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Abstract The design ofvery large scale integrated (VLSI)chips is an exciting area
of applied discrete mathematics. Due to the intractabilityof the majority of the prob-
lems, and also due to the huge instance sizes, the design process is decomposed
into various sub-problems. In this paper, for a given detailed routing solution, we re-
visit the assignment of layers to net segments. For connected metalized nets, a layer
change is accomplished by a vertical interconnection area (via for short). We seek to
minimize the use of these vias as vias not only reduce the electrical reliability and
performance of the chip, but also decrease the manufacturing yield substantially. In
the general case, the via minimization problem is NP-hard. However, it is known
that the two layer via minimization problem can be solved as amaximum cut prob-
lem on a planar graph which is a polynomial task. The focus of this paper is to use
this approach for modern real-world chips. From the roughlytwo dozen wiring layers
present, we take two adjacent ones for the via minimization.As a core-routine, we use
a fast maximum cut algorithm on planar graphs. For being ableto use the solutions
in practice, we integrate practically relevant design ruleconstraints at the expense of
potentially using further vias. Thus, our solution satisfies the additional constraints
present in actual current designs. The computational results show that our implemen-
tation is fast on real-world instances as it usually computes a solution within a few
minutes CPU time only. Moreover, often a considerable amount of vias can be saved.
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1 Introduction

In the VLSI design process, routing is a complex and hard problem both in theory
and practice [1]. The output represents the later metalizedareas on the chip area, thus
making logical connections of the overall circuit electrically connected.

In an abstract view, modern chips consist of several dozens of layers, i.e. conduc-
tive material of the chip, on whichnetsare routed that connectpins(or terminals) to
make them electrically equivalent. In other words, nets areconnections between chip
elements such as logical modules and circuits, and of coursedifferent nets have to be
geometrically/electrically disjoint. Nets are built ofwire segmentsthat represent the
later metalized rectangular areas on each wiring plane. Theconnection point where
two or more segments meet is calledjunction. Its degreeis the number of incident
segments. If two or more adjacent segments of a net are placedon different layers, a
vertical interconnect access, or shortvia, is necessary.

Vias not only reduce the reliability and electrical performance of the chip (vias
have higher resistance), but also have a major impact on the manufacturing yield:
the number of vias is inversely related to the yield because achip with more vias
has a smaller probability of being fabricated correctly. Therefore, it is desirable to
minimize the number of vias introduced in VLSI routing, and we concentrate here
on the case with only two adjacent layers as an important special case in a practical
setting.

In practice, however, via minimization is often either neglected or de-emphasized
in routing tools, and comes as an afterthought problem. Furthermore, most detailed
routing solutions work in a sequential fashion. In fact, it is common design practice to
assign all vertical wire segments to one layer and all horizontal wire segments to the
other. Hence, a large number of layer changes might be introduced to interconnect
the wire segments on different layers. In Figure 1 we see the detailed routing of a
real-world chip with respect to two relevant layers, see Figure 1a. In Figure 1b the
corresponding power grid is shown. The latter correspond toblockagesin the layer
assignment problem. A segment cannot be placed on a layer if it intersects the power
supply grid or any other shape that is considered as blockageon it.

Given an initial wiring consisting of a set of wire segments,the problem to assign
wire segments to layers such that the topology and the logical connections are main-
tained and the number of vias required is minimized, is the so-calledconstrained via
minimizationproblem. We call a wiring solution given as input where the layers or
a subset thereof are collapsed into a single plane, therefore also neglecting all vias,
a transient routing. The problem at hand is thus also referred to aslayer assignment
since it deals with assigning layers to all segments. We say that afeasible layer as-
signmentis a realizable layer assignmentin two layers if it respects all additional
(design rule) constraints.

