
XSAT and NAE-SAT of linear CNF classesI

Stefan Porschena, Tatjana Schmidtb, Ewald Speckenmeyerc,
Andreas Wotzlawc,1

aFachgruppe Mathematik, Fachbereich 4, HTW Berlin, D-10313 Berlin, Germany
bTürnicher Strasse 14, D-50969 Köln, Germany

cInstitut für Informatik, Universität zu Köln, D-50969 Köln, Germany

Abstract

XSAT and NAE-SAT are important variants of the propositional satisfiability
problem (SAT). Both are studied here regarding their computational complex-
ity of linear CNF formulas. We prove that both variants remain NP-complete
for (monotone) linear formulas yielding the conclusion that also bicolorability
of linear hypergraphs is NP-complete. The reduction used gives rise to the
complexity investigation of both variants for several monotone linear subclasses
that are parameterized by the size of clauses or by the number of occurrences of
variables. In particular cases of these parameter values we are able to verify the
NP-completeness of XSAT respectively NAE-SAT; though we cannot provide a
complete treatment. Finally we focus on exact linear formulas where clauses in-
tersect pairwise, and for which SAT is known to be polynomial-time solvable [1].
We verify the same assertion for NAE-SAT relying on a result in [2]; whereas we
obtain NP-completeness for XSAT of exact linear formulas. The case of uniform
clause size k remains open for the latter problem. However, we can provide its
polynomial-time behavior for k at most 6.

Keywords: not-all-equal satisfiability, exact satisfiability, linear formula,
linear hypergraph, bicolorability, NP-completeness, finite projective plane

1. Introduction

The propositional satisfiability problem (SAT) for conjunctive normal form
(CNF) formulas can be seen as the central combinatorial problem from the per-
spective of computational complexity theory because it provides the basis for
the notion of NP-completeness [5]. The remarkable dichotomy theorem due to
Schaefer [6] classifies all CNF formulas into those parts for which SAT behaves

IPreliminary versions of this paper appeared in [3, 4].
Email addresses: porschen@htw-berlin.de (Stefan Porschen),

esp@informatik.uni-koeln.de (Ewald Speckenmeyer), wotzlaw@informatik.uni-koeln.de (
Andreas Wotzlaw)

1The last author was partially supported by the DFG project under the grant No. 317/7-2

Preprint submitted to Discrete Applied Mathematics August 31, 2011

NP-complete and the others which can be decided in polynomial time. In par-
ticular SAT is NP-complete when restricted to linear CNF formulas. Clauses of
linear formulas overlap only sparsely in the sense that they can have at most one
variable in common. Various aspects of SAT concerning linear formulas have
been investigated recently in [1, 7]. Linear formulas deserve interest from sev-
eral perspectives. Studying the state-of-the-art exact deterministic branching
algorithms for SAT it seems that linear formulas are responsible for their worst
case branches. Moreover they yield a direct generalization of linear hypergraphs
connecting them to linear versions of combinatorial optimization problems. The
key for these connections are certain variants of SAT which are the focus of the
present paper.

Concretely, we investigate the computational complexity of the logic prob-
lems not-all-equal SAT (NAE-SAT) and exact SAT (XSAT) of monotone linear
formulas. Deciding NAE-SAT, for a CNF formula, means to test for the exis-
tence of a truth assignment such that in each clause of the formula at least one
literal evaluates to true and at least one to false. For solving XSAT, exactly
one literal in each clause must evaluate to true and all others to false. Ob-
serve that for CNF formulas where all clauses have exactly two literals XSAT
and NAE-SAT coincide. Schaefer’s theorem, in particular implies that both
NAE-SAT and XSAT are NP-complete for the unrestricted CNF class. Whereas
SAT gets trivial on monotone formulas, which by definition are free of negated
variables, NAE-SAT and XSAT remain NP-complete on that class. Indeed, first
notice that monotone NAE-SAT coincides with the prominent NP-complete hy-
pergraph bicolorability problem also known as set splitting [8]. Moreover, mono-
tone XSAT is the same as the exact hitting set problem on hypergraphs and it is
closely related to the set partitioning problem which both are NP-complete [8]
and have many applications in combinatorial optimization.

The contributions of the present paper are as follows: First we prove that
NAE-SAT and XSAT both remain NP-complete when restricted to monotone
linear formulas. As an interesting implication we obtain that also bicolorability
of linear hypergraphs is NP-complete. The reduction used adds 2-clauses to
the input formula and so it is not valid when input formulas are not allowed
to have 2-clauses. Relying on certain backbone formulas enables us to verify
that XSAT also is NP-complete for monotone formulas only containing clauses
of size at least k, for k ≥ 3. The same can be established for NAE-SAT for the
larger non-monotone class. By an indirect argument using Schaefer’s result we
argue that NAE-SAT is NP-complete for the monotone case, too.

Schaefer’s theorem does not automatically apply if restrictions are posed on
the number of occurrences of variables in CNF formulas. For instance in [9] it
is shown that whereas unrestricted k-SAT is NP-complete, for k ≥ 3, it can be
solved easily if each clause has size exactly k and no variable occurs in more
than f(k) clauses; but it already becomes NP-complete if variables are allowed
to occur at most f(k) + 1 times. Here f(k) asymptotically grows as b2k/(e ·k)c;
this bound has meanwhile been improved by other authors [10]. Here we show
the NP-completeness of both NAE-SAT and XSAT for monotone linear formulas
which are l-regular meaning that every variable occurs exactly l times, and l ≥ 3

2

is a fixed integer. Using some connections to finite projective planes we can also
show that XSAT remains NP-complete for linear and l-regular formulas that in
addition are l-uniform (all clauses have the same size l) whenever l = q + 1,
where q is a prime power. Thus XSAT most likely is NP-complete also for other
values of l ≥ 3.

Moreover we are interested in exact linear formulas where each pair of dis-
tinct clauses has exactly one variable in common. SAT can be decided in poly-
nomial time for exact linear formulas [1]. We show that NAE-SAT and even
its counting version are also polynomial-time decidable restricted to monotone
exact linear formulas relying on a result in [2]. Reinterpreting this result enables
us to give a partial answer to a long-standing open question mentioned by T.
Eiter in [11] regarding the computational complexity of the symmetrical inter-
secting unsatisfiability problem (SIM-UNSAT). As a quite surprising result, we
obtain that XSAT, which is the most restricted variant of SAT, indeed behaves
NP-complete for monotone exact linear formulas. We can establish the same
when the clauses have size at least k, k ≥ 3. A difficulty arises when trying to
transfer the proof to the case of uniform clause size k. Though we conjecture
that XSAT still remains NP-complete here, we provide several polynomial-time
subclasses, specifically for all k at most 6.

Finally, we draw several conclusions regarding the complexity of Set Split-
ting, Exact Hitting Set, and Set Partitioning for linear and regular, respectively
exact linear, hypergraphs.

2. Notation and preliminaries

Let CNF denote the set of duplicate-free conjunctive normal form formulas
over propositional variables x ∈ {0, 1}. A positive (negative) literal is a (negated)
variable. For convenience, a formula in CNF is regarded as a set of its clauses.
Similarly, a clause is considered as a set of its literals. So we do not allow
duplicate occurences of clauses in a formula, respectively of literals in a clause.
Further we throughout assume that clauses contain no pair of complementary
literals. A clause is called positive, respectively negative, if it exclusively contains
positive, respectively negative, literals. Cγ denotes the formula obtained from C
by complementing the literals of each clause in C. For a formula C, clause c, by
V (C), V (c) we denote the set of its variables (neglecting negations), respectively.
L(C) is the set of all literals in C. By |c| we denote the number of literals
in a clause c, by |C| the number of clauses in formula C is denoted, and by
‖C‖ :=

∑
c∈C |c| its size.

A monotone formula contains only positive clauses. A formula C is k-
uniform if all its clauses have size exactly k; it is l-regular if each of its variables
occurs exactly l times in C. By wC(x) we denote the number of occurrences
of variable x in C (disregarding negations). A CNF formula C is called linear
if for all c1, c2 ∈ C : c1 6= c2 we have |V (c1) ∩ V (c2)| ≤ 1. C is called exact
linear if for all c1, c2 ∈ C : c1 6= c2 we have |V (c1) ∩ V (c2)| = 1. We call a
monotone, k-uniform and exact linear formula that in addition is k-regular a
k-block formula; such formulas are closely related to finite projective planes [1].

3

Let LCNF denote the class of linear formulas and XLCNF the class of exact
linear formulas. Let C ∈ {CNF,LCNF,XLCNF} be fixed. Then k-C, (≥ k)-C,
(≤ k)-C denotes the subclass of formulas in C with the additional property that
all clauses have size exactly k, at least k, at most k, respectively. Similarly Cl,
C≥l, C≤l denotes the subclass of formulas in C with the additional property that
all variables occur exactly l times, at least l times, at most l times, respectively.
Finally, let C+ denote the collection of monotone formulas in C.

