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Abstract

Maximum-flow problems occur in a wide range of applicatioAkhough already well-studied, they are still an area
of active research. The fastest available implementafmndetermining maximum flows in graphs are either based
on augmenting-path or on push-relabel algorithms. In thligkywwe present two ingredients that, appropriately used,
can considerably speed up these methods. On the theositiealve present flow-conserving conditions under which
subgraphs can be contracted to a single vertex. These rel@sthe same spirit as presented by Padberg and Rinaldi
(Math. Programming (47), 1990) for the minimum cut problengiaphs. These rules allow the reduction of known
worst-case instances for different maximum flow algorittmgquivalent trivial instances. On the practical side,
we propose a two-step max-flow algorithm for solving the jeobon instances coming from physics and computer
vision. In the two-step algorithm flow is first sent along awgting paths of restricted lengths only. Starting from this
flow, the problem is then solved to optimality using some knanax-flow methods. By extensive experiments on
instances coming from applications in theoretical phyaia$in computer vision, we show that a suitable combination
of the proposed techniques speeds up traditionally useldadst

Keywords: maximum flow, minimum cut, subgraph shrinking, hybrid aian

1. Introduction

Determining maximum flows in networks is a classical problarthe area of combinatorial optimization, with
many applications abound in different fields. Elegant dtgors and fast implementations are available. They allow
the determination of a solution in a time growing only polymially in the size of the input in the worst case, and
large instances can be solved in practice.

We formulate the maximura-¢ flow problem in following. We are given a network, that is arédited or undi-
rected) graplz = (V, E'). For an edge € E capacities,. > 0 are present. Further, we are given two vertices, called
the sources and the sink. Let f : F — R be a flow function on the set of edges, and denotgbthe amount of
flow on edgee. In the following we say flow and mean the corresponding flomction. We also do not distinguish
between undirected edges and directed arcs, if not negesdae value of a flow is net amount of flow out of the

source. The objective is to determine a maximum flow, thatfieva with maximumvalue >~ f.= > f.,
e€dt(s) e€d—(t)

with §(v) = 6T (v) U~ (v) ={e€ E|e = (v,w)} U{e € E| e = (w,v)}. The flow has to respect the following

constraints:

(capacity constraints) 0 < f. <c.,Vee FE (1)
(flow conservation) S fwwy= Y, fwaw), Vo€V \ {s,t} 2)
wed ™ (v) wedt (v)

The set of capacity constraints (1) ensures that any feafliv respects the capacities. The flow conservation
constraints (2) avoid flow generation or elimination otheart at the source and the sink. In other words, every unit
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Figure 1: Simple (directed) example such that augmentiniy gtaategies perform many unnecessary augmentations
in the worst case. Capacities are set to a very large valdeéted byM), except for the arc connectingandw.

In the worst case, one repeatedly augments flow along théuaspaths, v, w, ¢, then alongs, w, v, ¢, and so on.
Thus, one need3M augmentations, while only two augmentations are neededgiingnted along the patisv, t
ands, w, t.

Figure 2: Minimum counterexample from [16] for the non-t@ration of augmenting path strategies if using real-
valued capacities (= @). At least one augmenting path always exists that usesésal(ral) edgév, w).

of flow that enters a vertex must leave it and vice versa. A flofeasible if and only if the above constraints are
satisfied. A flow function violating the flow conservation stmaints (2) is callegreflow For a vertex that violates
the flow conservation constraint the difference of inconflogy and outgoing flow is called itexcess

The first algorithm for determining maximusgnt flows has been presented in 1956 in a seminal work by Ford and
Fulkerson [10]. Flow is iteratively improved by increasihglongaugmenting pathsetween the source and the sink.
Given a feasible flow, an augmenting path is a path betweerts@und sink such that additional flow can be sent to
the sink. In other words, the residual capacities of all sdyethe path must be strictly positive. Most maximum
s-t flow algorithms rely on the concept of an auxiliary directedph, the so-calletesidual graphR = (V, A). The
idea is the following. Suppose we have sgntinits flow along edge. Thus, we can additionally seng — f. units
flow along edge:. On the other hand, we can also canfielnits of flow on edge. Hence, for a given flowf the
residual graph consists of the same vertex set. Each ofrigiligeee = (v, w) is replaced by two arcg; = (v, w)
andas = (w,v). The arca; has residual capacity. — f. while arcas has residual capacitf.. One restricts the
residual arcs to those with positive residual capacitiégeré&fore we have to be more specific about augmenting path
strategies. Flow is sent along augmenting paths in theuabgtaphR until no such path exists. For rational capacity
choices this basic augmenting path algorithm terminatesveer, its running time is pseudo-polynomial. Choosing
‘bad’ augmenting paths yields unnecessary augmentagseed;igure 1.

If capacities are real-valued there is no termination guae In fact, Zwick [16] proposed a minimum coun-
terexample on which augmenting path algorithms do not teausi see Figure 2.

Recently, Boykov and Kolmogorov [3] presented a fast im@atation for determining maximusit flows based
on augmenting paths in a more elaborate way. Two searchdreassed simultaneously to determine augmenting
paths. One search tree starts at the source while the oth&aiskward tree starting at the sink. The trees are updated
dynamically in each search step. This ‘double tree stratggids the currently fastest implementation for instasice
coming from computer vision.

Dinic [4] proposed a so-called ‘blocking flow’ algorithm thean be interpreted as a clever augmenting path
strategy avoiding unnecessary augmentations. Appliedgabrst case from Figure 1 only two augmentations are
made. This idea was independently proposed by Edmonds ampdBaWe note that these algorithms have strongly
polynomial running time. Finally, the method with the bestgiical performance on general instances is the push-
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relabel algorithm by Goldberg and Tarjan [8]. We descriteedbneral idea in the *highest label push-relabel’ form.
The algorithm maintains vertex labels that correspond ¢odistance of a vertex to the sink in the residual graph.
Initially, all vertices are labeled by a BFS starting at theks Next, the algorithm pushes all possible flow from the
source to its adjacent vertices, which results in a preflovhil®\the preflow is not a flow, a vertexwith highest
label is chosen among all vertices having positive excespodsible, the excess atis pushed along its incident
edges towards the sink. If there is then still some excesatef the distance label af is updated accordingly. The
push-relabel algorithm proposed by Goldberg and Tarjam{g] strongly polynomial running time. For a detailed
discussion about network flow problems and solution methedsrefer to the excellent book ‘Network Flows’ [2]
and the references therein.

In the context of the minimum cut problem in undirected gggtadberg and Rinaldi [12] proposed conditions,
amongst others, for two adjacent vertices, ssgndw, such that the minimum cut either is given by @)), (b)
by é(w), or (c) verticesv andw belong to the same partition. In case (c) one can safely lslihise vertices. In
the context of maximum-t flows cases (a) and (b) will never occur farw different from source and sink. Thus,
the questions at hand are whether the same conditions fraimeRaiand Rinaldi can still be applied for maximum
s-t flows, or whether there exist alike shrinking operationhahat maximuns-¢ flows are preserved. Moreover, it
is interesting whether it is possible to derive conditionshsthat shrinking is also possible on directed graphs. We
will answer these questions in the following affirmative®n the theoretical side, we also show that these shrinking
operations transform known worst-case maximarflow instances into trivial equivalent instances.

