv + cqw. Thus, if the flowfv is larger than the capacitycqv the remaining flowfv − fqv can be carried by
edge(q, w). Thus, in the original graph we can route this amount of flow tovertexw over edge(q, w) and then
to v using edge(v, w). This completes the first case.

6

s vw

csv + csw

ch

cl
l

h

?
csv

cvw

csw

v

w

s

ch

cl

h

l

Figure 4: Rerouting flow in the directed case. Blue edges havea positive amount of flow. Edge capacities are
indicated. Units of flow reaching supervertexvw in the modified graph over edges previously incident to vertex
w cannot be locally rerouted.

Similarly, we show how to reroute units of flow passing the supervertex in the modified graph using edges
incident tov andw other than(q, v) and(q, w). Let fvw be these units of flow. Hence,

fvw =
∑

r∈N(v),w 6=r 6=q

fvr

︸ ︷︷ ︸

=:fv

+
∑

r∈N(w),v 6=r 6=q

fwr

︸ ︷︷ ︸

=:fw

.

In the original graph we routecvw units of flow using edge(v, w). Next, we routefw − cvw units of flow to
vertexq using edge(q, w). This is possible as the conditions in Lemma 1 are satisfied. These units of flow are
then routed fromq to v using edge(q, v). Again this is possible asfw − cvw = fv − cvw and the conditions in
Lemma 1 are satisfied. All other cases, especially those in which edges(q, vw) and (formerly) incident edges
to v or w carry nonzero flow, follow directly with this argumentation.

(directed (a)) The only interesting case is the one shown in Figure 4. Other cases directly follow with analogous
arguments. Suppose there are units of flow from sources and vertexl passing the supervertexvw along to
vertexh in the modified graph. These units cannot be locally rerouteddue to the edge orientation. Hence, we
cannot send units of flow from vertexw to neithers nor v in the original graph. However, we can reroute the
amount of incoming flow at vertexw back to the sources. This is possible as we only consider feasible flows.
Thus, there exists a path from sources to vertexw carrying these units of flow, see Figure 5. Moreover, the
units of flow can be sent via edgesv, as

csv ≥
∑

g∈δ+(v)

cg − cvw − cwv.

sent flow back to source

csv

cvw

csw

v

w

s

ch

cl

h

l

s vw

csv + csw

ch

cl
l

h

Figure 5: Globally rerouting flow in the directed case. Unitsof flow reaching supervertexvw over edges
previously incident to vertexw can be routed back to the source. These units then can be sent using the edge
from s to v.

7

q q

Z

Figure 6: Subgraphs, denoted byHZ
q , can be replaced by simpler structures if the conditions in Lemma 2 are satisfied,

as there exists a correspondence between the flows in the original and in the modified graph.

(directed (b)) For supervertexvw we do not need to use any global rerouting. The maximum amountof flow that
reachest is limited by cvt + cwt. It is not difficult to see that this amount of flow can be locally rerouted.
Capacitycwt is larger than the possible and relevant amount of incoming flow over edges formerly incident
to vertexw. The same is true for capacitycvt and edges formerly incident to vertexv. The amount of flow
reaching the sinkt is limited bycvt andcwt. If some units of flow reach supervertexvw over edges formerly
incident tov and pass along edges formerly incident tow then these units can be routed in the original graph
over edge(v, w). The case that those units reach supervertexvw over edges formerly incident tow and are not
sent to sinkt is excluded. Any such amount is directly sent tot over edge(w, t) that has sufficient capacity, as
flow is supposed to reach the sink. �

2.4. Implementation Details

We briefly discuss the practical implementation of the aforementioned conditions. We restrict ourselves to those
operations that affect vertex sets of small cardinality dueto the complexity of the more general conditions, as we will
discuss in Section 2.5. We only apply the SME and the triangleSME operation as stated in Lemma 1. The sum of
capacitiescv for each vertexv are precomputed and updated after a successful operation. In fact, for verifying the
conditions given in Lemma 1 we have to consider any pair of edges incident at some vertexq to find suitable vertices
v andw. Additionally, we must verify fast thatv andw are adjacent. Thus, an adjacency oracle is needed that returns
a potential edge between verticesv andw in O(1) time. In a straightforward implementation the total numberof steps
can be bounded byO(|V |4 × Nvw), whereNvw = min{|δ(v)|, |δ(w)|} is the time to shrink verticesv andw to a
supervertex.

Thus, completely applying the operations needs too long to be used in a fast preprocessing step. Indeed, in practice,
we do not check all possible pairs but consider only a (small)set of promising pairs. By doing so, we potentially miss
some feasible shrinking operations but found better overall performance.

2.5. SME for Subgraphs

In this subsection we describe general conditions such thatsubgraphs can be shrunk to a supervertex. These
condition are in the same spirit as the ones proposed by Padberg and Rinaldi [12] in the context of the minimum cut
problem in undirected graphs. We show that similar conditions are also valid in the context ofs-t maximum flow
problems. Our proofs are based on a local flow rerouting strategy and do not consider cuts. By the mincut-maxflow
theorem, a maximums-t-flow corresponds to a minimums-t-cut. As a minimum cut is a minimums-t-cut over all
vertex pairss andt, the following arguments can be seen as an alternative argumentation for the shrinking conditions
given in [12]. Reversely, as in general a maximums-t-flow cannot be derived from a given minimum cut, it is not
easily possible to directly use the conditions from [12] forflows.

We start with conditions that allow shrinking of subgraphs as shown in Figure 6. These conditions can be inter-
preted as an extended SME condition, as stated in Observation 2, applied on a restricted edge set.

We define the vertex-induced subgraphHZ
q of interest as follows: letZ ⊂ V be a subset of vertices such that

neithers nor t are elements ofZ and letq ∈
⋂

z∈Z

N(z) \ Z, whereN(v) = {w ∈ V | (v, w) ∈ E} denotes the

8

neighbourhood of nodev. The vertex-induced subgraphHZ
q , induced by{q∪Z}, is defined asHZ

q = {{q}∪Z, EZ
q }

with EZ
q = {(q, z) ∈ E | z ∈ Z} ∪ {(zi, zj) ∈ E | zi, zj ∈ Z}. We state the necessary conditions for a shrinking

operation inHZ
q in the next lemma.

