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Abstract

A tanglegram is a pair of (not necessarily binary) trees on the same set of leaves
with matching leaves in the two trees joined by an edge. Tanglegrams are widely
used in computational biology to compare evolutionary histories of species. In
this work we present a formulation of two related combinatorial embedding
problems concerning tanglegrams in terms of CNF-formulas. The first problem
is known as the planar embedding and the second as the crossing minimization
problem. We show that our satisfiability-base encoding of these problems can
handle a much more general case with more than two, not necessarily binary
or complete, trees defined on arbitrary sets of leaves and allowed to vary their
layouts. Furthermore, we present an experimental comparison of our technique
and several known heuristics for solving generalized binary tanglegrams, show-
ing its competitive performance and efficiency and thus proving its practical
usability.

Keywords: satisfiability, mixed Horn formula, 2-CNF, level graph, planar
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1. Introduction

In recent time the interest in designing exact algorithms and efficient heuris-
tics providing better performance ratio for various variants of the tanglegram
problem has increased. This is primarily motivated by their broad applications
in computational biology, especially in phylogenetics.

In this work we introduce generalized k-ary tanglegrams on level graphs, a
generalization of the well-known binary tanglegrams, and study two combina-
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torial embedding problems connected with them. A binary tanglegram [2] is an
embedding (drawing) in the plane of a pair of rooted binary trees whose leaf
sets are in one-to-one correspondence (perfect matching), such that the match-
ing leaves are connected by inter-tree edges, called sometimes tangles or tangle
edges. Clearly, the number of crossings between the inter-tree edges depends on
the layout of the trees. From a practical point of view, an embedding with many
crossings can hardly be analyzed. Figure 1 shows an example of a binary tan-
glegram coming from phylogenetic studies done by Charleston and Perkins [3].
Taking this into account, the first problem one can consider here consists of
determining an embedding of one or both trees such that the inter-tree edges
do not cross, if such an embedding exists. This problem is known as the planar
embedding problem. If such a planar embedding is not possible, then we may
want to find an embedding with as few crossing inter-tree edges as possible.
This second problem, crossing minimization, is known in the literature also as
the tanglegram layout problem [4, 5, 6].

(St. V) P. az. white

A. roquet

A.marmoratus

A. oculatus

A. trinitatus

A. sabanus

A. bimaculatus

A. gundlachi (Gu) P. az. white

(S) P. az. white

(PR) P. az. white

(D) P. az. white

(St.K) P. az. white

(M) P. az. white

a

b

c

d

Figure 1: A binary tanglegram from [3] showing phylogenetic trees for lizards (left tree) and
strains of malaria (right tree) found in the Caribbean tropics. The dashed lines represent the
host-parasite relationship. Here, the number of crossings is 7. This can be reduced to 1 by
interchanging the children of nodes a, b, c, and d.

Both problems belong to the area of graph drawing [7] and are motivated
by the desire to find a good display of hierarchical structures, e.g., in software
engineering, project management, or database design. For instance, tanglegrams
occur when analyzing software projects in which trees are used to represent
package, class, or method hierarchies. Changes in hierarchies can be analyzed
over time, or automatically generated decompositions can be compared with
human-made ones. This application yields tanglegrams on trees that are not
binary in general [8].

Matching and aligning trees is also a recurrent problem in computational
biology [2]. Embeddings with fewer crossings or with matching leaves close to-
gether are useful in biological analysis [6]. Here, prominent applications are
in particular the comparisons of phylogenetic trees [3, 9, 10], which are used to
represent a hypothesis of the evolutionary history (phylogeny) of a set of species.
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These species are drawn as the leaves of the tree whereas their ancestors are
represented by the inner nodes. Different hypotheses may lead to a set of dif-
ferent candidate trees. An embedding imposes an order among the leaves of the
trees. Therefore, comparing the drawings of the trees is equivalent to comparing
the permutations of the leaves. In general, the simultaneous examination of a
species phylogeny and a gene phylogeny can offer biologists more insights into
evolutionary processes, e.g., gene duplication, gene extinction, or cross-species
gene transfer, that the inspection of either tree alone cannot provide [11, 12].

Bansal et al. [4] analyzed generalized tanglegrams where the number of leaves
in the two binary trees may be different and a leaf in one tree may match multiple
leaves in the other tree, thus no perfect matching is required here. They pointed
out that such a generalization of the problem makes it possible to address not
only the gene tree and species tree embedding problem, but also those problems
in which the inter-tree edges between the trees can be completely arbitrary. Such
general instances arise in several settings, e.g., in the analysis of host-parasite
cospeciation [2, 13].

Related work. Crossing minimization in tanglegrams has parallels to cross-
ing minimization in graphs. Computing the minimum number of crossings in a
graph is NP-complete [14]. However, it can be verified in linear time whether
a graph has a planar embedding [15]. The last assertion holds also for a more
special case of level graphs [16, 17]. Computing the minimum number of cross-
ings is fixed-parameter tractable [5, 18]. Analogously, crossing minimization
in tanglegrams is NP-complete, as shown by Fernau et al. [19] by a reduction
from the MAX-CUT problem [20], while the special case of planarity test can
be executed in linear time [19].

Furthermore, the problem of minimizing the number of crossings where one
tree is fixed and the layout of the other tree is allowed to vary can be solved
efficiently. For binary trees with arbitrary topology, Fernau et al. [19] showed an
O(n log2(n)) solution, further improved to O(n log2(n)/ log log(n)) by Bansal et
al. [4]. Here, n denotes the number of leaves in each tree. Venkatachalam et
al. [6] provided recently an algorithm working on the integer linear programming
(ILP) formulation of the problem with the so far best-known time bound of
O(n log(n)).