The constrained via minimization problem for two layers originated in the pio-
neering work of Hashimoto and Stevens [16] 1971. However only 2-way junctions
were allowed in their model. In 1980, Kajitani [17] proposeda polynomial-time algo-
rithm for a special case of the problem. An integer-programming formulation was in-
troduced in [11]. In general, the via minimization problem is NP-hard [22,9]. For cer-
tain restricted cases, polynomial-time solutions are possible. Indeed, in 1983, Chen
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(a) (b)

Fig. 1: A real-world chip. (a) Wire segments after routing. Red segments are placed on one layer while
black segments are placed on the other layer. (b) Power grid which yields blockages that have to be taken
care of when assigning layers to the segments.

et al. [8] presented a polynomial-time algorithm for grid-based layouts which gives
optimum results when the maximum junction degree is limitedto three and heuristic
results otherwise. However, they restrict vias to lie at junctions which already existed
in the wiring. This preludes the placement of a via on any straight-line segment, thus,
limiting the applicability of their approach.

Independently, Pinter [23] proposed a polynomial-time algorithm in the case that
at most 3-way junctions occur. The algorithm is based on determining a partition
of the vertex set in an appropriate planar conflict graph suchthat the sum of edge
weights of edges connecting vertices in different partitions is maximum. The latter
is known asmaximum cut problemon planar graphs. Chang and Du [6] developed
a heuristic algorithm that can handle junctions of any degree. It however does not
guarantee optimum solutions. Naclerio et al. [21] developed an algorithm with the
same time complexity as the method proposed in [8], but does not require the layout
to be grid based and does not restrict the placement of vias. Their algorithm yields
optimum results when the junction degree is limited to threeand heuristic results
otherwise. Barahona et al. [3] and Grötschel et al. [15] followed the approaches in [8,
23] and proposed a branch-and-cut algorithm in which practical constraints, like pin
preassignment and layer preferences, were included.
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Chang and Du [7] reduced the three coloring problem on planargraphs to the
constrained via minimization problem on three layers and proved that the latter is
NP-hard. In 1997, Chang and Cong [5] extended Pinter’s approach tok layers and
presented a heuristic method to obtain ak-cut solution yielding a layer assignment.
Chou and Lin [10] used the relation between thek-layer constrained via minimization
problem and the constrainedk-way graph partitioning problem and proposed a simu-
lated annealing approach which showed good results on practical instances. Recently,
Fouilhoux and Mahjoub [12,13] reduced thek-layer via minimization problem with
arbitrary junction degree to thek-partite induced subgraph problem. They gave an
exact integer programming formulation and proposed additional constraints for pin
preassignment, stacked vias, etc.

However, as modern chips consists of a very large number of nets, it is usually
not possible to use branch-and-cut approaches for real-world chips. We focus here on
applying the polynomial-time approach of [8,23]. For determining maximum cuts in
planar graphs, we use the exact polynomial-time algorithm presented in [19] as a core
routine. The latter works as follows. First, the dual of the planar graph is constructed.
By including a limited amount of artificial nodes and edges, the dual is extended
such that the degree of each vertex is at most four. Then, eachvertex is replaced by
a complete graph on four nodes. An optimum perfect matching is calculated on this
extended dual graph. The optimum matching is then used for determining an optimum
cut in the original input graph. This approach can determinemaximum cuts in planar
graphs with more than106 nodes within short time. Furthermore, implementing the
method is a straight-forward task, when using a publicly available implementation
for perfect matchings. As our planar maximum-cut algorithmhas no knowledge of
chip design rules or practical constraints such as blockageor pin preferences, we
satisfy them by potentially investing further vias. Therefore, our polynomial-time
approach yields solutions that might need more vias than actually required for a given
wiring. This does not come as a surprise as these further constraints make the via
minimization problem NP-hard.

In the next section we briefly recall a transformation of the layer assignment prob-
lem to a max-cut problem on an appropriate conflict graph following [8,23,3,15].
The placement of vias is not restricted to junctions. Furthermore, they can be placed
always on junctions or can be placed on straight line segments when possible. Ad-
ditional side constraints are introduced one by one in Section 3. We explain how to
integrate them into the polynomial approach. The method canbe used for any chip
geometry. Then results for real world chips are presented and discussed in Section 4.
Finally, we give a conclusion in Section 5.

