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ViaMinimization in VLSI Chip Design
Application of a Planar Max-Cut Algorithm
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Abstract The design ofvery large scale integrated (VLSthips is an exciting area
of applied discrete mathematics. Due to the intractahilitthe majority of the prob-
lems, and also due to the huge instance sizes, the desigaspri& decomposed
into various sub-problems. In this paper, for a given dethibuting solution, we re-
visit the assignment of layers to net segments. For condectgalized nets, a layer
change is accomplished by a vertical interconnection afieddr short). We seek to
minimize the use of these vias as vias not only reduce thérielglcreliability and
performance of the chip, but also decrease the manufagtyraid substantially. In
the general case, the via minimization problem is NP-hamlvéver, it is known
that the two layer via minimization problem can be solved asaaimum cut prob-
lem on a planar graph which is a polynomial task. The focusisfpaper is to use
this approach for modern real-world chips. From the rougluitydozen wiring layers
present, we take two adjacent ones for the via minimiza#\gra core-routine, we use
a fast maximum cut algorithm on planar graphs. For being tabiese the solutions
in practice, we integrate practically relevant design ndastraints at the expense of
potentially using further vias. Thus, our solution satsfike additional constraints
present in actual current designs. The computationaltsesiibw that our implemen-
tation is fast on real-world instances as it usually comguateolution within a few
minutes CPU time only. Moreover, often a considerable arhofwias can be saved.
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1 Introduction

In the VLSI design process, routing is a complex and hardlprolboth in theory
and practice [1]. The output represents the later metatizeds on the chip area, thus
making logical connections of the overall circuit elecitlg connected.

In an abstract view, modern chips consist of several dozklayers i.e. conduc-
tive material of the chip, on whichetsare routed that conneptns (or terminalg to
make them electrically equivalent. In other words, netaremections between chip
elements such as logical modules and circuits, and of caliifeeent nets have to be
geometrically/electrically disjoint. Nets are built wire segmentghat represent the
later metalized rectangular areas on each wiring plane céhaection point where
two or more segments meet is callgahction Its degreeis the number of incident
segments. If two or more adjacent segments of a net are ptacdifferent layers, a
vertical interconnect acceser shortvia, is necessary.

Vias not only reduce the reliability and electrical perfamee of the chip (vias
have higher resistance), but also have a major impact on #reifacturing yield:
the number of vias is inversely related to the yield becaushki@ with more vias
has a smaller probability of being fabricated correctlyeréfore, it is desirable to
minimize the number of vias introduced in VLSI routing, and woncentrate here
on the case with only two adjacent layers as an importantiapesse in a practical
setting.

In practice, however, via minimization is often either reegéd or de-emphasized
in routing tools, and comes as an afterthought problem hEumtore, most detailed
routing solutions work in a sequential fashion. In factsitommon design practice to
assign all vertical wire segments to one layer and all hotalovire segments to the
other. Hence, a large number of layer changes might be in¢extito interconnect
the wire segments on different layers. In Figure 1 we see étaildd routing of a
real-world chip with respect to two relevant layers, seaufégla. In Figure 1b the
corresponding power grid is shown. The latter corresportiidokagesn the layer
assignment problem. A segment cannot be placed on a layénti€éisects the power
supply grid or any other shape that is considered as bloakagfe

Given an initial wiring consisting of a set of wire segmeiitg problem to assign
wire segments to layers such that the topology and the Ibgicenections are main-
tained and the number of vias required is minimized, is theal@dconstrained via
minimizationproblem. We call a wiring solution given as input where thgela or
a subset thereof are collapsed into a single plane, therefeo neglecting all vias,
atransient routing The problem at hand is thus also referred téeger assignment
since it deals with assigning layers to all segments. We Isalyafeasible layer as-
signmentis arealizable layer assignmeri two layers if it respects all additional
(design rule) constraints.