Recently Buchin et al. [5] have proved that under the widely accepted Unique
Games Conjecture [21] there is no constant factor approximation algorithm for
minimizing number of crossings of binary tanglegrams. Nöllenburg et al. [8] gave
an extensive experimental evaluation of some heuristics, an exact branch-and-
bound algorithm, and an ILP-based approach for binary tanglegrams. Finally,
Baumann et al. [22] by exploiting the fact that crossing minimization in (not
necessarily binary) tanglegrams can be seen as a generalization of bipartite
crossing minimization, formulated it as a quadratic linear ordering problem
with some additional side constraints and evaluated it by using semidefinite
optimization and the mathematical programming software CPLEX [23].

For the case of generalized tanglegrams where the layout of one tree is
fixed, Bansal et al. [4] presented two algorithms with running times O(mh)
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and O(m log2(m)/ log log(m)), where m is the number of edges between the two
trees and h is the height of the tree whose layout can change. To obtain those
polynomial running times, the layout of the other tree must be fixed. Based on
the result of Fernau et al. [19], they also showed that the existence of a planar
embedding can be verified in O(m) time.

Our contribution. In our generalization of the tanglegram problem we go even
further than Bansal et al. [4]. In generalized k-ary tanglegrams on level graphs
we consider problem instances with more than two k-ary trees where every tree
is defined on an arbitrary set of leaves. Notice that here the pairwise disjoint
leaf sets and the corresponding inter-tree edges (no perfect matching required
any more) connecting two neighboring leaf sets constitute a level graph [17]
where each level is defined by some leaf set. Thus, each tree defined on some
level implies additional constraints reducing considerably the set of possible

embeddings. For instance, k-ary trees with n leaves allow for at most k!
n−1
k−1

different leaf orderings implied by different orderings of the subtrees, i.e., 2n−1

in case of binary trees, compared with n! permutations if no restrictions are
imposed on the order of the leaves. Further, in our extended definition we do
not restrict the tanglegrams only to binary trees, but consider rooted k-ary trees
in which each node has not more than k children, for some fixed integer k > 1.

In this study we are interested in planar embeddability problems of general-
ized tanglegrams on level graphs. More specifically, we investigate the simulta-
neous existence of a planar embedding of the inter-tree nodes on some horizontal
plane with planar embeddings of the trees on separate vertical planes, one for
each tree. Our intention is to present all of them nicely on at least two orthogo-
nal planes. In the following, we call the existence of such an embedding shortly
a planar embedding of a generalized tanglegram on a level graph.

In our approach we encode the planarity test and the crossing minimization
problem on generalized tanglegrams on level graphs in terms of CNF-formulas
by incorporating ideas used already for level graphs in [17, 24]. By doing this,
the planarity test essentially reduces to testing satisfiability of some 2-CNF for-
mula. The crossing minimization problem has a formulation as a PARTIAL
MAX-SAT problem of some CNF formula with a mandatory part of 3- and 2-
clauses that must be satisfied for the solution to be reasonable, and a second
part of 2-clauses such that its truth assignment must satisfy as many of these
clauses as possible. In the mandatory part, the 3-clauses reflect transitivity
conditions forced by the genus of the surface, whereas the 2-clauses reflect an-
tisymmetry conditions. These clauses have to be satisfied in order to obtain
a layout. The second part of 2-clauses reflects non-crossing conditions. Each
unsatisfied clause from this part represents one arc crossing. This formulation
offers a simple alternative for finding reasonable approximate solutions of the
crossing minimization problem. We show that the planarity test of a generalized
tanglegram on a level graph having a total of n vertices and with k-ary trees
defined on each level, for some fixed integer k > 1, can be solved in O(n2) time
by an elementary 2-SAT algorithm. Finally, to the best of our knowledge, this
is the first time that the generalized tanglegram problem has been treated by
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means of a satisfiability encoding. According to the experimental comparison
of our technique with several well performing heuristics of Bansal et al. [4] and
some ILP-based approach for solving generalized binary tanglegrams, and our
satisfiability-based approach shows its competitive performance and efficiency
and thus proves its practical usability.

Roadmap. The rest of the paper is organized as follows. In Section 2 we
provide some basic notation and definitions of relevant computational problems
for generalized tanglegrams on level graphs. The satisfiability-based formulation
of the two main problems on generalized tanglegrams on level graphs is given in
Section 3. In Section 4, we present the results of an experimental comparison
of our technique with the heuristics designed by Bansal et al. [4] and some
ILP-based approach for solving generalized binary tanglegrams. Here, the most
important criterion is the performance ratio with respect to the optimal solution
in terms of the number of crossings. Finally, in Section 5 we conclude our work
and state some open questions.

2. Preliminaries and basic notation

Formally, a level graph is a triple (G,λ, L) where G = (V,E) is a directed
graph, L = {1, ..., |L|} is the set of levels, and λ : V → L is the level-mapping,
that assigns the vertices to levels such that each arc is directed from a lower
to a higher level, i.e., ∀e = (u, v) : λ(v) > λ(u). For simplicity, we identify
the above triple by G having the other two components in mind. Observe that
there exists no arc between vertices on the same level. If in addition, for every
arc e = (u, v) ∈ E, λ(v) = λ(u) + 1 holds, then the level graph is called proper.
In the present paper we consider proper level graphs only, hence we simply
will speak of level graphs. This restriction means no loss of generality since an
arbitrary level graph can be turned into a proper one preserving the crossing
number by simply adding dummy vertices as shown in [25, 17].