We aim at improving the practical running time of the fastasiilable implementations on instances arising in
computer vision and theoretical physics. To this end, we@se in Section 2 a reduction of the input by different
shrinking operations. Our operations are in the same spirithe conditions for shrinking vertex sets that were
presented in [12] by Padberg and Rinaldi for the minimum cabfem in undirected graphs. In our context, we prove
the shrinking operations arguing wa flows in the network instead of arguing via general cuts irpgsa

Furthermore, we propose in Section 4 a hybrid maximum flowrtlgm that heuristically finds a good initial flow
by increasing flow along augmenting paths of restrictedtlendf the resulting flow is not maximum, the problem is
solved to optimality by either a push-relabel or by an augimgrpath strategy. As the performance of these methods
depends on the characteristics of the input, the specificetod the algorithm depends on the instance’s structure.

Although the methods proposed here can in principle be egpdi any instance, we expect best performance for
specially structured instances. More specifically, in Bacd we report computational results on two relevant ckasse
of applications in which the graph of interest is a regulan-ter three-dimensional grid graph where additionally
each vertex is either connected to the source or to the sigkexBensive computational experiments, we find that
the proposed algorithm performs very well in practice,witg the solution of realistic instances with up 6002,
2003, and9.7 * 10° vertices. The outline of this work is as follows. In Sectigm2 introduce the shrinking of vertex
sets. These operations are then applied in Section 3 to-wasstinstances for different maximum flow algorithms.
It turns out that by doing so the worst-cases can be reduceii equivalent instances. Subsequently, we present
the hybrid maximum flow algorithm in Section 4 and evaluate ¢bmputational results in Section 5. Finally, we
conclude in Section 6.

2. Preprocessing Maximum Flow Instances

In this section we present preprocessing operations taeeeither the capacities or the input size. The optimum
solutions on the modified input correspond to optimum sohiin the original input and vice versa. We will discuss
the different operations on undirected as well as on dicegtaphs. Hence, we will mainly use terminology for
undirected graphs and the directed one only when neces8arg. general preprocessing operation we suggest to
remove isolated vertices, edges with capacity zero, anddrlirected case vertices other than source and sink with
indegree or outdegree zero. Edges connecting source andhsinld also be removed. Note that the latter directly
induce some amount of flow sent from the source to the sink.

2.1. Capacity Normalization

One straightforward preprocessing operation is to rednasable edge capacities. We call this operateypacity
normalization. The latter should be applied especially when using saiutiethods with pseudo-polynomial running
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time. Unusable capacitiesare those that cannot be exploited by any feasible flow. Thresponding edge capacities
can then be reduced, as we observe next.

Observation 1.

€
(undirected) Lete = (v,w) be the edge incident to vertexthat has largest capacity !
among all edges incident ta If it holds M @< €9
Z Cg S Cea L/gg
g€8(v)\{e}

thenwe canreduce.to > ¢, as at most this amount of flow can be sent to and framsing edges.
g€s(v)\{e}

(directed (i) Lete = (v, w) be the arc with largest capacity with heacamong all E\QJ ¢<
~ M

outgoing arcs av. If it holds
s \/\
Z Cg S 065 4)\

g€~ (v)

then we canreduce. to ) ¢, as at most this amount of flow can be sent tnd leavev overe.

g€~ (v)
(directed (ii) Lete = (v, w) be the arc with largest capacity with tailamong all M 6} z .
incoming arcs av. If (v)y—2
S e <en 3
gest(v)

then we canreduce.to >~ ¢, as at most this amount of flow can be sent froemd reachv overe.
geST (v)

Algorithmically, capacity normalization can be accomipéid by determining for each vertex the incident edge with
largest capacity among all incident edges. If the condiiom Observation 1 is satisfied, its capacity can be reduced
accordingly. Checking the condition for all vertices takeg§V'||E|) steps. At mostO(]V]) passes are needed to
ensure that all unusable capacities are removed. Thusgibaparmalization can be done i(|V |?|E|) time. The
running time for capacity normalization is surely not cotifpee when compared to the running time of well-known
maximums-t flow solution methods. However, if applied in a heuristic man for example by applying only one
pass, the running time and the quality of normalization candntrolled.

2.2. Shrink Max Edge (SME)

Instead of applying capacity normalizing, an edge- (v, w) that satisfies the condition in Observation 1 can
alternatively be shrunk to a supervertex by identifyingiitsident verticess andw. We call this operatioshrink
max edge(SME). In the undirected case the condition from Obserwvati@irectly yields the SME condition. It is
easy to see that then for each flow in the modified graph thexedsresponding flow in the original graph. Hence,
an SME operation on undirected graphs preserves flow sphitim contrast, on directed graphs this is not true, see
Figure 3. Even if the condition in Observation 1 is satisfiedd@rected graphs shrinking may not lead to a correct
algorithm. We cannot guarantee a one-to-one correspoedtween flows in the modified and in the original graph.
Instead, we must rephrase the condition for directed grapies SME operation can be applied to all verticesith
indegree or outdegree at most one, otherwise it may leaddogwsolutions, see Figure 3. Hence, the condition now
reads:
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Figure 3: Applying the SME operation without modificationsdirected graphs can lead to wrong solutions. In our
example, we would shrink verticesandw to the supervertexw as the condition of Observation 1 for directed graphs
is true. However, this yields the possibility to sehiglunits flow to supervertexw using arcas which can be sent
further using ar@;. In the original graph there is no corresponding flow.

Observation 2.

(directed) Letwv be a vertex with indegree one and tet= (w, v) be the arc with head
v. If /74_/’
Y
Z cg < Ce, OF i\
gest(v)
> <
g€6~ (w)

then we can shrink verticesandw to a supervertexw.

If vertexv has outdegree one and= (v, w) is the arc with tailv, vertices
v andw can be shrunk if
D

——v)
S e <ce or /
g€~ (v)
Z Cg < Ce.
gest(w)

Roughly speaking, the first condition in Observation 2 tedi®ither that the arc of interest can relay the maximum
‘incoming’ flow at vertexw to vertexv, or that the maximum ‘outgoing’ flow at vertexis less than the amount of
flow that may reach. The second condition deals with the case that either thaoiigof the arc of interest is larger
than the amount of ‘incoming’ flow at vertex or it is larger than the amount of ‘outgoing’ flow at vertex Together
with the degree constraint shrinking is a feasible opendtidoth cases.

Note that we can drop the degree constraints from condifroms Observation 2 and apply them to the sousce
and to the sink. If shrinking is possible for those vertices, arcs with heant tail ¢ are possibly created. The latter
arcs can be removed as no units of flow will enter the sourceandhits of flow will leave the sink.

The complexity of the SME operation (| E|?) if deleting and inserting an edge takes constant time. As a
special case, vertices with degree two (respectively irekegnd outdegree one in the directed case) can be eliminated
by shrinking the edge with larger capacity. Removing degweevertices can be performed in tind&|V]).

2.3. Triangle SME

The straightforward SME operation is the building block afrageneral shrinking operations. A natural extension
can be formulated when considering three pairwise adjaggtites. We call this extensidriangle SME In Lemma 1
we establish conditions under which two of the three vestaan be shrunk to a supervertex even if the SME operation
is not applicable. For ease of presentation, we first defiaestim of capacitieg, at a vertexv with respect to its
incident edges. Hence, in the undirected case,let > ¢, for all verticesv € V'\ {s,¢}. In the directed case we
g€s(v)
distinguish betweeincome capacities, andoutcome capacities/, wherec, = . ¢, andc = > ¢,
ged—(v) geSt(v)
for all verticesv € V' \ {s,t}.



Lemma 1.
(undirected) Letq,v, andw be three pairwise adjacent vertices such thandw are different
from the source and the sink. Verticeandw can be shrunk to a supervertex, if
2(cqu + Cow) > ¢y and
2(cqw + Cow) > Cu-

(directed (a)) Lets,v, andw be three pairwise adjacent vertices wheres the source. Ver-
ticesv andw can be shrunk to a supervertex, if
Csv + Cow + Cuw > ¢ and

Csw + Cow + Cuwp > €.