Recall that a hypergraph formally is a pair (X,E) where X is the set of
vertices, and E is a set of non-empty subsets of X called hyperedges which are
not allowed to be multisets. In a linear hypergraph, by definition, every two
distinct hyperedges have at most one vertex in common [12]. So, a monotone
linear formula directly corresponds to a linear hypergraph viewing clauses as
hyperedges and variables as vertices. Similarly, an exact linear formula can be
regarded as an exact linear hypergraph.

The satisfiability problem (SAT) asks, whether an input formula C ∈ CNF
has a model, which is a truth assignment t : V (C) → {0, 1} assigning at least
one literal in each clause of C to 1. XSAT is the variant of SAT asking for
a truth assignment setting exactly one literal in each clause of C to 1 and all
other literal(s) to 0; such a truth assignment is called an x-model. C is called
x-(un)satisfiable if it has an (has no) x-model. For a solution of its counterpart
not-all-equal SAT (NAE-SAT) it is required that in each clause at least one
literal is set to 1, and at least one literal is set to 0. We call a corresponding
truth assignment a nae-model. In the case that there exists no nae-model for
C, we call C an nae-unsatisfiable formula.

The combinatorial problem set partitioning takes as input a finite hyper-
graph with vertex set M and a set of hyperedges M (i.e., subsets of M). It
asks for a subfamily T ofM such that each element of M occurs in exactly one
member of T . It is easy to see that monotone XSAT coincides with set parti-
tioning when the clauses overtake the roles of vertices in M and the variables
are regarded as the hyperedges in M in such a way that a variable contains all
clauses in which it occurs. Exact hitting set is the same as monotone XSAT
if it is translated to the terminology of hypergraphs, i.e., set systems. Finally,
hypergraph bicolorability also known as set splitting is an NP-complete prob-
lem [8]. It gets a hypergraph as input and asks for the existence of a 2-coloring
of its vertex set such that no hyperedge is colored monochrome.

3. NAE-SAT and XSAT-complexity of linear formulas

Our first aim is to prove that XSAT and NAE-SAT behave NP-complete for
unrestricted linear CNF formulas which are collected in LCNF. We focus on
the monotone case which implies the non-monotone one. As mentioned in the
Introduction, NAE-SAT of monotone CNF formulas coincides with hypergraph
bicolorability (which is the set splitting problem), and monotone XSAT corre-
sponds to the set partitioning problem, which both are well-known NP-complete
problems [8].

4

Theorem 1. Both XSAT and NAE-SAT remain NP-complete when restricted
to formulas in LCNF+, rspectively LCNF+.

Proof. We first consider the XSAT case and provide a polynomial-time reduc-
tion from CNF+-XSAT to LCNF+-XSAT. Then we essentially transfer that
reduction to verify NP-completeness of LCNF+-NAE-SAT, too.

Take an arbitrary instance C from CNF+. For each fixed variable xi ∈ V (C)
having r ≥ 2 occurrences in C, let say in the clauses cj1 , . . . , cjr of C, introduce
the new variables yj1xi

, . . . , yjrxi
6∈ V (C), and replace the occurrence of xi in cjs

with yjsxi
, for 1 ≤ s ≤ r. Moreover, introduce an auxiliary variable zxi also

different from all variables. Finally, add the following clauses to the formula,
independently for each tuple xi, zxi

, yj1xi
, . . . , yjrxi

, which is built for each fixed
xi ∈ V (C) such that all new variables (i.e., variables not in V (C)) are pairwise
distinct:

(∗) {xi, zxi} ∪
⋃

1≤s≤r

{yjsxi
, zxi}

Observe that the resulting formula C ′, obtained from C after termination of
the procedure just described, is linear and positive monotone. The procedure
runs in polynomial time O(n‖C‖), for n variables in V (C). It remains to verify
that C ∈ XSAT if and only if C ′ ∈ XSAT. Let T denote the whole added
2-CNF formula generated according to (∗) that results after termination of the
procedure described above.

First we show that any x-model of C which assigns to variable xi a fixed
truth value, assigns the same value to all new variables yjsxi

, 1 ≤ s ≤ r, replacing
xi in C ′. Indeed, this is ensured by subformula T since, for each tuple xi, y

js
xi
, 1 ≤

s ≤ r, we have the implications according to XSAT:

xi = 1 ⇒ zxi
= 0 ⇒ yjsxi

= 1, 1 ≤ s ≤ r

xi = 0 ⇒ zxi
= 1 ⇒ yjsxi

= 0, 1 ≤ s ≤ r

Conversely, according to T , any x-model of C ′ assigning a fixed truth value to
one of the new variables yjsxi

replacing xi must assign the same value to xi and
also to all other variables replacing xi:

yjsxi
= 1 ⇒ zxi

= 0 ⇒ xi = 1, yjs′xi
= 1, 1 ≤ s′ 6= s ≤ r

yjsxi
= 0 ⇒ zxi

= 1 ⇒ xi = 0, yjs′xi
= 0, 1 ≤ s′ 6= s ≤ r

in summary demonstrating the XSAT-equivalence of xi ↔ yjsxi
, 1 ≤ s ≤ r. The

last observation directly implies that C ∈ XSAT iff C ′ ∈ XSAT.
Finally, we can apply the argumentation above also to the NAE-SAT case

because, for the added 2-CNF part T , NAE-SAT coincides with XSAT. Hence,
we have C ∈ NAE-SAT iff C ′ ∈ NAE-SAT finishing the proof. �

Since NAE-SAT for monotone CNF formulas coincides with bicolorability of
hypergraphs, the next assertion follows immediately.

5

Corollary 1. Bicolorability remains NP-complete when restricted to linear hy-
pergraphs.

The reduction given in the proof of Theorem 1 adds 2-clauses to a non-
linear input formula forcing the newly-created variables all to be assigned the
same truth value in every model of C ′. Therefore, if we consider the subclass
(≥ k)-LCNF+ of LCNF+, for fixed integer k ≥ 3, where each formula contains
only clauses of size at least k, then the reduction above does not work. So,
the question arises whether XSAT, respectively, NAE-SAT restricted to (≥ k)-
LCNF+ remain NP-complete, too. Before giving the answer, we introduce some
terminology and then prove a useful lemma.

Definition 1. Let C be an x-satisfiable formula. A variable y ∈ V (C) is called
an x-backbone variable of C, if y has the same value in each x-model of C.

It might be instructive to consider the following example: Consider the x-satis-
fiable formula C:

C = {x1x2x5, x2x3, x1x3x4}

where, for simplicity, clauses are represented as strings of literals. The only
x-models of C obviously are: x1 = 0, x2 = 1, x3 = 0, x4 = 1, x5 = 0 and
x1 = 0, x2 = 0, x3 = 1, x4 = 0, x5 = 1. For this reason x1 is an x-backbone
variable.

Lemma 1. For each fixed k ≥ 3, we can efficiently construct a monotone k-
uniform linear formula C of O(k3) variables and O(k2) clauses such that C
contains at least k x-backbone variables which all must be assigned 0.

Proof. For the formula construction, we start with defining a first clause c0 =
{x, y1, . . . , yk−1}. Then we introduce a (k − 1) × (k − 1) variable matrix A =
(aij)1≤i,j≤k−1, and regard its rows as (k−1)-clauses. Enlarging each such clause
with x yields k − 1 additional k-clauses collected in set X having the property
that X ∪ {c0} is linear. Next we similarly build a set Y1 of k-clauses as follows:
first take the transpose AT of A then enlarge each of its rows with y1. Again
X ∪Y1 ∪{c0} is a linear clause set. Finally, let ÂT be the matrix obtained from
AT by performing a cyclic down shift about i − 1 positions on the ith column
of AT . Form a clause set Y2 enlarging the rows of ÂT with y2, each. Recall
that by construction each clause of X contains variable x and each clause of
Y1, Y2 contains y1, y2, respectively. Let C ′ denote the formula obtained from
{c0} ∪X ∪ Y1 ∪ Y2 by removing the last clause, referenced to as c, from Y2. For
example, in case k = 4, C ′ (resp. c) looks as follows (omitting set embraces and

6

representing clauses as literal strings):

C ′ =

x y1 y2 y3
x a11 a12 a13
x a21 a22 a23
x a31 a32 a33
y1 a11 a21 a31
y1 a12 a22 a32
y1 a13 a23 a33
y2 a11 a23 a32
y2 a12 a21 a33

, c = y2 a13 a22 a31

Clearly C ′ has k + (k − 1)2 = O(k2) variables and 3(k − 1) = O(k) clauses.
We claim that C ′ has at least two x-backbone variables which both have to
be set to 0. From this claim the assertion is implied as follows: Construct
dk2 e many variable-disjoint copies of C ′ resulting in formula C. C clearly is
k-uniform, linear, consists of O(k3) variables and O(k2) clauses. And C has at
least 2 · dk2 e ≥ k x-backbone variables which must be assigned 0.