The constrained via minimization problem for two layerggorated in the pio-
neering work of Hashimoto and Stevens [16] 1971. Howevey @nlvay junctions
were allowed in their model. In 1980, Kajitani [17] proposeplolynomial-time algo-
rithm for a special case of the problem. An integer-programgrformulation was in-
troduced in [11]. In general, the via minimization problesNP-hard [22, 9]. For cer-
tain restricted cases, polynomial-time solutions are iptesssindeed, in 1983, Chen
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Fig. 1: A real-world chip. (a) Wire segments after routingdRegments are placed on one layer while
black segments are placed on the other layer. (b) Power giichwields blockages that have to be taken
care of when assigning layers to the segments.

et al. [8] presented a polynomial-time algorithm for gridsied layouts which gives
optimum results when the maximum junction degree is limitethree and heuristic
results otherwise. However, they restrict vias to lie atfions which already existed
in the wiring. This preludes the placement of a via on anyigitdine segment, thus,
limiting the applicability of their approach.

Independently, Pinter [23] proposed a polynomial-timeoetgm in the case that
at most 3-way junctions occur. The algorithm is based onroeéténg a partition
of the vertex set in an appropriate planar conflict graph sbehthe sum of edge
weights of edges connecting vertices in different pargiégs maximum. The latter
is known asmaximum cut probleron planar graphs. Chang and Du [6] developed
a heuristic algorithm that can handle junctions of any deghehowever does not
guarantee optimum solutions. Naclerio et al. [21] devedoae algorithm with the
same time complexity as the method proposed in [8], but doesequire the layout
to be grid based and does not restrict the placement of vizeir &lgorithm yields
optimum results when the junction degree is limited to thmed heuristic results
otherwise. Barahona et al. [3] and Grotschel et al. [15pfeé#d the approaches in [8,
23] and proposed a branch-and-cut algorithm in which prattonstraints, like pin
preassignment and layer preferences, were included.



Chang and Du [7] reduced the three coloring problem on plgraphs to the
constrained via minimization problem on three layers ara/gd that the latter is
NP-hard. In 1997, Chang and Cong [5] extended Pinter's ambréok layers and
presented a heuristic method to obtaik-aut solution yielding a layer assignment.
Chou and Lin [10] used the relation between kakayer constrained via minimization
problem and the constrainéeway graph partitioning problem and proposed a simu-
lated annealing approach which showed good results onigabictstances. Recently,
Fouilhoux and Mahjoub [12,13] reduced thdayer via minimization problem with
arbitrary junction degree to thle-partite induced subgraph problem. They gave an
exact integer programming formulation and proposed authli constraints for pin
preassignment, stacked vias, etc.

However, as modern chips consists of a very large numbertsf ités usually
not possible to use branch-and-cut approaches for redthwhips. We focus here on
applying the polynomial-time approach of [8,23]. For detgring maximum cuts in
planar graphs, we use the exact polynomial-time algoritresgnted in [19] as a core
routine. The latter works as follows. First, the dual of thenar graph is constructed.
By including a limited amount of artificial nodes and edgés tlual is extended
such that the degree of each vertex is at most four. Then,\eatdx is replaced by
a complete graph on four nodes. An optimum perfect matchirmgiculated on this
extended dual graph. The optimum matching is then used fermeing an optimum
cut in the original input graph. This approach can determiagimum cuts in planar
graphs with more thah0° nodes within short time. Furthermore, implementing the
method is a straight-forward task, when using a publiclyilakbée implementation
for perfect matchings. As our planar maximum-cut algorithas no knowledge of
chip design rules or practical constraints such as blockagan preferences, we
satisfy them by potentially investing further vias. Theref our polynomial-time
approach yields solutions that might need more vias tharaigtrequired for a given
wiring. This does not come as a surprise as these furthetragms make the via
minimization problem NP-hard.

In the next section we briefly recall a transformation of #gel assignment prob-
lem to a max-cut problem on an appropriate conflict graptofalig [8,23,3,15].
The placement of vias is not restricted to junctions. Furtizee, they can be placed
always on junctions or can be placed on straight line segnghéen possible. Ad-
ditional side constraints are introduced one by one in 8e@&i We explain how to
integrate them into the polynomial approach. The methodbeansed for any chip
geometry. Then results for real world chips are presentddiatussed in Section 4.
Finally, we give a conclusion in Section 5.