2 Transformation to a Max-Cut Problem on a Planar Graph

In the following we review the transformation of the via minimization problem to a
max-cut problem on an appropriateconflict graph. We follow the approaches pro-
posed in [8,23,3,15]. Suppose we are given a transient routing of the chip. We as-
sume that at most 3-way junctions occur. Further, no net connects more than three
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Fig. 2: Segment intersections. Within each critical interval vias are not allowed to be placed. All non-
critical parts are via-candidates, vias may be placed here only. (a) Criticalsc4 andc5 overlap. The counter-
part toc3 is c6 and vice versa. (b) The result of a unify operation onc4 andc5 is critical c′
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with its
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′

4
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pins. Later we will drop these restrictions and discuss in Section 3 how to integrate
additional practical constraints such as design rules efficiently.

We partition the segments intocritical and via-candidateintervals, see Figure
2a. In the following we saycriticals andvia-candidatesfor short to address critical
resp. via-candidate intervals. Criticals are defined by an intersection of at least two
segments. These segments (or parts of them) have to be placedon different layers.
It is easy to see that the crossing of more than two segments (in the same point)
imply that the routing cannot be realized in two layers. Moreover, as vias need space,
the crossing defines the middle of an interval such that a via can be placed at the
interval borders without introducing a short-circuit. We refer to these intervals as
criticals. On the other hand, via-candidates are all regions of a net that are not critical.
Vias can be placed on via-candidates only. By applying a sweep line algorithm (such
as proposed in [24,4]) we find all criticals. Each crossing oftwo segments implies
two criticals, one on each participating segment. Thus, each critical implies at least
another ‘counter-part’ critical. Next, we search for overlapping criticals because they
do not leave enough space for vias to be placed in between. Overlapping criticals are
unified to a larger critical. A direct consequence is that there may be more critical
counter-parts for one critical, see Figure 2b.

We have partitioned the chip into criticals and via-candidates. Now we express
the conflicting segments by aconflict graphG = (V,E). If there are no conflicts the
chip can be directly realized in two layers. Otherwise, eachcritical defines a vertex
in G. We introduce two kinds of edges,conflict edgesandfree edges. The former are
those edges that connect a critical with its counter-part(s). Note that these counter-
part(s) have to be placed on layers different than that of thecritical. Two vertices
are joined by a free edge if the two corresponding criticals are incident to the same
via-candidate.

If each segment incident to a 3-way junction leads to a critical, we mutually con-
nect the three of them by so-calledhalf-free edges, see Figure 3.

SoE = A∪B, whereA is the set of conflict edges andB the set of free edges. It
is easy to see that the subgraphGA = (V,A) induced by the set of conflict edges is bi-
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Fig. 3: Three criticals connected by half-free edges as theyare incident to a 3-way junction.

partite. Otherwise, there exist conflicts that cannot be resolved in two layers. Further-
more,GA partitions into connected bipartite components with vertex setsVi ⊆ V .

On the other hand, the subgraphGB = (V,B) induced by the set of free edges is
a planar graph. If not, some free edges cross which contradicts the definition of free
edges that correspond to via-candidates.

Now we can model the via minimization problem as a cut problemon G. A cut
that contains all conflict edges and minimizes the number of free edges in the cut
corresponds to a realizable layer assignment with a minimumnumber of vias. Note
that half-free edges only count half. The layer assignment of each bipartite component
can be determined if one of its vertices is fixed to a layer. Hence, we search for
a cut that minimizes the number of free edges in the cut when wefix a partition
for one representative vertex in each component. Consider areduced conflict graph
GR = (VR, BR) that is built by shrinking each bipartite componentVi in G to one
vertexvi in this component. We call this vertex therepresentativefor componentVi.
HenceVR = {vi | vi is the representative for componentVi}. Two representatives
vi andvj are adjacent if and only if there exists a free edge connecting a vertex in
componentVi to a vertex inVj . Note that loops may occur. HenceBR = {(vi, vj) |
∃ e = (vik

, vjl
) vik

∈ Vi, vjl
∈ Vj}.