Level graphs are drawn in the Euclidean x, y-plane by linear order, i.e., all
vertices on the same level j ∈ L are placed at arbitrary different positions on the
line y = j; the x-coordinate of vertex u is denoted as x(u). Arcs are represented
by straight lines between the points representing their incident vertices. Often
arrows at arc heads are omitted since the direction is implicitly fixed by the
levels. For two vertices u, v on the same level, we simply write u < v iff x(u) <
x(v). One is especially interested in level-graph drawings such that no two arc
lines cross outside their endpoints. A level graph for which such a drawing
exists is called level-planar. It is not hard to see that a level graph with |E| >
2|V | − 4 cannot be level-planar [17]. Therefore, for most level graphs all what
one can hope for is to find a plane embedding such that the number of arc-
crossings is minimized. Moreover, by reduction from the FEEDBACK ARC
SET problem [20], Eades and Wormald [25] showed that crossing minimization
in level graphs is NP-hard, even if there are only two levels with a fixed order
of nodes on one level.
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In generalized tanglegrams on level graphs, we define additionally on the
nodes of each level i ∈ L of a level graph G a tree Ti with nodes of level i as its
leaf set. Clearly, the presence of a tree on each level reduces the search space of
admissible embeddings considerably. More formally, a generalized tanglegram
on a level graph G is a quadruple (G,λ, L, F ) where F = {T1, ..., T|L|} is a forest
of level-trees and G, λ, and L are defined as above. We say that a rooted level-
tree is complete if all its leaves have the same depth. Given a rooted, unordered
tree T ∈ F , we write V (T ), and E(T ) to denote its node set, and edge set,
respectively. Furthermore, for two trees Ti and Ti+1 from F defined on two
adjacent levels i and i + 1 of level graph G, we define the set of inter-tree arcs
as

E(Ti, Ti+1) := {(u, v) ∈ E(G) : λ(u) = i, λ(v) = i+ 1}.

Observe that for a proper graph G holds E(G) =
⋃
i=1,...,|L|−1E(Ti, Ti+1).

For each node v ∈ V (T ), let T (v) denote the subtree of T rooted at v. Given
a tree T , we say that a linear order σ on the leaves of T is compatible with T
if for each node v ∈ V (T ) the leaves in T (v) form an interval (i.e., appear as a
consecutive block) in σ. We write u <σ v to mean that leaf u appears before
leaf v in the linear order σ on the leaves of T . Given compatible linear orders
σi and σi+1 on two trees Ti and Ti+1 from F defined on two adjacent levels i
and i+ 1 of level graph G, respectively, the number of crossings between σi and
σi+1 among the inter-tree arcs E(Ti, Ti+1) is defined as

τ(σi, σi+1) :=
∣∣{{(u, a), (v, b)} ⊆ E(Ti, Ti+1) : ¬

(
(u <σi v)↔ (a <σi+1 b)

)}∣∣.
Note that a pair of arcs cross at most once (see Figure 2). Moreover, since
we assume here that G is a proper level graph, only adjacent levels can induce
crossings. Finally, the overall number of crossings for an instance (G,λ, L, F )
and a set S := {σ1, ..., σ|L|} of compatible orders for each level in L (tree in F )
is defined as

τ(G,λ, L, F, S) :=
∑

i=1,...,|L|−1

τ(σi, σi+1).

Now the main combinatorial problems addressed already informally in Sec-
tion 1 can be defined as follows:

Problem 1 (Planarity Test). Given an instance (G,λ, L, F ), verify if there
exists a planar embedding, i.e., if there exists some set S of compatible linear
orders σi for each level i ∈ L (tree Ti ∈ F ) such that τ(G,λ, L, F, S) = 0.

Problem 2 (Crossing Minimization). Given an instance (G,λ, L, F ), find
a set S of compatible linear orders σi for each level i ∈ L (tree Ti ∈ F ) such
that τ(G,λ, L, F, S) is minimized.

To complete the notation, let CNF denote the set of formulas (free of dupli-
cate clauses) in conjunctive normal form over a set V = {x1, ..., xn} of proposi-
tional variables xi ∈ {0, 1}. Each variable x induces a positive literal (variable
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Figure 2: Adjacent levels i and i + 1 of a level graph G. Arcs e = (u, a) and f = (v, b) have
different tails and heads.

x) or a negative literal (negated variable x). Each formula C ∈ CNF is con-
sidered as a clause set C = {c1, ..., c|C|}. Each clause c ∈ C is a disjunction of
different literals li, and is also represented as a set c = {l1, ..., l|c|}. A clause
is termed a k-clause, for some k ∈ N, if it contains at most k literals. The
number of clauses in C is denoted by |C|. For k ∈ N, let k-CNF denote the
subset of CNF formulas such that each of its clauses has length at most k. We
denote by V (C) the set of variables occurring in formula C. The satisfiability
problem (SAT) asks, whether formula C is satisfiable, i.e., whether there is a
truth assignment t : V (C) → {0, 1} setting at least one literal in each clause
of C to 1. Given C ∈ CNF, the optimization version MAX-SAT searches for a
truth assignment t satisfying as many clauses of C as possible.

3. Satisfiability formulation of crossing minimization

In the following we provide a formulation of the crossing minimization prob-
lem for generalized tanglegrams on level graphs in terms of propositional logic.
We proceed in two steps. Given a generalized tanglegram (G,λ, L, F ), we first
show the construction of CNF-formulas for the level graph (G,λ, L). In the sec-
ond step, we describe a similar construction for the forest F of the generalized
tanglegram. The conjunction of the resulting subformulas will give then a SAT
encoding of the input problem.

Consider in a proper level graph G two subsequent levels i and i+ 1 from L,
as shown in Figure 2. Let e = (u, a) and f = (v, b) be two arcs from E(Ti, Ti+1)
directed from level i to level i+ 1 with different tails u 6= v and different heads
a 6= b. In a drawing of G, e and f do not cross iff

u <σ v ⇔ a <σ b

for some linear order σ. Observe that arcs having the same head or tail never
cross in any drawing of G.