(directed (b)) Lett,», andw be three pairwise adjacent vertices wheiis the sink. Vertices
v andw can be shrunk to a supervertex, if

Cot + Cow + Cuww Z ¢, and

v
Cwt + Cow + Cwwv Z C;-

ProoOF(LEMMA 1). We prove the correctness by showing that any feasiblesatrad flow through supervertexo

in the modified graph has a corresponding flow with the sameevial the original graph. The reverse direction is
obvious. In the undirected case our argumentation is basedlocal rerouting strategy. For the directed cases, the
proofs rely on the fact that units of flow can be rerouted glighy rerouting them back to the source and then sending
them along.

(undirected) We need to distinguish the incident edges at superveutethat carry units of flow. More specifically,
we distinguish between the edges incident tandw in the original graph and show how to reroute units of
flow. Further, we only consider the case in which the maximeasible amount of flow passes supervertex
All other cases directly follow.

First consider the case in which there dye,, > 0 units of flow betweery andvw. As we consider only feasi-
ble flows in the modified graph it holds thét .. < cqu+Cqw aNdfy vw = Z for + Z Fuor-
reN(v),w#r#q reN(w)vtr#q

=:f =fuw

We routef, ., units of flow in the original graph to verticesandw using edge$q, v) and(g, w). On edge
(g,v) we route some amount of flo,,, such thatf,, < cq, and on edgéq, w) we routefy,, < ¢4y UNItS.
Now, it is possible that eithef, > f,, or f, > f4w iS true. Note that both cannot be true, otherwise the flow
is not feasible in the modified graph. W.l.o.g., assufne> f,,. Hence, we must still routg§, — f,, units of
flow in the original graph viavw to vertexv. By the conditions in Lemma 1 it is true that

Cy S 2(qu + va) < Cy — qu — Cyw S qu +va
—_—
>fo > fqu
Therefore,f, — fqv < cuw. The flow in the modified graph respects the capacity comgsaihat isfy .., <
cqv + cquw- Thus, if the flowf, is larger than the capacity,, the remaining flowf, — f,, can be carried by

edge(q, w). Thus, in the original graph we can route this amount of floweiexw over edg€ ¢, w) and then
to v using edg€wv, w). This completes the first case.



Figure 4: Rerouting flow in the directed case. Blue edges hagwasitive amount of flow. Edge capacities are
indicated. Units of flow reaching supervertex in the modified graph over edges previously incident to werte
w cannot be locally rerouted.

Similarly, we show how to reroute units of flow passing theesuprtex in the modified graph using edges
incident tov andw other thanq, v) and(q, w). Let f,,, be these units of flow. Hence,

fmu: Z fvr+ Z fwr-

reN (v),wrq reN (w),vriq

=:fo =:fuw

In the original graph we route,,, units of flow using edgév, w). Next, we routef,, — c¢,,, units of flow to
vertexq using edgéq, w). This is possible as the conditions in Lemma 1 are satisfibés@& units of flow are
then routed frong to v using edgéq, v). Again this is possible ag, — ¢, = fu» — ¢ @nd the conditions in
Lemma 1 are satisfied. All other cases, especially those iohnddgeq ¢, vw) and (formerly) incident edges
to v or w carry nonzero flow, follow directly with this argumentation

(directed (a)) The only interesting case is the one shown in Figure 4. Otasexdirectly follow with analogous
arguments. Suppose there are units of flow from sodraed vertex passing the supervertexy along to
vertexh in the modified graph. These units cannot be locally rerodtezito the edge orientation. Hence, we
cannot send units of flow from vertex to neithers nor v in the original graph. However, we can reroute the
amount of incoming flow at vertex back to the source. This is possible as we only consider feasible flows.
Thus, there exists a path from sourcé vertexw carrying these units of flow, see Figure 5. Moreover, the
units of flow can be sent via edge, as

Csv Z § Cg — Cyw — Cwu-
g€t (v)

sent flow back to source

Figure 5: Globally rerouting flow in the directed case. Umnifsflow reaching supervertexw over edges
previously incident to vertew can be routed back to the source. These units then can besiegtthe edge
from s tov.



Figure 6: Subgraphs, denotedH)f, can be replaced by simpler structures if the conditionsimina 2 are satisfied,
as there exists a correspondence between the flows in theal@gand in the modified graph.

(directed (b)) For supervertexw we do not need to use any global rerouting. The maximum amaiufidw that
reacheg is limited by c,; + ¢ It is not difficult to see that this amount of flow can be logakrouted.
Capacityc,, is larger than the possible and relevant amount of incomimg fver edges formerly incident
to vertexw. The same is true for capacity, and edges formerly incident to vertex The amount of flow
reaching the sink is limited by c,; andc,,;. If some units of flow reach supervertew over edges formerly
incident tov and pass along edges formerly incidentitdhen these units can be routed in the original graph
over edgdv, w). The case that those units reach supervertexver edges formerly incident to and are not
sent to sink is excluded. Any such amount is directly sent tver edggw, t) that has sufficient capacity, as
flow is supposed to reach the sink. O

2.4. Implementation Details

We briefly discuss the practical implementation of the afteationed conditions. We restrict ourselves to those
operations that affect vertex sets of small cardinality thuthe complexity of the more general conditions, as we will
discuss in Section 2.5. We only apply the SME and the triaB§/& operation as stated in Lemma 1. The sum of
capacities:, for each vertex are precomputed and updated after a successful operatidact| for verifying the
conditions given in Lemma 1 we have to consider any pair oesdgcident at some vertexo find suitable vertices
v andw. Additionally, we must verify fast that andw are adjacent. Thus, an adjacency oracle is needed thatsetur
a potential edge between vertieeandw in O(1) time. In a straightforward implementation the total numtfesteps
can be bounded b@(|V|* x N,y), whereN,,, = min{|§(v)|, |6(w)|} is the time to shrink vertices andw to a
supervertex.

Thus, completely applying the operations needs too long tesied in a fast preprocessing step. Indeed, in practice,
we do not check all possible pairs but consider only a (smsetipf promising pairs. By doing so, we potentially miss
some feasible shrinking operations but found better ovpeaformance.

2.5. SME for Subgraphs

In this subsection we describe general conditions suchstagraphs can be shrunk to a supervertex. These
condition are in the same spirit as the ones proposed by Radhd Rinaldi [12] in the context of the minimum cut
problem in undirected graphs. We show that similar condgiare also valid in the context eft maximum flow
problems. Our proofs are based on a local flow reroutingesiyaand do not consider cuts. By the mincut-maxflow
theorem, a maximum-t-flow corresponds to a minimugit-cut. As a minimum cut is a minimum¢-cut over all
vertex pairss andt, the following arguments can be seen as an alternative angtattion for the shrinking conditions
given in [12]. Reversely, as in general a maximsitrflow cannot be derived from a given minimum cut, it is not
easily possible to directly use the conditions from [12]ffows.

We start with conditions that allow shrinking of subgrapbeshown in Figure 6. These conditions can be inter-
preted as an extended SME condition, as stated in Obsem&tapplied on a restricted edge set.

We define the vertex-induced subgraﬁ[f of interest as follows: leZ C V be a subset of vertices such that

neithers nor ¢ are elements of and letg € (| N(z) \ Z, whereN(v) = {w € V | (v,w) € E} denotes the
z€Z



neighbourhood of node. The vertex-induced subgragh?, induced by{qU Z}, is defined ad?? = {{q} U Z, E7}
with EZ = {(q,2) € E | z € Z} U{(z,25) € E | zi,2; € Z}. We state the necessary conditions for a shrinking
operation ianZ in the next lemma.