2 Transformation to a Max-Cut Problem on a Planar Graph

In the following we review the transformation of the via nmmzation problem to a
max-cut problem on an appropriatenflict graph We follow the approaches pro-
posed in [8,23,3,15]. Suppose we are given a transientnguati the chip. We as-
sume that at most 3-way junctions occur. Further, no net ectsnmore than three
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Fig. 2: Segment intersections. Within each critical intemas are not allowed to be placed. All non-
critical parts are via-candidates, vias may be placed hdye(@) Criticalsc4 andcs overlap. The counter-
part tocs is ¢g and vice versa. (b) The result of a unify operationanandcs is critical ¢ with its
counter-partg; andcz. The counter-part for botly ande; is nowc}.

pins. Later we will drop these restrictions and discuss ictiSe 3 how to integrate
additional practical constraints such as design ruleseffily.

We partition the segments intritical and via-candidateintervals, see Figure
2a. In the following we sayriticals andvia-candidatedor short to address critical
resp. via-candidate intervals. Criticals are defined byndersection of at least two
segments. These segments (or parts of them) have to be maddifferent layers.
It is easy to see that the crossing of more than two segmenthdi same point)
imply that the routing cannot be realized in two layers. Mweg, as vias need space,
the crossing defines the middle of an interval such that a amabe placed at the
interval borders without introducing a short-circuit. Wefar to these intervals as
criticals. On the other hand, via-candidates are all regadra net that are not critical.
Vias can be placed on via-candidates only. By applying a pwee algorithm (such
as proposed in [24,4]) we find all criticals. Each crossingwad segments implies
two criticals, one on each participating segment. Thush eaitical implies at least
another ‘counter-part’ critical. Next, we search for oa@ping criticals because they
do not leave enough space for vias to be placed in betweenlappeg criticals are
unified to a larger critical. A direct consequence is thateéhmay be more critical
counter-parts for one critical, see Figure 2b.

We have partitioned the chip into criticals and via-cantidaNow we express
the conflicting segments byaonflict graphG = (V, E). If there are no conflicts the
chip can be directly realized in two layers. Otherwise, eattical defines a vertex
in G. We introduce two kinds of edgesonflict edgesindfree edgesThe former are
those edges that connect a critical with its counter-paryste that these counter-
part(s) have to be placed on layers different than that ofctiteeal. Two vertices
are joined by a free edge if the two corresponding criticadsiacident to the same
via-candidate.

If each segment incident to a 3-way junction leads to a alitive mutually con-
nect the three of them by so-callbdlf-free edgessee Figure 3.

SoFE = AU B, whereA is the set of conflict edges arigithe set of free edges. It
is easy to see that the subgra@h = (V, A) induced by the set of conflict edges is bi-
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Fig. 3: Three criticals connected by half-free edges as éineyncident to a 3-way junction.

partite. Otherwise, there exist conflicts that cannot belvesl in two layers. Further-
more,G 4 partitions into connected bipartite components with vesetsl; C V.

On the other hand, the subgra@h; = (V, B) induced by the set of free edges is
a planar graph. If not, some free edges cross which contsatlie definition of free
edges that correspond to via-candidates.

Now we can model the via minimization problem as a cut probdend:. A cut
that contains all conflict edges and minimizes the numbered &dges in the cut
corresponds to a realizable layer assignment with a minimumber of vias. Note
that half-free edges only count half. The layer assignmigéhch bipartite component
can be determined if one of its vertices is fixed to a layer.ddenve search for
a cut that minimizes the number of free edges in the cut whefiixwva partition
for one representative vertex in each component. Considedced conflict graph
Gr = (Vg, Bg) that is built by shrinking each bipartite componéftin G to one
vertexv; in this component. We call this vertex thepresentativéor component/;.
HenceVir = {v; | v; is the representative for compondng. Two representatives
v; andv; are adjacent if and only if there exists a free edge conngétivertex in
component’; to a vertex inV;. Note that loops may occur. Henét; = {(v;, v;) |
Je= (vikvvjz) vi, € Vi,v5, € V7}

It is easy to see that a layer assignment corresponds to exvgattition() and
Vr \ Q in Gr. By appropriately assigning weights to the edges in thetgrépe
maximum cut determines a layer assignment with the minimumber of vias.