Lemma 2. Given a subgraphHZ
q as described above. Vertex setZ can be shrunk if∀ ∅ 6= W ⊂ Z

∑

w∈W,v 6∈W

cwv ≤ 2(
∑

w∈W

cqw +
∑

w∈W,z∈Z\W

cwz) (3)

holds.

PROOF (LEMMA 2). We argue in an analogous way as in the proof of Lemma 1: We show how every feasible flow
in the modified graph passing the supervertex can be locally rerouted in the original graph. The other direction is
obvious. We suppose the considered flow is maximum.

W.l.o.g assume the SME conditions given in Observation 2 arenot satisfied for any edgee ∈ EZ . Otherwise we
first reduce vertex setZ accordingly. We start with a simple case of rerouting and then extend it to the general case.
Suppose there exists a vertexz ∈ Z that is inHq,Z only adjacent toq. As (3) is satisfied forW = {z}, it holds that
2cqz ≥ cz. Let f denote the amount of flow that passes through the supervertexusing edges formerly incident to an
arbitrary vertexzi ∈ Z \ {z} andz in the original graph. Thus in the original graph, we have to routef units of flow
betweenz andzi. If vertexzi is only adjacent toq in the subgraphHZ

q , then the amount of flowf betweenz andzi

can be routed viaq as it holds2cqzi
≥ czi

, and2cqz ≥ cz . Moreover, as there exists a one-to-one correspondence
between the considered edges in the modified and the originalgraph and the flow is feasible in the modified one, it is
czi

≥ f andcz ≥ f . This concludes the first case.
If there exists an edge(zi, zj) with zj ∈ Z in EZ , then the verticesq, zi, andzj form a cycle. We argue with the

triangle SME conditions that in this case the flow can be rerouted betweenz andzi. Indeed, we reroutef ′ = cqzi

flow units toq via edge(q, zi) and then along(q, z) to vertexz. If there remains some units of flowf ′′ = f − f ′,
they can be rerouted to vertexzj as2(cqzi

+ czizj
) ≥ cz ≥ f . It remains to be shown, that the remaining amount

of flow f ′′ can be rerouted betweenzj andz. For now supposezi andzj are part of only one such cycle. Consider
W = {zi, zj} ⊂ Z then

∑

w∈W,zk∈Z\W

cwzk
= 0, as there exists no edge connecting vertices inZ \W with vertices in

W . Further, it is2
∑

w∈W

cqw ≥ cW because of (3). Therefore, we can send the remaining amount of flow f ′′ to q and

then toz as again2cqz ≥ cz ≥ f ≥ f ′′.
We assumed that verticeszi, andzj are part of only one cycle, now we drop this assumption. Hence, if vertices

zi, zj or z are part of several cycles, the above argumentation is applied recursively for different choices of setW .
For each set of vertices the conditions given are satisfied and thus the given amount of flow can be rerouted. The
recursion is finite and either we end up with a similar situation as discussed above, that is thatz is not adjacent to any
other vertex inZ, or if z is adjacent to some vertices inZ, some amount of flow can be directly routed between those
vertices without considering vertexq due to (3). With similar arguments any combination of some feasible units of
flow can be rerouted between any subsets of vertices inZ. Any possible flow betweenq and the supervertex in the
modified graph can be rerouted with similar arguments. �

We argued that if conditions (3) in Lemma 2 are satisfied, thenevery feasible flow in the modified graph can be
locally rerouted within the subgraphHZ

q , yielding a flow with the same value in the original graph. We generalize the
situation in Lemma 2 to more general subgraphs.

Theorem 3. Let Q ⊂ V, Z ⊂ V \ Q such that neithers nor t are elements ofZ. A vertex setZ in the subgraph
HZ

Q = (Q∪Z, EQZ) with EQZ = {(q, z) ∈ E | q ∈ Q, z ∈ Z}∪{(zi, zj) ∈ E | zi, zj ∈ Z} andQ ⊆
⋂

z∈Z

N(z)\Z

can be shrunk if∀ ∅ 6= W ⊂ Z and∀ Y ⊆ Q :

∑

w∈W,v 6∈W

cwv ≤ 2(
∑

w∈W,q∈Y

cqw +
∑

w∈W,v∈Z\W

cwv)

9

Theorem 3 directly follows from Lemma 2. Moreover, the conditions in Theorem 3 are similar to conditions given
by [12] in the context of minimum cuts in undirected graphs. We formalize their results in the context of maximum
s-t flows in the following.

Theorem 4. Let G = (V, E) be an undirected weighted graph. LetZ be a proper subset ofV with |Z| ≥ 2 such
that neithers nor t are elements ofZ. Further denote byN(Z) the common neighbourhood, that is the set of vertices
such that every vertex inZ is adjacent to every vertex inN(Z), excludingZ. If there existsY ⊆ N(Z) such that for
every nonempty proper subsetW of Z and for everyT ⊆ Y either

(a)
∑

w∈W,v 6∈W

cwv ≤ 2(
∑

w∈W,v∈T

cwv +
∑

w∈W,v∈Z\W

cwv), or

(b)
∑

w∈Z\W,v 6∈Z\W

cwv ≤ 2(
∑

w∈Z\W,v∈Y \T

cwv +
∑

w∈Z\W,v∈W

cwv),

thenZ can be shrunk to a supervertex and there exists a correspondence between feasible flows in the original and
the modified graph.

Theorem 4 can be understood as follows. Consider a set of verticesZ and the common neighbourhoodN(Z) =
⋂

v∈Z

N(v) \ Z in an undirected graph, see Figure 7.

T

Y

Z

W

G

N(Z)

Figure 7: Schematic situation as considered in Theorem 4. SetsZ, W , Y , T , andN(Z) are shown. Black edges are
those with exactly one vertex inZ and the other not inW , Y , or T . Blue edges have exactly one vertex inW and the
other not inZ, Y , orT . Green dotted edges connect vertices inW with those inZ \W . Purple (dashed-dotted) edges
connect vertices inZ \ W with those inY \ T , while dark green edges connect vertices inW with vertices inT .