The construction of a Boolean formula CG representing the plane embedding
of G proceeds as follows:

1. For each level i ∈ L and every pair {u, v} of distinct vertices from level i,
i.e., λ(u) = λ(v) = i, create a Boolean variable uv that is true iff u <σ v
for some linear order σ.
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2. Create the following Boolean subformulas:
(i) For each level i ∈ {1, ..., |L| − 1} and every two arcs e = (u, a), f =

(v, b) from E(Ti, Ti+1) having their tails u 6= v on level i and heads
a 6= b on level i+ 1, form the non-crossing preserving expression:

uv ↔ ab

(ii) For each level i ∈ {1, ..., |L|} and each pair {u, v} of distinct vertices
on level i, form the antisymmetry expression:

uv ↔ vu

(iii) For each level i ∈ {1, ..., |L|} and each triple {u, v, w} of distinct
vertices on level i, form the transitivity expression:

uv ∧ vw → uw

Observe that the conjuncted subformulas resulting from (i) and (ii) yield 2-CNF
formulas Ci and Cii via application of

a↔ b ≡ (a ∨ b) ∧ (b ∨ a),

respectively. Similarly, the subformulas resulting from (iii) yield a Horn formula
Ciii with clauses of length 3 via elementary equivalence

(a ∧ b→ c) ≡ (a ∨ b ∨ c).

Recall that each clause of a Horn formula contains at most one positive
literal. Hence the formula CG = Ci ∧ Cii ∧ Ciii encoding the plane embedding
of a level graph G is a mixed Horn formula [26]. If G has n vertices distributed
over |L| levels then CG has |V (CG)| ∈ O(n2) variables. Moreover, by counting
|Ci| ∈ O(|E(G)|2), |Cii| ∈ O(n2), and |Ciii| ∈ O(n3). Therefore the number of
clauses in CG is bounded by O(n3+|E(G)|2). As mentioned before, the maximal
number of arcs in a level-planar graph containing n > 2 nodes is at most 2n−4.
Thus in the case we use CG for a level planarity test, a preprocessing ensures
that only O(n2) 2-clauses in Ci are generated. The following result shows that
the level planarity test can be formulated as a satisfiability problem.

Proposition 1 ([17]). A level graph G with n vertices has a level-planar em-
bedding iff CG − Ciii is satisfiable. The test can be done in time O(n2).

According to [17], the transitivity formula Ciii is superfluous for the level
planarity test. This results in a better complexity of O(n2), since SAT for 2-
CNF formulas can be decided in linear time in the number of variables and
clauses in the input formula [27].

Minimizing the number of crossings of G is equivalent in terms of proposi-
tional calculus to determining a truth assignment which satisfies all clauses in
Cii and Ciii and which maximizes the number of satisfied clauses in Ci. This
optimization problem is known as PARTIAL MAX-SAT [28], a variant of the
MAX-SAT problem, and remains NP-hard even for (unsatisfiable) 2-CNF in-
stances. Unfortunately, it turns out that for considering crossing minimization
in terms of PARTIAL MAX-SAT, formula Ciii cannot be dropped in general [24].
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Figure 3: Part of subtree Ti(w) with two non-crossing edges e and f .

Proposition 2 ([17]). Let G be a level graph and t : V (CG)→ {0, 1} be a truth
assignment satisfying all clauses of Cii and Ciii and minimizing the number τG
of violated clauses in Ci. Then τG is the minimum number of arc crossings in
a level embedding of G.

Consider now some tree Ti from F built on a level i from L. Without loss of
generality assume that Ti is a complete, k-ary tree of height d, for some integers
k, d > 1. Note that for d = 1 the edges of Ti never cross in any drawing of
Ti and the generation of a CNF formula CTi for Ti can be omitted. Let w be
some node from V (Ti) such that the height of subtree Ti(w) is at least 2. Note
that the edges of Ti(w) connecting nodes of depth 0 and 1 never cross in any
drawing of Ti(w). Therefore, let e = {u, a} and f = {v, b} be two edges from
E(Ti(w)) with u 6= v having both depth 1 and a 6= b being some children of u
and v, respectively, as shown in Figure 3. In a drawing of Ti(w), e and f do not
cross iff

u <σ v ⇔ a <σ b

for some linear order σ on the leaves of Ti.
We describe now the construction of a Boolean formula CTi

encoding the
plane embedding of Ti. We proceed as follows:

1. For each level j ∈ {1, ..., d} of Ti and every pair {u, v} of distinct vertices
from level j, create a Boolean variable uv that is true iff u <σ v for some
linear order σ.

2. Create the following Boolean subformulas:

(iv) For each level j ∈ {1, ..., d− 1} of Ti and every two edges e = {u, a}
and f = {v, b} from E(Ti) such that u 6= v have depth j and a and b
have depth j + 1 in Ti, form the non-crossing preserving expression:

(uv → ab) ∧ (vu→ ba)

(v) For each level j ∈ {1, ..., d} and each pair {u, v} of distinct vertices
of depth j in Ti, form the antisymmetry expression:

uv ↔ vu

Notice that the subformulas resulting from (iv) and (v) yield after some elemen-
tary transformations 2-CNF formulas CTi

iv and CTi
v , respectively, for each tree
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Ti. We proceed with the generation of Boolean formulas CTi = CTi
iv ∪ CTi

v for
all trees from F and obtain finally a Boolean formula

CF =
⋃
Ti∈F

CTi

encoding the plane embedding of F .
We shall now estimate the length of each formula CTi

. The number of
variables generated for each level j ∈ {1, ..., d} of a k-ary tree Ti is equal to(
kj

2

)
and thus bounded by O(k2j). If ri ≤ n is the number of vertices in level

i ∈ L of graph G, then the height of any k-ary complete tree Ti is at most

dlogk(ri)e. Hence, each CTi
has O

( r2i−1
k2−1

)
variables. Furthermore, the number

of 2-clauses contributed to formula CTi
iv by a level j ∈ {1, ..., dlogk(ri)e − 1} of

Ti is at most 2k2
(
kj

2

)
∈ O(k2+2j), what summed up over dlogk(ri)e − 1 tree

levels yields |CTi
iv | ∈ O

( r2i−k2
k2−1

)
. For the number of clauses in CTi

v we proceed

similar as for the number of variables above and obtain that |CTi
v | ∈ O

( r2i−1
k2−1

)
.