Denote byns the number of segments. By applying a sweep line algorithm to
all nets of a chip, all intersections can be identified in tigngs + I)logns),
where [ denotes the number of intersections. The described tramafmn to the
conflict graph and afterwards the construction of the redwmmflict graph can be
done in linear time. Finding the optimum max-cut 6% = (Vg, Bgr) (the most
time consuming step) can be done in tiA¢Vz|2 log |Viz|), for example with the
algorithm proposed in [19]. Thus, the asymptotic runnimgetican be expressed as
O((ns + I)logns + |Vg|2 log [Vg|).

3 Satisfying Practical Constraints

In theory, most of the practical constraints drasticallyré@ase the complexity of the
problem, resulting in NP-hard tasks. Nevertheless, we dimw to integrate them
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Fig. 4: Net connecting more than three pins. For realizingldtter, we allow for consecutive 3-way
junctions. (a) In red: two pins connected by a path that gasse 3-way junctions. Note there is an
intersection yielding two criticals. These are not only mected by a conflict edge but also adjacent to
the same via-candidate which comprises two 3-way junctidim$laced criticals. We introduce one point
critical cp.

in the basic via minimization algorithm from Section 2. in efficient way, at the
expense of additional vias.

3.1 Nets Connecting Four or more Pins

If we allow at most 3-way junctions then nets connecting ntben three pins are
possible if and only if there are at least two consecutivea§-yunctions on a path
between two pins, see Figure 4a. Now, the subgi@phof the conflict graphG =
(V, AU B) induced by the set of free edges may not be planar anymore.€foame
this situation we introducpoint criticals. These criticals are artificial and do not cor-
respond to a real intersection of segments. We place thera@nsegment incident
to a 3-way junction if (a) the segment does not already corgairitical and (b) it is
part of a path connecting two criticals which passes two gjwactions. Everything
else stays the same. Point criticals handle the possibiliptace vias on one 3-way
junction in case more than one 3-way junction lies betweeaiagi adjacent criti-
cals. For the situation in Figure 4a we place a point critigaln the segment incident
to the two 3-way junctions as shown in Figure 4b. The reducedict graph for this
example consists of two vertices connected by an edge, amdiars needed. It is
easy to see that we still have an exact polynomial approadhéovia minimization
problem when we use point criticals.

3.2 Minimum Distance

In a feasible routing solution, vias and wire segments nbt loave to be disjoint, but
also need to obey certain minimum distance requiremenesKiggire 5). In order to
forbid the placement on such segments, we introcassido criticalsWe say that
segments that are routed too close to each other amgtical distance For dealing
with overlapping segments, we extend the definition of @l in a natural way.
Hence, overlapping segments are handled as intersecigesido criticals do not
have critical counter-parts as they do not correspond tmnsection, and thus do
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Fig. 5: Two segments running in parallel within minimum dis&nd/e introduce pseudo criticals to ensure
that no via is placed there. Otherwise a short circuit may tsediniced. The minimum distance is indicated
by the red dashed dotted line.

not have a layer preference. Hence we can independentlg filam on layers. Note
that due to unifying operations they may become criticalntersparts. Again other
construction rules are not changed. Algorithmically weeexit the sweep line part
from Section 2 to find segments within a critical distance.denot only check for
intersections of active segments but also run a test for eetgmin critical distance.
This can be accomplished in the same running tim@gs.s + 1) logng), wherel
now denotes the number of intersections and segments witinimum distance. No
further changes are needed. In a postprocessing step thiaysfor those pseudo
criticals is decided.