For a vertex set we denote byincoming amount of flowthe possible amount of flow reaching this vertex set via
edges with exactly one endvertex in this set. LetY be a subset ofN(Z). Now, we consider every nonempty proper
subsetW of Z. Further, for each such subset we consider every subsetT of Y . We check whether (a) the incoming
amount of flow inW without the incoming amount of flow inW over edges with one endvertex inZ \W can be sent
to T andZ \ W or (b) the incoming amount of flow inZ \ W without the incoming amount of flow over edges with
one endvertex inW can be sent toW andY \ T . The conditions given in Theorem 3 correspond to conditions(a) in
Theorem 4. So if (a) is satisfied for all subsets, there existsa correspondence between flows in the modified and in
the original graph. The second condition (b) is more sophisticated but again can be interpreted as an SME condition
for subsets of edges. In the case that (a) is not satisfied for some subsetsW andT , the outgoing capacities ofW are
larger than the sum of capacities of edges connectingW with T andZ \ W . This may allow for feasible flows in the
modified graph that cannot be realized in the original graph.However, if instead (b) is true, vertex setZ can be shrunk
and the correspondence between flows in the modified and the original graph is given. Indeed, consider for example
the situation in Figure 8. In the subgraph shown, the condition (a) is satisfied for allT andW , except forW = {a, b}.
For this subsetW andT = Y we have:46 � 42, and forT = ∅: 46 � 30. Hence, shrinking would not be possible as

10

Z

q

c = 1

c = 5

c = 15

c = 5

c = 100
c = 10

c = 5

c = 20

Y

a

b

c

Figure 8: A subgraph for which condition (a) of Theorem 4 is not satisfied for all considered subsetsW . Indeed,
for W = {a, b} condition (a) is not satisfied for everyT . Nevertheless, setZ can be shrunk as condition (b) in 4 is
satisfied for thisW . Note, we can also apply the SME condition on edge(a, b) and then on edge(ab, c) resulting in
the same supervertex.

some units of flow cannot be directly rerouted viaq. However, condition (b) is satisfied forW = {a, b} and everyT .
With this it is possible to reroute these units withinZ and, as (a) is true for all other setsW , to q.

So, if the conditions in Theorem 4 are true for everyW and T , we can shrink setZ to a supervertex. The
correctness is further based on the symmetry betweenW andZ \ W while considering every setT of Y . Therefore,
we can route the units of flow fromW to Z \ W andT and then to every otherW , or vice versa the incoming flow
in Z \ W can be handled this way. With this intuitive argumentation one can state general SME conditions such that,
if satisfied, a set of vertices can be shrunk to a supervertex and there exists a correspondence between feasible flows
in the original and in the modified graph. It is easy to see thatif a setZ has been shrunk to a supervertex and there
exists some amount of flow in the modified graph that cannot be routed in the original graph, then the conditions for
the corresponding setW are not satisfied. Hence, the rerouting possibilities are implicitly encoded in the conditions
given in Theorem 4. Specifically one can say, if always the first condition (a) in Theorem 4 is true we already showed
the one-to-one correspondence. If always the second condition (b) in Theorem 4 is true, it is easy to see that this
implies that (a) is always true. So it remains to argue about the case in which (a) is not always satisfied, but instead
(b). Suppose forW1, T1 (a) is not satisfied but (b). Hence,

∑

w∈Z\W1,v 6∈Z\W1

cwv ≤ 2(
∑

w∈Z\W1,v∈Y \T1

cwv +
∑

w∈Z\W1,v∈W1

cwv) (4)

This means that forW2 = Z \ W1 andT2 = Y \ T1 (a) is satisfied. Consider nowW1 andT2. If (a) is satisfied for
this combination, in formulae,

∑

w∈W1,v 6∈W1

cwv ≤ 2(
∑

w∈W1,v∈T2

cwv +
∑

w∈W1,v∈Z\W1

cwv), (5)

then it is easy to see that in this case the flow can be rerouted.Suppose now, (a) is not true, but (b),

∑

w∈Z\W1,v 6∈Z\W1

cwv ≤ 2(
∑

w∈Z\W1,v∈Y \T2

cwv +
∑

w∈Z\W1,v∈W1

cwv), (6)

which corresponds to:

∑

w∈Z\W1,v 6∈Z\W1

cwv ≤ 2(
∑

w∈Z\W1,v∈T1

cwv +
∑

w∈Z\W1,v∈W1

cwv), (7)

11

that means together with (4) we can reroute every feasible amount of flow passing along edges incident to vertices in
Z \W1 in the original graph toY . Now considerW1 andT3 = Y . It is easy to see that either (a) is true or (b), which
both allows for rerouting feasible amounts of flow.

For directed graphs analogous more general conditions can be formulated as given in Lemma 1. Combining the
ideas in Lemma 1 with those given in Lemma 2 the conditions follow with similar (global) rerouting arguments as
used in Lemma 1.

2.5.1. Complexity of SME for Subgraphs
The general conditions presented in Section 2.5 are mainly of theoretical interest. Indeed, verifying the proposed

conditions is computationally hard. Hence, it is not advisable to apply these conditions in a preprocessor for maximum
s-t flow problems.

Our triangle SME conditions, given in Lemma 1, can be mapped to the special case of|Z| = 2 and|Y | = 1 in
Theorem 4, and can be verified fast. In contrast, Padberg and Rinaldi deduce conditions from their theorem (see also
Theorem 4) considering setsZ of cardinality two and arbitrary large neighbourhoodY which can also be done within
the flow context. More specifically, stating their theorem inthe flow context, we get

Corollary 5. Letv 6= w ∈ V \ {s, t}. If there existsY ⊆ N(v) ∩ N(w) such that

(a) cv ≤ 2
∑

u∈T∪{w}
cvu, or

(b) cw ≤ 2
∑

u∈Y ∪{v}\T

cwu

holds for allT ⊆ Y , then verticesv andw can be shrunk and there exists a correspondence between feasible flows in
the original and the modified graph.