Thus, the number of 2-clauses in CTi
is bounded by O(r2i ) for some fixed integer

k > 1. Notice that in case of a tree Ti with ri leaves but of height greater than
dlogk(ri)e, there must be an inner node in V (Ti) with less than k children. That
yields formulas CTi

iv and CTi
v with less variables and clauses than for the case

of the k-ary complete tree with ri leaves. Similar to Proposition 1, we obtain
finally the following result for Ti:

Proposition 3. For some fixed integer k > 1, a k-ary tree Ti built on a level
i with ri vertices has a planar embedding iff CTi is satisfiable. The test can be
done in time O(r2i ).

Since ri is the number of vertices on level i ∈ L in graph G and r1+...+r|L| =
n, it follows that |V (CF )| ∈ O(n2) and |CF | ∈ O(n2).

Corollary 1. For some fixed integer k > 1, a set of k-ary trees built on a level
graph G with n vertices has a planar embedding iff CF is satisfiable. The test
can be done in time O(n2).

Note that every satisfying truth assignment for CF induces compatible linear
orders σi on the leaves of each Ti ∈ F , and vice versa.

We are now ready to give a final satisfiability-based formulation for an in-
stance (G,λ, L, F ) of a generalized tanglegram on a level graph G. To this end,
we simply generate CNF formulas CG and CF for (G,λ, L) and F , respectively,
as described before, and combine them into a new CNF formula as follows

CGF = CG ∪ CF = (Ci ∪ Cii ∪ Ciii) ∪
⋃
Ti∈F

(
CTi
iv ∪ C

Ti
v

)
.

Observe that even if each Ti is planar embeddable (i.e., CTi
is satisfiable) and a

level graph G has a planar embedding (i.e., CG−Ciii is satisfiable), too, it does
not imply that G plus all the Ti’s together is planar embeddable. As mentioned
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in the introduction, in our setting we test the existence of a planar embedding
of (G,λ, L, F ) on at least two planes, i.e., on one horizontal plane for the level
graph G and on |L| vertical planes, one for each tree Ti from F .

For a level graph G with n vertices and k-ary trees F defined on its levels
L, the number of clauses in CGF is bounded by O(n3 + |E(G)|2), according to
the discussion above. Furthermore, CGF has O(n2) variables. Note that these
estimates hold only for some fixed integer k > 1.

Since CGF contains 3-clauses, it cannot in general be solved for SAT effi-
ciently. However, since the transitivity formula Ciii ∈ 3-CNF is superfluous for
the planarity test, we can remove it from CGF , thus obtaining a 2-CNF for-
mula. Similarly as for Proposition 1, we can now solve the planarity test for
(G,λ, L, F ) in time O(n2) by applying the algorithm of Aspvall et al. [27]. Re-
call that the maximal number of arcs in a level-planar graph containing n > 2
nodes is at most 2n− 4. Hence, the number of clauses |CGF − Ciii| ∈ O(n2).

Proposition 4. Let (G,λ, L, F ) be an instance of a generalized tanglegram on
a level graph G with n vertices and k-ary trees F , for some fixed integer k > 1.
Then (G,λ, L, F ) has a planar embedding iff CGF −Ciii is satisfiable. The test
can be done in time O(n2).

Minimizing the number of crossings of (G,λ, L, F ) is equivalent to deter-
mining a truth assignment which satisfies all clauses in CGF − Ci and which
maximizes the number of satisfied clauses in Ci, thus solving an instance of the
PARTIAL MAX-SAT problem. Again, for considering crossing minimization in
terms of PARTIAL MAX-SAT, formula Ciii ∈ 3-CNF cannot be dropped.

Proposition 5. Let (G,λ, L, F ) be an instance of a generalized tanglegram on
a level graph G with n vertices and k-ary trees F , for some fixed integer k > 1,
and let t : V (CGF ) → {0, 1} be a truth assignment satisfying all clauses of
CGF −Ci and minimizing the number τ of violated clauses in Ci. Then τ is the
minimum number of arc crossings in an embedding of (G,λ, L, F ).

Observe that compatible linear orders σi for each level i ∈ L can be extracted
from a truth assignment t in time O(n2) by traversing all variables of CGF .

4. Experimental results

In the following we discuss the performance and the practical utility of our
satisfiability-based technique introduced in this work. To this end we present an
extensive experimental comparison of our technique with several known heuris-
tics and some ILP-based approach for the generalized binary tanglegram (GBT)
problem introduced by Bansal et al. in [4]. Interestingly, this problem is a
special case of the generalized k-ary tanglegram problem on level graphs where
the number of levels is limited to 2 (i.e., |F | = 2) and only (not necessarily
complete) binary trees are allowed (i.e., k = 2).

The primary goal of our experiments is to evaluate the performance of our
method against some exact, ILP-based algorithm as well as against three heuris-
tic approaches for GBT presented by Bansal et al. in [4]. According to their
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evaluation, Alternating Heuristic (AH), Local-Search Heuristic (LH), and Local-
Search Alternating Heuristic (LAH) possess very good average performance ra-
tio and produce optimized layouts almost instantaneously even for large input
instances. All three heuristics utilize fast polynomial-time exact algorithms for
a restricted version of the generalized binary tanglegram problem in which the
layout of one of the input trees is fixed. Their worst-case running times were al-
ready given in Section 1. Furthermore, all heuristics are guaranteed to terminate
within polynomial time in the problem size and the number of iterations (AH,
LAH) respectively local search steps (LH, LAH) performed, however without
any guarantee for the optimality of the solution. Recall that the GBT problem
itself is NP-complete. We refer the reader to [4] for a detailed description of
those algorithms and heuristics.