3.3 4-way Junctions
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Fig. 6: (a) A 4-way junction. If such a junction occurs the nehnects at least four pins. Allowing 4-
way junctions makes the via minimization problem already NR}aa the corresponding reduced conflict
graph may be non-planar. (b) In a preprocessing step evergydiumction is transformed to a chain of
3-way junctions within are-region. Each new introduced segment within theegion is critical. This
transformation allows for not only 4-way junctions but fortemB-way junctions.

Naclerio et al. [22] and Choi et al. [9] have shown that the layer via minimiza-
tion problem is NP-hard if one allows 4-way junctions. Theguced the vertex-
deletion graph bipartization problem to the via miniminatiproblem. Nowadays
4-way junctions are used more frequently in chip layoutsw&scannot expect to
be able to introduce them into an exact polynomial time apgipwe propose the



following transformation of a 4-way junction to a chain ofa@y junctions. Note
that this is a heuristic way of modeling 4-way junctions whpotentially additional
vias need to be used. Nevertheless, we obtain good heuwsgtitions in polyno-
mial time. A layer assignment on the latter instance can beemapped to a feasible
layer assignment for the instance with 4-way junctions.<hder Figure 6b: a 4-way
junction is replaced by a series of 3-way junctions. Thidaegment is performed
in ane-region around the former 4-way junction. Let us call thensegts by their
orientations,,, s.,, ss, ands, in counterclockwise order around the junction. We split
each segment and reduce their lengthebywo ¢ for s;). We add new, so-called,
e-segments with lengthand connect,,, s, ss, ands, as shown in Figure 6b. All
artificial segments are critical and connected by free eddgsh correspond to the
introduced artificial junctions. As we are allowed to pla@s\at junctions we prefer
the placement of vias to those 4-way junctions. By approéglsiaadjusting the edge
weights in the associated conflict graph, we prefer the ptacg on these junctions.
The artificial junctions will vanish in the postprocessingdavias will possibly be
placed on the original junction. This replacement allowsagunction degree up to
eight (if the layout is restricted to grid based layouts).rdtaver, at the endpoints of
eache-segment the junction degree is at most three. This repleceoan be done
in linear time in a preprocessing step. In a postprocessamwse must shrink these
e-replacements back to the former 4-way junction which caddree in linear time
as well.

3.4 Pin Layer Preferences

Another constraint comes into play since some pins mighe Ipae-described layer
assignments. This means that we know beforehand on whidr Eyin must be
placed in a feasible two-layer assignment. In theory, omeircttoducepin criticals
at pins. Further one introduces a supervestéxthe reduced conflict graph and con-
nects the corresponding (pin) vertices to it. Superverisxassigned to one preferred
layer. Edgeqs,v),v € V' \ {s} get a very large weight if the corresponding pin
critical has to be assigned to a different layer, or a veryllwgight in case the cor-
responding pin critical has to be on the same layer. Aparhfvery special cases,
the reduced conflict graph then is not planar anymore, bubstiplanar. Barahona
[2] has shown that the max-cut problem is already NP-hardronst planar graphs.
Nevertheless, one may follow the construction above. leora be able to apply the
basic algorithm introduced above, one has to find a maximamaplsubgraph that
includes the reduced conflict graph and as many edges ableostine form(s, v).
The maximum cut on this graph yields a two-layer assignnrentiich some of the
pins with layer preferences are placed on their preferrgerldt might be necessary
to place additional vias in order to meet all preferencesvéle@r, it turns out experi-
mentally that this approach usually leads to solutionsviayafrom the optimum.
Here, we propose a different strategy for handling pin migasnents within the
basic scheme. We do not introduce any additional criticatspbace vias at pins if
they are not placed on their preferred layer in a postpraegstep. Although this
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is a straightforward approach, the computational restitsvsthat this strategy is
superior to the subgraph one.