For the conditions in Corollary 5 in the minimum cut context Padberg and Rinaldi remark, without giving an explicit
proof, that for a givenY it is NP-complete to check the given conditions. We clarify this remark and show next that
the decision problem ofnot shrinking is NP-complete for a givenY . First, it is easy to see that not shrinking belongs
to NP. Guess a setT ⊆ Y and verify in polynomial time that both conditions (a) and (b) in Corollary 5 do not hold.
Next, we show that not shrinking is NP-hard and reduce the NP-completePARTITION PROBLEM [6] to the problem at

hand. The latter is defined as: given a set ofn integersS = {s1, s2, . . . , sn}, with M =
n∑

i=1

si. Does a subsetR ⊂ S

exist such that
1

2

n∑

i=1

si =
M

2
=

∑

si∈R

si =
∑

si∈S\R

si?

For a givenPARTITION instance define the graph as shown in Figure 9. For every integer si we have a vertex.
Additionally, we have a vertexv and a vertexw such that both are adjacent to every vertexsi. Set the capacities for
the edges(v, si) and(w, si) as si

2 . Vertexv is connected to the sources by an edge with capacity12 . Vertexw is
connected to the sinkt by an edge with the same capacity1

2 . Now, if shrinking the verticesv andw is feasible it must
hold for allT ⊆ Y :

cv ≤ 2
∑

u∈T∪{w}
cvu

⇔
M + 1

2
≤ 2

∑

si∈T

si

2
,

or

cw ≤ 2
∑

u∈Y ∪{v}\T

cwu

⇔
M + 1

2
≤ 2

∑

si∈Y \T

si

2
.

12

s1

s2

s3

s4

sn

v

w

Y = N(v) ∩N(w)

c = s1
2

c = sn

2

c = s2
2 s

t

c = 1
2

c = 1
2

Figure 9: Corresponding flow instance graph for a givenPARTITION instance.

If this is true, there exists no subsetR ⊂ S which is a solution for thePARTITION problem. Otherwise there existsT

⊆ Y such thatM+1
2 > 2

∑

si∈T

si

2 and M+1
2 > 2

∑

si∈Y \T

si

2 , which is a solution for thePARTITION instance. Therefore,

the corresponding decision problem for not shrinking is NP-complete.

3. Preprocessing Makes Worst-Case Instances Trivial

M

M

M

M

1
s t

2M

v

w

s t

Figure 10: Worst-case instance for augmenting path strategies and a trivial equivalent one after preprocessing the
original input.

By applying the proposed preprocessing operations, well-known worst-case examples for different maximum
flow algorithms can be transformed to equivalent trivial instances. Figures 10 and 11 show worst-case instances for
augmenting path algorithms as given in the book by Ahuja et al. [2]. In the worst case2M augmenting steps are
needed for solving the instance in Figure 10. Using non-rational capacities as in Figure 2 from [16] can even prohibit
augmenting path strategies to terminate. The instance fromFigure 10 can be transformed into an equivalent one by
applying the triangle SME operation for directed graphs. The result is shown on the right in Figure 10. Applying
shrinking operations on the dotted red cycles shown in Figure 11 and capacity normalizations on those edges yields a
trivial equivalent case.

FIFO push/relabel algorithms maintain vertices with positive excess in a queue. New vertices with positive excess
are added at the rear of the queue. Vertices are selected by removing them from the front of the queue. For FIFO
push/relabel strategies, a worst-case instance and the trivial shrunk one are shown in Figure 12. In the worst case, the
FIFO push/relabel algorithm pushes flow from the source to all adjacent vertices1, 2, . . . , n−2 and adds these vertices
to the queue in the ordern− 2, n− 3, . . . , 1. The vertices are considered in this order and flow is pushed towards the
sink. Only the last vertex in the queue loses its excess whileall other vertices still have positive excess. Thus,n − 2
push/relabel phases andΩ(n2) many push operations are executed until the preflow becomes aflow. Applying the

13

4

4 4 4

4 4

1 1 r

s

t

4

4 4 4

8

1 r

s

t

4

4 8

8

1

s

t

9

s

t

9

9

s

t

4

4 5

5

1

s

t

Figure 11: Worst-case by U. Zwick [16] for augmenting path strategies, withr =
√

5−1
2 . Moreover, the reduction to

a trivial equivalent instance is shown. Applying SME operations and capacity-normalization on the dotted red edges
yields the trivial equivalent instance.

s

t
M MM

1 111
n − 2

1 2 n-2

s t

Figure 12: Worst-case instance for FIFO push/relabel strategy and a trivial equivalent one.

SME operations for all edges with capacityM shrinks the instance to the one shown on the right in Figure 12. As a
consequence, the above worst-case instances can be solved without even calling a maximum flow algorithm. Only the
proposed preprocessing operations need to be applied.

Indeed, these are small worst-case examples. Neverthelessthey are commonly used to show the drawbacks of
known maximum flow algorithms. Further, the presented graphs may be encountered as subgraphs in larger instances
which in return can be preprocessed as shown. The proposed preprocessing operations may help in reducing the
instance size independent from the used maximum flow solution method.

4. Hybrid Maximum Flow Algorithm

In this section, we propose a hybrid algorithm that starts byincreasing flow through the network in a greedy
fashion, using only short augmenting paths whose lengths donot exceed a certain threshold. This greedy step either
finds a maximum flow or a (good) initial flow. In the latter case,the flow is increased further to an optimal one by
some known maximum flow algorithm. Depending on the problem structure, we either use a lowest push/relabel
approach or an augmenting path strategy. The performance ofdifferent maximum flow algorithms strongly depends
on the problem structure. For example, while some approach may perform well on sparse graphs, it might take long
on dense instances, or vice versa. As it is known [7] that the ‘double tree’ augmenting path strategy by Boykov
and Kolmogorov [3] is especially fast on sparse instances, we use it in such cases. For dense instances, a lowest
push/relabel approach performs considerably better than the ‘double tree’ procedure and is preferable in this case.
We thus exploit the algorithmic advantages of the differentmethods. This hybrid algorithm can also be combined
with preprocessing shrinking operations as presented in Section 2. After having solved the problem to optimality, all

14

preprocessing steps have to be undone. Finally, the optimumflow has to be rerouted accordingly.
We summarize the hybrid algorithm in Algorithm 1 and discussthe greedy step in more detail next.