Lemma 2. Givena subgraleqZ as described above. Vertex sétan be shrunkify ) £ W c Z

weW,vgW weWw weW,ze Z\W
holds.

PrROOF(LEMMA 2). We argue in an analogous way as in the proof of Lemma 1: We $slow every feasible flow
in the modified graph passing the supervertex can be locatyuted in the original graph. The other direction is
obvious. We suppose the considered flow is maximum.

W.l.o.g assume the SME conditions given in Observation Zatesatisfied for any edgec F,. Otherwise we
first reduce vertex sét accordingly. We start with a simple case of rerouting and geend it to the general case.
Suppose there exists a vertexc Z that is inH, z only adjacent tg;. As (3) is satisfied fof¥ = {z}, it holds that
2¢q. > c,. Let f denote the amount of flow that passes through the superuesiey edges formerly incident to an
arbitrary vertex; € Z \ {z} andz in the original graph. Thus in the original graph, we haveotate f units of flow
between: andz;. If vertex z; is only adjacent t@ in the subgrapIHqZ, then the amount of flow between: andz;
can be routed vig as it holds2c,., > c.,, and2c,, > c.. Moreover, as there exists a one-to-one correspondence
between the considered edges in the modified and the origiaph and the flow is feasible in the modified one, it is
¢, > fandc, > f. This concludes the first case.

If there exists an edge:;, z;) with z; € Z in E, then the vertices, z;, andz,; form a cycle. We argue with the
triangle SME conditions that in this case the flow can be rebetweerr andz;. Indeed, we rerout¢’ = ¢,
flow units toq via edge(q, z;) and then alondgq, =) to vertexz. If there remains some units of floff’ = f — [,
they can be rerouted to vertex as2(cy., + c.,z;) > c. > f. Itremains to be shown, that the remaining amount
of flow f can be rerouted between andz. For now suppose; and z; are part of only one such cycle. Consider

W ={z,z2;} C Zthen > cwz, = 0, as there exists no edge connecting vertices iV with vertices in
weW,z,€Z\W
W. Further, itis2 >~ ¢4, > cw because of (3). Therefore, we can send the remaining amétlanof” to ¢ and
weW
then toz as agairey. > ¢, > f > f.

We assumed that vertices, andz; are part of only one cycle, now we drop this assumption. Heifeertices
z;, z; Or z are part of several cycles, the above argumentation isegppdicursively for different choices of s@f.
For each set of vertices the conditions given are satisfieldttauns the given amount of flow can be rerouted. The
recursion is finite and either we end up with a similar sitwagis discussed above, that is thia not adjacent to any
other vertex inZ, or if z is adjacent to some vertices i some amount of flow can be directly routed between those
vertices without considering vertexdue to (3). With similar arguments any combination of sonesitele units of
flow can be rerouted between any subsets of verticgs idny possible flow betweeq and the supervertex in the
modified graph can be rerouted with similar arguments. O

We argued that if conditions (3) in Lemma 2 are satisfied, #haary feasible flow in the modified graph can be
locally rerouted within the subgra[fmf, yielding a flow with the same value in the original graph. Véaegralize the
situation in Lemma 2 to more general subgraphs.

Theorem 3. Let@ C V, Z C V' \ @ such that neithek nor ¢ are elements of. A vertex setZ in the subgraph
HE = (QUZ, Eqz)WithEqz = {(¢,2) € E|q€ Q,z € Z}U{(zi,2)) € E | 21,2 € ZyandQ C (| N(2)\Z

z€Z
can be shrunkify ) #W c ZandvVY C Q :

> w20 >t Y, Cuw)

weW,vgW weW,qeY weW,weZ\W



Theorem 3 directly follows from Lemma 2. Moreover, the cdiodis in Theorem 3 are similar to conditions given
by [12] in the context of minimum cuts in undirected graphse #malize their results in the context of maximum
s-t flows in the following.

Theorem 4. Let G = (V, E) be an undirected weighted graph. L&tbe a proper subset df with |Z| > 2 such
that neithers nor ¢ are elements of . Further denote byV () the common neighbourhood, that is the set of vertices
such that every vertex if is adjacent to every vertex iN(Z), excludingZ. If there exist&” C N(Z) such that for
every nonempty proper subdét of Z and for everyl’ C Y either

(a) Z Cwv < 2( Z Cyv + Z va)a or

weW,vgW weW,weT weW,weZ\W
(b) Z Cwwo S 2( Z Cuwwo + Z va)a
weZ\WwgZ\W weZ\WweY\T weZ\WoweW

thenZ can be shrunk to a supervertex and there exists a correspamedsetween feasible flows in the original and
the modified graph.

Theorem 4 can be understood as follows. Consider a set ategf and the common neighbourhodd(Z) =

() N(v)\ Z in an undirected graph, see Figure 7.
veZ

Figure 7: Schematic situation as considered in Theorem#.56V, Y, T, and N (Z) are shown. Black edges are
those with exactly one vertex ii and the other not i/, Y, or T'. Blue edges have exactly one verteXihand the
other notinZ, Y, orT. Green dotted edges connect verticeBirwith those inZ \ W. Purple (dashed-dotted) edges
connect vertices i \ W with those inY” \ 7', while dark green edges connect vertice8lirwith vertices inT".

For a vertex set we denote loycoming amount of flowhe possible amount of flow reaching this vertex set via
edges with exactly one endvertex in this set. Yebe a subset oN(Z). Now, we consider every nonempty proper
subsetV of Z. Further, for each such subset we consider every subséfy’. We check whether (a) the incoming
amount of flow inlW without the incoming amount of flow ii#” over edges with one endvertexh\ W can be sent
toT andZ \ W or (b) the incoming amount of flow i \ W without the incoming amount of flow over edges with
one endvertex i can be senttd” andY \ 7. The conditions given in Theorem 3 correspond to condit{@h$n
Theorem 4. So if (a) is satisfied for all subsets, there exristsrrespondence between flows in the modified and in
the original graph. The second condition (b) is more somaittd but again can be interpreted as an SME condition
for subsets of edges. In the case that (a) is not satisfiedfoe subsetdl” andT’, the outgoing capacities ¥ are
larger than the sum of capacities of edges connedfingith 7" andZ \ W. This may allow for feasible flows in the
modified graph that cannot be realized in the original gr&fmwever, if instead (b) is true, vertex sétcan be shrunk
and the correspondence between flows in the modified and idfi@argraph is given. Indeed, consider for example
the situation in Figure 8. In the subgraph shown, the coori@) is satisfied for all' andWW, except folV = {a, b}.

For this subselV andT" = Y we have:46 £ 42, and forT’ = (): 46 £ 30. Hence, shrinking would not be possible as
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Figure 8: A subgraph for which condition (a) of Theorem 4 is satisfied for all considered subséis. Indeed,
for W = {a, b} condition (a) is not satisfied for evefly. Nevertheless, s&f can be shrunk as condition (b) in 4 is
satisfied for thig¥. Note, we can also apply the SME condition on e@gé) and then on edgé:b, ¢) resulting in
the same supervertex.

some units of flow cannot be directly rerouted yidHowever, condition (b) is satisfied fé¥ = {a, b} and everyr.
With this it is possible to reroute these units wittirand, as (a) is true for all other séfs, to q.