3.5 Layer Preferences (Blockages)

Sometimes it is necessary that some segments have to bd placee specific layer.
This situation occurs for example if there iblackageon the other layer. We say such
a segment has a layer preference. Via minimization and [agéerences are conflict-
ing goals. By allowing more vias, more segments may be placetteir preferred
layer. On the other hand, minimizing the number of vias majdymany segments
placed on the wrong layer which is infeasible in practice. &end the via mini-
mization scheme by another sweep line phase. In this sweemé find all inter-
sections between blockages and segments. Thus, we gaindeesf information:
block criticals that are critical intervals where no via can be placed disdckages,
and a preference to one layer. Again we could proceed assdisduin Section 3.4
in the case with pin preassignment. But again this may yieldati®ns far away from
the optimum. Instead we only introduce block criticals aotye the via minimiza-
tion problem with them. In a postprocessing step we idettibge criticals that were
placed on the wrong layer and repair the solution by introtuoew vias. As we see
in the computational results in Section 4, this approactkearell in practice.

4 Computational Results

In this section we report our computational results on vealld instances. The chips
used are current ASIC designs and were kindly provided byoaperation partners
at IBM®. The initial wiring was constructed by BonnRo#tg14], which is part of
the BonnTools framework [18] and is also used by IBNh the design of these chips.
In the implementation, we use the max-cut implementati@sgnted in [19] as base
routine, together with the modifications explained in thewasections. We compare
the via numbers with those of the initial BonnRdBwiring. Further, we used the
LEDA library [20] for the intersection test of segments.

The chips used for the instances are from current desigrieajridless 65nm
technology node. They have different size and a differeatimg layout. Most im-
portantly, we also include the information about pin preferes, design rules and
blockages. In each case, we used the metal2 and metal3 \agyiags for the experi-
ments. Higher layers are usually used for longer distanoeéshais provide less room
for optimization. As metall is usually reserved for cirdatiernal structures, it does
not contain many wire segments. The generated resultsasile and also consider
the practical constraints. Our experiments were perfororethtelr) Xeon© CPU
X5680 3.33GHz (48GB RAM) (running under Debian Linux 5.0).

In Table 1 we report detailed information and results fordlierent representa-
tive chips. The transient routing inputs have between 13af#l 64,098 many nets
with varying number of segments (60,427 up to 661,541) andKalges (52,336 up
to 2,146,275). We also give the number of occurring 4-wagtjians and the number



Table 1: Results for via minimization on real-world chips. Breassignment is taken into account in a postprocessingBlegkade information are processed from th
beginning. The column with lab&C report the number of connected components in the reducedatayréiph. Entries with negative percentage indicate thegmeage of
vias that our solution needs additionally, when compareteatirrently used solution. Finally, we report the size eflirgest component in brackets.
4- reduced conflict graph via time
chip nets | segments| blockages| ways vias V] (Viargest) |E] (| Eiargest) \ CC | red. [%] [secs]
Gertrudl | 60,268 | 316,692 | 2,146,275| 462 97,196 | 137,113 (103,239) 185,044  (165,710)17,544 -19.80 | 107.28
Gertrud2 | 58,295 | 287,584 | 2,146,275| 320 86,709 | 120,933 (84,959) 155,670 (135,498)18,823 -20.28 99.09
Inaya | 64,098 | 661,541 | 1,449,723| 694 | 233,803 | 307,174 (290,516) 483,398  (475,078) 9,417 -34.57 | 171.34
Joe | 13,747 60,427 52,336 0 26,594 | 22,269 (21,300) 39,123 (38,763) 687 28.89 3.87
Joe2 | 15,079 79,618 52,336 126 26,507 32,373 (29,643) 49,441 (47,877) 1,455 9.06 6.02
Luciusl | 51,953 | 327,579 717,953 | 182 | 118,391 | 260,196 (253,359) 431,027 (426,295) 3,066 33.49 | 59.98
Lucius2 | 56,868 | 408,537 932,384 | 469 | 145,938 | 183,373 (171,668) 295,814  (290,291) 6,984 -25.88 81.00
Renate| 42,624 | 350,106 933,397 | 484 | 120,995| 212,602 (200,602) 326,194 (318,874) 5,877 25.63 | 7143