Algorithm 1 : Hybrid maximum flow algorithm
1: (Apply preprocessing operations)
2: Label vertices
3: repeat
4: Depth-restricted flow augmentation
5: Update vertex labels afterr augmentations
6: until no augmenting path with prescribed length betweens andt is found
7: Switch to ‘double tree’ or ‘push/relabel’ strategy
8: (Undo preprocessing operations (reroute flow))

4.1. The Greedy Phase

The general idea in the depth-restricted flow augmentation phase is to label the vertices depending on the initial
labels of their local neighbourhood. This yields a rough classification of the vertex set with regard to their distance
from s andt, see Figure 13. The labeling then controls a depth-restricted flow augmenting step which is performed
until no augmenting path between source and sink is found. Asit would take too long to determine vertex labels
exactly, we only determine whether a vertex is ‘near to’ the source and/or ‘near to’ the sink or not. Intuitively, greedy
augmenting paths between vertices that are far away from thesource and the sink are allowed to be longer than those
between vertices that are near to the source and the sink. In the following, we explain the details of this greedy step.

We assign initial vertex labelsS, T, ST, N with the following meanings. If there exists an edge(s, v) but no
edge(v, t) for a vertexv, it is labeled byS. If a vertex is adjacent tot but not tos we set labelT . In case a vertex is
adjacent to boths andt labelST is used. If a vertex is neither adjacent tos nor t it is labeled withN .

We subsequently refine the label of each vertex depending on the initial labels of its adjacent vertices. The label
refinement for vertexv is independent of its own initial label, see Figure 13. Supposev is adjacent only to vertices
labeled byT (resp.ST , S). Then the refined label isOT (OT , OS, respectively). Otherwise, if at least one but not
all neighbours ofv are labeled byT or ST , then the refined label is set toNT . If v does not have a neighbour labeled
by T or ST but at least one neighbour with labelS, thenv receives the refined labelNS. In the remaining cases, the
refined label is set toON . The labeling is determined by a breath-first search starting at the source and uses the initial
labelsS, T, ST, N only. With the labeling at hand we search for augmenting paths from vertices with initial labelS.
We restrict the length of those paths depending on the refinedvertex label. These paths are short and can be checked
fast. The labels may be updated in the residual graph after some depth-restricted augmentations and the augmenting
search may be repeated.

In our experiments we found that afterr = 5 augmentations, a label update should be performed. The definition
of the path lengths depends on the problem at hand. Setting the thresholds to a large value increases the running time
without yielding considerably better flows. Setting them toa very small threshold keeps the running time low but only
yields flows with very small values. In our tests, we found good performance for the following depths: 1 (OT), 3

(NT), 7 (OS), andmin{ |δ+(s)|
20 , 14} (ON), where|δ+(s)| is the out-degree of the source in the residual graph. The

usage of long paths is prohibited for vertices with labelON if the source is only sparsely connected in the residual
graph. Our computational results in Section 5 indicate thatthis hybrid algorithm works well on the classes of instances
occurring in physics and in computer vision.

5. Computational Results

Among the many applications for maximum flows in graphs, we focus here on applications in computer vision
and in theoretical physics. Although these applications are in different areas, the typical instances share a similar
structure. In the random-field Ising model (RFIM) from theoretical physics, the so-calledbase graphis a two- or
three-dimensional grid graph in which all edges have the same capacity. Furthermore, each vertex in the grid is either

15

source s

sink t

adjacent to vertices with initial label S and T

adjacent to vertices

labeled by S

Figure 13: Vertex labeling and motivation for depth-restricted flow augmentation. The instances of interest show the
characteristic that one can classify the vertex set into near to the source and/or near to the sink sets. Furthermore,
many short paths between source and sink exists, allowing for a greedy approach as first step.

connected to an additional sources or to a sinkt with equal probability. The latter edges can have differentcapacities.
Networks with a similar graph structure but different capacity choices also occur in image segmentation or image
restoration applications in computer vision.

More specifically, our experiments focus on the following different instance types:

(vision) directed computer vision instances [15] as reported in [3,7] with integer capacities;

(rfim) (directed and undirected) RFIM instances as described in [13]. We used uniform interaction energyJ = 1
which yields uniform capacitiesc = 1 for the edges in the base graph. The random field, i.e. the capacities
for edges incident to the source and the sink, was either uniform with values1, 2, 4, 8 or followed a Gaussian
distribution with mean zero and variance1, 2, 4, and8. Grid sizes varied up to15002 in 2D and up to2003 in
3D.

Due to the specific structure, many cycles of length three arepresent in all instance classes which especially allows
for the application of the triangle SME operations. We evaluate the following algorithms and implementations:

(g) highest push/relabel implementation by Goldberg and Tarjan [8] for directed graphs with integer capacities,

(j) ‘mincut-lib’ by Jünger et al. [9] with a fast implementation of a ‘highest push/relabel’ algorithm for undirected
graphs,

(bk) ‘double tree’ implementation by Boykov and Kolmogorov, specialized for computer vision instances [3],

(o) hybrid method with the ‘double tree’ implementation by Boykov and Kolmogorov [3] in the second step,

(opr) hybrid method with our implementation of a lowest label push/relabel algorithm in the second step.