It is easy to see that a layer assignment corresponds to a vertex partitionQ and
VR \ Q in GR. By appropriately assigning weights to the edges in the graph, the
maximum cut determines a layer assignment with the minimum number of vias.

Denote bynS the number of segments. By applying a sweep line algorithm to
all nets of a chip, all intersections can be identified in timeO((nS + I) log nS),
whereI denotes the number of intersections. The described transformation to the
conflict graph and afterwards the construction of the reduced conflict graph can be
done in linear time. Finding the optimum max-cut onGR = (VR, BR) (the most
time consuming step) can be done in timeO(|VR|

3

2 log |VR|), for example with the
algorithm proposed in [19]. Thus, the asymptotic running time can be expressed as
O((nS + I) log nS + |VR|

3

2 log |VR|).

3 Satisfying Practical Constraints

In theory, most of the practical constraints drastically increase the complexity of the
problem, resulting in NP-hard tasks. Nevertheless, we showhow to integrate them
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Fig. 4: Net connecting more than three pins. For realizing thelatter, we allow for consecutive 3-way
junctions. (a) In red: two pins connected by a path that passes two 3-way junctions. Note there is an
intersection yielding two criticals. These are not only connected by a conflict edge but also adjacent to
the same via-candidate which comprises two 3-way junctions. (b) Placed criticals. We introduce one point
critical cp.

in the basic via minimization algorithm from Section 2. in anefficient way, at the
expense of additional vias.

3.1 Nets Connecting Four or more Pins

If we allow at most 3-way junctions then nets connecting morethan three pins are
possible if and only if there are at least two consecutive 3-way junctions on a path
between two pins, see Figure 4a. Now, the subgraphGB of the conflict graphG =
(V,A∪B) induced by the set of free edges may not be planar anymore. To overcome
this situation we introducepoint criticals. These criticals are artificial and do not cor-
respond to a real intersection of segments. We place them on each segment incident
to a 3-way junction if (a) the segment does not already contain a critical and (b) it is
part of a path connecting two criticals which passes two 3-way junctions. Everything
else stays the same. Point criticals handle the possibilityto place vias on one 3-way
junction in case more than one 3-way junction lies between a pair of adjacent criti-
cals. For the situation in Figure 4a we place a point criticalcp on the segment incident
to the two 3-way junctions as shown in Figure 4b. The reduced conflict graph for this
example consists of two vertices connected by an edge, and one via is needed. It is
easy to see that we still have an exact polynomial approach for the via minimization
problem when we use point criticals.

3.2 Minimum Distance

In a feasible routing solution, vias and wire segments not only have to be disjoint, but
also need to obey certain minimum distance requirements (see Figure 5). In order to
forbid the placement on such segments, we introducepseudo criticals. We say that
segments that are routed too close to each other are incritical distance. For dealing
with overlapping segments, we extend the definition of criticals in a natural way.
Hence, overlapping segments are handled as intersections.Pseudo criticals do not
have critical counter-parts as they do not correspond to an intersection, and thus do
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minimum distance

pseudo criticals

Fig. 5: Two segments running in parallel within minimum distance. We introduce pseudo criticals to ensure
that no via is placed there. Otherwise a short circuit may be introduced. The minimum distance is indicated
by the red dashed dotted line.

not have a layer preference. Hence we can independently place them on layers. Note
that due to unifying operations they may become critical counter-parts. Again other
construction rules are not changed. Algorithmically we extend the sweep line part
from Section 2 to find segments within a critical distance. Wedo not only check for
intersections of active segments but also run a test for segments in critical distance.
This can be accomplished in the same running time asO((nS + I) log nS), whereI

now denotes the number of intersections and segments withinminimum distance. No
further changes are needed. In a postprocessing step the best layer for those pseudo
criticals is decided.