So it remains to settle the claim: We show that C ′ ∈ XSAT and that each
x-model of C ′ assignes 0 to x and y1. First we show that neither x nor y1 can
be set to 1 by any x-model of C: Assume that x is set to 1 then all variables
in A and therefore also all variables in AT would be forced to 0 implying that
also y1 must be set to 1 x-contradicting the leading clause c0. An analogous
argumentation shows that y1 is an x-backbone variable with truth value 0. Next
we claim that a (canonical) x-model t for C ′ is provided by assigning 1 to all
variables in the removed clause c, and 0 to all other variables. Since C ′ ∪ {c} is
linear no two variables of c can occur in any clause of C ′. So, t assigns to 1 at
most one literal in each clause of C ′. Clearly, c0 and the remaining clauses of
Y2 all contain y2 and therefore are x-satisfied. Finally, by construction all k− 1
variables in c − {y2} are members of A and also of AT . So as we have k − 1
variables in c−{y2} and exactly k−1 rows in A resp. AT , we have to distribute
k− 1 variables on k− 1 rows in A resp. AT . It follows that each row in A resp.
AT must contain exactly one variable in c−{y2}. Because of linearity it is also
clear that no variable in c− {y2} can occur twice in A resp. AT . Therefore all
clauses in X and Y1 are x-satisfied finishing the proof. �

Now we are able to prove the next result.

Theorem 2. For each fixed k ≥ 3, XSAT remains NP-complete restricted to
(≥ k)-LCNF+ and even for k-LCNF+.

Proof. It suffices to treat k-LCNF+, for each fixed k ≥ 3. The basic idea
essentially is to perform the reduction as shown in the proof of Theorem 1 from
k-CNF+-XSAT thereby padding the added 2-clauses by x-backbone variables
such that they become k-uniform and the XSAT status of the corresponding
formulas is preserved.

More precisely, let Γk be the monotone k-uniform formula according to
Lemma 1. For each added 2-clause form a copy of Γk such that all these copies

7

are pairwise variable disjoint. Enlarge each 2-clause with k − 2 of these x-
backbone variables stemming from the corresponding copy of Γk. Clearly, the
resulting formula is linear and k-uniform and is in XSAT iff the original formula
is, because all x-backbone variables always are assigned 0, and all Γk copies by
construction are x-satisfiable. �

Observe that the preceding argumentation cannot be applied to the NAE-SAT
case because the clause size is larger than 2, and clauses are not allowed to be
multisets, i.e., do not contain literals more than once. So, before attacking the
NP-completeness proof, we need a concept of nae-backbone variables which is
introduced as follows.

Definition 2. A formula is called minimally nae-unsatisfiable if it is nae-un-
satisfiable, but removing an arbitrary clause from it yields a nae-satisfiable
formula. We call a set U ⊆ L(C) of literals in a nae-satisfiable formula C a
nae-backbone set, if each nae-model of C sets the literals in U either all to 0 or
all to 1.

The next assertion delivers the key to a NP-completeness argument regarding
NAE-SAT of uniform linear formulas.

Lemma 2. Given a formula C that is nae-unsatisfiable. Then C contains a
minimally nae-unsatisfiable subformula C ′. Moreover, any clause c of C ′ forms
a nae-backbone set in C ′ − {c}.

Proof. First of all there must exist a nae-satisfiable subformula of C, because
any single clause of it has this property. So, suppose there exists no minimally
nae-unsatisfiable subformula of C, then each nae-unsatisfiable subformula of it
has the property that it contains a clause which can be removed and the resulting
formula remains nae-unsatisfiable. So, we inductively obtain a contradiction to
the fact that there are nae-satisfiable subformulas of C.

To prove the second assertion, let C be a minimally nae-unsatisfiable for-
mula, and C ′ := C − {c}, for arbitrary c ∈ C, then clearly C ′ is nae-satisfiable.
We claim that c is a nae-backbone set in C ′. First we observe that V (c) ⊆ V (C ′)
because otherwise there is a variable u ∈ V (c) not occurring in C ′. Clearly, we
then can always set u in such a way that c is nae-satisfied in C yielding a con-
tradiction. Next, each nae-model of C ′ sets all literals in c either to 0 or all to 1,
otherwise C would be nae-satisfiable again yielding a contradiction. So c forms
a nae-backbone set in C ′. �

In view of the tools just presented it seems reasonable to proceed for NAE-SAT
in an analogous manner as executed for XSAT in the proof of Theorem 2.
Therefore we have to construct linear k-uniform monotone formulas that are nae-
unsatisfiable. For k = 3, one verifies that 3-block formulas are nae-unsatisfiable,
as an example consider

B3 := {xyz, xuv, xwq, yuw, yvq, zuq, zvw}

8

again writing clauses as literal strings. For k = 4, we were also able to construct
a nae-unsatisfiable witness, based on the scheme described in [1]. However,
unfortunately a general construction technique for (smallest) k-uniform nae-
unsatisfiable linear formulas for every fixed k ≥ 5 seems to be a hard task in
combinatorial design. To attack the problem from another perspective, we first
consider the following lemma:

Lemma 3. If there is a linear, k-uniform, and unsatisfiable formula C, for
which additionally holds that each clause of C is either positive or negative, then
there is a linear, k-uniform and monotone formula C ′ which is nae-unsatisfiable.

Proof. For an arbitrary formula C it is easy to see that C ∈ NAE-SAT holds
true if and only if C ∪ Cγ ∈ SAT. Now let C be a linear, k-uniform, and
unsatisfiable formula such that each of its clauses either is positive or negative.
Since C is unsatisfiable, C ∪ Cγ is nae-unsatisfiable. We can rearrange the
clauses in C ∪Cγ such that C ∪Cγ = C ′ ∪ (C ′)γ and only the part C ′ contains
all the positive clauses. Thus we have that C ′ is a member of k-LCNF+ and
moreover is nae-unsatisfiable. �

Now we obtain the NP-completeness of NAE-SAT restricted to (≥ k)-LCNF+

as follows: Let k-LCNF+,− denote the collection of formulas such that all clauses
consist either of only negative literals or of only positive literals. According to
Schaefer’s dichotomy theorem SAT is NP-complete restricted to k-LCNF+,−,
which therefore must contain unsatisfiable members, for each fixed k ≥ 3.
Lemma 3 tells us that there exist unsatisfiable members of k-LCNF+, for each
k ≥ 3. Such a candidate specifically is nae-unsatisfiable, and we can extract
from it a nae-satisfiable formula Γk having a nae-backbone set of k variables
according to Lemma 2. Performing the analogous copy and padding steps as
stated in the proof of Theorem 2 for the XSAT case, we obtain the following
result:

Theorem 3. For each k ≥ 3, NAE-SAT remains NP-complete when restricted
to (≥ k)-LCNF+ as wells as to k-LCNF+. �

Remark 1. A drawback of the preceding discussion regarding NAE-SAT lies
in the absence of concrete candidates which for a rigorous treatment have to be
present in order to extract nae-backbone sets. Notice that for the non-monotone
fraction, i.e., k-LCNF, we can provide explicit nae-unsatisfiable candidates re-
lying on unsatisfiable k-uniform formulas as constructed in [1, 7]. Thus we can
rigorously deduce that NAE-SAT of k-LCNF is NP-complete.

4. Linear formulas with regularity restrictions

This section is devoted to CNF classes that are specified by conditions on
the number of occurrences of the variables. Recall that a formula, by definition,
is l-regular if each of its variable occurs in exactly l clauses. In the sequel we
shall provide concrete reductions stating that XSAT as well as NAE-SAT remain

9

NP-complete for LCNFl+. However, this seems to be out of scope regarding a

complete treatment of the uniform classes k-LCNFl+, for arbitrary values of k, l.
We only have that XSAT and also NAE-SAT can be solved in polynomial time
if one of the parameters k, l is at most 2. This even holds for the variable-
weighted optimization versions of these problems [13]. Regarding the range
k, l ≥ 3, we do not have rigorous proofs but we conjecture NP-completeness
of XSAT and NAE-SAT here. Concerning XSAT we are only able to provide
its NP-completeness of the larger non-monotone class k-LCNFl if the regularity
parameter l equals the uniformity parameter k and l− 1 additionally is a prime
power. This clearly provides strong evidence that NP-completeness of XSAT
holds for all values of l = k > 2, too. Unfortunately the reduction used cannot
be transfered to the monotone fraction.