So, if the conditions in Theorem 4 are true for evéty andT’, we can shrink seZ to a supervertex. The
correctness is further based on the symmetry betWBeand Z \ W while considering every sét of Y. Therefore,
we can route the units of flow froM” to Z \ W andT and then to every othé#’, or vice versa the incoming flow
in Z \ W can be handled this way. With this intuitive argumentatior oan state general SME conditions such that,
if satisfied, a set of vertices can be shrunk to a supervenetteere exists a correspondence between feasible flows
in the original and in the modified graph. It is easy to see ifretet.Z has been shrunk to a supervertex and there
exists some amount of flow in the modified graph that cannobbted in the original graph, then the conditions for
the corresponding sét” are not satisfied. Hence, the rerouting possibilities apigitly encoded in the conditions
given in Theorem 4. Specifically one can say, if always thé dosdition (a) in Theorem 4 is true we already showed
the one-to-one correspondence. If always the second comdii) in Theorem 4 is true, it is easy to see that this
implies that (a) is always true. So it remains to argue allmeitase in which (a) is not always satisfied, but instead
(b). Suppose foiV,, T3 (@) is not satisfied but (b). Hence,

Z C’LU’U S 2( Z C’LU’U + Z C’LU’U) (4)

weZ\W1,vgZ\Wy weZ\Wi,veY \T weZ\W1,0eW;

This means that fol, = Z \ W7 and7> = Y \ 71 (a) is satisfied. Consider nol¥; andT>. If (a) is satisfied for
this combination, in formulae,

Z C’LU’U S 2( Z C’LU’U + Z C’LU’U)7 (5)

weW,vgWy weWr,veT> weWr,veZ\W;

then it is easy to see that in this case the flow can be rero8tgzbose now, (a) is not true, but (b),

Z C’LU’U S 2( Z CIU’U + Z C’LU’U)7 (6)

weZ\W1,v¢Z\W, weZ\W1,veY \Ts weZ\W1,veW;

which corresponds to:

> Cow <20 D cwwt Y. Cuw), (7)

weZ\W1,vgZ\W; weZ\W1,veT weZ\W1,veW;
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that means together with (4) we can reroute every feasibtiatof flow passing along edges incident to vertices in
Z \ W7 in the original graph td@”. Now considei¥; and73 = Y. Itis easy to see that either (a) is true or (b), which
both allows for rerouting feasible amounts of flow.

For directed graphs analogous more general conditions edortmulated as given in Lemma 1. Combining the
ideas in Lemma 1 with those given in Lemma 2 the conditione¥olvith similar (global) rerouting arguments as
used in Lemma 1.

2.5.1. Complexity of SME for Subgraphs

The general conditions presented in Section 2.5 are mafrihyeoretical interest. Indeed, verifying the proposed
conditions is computationally hard. Hence, it is not advis#o apply these conditions in a preprocessor for maximum
s-t flow problems.

Our triangle SME conditions, given in Lemma 1, can be mappeti¢ special case 0| = 2 and|Y| = 1in
Theorem 4, and can be verified fast. In contrast, Padberg araddrdeduce conditions from their theorem (see also
Theorem 4) considering sefsof cardinality two and arbitrary large neighbourhdédvhich can also be done within
the flow context. More specifically, stating their theorenthia flow context, we get

Corollary 5. Letv # w € V' \ {s,t}. If there exist&” C N(v) N N(w) such that

@c,<2 Y cpor
uweTU{w}

(B) cw <2 > cCuu

we€YU{v}\T
holds for allT" C Y, then vertices andw can be shrunk and there exists a correspondence betweehléf#ews in
the original and the modified graph.

For the conditions in Corollary 5 in the minimum cut conteatiBerg and Rinaldi remark, without giving an explicit
proof, that for a giverY” it is NP-complete to check the given conditions. We clarifisremark and show next that
the decision problem afot shrinking is NP-complete for a given. First, it is easy to see that not shrinking belongs
to NP. Guess a sét C Y and verify in polynomial time that both conditions (a) andlifpCorollary 5 do not hold.
Next, we show that not shrinking is NP-hard and reduce theblRpletePARTITION PROBLEM[6] to the problem at
hand. The latter is defined as: given a set @fitegersS = {s1, s2,..., S, }, With M = > s,. Does a subse® C S

=1
exist such that

1« M
IR D T IR
1=1 si€R SiES\R
For a givenPARTITION instance define the graph as shown in Figure 9. For everyeéntegve have a vertex.
Additionally, we have a vertex and a vertexv such that both are adjacent to every vergxSet the capacities for
the edgegv, s;) and (w, s;) as%. Vertexv is connected to the soureeby an edge with capacity. Vertexw is
connected to the sinkby an edge with the same capacg.yNow, if shrinking the vertices andw is feasible it must
holdforallT C Y:
cy <2 Z Cou

uweTU{w}
M+1 S;
= <2 —
;S22
s; €T

or

ew<2 Y Cuu

weYU{v}\T




o
I
DOl —

Figure 9: Corresponding flow instance graph for a giw@RTITION instance.

If this is true, there exists no subg@tC .S which is a solution for theARTITION problem. Otherwise there exists

CYsuchthat’tH > 2 3 & andH > 2 3 % whichis a solution for theARTITION instance. Therefore,
s; €T s;€Y\T
the corresponding decision problem for not shrinking isddfplete.

3. Preprocessing Makes Worst-Case Instances Trivial

Figure 10: Worst-case instance for augmenting path siegteand a trivial equivalent one after preprocessing the
original input.

By applying the proposed preprocessing operations, wellak worst-case examples for different maximum
flow algorithms can be transformed to equivalent triviatémees. Figures 10 and 11 show worst-case instances for
augmenting path algorithms as given in the book by Ahuja.e{dl In the worst cas@ M augmenting steps are
needed for solving the instance in Figure 10. Using noronaticapacities as in Figure 2 from [16] can even prohibit
augmenting path strategies to terminate. The instance figore 10 can be transformed into an equivalent one by
applying the triangle SME operation for directed graphse Tésult is shown on the right in Figure 10. Applying
shrinking operations on the dotted red cycles shown in Eiddrand capacity normalizations on those edges yields a
trivial equivalent case.

FIFO push/relabel algorithms maintain vertices with pesiexcess in a queue. New vertices with positive excess
are added at the rear of the queue. Vertices are selectedrinyireg them from the front of the queue. For FIFO
push/relabel strategies, a worst-case instance and viad stirunk one are shown in Figure 12. In the worst case, the
FIFO push/relabel algorithm pushes flow from the sourcel tadicent vertices, 2, . .., n—2 and adds these vertices
to the queue in the order— 2,n — 3, ..., 1. The vertices are considered in this order and flow is pushearts the
sink. Only the last vertex in the queue loses its excess aflilether vertices still have positive excess. Thus; 2
push/relabel phases afitin?) many push operations are executed until the preflow becorflea.aApplying the
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Figure 11: Worst-case by U. Zwick [16] for augmenting patiatetgies, withr = ‘/52‘1. Moreover, the reduction to

a trivial equivalent instance is shown. Applying SME opkmas and capacity-normalization on the dotted red edges
yields the trivial equivalent instance.

n—2

Figure 12: Worst-case instance for FIFO push/relabelesisefind a trivial equivalent one.

SME operations for all edges with capacity shrinks the instance to the one shown on the right in FigureAkZa
consequence, the above worst-case instances can be sdallvedtweven calling a maximum flow algorithm. Only the
proposed preprocessing operations need to be applied.

Indeed, these are small worst-case examples. Nevertlitblssire commonly used to show the drawbacks of
known maximum flow algorithms. Further, the presented gsaplly be encountered as subgraphs in larger instances
which in return can be preprocessed as shown. The propospdopessing operations may help in reducing the
instance size independent from the used maximum flow solatiethod.