3.3 4-way Junctions

4-way junction

sesw

sn

ss

(a)

ǫ−region

(b)

Fig. 6: (a) A 4-way junction. If such a junction occurs the netconnects at least four pins. Allowing 4-
way junctions makes the via minimization problem already NP-hard as the corresponding reduced conflict
graph may be non-planar. (b) In a preprocessing step every 4-way junction is transformed to a chain of
3-way junctions within anǫ-region. Each new introduced segment within theǫ-region is critical. This
transformation allows for not only 4-way junctions but for upto 8-way junctions.

Naclerio et al. [22] and Choi et al. [9] have shown that the twolayer via minimiza-
tion problem is NP-hard if one allows 4-way junctions. They reduced the vertex-
deletion graph bipartization problem to the via minimization problem. Nowadays
4-way junctions are used more frequently in chip layouts. Aswe cannot expect to
be able to introduce them into an exact polynomial time approach, we propose the



9

following transformation of a 4-way junction to a chain of 3-way junctions. Note
that this is a heuristic way of modeling 4-way junctions where potentially additional
vias need to be used. Nevertheless, we obtain good heuristicsolutions in polyno-
mial time. A layer assignment on the latter instance can thenbe mapped to a feasible
layer assignment for the instance with 4-way junctions. Consider Figure 6b: a 4-way
junction is replaced by a series of 3-way junctions. This replacement is performed
in an ǫ-region around the former 4-way junction. Let us call the segments by their
orientationsn, sw, ss, andse in counterclockwise order around the junction. We split
each segment and reduce their length byǫ (two ǫ for ss). We add new, so-called,
ǫ-segments with lengthǫ and connectsn, sw, ss, andse as shown in Figure 6b. All
artificial segments are critical and connected by free edgeswhich correspond to the
introduced artificial junctions. As we are allowed to place vias at junctions we prefer
the placement of vias to those 4-way junctions. By appropriately adjusting the edge
weights in the associated conflict graph, we prefer the placement on these junctions.
The artificial junctions will vanish in the postprocessing and vias will possibly be
placed on the original junction. This replacement allows for a junction degree up to
eight (if the layout is restricted to grid based layouts). Moreover, at the endpoints of
eachǫ-segment the junction degree is at most three. This replacement can be done
in linear time in a preprocessing step. In a postprocessing step we must shrink these
ǫ-replacements back to the former 4-way junction which can bedone in linear time
as well.

3.4 Pin Layer Preferences

Another constraint comes into play since some pins might have pre-described layer
assignments. This means that we know beforehand on which layer a pin must be
placed in a feasible two-layer assignment. In theory, one can introducepin criticals
at pins. Further one introduces a supervertexs in the reduced conflict graph and con-
nects the corresponding (pin) vertices to it. Supervertexs is assigned to one preferred
layer. Edges(s, v), v ∈ V \ {s} get a very large weight if the corresponding pin
critical has to be assigned to a different layer, or a very small weight in case the cor-
responding pin critical has to be on the same layer. Apart from very special cases,
the reduced conflict graph then is not planar anymore, but almost planar. Barahona
[2] has shown that the max-cut problem is already NP-hard on almost planar graphs.
Nevertheless, one may follow the construction above. In order to be able to apply the
basic algorithm introduced above, one has to find a maximum planar subgraph that
includes the reduced conflict graph and as many edges as possible of the form(s, v).
The maximum cut on this graph yields a two-layer assignment in which some of the
pins with layer preferences are placed on their preferred layer. It might be necessary
to place additional vias in order to meet all preferences. However, it turns out experi-
mentally that this approach usually leads to solutions far away from the optimum.

Here, we propose a different strategy for handling pin preassignments within the
basic scheme. We do not introduce any additional criticals but place vias at pins if
they are not placed on their preferred layer in a postprocessing step. Although this
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is a straightforward approach, the computational results show that this strategy is
superior to the subgraph one.