Let us first address both variants with respect to monotone l-regular linear
formulas with no restrictions on the size of clauses.

Theorem 4. NAE-SAT and XSAT are NP-complete restricted to LCNFl+.

Proof. According to Theorem 1, XSAT and NAE-SAT are NP-complete for
LCNF+. So, let C ∈ LCNF+ be chosen arbitrarily, and let Vl(C) denote the part
of V (C) containing all variables that occur more than l times in C. For every
x ∈ Vl(C), we introduce wC(x) − (l − 1) new variables yx1 , y

x
2 , . . . , y

x
w(x)−(l−1).

We keep x in its first l− 1 occurrences in C and replace it in each of its further
occurrences by the yxi , i = 1, . . . , wC(x)−(l−1). The resulting formula contains
each of its variables in at most l positions.

Next we ensure XSAT- respectively NAE-SAT-equivalence by adding certain
2-clauses yielding the new formula C ′. Consider the following case distinction
for each x ∈ Vl(C):
Case (1): wC(x)− (l − 1) ≤ l. Adding the clauses

{x, zx}, {yx1 , zx}, . . . , {yxw(x)−(l−1), z
x}

guarantees that C ′ has no variable occuring more than l times and moreover C
and C ′ are equivalent w.r.t. XSAT and therefore w.r.t. NAE-SAT.
Case (2): r := wC(x)− (l − 1) > l. We have r = s(l − 1) + q where s = b r

l−1c,
and 0 ≤ q < l − 1, then we add the clauses

{x, zx1}, {yx1 , zx1}, . . . , {yxl−1, zx1}, {vx1 , zx1},
{vx1 , zx2}, {yxl , zx2}, {yxl+1, z

x
2}, . . . , {yx2(l−1), z

x
2}, {vx2 , zx2},

. . .

{vxs−1, zxs }, {yx(s−1)(l−1)+1, z
x
s }, . . . , {yxs(l−1), z

x
s }, {vxs , zxs },

{vxs , zxs+1}, {yxs(l−1)+1, z
x
s+1}, . . . , {yxwC(x)−(l−1), z

x
s+1}

If C is x-satisfiable setting x = 0, then the newly added 2-clauses imply zx1 = 1
and hence yx1 = yx2 = . . . = yx(l−1) = 0, vx1 = 0, hence zx2 = 1 and finally yxi = 0,

for all i ∈ {l, . . . , w(x)− (l− 1)}. If C is x-satisfiable setting x = 1 then we also
obtain yxi = 1, for all i ∈ {1, . . . , w(x) − (l − 1)}. So C ′ is x-equivalent to C,
and therefore the same holds true for NAE-SAT.

10

Observe that in both cases C ′ is linear and satisfies wC′(x) ≤ l for all
x ∈ V (C ′). It remains to transform C ′ to a formula C ′′ ∈ LCNFl+ such that C
is equivalent to C ′′ according to XSAT respectively NAE-SAT. For this purpose
we proceed as follows: Assume x ∈ V (C ′) occurs less than l times in C ′ then
we add the following 2-clauses: {x, dx1}, {x, dx2}, . . . , {x, dxl−wC′ (x)

}, where the

variables dxi , i ∈ {1, . . . , l − wC′(x)}, all are new. To achieve l-regularity of the
dxi , we add the clauses

{dxi , ax1}, {dxi , ax2}, . . . , {dxi , axl−1}

for each i ∈ {1, . . . , l − wC′(x)}, with new variables axj , j ∈ {1, . . . , l − 1}. Now
each dxi occurs exactly l times whereas each of the axj occurs l − wC′(x) times
in the current formula. Hence we have to add the further 2-clauses

{axi , bx1}, {axi , bx2}, . . . , {axi , bxwC′ (x)}

based on the new variables bxi , i ∈ {1, . . . , wC′(x)}. Now all variables occur
exactly l times apart from the bxi , i = 1, . . . , wC′(x), each of which occurs l − 1
times in the current formula. For each bxi , we add

{bxi , eb
x
i }, {eb

x
i , f

bxi
0 , g

bxi
0 }, . . . , {eb

x
i , f

bxi
l−2, g

bxi
l−2}, {f

bxi
l−1, g

bxi
l−1}

Now the bxi and the eb
x
i all occur exactly l times in the current formula, and it

finally remains to establish l-regularity of the g
bxi
j and f

bxi
j , j = 0, . . . , l − 1. We

can achieve this by adding

{f b
x
i

0 , g
bxi
j }, {f

bxi
1 , g

bxi
j+1 mod l}, . . . , {f

bxi
l−1, g

bxi
j+l−1 mod l}

for each j ∈ {1, . . . , l − 1}. Let C ′′ be the resulting monotone linear l-regular
formula. As the subformula consisting of all the newly added clauses obviously
is x-satisfiable, it also is nae-satisfiable. It follows that C ′ and therefore C are
equivalent to C ′′ according to XSAT, respectively NAE-SAT, completing the
proof. �

Using a similar argumentation one can verify that also SAT itself remains
NP-complete when restricted to the non-monotone class LCNFl [14].

Matters are becoming harder when in addition we require a uniform clause
size. Focusing on XSAT we first provide two results treating the non-linear
case which are used subsequently. Recall that for CNF+ and k-CNF+ the NP-
completeness of XSAT is well known [8].

Lemma 4. XSAT remains NP-complete for k-CNF≤l+ and k-CNF≤l, k, l ≥ 3.

Proof. We provide a polynomial-time reduction from k-CNF+-XSAT to k-
CNF≤l+ . Let C be an arbitrary formula in k-CNF+. For each x ∈ V (C) with
wC(x) > l, we introduce p := wC(x)− (l − 1) new variables x1, x2, . . . , xp. Let
the first l − 1 occurrences of x remain unchanged and replace the p remaining

11

occurrences of x by the variables x1, x2, . . . , xp. Let C ′ be the resulting formula.
Next we introduce new, pairwise different variables aij , for i = 1, . . . , p, j =
1, . . . , k−1, and add the following clauses to C ′ which ensure XSAT-equivalence
of the newly introduced variables x1, x2, . . . , xp with x:

{x, a11, a12, . . . , a1,k−1} , {x1, a11, a12, . . . , a1,k−1},
{x1, a21, a22, . . . , a2,k−1} , {x2, a21, a22, . . . , a2,k−1},

. . .

{xp−1, ap1, ap2, . . . , ap,k−1} , {xp, ap1, ap2, . . . , ap,k−1}

Hence C and C ′ are XSAT-equivalent, and obviously no variable occurs more
than l times in C ′. �

Since we operate in the monotone fraction the XSAT situation differs from the
SAT case for which exist values of k and l with k, l ≥ 3 such that k-CNF≤l-SAT
is polynomial-time solvable [9] as mentioned in the introduction.

On basis of the preceding lemma we obtain the next one.

Lemma 5. XSAT remains NP-complete for k-CNFl+ and k-CNFl, k, l ≥ 3.

Proof. We provide a polynomial-time reduction from k-CNF≤l+ -XSAT to k-

CNFl+-XSAT similar to the technique in [9]. Let C be an arbitrary formula in k-

CNF≤l+ with variable set V (C) = {x1, . . . , xn}. We introduce l pairwise variable-
disjoint copies C1, . . . , Cl of C, such that the variables in Ci are {xi1, . . . , xin},
for i = 1, . . . , l. For each xj ∈ V (C) with wC(xj) < l, we construct the formulas
Dxj ,1, . . . , Dxj ,l−wC(xj) with

Dxj ,i =

l⋃
r=1

{
xrj , ai,1, . . . , ai,k−1

}
for 1 ≤ i ≤ l − wC(xj). Note that ai,j occurs exactly l times in Dxj ,i and
nowhere else, for i = 1, . . . , l − wC(xj), j = 1, . . . , k − 1. Defining

C ′ =

l⋃
i=1

Ci ∪
⋃

xj∈V (C)

l−wC(xj)⋃
i=1

Dxj ,i

we observe that xij occurs wC(xj) times in Ci and once in each Dxj ,i, for i =

1, . . . , l−wC(xj). Thus each xij occurs l times in C ′. So C ′ belongs to k-CNFl+.
C ∈ XSAT if and only if C ′ ∈ XSAT: Let C be x-satisfiable, then we can

use a fixed x-model t of C to x-satisfy the copies C1, . . . , Cl of C. If t(xj) = 1,
we set xrj = 1, for r = 1, . . . , l, and ai,1 = . . . = ai,k−1 = 0 yielding an x-model

for Dxj ,i, for all xj ∈ V (C) and 1 ≤ i ≤ wC(xj). If t(xj) = 0, we set xij = 0, for
i = 1, . . . , l and we assign ai,1 = 1 as well as ai,2 = . . . = ai,k−1 = 0 yielding a
x-model for Dxj ,i, for all xj ∈ V (C) and 1 ≤ i ≤ wC(xj). The reverse direction
is obvious. �

12

Finding a concrete reduction for the NP-completeness proof of XSAT for k-
LCNFl+ is a tricky problem. Relying on the preceding lemma we are only able to

verify NP-completeness of XSAT for k-LCNFl where l = q + 1 and q is a prime
power. This results from the fact that we can exploit block formula patterns
providing x-backbone-variables. A k-block formula directly corresponds to a
finite projective plane of order k−1 [1]. Unfortunately it is a hard open question
to decide whether a projective plane exists for a given positive integer k [15, 16].
However, it is a well known fact in combinatorics that for prime power orders
the corresponding projective planes can easily be computed [15].