4. Hybrid Maximum Flow Algorithm

In this section, we propose a hybrid algorithm that startsnoyeasing flow through the network in a greedy
fashion, using only short augmenting paths whose lengthmtlexceed a certain threshold. This greedy step either
finds a maximum flow or a (good) initial flow. In the latter cade flow is increased further to an optimal one by
some known maximum flow algorithm. Depending on the problémncture, we either use a lowest push/relabel
approach or an augmenting path strategy. The performandifefent maximum flow algorithms strongly depends
on the problem structure. For example, while some approashparform well on sparse graphs, it might take long
on dense instances, or vice versa. As it is known [7] that doaible tree’ augmenting path strategy by Boykov
and Kolmogorov [3] is especially fast on sparse instancespsge it in such cases. For dense instances, a lowest
push/relabel approach performs considerably better thandouble tree’ procedure and is preferable in this case.
We thus exploit the algorithmic advantages of the differaethods. This hybrid algorithm can also be combined
with preprocessing shrinking operations as presenteddtid®e?. After having solved the problem to optimality, all
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preprocessing steps have to be undone. Finally, the optiflawnrhas to be rerouted accordingly.
We summarize the hybrid algorithm in Algorithm 1 and disciiiesgreedy step in more detail next.

Algorithm 1 : Hybrid maximum flow algorithm
. (Apply preprocessing operations)
. Label vertices
repeat
Depth-restricted flow augmentation
Update vertex labels afteraugmentations
until no augmenting path with prescribed length betweandt is found
. Switch to ‘double tree’ or ‘push/relabel’ strategy
. (Undo preprocessing operations (reroute flow))

[y

NGO R WD

4.1. The Greedy Phase

The general idea in the depth-restricted flow augmentati@se is to label the vertices depending on the initial
labels of their local neighbourhood. This yields a rougissification of the vertex set with regard to their distance
from s andt, see Figure 13. The labeling then controls a depth-resttitbw augmenting step which is performed
until no augmenting path between source and sink is foundit Wsuld take too long to determine vertex labels
exactly, we only determine whether a vertex is ‘near to’ thigrse and/or ‘near to’ the sink or not. Intuitively, greedy
augmenting paths between vertices that are far away frosaiheee and the sink are allowed to be longer than those
between vertices that are near to the source and the sirlke fiolowing, we explain the details of this greedy step.

We assign initial vertex labelS, T, ST, N with the following meanings. If there exists an edgev) but no
edge(v, t) for a vertexv, it is labeled bysS. If a vertex is adjacent tobut not tos we set labell’. In case a vertex is
adjacent to botk andt label ST is used. If a vertex is neither adjacentstaort it is labeled withV.

We subsequently refine the label of each vertex dependingeomitial labels of its adjacent vertices. The label
refinement for vertex is independent of its own initial label, see Figure 13. Sigepois adjacent only to vertices
labeled by!I" (resp.ST', S). Then the refined label ©7 (OT', OS, respectively). Otherwise, if at least one but not
all neighbours ob are labeled by/" or ST, then the refined label is set107". If v does not have a neighbour labeled
by T" or ST but at least one neighbour with lalbg] thenv receives the refined labalS. In the remaining cases, the
refined label is set t& N. The labeling is determined by a breath-first search stadirthe source and uses the initial
labelss, T, ST, N only. With the labeling at hand we search for augmentingpatim vertices with initial labeb'.

We restrict the length of those paths depending on the refiegdx label. These paths are short and can be checked
fast. The labels may be updated in the residual graph aftee stepth-restricted augmentations and the augmenting
search may be repeated.

In our experiments we found that aftee= 5 augmentations, a label update should be performed. Thataefin
of the path lengths depends on the problem at hand. Setérifptbsholds to a large value increases the running time
without yielding considerably better flows. Setting thenateery small threshold keeps the running time low but only
yields flows with very small values. In our tests, we found dperformance for the following depths: ©1), 3

(NT), 7 (0S), andmin{%, 14} (ON), where|d™(s)| is the out-degree of the source in the residual graph. The
usage of long paths is prohibited for vertices with labéY if the source is only sparsely connected in the residual
graph. Our computational results in Section 5 indicatettiiathybrid algorithm works well on the classes of instances

occurring in physics and in computer vision.

5. Computational Results

Among the many applications for maximum flows in graphs, waufohere on applications in computer vision
and in theoretical physics. Although these applicatiomsiardifferent areas, the typical instances share a similar
structure. In the random-field Ising model (RFIM) from thetical physics, the so-calldsase graphs a two- or
three-dimensional grid graph in which all edges have theeszapacity. Furthermore, each vertex in the grid is either
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source § adjacent to vertices with initial label S and T'

adjacent to vertices
labeled by S
sink ¢

Figure 13: Vertex labeling and motivation for depth-reted flow augmentation. The instances of interest show the
characteristic that one can classify the vertex set into teethe source and/or near to the sink sets. Furthermore,
many short paths between source and sink exists, allowing doeedy approach as first step.

connected to an additional sourcer to a sinkt with equal probability. The latter edges can have diffeoapiacities.
Networks with a similar graph structure but different capachoices also occur in image segmentation or image
restoration applications in computer vision.

More specifically, our experiments focus on the followinfjetient instance types:

(vision) directed computer vision instances [15] as reported i@ 8yith integer capacities;

(rfim) (directed and undirected) RFIM instances as described3h [We used uniform interaction energy= 1
which yields uniform capacities = 1 for the edges in the base graph. The random field, i.e. thecitEgza
for edges incident to the source and the sink, was eitheoumiivith valuesl, 2, 4, 8 or followed a Gaussian
distribution with mean zero and variantg2, 4, and8. Grid sizes varied up td6500% in 2D and up ta200? in
3D.

Due to the specific structure, many cycles of length thregoegsent in all instance classes which especially allows
for the application of the triangle SME operations. We eadiihe following algorithms and implementations:

(g) highest push/relabel implementation by Goldberg andafdi§] for directed graphs with integer capacities,

(1) ‘mincut-lib’ by Jiinger et al. [9] with a fast implementatiof a ‘highest push/relabel’ algorithm for undirected
graphs,

(bk) ‘double tree’ implementation by Boykov and Kolmogorowvesfalized for computer vision instances [3],
(o) hybrid method with the ‘double tree’ implementation by Boy and Kolmogorov [3] in the second step,
(opr) hybrid method with our implementation of a lowest labellpuslabel algorithm in the second step.

Other software libraries for maximum flows or more generalimum-cost flows exist. For examplecf [1] can be
used for these tasks. We have not included a comparisonhdgtlatter because the maximum flow program included
there is basically a reimplementation of the algorithm bytdBerg and Tarjand). In the tables the abbreviations
((9), (j), (bk), (0), (opr)) are suffixed bys"if used on the modified graph. Computations were carriecoauintelr)
Xeon© CPU E5410 2.33GHz (16GB RAM) (running under Debian Linux)5.8ome computer vision instances
showed high memory requirements and thus were computedel®IXeon® CPU X5680 3.33GHz (48GB RAM)
and are reported separately in Table 2. Implementatioyesnd(opr) are based on the graph library OGDF [11]. We
marked the fastest method bold in the tables.
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Table 1: Running times in seconds and graph reduction in %dorputer vision instances. Best performance gives
implementatior{o). Shrinking can be executed fast and yields a considerabdphgeduction. Nevertheless, the latter
has no measurable influence on the running time.