3.5 Layer Preferences (Blockages)

Sometimes it is necessary that some segments have to be placed on one specific layer.
This situation occurs for example if there is ablockageon the other layer. We say such
a segment has a layer preference. Via minimization and layerpreferences are conflict-
ing goals. By allowing more vias, more segments may be placedon their preferred
layer. On the other hand, minimizing the number of vias may yield many segments
placed on the wrong layer which is infeasible in practice. Weextend the via mini-
mization scheme by another sweep line phase. In this sweep line we find all inter-
sections between blockages and segments. Thus, we gain two pieces of information:
block criticals, that are critical intervals where no via can be placed due toblockages,
and a preference to one layer. Again we could proceed as discussed in Section 3.4
in the case with pin preassignment. But again this may yield solutions far away from
the optimum. Instead we only introduce block criticals and solve the via minimiza-
tion problem with them. In a postprocessing step we identifythose criticals that were
placed on the wrong layer and repair the solution by introducing new vias. As we see
in the computational results in Section 4, this approach works well in practice.

4 Computational Results

In this section we report our computational results on real-world instances. The chips
used are current ASIC designs and were kindly provided by ourcooperation partners
at IBM R©. The initial wiring was constructed by BonnRouteR©[14], which is part of
the BonnTools framework [18] and is also used by IBMR© in the design of these chips.
In the implementation, we use the max-cut implementation presented in [19] as base
routine, together with the modifications explained in the above sections. We compare
the via numbers with those of the initial BonnRouteR©wiring. Further, we used the
LEDA library [20] for the intersection test of segments.

The chips used for the instances are from current designs at the gridless 65nm
technology node. They have different size and a different routing layout. Most im-
portantly, we also include the information about pin preferences, design rules and
blockages. In each case, we used the metal2 and metal3 wiringlayers for the experi-
ments. Higher layers are usually used for longer distances and thus provide less room
for optimization. As metal1 is usually reserved for circuitinternal structures, it does
not contain many wire segments. The generated results are feasible and also consider
the practical constraints. Our experiments were performedon IntelR© Xeonc© CPU
X5680 3.33GHz (48GB RAM) (running under Debian Linux 5.0).

In Table 1 we report detailed information and results for thedifferent representa-
tive chips. The transient routing inputs have between 13,747 and 64,098 many nets
with varying number of segments (60,427 up to 661,541) and blockages (52,336 up
to 2,146,275). We also give the number of occurring 4-way junctions and the number
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Table 1: Results for via minimization on real-world chips. Pinpreassignment is taken into account in a postprocessing step. Blockade information are processed from the
beginning. The column with labelCC report the number of connected components in the reduced conflict graph. Entries with negative percentage indicate the percentage of
vias that our solution needs additionally, when compared to the currently used solution. Finally, we report the size of the largest component in brackets.

4- reduced conflict graph via time
chip nets segments blockages ways vias |V | (|Vlargest|) |E| (|Elargest|) CC red. [%] [secs]

Gertrud1 60,268 316,692 2,146,275 462 97,196 137,113 (103,239) 185,044 (165,710)17,544 -19.80 107.28
Gertrud2 58,295 287,584 2,146,275 320 86,709 120,933 (84,959) 155,670 (135,498)18,823 -20.28 99.09

Inaya 64,098 661,541 1,449,723 694 233,803 307,174 (290,516) 483,398 (475,073) 9,417 -34.57 171.34
Joe 13,747 60,427 52,336 0 26,594 22,269 (21,300) 39,123 (38,763) 687 28.89 3.87