Theorem 5. XSAT remains NP-complete for l-LCNFl, for l = q + 1, where q
is a prime power.

Proof. We provide a polynomial-time reduction from l-CNFl+ to l-LCNFl, for

l = q+1, where q is a prime power. Let C ∈ l-CNFl+ be an arbitrary formula and
V (C) = {x1, x2, . . . , xn} the set of its variables. For each variable xi ∈ V (C)
we perform the following linearization.

Since each fixed variable xi ∈ V (C) has exactly l occurrences in C, namely
in the clauses cj1 , . . . , cjl , we introduce a new variable yjsxi

6∈ V (C), for each
such occurrence 2 ≤ s ≤ l, except for the first occurrence of xi in cj1 . Then
we replace each occurrence of xi in cjs (except in cj1) with yjsxi

, for 2 ≤ s ≤ l.
Let C ′ be the resulting formula. Then C ′ is obviously linear, monotone and
each variable occurs exactly once in C ′. For each xi ∈ V (C), we introduce new,
pairwise different variables zxi

1 , . . . , zxi

l−1 6∈ V (C ′). Next we add the following

2-clauses to C ′ providing XSAT-equivalence of the variables xi, y
j2
xi
, . . . , yjlxi

:

Pxi
= {{xi, zxi

1 }, {xi, z
xi
2 }, . . . , {xi, zxi

l−1},
{yj2xi

, zxi
1 }, {yj2xi

, zxi
2 }, . . . , {yj2xi

, zxi

l−1},
{yj3xi

, zxi
1 }, {yj3xi

, zxi
2 }, . . . , {yj3xi

, zxi

l−1},
. . .

{yjlxi
, zxi

1 }, {yjlxi
, zxi

2 }, . . . , {yjlxi
, zxi

l−1}}

Observe that C ′′ :=
⋃
xi∈V (C) Pxi ∪ C ′ is l-regular and linear.

Next we enlarge each 2-clause of P by exactly l−2 many x-backbone variables
all of which must be assigned to 0 and obtain l-clauses this way. The x-backbone
variables are provided via l-block formulas as follows: Each such l-block formula
Bl is l-regular, l-uniform and exists whenever l = q + 1, for q prime power [1].
According to Lemma 7, stated below, we know that Bl is x-unsatisfiable, but
removing an arbitrary clause of Bl we obtain a x-satisfiable formula. Moreover
the variables of the removed clauses are x-backbone variables which have to be
set to 1. Therefore we provide n(l − 1)(l − 2) many l-block formulas which are
pairwise variable-disjoint. Removing a clause of each of them in total yields
n(l−1)(l−2)l distinct x-backbone variables. Since in P we have n(l−1)l many
2-clauses, each of which needs l − 2 variables to become an l-clause, this fits
perfectly. Let P ′ be the formula obtained from P this way. Then C ′′ := C ′ ∪P ′

13

is l-regular and l-uniform by construction. Moreover, C ′′ is x-satisfiable if,
and only if, C is x-satisfiable because P provides the XSAT-equivalence of the
original variables with the replaced ones which is preserved by P ′ through the
x-backbone 0 variables. Note that C ′′ is non-monotone as we have to negate
the x-backbone variables when adding them to the clauses of P . �

The last result provides evidence that NP-completeness also holds for all
values of l ≥ 3. Unfortunately the proof does not easily transfer to the mono-
tone case due to the fact that we have not been able to find suitable formulas
providing x-backbone variables which are forced to 0. However considering the
monotone case we are able to treat the following larger classes.

Theorem 6. XSAT is NP-complete for (≤ l)-LCNFl+, (≤ l)-LCNFl, l ≥ 3.

Proof. Lemma 5 allows us to provide a polynomial-time reduction from l-
CNFl+-XSAT to (≤ l)-LCNFl+-XSAT. Let C be an arbitrary formula in l-

CNFl+. If C is not linear, we proceed the linearization as described in the proof
of Theorem 5 obtaining the corresponding formulas C ′ and P =

⋃
xi∈V (C) Pxi

.

Again C ′′ :=
⋃
xi∈V (C) Pxi∪C ′ is l-regular and linear by construction. Moreover

each clause of C ′′ has a clause size of at most l, because in C ′ each clause has a
size of exactly l and P consists of 2-clauses only. C ′′ is XSAT-equivalent with
C ensured by P . �

As an immediate consequence we have:

Corollary 2. XSAT is NP-complete for (≤ l)-LCNF≥l+ , (≤ l)-LCNF≥l, l ≥ 3.

5. Exact linear formulas

This section is devoted to a certain subclass of linear formulas, namely the
exact linear ones. Recall that in such formulas each two distinct clauses have
exactly one variable in common. Thus exact linear formulas collected in XLCNF
are quite small instances since the number of clauses never exceeds the number
of variables [17, 1]. It is known that SAT is linear-time solvable for XLCNF [1].
Here we first show that also NAE-SAT and even its counting version can be
solved in polynomial time restricted to XLCNF+. Besides we derive a partial
answer to a long standing open question posed by T. Eiter in 1996 [11]. After
that we focus on the XSAT case again and prove its NP-completeness of XLCNF.
In a second part, we also provide several polynomial-time subclasses of the
uniform fraction of XLCNF.

5.1. The case of arbitrary clause lengths

Regarding NAE-SAT restricted to exact linear formulas we will make use
of a result for the satisfiability problem restricted to a certain CNF subclass
published in [2]. For convenience, let us restate it as follows:

14

Theorem 7. For C ∈ CNF, such that the variable sets of each pair of clauses
have exactly one or all members in common, SAT and moreover its counting
version #SAT can be decided, respectively solved, in polynomial time.

On basis of the last theorem, we obtain:

Corollary 3. NAE-SAT and also its counting version #NAE-SAT are polyno-
mial-time solvable restricted to XLCNF, respectively, XLCNF+.

Proof. As in the proof of Lemma 3 we use the fact that C ∈ NAE-SAT
if and only if C ∪ Cγ ∈ SAT. Now let C ∈ XLCNF be arbitrarily chosen,
then C ∪ Cγ is a formula such that each pair of clauses has exactly one or all
members in common. So, according to Theorem 7 we conclude that NAE-SAT
is polynomial-time decidable (and solvable) for exact linear formulas. Moreover
it is easy to see that each fixed nae-model of C gives rise to a unique SAT model
of C ∪ Cγ and vice versa. Hence the corresponding model spaces are in 1-to-1-
correspondence implying that #NAE-SAT can be solved in polynomial time in
view of Theorem 7. The assertion for XLCNF+ now is a direct implication. �

In [11] Eiter stated a problem called symmetrical intersecting monotone
UNSAT (SIM-UNSAT), which is computationally equivalent to a problem called
IM-UNSAT that in turn forms the hard core of several interesting combinatorial
problems arising in different areas. Eiter posed the question concerning the
computational complexity of SIM-UNSAT (resp. IM-UNSAT) which was open
for 15 years, already in 1996. As far as we know this question has not been
answered so far. Instances of SIM-UNSAT are of the form C ∪ Cγ , where C is
a set of pairwise intersecting monotone clauses. Then we are asked to decide
whether such an instance is unsatisfiable. Observe that in view of the proof
above, solving NAE-SAT for exact linear formulas in polynomial time means
to solve SIM-UNSAT in polynomial time restricted to the special case, where
the monotone clauses intersect pairwise in exactly one variable. In that way, we
have given a partial answer to Eiter’s problem, however, the general case clearly
remains open.

The next result is remarkable in the sense that XSAT is the problem with
the smallest search space among XSAT, NAE-SAT, and SAT, but has the high-
est complexity for the rather small class of exact linear formulas, under the
assumption NP 6= P.

Theorem 8. XSAT remains NP-complete for XLCNF+ and XLCNF.