Thus similar to the evaluations given in [4, 8], our most important criterion
is the performance ratio with respect to the optimal solution in terms of the
number of crossings. More specifically, for each input instance i we compute the
corresponding performance ratio ρi := (τi + 1)/(τ∗i + 1), where τi denotes the
crossing number obtained with the technique being tested and τ∗i the number
of crossings in an optimum layout for the input instance i. Note that we add
one to both the numerator and denominator such that the ratio is defined also
for crossing-free instances. Nöllenburg et al. [8] gave a simple formulation of
a binary tanglegram problem as an ILP. Their ILP-based approach extends
easily to exactly solve the GBT problem as well. For our evaluation, we have
implemented an exact method, ILPTG, based on this approach in order to
obtain crossing numbers τ∗i of optimum layouts. Here, for solving the ILP
we use the C++ API of the commercial mathematical programming software
CPLEX 12.1 [23]. Furthermore, we use ILPTG (started with some positive
value of the timeout parameter) to compute approximate solutions to the GBT
problem, which we afterwards compare with the results of the other methods.

The number of crossings is the main criterion for assessing the quality of new
algorithms for generalized tanglegrams problems. However, their computation
time, our second criterion, is also an important evaluation aspect, in particu-
lar when the embeddings are to be produced interactively in some tanglegram
visualization tool [29].

In order to make the comparison of our technique with the heuristics men-
tioned above more accurate, we have decided to use the same Python imple-
mentations of AH, LH, and LAH as the ones being tested by Bansal et al. in [4].
For the evaluation of our method, we have developed a second exact method,
called in the following PMSTG, by implementing the ideas introduced in Sec-
tion 3. Since in our approach, the crossing minimization problem reduces to
solving some instance of the PARTAL MAX-SAT problem, PMSTG uses free
PARTIAL MAX-SAT solvers from the Sixth Max-Sat Evaluation [30] in order
to obtain exact but also approximate solutions for the crossing minimization
problem. For our evaluation we use the following PARTAL MAX-SAT solvers:

• akmaxsat and akmaxsat ls by Adrian Kügel, Ulm University, Germany;

• clasp 2.0.2 by Benjamin Kaufmann, Potsdam University, Germany;
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• IncWMaxSat by Han Lin, Kaile Su, Chu Min Li, and Josep Argelich, Sun
Yat-sen University, China, and Universitat de Lleida, Spain;

• QMaxSat0.4 and QMaxSat0.11 by Miyuki Koshimura, Xuanye An, Hiroshi
Fujita, and Ryuzo Hasegawa, Kyushu University, Japan;

• SAT4J MaxSAT by Daniel Le Berre, Université d’Artois, France.

The automatic generation of the 3-CNF encodings for the input instances has
been implemented in Java 1.6, and constitutes an important part of the PMSTG
method. Finally, all experiments we performed on an Intel Core i7 3.2 GHz
system with 6 GB RAM under Linux version 2.6.32 64 bit.

Test data. We introduce now the test instances which were used for our ex-
perimentation. Again, to make our evaluation better comparable with previous
evaluation results for GBT and thus much more relevant, we tested PMSTG,
ILPTG, as well as the three heuristics with the same test data of three categories
as described in [4], i.e., on randomly generated input instances, on simulated
gene trees/species trees, and on a real-world gene tree/species tree dataset. Ac-
cording to the description in [4], the random input instances were generated
as follows: first they generated uniformly at random two binary trees, TS and
TG, both with n leaves and established a random one-to-one correspondence be-
tween the leaf sets of the two trees. Then they created from those two trees an
instance (TS , TG) of the GBT problem by adding an additional b15n/100c uni-
formly at random selected inter-tree edges. We performed similar experiments
for n ranging from 10 to 400 with 10 different instances for each n value.

The simulated gene trees/species trees were created by using a simplified
birth-death process that mimics gene duplication and gene loss [12, 31]. To
build those trees, they first generated uniformly at random a species tree TS
with n leaves. Then, they produced a simulated gene tree TG based on TS
according to the following probabilistic procedure: At each internal node v of
TS , the subtree TS(v) either duplicates with probability d, is lost (removed) with
probability r, or remains intact with probability 1−d−r. For their experiments
they chose d and r to be 0.1 and 0.12, respectively. An instance generated by
this procedure is given by a pair (TS , TG) which set of inter-tree edges includes
all edges joining leaves of TS with leaves of TG having the same labels. Trees of
this category are of practical interest since real-world tanglegrams often consist
of two related and rather similar trees. In our work we performed experiments
with simulated trees for the same values of d and r, and n ranging from 10
to 400 with 10 different instances for each n. Interestingly, similar techniques
for generating gene/species tree pairs resembling real ones, however, for binary
tanglegram problems, can be found in [8].

Finally, our real-world input instances comprise an empirical dataset on
Angiosperms [32]. It contains 1301 gene trees TG with number of leaves ranging
from 4 to 94 and one species tree TS with 7 leaves representing different taxa.
Thus there are 1301 phylogenetic tree pairs (TS , TG) in our real-world input. An
empirical dataset of similar size has also been used by Nöllenburg et al. in [8].