Other software libraries for maximum flows or more general minimum-cost flows exist. For example,mcf [1] can be
used for these tasks. We have not included a comparison with the latter because the maximum flow program included
there is basically a reimplementation of the algorithm by Goldberg and Tarjan (g). In the tables the abbreviations
((g), (j), (bk), (o), (opr)) are suffixed by ‘s’ if used on the modified graph. Computations were carried outon IntelR©
Xeonc© CPU E5410 2.33GHz (16GB RAM) (running under Debian Linux 5.0). Some computer vision instances
showed high memory requirements and thus were computed on Intel R© Xeonc© CPU X5680 3.33GHz (48GB RAM)
and are reported separately in Table 2. Implementations(o) and(opr) are based on the graph library OGDF [11]. We
marked the fastest method bold in the tables.

16

Table 1: Running times in seconds and graph reduction in % forcomputer vision instances. Best performance gives
implementation(o). Shrinking can be executed fast and yields a considerable graph reduction. Nevertheless, the latter
has no measurable influence on the running time.

BVZ KZ
sawtooth tsukuba venus sawtooth tsukuba venus

o 0.18 0.12 0.22 0.39 0.30 0.49
bk 0.27 0.18 0.34 0.61 0.47 0.76

opr 0.55 0.34 0.73 1.15 0.83 1.51
g 0.75 0.58 1.23 2.02 2.26 3.17

shrinking [sec] 0.33 0.15 0.26 1.32 0.58 1.10
reduction

|V| [%] 34.86 36.33 26.48 25.97 20.40 19.19
|E| [%] 33.52 33.13 25.50 23.45 17.74 16.87

os 0.15 0.10 0.20 0.39 0.30 0.49
bks 0.28 0.15 0.34 5.94 0.63 1.50

oprs 0.46 0.31 0.60 2.18 0.91 1.65
gs 0.76 0.62 1.20 2.01 2.22 3.27

In Tables 1-6 we report average running times for the largestinstances in seconds for the different solution ap-
proaches until the maximum flow was found, without reading inthe instance. For the rfim instances, the averages are
taken over five instances each. The number of instances contained in the computer vision classes are: Liver and Baby-
face one, BLcamel, BLgargoyle, and LBbunny each one for two different graph sizes (small and medium), tsukuba
16, sawtooth 20, and venus 22, see Tables 1 and 2. We report average results over each instance class. The time for
shrinking is reported separately. Additionally, the resulting graph reduction is given in percent.

The computer vision instances have between105 vertices,5 ∗ 105 edges (BVZtsukuba) and9.7 ∗ 106 vertices,
48∗106 edges (BLCamel medium). The running times are small for all implementations. Often, shrinking can reduce
the graphs considerably. Within short time, the sizes are reduced by about4% to 46%. However, the programs often
cannot profit from the reduced graph sizes as computing an optimum solution on the modified graph takes almost
the same time as on the original one. Our new hybrid implementation without shrinking(o) is however considerably
faster than the implementation(g). Moreover, it is the fastest method on most instances. It caneven improve over the
pure ‘double tree’ strategy(bk). This is remarkable as(bk) is the state-of-the-art maximum-flow implementation for
instances from computer vision.

For the 2D rfim instances, there is a threshold value above which shrinking is possible. For small variances, the
differences in edge capacities are too small to allow shrinking. In Tables 3-6, we show results for the largest graphs,
where capacity choices are below and above the threshold. Above the threshold, shrinking can be performed fast
and yields a drastic graph reduction, sometimes even by 100%. It, however, has almost no effect on the running
time except when using the implementation(j) [9]. The latter needs considerably longer on the original graph, while
the graph can be shrunk to a trivial equivalent instance in a few seconds. When compared to undirected instances,
the shrinking steps need longer for directed graphs. For directed graphs, shrinking may be counterproductive as
can be seen in Table 4. Although the graph size is drasticallyreduced, the total running times increases. On those
instances, each augmentation step takes longer while the number of augmentations remains similar. Let us consider the
implementations without shrinking. The hybrid variants perform comparable or better than the traditional algorithms
on two-dimensional instances. For undirected graphs, the running time can considerably be reduced in the highest
push/relabel approach when first the depth-restricted flow augmentation is applied. The situation is similar for 3D
rfim instances. For directed graphs, the highest push/relabel (g) implementation is slightly faster on average than the
hybrid versions. Due to memory limitations, directed instances of size2003 could not be solved. We get comparable
results for instances with rational edge capacities.

For the physics instances, implementation(o) needs the same number of augmenting steps as(bk), most of them
take place in the greedy step. This is also true for the directed random instances. On the other hand, on the undirected
random instances(o) needs considerably less augmentation steps than(bk).

17

Table 2: Running times in seconds and graph reduction in % forcomputer vision instances with high memory require-
ments. The fastest method is our(o) without shrinking on most instances. On the BLgargoyle instances implementa-
tion (g) is slightly faster than our push/relabel implementation. Applying the shrinking preprocessor needs negligible
amount of time. However, shrinking is only possible on the small instances and again does not influence the running
time significantly.

LBbunny BLgargoyle BLcamel Liver Babyface
small medium small medium small medium

o 0.51 4.39 8.78 146.11 1.59 37.72 8.33 9.04
bk 0.78 6.59 9.54 163.71 2.52 49.11 11.37 12.56

opr 1.28 18.12 4.34 99.73 4.73 89.30 21.78 31.00
g 1.72 34.11 2.93 83.29 5.69 110.31 22.16 35.57

shrinking [sec] 0.22 0.01 1.20 0.20 0.81 0.13 0.24 0.00
reduction

|V| [%] 7.67 0.00 17.69 0.00 46.52 0.00 3.81 0.00
|E| [%] 6.48 0.00 16.33 0.00 43.52 0.00 3.51 0.00

os 0.50 4.48 8.69 147.50 1.38 38.09 8.00 8.97
bks 1.09 6.55 240.55 174.10 150.71 56.35 11.22 11.49

oprs 0.78 17.94 3.83 99.92 3.80 89.24 21.92 31.16
gs 1.64 36.37 3.35 88.90 5.33 149.47 24.96 37.89

Table 3: Running times in seconds and graph reduction in % fortwo-dimensional (2D) rfim instances, variance
put in parentheses. Implementation(j) only works on undirected graphs and implementation(g) only on directed
instances with integer capacities. Hence, we report for undirected graphs results of implementation(j) . For directed
instances we only report results of implementation(g). Our implementations(o) and(opr) show on all instances best
performance. Shrinking works fast and allows for considerable graph reductions. However, the running times without
the shrinking preprocessing steps show better overall performance. Although the graphs can be sometimes reduced
to trivial equivalent instances the time for applying the shrinking steps is larger than the time needed to compute the
maximum flow without them.