BVZ KZ
sawtooth| tsukuba| venus| sawtooth| tsukuba| venus
[6) 0.18 0.12| 0.22 0.39 0.30| 0.49
bk 0.27 0.18| 0.34 0.61 0.47| 0.76
opr 0.55 0.34| 0.73 1.15 0.83| 151
g 0.75 0.58| 1.23 2.02 226 | 3.17
shrinking [sec] 0.33 0.15| 0.26 1.32 0.58| 1.10

reduction
[V] [%] 34.86 36.33| 26.48 25.97 20.40| 19.19
|E| [%] 33.52 33.13| 25.50 23.45 17.74| 16.87

0s 0.15 0.10| 0.20 0.39 0.30| 0.49
bks 0.28 0.15| 0.34 5.94 0.63| 1.50
oprs 0.46 0.31| 0.60 2.18 0.91] 1.65
gs 0.76 0.62| 1.20 2.01 222 | 3.27

In Tables 1-6 we report average running times for the lariessances in seconds for the different solution ap-
proaches until the maximum flow was found, without readinth&instance. For the rfim instances, the averages are
taken over five instances each. The number of instancesigedta the computer vision classes are: Liver and Baby-
face one, BLcamel, BLgargoyle, and LBbunny each one for tifferént graph sizes (small and medium), tsukuba
16, sawtooth 20, and venus 22, see Tables 1 and 2. We repoaigavessults over each instance class. The time for
shrinking is reported separately. Additionally, the résgl graph reduction is given in percent.

The computer vision instances have betwéeh vertices,5 x 10° edges (BVZtsukuba) anel7 = 10° vertices,

48 +10% edges (BLCamel medium). The running times are small fongilementations. Often, shrinking can reduce
the graphs considerably. Within short time, the sizes ateaed by about% to 46%. However, the programs often
cannot profit from the reduced graph sizes as computing amopt solution on the modified graph takes almost
the same time as on the original one. Our new hybrid impleat®mt without shrinkingo) is however considerably
faster than the implementatigg). Moreover, it is the fastest method on most instances. lewan improve over the
pure ‘double tree’ strategipk). This is remarkable a®k) is the state-of-the-art maximum-flow implementation for
instances from computer vision.

For the 2D rfim instances, there is a threshold value abovehndtirinking is possible. For small variances, the
differences in edge capacities are too small to allow skminkin Tables 3-6, we show results for the largest graphs,
where capacity choices are below and above the thresholdveAthe threshold, shrinking can be performed fast
and yields a drastic graph reduction, sometimes even by 100%owever, has almost no effect on the running
time except when using the implementat{®n[9]. The latter needs considerably longer on the originapr; while
the graph can be shrunk to a trivial equivalent instance iemadeconds. When compared to undirected instances,
the shrinking steps need longer for directed graphs. Facthid graphs, shrinking may be counterproductive as
can be seen in Table 4. Although the graph size is drasticadlyced, the total running times increases. On those
instances, each augmentation step takes longer while thbenof augmentations remains similar. Let us consider the
implementations without shrinking. The hybrid variantsfpemn comparable or better than the traditional algorithms
on two-dimensional instances. For undirected graphs,uthaing time can considerably be reduced in the highest
push/relabel approach when first the depth-restricted flogyreentation is applied. The situation is similar for 3D
rfim instances. For directed graphs, the highest push&blgphimplementation is slightly faster on average than the
hybrid versions. Due to memory limitations, directed insts of size200® could not be solved. We get comparable
results for instances with rational edge capacities.

For the physics instances, implementatfohneeds the same number of augmenting stefgblds most of them
take place in the greedy step. This is also true for the dice@ndom instances. On the other hand, on the undirected
random instance@®) needs considerably less augmentation steps(tiign
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Table 2: Running times in seconds and graph reduction in %dmputer vision instances with high memory require-
ments. The fastest method is qo) without shrinking on most instances. On the BLgargoyleanses implementa-
tion (g) is slightly faster than our push/relabel implementatiopphing the shrinking preprocessor needs negligible
amount of time. However, shrinking is only possible on thekinstances and again does not influence the running
time significantly.

LBbunny BLgargoyle BLcamel Liver | Babyface
small | medium| small | medium| small | medium
o| 0.51 4.39 8.78| 146.11 1.59 37.72| 8.33 9.04

bk | 0.78 6.59 9.54| 163.71 2.52 49.11| 11.37 12.56
opr| 1.28 18.12 4.34 99.73 4.73 89.30| 21.78 31.00
g| 172 34.11 2.93 83.29 5.69| 110.31| 22.16 35.57

shrinking [sec]| 0.22 0.01 1.20 0.20 0.81 0.13| 0.24 0.00
reduction

V] [%] | 7.67 0.00| 17.69 0.00| 46.52 0.00| 3.81 0.00

|[E| [%] | 6.48 0.00| 16.33 0.00| 43.52 0.00| 3.51 0.00

os| 0.50 4.48 8.69 | 147.50 1.38 38.09| 8.00 8.97

bks | 1.09 6.55| 240.55| 174.10| 150.71 56.35| 11.22 11.49
oprs| 0.78 17.94 3.83 99.92 3.80 89.24| 21.92 31.16
gs| 1.64 36.37 3.35 88.90 5.33| 149.47| 24.96 37.89

Table 3: Running times in seconds and graph reduction in %wordimensional (2D) rfim instances, variance
put in parentheses. Implementatigh only works on undirected graphs and implementatighonly on directed
instances with integer capacities. Hence, we report foiraotbd graphs results of implementatign For directed
instances we only report results of implementatig Our implementation&) and(opr) show on all instances best
performance. Shrinking works fast and allows for considiergraph reductions. However, the running times without
the shrinking preprocessing steps show better overalbpmdnce. Although the graphs can be sometimes reduced
to trivial equivalent instances the time for applying thersking steps is larger than the time needed to compute the
maximum flow without them.
2D rfim undirected 2D rfim directed

1000 (1)| 1000 (4)| 1500 (1)| 1500 (4)| 1000 (1) | 1000 (4)| 1500 (1) | 1500 (4)

o 3.30 0.87 8.06 1.80 1.19 0.78 2.84 1.90
bk 4.93 1.29 11.17 2.91 1.46 0.95 3.40 2.21
opr 14.44 3.37 36.84 7.04 3.09 0.23 7.43 0.55
] 61.81| 480.92 64.68| 2492.09

g 2.98 0.25 7.72 0.58

shrinking [sec] 0.56 3.91 1.29 8.91 2.64 2.60 5.47 5.42
reduction

[V[ [%] 0.00| 100.00 0.00| 100.00 60.00 60.00 60.00 60.00

|E| [%] 0.00| 100.00 0.00| 100.00 54.19 54.19 54.19 54.19
os 3.44 0.01 7.97 0.02 0.82 0.54 1.96 1.35
bks 5.01 0.00 11.41 0.00 0.93 0.66 2.14 1.61
oprs 14.55 0.00 38.80 0.00 1.45 0.63 4.52 1.55
is 62.25 0.00 64.88 0.00

gs 0.57 0.68 1.35 1.69
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Table 4: Running times in seconds and graph reduction in %hfee-dimensional (3D) rfim instances type, variance
put in parenthesegj) for undirected andg) for directed instances. Our implementati@) and the pure double tree
approach(bk) show good performance and are faster or comparable to ingpietion(g). Applying the shrink-
ing preprocessor helps to reduce the overall running timeaally for implementatioifj) on undirected instances.
However, on directed instances shrinking may be even cquoiguctive for implementation®), (bk), and(opr).