Proof. A polynomial-time reduction from LCNF+-XSAT to XLCNF+-XSAT
suffices for the proof. Let C = {c1, c2, . . . , cm} ∈ LCNF+ be an arbitrary
formula that is not exact linear, otherwise we are done. As long as there is
a pair of clauses ci, cj ∈ C, i, j ∈ {1, . . . ,m} which do not share a variable,
introduce a new variable z that does not occur in the current formula and
augment both ci and cj by the variable z. The resulting formula C ′ obviously
is exact linear. Let Z denote the collection of newly introduced variables this
way. Next, we add at least m + 1 further clauses collected in D whereas C ′ is

15

modified to C̃ ′ so that the resulting formula C ′′ := C̃ ′ ∪ D stays exact linear
and becomes XSAT-equivalent to C.

The construction of D and the modification of C ′ proceeds hand in hand:
Initially, D is empty. As long as there is a variable z ∈ Z not occurring in
any clause of D, add a new clause d to D containing z and a new distinguished
variable u (which is required to be contained in each clause of D). For each
clause ci of the current formula C ′ such that V (d)∩V (ci) = ∅ introduce a new
variable wd,i and add it to d and ci. Let W denote the collection of all these
newly introduced variables.

When all variables in Z occur in D, but D still contains less than m + 1
clauses then add sufficiently many new clauses to D each containing u. Each
such new clause e is filled-up by m new variables ye,1, . . . , ye,m such that ye,r is
added to W and to the rth clause of the first m clauses, 1 ≤ r ≤ m. Finally, all
newly introduced variables in Z ∪W occur in D and in the final version C̃ ′ of
C ′ and the formula is exact linear.

Let C be x-satisfiable with x-model t. Obviously, t can be extended to all
variables of C ′′ by setting all newly introduced variables of W ∪ Z to 0 and
u = 1. This yields a x-model for C ′′.

Let C be x-unsatisfiable, and assume that C ′′ is x-satisfiable. Then C̃ ′ can
only be x-satisfied by setting at least one variable x ∈ Z ∪W to 1. As each
variable of Z ∪W also occurs in D, there must be a clause di ∈ D with x ∈ di.
Hence u = 0 in di, and thus, to x-satisfy D, exactly one variable from Z ∪W
must be set to 1 in each of its clauses. As D has at least m + 1 clauses, there
must be at least m + 1 distinct variables from Z ∪ W set to 1 in D. Since
all these variables occur in C̃ ′, but C̃ ′ has exactly m clauses, the pigeonhole
principle implies that there is a clause in C̃ ′ containing at least two variables
set to 1. This yields a contradiction, hence C ′′ is x-unsatisfiable, too.

To illustrate this reduction, consider the input formula

C = {x1x2x3, x4x5x6, x1x7x8} ∈ LCNF+

where clauses are written as strings. First we obtain C ′ by making the clauses
of C exact linear introducing the new variables Z = {z1, z2}:

C ′ = {x1x2x3z1,

x4x5x6z1z2,

x1x7x8z2}

Next we add clauses D = {d1, d2} each containing a fixed variable u such that
all variables in Z occur in the new clauses. To preserve exact linearity we need

16

to introduce new variables W = {w1, w2}:

{x1x2x3z1w2,

x4x5x6z1z2,

x1x7x8z2w1,

uz1w1,︸ ︷︷ ︸
=:d1

uz2w2︸ ︷︷ ︸
=:d2

}

In this example D has only two clauses, so we have to add two more clauses
e1, e2 to ensure XSAT-equivalence and preserve exact linearity, finally yielding
W = {w1, w2, y1, . . . , y6}, and:

C ′′ = {x1x2x3z1w2y1y4,

x4x5x6z1z2y2y5,

x1x7x8z2w1y3y6,

uz1w1,

uz2w2,

uy1y2y3,︸ ︷︷ ︸
=:e1

uy4y5y6︸ ︷︷ ︸
=:e2

} ∈ XLCNF+

�

It is not hard to see that the result above sharpens the long-standing NP-
hardness result for clique packing of a graph maximizing the number of covered
edges of Hell and Kirkpatrick [18]. Recently Chataigner et al. have provided
remarkable approximation (hardness) results regarding the clique packing prob-
lem [19]. It might be of interest to investigate whether similar approximation
results can be gained for XSAT on (X)LCNF.

Next we are interested in XSAT for (≥ k)-XLCNF+, with k ≥ 3. To prove its
NP-completeness, we need first to consider the class (≥ |C|)-LCNF+ consisting
of all monotone and linear formulas C such that each clause has at least size
|C|.

Lemma 6. Every formula in (≥ |C|)-LCNF+ is x-satisfiable.

Proof. Let C be a formula in (≥ |C|)-LCNF+ with m := |C| clauses and
assume there is a clause c0 ∈ C containing at least the variables x1, . . . , xm such
that wC(xi) ≥ 2, for 1 ≤ i ≤ m. Due to linearity this implies that there are
clauses ci, 1 ≤ i ≤ m, such that xi ∈ V (ci), thus |C| ≥ |{c0, c1, . . . , cm}| ≥ m+1
yielding a contradiction. It follows that each clause c of C contains at least one
literal which occurs only once in C. Hence, setting exactly these variables to 1
x-satisfies C. �

17

Let (k, |C| − 1)-LCNF+, k ≥ 3, denote the class of all monotone and linear
formulas C such that each clause has size at least k and at most |C| − 1. Ac-
cording to Theorem 2, XSAT of (≥ k)-LCNF+ is NP-complete, for each fixed
k ≥ 3. According to Lemma 6, (≥ |C|)-LCNF+ behaves trivially for XSAT.
Since, on the other hand, XSAT of k-LCNF+ also is NP-complete, and more-
over k-LCNF+ ⊆ (k, |C| − 1)-LCNF+, we obtain that XSAT is NP-complete
restricted to (k, |C| − 1)-LCNF+.

We were not able to establish the NP-completeness for k-XLCNF+, i.e.,
uniform formulas, regarding XSAT. However, on behalf of the NP-completeness
of (k, |C| − 1)-LCNF+-XSAT just shown, we can provide the next result by
using the same technique as in the proof of Theorem 8 starting with a formula
in (k, |C| − 1)-LCNF+.

Theorem 9. XSAT remains NP-complete for (≥ k)-XLCNF+, for each k ≥ 3.

Proof. We provide a polynomial-time reduction from (k, |C| − 1)-LCNF+-
XSAT to (≥ k)-XLCNF+-XSAT. Let C ∈ (k, |C| − 1)-LCNF+ be arbitrar-
ily chosen such that C = {c1, c2, . . . , c|C|} and k ≤ |ci| ≤ |C| − 1 for all
i ∈ {1, . . . , |C|}. Hence k ≤ |C| − 1. We proceed as follows: If C is already
exact linear then we are done. Otherwise, as long as there is a pair of clauses
ci, cj ∈ C, i, j ∈ {1, . . . , |C|} which do not share a variable, we introduce a new
variable zi not occurring in the formula yet and enlarge the clauses ci and cj
with the variable zi. Let C ′ be the resulting formula. Obviously C ′ is exact lin-
ear and each clause in C ′ has size ≥ k. Collecting all newly introduced variables
in Z = {z1, . . . , zp} = V (C ′) − V (C) we observe that each of it occurs exactly
twice in C ′. To ensure that C ′ and C are XSAT-equivalent we add the clause
set D = {d1, . . . , dq} to C ′, where q ≥ |C| + 1. The construction of the clause
set D is in detail explained in the proof of Theorem 8. As di shares exactly one
variable with each clause of C ′ we obtain |di| = |C|+ 1, for each di ∈ D. Thus
we have |di| = |C|+ 1 > |C| − 1 ≥ k. Further we have u ∈ V (di), for all di ∈ D,
where u is a variable not occurring in C ′, so the newly introduced clauses are
exact linear. Hence C ′′ := C ′∪D is positive monotone, exact linear, and XSAT
equivalent to C as shown in the proof of Theorem 8. Since each clause of C has
at least size k and |di| ≥ k, C ′′ belongs to (≥ k)-XLCNF+. �

Let us take a distinct perspective on XSAT for exact linear formulas. To that
end, let XLCNF+ be the class of all monotone exact linear formulas. Obviously,
the sets L(C) and V (C) of literals, resp. variables, in a formula C ∈ XLCNF+

coincide. Representing an x-model t by its subset d of exactly those literals that
are assigned 1, we can easily conclude:

C ∈ XSAT ⇔ ∃d ⊆ L(C), d 6∈ C : (∀c ∈ C |c ∩ d| = 1)

⇔ ∃d ⊆ V (C), d 6∈ C : (∀c ∈ C |V (c) ∩ V (d)| = 1)

⇔ ∃d ⊆ V (C), d 6∈ C : (C ∪ {d} ∈ XLCNF+)

It is not hard to see that an analogous argumentation is valid for the slightly
more general case, where all literals in C ∈ XLCNF are pure, meaning that each