Joe2 15,079 79,618 52,336 126 26,507 32,373 (29,643) 49,441 (47,877) 1,455 9.06 6.02
Lucius1 51,953 327,579 717,953 182 118,391 260,196 (253,359) 431,027 (426,295) 3,066 33.49 59.98
Lucius2 56,868 408,537 932,384 469 145,938 183,373 (171,668) 295,814 (290,291) 6,984 -25.88 81.00
Renate 42,624 350,106 933,397 484 120,995 212,602 (200,602) 326,194 (318,874) 5,877 25.63 71.43
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of vias used in the original transient layout. Finally, we report the size of the reduced
conflict graph. Clearly, the reduced conflict graphs are sparse. Furthermore, they con-
sist of several connected components that are processed sequentially. We observe that
there is always one big component of size of about90% of the reduced conflict graph.
Moreover, there are many small components with up to three vertices. The latter make
up between91% and96% of all connected components. Applying the max-cut algo-
rithm can be done fast which can be seen in the small total running-times. On four
out of eight chips we can drastically reduce the number of vias needed. On chip Joe2
about 9% less vias are needed, on Renate we could save about one fourth of the
vias currently used. Similarly, on chips Lucius1 and Joe, a reduction of about 30%
was possible. On the other hand, if we could not achieve a reduction of the number
of vias, we needed between 20% (Gertrud1) and 35% (Inaya) more vias. This can be
explained by the high number of intersections of segments with blockages on the cor-
responding chips. For the chips Gertrud1 and Gertrud2 thereare more than8.2 ∗ 106

of them, on Inaya more than2.5 ∗ 106, and on Lucius1 still more than1.3 ∗ 106. Due
to the large number of blockages on those chips, it is preferable to place horizontal
segments to one layer and vertical segments to the other.

In order to evaluate different ways of modeling pin preassignments, we also re-
port in Table 1 results when pin preassignment is done withina postprocessing step.
We did not use any other heuristic method for the pin preassignment constraint as
proposed in Section 3.4. However, to compare this approach to the one proposed in
Section 3.4 we present in Tables 2 - 4 results obtained by introducing pin criticals. In
Table 2 we introduced them for all pins, while in Table 3 we only introduced them
for pins on layer 1, and in Table 4 only for pins on layer 2 pin criticals were used.

Table 2: Results for via minimization. Pin preassignment for both layers is taken into account by a heuristic
approach as explained in Section 3.4. Blockage information are processed from the beginning. Positive
(negative, resp.) numbers indicate the percentage of vias saved (additionally used, resp.), when compared
to the current solution. The column with labelCC report the number of connected components in the
reduced conflict graph. Additionally to the number of connected components, we report the size of the
largest component in brackets.

reduced conflict graph via time
chip |V | (|Vlargest|) |E| (|Elargest|) CC red. [%] [secs]

Gertrud1 242,618 (166,501) 279,697 (228,972)28,396 -78.79 215.71
Gertrud2 223,313 (141,566) 246,583 (192,105)30,290 -85.99 196.80

Inaya 446,597 (409,068) 617,702 (593,625)14,536 -55.88 286.54
Joe 45,042 (40,473) 60,762 (57,936) 1,821 -11.00 5.27

Joe2 55,708 (47,573) 71,068 (65,807) 3,163 -22.69 8.47
Lucius1 366,147 (336,379) 527,820 (509,315)12,224 -3.18 161.26
Lucius2 275,691 (247,115) 383,847 (365,738)11,269 -46.84 143.28
Renate 316,373 (279,339) 421,478 (397,529)14,364 -17.01 150.37

Introducing pin criticals for all pins yields worst performance. As we try to find a
planar subgraph with many vertices corresponding to pin criticals we obviously miss
some of those. Hence, the solution on the chosen planar subgraph might be far away
from any optimum solution. This is worse when using pin criticals for all pins. This
approach thus does not reduce the number of vias needed on anychip. The solutions
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Table 3: Results for via minimization with pin preassignment only on layer 1. Pin preassignment is taken
into account by a heuristic approach as explained in Section3.4. Blockage information are processed from
the beginning. Positive (negative, resp.) numbers indicatethe percentage of vias saved (additionally used,
resp.), when compared to the current solution. The column withlabelCC report the number of connected
components in the reduced conflict graph. Additionally to thenumber of connected components, we report
the size of the largest component in brackets.

reduced conflict graph via time
chip |V | (|Vlargest|) |E| (|Elargest|) CC red. [%] [secs]