T
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of vias used in the original transient layout. Finally, wpa# the size of the reduced
conflict graph. Clearly, the reduced conflict graphs aresspdturthermore, they con-
sist of several connected components that are processeergidjy. We observe that
there is always one big component of size of al#0dt of the reduced conflict graph.
Moreover, there are many small components with up to threees. The latter make
up betweerd1% and96% of all connected components. Applying the max-cut algo-
rithm can be done fast which can be seen in the small totalimgrtrmes. On four
out of eight chips we can drastically reduce the number of meded. On chip Joe2
about 9% less vias are needed, on Renate we could save at®ifwih of the
vias currently used. Similarly, on chips Luciusl and Joegduction of about 30%
was possible. On the other hand, if we could not achieve actieduof the number
of vias, we needed between 20% (Gertrudl) and 35% (Inaya@ mas. This can be
explained by the high number of intersections of segmerttshiockages on the cor-
responding chips. For the chips Gertrud1 and Gertrud2 trerenore thass.2 x 10°

of them, on Inaya more thah5 = 10°, and on Lucius1 still more than3 * 10°. Due
to the large number of blockages on those chips, it is prefer® place horizontal
segments to one layer and vertical segments to the other.

In order to evaluate different ways of modeling pin preassignts, we also re-
port in Table 1 results when pin preassignment is done wélpostprocessing step.
We did not use any other heuristic method for the pin preassémt constraint as
proposed in Section 3.4. However, to compare this appraatetone proposed in
Section 3.4 we present in Tables 2 - 4 results obtained bgdatiing pin criticals. In
Table 2 we introduced them for all pins, while in Table 3 weyointroduced them
for pins on layer 1, and in Table 4 only for pins on layer 2 piiticals were used.

Table 2: Results for via minimization. Pin preassignment fahleyers is taken into account by a heuristic

approach as explained in Section 3.4. Blockage informatierpeocessed from the beginning. Positive

(negative, resp.) numbers indicate the percentage of wesigadditionally used, resp.), when compared
to the current solution. The column with lab@[C report the number of connected components in the
reduced conflict graph. Additionally to the number of conedatomponents, we report the size of the

largest component in brackets.

reduced conflict graph via time

chip V] (IViargest) |E|  (IEiargest) ‘ CC | red. [%] [secs]
Gertrudl | 242,618 (166,501) 279,697 (228,972)28,396 -78.79 | 215.71
Gertrud2 | 223,313  (141,566) 246,583  (192,105)30,290 -85.99 | 196.80
Inaya | 446,597 (409,068) 617,702 (593,625)14,536 -55.88 | 286.54
Joe| 45,042  (40,473) 60,762  (57,936) 1,821 | -11.00 5.27
Joe2 55,708 (47,573) 71,068 (65,807) 3,163 -22.69 8.47
Luciusl | 366,147 (336,379) 527,820 (509,315)12,224 -3.18 | 161.26
Lucius2 | 275,691 (247,115) 383,847 (365,738)11,269 -46.84 | 143.28
Renate| 316,373 (279,339) 421,478 (397,529)14,364 -17.01 | 150.37

Introducing pin criticals for all pins yields worst perfoamce. As we try to find a
planar subgraph with many vertices corresponding to pticats we obviously miss
some of those. Hence, the solution on the chosen planarapfibgright be far away
from any optimum solution. This is worse when using pin cals for all pins. This
approach thus does not reduce the number of vias needed ahignyrhe solutions
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Table 3: Results for via minimization with pin preassignmery@m layer 1. Pin preassignment is taken
into account by a heuristic approach as explained in Se8tibrBlockage information are processed from
the beginning. Positive (negative, resp.) numbers inditetgercentage of vias saved (additionally used,
resp.), when compared to the current solution. The columnaiitel CC report the number of connected
components in the reduced conflict graph. Additionally torthmber of connected components, we report
the size of the largest component in brackets.
reduced conflict graph via time
chip V] (IMargest) |E| (| Eiargest) ‘ CC | red. [%] [secs]
Gertrudl | 149,879  (110,337) 194,077  (172,808)21,277 -23.15 | 116.11
Gertrud2 | 133,036 (91,455) 164,109  (141,994)22,487 -23.61 | 110.73
Inaya | 327,339  (305,193) 499,922  (489,750)13,058 | -39.47 | 184.62
Joe | 23,609 (22,128) 40,056 (39,591) 1,094 27.31 | 194.22
Joe2 | 34,724 (30,956) 51,023 (49,190) 2,224 8.36 6.22
Luciusl | 287,358 (272,484) 451,657  (445,420) 9,598 30.61 | 84.84
Lucius2 | 200,707 (183,710) 309,851  (302,338)10,281 -29.25 | 103.77
Renate| 221,091 (206,320) 332,358  (324,510) 8,202 2482 | 76.34