18

variable in V (C) has the same fixed polarity in all its occurrences in C. So we
obtain:

Lemma 7. Let C ∈ XLCNF such that each literal in L(C) is pure in C (equiv-
alent to |L(C)| = |V (C)|), then it holds that C ∈ XSAT iff there is a clause
d ⊆ L(C), d 6∈ C with C ∪ {d} ∈ XLCNF. �

Next we state a useful result for exact linear hypergraphs:

Lemma 8. An exact linear hypergraph of n vertices and m hyperedges always
satisfies m ≤ n. �

This result is a special case of the Fisher-inequality [15]. A short indirect proof
of which can be found in [17]. In consequence, each exact linear formula C has
the property that the number of its clauses never exceeds the number of its
variables: |C| ≤ |V (C)|. Thus in view of Lemma 7 we have:

Lemma 9. Let C ∈ XLCNF such that each literal in L(C) is pure in C, then
C 6∈ XSAT if |C| = |V (C)|. This particularly is valid for k-block formulas, for
all k ≥ 2. �

The converse of the last assertion in general does not hold, which is closely
related to the existence problem of finite projective planes. As mentioned above
a k-block formula exists iff there exists a finite projective plane of order k−1. So,
assume we are given a k-uniform member C ∈ XLCNF+, which is known to be
a proper subformula of a k-block formula. According to Lemma 7 we then have
that C ∈ XSAT if there is a further clause enlarging that k-block subformula.
However, a 7-block formula does not exist, according to the fact that there are
no two orthogonal latin squares of order 6. In view of the argumentation in [1],
this means that a largest subformula of a 7-block formula can have at most 24
clauses; but it has 43 variables. Thus the non-existence of a 7-block formula
provides a counter-example to the converse of Lemma 7.

In the light of Lemma 7 one could get the idea that XSAT for exact linear
formulas would yield an elegant method for deciding the existence of k-block
formulas, and thus of finite projective planes of order k− 1. Unfortunately, this
is not true as the following argumentation tells us.

Let k ∈ N be such that a k-block formula Bk exists and let C ∈ k-XLCNF+

be not a k-block. Then we say that C can be embedded into a k-block formula,
if we can expand C, by adding further clauses, such that C becomes a k-block
formula. This could be regarded as a Church-Rosser property for constructing
k-block formulas.

Theorem 10. Let k ∈ N be such that a k-block formula exists and let C ∈
k-XLCNF+ such that w(x) ≤ k for all x ∈ V (C). Then C cannot be always
embedded into a k-block formula. In other words generating k-block fomulas does
not have the Church-Rosser property.

19

Proof. Consider the following counter-example for k = 5:

C = {x1x2x3x4x5,

x1x6x7x8x9,

x1x10x11x12x13,

x1x14x15x16x17,

x1x18x19x20x21,

x2x6x10x14x18,

x2x7x11x15x19,

x2x8x12x16x20,

x2x9x13x17x21,

x3x6x11x16x21,

x3x7x10x17x20,

x3x8x13x15x18,

x3x9x12x14x19}

writing clauses as strings. Obviously C is not a 5-block formula and satisfies
w(x) ≤ 5, for all x ∈ V (C). But we cannot add another 5-uniform clause c to C
such that C ∪{c} remains exact linear. On the other hand recall that a 5-block
formula does exist [1]. �

5.2. The uniform case k-XLCNF+

Unfortunately, we cannot prove that XSAT of uniform exact linear formu-
las is NP-complete, though we clearly conjecture it. We instead present its
polynomial-time solvability for several subclasses, specifically those for small k,
namely k ≤ 6. For that purpose we provide several lemmas.

Lemma 10. Let C ∈ k-XLCNF+. If there is a variable x ∈ V (C) with w(x) >
k, then x ∈ V (c), for all c ∈ C.

Proof. Suppose there is a clause ci ∈ C that is not an x-clause. Then ci must
share exactly one variable with each x-clause. There are more than k many
x-clauses, but ci is only k-uniform. Hence C contains only x-clauses. �

Lemma 11. The class k-XLCNFk+ is x-unsatisfiable.

Proof. Let C ∈ k-XLCNFk+. Then C is a k-block formula according to Lemma
20 in [1] and thus not x-satisfiable according to Lemma 9. �

Lemma 12. Let C ∈ k-XLCNF+ containing a clause c = {x1, x2, . . . , xk}inC
such that w(x1) = w(x2) = . . . = w(xk) = k− 2. Then we can decide XSAT for
C in polynomial time.

20

Proof. Let C ∈ k-XLCNF+ and c1 = {x1, x2, . . . , xk) ∈ C with w(x1) =
w(x2) = . . . = w(xk) = k − 2. XSAT-evaluating C according to the setting
xi = 1, for any fixed i ∈ {1, . . . , k}, yields a formula C[xi] in 2-LCNF+ because
of exact linearity and k-uniformity. Therefore XSAT for C[xi] can be decided in
linear-time [13]. Hence, in the worst case we have to check every such formula
C[xi], 1 ≤ i ≤ k, yielding a polynomial-time worst-case running time of O(k ·
||C||). �

Lemma 13. Let C ∈ k-XLCNF+ and let x ∈ V (C) be a variable with w(x) =
k − 1 in C. Then C is x-satisfiable.

Proof. Let C ∈ k-XLCNF+ and x ∈ V (C) with w(x) = k−1. Let c1, . . . , ck−1
be the clauses containing x. We set x = 1 in c1, . . . , ck−1 and assign 0 to the
other variables in these clauses. This way we x-satisfy the clauses c1, . . . , ck−1
and remove these from the formula C. Now we consider the remaining clauses
cj ∈ C − {c1, . . . , ck−1}, which satisfy V (cj) ∩ (V (ci)− {x}) 6= ∅, for all i =
1, . . . , k−1. Hence each of the remaining clauses contains k−1 distinct variables
already assigned to 0. When we remove these from all of the remaining clauses
cj ∈ C −{c1, . . . , ck−1} the remaining formula consists of unit clauses only, and
thus C is x-satisfiable. �

Lemma 14. [13] Let C ∈ CNF with w(x) ≤ 2 for all x ∈ V (C). Then we can
decide XSAT for C in polynomial time.

Now we are ready to establish polynomial-time solvability of XSAT for exact
linear formulas with small uniformity conditions:

Theorem 11. The classes k-XLCNF+ can be x-solved in polynomial time, for
k ∈ {3, 4, 5, 6}.

Proof. We only treat the case k = 6 as the other cases proceed analogously
but are simpler. Let C ∈ 6-XLCNF+ be an arbitrary formula with variable
set V (C). We set wC(x) := w(x) since C is fixed, and provide a case analysis
guided by the number of occurrences of variables in V (C).

• If there is a variable x ∈ V (C) with w(x) ≥ 7, then x ∈ c for all c ∈ C
according to Lemma 10. In this case we set x = 1 and assign 0 to all the
other variables in V (C). This way we get an x-model for C.

• If w(x) = 6, for all x ∈ V (C), then C is x-unsatisfiable according to
Lemma 11.

• If there is a variable x ∈ V (C) with w(x) = 5 then C is x-satisfiable
according to Lemma 13.

• If w(x) = 4, for all x ∈ V (C), then we can decide XSAT for C in polyno-
mial time according to Lemma 12.

21

• If there is a variable x ∈ V (C) with w(x) = 6 as well as a variable
y ∈ V (C) with w(y) 6= 6: If C only consists of clauses containing x, then
we set x = 1 and all other variables in V (C) to 0 obtaining an x-model for
C. Otherwise, there is a variable x ∈ V (C) with w(x) ≥ 4. Setting x to
1, and all other variables in the clauses containing x to 0 yields a formula
only containing clauses of length ≤ 2. Such a formula can be checked for
XSAT in polynomial time. In the same manner we treat each variable
z ∈ V (C) with w(z) ≥ 4 until an x-model is found. In the negative case
we proceed as follows:

(a) If there is no variable x ∈ V (C) with w(x) = 3, we set all the variables
x with w(x) ≥ 4 to 0. Hence the resulting formula C ′ contains only
variables occurring ≤ 2 times in C ′ and by using Lemma 14 we can
solve C ′ in polynomial time.

(b) If there is a variable x ∈ V (C) with w(x) = 3, then after having
set x to 1 and all other variables to 0 in the clauses containing x,
we obtain a formula C ′ which is in 3-LCNF+. If there is no further
variable occurring three times in C ′, we set all variables occurring
≥ 4 times to 0 and can decide x-satisfiability of C ′ in polynomial
time according to Lemma 14. Otherwise, there is a variable y with
w(y) = 3 in C ′. Then we set y = 1 and to 0 all other variables
in the clauses containing y. Now all y-clauses are x-satisfied and
there are at most three clauses in the remaining formula that do
not share any variable with any of the clauses containing y. Hence
all clauses, except for at most three, do share at least one variable
with one clauses containing y. Since these variables are all set to 0,
the remaining formula only contains clauses of length two at most
(except for at most three clauses) which can be decided for XSAT in
polynomial time.