13



 0

 20

 40

 60

 80

 100

10 20 30 40 50 100 200 400
10

0

10
1

10
2

10
3

10
4

10
5

p
e
rc

e
n
ta

g
e
 s

o
lv

e
d

n
u
m

b
e
r 

o
f 
c
ro

s
s
in

g
s
 τ

number of leaves in tree T
S

a) for randomized trees

 0

 20

 40

 60

 80

 100

10 20 30 40 50 100 200 400
10

0

10
1

10
2

10
3

10
4

10
5

p
e
rc

e
n
ta

g
e
 s

o
lv

e
d

n
u
m

b
e
r 

o
f 
c
ro

s
s
in

g
s
 τ

number of leaves in tree T
S

b) for simulated trees

 0

 20

 40

 60

 80

 100

1-5 6-10 11-20 21-50 51-100
10

-2

10
-1

10
0

10
1

10
2

10
3

p
e
rc

e
n
ta

g
e
 s

o
lv

e
d

n
u
m

b
e
r 

o
f 
c
ro

s
s
in

g
s
 τ

number of leaves in tree T
G

c) for real-world trees

ILPTG
PMSTG

initial τ
optimal τ*

Figure 4: Percentage of optimally solved instances by the exact methods ILPTG and PMSTG
(left axes), and average numbers of crossings of initial and optimal layouts (right axes) for
random, simulated, and real-world generalized binary tanglegrams. Note the different scales
on the axes.

Computation of optimal layouts. In Figure 4 and 5 we present some statis-
tics collected during the experimentation with optimal solutions to the input
GBTs. The initial as well as the optimum crossing numbers for all categories of
the input instances are depicted in Figure 4a, 4b, and 4c, respectively. Figure 4a
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indicates a polynomial growth of the average crossing numbers. Moreover, it
could be observed that the average ratio between the crossing numbers of initial
and optimal layouts is much smaller for random instances (about 2.1) than for
the simulated and real-world instances (about 31.7 and 10.8, respectively). Fur-
thermore, note that for the random instances the gap between the initial and
optimal crossing numbers decreases with the growing number of leaves in tree
TS . This cannot be observed for other categories of input instances.

Figure 4 presents also the percentage of optimally solved instances by the
exact methods ILPTG and PMSTG. According to Figure 4a and 4b for in-
stances with at least 200 leaves in the species trees TS , ILPTG performed more
robustly than PMSTG applying diverse PARTAL MAX-SAT solvers. This can
be explained partly by the fact that CPLEX used by ILPTG took advantage of
the parallel architecture of our test system, in contrast to the sequential imple-
mentations of the PARTAL MAX-SAT solvers which did not. However, for test
instances with up to 100 leaves in trees TS the average computation times of
ILPTG and PMSTG were comparable (see further Figure 7). For test instances
containing at least 200 nodes in tree TS both exact methods appeared to be
very time and resource consuming, whereby the random instances turned to be
harder to solve than the simulated ones. On the other hand, the real-world
instances due to their relatively small sizes could be solved to optimality very
fast by both exact solvers (see Figure 7c).

Finally, in Figure 5 the average numbers of Boolean variables and clauses
needed for the SAT encodings of the random, simulated, and real-world test
instances, respectively, are depicted. The polynomial growth of the number of
variables and clauses, proved theoretically in Section 3, can be best observed
in Figure 5a. For simulated and real-world instances this behavior cannot be
seen so clear because the trees TS and TG of each test instance contain typically
different numbers of leaves. The number of variables and clauses needed to
encode GBT instances with 400 and more leaves in TS reached 108, what in
most cases exceeded the possibilities of the PARTIAL MAX-SAT solvers used
and of the test system, constituting the main cause of failure.

Performance. In the subsequent discussion we refer to the performance ratios
shown in Figure 6. In our experiments concerning the performance ratio but also
the computation time (see next paragraph) there was a timeout after 100 seconds
wall clock time for all methods tested. Note that the performance ratios and
the computation times summarize regularly terminated runs and those aborted
after 100 seconds.

A first inspection of the plots immediately reveals that for random and
simulated instances with up to 50 leaves in TS as well as for all real-world in-
stances there are two clear methods of choice that not only outperform the other
heuristics but even achieve average performance ratios (within the computation
time far bellow the timeout of 100 seconds) hardly deviating from the optimum:
ILPTG and PMSTG. The boxplots in Figure 6 show that the heuristics AH and
LH performed worst and spread over a relatively large range of values, in par-
ticular for medium-sized simulated GBTs (see Figure 6b and Table 1, too). The
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Figure 5: Average numbers of Boolean variables and clauses of the SAT encodings for random,
simulated, and real-world generalized binary tanglegrams.

results indicate also that across all instances AH performed much worse than
LH. The best performance among the heuristics tested showed LAH, which for
random and simulated instances with 100 and more leaves in Ts achieved also
the best average performance among all methods tested (see Table 1). Again,
comparing the boxplots in Figure 6a and 6b, it is noteworthy that for small- and
medium-sized instances ILPTG and PMSTG performed equally well on random
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Table 1: Average performance ratios ρ of the five methods AH, LH, LAH, ILPTG, and PM-
STG for random, simulated, and real-world generalized binary tanglegrams. Here the actual
performance ratios for random and simulated instances were first grouped by the instance
size into those having up to 50 leaves in TS and those with at least 100 leaves, and averaged
afterwards. Results marked with an asterisk mean that all test instances of a given category
and size were solved to optimality by the corresponding method.

Instance Method
Category #leaves in TS AH LH LAH IPLTG PMSTG
random ≤ 50 1.109 1.020 1.006 1∗ 1∗

random ≥ 100 1.026 1.016 1.011 1.082 1.076
simulated ≤ 50 1.269 1.023 1.001 1∗ 1,003
simulated ≥ 100 1.265 1.072 1.024 5.533 1.017
real-world 1-100 1.668 1.012 1.001 1∗ 1∗

and simulated instances, whereas the other methods, in particular AH and LH,
were susceptible to the similarity and consequently to the crossing number of the
two trees (see Figure 4a and 4b, too). This can be regarded as a clear advantage
of ILPTG and PMSTG whose performances, according to the results, do not
seem to depend on the grade of similarity between TG and TS . Recall that in
contrast to the random test instances, the trees TG and TS of every simulated
test instance (TG, TS) can considerably differ.