Table 4: Results for via minimization with pin preassignmeriy@m layer 2. Pin preassignment is taken
into account by a heuristic approach as explained in Se8ti#brBlockage information are processed from
the beginning. Positive (negative, resp.) numbers inditegercentage of vias saved (additionally used,
resp.), when compared to the current solution. The columnlafitel CC report the number of connected
components in the reduced conflict graph. Additionally tortheber of connected components, we report
the size of the largest component in brackets.
reduced conflict graph via time
chip [Vl (IViargesl) IEl (| Pargesl) | CC | red.[%] | [secs]
Gertrudl | 229,852  (159,403) 267,171  (221,874)28,156 | -76.07 | 238.35
Gertrud2 | 211,210 (135,070) 234,715 (185,609)30,055 | -82.91 | 192.47
Inaya | 426,432 (394,391) 597,620 (578,948)14,453 | -51.73 | 281.39
Joe | 43,702 (39,645) 59,489 (57,108) 1,754 -9.63 5.61
Joe2 | 53,357 (46,260) 68,790 (64,494) 3,090 -28.77 | 10.48
Luciusl | 338,985 (317,254) 500,951  (490,190)11,931 0.65 | 123.38
Lucius2 | 258,357 (235,073) 366,696 (353,696)11,086 | -43.14 | 139.60
Renate| 307,884 (273,703) 412,999  (391,898)14,354 -6.87 | 159.44

needed up to twice as many vias as in the original transierning Moreover, the
running-times are considerably larger. The reduced cogflaphs are larger but there
are more subgraphs.

Using only pin criticals for pins on layer 1 shows better tesusee Table 3.
Nevertheless, they are worse than without any pin criticadsnpare Table 1. The
running-times are comparable as the sizes of the reducdlictgmaphs only differ
slightly. The picture is different when considering pinticals only on layer 2. The
results are similar to those obtained if pin criticals aredufor all pins. Nevertheless,
on chip Lucius1 a marginally reduction of the number of viasated can be observed,
in return the running-time was twice as long as without piticals.

As a summary, applying the presented method can be donddssttlian three
minutes) on real-world chip instances. Best results aredavhen pin preassignment
for both layers is taken into account by a heuristic appraechxplained in Section
3.4. The corresponding computational results are predent€able 1. Then, either
we obtain a better layer assignment with considerable liessov we verified that the
given transient routing is good in terms of the number of uses.
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5 Conclusion

We described a combinatorial approach for via minimizatartwo layers in VLSI
chip design. The method was originally proposed in [8, 2B;B,Here, we presented
an implementation which take into account practical camsts like pin preassign-
ment and blockages. Further, we also incorporated a natayato deal with 4-way
junctions, and replaced those by a chain of 3-way junctibising a fast maximum
cut algorithm for planar graphs [19] as exact core routihe \tia minimization ap-
proach achieves good results on real-world chips. Solsiamn be determined within
a few minutes of CPU time only. The solution either yields asiderable reduction
in the number of vias, or the instance possesses a very dankmg@ of blockages.
We showed that there is space for optimization in large weald chips. Indeed, in
VLSI routing, the number of vias used for wiring intercontseis an important figure
when estimating the quality of a result, especially in teahgield. With the method
outlined above, the number of vias in modern real-world sltign be kept low.
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