2D rfim undirected 2D rfim directed
1000 (1) 1000 (4) 1500 (1) 1500 (4) 1000 (1) 1000 (4) 1500 (1) 1500 (4)

o 3.30 0.87 8.06 1.80 1.19 0.78 2.84 1.90
bk 4.93 1.29 11.17 2.91 1.46 0.95 3.40 2.21

opr 14.44 3.37 36.84 7.04 3.09 0.23 7.43 0.55
j 61.81 480.92 64.68 2492.09
g 2.98 0.25 7.72 0.58

shrinking [sec] 0.56 3.91 1.29 8.91 2.64 2.60 5.47 5.42
reduction

|V| [%] 0.00 100.00 0.00 100.00 60.00 60.00 60.00 60.00
|E| [%] 0.00 100.00 0.00 100.00 54.19 54.19 54.19 54.19

os 3.44 0.01 7.97 0.02 0.82 0.54 1.96 1.35
bks 5.01 0.00 11.41 0.00 0.93 0.66 2.14 1.61

oprs 14.55 0.00 38.80 0.00 1.45 0.63 4.52 1.55
js 62.25 0.00 64.88 0.00
gs 0.57 0.68 1.35 1.69

18

Table 4: Running times in seconds and graph reduction in % forthree-dimensional (3D) rfim instances type, variance
put in parentheses,(j) for undirected and(g) for directed instances. Our implementation(o) and the pure double tree
approach(bk) show good performance and are faster or comparable to implementation(g). Applying the shrink-
ing preprocessor helps to reduce the overall running time especially for implementation(j) on undirected instances.
However, on directed instances shrinking may be even counterproductive for implementations(o), (bk), and(opr).

3D rfim undirected 3D rfim directed
150 (1) 150 (4) 200 (1) 200 (4) 100 (1) 100 (4) 150 (1) 150 (4)

o 25.38 4.04 66.11 9.69 13.78 0.78 59.08 2.97
bk 23.35 5.88 58.44 13.88 21.96 0.99 105.32 3.75

opr 79.69 17.34 226.46 53.48 27.16 1.54 119.47 5.61
j 77.56 6044.08 247.27 34170.31
g 13.42 0.76 69.65 2.73

shrinking [sec] 2.23 8.42 0.45 14.69 1.91 6.37 5.79 23.79
reduction

|V| [%] 0.00 70.41 0.00 46.50 2.58 60.00 1.73 60.00
|E| [%] 0.00 74.22 0.00 49.24 1.61 57.23 1.07 57.26

os 25.33 1.47 66.22 6.16 14.12 6878.12 62.31 77501.83
bks 23.18 2.05 58.40 9.59 22.76 5370.99 110.21 62283.99

oprs 79.30 3.66 226.03 18.91 26.14 2983.62 116.11 34097.49
js 77.64 458.84 246.93 9000.64
gs 13.04 0.33 68.57 1.21

Table 5: Running times in seconds and graph reduction in % fortwo-dimensional (2D) rfim instances with rational
capacities, variance put in parentheses,(j) for undirected instances. Best performance on these class of instances
shows implementation(o). Shrinking again works very fast. Except for implementation (j) the running time needed
for shrinking plus the time needed to calculate the maximums-t flow on the modified graph is larger than on the
original graph.

2D rfim undirected 2D rfim directed
1000 (1) 1000 (4) 1500 (1) 1500 (4) 1000 (1) 1000 (4) 1500 (1) 1500 (4)

o 5.13 1.08 9.94 2.99 1.47 0.78 3.01 2.48
bk 7.30 1.52 14.90 3.78 1.65 0.89 3.75 2.54

opr 28.40 3.35 59.30 9.27 6.71 1.35 17.08 4.01
j 92.21 229.02 382.36 1268.64

shrinking [sec] 0.65 1.86 1.14 6.17 1.57 2.34 3.01 5.75
reduction

|V| [%] 0.01 53.82 0.01 53.83 10.77 60.00 10.76 60.00
|E| [%] 0.01 56.08 0.01 56.09 7.93 52.44 7.92 52.43

os 5.24 0.59 9.99 1.69 1.44 0.59 3.50 1.78
bks 7.30 0.95 14.95 2.50 1.67 0.74 3.71 2.06

oprs 28.74 1.42 58.66 4.25 6.98 1.51 17.13 4.75
js 95.78 82.96 382.38 461.55

19

Table 6: Running times in seconds and graph reduction in % forthree-dimensional (3D) rfim instances type with
rational capacities, variance put in parentheses,(j) for undirected instances. The performance of the differentim-
plementations varies but here the double tree approaches show better overall performance. Shrinking again works
very fast. Except for implementation(j) the running time needed for shrinking plus the time needed tocalculate the
maximums-t flow on the modified graph is larger than on the original graph.