• If w(x) ≤ 3, for all x ∈ V (C), and there is x ∈ V (C) with w(x) = 3:
After having set x to 1 and all other variables in the clauses containing x
to 0, the remaining formula C ′ is in 3-LCNF+. If all variables occur at
most twice in C ′, we can decide x-satisfiability of C ′ in polynomial time
according to Lemma 14. Otherwise there is still a variable y with w(y) = 3
in C ′. In that case we set y = 1 and all variables in the clauses containing
y to 0. Now all of y-clauses are x-satisfied and there are at most three
clauses which do not share any variable with at least one of the y-clauses.
Hence we can decide XSAT in polynomial time as above.

• If w(x) ≤ 2, for all x ∈ V (C), we can decide XSAT for C in polynomial
time according to Lemma 14. �

6. Concluding Remarks and Open Problems

The variants XSAT and NAE-SAT of SAT have been shown to be NP-
complete when restricted to LCNF+, k-LCNF+, and (≥ k)-LCNF+. Moreover

22

XSAT and NAE-SAT have been shown to remain NP-complete when restricted
to l-regular linear formulas, for l ≥ 3. We have also shown that XSAT for un-
restricted exact linear formulas is NP-complete in contrast to SAT, respectively
NAE-SAT, which both are polynomial-time solvable for this class. These results
imply the NP-completeness of some subversions of the well-known combinato-
rial optimization problems bicolorability, i.e., set splitting, set partitioning, and
exact hitting set on regular and linear hypergraphs:

Theorem 12. (1) Exact hitting set, set partitioning, and bicolorability of lin-
ear, l-regular hypergraphs are NP-complete.
(2) Exact hitting set for exact linear hypergraphs is NP-complete.
(3) Bicolorability of exact linear hypergraphs is polynomial-time solvable.

Observe that set partitioning for exact linear hypergraphs is trivial in the sense
that it has no solution either the input hypergraph consists of one hyperedge
only.

There are several problems left open for future work. First of all we do not
know the complexity status of XSAT and NAE-SAT restricted to the classes
k-LCNFl+, for arbitrary values of k, l ≥ 3. If k equals l and additionally is a
prime power we could verify the NP-completeness of XSAT and only for the
non-monotone larger class.

Regarding k-uniform exact linear formulas, we could not clarify the situation
for arbitrary large k. Our conjecture clearly is that NP-completeness holds
also for such formulas. The same lack is present if in addition the number
of occurrence of variables, is fixed, meaning that the XSAT-complexities of
XLCNFl+, respectively k-XLCNFl+, are open, for k, l ≥ 3. However, in this
context we have an easy but nice observation:

Theorem 13. For each l > k, k-XLCNFl+ is empty.

Proof. Suppose there exists C ∈ k-XLCNFl+, and assume l > k. Let x ∈ V (C)
occur in the clauses c1, . . . , cl which provide a subformula D of C that cannot be
regular. To make it l-regular we have to add further clauses. But we cannot add
a further clause cl+1 such that c1, . . . , cl, cl+1 are exact linear and k-uniform,
because cl+1 must share a variable with each of the clauses c1, . . . , cl and hence
cl+1 would have a size of at least l, where l > k which is a contradiction to the
k-uniformity of C. �

Another interesting question arises from the perspective of block designs, namely
to construct (smallest) monotone linear witness formulas that are k-uniform
and nae-unsatisfiable. Recall that we provided NP-completeness of NAE-SAT
for k-LCNF+ in an indirect manner relying on Schaefer’s dichotomy theorem.
A more explicit treatment using appropriate backbone formulas failed because
of the lack of such witness formulas which we were able to find for the values
k = 3, 4 only.

Finally, let us discuss some aspects regarding exact deterministic algorith-
mics. Notice, that for the unrestricted CNF class there have been designed

23

exact deterministic algorithms solving XSAT in less than 2n steps on input in-
stances over n variables [20, 21]. Thus it is desirable to gain progress for XSAT
restricted to linear formulas beyond the so far best bound of O(20.2325·n), for un-
restricted CNF-XSAT over n variables, provided by Byskov et al. [21]. In [14] an
algorithm is proposed for XSAT restricted to regular linear formulas. It seems
that it outperforms the algorithm by Byskov et al. asymtotically. However a
rigorous analysis justifying that assertion is left for future work.

For NAE-SAT, no such progress was achieved so far, which is not surprising
because NAE-SAT is as hard as SAT itself for the unrestricted case [22, 23]. So,
we face the problem, whether one can provide exact deterministic algorithms
solving NAE-SAT, respectively, SAT on LCNF faster than in 2n steps on input
instances over n variables.

References

[1] S. Porschen, E. Speckenmeyer, X. Zhao, Linear CNF formulas and satisfi-
ability, Discrete Appl. Math. 157 (2009) 1046–1068.

[2] S. Porschen, E. Speckenmeyer, A CNF class generalizing exact linear for-
mulas, in: Proc. SAT 2008, LNCS, Vol. 4996, 2008, pp. 231–245.

[3] S. Porschen, T. Schmidt, On some SAT-variants over linear formulas, in:
Proc. SOFSEM 2009, LNCS, Vol. 5404, 2009, pp. 449–460.

[4] S. Porschen, T. Schmidt, E. Speckenmeyer, Complexity results of linear
XSAT problems, in: Proc. SAT 2010, LNCS, Vol. 6175, 2010, pp. 251–263.

[5] S. A. Cook, The complexity of theorem proving procedures, in: Proceedings
of the 3rd ACM Symposium on Theory of Computing, 1971, pp. 151–158.

[6] T. J. Schaefer, The complexity of satisfiability problems, in: Proc. STOC
1978, ACM, 1978, pp. 216–226.

[7] D. Scheder, Unsatisfiable linear k-CNFs exist, for every k, Preprint
arXiv:math cs.DM/0708.2336 v1 (2007).

[8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, San Francisco,
1979.

[9] J. Kratochvil, P. Savicky, Z. Tusa, One more occurrence of variables makes
satisfiability jump from trivial to NP-complete, SIAM J. Comput. 22 (1993)
203–210.

[10] S. Hoory, S. Szeider, A note on unsatisfiable k-CNF formulas with few
occurrences per variable, SIAM J. Discret. Math. 20 (2) (2006) 523–528.

[11] T. Eiter, Open problems in satisfiability, available at
http://www.ece.uc.edu/~franco/Sat-workshop/sat-workshop-open-
problems.html.

24

[12] C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.

[13] S. Porschen, E. Speckenmeyer, Algorithms for variable-weighted 2-SAT and
dual problems, in: Proc. SAT 2007, LNCS, Vol. 4501, 2007, pp. 173–186.

[14] T. Schmidt, Computational complexity of SAT, XSAT and NAE-SAT for
linear and mixed Horn CNF formulas, Ph.D. thesis, Institut für Informatik,
Univ. Köln, Germany (2010).

[15] H. J. Ryser, Combinatorial Mathematics, Carus Mathematical Monographs
14, Mathematical Association of America, 1963.

[16] C. W. H. Lam, L. Thiel, S. Swiercz, The non-existence of finite projective
planes of order 10, article dedicated to the memory of H. J. Ryser (1989).
URL http://citeseerx.ist.psu.edu/viewdoc/summary/doi=10.1.1.

39.8684

[17] R. Palisse, A short proof of Fisher’s inequality, Discrete Math. 111 (1993)
421–422.

[18] P. Hell, D. G. Kirkpatrick, On the complexity of general k-factor problems,
SIAM J. Comput. 12 (1983) 601–609.

[19] F. Chataigner, G. Manic, Y. Wakabayashi, R. Yuster, Approximation algo-
rithms and hardness results for the clique packing problem, Discrete Appl.
Math. 157 (2009) 1396–1406.

[20] B. Monien, E. Speckenmeyer, O. Vornberger, Upper bounds for covering
problems, Methods of Operations Research 43 (1981) 419–431.

[21] J. M. Byskov, B. A. Madsen, B. Skjernaa, New algorithms for exact satis-
fiability, Theoretical Comp. Sci. 332 (2005) 515–541.

[22] D. E. Knuth, Axioms and Hulls, LNCS vol. 606, Springer, New York, 1992.

[23] S. Porschen, H. Randerath, E. Speckenmeyer, Linear-time algorithms for
some not-all-equal satisfiability problems, in: Proc. SAT 2003, LNCS, Vol.
2919, 2004, pp. 172–187.

25