3D rfim undirected 3D rfim directed
150 (1) | 150 (4)| 200 (1) 200 (4)| 100(1)| 100 (4)| 150(1) 150 (4)
o 25.38 4.04| 66.11 9.69| 13.78 0.78| 59.08 2.97
bk 23.35 5.88| 58.44 13.88| 21.96 0.99| 105.32 3.75
opr 79.69 17.34| 226.46 53.48 27.16 1.54 | 119.47 5.61
i 77.56| 6044.08| 247.27| 34170.31
g 13.42 0.76| 69.65 2.73
shrinking [sec] 2.23 8.42 0.45 14.69 1.91 6.37 5.79 23.79

reduction
[V| [%] 0.00 70.41 0.00 46.50 2.58 60.00 1.73 60.00
|E| [%6] 0.00 74.22 0.00 49.24 1.61 57.23 1.07 57.26
os| 25.33 1.47| 66.22 6.16 | 14.12| 6878.12| 62.31| 77501.83

bks| 23.18 2.05| 58.40 9.59| 22.76| 5370.99| 110.21| 62283.99
oprs| 79.30 3.66 | 226.03 18.91| 26.14| 2983.62| 116.11| 34097.49

is 77.64| 458.84| 246.93| 9000.64

gs 13.04 0.33| 68.57 1.21

Table 5: Running times in seconds and graph reduction in %rfordimensional (2D) rfim instances with rational
capacities, variance put in parentheg@sfor undirected instances. Best performance on these cfasstances
shows implementatio(o). Shrinking again works very fast. Except for implementaii) the running time needed
for shrinking plus the time needed to calculate the maximflow on the modified graph is larger than on the
original graph.
2D rfim undirected 2D rfim directed

1000 (1)| 1000 (4)| 1500 (1)| 1500 (4)| 1000 (1) | 1000 (4)| 1500 (1) | 1500 (4)

0 5.13 1.08 9.94 2.99 1.47 0.78 3.01 2.48
bk 7.30 1.52 14.90 3.78 1.65 0.89 3.75 2.54
opr 28.40 3.35 59.30 9.27 6.71 1.35 17.08 4.01

] 92.21| 229.02| 382.36| 1268.64

shrinking [sec] 0.65 1.86 1.14 6.17 1.57 2.34 3.01 5.75

reduction
[V] [%0] 0.01 53.82 0.01 53.83 10.77 60.00 10.76 60.00
|E]| [%0] 0.01 56.08 0.01 56.09 7.93 52.44 7.92 52.43

os 5.24 0.59 9.99 1.69 1.44 0.59 3.50 1.78
bks 7.30 0.95 14.95 2.50 1.67 0.74 3.71 2.06
oprs 28.74 1.42 58.66 4.25 6.98 151 17.13 4.75
is 95.78 82.96| 382.38| 461.55

19



Table 6: Running times in seconds and graph reduction in %hi@e-dimensional (3D) rfim instances type with
rational capacities, variance put in parenthegg¢sfor undirected instances. The performance of the diffeirant
plementations varies but here the double tree approacloestsétter overall performance. Shrinking again works
very fast. Except for implementatiqj) the running time needed for shrinking plus the time needexkoulate the
maximums-t flow on the modified graph is larger than on the original graph.
3D rfim undirected 3D rfim directed
150 (1)| 150(4)| 200(1)| 200(4)| 100(1)| 100 (4)| 150 (1)| 150 (4)
o| 46.60 9.29| 182.85 50.42| 107.13 1.60| 720.31 5.06
bk | 51.31 12.77| 159.84 32.41| 134.28 1.72| 899.04 5.36
opr | 215.53| 43.67| 674.84| 130.22| 122.76 4.44| 670.39 13.94
j | 119.53| 3671.92| 428.90| 20580.39
shrinking [sec] 2.42 6.66 0.62 13.25 2.32 6.69 7.66 18.50
reduction
[V] [%] 0.00 22.51 0.00 19.33 0.66| 56.82 0.54 56.70
|E]| [%0] 0.00 24.41 0.00 20.88 0.35| 46.77 0.28 46.62
os| 46.28 7.02| 213.64 19.08| 104.80| 285.72| 741.43| 2893.48
bks| 49.84 9.91| 208.60 31.35| 135.04| 491.93| 919.38| 4884.73
oprs| 220.68| 32.53| 647.23 93.49| 117.83| 180.22| 659.96| 1969.35
js | 118.59| 2448.62| 475.65| 14797.21

Although the introduced preprocessing operations havelsndeen designed for the applications mentioned
above, it is interesting to evaluate them on more randonamt&s. There are two reasons for testing the presented
preprocessing operations on random graphs. Firstly, wiaeested in the question whether there is a threshold con-
cerning the connectivity of the source and the sink withigegtin the base graph, such that the shrinking operations
are applicable. Secondly, in random graphs the probabiflighort augmenting paths is rare. Hence, we are interested
in the question whether applying the greedy step on thogarioss is still worthwhile. We evaluated directed and
undirected random graphs, wishx 10° many vertices and varying density, generated with the gggpierator rudy
[14] for the base graph. Our results confirm our conjectuee,if less thars0% of the vertices in the base graph are
adjacent to source or sink, only few shrinking operatiorspssible and the graph size is only marginally reduced.
This does not come as a surprise as not many potential caeslidee present that satisfy the proposed SME condi-
tions. On random graphs with at led#t% of base graph vertices adjacent to source or sink, shriniddgces the
number of vertices considerably. For this class of instanttee proposed hybrid approach works well when com-
pared to the pure double tree stratégk), especially on undirected instances. This observatiamspendent of the
connectivity of the base graph. On undirected instancespdnformance ofbk) can considerably be improved with
the greedy step. However, especially for directed graphdittonal methods like push/relabel algorithms, for exam
ple (g), are preferable. In general, shrinking is performed vesy éa undirected instances, but takes some time on
directed instances. However, in the latter case more ramfuist possible. Solving the shrunk directed instancesstake
again longer (except wit{g)), similar to the results we get for 3D rfim instances, seeddldirected instances). As
a consequence, it is advantageous to apply the hybrid #igomwithout shrinking on undirected graphs in case the
vertices in the base graph are highly connected to the samdtéhe sink.

6. Conclusion

We proposed preprocessing operations for maximum flow prosl We showed that the input size can be reduced
by applying SME operations that preserve optimal solutidbfareover, well-known worst-case instances for different
maximum flow algorithms can be transformed into trivial eglent instances.

Subsequently, we presented a depth-restricted augmepitigalgorithm that yields a good initial flow very
fast. In combination with known solution strategies, themning times of traditional maximum flow algorithms are
considerably reduced on relevant instances from physidsamputer vision. The presented running times for the
shrinking operations show that our implementation of the&e@s is very fast. Moreover, taking the special graph
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structure into account, shrinking can remarkably redueegtfaph sizes and the running time of highest push/relabel
algorithms on undirected graphs. Nevertheless, shrirtk@sgo be applied with care: For directed graphs, the running
time can increase as each augmentation step takes longérstemces from theoretical physics and computer vision,
the fastest method uses augmenting path strategies wighaoking but with the new depth-restricted augmentation
step as proposed here. For directed instances, the implatioer{g) from [8] is the fastest one. However, it can only
be used for integral capacities. As a summary, our hybridrélgn without shrinking reduces the running time on
undirected random instances that are highly connecteduit@s@nd sink. Furthermore, on vision and rfim instances
it even improves the methdtk) which is the currently fastest available program for spgraphs. More specifically,
the running time of the hybrid implementation with the ‘déaitree’ strategy(0) is at least comparable or faster than
(bk).
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