3D rfim undirected 3D rfim directed
150 (1) 150 (4) 200 (1) 200 (4) 100 (1) 100 (4) 150 (1) 150 (4)

o 46.60 9.29 182.85 50.42 107.13 1.60 720.31 5.06
bk 51.31 12.77 159.84 32.41 134.28 1.72 899.04 5.36

opr 215.53 43.67 674.84 130.22 122.76 4.44 670.39 13.94
j 119.53 3671.92 428.90 20580.39

shrinking [sec] 2.42 6.66 0.62 13.25 2.32 6.69 7.66 18.50
reduction

|V| [%] 0.00 22.51 0.00 19.33 0.66 56.82 0.54 56.70
|E| [%] 0.00 24.41 0.00 20.88 0.35 46.77 0.28 46.62

os 46.28 7.02 213.64 19.08 104.80 285.72 741.43 2893.48
bks 49.84 9.91 208.60 31.35 135.04 491.93 919.38 4884.73

oprs 220.68 32.53 647.23 93.49 117.83 180.22 659.96 1969.35
js 118.59 2448.62 475.65 14797.21

Although the introduced preprocessing operations have mainly been designed for the applications mentioned
above, it is interesting to evaluate them on more random instances. There are two reasons for testing the presented
preprocessing operations on random graphs. Firstly, we areinterested in the question whether there is a threshold con-
cerning the connectivity of the source and the sink with vertices in the base graph, such that the shrinking operations
are applicable. Secondly, in random graphs the probabilityof short augmenting paths is rare. Hence, we are interested
in the question whether applying the greedy step on those instances is still worthwhile. We evaluated directed and
undirected random graphs, with5 ∗ 105 many vertices and varying density, generated with the graphgenerator rudy
[14] for the base graph. Our results confirm our conjecture, i.e. if less than50% of the vertices in the base graph are
adjacent to source or sink, only few shrinking operations are possible and the graph size is only marginally reduced.
This does not come as a surprise as not many potential candidates are present that satisfy the proposed SME condi-
tions. On random graphs with at least50% of base graph vertices adjacent to source or sink, shrinkingreduces the
number of vertices considerably. For this class of instances, the proposed hybrid approach works well when com-
pared to the pure double tree strategy(bk), especially on undirected instances. This observation is independent of the
connectivity of the base graph. On undirected instances, the performance of(bk) can considerably be improved with
the greedy step. However, especially for directed graphs, traditional methods like push/relabel algorithms, for exam-
ple (g), are preferable. In general, shrinking is performed very fast on undirected instances, but takes some time on
directed instances. However, in the latter case more reduction is possible. Solving the shrunk directed instances takes
again longer (except with(g)), similar to the results we get for 3D rfim instances, see Table 4 (directed instances). As
a consequence, it is advantageous to apply the hybrid algorithm without shrinking on undirected graphs in case the
vertices in the base graph are highly connected to the sourceand the sink.

6. Conclusion

We proposed preprocessing operations for maximum flow problems. We showed that the input size can be reduced
by applying SME operations that preserve optimal solutions. Moreover, well-known worst-case instances for different
maximum flow algorithms can be transformed into trivial equivalent instances.

Subsequently, we presented a depth-restricted augmentingpath algorithm that yields a good initial flow very
fast. In combination with known solution strategies, the running times of traditional maximum flow algorithms are
considerably reduced on relevant instances from physics and computer vision. The presented running times for the
shrinking operations show that our implementation of thesesteps is very fast. Moreover, taking the special graph

20

structure into account, shrinking can remarkably reduce the graph sizes and the running time of highest push/relabel
algorithms on undirected graphs. Nevertheless, shrinkinghas to be applied with care: For directed graphs, the running
time can increase as each augmentation step takes longer. For instances from theoretical physics and computer vision,
the fastest method uses augmenting path strategies withoutshrinking but with the new depth-restricted augmentation
step as proposed here. For directed instances, the implementation(g) from [8] is the fastest one. However, it can only
be used for integral capacities. As a summary, our hybrid algorithm without shrinking reduces the running time on
undirected random instances that are highly connected to source and sink. Furthermore, on vision and rfim instances
it even improves the method(bk) which is the currently fastest available program for sparsegraphs. More specifically,
the running time of the hybrid implementation with the ‘double tree’ strategy(o) is at least comparable or faster than
(bk).

Acknowledgments

We are grateful to Birgit Engels for fruitful discussions and valuable comments concerning the complexity of the
shrinking conditions presented in Section 2.5.1.

References

[1] MCF software package for the minimum cost flow problem. http://sorsa.unica.it/it/software.php.
[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory, Algorithms, and Applications. Prentice Hall Inc., 1993.
[3] Y. Boykov and V. Kolmogorov. An Experimental Comparisonof Min-Cut/Max-Flow Algorithms for Energy Minimization inVision. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124–1137, 2004.
[4] E. A. Dinic. An Algorithm for the Solution of the Problem of Maximal Flow in a Network with Power Estimation.Doklady Akademii Nauk

SSSR, 194:754–757, 1970.
[5] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems.Journal of the ACM, 19:248–

264, Apr. 1972.
[6] M. R. Garey and D. S. Johnson.Computers and Intractability, A Guide to the Theory of NP-Completeness. A Series of Books in the

Mathematical Sciences. W. H. Freeman and Company, 1979.
[7] A. V. Goldberg. The Partial Augment-Relabel Algorithm for the Maximum Flow Problem. InESA ’08: Proceedings of the 16th annual

European symposium on Algorithms, pages 466–477. Springer-Verlag, 2008.
[8] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum-Flow Problem.Journal of the Association for Computing Machinery,

35(4):921–940, 1988.
[9] M. Jünger, G. Rinaldi, and S. Thienel. Practical Performance of Efficient Minimum Cut Algorithms.Algorithmica, 26:172–195, 2000.

[10] Jr. L. R. Ford and D. R. Fulkerson. Maximal Flow Through aNetwork. Canadian Journal of Mathematics, 8:399–404, 1956.
[11] OGDF. Open Graph Drawing Framework. http://www.ogdf.net, 2007.
[12] M. Padberg and G. Rinaldi. An Efficient Algorithm for theMinimum Capacity Cut Problem.Mathematical Programming A, 47(1):19–36,

1990.
[13] H. Rieger. Optimization Problems and Algorithms from Computer Science. In R. A. Meyers, editor,Encyclopedia of Complexity and Systems

Science, pages 6407–6425. Springer, 2009.
[14] G. Rinaldi. rudy – a Rudimentary Graph Generator. https://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz, 1998.
[15] University of Western Ontario. Computer Vision Instances: http://vision.csd.uwo.ca/maxflow-data.
[16] U. Zwick. The Smallest Networks on Which the Ford-Fulkerson Maximum Flow Procedure May Fail to Terminate.Theoretical Computer

Science, 148(1):165–170, 1995.

21