Out of the 70 random input instances for which the optimum solution was
known, LAH found an optimum layout in 54 cases, whereas ILPTG and PMSTG
in 60 and 52 cases, respectively. Further, out of the 70 simulated test instances
solved optimally by some exact method, LAH found an optimum layout in 53
cases, whereas ILPTG and PMSTG in 57 and 58 cases, respectively. Finally, all
1301 real-world test instances were solved optimally by ILPTG and PMSTG.
Here, LAH delivered always an optimal layout except for 2 cases.

For input instances with 100 and more leaves in tree TS the ILPTG method
achieved not only very poor performance ratios (see Figure 6b) but also long
computation times (see Figure 7c) and thus cannot be regarded as a practical
method for large GBTs.

Computation time. The main question here is whether the PMSTG method,
whose performance ratio for instances of up to 50 leaves in TS is far better than
the three heuristics and comparable with the exact method ILPTG and which
even finds optimal solutions in most of the cases, is fast enough to be used in
practice. It is of interest if we can compute optimal solutions for typical input
sizes efficiently. Under the assumption that the leaf sets of typical real-world
GBTs do not exceed 50 nodes (thus comparable with the sizes of the real-world
instances tested here), PMSTG can be regarded as a practical technique for solv-
ing the generalized binary tanglegram problem efficiently and, most important,
with a guarantee for the optimum.

AH, in spite of its rather poor performance, was able to produce an opti-
mized layout almost instantaneously even for large input instances, outclassing
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Figure 7: Average computation times of the five methods AH, LH, LAH, ILPTG, and PMSTG
for random, simulated, and real-world generalized binary tanglegrams. The computation times
of PMSTG include times for the generation of CNF formulas.

other competitors, see Figure 7a and 7b. Observe also that AH was the only
method whose computations had not to be interrupted after the elapse of the
timeout of 100 seconds. For small-sized random and simulated instances PM-
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STG was among the fastest methods with computation times between 0.001 and
0.1 seconds. For medium-sized random and simulated instances the times grew
to values between 0.1 and 10 seconds, placing PMSTG in the mid-range of the
other methods. For random instances with at least 50 leaves in tree TS , PMSTG
was clearly beaten by other methods, whereas for simulated instances with at
least 50 leaves, PMSTG was on average as fast as the second ranked method,
ILPTG. Here, the relatively short computation times of ILPTG (especially when
compared with the other exact method, PMSTG) can be explained by the fact
that in contrast to the other methods, ILPTG using CPLEX took advantage
of the parallel architecture of the test system allowing for running up to four
parallel processing threads. Moreover, it is remarkable that the computation
times of PMSTG do not differ from the computation times of the heuristics
LAH and LAH as much as we had expected it. This indicates a clear potential
of our method, which with more efficient PARTIAL MAX-SAT solvers can be
still improved.

Furthermore, comparing the computation times depicted in Figure 7a and 7b,
one can see that they grew much quicker for simulated test instances than for
random ones. This can again be explained by the fact that the trees TG and TS
in the simulated instances are less similar than those of the random instances,
resulting in a greater difference between the initial and the optimal crossing
numbers (see Figure 4a and 4b). Interestingly, the computation times for ran-
dom instances with up to 50 leaves in tree Ts show an almost polynomial growth,
see Figure 7a. This cannot be observed for other categories of input instances.

According to the results from Figure 7c for small- and medium-sized real-
world instances, PMSTG turned to be, together with ILPTG, the fastest method,
well ahead of the remaining three heuristics. For large real-world test instances
ILPTG is slightly preferable to PMSTG.

Finally, we want to make some remarks regarding the efficiency of the PAR-
TAL MAX-SAT solvers used in the evaluations. During our evaluation we have
observed that clasp 2.0.2, IncWMaxSat, and QMaxSat0.4 were the fastest solvers
for computing optimal solutions for the small random and simulated instances.
For medium-sized test instances of those categories QMaxSat0.4, QMaxSat0.11,
akmaxsat, and akmaxsat ls were the most efficient, whereas large instances with
at least 100 leaves in TS could be solved only with clasp 2.0.2 and SAT4J
MaxSAT. For small real-world GBTs QMaxSat0.4 appeared to be the fastest
solver, beaten only by clasp 2.0.2 for instances with 50 and more leaves in TS .

5. Concluding remarks

We have presented a satisfiability-based formulation of the planarity test and
the crossing minimization problem on generalized tanglegrams defined on level
graphs. Here, the first problem essentially reduces to testing satisfiability of a 2-
CNF formula and can be solved in O(n2) time for instances with n level vertices
and k-ary trees defined on each level, for some fixed integer k > 1. Moreover,
we have shown that the latter problem has a formulation as a PARTIAL MAX-
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SAT problem. Here, the question arises whether one could derive bounds on
the approximation ratio for generalized tanglegram instances.

The evaluation study has proved that our new method, although designed
for a much more general case of generalized k-ary tanglegrams on level graphs,
performs also very well on generalized binary tanglegrams, a more specific case of
generalized tanglegrams on level graphs. When compared with other techniques,
PMSTG emerged as a very competitive technique for computing optimal layouts
of small and medium-sized test instances. In this range its performance was at
least as good as the performance of the very efficient heuristics LH and LAH
of Bansal et al. [4]. For real-world datasets our technique was even able to
produce optimal solutions much faster than the three heuristics tested, what
clearly qualifies it for use in interactive visualization tools.

From the practical point of view, the advantage of our approach is threefold.
First, it can be applied to a much more general case of tanglegram problem, it
possesses very competitive performance ratios and computation times, and it
does not require the proprietary CPLEX software. Finally, since it is applying
PARIAL MAX-SAT solvers to find optimized solutions, any further improve-
ment of those solvers, including parallel ones, will imply a similar improvement
in the performance and computation time of our method.
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