Gertrud1 149,879 (110,337) 194,077 (172,808)21,277 -23.15 116.11
Gertrud2 133,036 (91,455) 164,109 (141,994)22,487 -23.61 110.73

Inaya 327,339 (305,193) 499,922 (489,750)13,058 -39.47 184.62
Joe 23,609 (22,128) 40,056 (39,591) 1,094 27.31 194.22

Joe2 34,724 (30,956) 51,023 (49,190) 2,224 8.36 6.22
Lucius1 287,358 (272,484) 451,657 (445,420) 9,598 30.61 84.84
Lucius2 200,707 (183,710) 309,851 (302,333)10,281 -29.25 103.77
Renate 221,091 (206,320) 332,358 (324,510) 8,202 24.82 76.34

Table 4: Results for via minimization with pin preassignment only on layer 2. Pin preassignment is taken
into account by a heuristic approach as explained in Section3.4. Blockage information are processed from
the beginning. Positive (negative, resp.) numbers indicatethe percentage of vias saved (additionally used,
resp.), when compared to the current solution. The column withlabelCC report the number of connected
components in the reduced conflict graph. Additionally to thenumber of connected components, we report
the size of the largest component in brackets.

reduced conflict graph via time
chip |V | (|Vlargest|) |E| (|Elargest|) CC red. [%] [secs]

Gertrud1 229,852 (159,403) 267,171 (221,874)28,156 -76.07 238.35
Gertrud2 211,210 (135,070) 234,715 (185,609)30,055 -82.91 192.47

Inaya 426,432 (394,391) 597,620 (578,948)14,453 -51.73 281.39
Joe 43,702 (39,645) 59,489 (57,108) 1,754 -9.63 5.61

Joe2 53,357 (46,260) 68,790 (64,494) 3,090 -28.77 10.48
Lucius1 338,985 (317,254) 500,951 (490,190)11,931 0.65 123.38
Lucius2 258,357 (235,073) 366,696 (353,696)11,086 -43.14 139.60
Renate 307,884 (273,703) 412,999 (391,893)14,354 -6.87 159.44

needed up to twice as many vias as in the original transient routing. Moreover, the
running-times are considerably larger. The reduced conflict graphs are larger but there
are more subgraphs.

Using only pin criticals for pins on layer 1 shows better results, see Table 3.
Nevertheless, they are worse than without any pin criticals, compare Table 1. The
running-times are comparable as the sizes of the reduced conflict graphs only differ
slightly. The picture is different when considering pin criticals only on layer 2. The
results are similar to those obtained if pin criticals are used for all pins. Nevertheless,
on chip Lucius1 a marginally reduction of the number of vias needed can be observed,
in return the running-time was twice as long as without pin criticals.

As a summary, applying the presented method can be done fast (less than three
minutes) on real-world chip instances. Best results are found when pin preassignment
for both layers is taken into account by a heuristic approachas explained in Section
3.4. The corresponding computational results are presented in Table 1. Then, either
we obtain a better layer assignment with considerable less vias or we verified that the
given transient routing is good in terms of the number of usedvias.



14

5 Conclusion

We described a combinatorial approach for via minimizationon two layers in VLSI
chip design. The method was originally proposed in [8,23,3,15]. Here, we presented
an implementation which take into account practical constraints like pin preassign-
ment and blockages. Further, we also incorporated a naturalway to deal with 4-way
junctions, and replaced those by a chain of 3-way junctions.Using a fast maximum
cut algorithm for planar graphs [19] as exact core routine, the via minimization ap-
proach achieves good results on real-world chips. Solutions can be determined within
a few minutes of CPU time only. The solution either yields a considerable reduction
in the number of vias, or the instance possesses a very dense packing of blockages.
We showed that there is space for optimization in large real-world chips. Indeed, in
VLSI routing, the number of vias used for wiring interconnects is an important figure
when estimating the quality of a result, especially in termsof yield. With the method
outlined above, the number of vias in modern real-world chips can be kept low.
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